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Foreword
by Scott Meyers

In 1991, I wrote the first edition of Effective C��. The book contained almost no discussions
of templates, because templates were such a recent addition to the language, I knew almost
nothing about them. What little template code I included, I had verified by e-mailing it 
to other people, because none of the compilers to which I had access offered support for
templates.

In 1995, I wrote More Effective C��. Again I wrote almost nothing about templates.
What stopped me this time was neither a lack of knowledge of templates (my initial out-
line for the book included an entire chapter on the topic) nor shortcomings on the part of
my compilers. Instead, it was a suspicion that the C�� community’s understanding of 
templates was about to undergo such dramatic change, anything I had to say about them
would soon be considered trite, superficial, or just plain wrong.

There were two reasons for that suspicion. The first was a column by John Barton 
and Lee Nackman in the January 1995 C�� Report that described how templates could be
used to perform typesafe dimensional analysis with zero runtime cost. This was a problem
I’d spent some time on myself, and I knew that many had searched for a solution, but none
had succeeded. Barton and Nackman’s revolutionary approach made me realize that tem-
plates were good for a lot more than just creating containers of T.

As an example of their design, consider this code for multiplying two physical quanti-
ties of arbitrary dimensional type:

template<int m1, int l1, int t1, int m2, int l2, int t2>
Physical<m1+m2, l1+l2, t1+t2> operator*(Physical<m1, l1, t1> lhs,

Physical<m2, l2, t2> rhs)
{

return Physical<m1+m2, l1+l2, t1+t2>::unit*lhs.value()*rhs.value();
}

Even without the context of the column to clarify this code, it’s clear that this function tem-
plate takes six parameters, none of which represents a type! This use of templates was such
a revelation to me, I was positively giddy.

Shortly thereafter, I started reading about the STL. Alexander Stepanov’s elegant library
design, where containers know nothing about algorithms; algorithms know nothing about

xi



containers; iterators act like pointers (but may be objects instead); containers and algo-
rithms accept function pointers and function objects with equal aplomb; and library clients
may extend the library without having to inherit from any base classes or redefine any
virtual functions, made me feel—as I had when I read Barton and Nackman’s work—like
I knew almost nothing about templates.

So I wrote almost nothing about them in More Effective C��. How could I? My under-
standing of templates was still at the containers-of-T stage, while Barton, Nackman,
Stepanov, and others were demonstrating that such uses barely scratched the surface of
what templates could do. 

In 1998, Andrei Alexandrescu and I began an e-mail correspondence, and it was not
long before I recognized that I was again about to modify my thinking about templates.
Where Barton, Nackman, and Stepanov had stunned me with what templates could do,
however, Andrei’s work initially made more of an impression on me for how it did what 
it did.

One of the simplest things he helped popularize continues to be the example I use 
when introducing people to his work. It’s the CTAssert template, analogous in use to 
the assert macro, but applied to conditions that can be evaluated during compilation.
Here it is:

template<bool> struct CTAssert;
template<> struct CTAssert<true> {};

That’s it. Notice how the general template, CTAssert, is never defined. Notice how there is
a specialization for true, but not for false. In this design, what’s missing is at least as im-
portant as what’s present. It makes you look at template code in a new way, because large
portions of the “source code” are deliberately omitted. That’s a very different way of think-
ing from the one most of us are used to. (In this book, Andrei discusses the more sophisti-
cated CompileTimeChecker template instead of CTAssert.)

Eventually, Andrei turned his attention to the development of template-based imple-
mentations of popular language idioms and design patterns, especially the GoF* patterns.
This led to a brief skirmish with the Patterns community, because one of their fundamen-
tal tenets is that patterns cannot be represented in code. Once it became clear that Andrei
was automating the generation of pattern implementations rather than trying to encode pat-
terns themselves, that objection was removed, and I was pleased to see Andrei and 
one of the GoF (John Vlissides) collaborate on two columns in the C�� Report focusing on
Andrei’s work.

In the course of developing the templates to generate idiom and pattern implementa-
tions, Andrei was forced to confront the variety of design decisions that all implementers
face. Should the code be thread safe? Should auxiliary memory come from the heap, from
the stack, or from a static pool? Should smart pointers be checked for nullness prior to
dereferencing? What should happen during program shutdown if one Singleton’s de-
structor tries to use another Singleton that’s already been destroyed? Andrei’s goal was to
offer his clients all possible design choices while mandating none.

xii Foreword

*“GoF” stands for “Gang of Four” and refers to Erich Gamma, Richard Helm, Ralph Johnson, and John 
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(Addison-Wesley, 1995).



His solution was to encapsulate such decisions in the form of policy classes, to allow
clients to pass policy classes as template parameters, and to provide reasonable default val-
ues for such classes so that most clients could ignore them. The results can be astonishing.
For example, the Smart Pointer template in this book takes only 4 policy parameters, but it
can generate over 300 different smart pointer types, each with unique behavioral charac-
teristics! Programmers who are content with the default smart pointer behavior, however,
can ignore the policy parameters, specify only the type of object pointed to by the smart
pointer, and reap the benefits of a finely crafted smart pointer class with virtually no effort.

In the end, this book tells three different technical stories, each compelling in its own
way. First, it offers new insights into the power and flexibility of C�� templates. (If the
material on typelists doesn’t knock your socks off, it’s got to be because you’re already 
barefoot.) Second, it identifies orthogonal dimensions along which idiom and pattern im-
plementations may differ. This is critical information for template designers and pattern
implementers, but you’re unlikely to find this kind of analysis in most idiom or pattern de-
scriptions. Finally, the source code to Loki (the template library described in this book) is
available for free download, so you can study Andrei’s implementation of the templates
corresponding to the idioms and patterns he discusses. Aside from providing a nice stress
test for your compilers’ support for templates, this source code serves as an invaluable
starting point for templates of your own design. Of course, it’s also perfectly respectable
(and completely legal) to use Andrei’s code right out of the box. I know he’d want you to
take advantage of his efforts.

From what I can tell, the template landscape is changing almost as quickly now as it 
was in 1995 when I decided to avoid writing about it. At the rate things continue to de-
velop, I may never write about templates. Fortunately for all of us, some people are braver
than I am. Andrei is one such pioneer. I think you’ll get a lot out of his book. I did. 

Scott Meyers
September 2000
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Foreword
by John Vlissides

What’s left to say about C�� that hasn’t already been said? Plenty, it turns out. This 
book documents a convergence of programming techniques—generic programming, tem-
plate metaprogramming, object-oriented programming, and design patterns—that are
well understood in isolation but whose synergies are only beginning to be appreciated.
These synergies have opened up whole new vistas for C��, not just for programming but
for software design itself, with profound implications for software analysis and architec-
ture as well.

Andrei’s generic components raise the level of abstraction high enough to make C��
begin to look and feel like a design specification language. Unlike dedicated design lan-
guages, however, you retain the full expressiveness and familiarity of C��. Andrei shows
you how to program in terms of design concepts: singletons, visitors, proxies, abstract
factories, and more. You can even vary implementation trade-offs through template pa-
rameters, with positively no runtime overhead. And you don’t have to blow big bucks on
new development tools or learn reams of methodological mumbo jumbo. All you need is a
trusty, late-model C�� compiler—and this book.

Code generators have held comparable promise for years, but my own research and
practical experience have convinced me that, in the end, code generation doesn’t compare.
You have the round-trip problem, the not-enough-code-worth-generating problem, the 
inflexible-generator problem, the inscrutable-generated-code problem, and of course the I-
can’t-integrate-the-bloody-generated-code-with-my-own-code problem. Any one of these
problems may be a showstopper; together, they make code generation an unlikely solution
for most programming challenges.

Wouldn’t it be great if we could realize the theoretical benefits of code generation—
quicker, easier development, reduced redundancy, fewer bugs—without the drawbacks?
That’s what Andrei’s approach promises. Generic components implement good designs in
easy-to-use, mixable-and-matchable templates. They do pretty much what code generators
do: produce boilerplate code for compiler consumption. The difference is that they do it
within C��, not apart from it. The result is seamless integration with application code. 
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You can also use the full power of the language to extend, override, and otherwise tweak
the designs to suit your needs.

Some of the techniques herein are admittedly tricky to grasp, especially the template
metaprogramming in Chapter 3. Once you’ve mastered that, however, you’ll have a solid
foundation for the edifice of generic componentry, which almost builds itself in the ensu-
ing chapters. In fact, I would argue that the metaprogramming material of Chapter 3 alone
is worth the book’s price—and there are ten other chapters full of insights to profit from.
“Ten” represents an order of magnitude. Even so, the return on your investment will be 
far greater.

John Vlissides
IBM T.J. Watson Research

September 2000
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Preface

You might be holding this book in a bookstore, asking yourself whether you should buy it.
Or maybe you are in your employer’s library, wondering whether you should invest time
in reading it. I know you don’t have time, so I’ll cut to the chase. If you have ever asked
yourself how to write higher-level programs in C��, how to cope with the avalanche of ir-
relevant details that plague even the cleanest design, or how to build reusable components
that you don’t have to hack into each time you take them to your next application, then this
book is for you.

Imagine the following scenario. You come from a design meeting with a couple of
printed diagrams, scribbled with your annotations. Okay, the event type passed between
these objects is not char anymore; it’s int. You change one line of code. The smart pointers
to Widget are too slow; they should go unchecked. You change one line of code. The object
factory needs to support the new Gadget class just added by another department. You
change one line of code.

You have changed the design. Compile. Link. Done.
Well, there is something wrong with this scenario, isn’t there? A much more likely sce-

nario is this: You come from the meeting in a hurry because you have a pile of work to do.
You fire a global search. You perform surgery on code. You add code. You introduce bugs.
You remove the bugs . . . that’s the way a programmer’s job is, right? Although this book
cannot possibly promise you the first scenario, it is nonetheless a resolute step in that di-
rection. It tries to present C�� as a newly discovered language for software architects.

Traditionally, code is the most detailed and intricate aspect of a software system. His-
torically, in spite of various levels of language support for design methodologies (such as
object orientation), a significant gap has persisted between the blueprints of a program and
its code because the code must take care of the ultimate details of the implementation and
of many ancillary tasks. The intent of the design is, more often than not, dissolved in a sea
of quirks.

This book presents a collection of reusable design artifacts, called generic components, 
together with the techniques that make them possible. These generic components bring
their users the well-known benefits of libraries, but in the broader space of system archi-
tecture. The coding techniques and the implementations provided focus on tasks and issues
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that traditionally fall in the area of design, activities usually done before coding. Because of
their high level, generic components make it possible to map intricate architectures to code
in unusually expressive, terse, and easy-to-maintain ways.

Three elements are reunited here: design patterns, generic programming, and C��.
These elements are combined to achieve a very high rate of reuse, both in the horizontal
and vertical “markets” of software design. In the horizontal dimension, a small amount of
library code implements a combinatorial—and essentially open-ended—number of struc-
tures and behaviors. On the vertical dimension, the generality of these components makes
them applicable to a vast range of programs.

This book owes much to design patterns, powerful solutions to ever-recurring 
problems in object-oriented development. Design patterns are distilled pieces of good 
design—recipes for sound, reusable solutions to problems that can be encountered in many
contexts. Design patterns concentrate on providing a suggestive lexicon for designs to be
conveyed. They describe the problem, a time-proven solution with its variants, and the
consequences of choosing each variant of that solution. Design patterns go above and be-
yond anything a programming language, no matter how advanced, could possibly express.
By following and combining certain design patterns, the components presented in this
book tend to address a large category of concrete problems.

Generic programming is a paradigm that focuses on abstracting types to a narrow 
collection of functional requirements and on implementing algorithms in terms of these
requirements. Because algorithms define a strict and narrow interface to the types they 
operate on, the same algorithm can be used against a wide collection of types. The im-
plementations in this book use generic programming techniques to achieve a minimal 
commitment to specificity, extraordinary terseness, and efficiency that rivals carefully
handcrafted code.

C�� is the only implementation tool used in this book. You will not find in this book
code that implements nifty windowing systems, complex networking libraries, or clever
logging mechanisms. Instead, you will find the fundamental components that make it easy
to implement all of the above, and much more. C�� has the breadth necessary to make 
this possible. Its underlying C memory model ensures raw performance, its support for
polymorphism enables object-oriented techniques, and its templates unleash an incredible 
code generation machine. Templates pervade all the code in the book because they allow
close cooperation between the user and the library. The user of the library literally con-
trols the way code is generated, in ways constrained by the library. The role of a generic
component library is to allow user-specified types and behaviors to be combined with
generic components in a sound design. Because of the static nature of the techniques used,
errors in mixing and matching the appropriate pieces are usually caught during com-
pilation.

This book’s manifest intent is to create generic components—preimplemented pieces of
design whose main characteristics are flexibility, versatility, and ease of use. Generic com-
ponents do not form a framework. In fact, their approach is complementary—whereas a
framework defines interdependent classes to foster a specific object model, generic com-
ponents are lightweight design artifacts that are independent of each other, yet can be
mixed and matched freely. They can be of great help in implementing frameworks.
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Audience

The intended audience of this book falls into two main categories. The first category is that
of experienced C�� programmers who want to master the most modern library writing
techniques. The book presents new, powerful C�� idioms that have surprising capabili-
ties, some of which weren’t even thought possible. These idioms are of great help in writ-
ing high-level libraries. Intermediate C�� programmers who want to go a step further will
certainly find the book useful, too, especially if they invest a bit of perseverance. Although
pretty hard-core C�� code is sometimes presented, it is thoroughly explained. 

The second category consists of busy programmers who need to get the job done 
without undergoing a steep learning investment. They can skim the most intricate details
of implementation and concentrate on using the provided library. Each chapter has an in-
troductory explanation and ends with a Quick Facts section. Programmers will find these
features a useful reference in understanding and using the components. The components
can be understood in isolation, are very powerful yet safe, and are a joy to use.

You need to have a solid working experience with C�� and, above all, the desire to
learn more. A degree of familiarity with templates and the Standard Template Library
(STL) is desirable.

Having an acquaintance with design patterns (Gamma et al. 1995) is recommended but
not mandatory. The patterns and idioms applied in the book are described in detail. How-
ever, this book is not a pattern book—it does not attempt to treat patterns in full generality.
Because patterns are presented from the pragmatic standpoint of a library writer, even
readers interested mostly in patterns may find the perspective refreshing, if constrained.

Loki

The book describes an actual C�� library called Loki. Loki is the god of wit and mischief
in Norse mythology, and the author’s hope is that the library’s originality and flexibility
will remind readers of the playful Norse god. All the elements of the library live in the
namespace Loki. The namespace is not mentioned in the coding examples because it would
have unnecessarily increased indentation and the size of the examples. Loki is freely avail-
able; you can download it from http://www.modernpcdesign.com.

Except for its threading part, Loki is written exclusively in standard C��. This, alas,
means that many current compilers cannot cope with parts of it. I implemented and tested
Loki using Metrowerks’ CodeWarrior Pro 6.0 and Comeau C�� 4.2.38, both on Windows.
It is likely that KAI C�� wouldn’t have any problem with the code, either. As vendors re-
lease new, better compiler versions, you will be able to exploit everything Loki has to offer.

Loki’s code and the code samples presented throughout the book use a popular coding
standard originated by Herb Sutter. I’m sure you will pick it up easily. In a nutshell,

• Classes, functions, and enumerated types look LikeThis.
• Variables and enumerated values look likeThis.
• Member variables look likeThis_.
• Template parameters are declared with class if they can be only a user-defined type,

and with typename if they can also be a primitive type.

Preface xix
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Organization

The book consists of two major parts: techniques and components. Part I (Chapters 1 to 4)
describes the C�� techniques that are used in generic programming and in particular 
in building generic components. A host of C��-specific features and techniques are 
presented: policy-based design, partial template specialization, typelists, local classes, 
and more. You may want to read this part sequentially and return to specific sections for
reference.

Part II builds on the foundation established in Part I by implementing a number of ge-
neric components. These are not toy examples; they are industrial-strength components
used in real-world applications. Recurring issues that C�� developers face in their day-to-
day activity, such as smart pointers, object factories, and functor objects, are discussed in
depth and implemented in a generic way. The text presents implementations that address
basic needs and solve fundamental problems. Instead of explaining what a body of code
does, the approach of the book is to discuss problems, take design decisions, and imple-
ment those decisions gradually.

Chapter 1 presents policies—a C�� idiom that helps in creating flexible designs.
Chapter 2 discusses general C�� techniques related to generic programming.
Chapter 3 implements typelists, which are powerful type manipulation structures.
Chapter 4 introduces an important ancillary tool: a small object allocator.
Chapter 5 introduces the concept of generalized functors, useful in designs that use the

Command design pattern.
Chapter 6 describes Singleton objects.
Chapter 7 discusses and implements smart pointers.
Chapter 8 describes generic object factories.
Chapter 9 treats the Abstract Factory design pattern and provides implementations 

of it.
Chapter 10 implements several variations of the Visitor design pattern in a generic

manner.
Chapter 11 implements several multimethod engines, solutions that foster various

trade-offs.

The design themes cover many important situations that C�� programmers have to
cope with on a regular basis. I personally consider object factories (Chapter 8) a corner-
stone of virtually any quality polymorphic design. Also, smart pointers (Chapter 7) are an
important component of many C�� applications, small and large. Generalized functors
(Chapter 5) have an incredibly broad range of applications. Once you have generalized
functors, many complicated design problems become very simple. The other, more spe-
cialized, generic components, such as Visitor (Chapter 10) or multimethods (Chapter 11),
have important niche applications and stretch the boundaries of language support.

xx Preface
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7
Smart Pointers

Smart pointers have been the subject of hecatombs of code written and rivers of ink con-
sumed by programmers and writers around the world. Perhaps the most popular, intricate,
and powerful C�� idiom, smart pointers are interesting in that they combine many syn-
tactic and semantic issues. This chapter discusses smart pointers, from their simplest as-
pects to their most complex ones and from the most obvious errors in implementing them
to the subtlest ones—some of which also happen to be the most gruesome.

In brief, smart pointers are C�� objects that simulate simple pointers by implement-
ing operator-> and the unary operator*. In addition to sporting pointer syntax and
semantics, smart pointers often perform useful tasks—such as memory management or
locking—under the covers, thus freeing the application from carefully managing the life-
time of pointed-to objects.

This chapter not only discusses smart pointers but also implements a SmartPtr class
template. SmartPtr is designed around policies (see Chapter 1), and the result is a smart
pointer that has the exact levels of safety, efficiency, and ease of use that you want.

After reading this chapter, you will be an expert in smart pointer issues such as the
following:

• The advantages and disadvantages of smart pointers
• Ownership management strategies
• Implicit conversions
• Tests and comparisons
• Multithreading issues

This chapter implements a generic SmartPtr class template. Each section presents one
implementation issue in isolation. At the end, the implementation puts all the pieces to-
gether. In addition to understanding the design rationale of SmartPtr, you will know how
to use, tweak, and extend it.

7.1 Smart Pointers 101

So what’s a smart pointer? A smart pointer is a C�� class that mimics a regular pointer 
in syntax and some semantics, but it does more. Because smart pointers to different types 
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of objects tend to have a lot of code in common, almost all good-quality smart pointers in
existence are templated by the pointee type, as you can see in the following code:

template <class T>
class SmartPtr
{
public:

explicit SmartPtr(T* pointee) : pointee_(pointee) {...}
SmartPtr& operator=(const SmartPtr& other);
~SmartPtr();
T& operator*() const
{

...
return *pointee_;

}
T* operator->() const
{

...
return pointee_;

}
private:

T* pointee_;
...

};

SmartPtr<T> aggregates a pointer to T in its member variable pointee_. That’s what
most smart pointers do. In some cases, a smart pointer might aggregate some handles to
data and compute the pointer on the fly.

The two operators give SmartPtr pointer-like syntax and semantics. That is, you can
write

class Widget
{
public:

void Fun();
};

SmartPtr<Widget> sp(new Widget);
sp->Fun();
(*sp).Fun();

Aside from the definition of sp, nothing reveals it as not being a pointer. This is the mantra
of smart pointers: You can replace pointer definitions with smart pointer definitions with-
out incurring major changes to your application’s code. You thus get extra goodies with
ease. Minimizing code changes is very appealing and vital for getting large applications to
use smart pointers. As you will soon see, however, smart pointers are not a free lunch.

7.2 The Deal

But what’s the deal with smart pointers? you might ask. What do you gain by replacing
simple pointers with smart pointers? The explanation is simple. Smart pointers have value
semantics, whereas some simple pointers do not.
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An object with value semantics is an object that you can copy and assign to. A plain int
is the perfect example of a first-class object. You can create, copy, and change integer values
freely. A pointer that you use to iterate in a buffer also has value semantics—you initialize
it to point to the beginning of the buffer, and you bump it until you reach the end. Along
the way, you can copy its value to other variables to hold temporary results.

With pointers that hold values allocated with new, however, the story is very different.
Once you have written

Widget* p = new Widget;

the variable p not only points to, but also owns, the memory allocated for the Widget object.
This is because later you must issue delete p to ensure that the Widget object is destroyed
and its memory is released. If in the line after the line just shown you write

p = 0; // assign something else to p

you lose ownership of the object previously pointed to by p, and you have no chance at all
to get a grip on it again. You have a resource leak, and resource leaks never help.

Furthermore, when you copy p into another variable, the compiler does not automati-
cally manage the ownership of the memory to which the pointer points. All you get is two
raw pointers pointing to the same object, and you have to track them even more carefully
because double deletions are even more catastrophic than no deletion. Consequently,
pointers to allocated objects do not have value semantics—you cannot copy and assign to
them at will.

Smart pointers can be of great help in this area. Most smart pointers offer ownership
management in addition to pointer-like behavior. Smart pointers can figure out how owner-
ship evolves, and their destructors can release the memory according to a well-defined
strategy. Many smart pointers hold enough information to take full initiative in releasing
the pointed-to object.

Smart pointers may manage ownership in various ways, each appropriate to a category
of problems. Some smart pointers transfer ownership automatically: After you copy a
smart pointer to an object, the source smart pointer becomes null, and the destination 
points to (and holds ownership of) the object. This is the behavior implemented by the stan-
dard-provided std::auto_ptr. Other smart pointers implement reference counting: They
track the total count of smart pointers that point to the same object, and when this count
goes down to zero, they delete the pointed-to object. Finally, some others duplicate their
pointed-to object whenever you copy them.

In short, in the smart pointers’ world, ownership is an important topic. By providing
ownership management, smart pointers are able to support integrity guarantees and full
value semantics. Because ownership has much to do with constructing, copying, and de-
stroying smart pointers, it’s easy to figure out that these are the most vital functions of a
smart pointer.

The following few sections discuss various aspects of smart pointer design and imple-
mentation. The goal is to render smart pointers as close to raw pointers as possible, but not
closer. It’s a contradictory goal: After all, if your smart pointers behave exactly like dumb
pointers, they are dumb pointers.
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In implementing compatibility between smart pointers and raw pointers, there is a thin
line between nicely filling compatibility checklists and paving the way to chaos. You will
find that adding seemingly worthwhile features might expose the clients to costly risks.
Much of the craft of implementing good smart pointers consists of carefully balancing their
set of features.

7.3 Storage of Smart Pointers 

To start, let’s ask a fundamental question about smart pointers. Is pointee_’s type neces-
sarily T*? If not, what else could it be? In generic programming, you should always ask
yourself questions like these. Each type that’s hardcoded in a piece of generic code de-
creases the genericity of the code. Hardcoded types are to generic code what magic con-
stants are to regular code.

In several situations, it is worthwhile to allow customizing the pointee type. One situ-
ation is when you deal with nonstandard pointer modifiers. In the 16-bit Intel 80x86 days,
you could qualify pointers with modifiers like __near, __far, and __huge. Other seg-
mented memory architectures use similar modifiers.

Another situation is when you want to layer smart pointers. What if you have a Legacy-
SmartPtr<T> smart pointer implemented by someone else, and you want to enhance 
it? Would you derive from it? That’s a risky decision. It’s better to wrap the legacy smart
pointer into a smart pointer of your own. This is possible because the inner smart pointer
supports pointer syntax. From the outer smart pointer’s viewpoint, the pointee type is not
T* but LegacySmartPtr<T>.

There are interesting applications of smart pointer layering, mainly because of the 
mechanics of operator->. When you apply operator-> to a type that’s not a built-in
pointer, the compiler does an interesting thing. After looking up and applying the user-
defined operator-> to that type, it applies operator-> again to the result. The compiler
keeps doing this recursively until it reaches a native pointer, and only then proceeds with
member access. It follows that a smart pointer’s operator-> does not have to return a
pointer. It can return an object that in turn implements operator->, without changing the
use syntax.

This leads to a very interesting idiom: pre- and postfunction calls (Stroustrup 2000). If
you return an object of type PointerType by value from operator->, the sequence of exe-
cution is as follows:

1. Constructor of PointerType
2. PointerType::operator-> called; likely returns a pointer to an object of type

PointeeType
3. Member access for PointeeType—likely a function call
4. Destructor of PointerType

In a nutshell, you have a nifty way of implementing locked function calls. This idiom has
broad uses with multithreading and locked resource access. You can have PointerType’s
constructor lock the resource, and then you can access the resource; finally, PointerType’s
destructor unlocks the resource.

The generalization doesn’t stop here. The syntax-oriented “pointer” part might some-
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times pale in comparison with the powerful resource management techniques that are in-
cluded in smart pointers. It follows that, in rare cases, smart pointers could drop the
pointer syntax. An object that does not define operator-> and operator* violates the
definition of a smart pointer, but there are objects that do deserve smart pointer–like treat-
ment, although they are not, strictly speaking, smart pointers.

Look at real-world APIs and applications. Many operating systems foster handles as
accessors to certain internal resources, such as windows, mutexes, or devices. Handles are
intentionally obfuscated pointers; one of their purposes is to prevent their users from ma-
nipulating critical operating system resources directly. Most of the time, handles are inte-
gral values that are indices in a hidden table of pointers. The table provides the additional
level of indirection that protects the inner system from the application programmers. Al-
though they don’t provide an operator->, handles resemble pointers in semantics and in
the way they are managed.

For such a smart resource, it does not make sense to provide operator-> or 
operator*. However, you do take advantage of all the resource management techniques
that are specific to smart pointers.

To generalize the type universe of smart pointers, we distinguish three potentially dis-
tinct types in a smart pointer:

• The storage type. This is the type of pointee_. By “default”—in regular smart pointers—
it is a raw pointer.

• The pointer type. This is the type returned by operator->. It can be different from the
storage type if you want to return a proxy object instead of just a pointer. (You will find
an example of using proxy objects later in this chapter.)

• The reference type. This is the type returned by operator*.

It would be useful if SmartPtr supported this generalization in a flexible way. Thus, the
three types mentioned here ought to be abstracted in a policy called Storage.

In conclusion, smart pointers can, and should, generalize their pointee type. To do 
this, SmartPtr abstracts three types in a Storage policy: the stored type, the pointer type,
and the reference type. Not all types necessarily make sense for a given SmartPtr instanti-
ation. Therefore, in rare cases (handles), a policy might disable access to operator-> or 
operator* or both.

7.4 Smart Pointer Member Functions

Many existing smart pointer implementations allow operations through member func-
tions, such as Get for accessing the pointee object, Set for changing it, and Release for 
taking over ownership. This is the obvious and natural way of encapsulating SmartPtr’s
functionality.

However, experience has proven that member functions are not very suitable for smart
pointers. The reason is that the interaction between member function calls for the smart
pointer and for the pointed-to object can be extremely confusing.

Suppose, for instance, that you have a Printer class with member functions such as 
Acquire and Release. With Acquire you take ownership of the printer so that no other 
application prints to it, and with Release you relinquish ownership. As you use a smart
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pointer to Printer, you may notice a strange syntactical closeness to things that are very
far apart semantically.

SmartPtr<Printer> spRes = ...;
spRes->Acquire(); // acquire the printer
... print a document ...
spRes->Release(); // release the printer
spRes.Release();  // release the pointer to the printer

The user of SmartPtr now has access to two totally different worlds: the world of the
pointed-to object members and the world of the smart pointer members. A matter of a dot
or an arrow thinly separates the two worlds.

On the face of it, C�� does force you routinely to observe certain slight differences in
syntax. A Pascal programmer learning C�� might even feel that the slight syntactic differ-
ence between & and && is an abomination. Yet C�� programmers don’t even blink at it.
They are trained by habit to distinguish such syntax matters easily.

However, smart pointer member functions defeat training by habit. Raw pointers don’t
have member functions, so C�� programmers’ eyes are not habituated to detect and 
distinguish dot calls from arrow calls. The compiler does a good job at that: If you use a 
dot after a raw pointer, the compiler will yield an error. Therefore, it is easy to imagine, and
experience proves, that even seasoned C�� programmers find it extremely disturbing 
that both sp.Release() and sp->Release() compile flag-free but do very different things.
The cure is simple: A smart pointer should not use member functions. SmartPtr uses only
nonmember functions. These functions become friends of the smart pointer class.

Overloaded functions can be just as confusing as member functions of smart pointers,
but there is an important difference. C�� programmers already use overloaded functions.
Overloading is an important part of the C�� language and is used routinely in library and
application development. This means that C�� programmers do pay attention to differ-
ences in function call syntax—such as Release(*sp) versus Release(sp)—in writing and
reviewing code.

The only functions that necessarily remain members of SmartPtr are the constructors,
the destructor, operator=, operator->, and unary operator*. All other operations of
SmartPtr are provided through named nonmember functions.

For reasons of clarity, SmartPtr does not have any named member functions. The only
functions that access the pointee object are GetImpl, GetImplRef, Reset, and Release,
which are defined at the namespace level.

template <class T> T* GetImpl(SmartPtr<T>& sp);
template <class T> T*& GetImplRef(SmartPtr<T>& sp);
template <class T> void Reset(SmartPtr<T>& sp, T* source);
template <class T> void Release(SmartPtr<T>& sp, T*& destination);

• GetImpl returns the pointer object stored by SmartPtr.
• GetImplRef returns a reference to the pointer object stored by SmartPtr. GetImplRef

allows you to change the underlying pointer, so it requires extreme care in use.
• Reset resets the underlying pointer to another value, releasing the previous one.
• Release releases ownership of the smart pointer, giving its user the responsibility of

managing the pointee object’s lifetime.
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The actual declarations of these four functions in Loki are slightly more elaborate. They
don’t assume that the type of the pointer object stored by SmartPtr is T*. As discussed 
in Section 7.3, the Storage policy defines the storage type. Most of the time, it’s a straight
pointer, except in exotic implementations of Storage, when it might be a handle or an elab-
orate type.

7.5 Ownership-Handling Strategies

Ownership handling is often the most important raison d’être of smart pointers. Usually,
from their clients’ viewpoint, smart pointers own the objects to which they point. A smart
pointer is a first-class value that takes care of deleting the pointed-to object under the cov-
ers. The client can intervene in the pointee object’s lifetime by issuing calls to helper man-
agement functions.

For implementing self-ownership, smart pointers must carefully track the pointee ob-
ject, especially during copying, assignment, and destruction. Such tracking brings some
overhead in space, time, or both. An application should settle on the strategy that best fits
the problem at hand and does not cost too much.

The following subsections discuss the most popular ownership management strategies
and how SmartPtr implements them.

7.5.1 Deep Copy

The simplest strategy applicable is to copy the pointee object whenever you copy the smart
pointer. If you ensure this, there is only one smart pointer for each pointee object. There-
fore, the smart pointer’s destructor can safely delete the pointee object. Figure 7.1 depicts
the state of affairs if you use smart pointers with deep copy.

At first glance, the deep copy strategy sounds rather dull. It seems as if the smart pointer
does not add any value over regular C�� value semantics. Why would you make the effort
of using a smart pointer, when simple pass by value of the pointee object works just as well?

The answer is support for polymorphism. Smart pointers are vehicles for transporting
polymorphic objects safely. You hold a smart pointer to a base class, which might actually
point to a derived class. When you copy the smart pointer, you want to copy its polymor-
phic behavior, too. It’s interesting that you don’t exactly know what behavior and state you
are dealing with, but you certainly need to duplicate that behavior and state.

Because deep copy most often deals with polymorphic objects, the following naive im-
plementation of the copy constructor is wrong:

template <class T>
class SmartPtr
{
public:

SmartPtr(const SmartPtr& other)
: pointee_(new T(*other.pointee_))
{
}
...

};
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pointee_

pointee_

pointee_

smartPtr1

smartPtr2

smartPtr3

Figure 7.1: Memory layout for smart pointers with deep copy

Say you copy an object of type SmartPtr<Widget>. If other points to an instance of a class
ExtendedWidget that derives from Widget, the copy constructor above copies only the 
Widget part of the ExtendedWidget object. This phenomenon is known as slicing—only 
the Widget “slice” of the object of the presumably larger type ExtendedWidget gets copied.
Slicing is most often undesirable. It is a pity that C�� allows slicing so easily—a simple call
by value slices objects without any warning.

Chapter 8 discusses cloning in depth. As shown there, the classic way of obtaining a
polymorphic clone for a hierarchy is to define a virtual Clone function and implement it as
follows:

class AbstractBase
{

...
virtual AbstractBase* Clone() = 0;

};

class Concrete : public AbstractBase
{

...
virtual AbstractBase* Clone()
{

return new Concrete(*this);
}

};

The Clone implementation must follow the same pattern in all derived classes; in spite of
its repetitive structure, there is no reasonable way to automate defining the Clone member
function (beyond macros, that is).

A generic smart pointer cannot count on knowing the exact name of the cloning 
member function—maybe it’s clone, or maybe MakeCopy. Therefore, the most flexible ap-
proach is to parameterize SmartPtr with a policy that addresses cloning.
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7.5.2 Copy on Write

Copy on write (COW, as it is fondly called by its fans) is an optimization technique that
avoids unnecessary object copying. The idea that underlies COW is to clone the pointee ob-
ject at the first attempt of modification; until then, several pointers can share the same object.

Smart pointers, however, are not the best place to implement COW, because smart
pointers cannot differentiate between calls to const and non-const member functions of
the pointee object. Here is an example:

template <class T>
class SmartPtr
{
public:

T* operator->() { return pointee_; }
...

};

class Foo
{
public:

void ConstFun() const;
void NonConstFun();

};

...
SmartPtr<Foo> sp;
sp->ConstFun(); // invokes operator->, then ConstFun
sp->NonConstFun(); // invokes operator->, then NonConstFun

The same operator-> gets invoked for both functions called; therefore, the smart pointer
does not have any clue whether to make the COW or not. Function invocations for the
pointee object happen somewhere beyond the reach of the smart pointer. (Section 7.11 ex-
plains how const interacts with smart pointers and the objects they point to.)

In conclusion, COW is effective mostly as an implementation optimization for full-
featured classes. Smart pointers are at too low a level to implement COW semantics ef-
fectively. Of course, smart pointers can be good building blocks in implementing COW for
a class.

The SmartPtr implementation in this chapter does not provide support for COW.

7.5.3 Reference Counting

Reference counting is the most popular ownership strategy used with smart pointers. Ref-
erence counting tracks the number of smart pointers that point to the same object. When
that number goes to zero, the pointee object is deleted. This strategy works very well if you
don’t break certain rules—for instance, you should not keep dumb pointers and smart
pointers to the same object.

The actual counter must be shared among smart pointer objects, leading to the structure
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Figure 7.2: Three reference-counted smart pointers pointing to the same object
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Figure 7.3: An alternate structure of reference-counted pointers

depicted in Figure 7.2. Each smart pointer holds a pointer to the reference counter (pRef-
Count_ in Figure 7.2) in addition to the pointer to the object itself. This usually doubles the
size of the smart pointer, which may or may not be an acceptable amount of overhead,
depending on your needs and constraints.

There is another, subtler overhead issue. Reference-counted smart pointers must store
the reference counter on the free store. The problem is that in many implementations, 
the default C�� free store allocator is remarkably slow and wasteful of space when it
comes to allocating small objects, as discussed in Chapter 4. (Obviously, the reference
count, typically occupying 4 bytes, does qualify as a small object.) The overhead in speed
stems from slow algorithms in finding available chunks of memory, and the overhead in
size is incurred by the bookkeeping information that the allocator holds for each chunk.

The relative size overhead can be partially mitigated by holding the pointer and the ref-
erence count together, as in Figure 7.3. The structure in Figure 7.3 reduces the size of the
smart pointer to that of a pointer, but at the expense of access speed: The pointee object is
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Figure 7.4: Intrusive reference counting

1Risto Lankinen described the reference-linking mechanism on the Usenet in November 1995.

an extra level of indirection away. This is a considerable drawback because you typically
use a smart pointer several times, whereas you obviously construct and destroy it
only once.

The most efficient solution is to hold the reference counter in the pointee object itself, as
shown in Figure 7.4. This way SmartPtr is just the size of a pointer, and there is no extra
overhead at all. This technique is known as intrusive reference counting, because the refer-
ence count is an “intruder” in the pointee—it semantically belongs to the smart pointer.
The name also gives a hint about the Achilles’ heel of the technique: You must design up
front or modify the pointee class to support reference counting.

A generic smart pointer should use intrusive reference counting where available and
implement a nonintrusive reference counting scheme as an acceptable alternative. For 
implementing nonintrusive reference counting, the small-object allocator presented in
Chapter 4 can help a great deal. The SmartPtr implementation using nonintrusive refer-
ence counting leverages the small-object allocator, thus slashing the performance overhead
caused by the reference counter.

7.5.4 Reference Linking

Reference linking relies on the observation that you don’t really need the actual count of
smart pointer objects pointing to one pointee object; you only need to detect when that
count goes down to zero. This leads to the idea of keeping an “ownership list,” as shown
in Figure 7.5.1

All SmartPtr objects that point to a given pointee form a doubly linked list. When you
create a new SmartPtr from an existing SmartPtr, the new object is appended to the list;
SmartPtr’s destructor takes care of removing the destroyed object from the list. When the
list becomes empty, the pointee object is deleted.

The doubly linked list structure fits reference linking like a glove. You cannot use a
singly linked list because removals from such a list take linear time. You cannot use a vec-
tor because the SmartPtr objects are not contiguous (and removals from vectors take linear
time anyway). You need a structure sporting constant-time append, constant-time remove,
and constant-time empty detection. This bill is fit precisely and exclusively by doubly
linked lists.
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Figure 7.5: Reference linking in action

In a reference-linking implementation, each SmartPtr object holds two extra pointers—
one to the next element and one to the previous element.

The advantage of reference linking over reference counting is that the former does not
use extra free store, which makes it more reliable: Creating a reference-linked smart pointer
cannot fail. The disadvantage is that reference linking needs more memory for its book-
keeping (three pointers versus only one pointer plus one integer). Also, reference counting
should be a bit speedier—when you copy smart pointers, only an indirection and an incre-
ment are needed. The list management is slightly more elaborate. In conclusion, you
should use reference linking only when the free store is scarce. Otherwise, prefer reference
counting.

To wrap up the discussion on reference count management strategies, let’s note a sig-
nificant disadvantage that they have. Reference management—be it counting or linking—
is a victim of the resource leak known as cyclic reference. Imagine an object A holds a smart
pointer to an object B. Also, object B holds a smart pointer to A. These two objects form a
cyclic reference; even though you don’t use any of them anymore, they use each other. The
reference management strategy cannot detect such cyclic references, and the two objects
remain allocated forever. The cycles can span multiple objects, closing circles that often
reveal unexpected dependencies that are very hard to debug.

In spite of this, reference management is a robust, speedy ownership-handling strategy.
If used with precaution, reference management makes application development signifi-
cantly easier.

7.5.5 Destructive Copy

Destructive copy does exactly what you think it does: During copying, it destroys the ob-
ject being copied. In the case of smart pointers, destructive copy destroys the source smart
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pointer by taking its pointee object and passing it to the destination smart pointer. The
std::auto_ptr class template features destructive copy.

In addition to being suggestive about the action taken, “destructive” also vividly de-
scribes the dangers associated with this strategy. Misusing destructive copy may have
destructive effects on your program data, your program correctness, and your brain cells.

Smart pointers may use destructive copy to ensure that at any time there is only one
smart pointer pointing to a given object. During the copying or assignment of one smart
pointer to another, the “living” pointer is passed to the destination of the copy, and the
source’s pointee_ becomes zero. The following code illustrates a copy constructor and an
assignment operator of a simple SmartPtr featuring destructive copy.

template <class T>
class SmartPtr
{
public:

SmartPtr(SmartPtr& src)
{

pointee_ = src.pointee_;
src.pointee_ = 0;

}
SmartPtr& operator=(SmartPtr& src)
{

if (this != &src)
{

delete pointee_;
pointee_ = src.pointee_;
src.pointee_ = 0;

}
return *this;

}
...

};

C�� etiquette calls for the right-hand side of the copy constructor and the assignment
operator to be a reference to a const object. Classes that foster destructive copy break this
convention for obvious reasons. Because etiquette exists for a reason, you should expect
negative consequences if you break it. Indeed, here they are:

void Display(SmartPtr<Something> sp);
...
SmartPtr<Something> sp(new Something);
Display(sp);  // sinks sp

Although Display means no harm to its argument (accepts it by value), it acts like a mael-
strom of smart pointers: It sinks any smart pointer passed to it. After Display(sp) is called,
sp holds the null pointer.

Because they do not support value semantics, smart pointers with destructive copy can-
not be stored in standard containers and in general must be handled with almost as much
care as raw pointers.

The ability to store smart pointers in a container is very important. Containers of raw
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2 Invented by Greg Colvin and Bill Gibbons for std::auto_ptr.
3Unary operator& is to differentiate it from binary operator&, which is the bitwise AND operator.

pointers make manual ownership management tricky, so many containers of pointers can
use smart pointers to good advantage. Smart pointers with destructive copy, however, do
not mix with containers.

On the bright side, smart pointers with destructive copy have significant advantages:

• They incur almost no overhead.
• They are good at enforcing ownership transfer semantics. In this case, you use the

“maelstrom effect” described earlier to your advantage: You make it clear that your
function takes over the passed-in pointer.

• They are good as return values from functions. If the smart pointer implementation uses
a certain trick,2 you can return smart pointers with destructive copy from functions.
This way, you can be sure that the pointee object gets destroyed if the caller doesn’t use
the return value.

• They are excellent as stack variables in functions that have multiple return paths. You
don’t have to remember to delete the pointee object manually—the smart pointer takes
care of this for you.

The destructive copy strategy is used by the standard-provided std::auto_ptr. This
brings destructive copy another important advantage:

• Smart pointers with destructive copy semantics are the only smart pointers that the
standard provides, which means that many programmers will get used to their behav-
ior sooner or later.

For these reasons, the SmartPtr implementation should provide optional support for de-
structive copy semantics.

Smart pointers use various ownership semantics, each having its own trade-offs. The
most important techniques are deep copy, reference counting, reference linking, and de-
structive copy. SmartPtr implements all these strategies through an Ownership policy, al-
lowing its users to choose the one that best fits an application’s needs. The default strategy
is reference counting.

7.6 The Address-of Operator

In striving to make smart pointers as indistinguishable as possible from their native coun-
terparts, designers stumbled upon an obscure operator that is on the list of overloadable
operators: unary operator&, the address-of operator.3

An implementer of smart pointers might choose to overload the address-of operator
like this:

template <class T>
class SmartPtr
{
public:



Section 7.7 Implicit Conversion to Raw Pointer Type 171

T** operator&()
{

return &pointee_;
}
...

};

After all, if a smart pointer is to simulate a pointer, then its address must be substitutable
for the address of a regular pointer. This overload makes code like the following possible:

void Fun(Widget** pWidget);
...
SmartPtr<Widget> spWidget(...);
Fun(&spWidget); // okay, invokes operator& and obtains a

// pointer to pointer to Widget

It seems very desirable to have such an accurate compatibility between smart pointers
and dumb pointers, but overloading the unary operator& is one of those clever tricks that
can do more harm than good. There are two reasons why overloading unary operator& is
not a very good idea.

One reason is that exposing the address of the pointed-to object implies giving up any
automatic ownership management. When a client freely accesses the address of the raw
pointer, any helper structures that the smart pointer holds, such as reference counts, be-
come invalid for all purposes. While the client deals directly with the address of the raw
pointer, the smart pointer is completely unconscious.

The second reason, a more pragmatic one, is that overloading unary operator& makes
the smart pointer unusable with STL containers. Actually, overloading unary operator&
for a type pretty much makes generic programming impossible for that type, because the
address of an object is too fundamental a property to play with naively. Most generic code
assumes that applying & to an object of type T returns an object of type T*—you see, ad-
dress-of is a fundamental concept. If you defy this concept, generic code behaves strangely
either at compile time or—worse—at runtime.

Thus, it is not recommended that unary operator& be overloaded for smart pointers or
for any objects in general. SmartPtr does not overload unary operator&.

7.7 Implicit Conversion to Raw Pointer Types

Consider this code:

void Fun(Something* p);
...
SmartPtr<Something> sp(new Something);
Fun(sp); // OK or error?

Should this code compile or not? Following the “maximum compatibility” line of thought,
the answer is yes.
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Technically, it is very simple to render the previous code compilable by introducing a
user-defined conversion:

template <class T>
class SmartPtr
{
public:

operator T*() // user-defined conversion to T*
{

return pointee_;
}
...

};

However, this is not the end of the story.
User-defined conversions in C�� have an interesting history. Back in the 1980s, when

user-defined conversions were introduced, most programmers considered them a great
invention. User-defined conversions promised a more unified type system, expressive se-
mantics, and the ability to define new types that were indistinguishable from built-in ones.
With time, however, user-defined conversions revealed themselves as awkward and po-
tentially dangerous. They might become dangerous especially when they expose handles
to internal data (Meyers 1998a, Item 29), which is precisely the case with the operator T*
in the previous code. That’s why you should think carefully before allowing automatic con-
versions for the smart pointers you design.

One potential danger comes inherently from giving the user unattended access to the
raw pointer that the smart pointer wraps. Passing the raw pointer around defeats the inner
workings of the smart pointer. Once unleashed from the confines of its wrapper, the raw
pointer can easily become a threat to program sanity again, just as it was before smart
pointers were introduced.

Another danger is that user-defined conversions pop up unexpectedly, even when you
don’t need them. Consider the following code:

SmartPtr<Something> sp;
...
// A gross semantic error
// However, it goes undetected at compile time
delete sp;

The compiler matches operator delete with the user-defined conversion to T*. At runtime,
operator T* is called, and delete is applied to its result. This is certainly not what you want
to do to a smart pointer, because it is supposed to manage ownership itself. An extra un-
witting delete call throws out the window all the careful ownership management that the
smart pointer performs under the covers.

There are quite a few ways to prevent the delete call from compiling. Some of them are
very ingenious (Meyers 1996). One that’s very effective and easy to implement is to make
the call to delete intentionally ambiguous. You can achieve this by providing two automatic
conversions to types that are susceptible to a call to delete. One type is T* itself, and the
other can be void*.
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template <class T>
class SmartPtr
{
public:

operator T*() // User-defined conversion to T*
{

return pointee_;
}
operator void*() // Added conversion to void*
{

return pointee_;
}
...

};

A call to delete against such a smart pointer object is ambiguous. The compiler cannot de-
cide which conversion to apply, and the trick above exploits this indecision to good
advantage.

Don’t forget that disabling the delete operator was only a part of the issue. Whether to
provide an automatic conversion to a raw pointer remains an important decision in imple-
menting a smart pointer. It’s too dangerous just to let it in, yet too convenient to rule it out.
The final SmartPtr implementation will give you a choice about that.

However, forbidding implicit conversion does not necessarily eliminate all access to the
raw pointer; it is often necessary to gain such access. Therefore, all smart pointers do pro-
vide explicit access to their wrapped pointer via a call to a function:

void Fun(Something* p);
...
SmartPtr<Something> sp;
Fun(GetImpl(sp)); // OK, explicit conversion always allowed

It’s not a matter of whether you can get to the wrapped pointer; it’s how easy it is. This
may seem like a minor difference, but it’s actually very important. An implicit conversion
happens without the programmer or the maintainer noticing or even knowing it. An
explicit conversion—as is the call to GetImpl—passes through the mind, the understand-
ing, and the fingers of the programmer and remains written in the code for everybody to
see it.

Implicit conversion from the smart pointer type to the raw pointer type is desirable, 
but sometimes dangerous. SmartPtr provides this implicit conversion as a choice. The de-
fault is on the safe side—no implicit conversions. Explicit access is always available
through the GetImpl function.

7.8 Equality and Inequality

C�� teaches its users that any clever trick such as the one presented in the previous sec-
tion (intentional ambiguity) establishes a new context, which in turn may have unexpected
ripples.

Consider tests for equality and inequality of smart pointers. A smart pointer should
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support the same comparison syntax that raw pointers support. Programmers expect the
following tests to compile and run as they do for a raw pointer.

SmartPtr<Something> sp1, sp2;
Something* p;
...
if (sp1) // Test 1: direct test for non-null pointer

...
if (!sp1) // Test 2: direct test for null pointer

...
if (sp1 == 0)   // Test 3: explicit test for null pointer

...
if (sp1 == sp2) // Test 4: comparison of two smart pointers

...
if (sp1 == p)   // Test 5: comparison with a raw pointer

...

There are more tests than depicted here if you consider symmetry and operator!=. If we
solve the equality tests, we can easily define the corresponding symmetric and inequality
tests.

There is an unfortunate interference between the solution to the previous issue (pre-
venting delete from compiling) and a possible solution to this issue. With one user-defined
conversion to the raw pointer type, most of the test expressions (except test 4) compile suc-
cessfully and run as expected. The downside is that you can accidentally call the delete
operator against the smart pointer. With two user-defined conversions (intentional ambi-
guity), you detect wrongful delete calls, but none of these tests compiles anymore—they
have become ambiguous too.

An additional user-defined conversion to bool helps, but this, to nobody’s surprise,
introduces new trouble. Given this smart pointer:

template <class T>
class SmartPtr
{
public:

operator bool() const
{

return pointee_ != 0;
}
...

};

the four tests compile, but so do the following nonsensical operations:

SmartPtr<Apple> sp1;
SmartPtr<Orange> sp2; // Orange is unrelated to Apple
if (sp1 == sp2) // Converts both pointers to bool

// and compares results
...

if (sp1 != sp2) // Ditto
...
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bool b = sp1; // The conversion allows this, too
if (sp1 * 5 == 200) // Ouch! SmartPtr behaves like an integral

// type!
...

As you can see, it’s either not at all or too much: Once you add a user-defined conver-
sion to bool, you allow SmartPtr to act as a bool in many more situations than you actu-
ally wanted. For all practical purposes, defining an operator bool for a smart pointer is
not a smart solution.

A true, complete, rock-solid solution to this dilemma is to go all the way and overload
each and every operator separately. This way any operation that makes sense for the bare
pointer makes sense for the smart pointer, and nothing else. Here is the code that imple-
ments this idea.

template <class T>
class SmartPtr
{
public:

bool operator!() const // Enables "if (!sp) ..."
{

return pointee_ == 0;
}
inline friend bool operator==(const SmartPtr& lhs,

const T* rhs)
{

return lhs.pointee_ == rhs;
}
inline friend bool operator==(const T* lhs,

const SmartPtr& rhs)
{

return lhs == rhs.pointee_;
}
inline friend bool operator!=(const SmartPtr& lhs,

const T* rhs)
{

return lhs.pointee_ != rhs;
}
inline friend bool operator!=(const T* lhs,

const SmartPtr& rhs)
{

return lhs != rhs.pointee_;
}
...

};

Yes, it’s a pain, but this approach solves the problems with almost all comparisons, in-
cluding the tests against the literal zero. What the forwarding operators in this code do is
to pass operators that client code applies to the smart pointer on to the raw pointer that the
smart pointer wraps. No simulation can be more realistic than that.

We still haven’t solved the problem completely. If you provide an automatic conversion
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to the pointee type, there still is the risk of ambiguities. Suppose you have a class Base and
a class Derived that inherits Base. Then the following code makes practical sense yet is ill
formed due to ambiguity.

SmartPtr<Base> sp;
Derived* p;
...
if (sp == p) {} // error! Ambiguity between:

// '(Base*)sp == (Base*)p'
// and 'operator==(sp, (Base*)p)'

Indeed, smart pointer development is not for the faint of heart. 
We’re not out of bullets, though. In addition to the definitions of operator== and 

operator!=, we can add templated versions of them, as you can see in the following code:

template <class T>
class SmartPtr
{
public:

... as above ...
template <class U>
inline friend bool operator==(const SmartPtr& lhs,

const U* rhs)
{

return lhs.pointee_ == rhs;
}
template <class U>
inline friend bool operator==(const U* lhs,

const SmartPtr& rhs)
{

return lhs == rhs.pointee_;
}
... similarly defined operator!= ...

};

The templated operators are “greedy” in the sense that they match comparisons with any
pointer type whatsoever, thus consuming the ambiguity.

If that’s the case, why should we keep the nontemplated operators—the ones that take
the pointee type? They never get a chance to match, because the template matches any
pointer type, including the pointee type itself.

The rule that “never” actually means “almost never” applies here, too. In the test 
if (sp == 0), the compiler tries the following matches.

• The templated operators. They don’t match because the type of literal zero is not a pointer
type. A literal zero can be implicitly converted to a pointer type, but template matching
does not include conversions.

• The nontemplated operators. After eliminating the templated operators, the compiler tries
the nontemplated ones. One of these operators kicks in through an implicit conversion
from the literal zero to the pointee type. Had the nontemplated operators not existed,
the test would have been an error.
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In conclusion, we need both the nontemplated and the templated comparison operators.
Let’s see now what happens if we compare two SmartPtrs instantiated with different

types.

SmartPtr<Apple> sp1;
SmartPtr<Orange> sp2; 
if (sp1 == sp2)

...

The compiler chokes on the comparison because of an ambiguity: Each of the two SmartPtr
instantiations defines an operator==, and the compiler does not know which one to choose.
We can dodge this problem by defining an “ambiguity buster” as shown:

template <class T>
class SmartPtr
{
public:

// Ambiguity buster
template <class U>
bool operator==(const SmartPtr<U>& rhs) const
{

return pointee_ == rhs.pointee_;
}
// Similarly for operator!=
...

};

This newly added operator is a member that specializes exclusively in comparing
SmartPtr<...> objects. The beauty of this ambiguity buster is that it makes smart pointer
comparisons act like raw pointer comparisons. If you compare two smart pointers to Apple
and Orange, the code will be essentially equivalent to comparing two raw pointers to 
Apple and Orange. If the comparison makes sense, then the code compiles; otherwise, it’s a
compile-time error.

SmartPtr<Apple> sp1;
SmartPtr<Orange> sp2;
if (sp1 == sp2)   // Semantically equivalent to

// sp1.pointee_ == sp2.pointee_
...

There is one unsatisfied syntactic artifact left, namely, the direct test if (sp). Here life
becomes really interesting. The if statement applies only to expressions of arithmetic and
pointer type. Consequently, to allow if (sp) to compile, we must define an automatic con-
version to either an arithmetic or a pointer type.

A conversion to arithmetic type is not recommended, as the earlier experience with
operator bool witnesses. A pointer is not an arithmetic type, period. A conversion to a
pointer type makes a lot more sense, and here the problem branches.

If you want to provide automatic conversions to the pointee type (see previous section),
then you have two choices: Either you risk unattended calls to operator delete, or you
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forgo the if (sp) test. The tiebreaker is between the lack of convenience and a risky 
life. The winner is safety, so you cannot write if (sp). Instead, you can choose between 
if(sp != 0) and the more baroque if (!!sp). End of story.

If you don’t want to provide automatic conversions to the pointee type, there is an in-
teresting trick you can use to make if (sp) possible. Inside the SmartPtr class template,
define an inner class Tester and define a conversion to Tester*, as shown in the follow-
ing code:

template <class T>
class SmartPtr
{

class Tester
{

void operator delete(void*);
};

public:
operator Tester*() const
{

if (!pointee_) return 0;
static Tester test;
return &test;

}
...

};

Now if you write if (sp), operator Tester* enters into action. This operator returns 
a null value if and only if pointee_ is null. Tester itself disables operator delete, so 
if somebody calls delete sp, a compile-time error occurs. Interestingly, Tester’s defini-
tion itself lies in the private part of SmartPtr, so the client code cannot do anything else
with it.

SmartPtr addresses the issue of tests for equality and inequality as follows:

• Define operator== and operator!= in two flavors (templated and nontemplated).
• Define operator!.
• If you allow automatic conversion to the pointee type, then define an additional con-

version to void* to ambiguate a call to the delete operator intentionally; otherwise,
define a private inner class Tester that declares a private operator delete, and define
a conversion to Tester* for SmartPtr that returns a null pointer if and only if the
pointee_ is null.

7.9 Ordering Comparisons

The ordering comparison operators are operator<, operator<=, operator>, and 
operator>=. You can implement them all in terms of operator<.

Whether to allow ordering of smart pointers is an interesting question in and of itself
and relates to the dual nature of pointers, which consistently confuses programmers. Point-
ers are two concepts in one: iterators and monikers. The iterative nature of pointers allows
you to walk through an array of objects using a pointer. Pointer arithmetic, including com-
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parisons, supports this iterative nature of pointers. At the same time, pointers are
monikers—inexpensive object representatives that can travel quickly and access the objects
in a snap. The dereferencing operators * and -> support the moniker concept.

The two natures of pointers can be confusing at times, especially when you need only
one of them. For operating with a vector, you might use both iteration and dereferencing,
whereas for walking through a linked list or for manipulating individual objects, you use
only dereferencing.

Ordering comparisons for pointers is defined only when the pointers belong to the
same contiguous memory. In other words, you can use ordering comparisons only for
pointers that point to elements in the same array.

Defining ordering comparisons for smart pointers boils down to this question: Do
smart pointers to the objects in the same array make sense? On the face of it, the answer is
no. Smart pointers’ main feature is to manage object ownership, and objects with separate
ownership do not usually belong to the same array. Therefore, it would be dangerous to al-
low users to make nonsensical comparisons.

If you really need ordering comparisons, you can always use explicit access to the raw
pointer. The issue here is, again, to find the safest and most expressive behavior for most
situations.

The previous section concludes that an implicit conversion to a raw pointer type is
optional. If SmartPtr’s client chooses to allow implicit conversion, the following code
compiles:

SmartPtr<Something> sp1, sp2;
if (sp1 < sp2) // Converts sp1 and sp2 to raw pointer type,

// then performs the comparison
...

This means that if we want to disable ordering comparisons, we must be proactive, dis-
abling them explicitly. A way of doing this is to declare them and never define them, which
means that any use will trigger a link-time error.

template <class T>
class SmartPtr
{ ... };

template <class T, class U>
bool operator<(const SmartPtr<T>&, const U&); // Not defined
template <class T, class U>
bool operator<(const T&, const SmartPtr<U>&); // Not defined

However, it is wiser to define all other operators in terms of operator<, as opposed to
leaving them undefined. This way, if SmartPtr’s users think it’s best to introduce smart
pointer ordering, they need only define operator<.

// Ambiguity buster
template <class T, class U>
bool operator<(const SmartPtr<T>& lhs, const SmartPtr<U>& rhs)
{

return lhs < GetImpl(rhs);
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}
// All other operators
template <class T, class U>
bool operator>(SmartPtr<T>& lhs, const U& rhs)
{

return rhs < lhs;
}
... similarly for the other operators ...

Note the presence, again, of an ambiguity buster. Now if some library user thinks that
SmartPtr<Widget> should be ordered, the following code is the ticket:

inline bool operator<(const SmartPtr<Widget>& lhs,
const Widget* rhs)

{
return GetImpl(lhs) < rhs;

}

inline bool operator<(const Widget* lhs,
const SmartPtr<Widget>& rhs)

{
return lhs < GetImpl(rhs);

}

It’s a pity that the user must define two operators instead of one, but it’s so much better
than defining eight.

This would conclude the issue of ordering, were it not for an interesting detail. Some-
times it is very useful to have an ordering of arbitrarily located objects, not just objects be-
longing to the same array. For example, you might need to store supplementary per-object
information, and you need to access that information quickly. A map ordered by the ad-
dress of objects is very effective for such a task.

Standard C�� helps in implementing such designs. Although pointer comparison for
arbitrarily located objects is undefined, the standard guarantees that std::less yields
meaningful results for any two pointers of the same type. Because the standard associative
containers use std::less as the default ordering relationship, you can safely use maps that
have pointers as keys.

SmartPtr should support this idiom, too; therefore, SmartPtr specializes std::less.
The specialization simply forwards the call to std::less for regular pointers:

namespace std
{

template <class T>
struct less<SmartPtr<T> >

: public binary_function<SmartPtr<T>, SmartPtr<T>, bool>
{

bool operator()(const SmartPtr<T>& lhs,
const SmartPtr<T>& rhs) const

{
return less<T*>()(GetImpl(lhs), GetImpl(rhs));

}
};

}
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In summary, SmartPtr does not define ordering operators by default. It declares—
without implementing—two generic operator<s and implements all other ordering oper-
ators in terms of operator<. The user can define either specialized or generic versions of
operator<.

SmartPtr specializes std::less to provide an ordering of arbitrary smart pointer 
objects.

7.10 Checking and Error Reporting

Applications need various degrees of safety from smart pointers. Some programs are 
computation-intensive and must be optimized for speed, whereas some others (actually,
most) are input/output intensive, which allows better runtime checking without degrad-
ing performance.

Most often, right inside an application, you might need both models: low safety/high
speed in some critical areas, and high safety/lower speed elsewhere.

We can divide checking issues with smart pointers into two categories: initialization
checking and checking before dereference.

7.10.1 Initialization Checking

Should a smart pointer accept the null (zero) value?
It is easy to implement a guarantee that a smart pointer cannot be null, and it may be

very useful in practice. It means that any smart pointer is always valid (unless you fiddle
with the raw pointer by using GetImplRef). The implementation is easy with the help of a
constructor that throws an exception if passed a null pointer.

template <class T>
class SmartPtr
{
public:

SmartPtr(T* p) : pointee_(p)
{

if (!p) throw NullPointerException();
}
...

};

On the other hand, the null value is a convenient “not a valid pointer” placeholder and can
often be useful.

Whether to allow null values affects the default constructor, too. If the smart pointer
doesn’t allow null values, then how would the default constructor initialize the raw
pointer? The default constructor could be lacking, but that would make smart pointers
harder to deal with. For example, what should you do when you have a SmartPtr member
variable but don’t have an appropriate initializer for it at construction time? In conclusion,
customizing initialization involves providing an appropriate default value.
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4Every once in a while, the question “Why can you apply the delete operator to pointers to const?” starts a
fierce debate in the comp.std.c�� newsgroup. The fact is, for better or worse, the language allows it.

7.10.2 Checking Before Dereference

Checking before dereference is important because dereferencing the null pointer engen-
ders undefined behavior. For many applications, undefined behavior is not acceptable, so
checking the pointer for validity before dereference is the way to go. Checks before de-
reference belong to SmartPtr’s operator-> and unary operator*.

In contrast to the initialization check, the check before dereference can become a major
performance bottleneck in your application, because typical applications use (dereference)
smart pointers much more often than they create smart pointer objects. Therefore, you
should keep a balance between safety and speed. A good rule of thumb is to start with rig-
orously checked pointers and remove checks from selected smart pointers as profiling
demonstrates a need for it.

Can initialization checking and checking before dereference be conceptually separated?
No, because there are links between them. If you enforce strict checking upon initialization,
then checking before dereference becomes redundant because the pointer is always valid.

This little efficiency victory brought by encapsulation is, however, amended by the
loophole provided by GetImplRef which allows arbitrary replacement of the underlying
raw pointer.

7.10.3 Error Reporting

The only sensible choice for reporting an error is to throw an exception.
You can do something in the sense of avoiding errors. For example, if a pointer is null

upon dereference, you can initialize it on the fly. This is a valid and valuable strategy called
lazy initialization—you construct the value only when you first need it.

If you want to check things only during debugging, you can use the standard assert or
similar, more sophisticated macros. The compiler ignores the tests in release mode, so, as-
suming you remove all null pointer errors during debugging, you reap the advantages of
both checking and speed.

SmartPtr migrates checking to a dedicated Checking policy. This policy implements
checking functions (which can optionally provide lazy initialization) and the error report-
ing strategy.

7.11 Smart Pointers to const and const Smart Pointers

Raw pointers allow two kinds of constness: the constness of the pointed-to object and that
of the pointer itself. The following is an illustration of these two attributes:

const Something* pc = new Something; // points to const object
pc->ConstMemberFunction(); // ok
pc->NonConstMemberFunction(); // error
delete pc; // ok (surprisingly) 4

Something* const cp = new Something; // const pointer
cp->NonConstMemberFunction(); // ok
cp = new Something; // error, can't assign to const pointer
const Something* const cpc = new Something; // const, points to const
cpc->ConstMemberFunction(); // ok
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cpc->NonConstMemberFunction(); // error
cpc = new Something; // error, can't assign to const pointer

The corresponding uses of SmartPtr look like this:

// Smart pointer to const object
SmartPtr<const Something> spc(new Something);
// const smart pointer
const SmartPtr<Something> scp(new Something);
// const smart pointer to const object
const SmartPtr<const Something> scpc(new Something);

The SmartPtr class template can detect the constness of the pointed-to object either
through partial specialization or by using the TypeTraits template defined in Chapter 2.
The latter method is preferable because it does not incur source-code duplication as partial
specialization does.

SmartPtr imitates the semantics of pointers to const objects, const pointers, and the
combinations thereof.

7.12 Arrays

In most cases, instead of dealing with heap-allocated arrays and using new[] and delete[],
you’re better off with std::vector. The standard-provided std::vector class template
provides everything that dynamically allocated arrays provide, plus much more. The extra
overhead incurred is negligible in most cases.

However, “most cases” is not “always.” There are many situations in which you don’t
need and don’t want a full-fledged vector; a dynamically allocated array is exactly what
you need. It is awkward in these cases to be unable to exploit smart pointer capabilities.
There is a certain gap between the sophisticated std::vector and dynamically allocated
arrays. Smart pointers could close that gap by providing array semantics if the user
needs them.

From the viewpoint of a smart pointer to an array, the only important issue is to call
delete[] pointee_ in its destructor instead of delete pointee_. This issue is already tack-
led by the Ownership policy.

A secondary issue is providing indexed access, by overloading operator[] for smart
pointers. This is technically feasible; in fact, a preliminary version of SmartPtr did provide
a separate policy for optional array semantics. However, only in very rare cases do smart
pointers point to arrays. In those cases, there already is a way of providing indexed ac-
cessing if you use GetImpl:

SmartPtr<Widget> sp = ...;
// Access the sixth element pointed to by sp
Widget& obj = GetImpl(sp)[5];

It seems like a bad decision to strive to provide extra syntactic convenience at the expense
of introducing a new policy.

SmartPtr supports customized destruction via the Ownership policy. You can therefore
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arrange array-specific destruction via delete[]. However, SmartPtr does not provide
pointer arithmetic.

7.13 Smart Pointers and Multithreading

Most often, smart pointers help with sharing objects. Multithreading issues affect object
sharing. Therefore, multithreading issues affect smart pointers.

The interaction between smart pointers and multithreading takes place at two levels.
One is the pointee object level, and the other is the bookkeeping data level.

7.13.1 Multithreading at the Pointee Object Level

If multiple threads access the same object and if you access that object through a smart
pointer, it can be desirable to lock the object during a function call made through 
operator->. This is possible by having the smart pointer return a proxy object instead of a
raw pointer. The proxy object’s constructor locks the pointee object, and its destructor 
unlocks it. The technique is illustrated in Stroustrup (2000). Some code that illustrates this
approach is provided here.

First, let’s consider a class Widget that has two locking primitives: Lock and Unlock. 
After a call to Lock, you can access the object safely. Any other threads calling Lock will
block. When you call Unlock, you let other threads lock the object.

class Widget
{

...
void Lock();
void Unlock();

};

Next, we define a class template LockingProxy. Its role is to lock an object (using the
Lock/Unlock convention) for the duration of LockingProxy’s lifetime.

template <class T>
class LockingProxy
{
public:

LockingProxy(T* pObj) : pointee_ (pObj)
{ pointee_->Lock(); }
~LockingProxy()
{ pointee_->Unlock(); }
T* operator->() const
{ return pointee_; }

private:
LockingProxy& operator=(const LockingProxy&);
T* pointee_;

};

In addition to the constructor and destructor, LockingProxy defines an operator-> that re-
turns a pointer to the pointee object.
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Although LockingProxy looks somewhat like a smart pointer, there is one more layer to
it—the SmartPtr class template itself.

template <class T>
class SmartPtr
{

...
LockingProxy<T> operator->() const
{ return LockingProxy<T>(pointee_); }

private:
T* pointee_;

};

Recall from Section 7.3, which explains the mechanics of operator->, that the com-
piler can apply operator-> multiple times to one -> expression, until it reaches a native
pointer. Now imagine you issue the following call (assuming Widget defines a function 
DoSomething):

SmartPtr<Widget> sp = ...;
sp->DoSomething();

Here’s the trick: SmartPtr’s operator-> returns a temporary LockingProxy<T> object. The
compiler keeps applying operator->. LockingProxy<T>’s operator-> returns a Widget*.
The compiler uses this pointer to Widget to issue the call to DoSomething. During the call,
the temporary object LockingProxy<T> is alive and locks the object, which means that the
object is safely locked. As soon as the call to DoSomething returns, the temporary Locking-
Proxy<T> object is destroyed, so the Widget object is unlocked.

Automatic locking is a good application of smart pointer layering. You can layer smart
pointers this way by changing the Storage policy.

7.13.2 Multithreading at the Bookkeeping Data Level

Sometimes smart pointers manipulate data in addition to the pointee object. As you read
in Section 7.5, reference-counted smart pointers share some data—namely the reference
count—under the covers. If you copy a reference-counted smart pointer from one thread to
another, you end up having two smart pointers pointing to the same reference counter. Of
course, they also point to the same pointee object, but that’s accessible to the user, who can
lock it. In contrast, the reference count is not accessible to the user, so managing it is entirely
the responsibility of the smart pointer.

Not only reference-counted pointers are exposed to multithreading-related dangers.
Reference-linked smart pointers (Section 7.5.4) internally hold pointers to each other,
which are shared data as well. Reference linking leads to communities of smart pointers,
not all of which necessarily belong to the same thread. Therefore, every time you copy, as-
sign, and destroy a reference-linked smart pointer, you must issue appropriate locking;
otherwise, the doubly linked list might get corrupted.
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In conclusion, multithreading issues ultimately affect smart pointers’ implementation.
Let’s see how to address the multithreading issue in reference counting and reference 
linking.

7.13.2.1 Multithreaded Reference Counting

If you copy a smart pointer between threads, you end up incrementing the reference count
from different threads at unpredictable times.

As the appendix explains, incrementing a value is not an atomic operation. For incre-
menting and decrementing integral values in a multithreaded environment, you must use
the type ThreadingModel<T>::IntType and the AtomicIncrement and AtomicDecrement
functions.

Here things become a bit tricky. Better said, they become tricky if you want to separate
reference counting from threading.

Policy-based class design prescribes that you decompose a class into elementary be-
havioral elements and confine each of them to a separate template parameter. In an ideal
world, SmartPtr would specify an Ownership policy and a ThreadingModel policy and
would use them both for a correct implementation.

In the case of multithreaded reference counting, however, things are much too tied to-
gether. For example, the counter must be of type ThreadingModel<T>::IntType. Then, 
instead of using operator++ and operator——, you must use AtomicIncrement and Atomic-
Decrement. Threading and reference counting melt together; it is unjustifiably hard to 
separate them.

The best thing to do is to incorporate multithreading in the Ownership policy. Then you
can have two implementations: RefCounting and RefCountingMT.

7.13.2.2 Multithreaded Reference Linking

Consider the destructor of a reference-linked smart pointer. It likely looks like this:

template <class T>
class SmartPtr
{
public:

~SmartPtr()
{

if (prev_ == this)
{

delete pointee_;
}
else
{

prev_->next_ = next_;
next_->prev_ = prev_;

}
}
...

private:
T* pointee_;
SmartPtr* prev_;
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SmartPtr* next_;
};

The code in the destructor performs a classic doubly linked list deletion. To make imple-
mentation simpler and faster, the list is circular—the last node points to the first node. This
way we don’t have to test prev_ and next_ against zero for any smart pointer. A circular
list with only one element has prev_ and next_ equal to this.

If multiple threads destroy smart pointers that are linked to each other, clearly the de-
structor must be atomic (uninterruptible by other threads). Otherwise, another thread can
interrupt the destructor of a SmartPtr, for instance, between updating prev_->next_ and
updating next_->prev_. That thread will then operate on a corrupt list.

Similar reasoning applies to SmartPtr’s copy constructor and the assignment operator.
These functions must be atomic because they manipulate the ownership list.

Interestingly enough, we cannot apply object-level locking semantics here. The ap-
pendix divides locking strategies into class-level and object-level strategies. A class-level
locking operation locks all objects in a given class during that operation. An object-level
locking operation locks only the object that’s subject to that operation. The former
technique leads to less memory being occupied (only one mutex per class) but is exposed
to performance bottlenecks. The latter is heavier (one mutex per object) but might be
speedier.

We cannot apply object-level locking to smart pointers because an operation manipu-
lates up to three objects: the current object that’s being added or removed, the previous ob-
ject, and the next object in the ownership list.

If we want to introduce object-level locking, the starting observation is that there must
be one mutex per pointee object—because there’s one list per pointee object. We can dy-
namically allocate a mutex for each object, but this nullifies the main advantage of reference
linking over reference counting. Reference linking was more appealing exactly because it
didn’t use the free store.

Alternatively, we can use an intrusive approach: The pointee object holds the mu-
tex, and the smart pointer manipulates that mutex. But the existence of a sound, effective
alternative—reference-counted smart pointers—removes the incentive to provide this
feature.

In summary, smart pointers that use reference counting or reference linking are 
affected by multithreading issues. Thread-safe reference counting needs integer atomic op-
erations. Thread-safe reference linking needs mutexes. SmartPtr provides only thread-safe
reference counting.

7.14 Putting It All Together

Not much to go! Here comes the fun part. So far we have treated each issue in isolation. It’s
now time to collect all the decisions into a unique SmartPtr implementation.

The strategy we’ll use is the one described in Chapter 1: policy-based class design. Each
design aspect that doesn’t have a unique solution migrates to a policy. The SmartPtr class
template accepts each policy as a separate template parameter. SmartPtr inherits all these
template parameters, allowing the corresponding policies to store state.
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Let’s recap the previous sections by enumerating the variation points of SmartPtr. Each
variation point translates into a policy.

• Storage policy (Section 7.3). By default, the stored type is T* (T is the first template pa-
rameter of SmartPtr), the pointer type is again T*, and the reference type is T&. The
means of destroying the pointee object is the delete operator.

• Ownership policy (Section 7.5). Popular implementations are deep copy, reference count-
ing, reference linking, and destructive copy. Note that Ownership is not concerned with
the mechanics of destruction itself; this is Storage’s task. Ownership controls the mo-
ment of destruction.

• Conversion policy (Section 7.7). Some applications need automatic conversion to the un-
derlying raw pointer type; others do not.

• Checking policy (Section 7.10). This policy controls whether an initializer for SmartPtr is
valid and whether a SmartPtr is valid for dereferencing.

Other issues are not worth dedicating separate policies to them or have an optimal
solution:

• The address-of operator (Section 7.6) is best not overloaded.
• Equality and inequality tests are handled with the tricks shown in Section 7.8.
• Ordering comparisons (Section 7.9) are left unimplemented; however, Loki specializes

std::less for SmartPtr objects. The user may define an operator<, and Loki helps by
defining all other ordering comparisons in terms of operator<.

• Loki defines const-correct implementations for the SmartPtr object, the pointee object,
or both.

• There is no special support for arrays, but one of the canned Storage implementations
can dispose of arrays by using operator delete[].

The presentation of the design issues surrounding smart pointers made these issues
easier to understand and more manageable because each issue was discussed in isolation.
It would be very helpful, then, if the implementation could decompose and treat issues in
isolation instead of fighting with all the complexity at once.

Divide et Impera—this old principle coined by Julius Caesar can be of help even today
with smart pointers. (I’d bet money he didn’t predict that.) We break the problem into small
component classes, called policies. Each policy class deals with exactly one issue. SmartPtr
inherits all these classes, thus inheriting all their features. It’s that simple—yet incredibly
flexible, as you will soon see. Each policy is also a template parameter, which means you
can mix and match existing stock policy classes or build your own.

The pointed-to type comes first, followed by each of the policies. Here is the resulting
declaration of SmartPtr:

template
<

typename T,
template <class> class OwnershipPolicy = RefCounted,
class ConversionPolicy = DisallowConversion,
template <class> class CheckingPolicy = AssertCheck,
template <class> class StoragePolicy = DefaultSPStorage

>
class SmartPtr;
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The order in which the policies appear in SmartPtr’s declaration puts the ones that you cus-
tomize most often at the top.

The following four subsections discuss the requirements of the four policies we have
defined. A rule for all policies is that they must have value semantics; that is, they must
define a proper copy constructor and assignment operator. 

7.14.1 The Storage Policy

The Storage policy abstracts the structure of the smart pointer. It provides type definitions
and stores the actual pointee_ object.

If StorageImpl is an implementation of the Storage policy and storageImpl is an object
of type StorageImpl<T>, then the constructs in Table 7.1 apply.

Here is the default Storage policy implementation:

template <class T>
class DefaultSPStorage
{
protected:

typedef T* StoredType; //the type of the pointee_ object
typedef T* PointerType; //type returned by operator->
typedef T& ReferenceType; //type returned by operator*

public:
DefaultSPStorage() : pointee_(Default())

{}
DefaultSPStorage(const StoredType& p): pointee_(p) {}
PointerType operator->() const { return pointee_; }
ReferenceType operator*() const { return *pointee_; }
friend inline PointerType GetImpl(const DefaultSPStorage& sp)
{ return sp.pointee_; }
friend inline const StoredType& GetImplRef(

const DefaultSPStorage& sp)
{ return sp.pointee_; }
friend inline StoredType& GetImplRef(DefaultSPStorage& sp)
{ return sp.pointee_; }

protected:
void Destroy()
{ delete pointee_; }
static StoredType Default()
{ return 0; }

private:
StoredType pointee_;

};

In addition to DefaultSPStorage, other sensible policies to define are:

• ArrayStorage, which uses operator delete[] inside Destroy
• LockedStorage, which uses layering to provide a smart pointer that locks data while

dereferenced (see Section 7.13.1)
• HeapStorage, which uses an explicit destructor call followed by std::free to release

the data
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Table 7.1: Storage Policy Constructs

Expression Semantics

StorageImpl<T>::StoredType The type actually stored by the 
implementation. Default: T*.

StorageImpl<T>::PointerType The pointer type defined by the implemen-
tation. 

This is the type returned by SmartPtr’s 
operator->. Default: T*. Can be different 
from StorageImpl<T>::StoredType
when you’re using smart pointer layering 
(see Sections 7.3 and 7.13.1).

StorageImpl<T>::ReferenceType The reference type. This is the type returned 
by SmartPtr’s operator*. Default: T&.

GetImpl(storageImpl) Returns an object of type StorageImpl<T>
::StoredType.

GetImplRef(storageImpl) Returns an object of type StorageImpl<T>
::StoredType&, qualified with const if 
storageImpl is const.

storageImpl.operator->() Returns an object of type StorageImpl<T>
::PointerType. Used by SmartPtr’s 
own operator->.

storageImpl.operator*() Returns an object of type StorageImpl<T>
::ReferenceType. Used by SmartPtr’s 
own operator*.

StorageImpl<T>::StoredType p; Returns the default value (usually zero).
p = storageImpl.Default();

storageImpl.Destroy() Destroys the pointee object.

7.14.2 The Ownership Policy

The Ownership policy must support intrusive as well as nonintrusive reference counting.
Therefore, it uses explicit function calls rather than constructor/destructor techniques, as
Koenig (1996) does. The reason is that you can call member functions at any time, whereas
constructors and destructors are called automatically and only at specific times.

The Ownership policy implementation takes one template parameter, which is the cor-
responding pointer type. SmartPtr passes StoragePolicy<T>::PointerType to Ownership-
Policy. Note that OwnershipPolicy’s template parameter is a pointer type, not an object
type.

If OwnershipImpl is an implementation of Ownership and ownershipImpl is an object of
type OwnershipImpl<P>, then the constructs in Table 7.2 apply.
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Table 7.2: Ownership Policy Constructs

Expression Semantics

P val1; Clones an object. It can modify the source 
P val2 = OwnershipImpl. value if OwnershipImpl uses destructive 
Clone(val1); copy.

const P val1; Clones an object.
P val2 = ownershipImpl.
Clone(val1);

P val; Releases ownership of an object. Returns
bool unique = ownershipImpl. true if the last reference  to the
Release(val); object was released.

bool dc = OwnershipImpl<P> States whether OwnershipImpl uses
::destructiveCopy; destructive copy. If that’s the case,

SmartPtr uses the Colvin/Gibbons trick
(Meyers 1999) used in std::auto_ptr.

An implementation of Ownership that supports reference counting is shown in the 
following:

template <class P>
class RefCounted
{

unsigned int* pCount_;
protected:

RefCounted() : pCount_(new unsigned int(1)) {}
P Clone(const P & val)
{

++*pCount_;
return val;

}
bool Release(const P&)
{

if (!--*pCount_)
{

delete pCount_;
return true;

}
return false;

}
enum { destructiveCopy = false }; // see below

};
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Implementing a policy for other schemes of reference counting is very easy. Let’s write
an Ownership policy implementation for COM objects. COM objects have two functions:
AddRef and Release. Upon the last Release call, the object destroys itself. You need only
direct Clone to AddRef and Release to COM’s Release:

template <class P>
class COMRefCounted
{
public:

static P Clone(const P& val)
{

val->AddRef();
return val;

}
static bool Release(const P& val)
{

val->Release();
return false;

}
enum { destructiveCopy = false }; // see below

};

Loki defines the following Ownership implementations:

• DeepCopy, described in Section 7.5.1. DeepCopy assumes that pointee class implements a
member function Clone.

• RefCounted, described in Section 7.5.3 and in this section.
• RefCountedMT, a multithreaded version of RefCounted.
• COMRefCounted, a variant of intrusive reference counting described in this section.
• RefLinked, described in Section 7.5.4.
• DestructiveCopy, described in Section 7.5.5.
• NoCopy, which does not define Clone, thus disabling any form of copying.

7.14.3 The Conversion Policy

Conversion is a simple policy: It defines a Boolean compile-time constant that says whether
or not SmartPtr allows implicit conversion to the underlying pointer type.

If ConversionImpl is an implementation of Conversion, then the construct in Table 7.3
applies.

The underlying pointer type of SmartPtr is dictated by its Storage policy and is
StorageImpl<T>::StorageType.

As you would expect, Loki defines precisely two Conversion implementations:

• AllowConversion
• DisallowConversion
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Table 7.3: Conversion Policy Construct

Expression Semantics

bool allowConv = If allow is true, SmartPtr allows implicit
ConversionImpl<P>::allow; conversion to its underlying pointer type.

7.14.4 The Checking Policy

As discussed in Section 7.10, there are two main places to check a SmartPtr object for
consistency: during initialization and before dereference. The checks themselves might use
assert, exceptions, or lazy initialization or not do anything at all.

The Checking policy operates on the StoredType of the Storage policy, not on the
PointerType. (See Section 7.14.1 for the definition of Storage.)

If S is the stored type as defined by the Storage policy implementation, and if
CheckingImpl is an implementation of Checking, and if checkingImpl is an object of type
CheckingImpl<S>, then the constructs in Table 7.4 apply.

Loki defines the following implementations of Checking:

• AssertCheck, which uses assert for checking the value before dereferencing.
• AssertCheckStrict, which uses assert for checking the value upon initialization.
• RejectNullStatic, which does not define OnDefault. Consequently, any use of Smart-

Ptr’s default constructor yields a compile-time error.

Table 7.4: Checking Policy Constructs

Expression Semantics

S value; SmartPtr calls OnDefault in the default 
checkingImpl.OnDefault(value); constructor call. If CheckingImpl does

not define this function, it disables the
default constructor at compile time.

S value; SmartPtr calls OnInit upon a 
checkingImpl.OnInit(value); constructor call.

S value; SmartPtr calls OnDereference before 
checkingImpl.OnDereference returning from operator-> and 
(value); operator*.

const S value; SmartPtr calls OnDereference before 
checkingImpl.OnDereference returning from the const versions of 
(value); operator-> and operator*.
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• RejectNull, which throws an exception if you try to dereference a null pointer.
• RejectNullStrict, which does not accept null pointers as initializers (again, by throw-

ing an exception).
• NoCheck, which handles errors in the grand C and C�� tradition—that is, it does no

checking at all.

7.15 Summary

Congratulations! You have just read one of the longest, wildest chapters of this book—an
effort that we hope has paid off. Now you know a lot of things about smart pointers and
are equipped with a pretty comprehensive and configurable SmartPtr class template.

Smart pointers imitate built-in pointers in syntax and semantics. In addition, they per-
form a host of tasks that built-in pointers cannot. These tasks might include ownership
management and checking against invalid values.

Smart pointer concepts go beyond actual pointer behavior; they can be generalized into
smart resources, such as monikers (handles that don’t have pointer syntax, yet resemble
pointer behavior in the way they enable resource access).

Because they nicely automate things that are very hard to manage by hand, smart point-
ers are an essential ingredient of successful, robust applications. As small as they are, they
can make the difference between a successful project and a failure—or, more often, between
a correct program and one that leaks resources like a sieve.

That’s why a smart pointer implementer should invest as much attention and effort in
this task as possible; the investment is likely to pay in the long term. Similarly, smart
pointer users should understand the conventions that smart pointers establish and use
them in accordance with those conventions.

The presented implementation of smart pointers focuses on decomposing the areas of
functionality into independent policies that the main class template SmartPtr mixes and
matches. This is possible because each policy implements a well-defined interface. 

7.16 SmartPtr Quick Facts

• SmartPtr declaration:

template
<

typename T,
template <class> class OwnershipPolicy = RefCounted,
class ConversionPolicy = DisallowConversion,
template <class> class CheckingPolicy = AssertCheck,
template <class> class StoragePolicy = DefaultSPStorage

>
class SmartPtr;

• T is the type to which SmartPtr points. T can be a primitive type or a user-defined type.
The void type is allowed.

• For the remaining class template parameters (OwnershipPolicy, ConversionPolicy,
CheckingPolicy, and StoragePolicy), you can implement your own policies or choose
from the defaults mentioned in Sections 7.14.1 through 7.14.4.
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• OwnershipPolicy controls the ownership management strategy. You can select from the
predefined classes DeepCopy, RefCounted, RefCountedMT, COMRefCounted, RefLinked,
DestructiveCopy, and NoCopy, described in Section 7.14.2.

• ConversionPolicy controls whether implicit conversion to the pointee type is allowed.
The default is to forbid implicit conversion. Either way, you can still access the pointee
object by calling GetImpl. You can use the AllowConversion and Disallow-
Conversion implementations (Section 7.14.3).

• CheckingPolicy defines the error checking strategy. The defaults provided are Assert-
Check, AssertCheckStrict, RejectNullStatic, RejectNull, RejectNullStrict, and
NoCheck (Section 7.14.4).

• StoragePolicy defines the details of how the pointee object is stored and accessed. The
default is DefaultSPStorage, which, when instantiated with a type T, defines the refer-
ence type as T&, the stored type as T*, and the type returned from operator-> as T*
again. Other storage types defined by Loki are ArrayStorage, LockedStorage, and
HeapStorage (Section 7.14.1).
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