

Refactoring

Ahmed/Umrysh, Developing Enterprise Java Applications with J2EE™
and UML

Arlow/Neustadt, Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML

Arlow/Neustadt, UML 2 and the Unified Process, Second Edition

Armour/Miller, Advanced Use Case Modeling: Software Systems

Bellin/Simone, The CRC Card Book

Bergström/Råberg, Adopting the Rational Unified Process: Success with
the RUP

Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools

Bittner/Spence, Managing Iterative Software Development Projects

Bittner/Spence, Use Case Modeling

Booch, Object Solutions: Managing the Object-Oriented Project

Booch, Object-Oriented Analysis and Design with Applications, 3E

Booch/Bryan, Software Engineering with ADA, 3E

Booch/Rumbaugh/Jacobson, The Unified Modeling Language User
Guide, Second Edition

Box et al., Effective COM: 50 Ways to Improve Your COM and
MTS-based Applications

Buckley/Pulsipher, The Art of ClearCase® Deployment

Carlson, Modeling XML Applications with UML: Practical e-Business
Applications

Clarke/Baniassad, Aspect-Oriented Analysis and Design

Collins, Designing Object-Oriented User Interfaces

Conallen, Building Web Applications with UML, 2E

D’Souza/Wills, Objects, Components, and Frameworks with UML:
The Catalysis(SM) Approach

Denney, Succeeding with Use Cases

Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns

Douglass, Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems

Douglass, Real Time UML, 3E: Advances in The UML for Real-Time
Systems

Eeles et al., Building J2EE™Applications with the Rational Unified Process

Fowler, Analysis Patterns: Reusable Object Models

Fowler, UML Distilled, 3E: A Brief Guide to the Standard Object
Modeling Language

Fowler et al., Refactoring: Improving the Design of Existing Code

Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML

Gomaa, Designing Software Product Lines with UML

Heinckiens, Building Scalable Database Applications: Object-Oriented
Design, Architectures, and Implementations

Hofmeister/Nord/Dilip, Applied Software Architecture

Jacobson/Booch/Rumbaugh, The Unified Software Development Process

Jacobson/Ng, Aspect-Oriented Software Development with Use Cases

Jordan, C++ Object Databases: Programming with the ODMG Standard

Kleppe/Warmer/Bast, MDA Explained: The Model Driven
Architecture™: Practice and Promise

Kroll/Kruchten, The Rational Unified Process Made Easy:
A Practitioner’s Guide to the RUP

Kroll/MacIsaac, Agility and Discipline Made Easy: Practices from
OpenUP and RUP

Kruchten, The Rational Unified Process, 3E: An Introduction

LaLonde, Discovering Smalltalk

Lau, The Art of Objects: Object-Oriented Design and Architecture

Leffingwell/Widrig, Managing Software Requirements, 2E:
A Use Case Approach

Manassis, Practical Software Engineering: Analysis and Design for the
.NET Platform

Marshall, Enterprise Modeling with UML: Designing Successful Software
through Business Analysis

McGregor/Sykes, A Practical Guide to Testing Object-Oriented Software

Mellor/Balcer, Executable UML: A Foundation for Model-Driven
Architecture

Mellor et al., MDA Distilled: Principles of Model-Driven Architecture

Naiburg/Maksimchuk, UML for Database Design

Oestereich, Developing Software with UML, 2E: Object-Oriented
Analysis and Design in Practice

Page-Jones, Fundamentals of Object-Oriented Design in UML

Pohl, Object-Oriented Programming Using C++, 2E

Quatrani, Visual Modeling with Rational Rose 2002 and UML

Rector/Sells, ATL Internals

Reed, Developing Applications with Visual Basic and UML

Rosenberg/Scott, Applying Use Case Driven Object Modeling with UML:
An Annotated e-Commerce Example

Rosenberg/Scott, Use Case Driven Object Modeling with UML:
A Practical Approach

Royce, Software Project Management: A Unified Framework

Rumbaugh/Jacobson/Booch, The Unified Modeling Language Reference
Manual

Schneider/Winters, Applying Use Cases, 2E: A Practical Guide

Smith, IBM Smalltalk

Smith/Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software

Tavares/Fertitta/Rector/Sells, ATL Internals, Second Edition

Tkach/Fang/So, Visual Modeling Technique

Unhelkar, Process Quality Assurance for UML-Based Projects

Warmer/Kleppe, The Object Constraint Language, 2E: Getting Your
Models Ready for MDA

White, Software Configuration Management Strategies and Rational
ClearCase®: A Practical Introduction

The Component Software Series
Clemens Szyperski, Series Editor
For more information, check out the series web site at
www.awprofessional.com/csseries.

Cheesman/Daniels, UML Components: A Simple Process for Specifying
Component-Based Software

Szyperski, Component Software, 2E: Beyond Object-Oriented
Programming

The Addison-Wesley Object Technology Series
Grady Booch, Ivar Jacobson, and James Rumbaugh, Series Editors
For more information, check out the series web site at www.awprofessional.com/otseries.

www.awprofessional.com/otseries
www.awprofessional.com/csseries

Refactoring

Improving the Design
of Existing Code

Martin Fowler
With contributions by Kent Beck,
John Brant, William Opdyke, and
Don Roberts

ADDISON–WESLEY
An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California • Don Mills, Ontario • Sydney
Bonn • Amsterdam • Tokyo • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison Wesley Long-
man, Inc., was aware of a trademark claim, the designations have been printed in initial capital let-
ters or in all capital letters.

The authors and publisher have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

The publisher offers discounts on this book when ordered in quantity for bulk purchases and spe-
cial sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Fowler, Martin,
Refactoring : improving the design of existing code / Martin

Fowler.
p. m. — (The Addison-Wesley object technology series)

Includes bibliographical references and index.
ISBN 0-201-48567-2
1. Software refactoring. 2. Object-oriented programming (Computer

science) I. Title. II. Series.
QA76.76.R42F69 1999
005.1'4—dc21 99–20765

CIP

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or oth-
erwise, without the prior written consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

Executive Editor: J. Carter Shanklin
Project Editor: Krysia Bebick
Editorial Assistant: Kristin Erickson
Production Manager: John Fuller
Production Coordinator: Genevieve C. Rajewski
Copy Editor: Catherine Judge Allen
Composition: Kim Arney
Index: Irv Hershman
Proofreader: Amy Finch

ISBN 0-201-48567-2
Text printed on recycled and acid-free paper
24 25 26 27 28 29—CRW—13 12 11 10
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Twenty-sixth printing, December 2011

www.awprofessional.com

For Cindy

This page intentionally left blank

vii

Contents

Foreword . xiii

Preface . xv

What Is Refactoring? .xvi
What’s in This Book? . xvii
Who Should Read This Book? .xviii
Building on the Foundations Laid by Othersxix
Acknowledgments .xix

Chapter 1: Refactoring, a First Example . 1

The Starting Point . 1
The First Step in Refactoring . 7
Decomposing and Redistributing the Statement Method 8
Replacing the Conditional Logic on Price Code

with Polymorphism . 34
Final Thoughts . 52

Chapter 2: Principles in Refactoring . 53

Defining Refactoring . 53
Why Should You Refactor? . 55
When Should You Refactor? . 57
What Do I Tell My Manager? . 60
Problems with Refactoring . 62
Refactoring and Design . 66
Refactoring and Performance . 69
Where Did Refactoring Come From? 71

viii CONTENTS

Chapter 3: Bad Smells in Code (by Kent Beck and Martin Fowler) . . 75

Duplicated Code . 76
Long Method . 76
Large Class . 78
Long Parameter List . 78
Divergent Change . 79
Shotgun Surgery . 80
Feature Envy . 80
Data Clumps . 81
Primitive Obsession . 81
Switch Statements . 82
Parallel Inheritance Hierarchies . 83
Lazy Class . 83
Speculative Generality . 83
Temporary Field . 84
Message Chains . 84
Middle Man . 85
Inappropriate Intimacy . 85
Alternative Classes with Different Interfaces 85
Incomplete Library Class . 86
Data Class . 86
Refused Bequest . 87
Comments . 87

Chapter 4: Building Tests . 89

The Value of Self-testing Code . 89
The JUnit Testing Framework . 91
Adding More Tests . 97

Chapter 5: Toward a Catalog of Refactorings 103

Format of the Refactorings . 103
Finding References . 105
How Mature Are These Refactorings? 106

Chapter 6: Composing Methods . 109

Extract Method . 110
Inline Method . 117

CONTENTS ix

Inline Temp . 119
Replace Temp with Query . 120
Introduce Explaining Variable . 124
Split Temporary Variable . 128
Remove Assignments to Parameters 131
Replace Method with Method Object 135
Substitute Algorithm . 139

Chapter 7: Moving Features Between Objects 141

Move Method . 142
Move Field . 146
Extract Class . 149
Inline Class . 154
Hide Delegate . 157
Remove Middle Man . 160
Introduce Foreign Method . 162
Introduce Local Extension . 164

Chapter 8: Organizing Data. 169

Self Encapsulate Field . 171
Replace Data Value with Object . 175
Change Value to Reference . 179
Change Reference to Value . 183
Replace Array with Object . 186
Duplicate Observed Data . 189
Change Unidirectional Association to Bidirectional 197
Change Bidirectional Association to Unidirectional 200
Replace Magic Number with Symbolic Constant 204
Encapsulate Field . 206
Encapsulate Collection . 208
Replace Record with Data Class . 217
Replace Type Code with Class . 218
Replace Type Code with Subclasses 223
Replace Type Code with State/Strategy 227
Replace Subclass with Fields . 232

x CONTENTS

Chapter 9: Simplifying Conditional Expressions 237

Decompose Conditional . 238
Consolidate Conditional Expression 240
Consolidate Duplicate Conditional Fragments 243
Remove Control Flag . 245
Replace Nested Conditional with Guard Clauses 250
Replace Conditional with Polymorphism 255
Introduce Null Object . 260
Introduce Assertion . 267

Chapter 10: Making Method Calls Simpler 271

Rename Method . 273
Add Parameter . 275
Remove Parameter . 277
Separate Query from Modifier . 279
Parameterize Method . 283
Replace Parameter with Explicit Methods 285
Preserve Whole Object . 288
Replace Parameter with Method . 292
Introduce Parameter Object . 295
Remove Setting Method . 300
Hide Method . 303
Replace Constructor with Factory Method 304
Encapsulate Downcast . 308
Replace Error Code with Exception 310
Replace Exception with Test . 315

Chapter 11: Dealing with Generalization . 319

Pull Up Field . 320
Pull Up Method . 322
Pull Up Constructor Body . 325
Push Down Method . 328
Push Down Field . 329
Extract Subclass . 330
Extract Superclass . 336
Extract Interface . 341

CONTENTS xi

Collapse Hierarchy . 344
Form Template Method . 345
Replace Inheritance with Delegation 352
Replace Delegation with Inheritance 355

Chapter 12: Big Refactorings (by Kent Beck and Martin Fowler) . . 359

Tease Apart Inheritance . 362
Convert Procedural Design to Objects 368
Separate Domain from Presentation 370
Extract Hierarchy . 375

Chapter 13: Refactoring, Reuse, and
Reality (by William Opdyke) . 379

A Reality Check . 380
Why Are Developers Reluctant to Refactor

Their Programs? . 381
A Reality Check (Revisited) . 394
Resources and References for Refactoring 394
Implications Regarding Software Reuse

and Technology Transfer . 395
A Final Note . 397
References . 397

Chapter 14: Refactoring Tools (by Don Roberts and John Brant) . . 401

Refactoring with a Tool . 401
Technical Criteria for a Refactoring Tool 403
Practical Criteria for a Refactoring Tool 405
Wrap Up . 407

Chapter 15: Putting It All Together (by Kent Beck) 409

References . 413

List of Soundbites . 417

Index . 419

This page intentionally left blank

xiii

Foreword

“Refactoring” was conceived in Smalltalk circles, but it wasn’t long before it
found its way into other programming language camps. Because refactoring is
integral to framework development, the term comes up quickly when “frame-
workers” talk about their craft. It comes up when they refine their class hierar-
chies and when they rave about how many lines of code they were able to
delete. Frameworkers know that a framework won’t be right the first time
around—it must evolve as they gain experience. They also know that the code
will be read and modified more frequently than it will be written. The key to
keeping code readable and modifiable is refactoring—for frameworks, in partic-
ular, but also for software in general.

So, what’s the problem? Simply this: Refactoring is risky. It requires changes
to working code that can introduce subtle bugs. Refactoring, if not done prop-
erly, can set you back days, even weeks. And refactoring becomes riskier when
practiced informally or ad hoc. You start digging in the code. Soon you discover
new opportunities for change, and you dig deeper. The more you dig, the more
stuff you turn up. . .and the more changes you make. Eventually you dig your-
self into a hole you can’t get out of. To avoid digging your own grave, refac-
toring must be done systematically. When my coauthors and I wrote Design
Patterns, we mentioned that design patterns provide targets for refactorings.
However, identifying the target is only one part of the problem; transforming
your code so that you get there is another challenge.

Martin Fowler and the contributing authors make an invaluable contribution
to object-oriented software development by shedding light on the refactoring
process. This book explains the principles and best practices of refactoring, and
points out when and where you should start digging in your code to improve it.
At the book’s core is a comprehensive catalog of refactorings. Each refactoring
describes the motivation and mechanics of a proven code transformation. Some
of the refactorings, such as Extract Method or Move Field, may seem obvious.

xiv FOREWORD

But don’t be fooled. Understanding the mechanics of such refactorings is the key
to refactoring in a disciplined way. The refactorings in this book will help you
change your code one small step at a time, thus reducing the risks of evolving
your design. You will quickly add these refactorings and their names to your
development vocabulary.

My first experience with disciplined, “one step at a time” refactoring was
when I was pair-programming at 30,000 feet with Kent Beck. He made sure
that we applied refactorings from this book’s catalog one step at a time. I was
amazed at how well this practice worked. Not only did my confidence in the
resulting code increase, I also felt less stressed. I highly recommend you try
these refactorings: You and your code will feel much better for it.

—Erich Gamma
Object Technology International, Inc.

xv

Preface

Once upon a time, a consultant made a visit to a development project. The con-
sultant looked at some of the code that had been written; there was a class hier-
archy at the center of the system. As he wandered through the hierarchy, the
consultant saw that it was rather messy. The higher-level classes made certain
assumptions about how the classes would work, assumptions that were embod-
ied in inherited code. That code didn’t suit all the subclasses, however, and was
overridden quite heavily. If the superclass had been modified a little, then much
less overriding would have been necessary. In other places some of the intention
of the superclass had not been properly understood, and behavior present in the
superclass was duplicated. In yet other places several subclasses did the same
thing with code that could clearly be moved up the hierarchy.

The consultant recommended to the project management that the code be
looked at and cleaned up, but the project management didn’t seem enthusiastic.
The code seemed to work and there were considerable schedule pressures. The
managers said they would get around to it at some later point.

The consultant had also shown the programmers who had worked on the
hierarchy what was going on. The programmers were keen and saw the prob-
lem. They knew that it wasn’t really their fault; sometimes a new pair of eyes
are needed to spot the problem. So the programmers spent a day or two clean-
ing up the hierarchy. When they were finished, the programmers had removed
half the code in the hierarchy without reducing its functionality. They were
pleased with the result and found that it became quicker and easier both to add
new classes to the hierarchy and to use the classes in the rest of the system.

The project management was not pleased. Schedules were tight and there
was a lot of work to do. These two programmers had spent two days doing
work that had done nothing to add the many features the system had to deliver
in a few months time. The old code had worked just fine. So the design was a
bit more “pure” a bit more “clean.” The project had to ship code that worked,

xvi PREFACE

not code that would please an academic. The consultant suggested that this
cleaning up be done on other central parts of the system. Such an activity might
halt the project for a week or two. All this activity was devoted to making the
code look better, not to making it do anything that it didn’t already do.

How do you feel about this story? Do you think the consultant was right to
suggest further clean up? Or do you follow that old engineering adage, “if it
works, don’t fix it”?

I must admit to some bias here. I was that consultant. Six months later the
project failed, in large part because the code was too complex to debug or to
tune to acceptable performance.

The consultant Kent Beck was brought in to restart the project, an exercise
that involved rewriting almost the whole system from scratch. He did several
things differently, but one of the most important was to insist on continuous
cleaning up of the code using refactoring. The success of this project, and role
refactoring played in this success, is what inspired me to write this book, so that
I could pass on the knowledge that Kent and others have learned in using refac-
toring to improve the quality of software.

What Is Refactoring?

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture. It is a disciplined way to clean up code that minimizes the chances of
introducing bugs. In essence when you refactor you are improving the design of
the code after it has been written.

“Improving the design after it has been written.” That’s an odd turn of
phrase. In our current understanding of software development we believe that
we design and then we code. A good design comes first, and the coding comes
second. Over time the code will be modified, and the integrity of the system, its
structure according to that design, gradually fades. The code slowly sinks from
engineering to hacking.

Refactoring is the opposite of this practice. With refactoring you can take a
bad design, chaos even, and rework it into well-designed code. Each step is sim-
ple, even simplistic. You move a field from one class to another, pull some code
out of a method to make into its own method, and push some code up or down
a hierarchy. Yet the cumulative effect of these small changes can radically
improve the design. It is the exact reverse of the normal notion of software
decay.

PREFACE xvii

With refactoring you find the balance of work changes. You find that design,
rather than occurring all up front, occurs continuously during development.
You learn from building the system how to improve the design. The resulting
interaction leads to a program with a design that stays good as development
continues.

What’s in This Book?

This book is a guide to refactoring; it is written for a professional program-
mer. My aim is to show you how to do refactoring in a controlled and efficient
manner. You will learn to refactor in such a way that you don’t introduce bugs
into the code but instead methodically improve the structure.

It’s traditional to start books with an introduction. Although I agree with
that principle, I don’t find it easy to introduce refactoring with a generalized
discussion or definitions. So I start with an example. Chapter 1 takes a small
program with some common design flaws and refactors it into a more accept-
able object-oriented program. Along the way we see both the process of refac-
toring and the application of several useful refactorings. This is the key chapter
to read if you want to understand what refactoring really is about.

In Chapter 2 I cover more of the general principles of refactoring, some defi-
nitions, and the reasons for doing refactoring. I outline some of the problems
with refactoring. In Chapter 3 Kent Beck helps me describe how to find bad
smells in code and how to clean them up with refactorings. Testing plays a very
important role in refactoring, so Chapter 4 describes how to build tests into
code with a simple open-source Java testing framework.

The heart of the book, the catalog of refactorings, stretches from Chapter 5
through Chapter 12. This is by no means a comprehensive catalog. It is the
beginning of such a catalog. It includes the refactorings that I have written
down so far in my work in this field. When I want to do something, such as
Replace Conditional with Polymorphism (255), the catalog reminds me how to
do it in a safe, step-by-step manner. I hope this is the section of the book you’ll
come back to often.

In this book I describe the fruit of a lot of research done by others. The last
chapters are guest chapters by some of these people. Chapter 13 is by Bill
Opdyke, who describes the issues he has come across in adopting refactoring in
commercial development. Chapter 14 is by Don Roberts and John Brant, who
describe the true future of refactoring, automated tools. I’ve left the final word,
Chapter 15, to the master of the art, Kent Beck.

xviii PREFACE

Refactoring in Java

For all of this book I use examples in Java. Refactoring can, of course, be done
with other languages, and I hope this book will be useful to those working with
other languages. However, I felt it would be best to focus this book on Java
because it is the language I know best. I have added occasional notes for refac-
toring in other languages, but I hope other people will build on this foundation
with books aimed at specific languages.

To help communicate the ideas best, I have not used particularly complex
areas of the Java language. So I’ve shied away from using inner classes, reflec-
tion, threads, and many other of Java’s more powerful features. This is because
I want to focus on the core refactorings as clearly as I can.

I should emphasize that these refactorings are not done with concurrent or
distributed programming in mind. Those topics introduce additional concerns
that are beyond the scope of this book.

Who Should Read This Book?

This book is aimed at a professional programmer, someone who writes soft-
ware for a living. The examples and discussion include a lot of code to read and
understand. The examples are all in Java. I chose Java because it is an increas-
ingly well-known language that can be easily understood by anyone with a
background in C. It is also an object-oriented language, and object-oriented
mechanisms are a great help in refactoring.

Although it is focused on the code, refactoring has a large impact on the
design of system. It is vital for senior designers and architects to understand the
principles of refactoring and to use them in their projects. Refactoring is best
introduced by a respected and experienced developer. Such a developer can best
understand the principles behind refactoring and adapt those principles to the
specific workplace. This is particularly true when you are using a language
other than Java, because you have to adapt the examples I’ve given to other lan-
guages.

Here’s how to get the most from this book without reading all of it.

■ If you want to understand what refactoring is, read Chapter 1; the exam-
ple should make the process clear.

■ If you want to understand why you should refactor, read the first two
chapters. They will tell you what refactoring is and why you should do it.

PREFACE xix

■ If you want to find where you should refactor, read Chapter 3. It tells you
the signs that suggest the need for refactoring.

■ If you want to actually do refactoring, read the first four chapters com-
pletely. Then skip-read the catalog. Read enough of the catalog to know
roughly what is in there. You don’t have to understand all the details.
When you actually need to carry out a refactoring, read the refactoring in
detail and use it to help you. The catalog is a reference section, so you
probably won’t want to read it in one go. You should also read the guest
chapters, especially Chapter 15.

Building on the Foundations Laid by Others

I need to say right now, at the beginning, that I owe a big debt with this book, a
debt to those whose work over the last decade has developed the field of refac-
toring. Ideally one of them should have written this book, but I ended up being
the one with the time and energy.

Two of the leading proponents of refactoring are Ward Cunningham and
Kent Beck. They used it as a central part of their development process in the
early days and have adapted their development processes to take advantage of
it. In particular it was my collaboration with Kent that really showed me the
importance of refactoring, an inspiration that led directly to this book.

Ralph Johnson leads a group at the University of Illinois at Urbana-Cham-
paign that is notable for its practical contributions to object technology. Ralph
has long been a champion of refactoring, and several of his students have
worked on the topic. Bill Opdyke developed the first detailed written work on
refactoring in his doctoral thesis. John Brant and Don Roberts have gone
beyond writing words into writing a tool, the Refactoring Browser, for refactor-
ing Smalltalk programs.

Acknowledgments

Even with all that research to draw on, I still needed a lot of help to write this
book. First and foremost, Kent Beck was a huge help. The first seeds were
planted in a bar in Detroit when Kent told me about a paper he was writing for
the Smalltalk Report [Beck, hanoi]. It not only provided many ideas for me to
steal for Chapter 1 but also started me off in taking notes of refactorings. Kent
helped in other places too. He came up with the idea of code smells, encouraged

xx PREFACE

me at various sticky points, and generally worked with me to make this book
work. I can’t help thinking he could have written this book much better him-
self, but I had the time and can only hope I did the subject justice.

As I’ve written this, I wanted to share much of this expertise directly with
you, so I’m very grateful that many of these people have spent some time add-
ing some material to this book. Kent Beck, John Brant, William Opdyke, and
Don Roberts have all written or co-written chapters. In addition, Rich Garzan-
iti and Ron Jeffries have added useful sidebars.

Any author will tell you that technical reviewers do a great deal to help in a
book like this. As usual, Carter Shanklin and his team at Addison-Wesley put
together a great panel of hard-nosed reviewers. These were

■ Ken Auer, Rolemodel Software, Inc.

■ Joshua Bloch, Sun Microsystems, Java Software

■ John Brant, University of Illinois at Urbana-Champaign

■ Scott Corley, High Voltage Software, Inc.

■ Ward Cunningham, Cunningham & Cunningham, Inc.

■ Stéphane Ducasse

■ Erich Gamma, Object Technology International, Inc.

■ Ron Jeffries

■ Ralph Johnson, University of Illinois

■ Joshua Kerievsky, Industrial Logic, Inc.

■ Doug Lea, SUNY Oswego

■ Sander Tichelaar

They all added a great deal to the readability and accuracy of this book, and
removed at least some of the errors that can lurk in any manuscript. I’d like to
highlight a couple of very visible suggestions that made a difference to the look
of the book. Ward and Ron got me to do Chapter 1 in the side-by-side style.
Joshua suggested the idea of the code sketches in the catalog.

In addition to the official review panel there were many unofficial reviewers.
These people looked at the manuscript or the work in progress on my Web
pages and made helpful comments. They include Leif Bennett, Michael Feath-
ers, Michael Finney, Neil Galarneau, Hisham Ghazouli, Tony Gould, John
Isner, Brian Marick, Ralf Reissing, John Salt, Mark Swanson, Dave Thomas,

PREFACE xxi

and Don Wells. I’m sure there are others who I’ve forgotton; I apologize and
offer my thanks.

A particularly entertaining review group is the infamous reading group at the
University of Illinois at Urbana-Champaign. Because this book reflects so much
of their work, I’m particularly grateful for their efforts captured in real audio.
This group includes Fredrico “Fred” Balaguer, John Brant, Ian Chai, Brian
Foote, Alejandra Garrido, Zhijiang “John” Han, Peter Hatch, Ralph Johnson,
Songyu “Raymond” Lu, Dragos-Anton Manolescu, Hiroaki Nakamura, James
Overturf, Don Roberts, Chieko Shirai, Les Tyrell, and Joe Yoder.

Any good idea needs to be tested in a serious production system. I saw refac-
toring have a huge effect on the Chrysler Comprehensive Compensation system
(C3). I want to thank all the members of that team: Ann Anderson, Ed Anderi,
Ralph Beattie, Kent Beck, David Bryant, Bob Coe, Marie DeArment, Margaret
Fronczak, Rich Garzaniti, Dennis Gore, Brian Hacker, Chet Hendrickson, Ron
Jeffries, Doug Joppie, David Kim, Paul Kowalsky, Debbie Mueller, Tom
Murasky, Richard Nutter, Adrian Pantea, Matt Saigeon, Don Thomas, and Don
Wells. Working with them cemented the principles and benefits of refactoring
into me on a firsthand basis. Watching their progress as they use refactoring
heavily helps me see what refactoring can do when applied to a large project
over many years.

Again I had the help of J. Carter Shanklin at Addison-Wesley and his team:
Krysia Bebick, Susan Cestone, Chuck Dutton, Kristin Erickson, John Fuller,
Christopher Guzikowski, Simone Payment, and Genevieve Rajewski. Working
with a good publisher is a pleasure; they provided a lot of support and help.

Talking of support, the biggest sufferer from a book is always the closest to
the author, in this case my (now) wife Cindy. Thanks for loving me even when I
was hidden in the study. As much time as I put into this book, I never stopped
being distracted by thinking of you.

Martin Fowler
Melrose, Massachusetts

fowler@acm.org
http://ourworld.compuserve.com/homepages/martin_fowler

This page intentionally left blank

75

Chapter 3

Bad Smells in Code

by Kent Beck and Martin Fowler

If it stinks, change it.
— Grandma Beck, discussing child-rearing philosophy

By now you have a good idea of how refactoring works. But just because you
know how doesn’t mean you know when. Deciding when to start refactoring,
and when to stop, is just as important to refactoring as knowing how to operate
the mechanics of a refactoring.

Now comes the dilemma. It is easy to explain to you how to delete an
instance variable or create a hierarchy. These are simple matters. Trying to
explain when you should do these things is not so cut-and-dried. Rather than
appealing to some vague notion of programming aesthetics (which frankly is
what we consultants usually do), I wanted something a bit more solid.

I was mulling over this tricky issue when I visited Kent Beck in Zurich. Per-
haps he was under the influence of the odors of his newborn daughter at the
time, but he had come up with the notion describing the “when” of refactoring
in terms of smells. “Smells,” you say, “and that is supposed to be better than
vague aesthetics?” Well, yes. We look at lots of code, written for projects that
span the gamut from wildly successful to nearly dead. In doing so, we have
learned to look for certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring. (We are switching over to “we” in this
chapter to reflect the fact that Kent and I wrote this chapter jointly. You can tell
the difference because the funny jokes are mine and the others are his.)

One thing we won’t try to do here is give you precise criteria for when a
refactoring is overdue. In our experience no set of metrics rivals informed
human intuition. What we will do is give you indications that there is trouble
that can be solved by a refactoring. You will have to develop your own sense of
how many instance variables are too many instance variables and how many
lines of code in a method are too many lines.

76 BAD SMELLS IN CODE

You should use this chapter and the table on the inside back cover as a way
to give you inspiration when you’re not sure what refactorings to do. Read the
chapter (or skim the table) to try to identify what it is you’re smelling, then go
to the refactorings we suggest to see whether they will help you. You may not
find the exact smell you can detect, but hopefully it should point you in the
right direction.

Duplicated Code

Number one in the stink parade is duplicated code. If you see the same code
structure in more than one place, you can be sure that your program will be
better if you find a way to unify them.

The simplest duplicated code problem is when you have the same expression
in two methods of the same class. Then all you have to do is Extract Method
(110) and invoke the code from both places.

Another common duplication problem is when you have the same expres-
sion in two sibling subclasses. You can eliminate this duplication by using
Extract Method (110) in both classes then Pull Up Method (322). If the code is
similar but not the same, you need to use Extract Method (110) to separate the
similar bits from the different bits. You may then find you can use Form Tem-
plate Method (345). If the methods do the same thing with a different algo-
rithm, you can choose the clearer of the two algorithms and use Substitute
Algorithm (139).

If you have duplicated code in two unrelated classes, consider using Extract
Class (149) in one class and then use the new component in the other. Another
possibility is that the method really belongs only in one of the classes and
should be invoked by the other class or that the method belongs in a third class
that should be referred to by both of the original classes. You have to decide
where the method makes sense and ensure it is there and nowhere else.

Long Method

The object programs that live best and longest are those with short methods.
Programmers new to objects often feel that no computation ever takes place,
that object programs are endless sequences of delegation. When you have lived
with such a program for a few years, however, you learn just how valuable all
those little methods are. All of the payoffs of indirection—explanation, sharing,

LONG METHOD 77

and choosing—are supported by little methods (see Indirection and Refactoring
on page 61).

Since the early days of programming people have realized that the longer a
procedure is, the more difficult it is to understand. Older languages carried an
overhead in subroutine calls, which deterred people from small methods. Mod-
ern OO languages have pretty much eliminated that overhead for in-process
calls. There is still an overhead to the reader of the code because you have to
switch context to see what the subprocedure does. Development environments
that allow you to see two methods at once help to eliminate this step, but the
real key to making it easy to understand small methods is good naming. If you
have a good name for a method you don’t need to look at the body.

The net effect is that you should be much more aggressive about decompos-
ing methods. A heuristic we follow is that whenever we feel the need to com-
ment something, we write a method instead. Such a method contains the code
that was commented but is named after the intention of the code rather than
how it does it. We may do this on a group of lines or on as little as a single line
of code. We do this even if the method call is longer than the code it replaces,
provided the method name explains the purpose of the code. The key here is
not method length but the semantic distance between what the method does
and how it does it.

Ninety-nine percent of the time, all you have to do to shorten a method is
Extract Method (110). Find parts of the method that seem to go nicely together
and make a new method.

If you have a method with lots of parameters and temporary variables, these
elements get in the way of extracting methods. If you try to use Extract
Method, you end up passing so many of the parameters and temporary vari-
ables as parameters to the extracted method that the result is scarcely more
readable than the original. You can often use Replace Temp with Query (120)
to eliminate the temps. Long lists of parameters can be slimmed down with
Introduce Parameter Object (295) and Preserve Whole Object (288).

If you’ve tried that, and you still have too many temps and parameters, it’s
time to get out the heavy artillery: Replace Method with Method Object (135).

How do you identify the clumps of code to extract? A good technique is to
look for comments. They often signal this kind of semantic distance. A block of
code with a comment that tells you what it is doing can be replaced by a
method whose name is based on the comment. Even a single line is worth
extracting if it needs explanation.

Conditionals and loops also give signs for extractions. Use Decompose Con-
ditional (238) to deal with conditional expressions. With loops, extract the loop
and the code within the loop into its own method.

78 BAD SMELLS IN CODE

Large Class

When a class is trying to do too much, it often shows up as too many instance
variables. When a class has too many instance variables, duplicated code can-
not be far behind.

You can Extract Class (149) to bundle a number of the variables. Choose
variables to go together in the component that makes sense for each. For exam-
ple, “depositAmount” and “depositCurrency” are likely to belong together in a
component. More generally, common prefixes or suffixes for some subset of the
variables in a class suggest the opportunity for a component. If the component
makes sense as a subclass, you’ll find Extract Subclass (330) often is easier.

Sometimes a class does not use all of its instance variables all of the time. If
so, you may be able to Extract Class (149) or Extract Subclass (330) many
times.

As with a class with too many instance variables, a class with too much code
is prime breeding ground for duplicated code, chaos, and death. The simplest
solution (have we mentioned that we like simple solutions?) is to eliminate
redundancy in the class itself. If you have five hundred-line methods with lots of
code in common, you may be able to turn them into five ten-line methods with
another ten two-line methods extracted from the original.

As with a class with a huge wad of variables, the usual solution for a class
with too much code is either to Extract Class (149) or Extract Subclass (330).
A useful trick is to determine how clients use the class and to use Extract Inter-
face (341) for each of these uses. That may give you ideas on how you can fur-
ther break up the class.

If your large class is a GUI class, you may need to move data and behavior to
a separate domain object. This may require keeping some duplicate data in
both places and keeping the data in sync. Duplicate Observed Data (189) sug-
gests how to do this. In this case, especially if you are using older Abstract Win-
dows Toolkit (AWT) components, you might follow this by removing the GUI
class and replacing it with Swing components.

Long Parameter List

In our early programming days we were taught to pass in as parameters every-
thing needed by a routine. This was understandable because the alternative was
global data, and global data is evil and usually painful. Objects change this sit-
uation because if you don’t have something you need, you can always ask

DIVERGENT CHANGE 79

another object to get it for you. Thus with objects you don’t pass in everything
the method needs; instead you pass enough so that the method can get to every-
thing it needs. A lot of what a method needs is available on the method’s host
class. In object-oriented programs parameter lists tend to be much smaller than
in traditional programs.

This is good because long parameter lists are hard to understand, because
they become inconsistent and difficult to use, and because you are forever
changing them as you need more data. Most changes are removed by passing
objects because you are much more likely to need to make only a couple of
requests to get at a new piece of data.

Use Replace Parameter with Method (292) when you can get the data in one
parameter by making a request of an object you already know about. This
object might be a field or it might be another parameter. Use Preserve Whole
Object (288) to take a bunch of data gleaned from an object and replace it with
the object itself. If you have several data items with no logical object, use Intro-
duce Parameter Object (295).

There is one important exception to making these changes. This is when you
explicitly do not want to create a dependency from the called object to the
larger object. In those cases unpacking data and sending it along as parameters
is reasonable, but pay attention to the pain involved. If the parameter list is too
long or changes too often, you need to rethink your dependency structure.

Divergent Change

We structure our software to make change easier; after all, software is meant to
be soft. When we make a change we want to be able to jump to a single clear
point in the system and make the change. When you can’t do this you are smell-
ing one of two closely related pungencies.

 Divergent change occurs when one class is commonly changed in different
ways for different reasons. If you look at a class and say, “Well, I will have to
change these three methods every time I get a new database; I have to change
these four methods every time there is a new financial instrument,” you likely
have a situation in which two objects are better than one. That way each object
is changed only as a result of one kind of change. Of course, you often discover
this only after you’ve added a few databases or financial instruments. Any
change to handle a variation should change a single class, and all the typing in
the new class should express the variation. To clean this up you identify every-
thing that changes for a particular cause and use Extract Class (149) to put
them all together.

80 BAD SMELLS IN CODE

Shotgun Surgery

Shotgun surgery is similar to divergent change but is the opposite. You whiff
this when every time you make a kind of change, you have to make a lot of little
changes to a lot of different classes. When the changes are all over the place,
they are hard to find, and it’s easy to miss an important change.

In this case you want to use Move Method (142) and Move Field (146) to
put all the changes into a single class. If no current class looks like a good can-
didate, create one. Often you can use Inline Class (154) to bring a whole bunch
of behavior together. You get a small dose of divergent change, but you can eas-
ily deal with that.

Divergent change is one class that suffers many kinds of changes, and shot-
gun surgery is one change that alters many classes. Either way you want to
arrange things so that, ideally, there is a one-to-one link between common
changes and classes.

Feature Envy

The whole point of objects is that they are a technique to package data with the
processes used on that data. A classic smell is a method that seems more inter-
ested in a class other than the one it actually is in. The most common focus of
the envy is the data. We’ve lost count of the times we’ve seen a method that
invokes half-a-dozen getting methods on another object to calculate some
value. Fortunately the cure is obvious, the method clearly wants to be else-
where, so you use Move Method (142) to get it there. Sometimes only part of
the method suffers from envy; in that case use Extract Method (110) on the
jealous bit and Move Method (142) to give it a dream home.

Of course not all cases are cut-and-dried. Often a method uses features of
several classes, so which one should it live with? The heuristic we use is to
determine which class has most of the data and put the method with that data.
This step is often made easier if Extract Method (110) is used to break the
method into pieces that go into different places.

Of course there are several sophisticated patterns that break this rule. From
the Gang of Four [Gang of Four] Strategy and Visitor immediately leap to
mind. Kent Beck’s Self Delegation [Beck] is another. You use these to combat
the divergent change smell. The fundamental rule of thumb is to put things
together that change together. Data and the behavior that references that data
usually change together, but there are exceptions. When the exceptions occur,

DATA CLUMPS 81

we move the behavior to keep changes in one place. Strategy and Visitor allow
you to change behavior easily, because they isolate the small amount of behav-
ior that needs to be overridden, at the cost of further indirection.

Data Clumps

Data items tend to be like children; they enjoy hanging around in groups
together. Often you’ll see the same three or four data items together in lots of
places: fields in a couple of classes, parameters in many method signatures.
Bunches of data that hang around together really ought to be made into their
own object. The first step is to look for where the clumps appear as fields. Use
Extract Class (149) on the fields to turn the clumps into an object. Then turn
your attention to method signatures using Introduce Parameter Object (295) or
Preserve Whole Object (288) to slim them down. The immediate benefit is that
you can shrink a lot of parameter lists and simplify method calling. Don’t
worry about data clumps that use only some of the fields of the new object. As
long as you are replacing two or more fields with the new object, you’ll come
out ahead.

A good test is to consider deleting one of the data values: if you did this,
would the others make any sense? If they don’t, it’s a sure sign that you have an
object that’s dying to be born.

Reducing field lists and parameter lists will certainly remove a few bad
smells, but once you have the objects, you get the opportunity to make a nice
perfume. You can now look for cases of feature envy, which will suggest behav-
ior that can be moved into your new classes. Before long these classes will be
productive members of society.

Primitive Obsession

Most programming environments have two kinds of data. Record types allow
you to structure data into meaningful groups. Primitive types are your building
blocks. Records always carry a certain amount of overhead. They may mean
tables in a database, or they may be awkward to create when you want them
for only one or two things.

One of the valuable things about objects is that they blur or even break the
line between primitive and larger classes. You can easily write little classes that
are indistinguishable from the built-in types of the language. Java does have

82 BAD SMELLS IN CODE

primitives for numbers, but strings and dates, which are primitives in many
other environments, are classes.

People new to objects usually are reluctant to use small objects for small
tasks, such as money classes that combine number and currency, ranges with an
upper and a lower, and special strings such as telephone numbers and ZIP
codes. You can move out of the cave into the centrally heated world of objects
by using Replace Data Value with Object (175) on individual data values. If the
data value is a type code, use Replace Type Code with Class (218) if the value
does not affect behavior. If you have conditionals that depend on the type code,
use Replace Type Code with Subclasses (223) or Replace Type Code with State/
Strategy (227).

If you have a group of fields that should go together, use Extract Class (149).
If you see these primitives in parameter lists, try a civilizing dose of Introduce
Parameter Object (295). If you find yourself picking apart an array, use Replace
Array with Object (186).

Switch Statements

One of the most obvious symptoms of object-oriented code is its comparative
lack of switch (or case) statements. The problem with switch statements is
essentially that of duplication. Often you find the same switch statement scat-
tered about a program in different places. If you add a new clause to the
switch, you have to find all these switch statements and change them. The
object-oriented notion of polymorphism gives you an elegant way to deal
with this problem.

Most times you see a switch statement you should consider polymorphism.
The issue is where the polymorphism should occur. Often the switch statement
switches on a type code. You want the method or class that hosts the type code
value. So use Extract Method (110) to extract the switch statement and then
Move Method (142) to get it onto the class where the polymorphism is needed.
At that point you have to decide whether to Replace Type Code with Subclasses
(223) or Replace Type Code with State/Strategy (227). When you have set up
the inheritance structure, you can use Replace Conditional with Polymorphism
(255).

If you only have a few cases that affect a single method, and you don’t expect
them to change, then polymorphism is overkill. In this case Replace Parameter
with Explicit Methods (285) is a good option. If one of your conditional cases
is a null, try Introduce Null Object (260).

PARALLEL INHERITANCE HIERARCHIES 83

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies is really a special case of shotgun surgery. In this
case, every time you make a subclass of one class, you also have to make a sub-
class of another. You can recognize this smell because the prefixes of the class
names in one hierarchy are the same as the prefixes in another hierarchy.

The general strategy for eliminating the duplication is to make sure that
instances of one hierarchy refer to instances of the other. If you use Move
Method (142) and Move Field (146), the hierarchy on the referring class dis-
appears.

Lazy Class

Each class you create costs money to maintain and understand. A class that
isn’t doing enough to pay for itself should be eliminated. Often this might be a
class that used to pay its way but has been downsized with refactoring. Or it
might be a class that was added because of changes that were planned but not
made. Either way, you let the class die with dignity. If you have subclasses that
aren’t doing enough, try to use Collapse Hierarchy (344). Nearly useless com-
ponents should be subjected to Inline Class (154).

Speculative Generality

Brian Foote suggested this name for a smell to which we are very sensitive. You
get it when people say, “Oh, I think we need the ability to do this kind of thing
someday” and thus want all sorts of hooks and special cases to handle things
that aren’t required. The result often is harder to understand and maintain. If
all this machinery were being used, it would be worth it. But if it isn’t, it isn’t.
The machinery just gets in the way, so get rid of it.

If you have abstract classes that aren’t doing much, use Collapse Hierarchy
(344). Unnecessary delegation can be removed with Inline Class (154). Meth-
ods with unused parameters should be subject to Remove Parameter (277).
Methods named with odd abstract names should be brought down to earth
with Rename Method (273).

Speculative generality can be spotted when the only users of a method or
class are test cases. If you find such a method or class, delete it and the test case

84 BAD SMELLS IN CODE

that exercises it. If you have a method or class that is a helper for a test case
that exercises legitimate functionality, you have to leave it in, of course.

Temporary Field

Sometimes you see an object in which an instance variable is set only in certain
circumstances. Such code is difficult to understand, because you expect an
object to need all of its variables. Trying to understand why a variable is there
when it doesn’t seem to be used can drive you nuts.

Use Extract Class (149) to create a home for the poor orphan variables. Put
all the code that concerns the variables into the component. You may also be
able to eliminate conditional code by using Introduce Null Object (260) to cre-
ate an alternative component for when the variables aren’t valid.

A common case of temporary field occurs when a complicated algorithm
needs several variables. Because the implementer didn’t want to pass around a
huge parameter list (who does?), he put them in fields. But the fields are valid
only during the algorithm; in other contexts they are just plain confusing. In
this case you can use Extract Class with these variables and the methods that
require them. The new object is a method object [Beck].

Message Chains

You see message chains when a client asks one object for another object, which
the client then asks for yet another object, which the client then asks for yet
another another object, and so on. You may see these as a long line of getThis
methods, or as a sequence of temps. Navigating this way means the client is
coupled to the structure of the navigation. Any change to the intermediate rela-
tionships causes the client to have to change.

The move to use here is Hide Delegate (157). You can do this at various
points in the chain. In principle you can do this to every object in the chain, but
doing this often turns every intermediate object into a middle man. Often a bet-
ter alternative is to see what the resulting object is used for. See whether you can
use Extract Method (110) to take a piece of the code that uses it and then Move
Method (142) to push it down the chain. If several clients of one of the objects
in the chain want to navigate the rest of the way, add a method to do that.

Some people consider any method chain to be a terrible thing. We are known
for our calm, reasoned moderation. Well, at least in this case we are.

MIDDLE MAN 85

Middle Man

One of the prime features of objects is encapsulation—hiding internal details
from the rest of the world. Encapsulation often comes with delegation. You ask
a director whether she is free for a meeting; she delegates the message to her
diary and gives you an answer. All well and good. There is no need to know
whether the director uses a diary, an electronic gizmo, or a secretary to keep
track of her appointments.

However, this can go too far. You look at a class’s interface and find half the
methods are delegating to this other class. After a while it is time to use Remove
Middle Man (160) and talk to the object that really knows what’s going on. If
only a few methods aren’t doing much, use Inline Method (117) to inline them
into the caller. If there is additional behavior, you can use Replace Delegation
with Inheritance (355) to turn the middle man into a subclass of the real object.
That allows you to extend behavior without chasing all that delegation.

Inappropriate Intimacy

Sometimes classes become far too intimate and spend too much time delving in
each others’ private parts. We may not be prudes when it comes to people, but
we think our classes should follow strict, puritan rules.

Overintimate classes need to be broken up as lovers were in ancient days.
Use Move Method (142) and Move Field (146) to separate the pieces to reduce
the intimacy. See whether you can arrange a Change Bidirectional Association
to Unidirectional (200). If the classes do have common interests, use Extract
Class (149) to put the commonality in a safe place and make honest classes of
them. Or use Hide Delegate (157) to let another class act as go-between.

Inheritance often can lead to overintimacy. Subclasses are always going to
know more about their parents than their parents would like them to know. If
it’s time to leave home, apply Replace Inheritance with Delegation (352).

Alternative Classes with Different Interfaces

Use Rename Method (273) on any methods that do the same thing but have dif-
ferent signatures for what they do. Often this doesn’t go far enough. In these
cases the classes aren’t yet doing enough. Keep using Move Method (142) to

86 BAD SMELLS IN CODE

move behavior to the classes until the protocols are the same. If you have to
redundantly move code to accomplish this, you may be able to use Extract
Superclass (336) to atone.

Incomplete Library Class

Reuse is often touted as the purpose of objects. We think reuse is overrated (we
just use). However, we can’t deny that much of our programming skill is based
on library classes so that nobody can tell whether we’ve forgotten our sort algo-
rithms.

Builders of library classes are rarely omniscient. We don’t blame them for
that; after all, we can rarely figure out a design until we’ve mostly built it, so
library builders have a really tough job. The trouble is that it is often bad
form, and usually impossible, to modify a library class to do something you’d
like it to do. This means that tried-and-true tactics such as Move Method
(142) lie useless.

We have a couple of special-purpose tools for this job. If there are just a cou-
ple of methods that you wish the library class had, use Introduce Foreign
Method (162). If there is a whole load of extra behavior, you need Introduce
Local Extension (164).

Data Class

These are classes that have fields, getting and setting methods for the fields, and
nothing else. Such classes are dumb data holders and are almost certainly being
manipulated in far too much detail by other classes. In early stages these classes
may have public fields. If so, you should immediately apply Encapsulate Field
(206) before anyone notices. If you have collection fields, check to see whether
they are properly encapsulated and apply Encapsulate Collection (208) if they
aren’t. Use Remove Setting Method (300) on any field that should not be
changed.

Look for where these getting and setting methods are used by other classes.
Try to use Move Method (142) to move behavior into the data class. If you
can’t move a whole method, use Extract Method (110) to create a method that
can be moved. After a while you can start using Hide Method (303) on the get-
ters and setters.

REFUSED BEQUEST 87

Data classes are like children. They are okay as a starting point, but to par-
ticipate as a grownup object, they need to take some responsibility.

Refused Bequest

Subclasses get to inherit the methods and data of their parents. But what if they
don’t want or need what they are given? They are given all these great gifts and
pick just a few to play with.

The traditional story is that this means the hierarchy is wrong. You need to
create a new sibling class and use Push Down Method (328) and Push Down
Field (329) to push all the unused methods to the sibling. That way the parent
holds only what is common. Often you’ll hear advice that all superclasses
should be abstract.

You’ll guess from our snide use of traditional that we aren’t going to advise
this, at least not all the time. We do subclassing to reuse a bit of behavior all the
time, and we find it a perfectly good way of doing business. There is a smell, we
can’t deny it, but usually it isn’t a strong smell. So we say that if the refused
bequest is causing confusion and problems, follow the traditional advice. How-
ever, don’t feel you have to do it all the time. Nine times out of ten this smell is
too faint to be worth cleaning.

The smell of refused bequest is much stronger if the subclass is reusing
behavior but does not want to support the interface of the superclass. We don’t
mind refusing implementations, but refusing interface gets us on our high
horses. In this case, however, don’t fiddle with the hierarchy; you want to gut it
by applying Replace Inheritance with Delegation (352).

Comments

Don’t worry, we aren’t saying that people shouldn’t write comments. In our
olfactory analogy, comments aren’t a bad smell; indeed they are a sweet smell.
The reason we mention comments here is that comments often are used as a
deodorant. It’s surprising how often you look at thickly commented code and
notice that the comments are there because the code is bad.

Comments lead us to bad code that has all the rotten whiffs we’ve discussed
in the rest of this chapter. Our first action is to remove the bad smells by refac-
toring. When we’re finished, we often find that the comments are superfluous.

88 BAD SMELLS IN CODE

If you need a comment to explain what a block of code does, try Extract
Method (110). If the method is already extracted but you still need a comment
to explain what it does, use Rename Method (273). If you need to state some
rules about the required state of the system, use Introduce Assertion (267).

When you feel the need to write a comment, first try to refactor the code so that
any comment becomes superfluous.

A good time to use a comment is when you don’t know what to do. In addi-
tion to describing what is going on, comments can indicate areas in which you
aren’t sure. A comment is a good place to say why you did something. This
kind of information helps future modifiers, especially forgetful ones.

419

Index

A
Account class, 296–98
Algorithm, substitute, 139–40
Amount calculation, moving, 16
amountFor, 12, 14–16
APIs, 65
Arrays

encapsulating, 215–16
replace with object, 186–88

example, 187–88
mechanics, 186–87
motivation, 186

ASCII (American Standard Code for Infor-
mation Interchange), 26, 33

Assertion, introduce, 267–70
example, 268–70
mechanics, 268
motivation, 267–68

Assignments, removing to parameters,
131–34

example, 132–33
mechanics, 132
motivation, 131
pass by value in Java, 133–34

Association
bidirectional, 200–203
unidirectional, 197–99

AWT (Abstract Windows Toolkit), 78

B
Back pointer defined, 197
Behavior, moving into class, 213–14
Bequest, refused, 87

Bidirectional association, change to unidi-
rectional, 200–203

example, 201–3
mechanics, 200–201
motivation, 200

Body, pull up constructor, 325–27
example, 326–27
mechanics, 326
motivation, 325

Boldface code, 105
boundary conditions, 99
BSD (Berkeley Software Distribution), 388
Bug detector and suite of tests, 90
Bugs

and fear of writing tests, 101
refactor when fixing, 58–59
refactoring helps find, 57
unit tests that expose, 97

C
C++ programs, refactoring, 384–87

closing comments, 387
language features complicating refactor-

ing, 386–87
programming styles complicating refac-

toring, 386–87
Calculations

frequent renter point, 36
moving amount, 16

Calls, method, 271–318
Case statement, 47
Case statement, parent, 47
Chains, message, 84

420 INDEX

Change, divergent, 79
ChildrensPrice class, 47
Class; See also Classes; Subclass; Super-

class
Account, 296–98
ChildrensPrice, 47
Customer, 4–5, 18–19, 23, 26–29, 263,

347
Customer implements Nullable, 263
data, 86–87
DateRange, 297
Department, 340
diagrams, 30–31
Employee, 257, 332, 337–38
EmployeeType, 258–59
Engineer, 259
Entry, 296
extract, 149–53

example, 150–53
mechanics, 149–50
motivation, 149

FileReaderTester, 92–94
GUI, 78, 170
HtmlStatement, 348–50
incomplete library, 86
inline, 154–56

example, 155–56
mechanics, 154
motivation, 154

IntervalWindow, 191, 195
JobItem, 332–35
LaborItem, 333–34
large, 78
lazy, 83
MasterTester, 101
Movie, 2–3, 35, 37, 40–41, 43–45, 49
moving behavior into, 213–14
NewReleasePrice, 47, 49
NullCustomer, 263, 265
Party, 339
Price, 45–46, 49
RegularPrice, 47
Rental, 3, 23, 34–37, 48
replace record with data, 217

example, 220–22
mechanics, 219
motivation, 218–19

replace type code with, 218–22
Salesman, 259
Site, 262, 264
Statement, 351
TextStatement, 348–50

Classes
alternative, 85–86
do a find across all, 19

Clauses, replace nested conditional with
guard, 250–54

Clumps, data, 81
Code

before and after refactoring, 9–11
bad smells in, 75–88

alternative classes with different inter-
faces, 85–86

comments, 87–88
data class, 86–87
data clumps, 81
divergent change, 79
duplicated code, 76
feature envy, 80–81
inappropriate intimacy, 85
incomplete library class, 86
large class, 78
lazy class, 83
long method, 76–77
long parameter list, 78–79
message chains, 84
middle man, 85
parallel inheritance hierarchies, 83
primitive obsession, 81–82
refused bequest, 87
shotgun surgery, 80
speculative generality, 83–84
switch statements, 82
temporary field, 84

boldface, 105
duplicated, 76
refactoring and cleaning up, 54
refactorings reduce amount of, 32
renaming, 15
replacing conditional logic on price,

34–51
self-testing, 89–91

Code review, refactor when doing,
59

INDEX 421

Code with exception, replace error,
310–14

Collection, encapsulate, 208–16
Comments, 87–88
Composing methods, 109–40
Conditional

decompose, 238–39
example, 239
mechanics, 238–39
motivation, 238

nested, 250–54
replace with polymorphism,

255–59
example, 257–59
mechanics, 256–57
motivation, 255–56

Conditional expressions, 237–70
consolidate, 240–42

examples, Ands, 242
examples, Ors, 241
mechanics, 241
motivation, 240

simplifying, 237–70
consolidate conditional expressions,

240–42
consolidate duplicate conditional

fragments, 243–44
decompose conditional, 238–39
introduce assertion, 267–70
introduce null object, 260–66
remove control flag, 245–49
replace conditional with polymor-

phism, 255–59
replace nested conditional with guard

clauses, 250–54
Conditional fragments, consolidate dupli-

cate, 243–44
example, 244
mechanics, 243–44
motivation, 243

Conditions
boundary, 99
reversing, 253–54

Constant, replace magic number with
symbolic, 204–5

mechanics, 205
motivation, 204–5

Constructor body, pull up, 325–27
example, 326–27
mechanics, 326
motivation, 325

Constructor, replace with factory method,
304–7

example, 305
example, creating subclasses with

explicit methods, 307
example, creating subclasses with string,

305–7
mechanics, 304–5
motivation, 304

Control flag, remove, 245–49
examples, control flag replaced with

break, 246–47
examples, using return with control flag

result, 248–49
mechanics, 245–46
motivation, 245

Creating nothing, 68–69
Customer class, 4–5, 18–19, 23, 26–29,

263, 347
Customer implements Nullable class, 263
Customer.statement, 20

D
Data

clumps, 81
duplicate observed, 189–96

example, 191–96
mechanics, 190
motivation, 189–90

organizing, 169–235
change bidirectional association to

unidirectional, 200–203
change reference to value, 183–85
change unidirectional association to

bidirectional, 197–99
change value to reference, 179–82
duplicate observed data, 189–96
encapsulate collection, 208–16
encapsulate field, 206–7
replace array with object, 186–88
replace data value with object, 175–78
replace magic number with symbolic

constant, 204–5

422 INDEX

Data (continued)
organizing (continued)

replace record with data class, 217
replace subclass with fields, 232–35
replace type code with class,

218–22
replace type code with state/strategy,

227–31
replace type code with subclasses,

223–26
self encapsulate field, 171–74
using event listeners, 196

Data class, 86–87
Data class, replace record with, 217

mechanics, 217
motivation, 217

Data value, replace with object, 175–78
example, 176–78
mechanics, 175–76
motivation, 175

Databases
problems with, 63–64
programs, 403–4

DateRange class, 297
Delegate, hide, 157–59

example, 158–59
mechanics, 158
motivation, 157–58

Delegation
replace inheritance with, 352–54

example, 353–54
mechanics, 353
motivation, 352

replace with inheritance, 355–57
example, 356–57
mechanics, 356
motivation, 355

Department class, 340
Department.getTotalAnnualCost, 339
Design

changes difficult to refactor, 65–66
procedural, 368–69
and refactoring, 66–69
up front, 67

Developers reluctant to refactor own pro-
grams, 381–93

how and where to refactor, 382–87
refactoring C++ programs, 384–87

Diagrams, Unified Modeling Language
(UML), 24–25

Divergent change, 79
Domain, separate from presentation,

370–74
example, 371–74
mechanics, 371
motivation, 370

double, 12
double getPrice, 122–23
Downcast, encapsulate, 308–9
Duplicated code, 76

E
each, 9
Employee class, 257, 332, 337–38
Employee.getAnnualCost, 339
EmployeeType class, 258–59
Encapsulate, collection, 208–16

examples, 209–10
examples, encapsulating arrays,

215–16
examples, Java 1.1, 214–15
examples, Java 2, 210–12
mechanics, 208–9
motivation, 208
moving behavior into class, 213–14

Encapsulate, downcast, 308–9
example, 309
mechanics, 309
motivation, 308

Encapsulate, field, 206–7
mechanics, 207
motivation, 206

Encapsulate field, self, 171–74
Encapsulating arrays, 215–16
EndField_FocusLost, 192, 194
Engineer class, 259
Entry class, 296
Error code, replace with exception,

310–14
example, 311–12
example, checked exceptions, 313–14
example, unchecked exceptions,

312–13
mechanics, 311
motivation, 310

Event listeners, using, 196

INDEX 423

Exception, replace error code with, 310–14
example, 311–12, 316–18

checked exceptions, 313–14
unchecked exceptions, 312–13

mechanics, 311, 315–16
motivation, 310, 315

Exception, replace with test, 315–18
Exceptions

checked, 313–14
and tests, 100
unchecked, 312–13

Explicit methods, creating subclasses with,
307

Explicit methods, replace parameter with,
285–87

Expressions, conditional, 237–70
Extension, introduce local, 164–68

examples, 165–68
mechanics, 165
motivation, 164–65
using subclass, 166
using wrappers, 166–68

Extract
class, 149–53

example, 150–53
mechanics, 149–50
motivation, 149

interface, 341–43
example, 342–43
mechanics, 342
motivation, 341–42

method, 13, 22, 110–16, 126–27
subclass, 330–35

example, 332–35
mechanics, 331
motivation, 330

superclass, 336–40
example, 337–40
mechanics, 337
motivation, 336

Extreme programming, 71

F
Factory method, replace constructor with,

304–7
example, 305
example, creating subclasses with

explicit methods, 307

example, creating subclasses with string,
305–7

mechanics, 304–5
motivation, 304

Feature envy, 80–81
Features, moving between objects,

141–68
Field; See also Fields

encapsulate, 206–7
mechanics, 207
motivation, 206

move, 146–48
example, 147–48
mechanics, 146–47
motivation, 146
using self-encapsulation, 148

pull up, 320–21
mechanics, 320–21
motivation, 320

push down, 329
mechanics, 329
motivation, 329

replacing price code field with price,
43

self encapsulate, 171–74
temporary, 84

Fields
replace subclass with, 232–35

example, 233–35
mechanics, 232–33
motivation, 232

FileReaderTester class, 92–94
Flag, remove control, 245–49
Foreign method, introduce, 162–63

example, 163
mechanics, 163
motivation, 162–63

Form template method, 345–51
example, 346–51
mechanics, 346
motivation, 346

Frequent renter points
calculation, 36
extracting, 22–25

frequentRenterPoints, 23, 26–27,
Function and refactoring, adding, 54
Function, refactor when adding, 58
Functional tests, 96–97

424 INDEX

G
Gang of Four patterns, 39
Generality, speculative, 83–84
Generalization, 319–57
Generalization, dealing with, 319–57

collapse hierarchy, 344
extract interface, 341–43
extract subclass, 330–35
extract superclass, 336–40
form template method, 345–51
pull up constructor body, 325–27
pull up field, 320–21
pull up method, 322–24
push down field, 329
push down method, 328
replace delegation with inheritance,

355–57
replace inheritance with delegation,

352–54
getCharge, 34–36, 44–46
getFlowBetween, 297–99
getFrequentRenterPoints, 37, 48–49
getPriceCode, 42–43
Guard clauses, replace nested conditional

with, 250–54
example, 251–53
example, reversing conditions, 253–54
mechanics, 251
motivation, 250–51

GUI class, 78, 170
GUIs (graphical user interfaces), 189, 194,

370

H
Hide delegate, 157–59

example, 158–59
mechanics, 158
motivation, 157–58

Hierarchies, parallel inheritance, 83
Hierarchy

collapse, 344
mechanics, 344
motivation, 344

extract, 375–78
example, 377–78
mechanics, 376–77
motivation, 375–76

HTML, 6–7, 9, 26
htmlStatement, 32–33
HtmlStatement class, 348–50

I
Inappropriate intimacy, 85
Indirection and refactoring, 61–62
Inheritance, 38

replace delegation with, 355–57
example, 356–57
mechanics, 356
motivation, 355

replace with delegation, 352–54
example, 353–54
mechanics, 353
motivation, 352

tease apart, 362–67
examples, 364–67
mechanics, 363
motivation, 362–63

using on movie, 38
Inheritance hierarchies, parallel, 83
Inline

class, 154–56
example, 155–56
mechanics, 154
motivation, 154

method, 117–18
temp, 119

Interface, extract, 341–43
example, 342–43
mechanics, 342
motivation, 341–42

Interfaces
alternative classes with different, 85–86
changing, 64–65
published, 64
publishing, 65

IntervalWindow class, 191, 195
Intimacy, inappropriate, 85

J
Java

1.1, 214–15
2, 210–12
pass by value in, 133–34

JobItem class, 332–35

INDEX 425

JUnit testing framework, 91–97
unit and functional tests, 96–97

L
LaborItem class, 333–34
Language features complicating refactor-

ing, 386–87
Large class, 78
Lazy class, 83
LengthField_FocusLost, 192
Library class, incomplete, 86
List, long parameter, 78–79
Listeners, using event, 196
Local extension, introduce, 164–68

examples, 165–68
mechanics, 165
motivation, 164–65
using subclass, 166
using wrappers, 166–68

Local variables, 13
no, 112
reassigning, 114–16
using, 113–14

Localized tests, 94
Long method, 76–77
Long parameter list, 78–79

M
Magic number, replace with symbolic con-

stant, 204–5
mechanics, 205
motivation, 204–5

Managers, telling about refactoring to,
60–62

MasterTester class, 101
Message chains, 84
Method and objects, 17
Method calls, making simpler, 271–318

add parameter, 275–76
encapsulate downcast, 308–9
hide method, 303
introduce parameter object, 295–99
parameterize method, 283–84
preserve whole object, 288–91
remove parameter, 277–78
remove setting method, 300–302
rename method, 273–74

replace constructor with factory
method, 304–7

replace error code with exception,
310–14

replace exception with test, 315–18
replace parameter with explicit meth-

ods, 285–87
replace parameter with method,

292–94
separate query from modifier, 279–82

Method object, replace method with,
135–38

example, 136–38
mechanics, 136
motivation, 135–36

Method; See also Methods
creating overriding, 47
example with Extract, 126–27
extract, 110–16

mechanics, 111
motivation, 110–11
no local variables, 112
reassigning local variables,

114–16
using local variables, 113–14

finding every reference to old, 18
form template, 345–51

example, 346–51
mechanics, 346
motivation, 346

hide, 303
mechanics, 303
motivation, 303

inline, 117–18
long, 76–77
move, 142–45

example, 144–45
mechanics, 143–44
motivation, 142

parameterize, 283–84
example, 284
mechanics, 283
motivation, 283

pull up, 322–24
example, 323–24
mechanics, 323
motivation, 322–23

426 INDEX

Method (continued)
push down, 328

mechanics, 328
motivation, 328

remove setting, 300–302
example, 301–2
mechanics, 300
motivation, 300

rename, 273–74
example, 274
mechanics, 273–74
motivation, 273

replace constructor with factory, 304–7
example, 305
example, creating subclasses with

explicit methods, 307
example, creating subclasses with

string, 305–7
mechanics, 304–5
motivation, 304

replace parameter with, 292–94
Methods

composing, 109–40
extract method, 110–16
inline method, 117–18
inline temp, 119
introduce explaining variables, 124–27
removing assignments to parameters,

131–34
replace method with method object,

135–38
replace temp with query, 120–23
split temporary variables, 128–30
substitute algorithm, 139–40

creating subclasses with explicit, 307
replace parameter with explicit, 285–87

Middle man, 85
Middle man, remove, 160–61

example, 161
mechanics, 160
motivation, 160

Model, 370
Modifier, separate query from, 279–82
Move, field, 146–48
Move, method, 142–45

example, 144–45
mechanics, 143–44
motivation, 142

Movie
class, 2–3, 35, 37, 40–41, 43–45, 49
subclasses of, 38
using inheritance on, 38

MVC (model-view-controller), 189, 370

N
Nested conditional, replace with guard

clauses, 250–54
example, 251–53
example, reversing conditions,

253–54
mechanics, 251
motivation, 250–51

NewReleasePrice class, 47, 49
Nothing, creating, 68–69
Null object, introduce, 260–66

example, 262–66
example, testing interface, 266
mechanics, 261–62
miscellaneous special cases, 266
motivation, 260–61

NullCustomer class, 263, 265
Numbers, magic, 204–5

O
Object; See also Objects

introduce null, 260–66
introduce parameter, 295–99
preserve whole, 288–91

example, 290–91
mechanics, 289
motivation, 288–89

replace array with, 186–88
example, 187–88
mechanics, 186–87
motivation, 186

replace data value with, 175–78
replace method with method, 135–38

example, 176–78
mechanics, 175–76
motivation, 175

Objects
convert procedural design to, 368–69

example, 369
mechanics, 369
motivation, 368–69

and method, 17

INDEX 427

moving features between, 141–68
extract class, 149–53
hide delegate, 157–59
inline class, 154–56
introduce foreign method, 162–63
introduce local extension, 164–68
move field, 146–48
move method, 142–45
remove middle man, 160–61

Obsession, primitive, 81–82

P
Parallel inheritance hierarchies, 83
Parameter list, long, 78–79
Parameter object, introduce,

295–99
example, 296–99
mechanics, 295–96
motivation, 295

Parameterize method, 283–84
Parameters

add, 275–76
mechanics, 276
motivation, 275

remove, 277–78
mechanics, 278
motivation, 277

removing assignments to, 131–34
example, 132–33
mechanics, 132
motivation, 131
pass by value in Java, 133–34

replace with explicit methods,
285–87

example, 286–87
mechanics, 286
motivation, 285–86

replace with method, 292–94
example, 293–94
mechanics, 293
motivation, 292–93

Parent case statement, 47
Parse trees, 404
Party class, 339
Pass by value in Java, 133–34
Payroll system, optimizing, 72–73
Performance and refactoring,

69–70

Polymorphism
replace conditional with, 46, 255–59

example, 257–59
mechanics, 256–57
motivation, 255–56

replacing conditional logic on price code
with, 34–51

Presentation
defined, 370
separate domain from, 370–74

example, 371–74
mechanics, 371
motivation, 370

Price class, 45–46, 49
Price code

change movie’s accessors for, 42
replacing conditional logic on, 34–51

Price code object, subclassing from, 39
Price field, replacing price code field with,

43
Price, moving method over to, 49
Price.getCharge method, 47
Primitive obsession, 81–82
Procedural design, convert to objects,

368–69
example, 369
mechanics, 369
motivation, 368–69

Programming
extreme, 71
faster, 57
styles complicating refactoring, 386–87

Programs
comments on starting, 6–7
database, 403–4
developers reluctant to refactor own,

381–93
refactoring C++, 384–87

Published interface, 64
Pull up

constructor body, 325–27
field, 320–21

mechanics, 320–21
motivation, 320

method, 322–24
example, 323–24
mechanics, 323
motivation, 322–23

428 INDEX

Push down
field, 329

mechanics, 329
motivation, 329

method, 328
mechanics, 328
motivation, 328

Q
Query

Replace Temp with, 21
replace temp with, 120–23
separate from modifier, 279–82

concurrency issues, 282
example, 280–82
mechanics, 280
motivation, 279

R
Reality check, 380–81, 394
Record, replace with data class, 217

mechanics, 217
motivation, 217

Refactor; See also Refactoring;
Refactorings

design changes difficult to, 65–66
how and where to, 382–87
when adding function, 58
when doing code review, 59
when fixing bugs, 58–59
when not to, 66
when to, 57–60

refactor when adding function, 58
refactor when doing code review,

59
refactor when fixing bugs, 58–59
rule of three, 58

Refactoring and function, adding, 54
Refactoring Browser, 401–2
Refactoring; See also Refactor; Refactor-

ings, 1–52
to achieve near-term benefits, 387–89
and adding function, 54
C++ programs, 384–87
and cleaning up code, 54
code before and after, 9–11
comments on starting program, 6–7

decomposing and redistributing state-
ment method, 8–33

defined, 53–55
and design, 66–69

creating nothing, 68–69
does not change observable behavior of

software, 54
first example, 1–52

final thoughts, 51–52
first step in, 7–8
helps find bugs, 57
helps program faster, 57
improves design of software, 55–56
and indirection, 61–62
language features complicating, 386–87
learning, 409–12

backtrack, 410–11
duets, 411
get used to picking goals, 410
stop when unsure, 410

makes software easier to understand,
56–57

noun form, 53
origin of, 71–73

optimizing payroll system, 72–73
and performance, 69–70
principles in, 53–73
problems with, 62–66

changing interfaces, 64–65
databases, problems with, 63–64
design changes difficult to refactor,

65–66
when not to refactor, 66

programming styles complicating, 386–87
putting it all together, 409–12
reason for using, 55–57
reducing overhead of, 389–90
resources and references for, 394–95
reuse, and reality, 379–99

developers reluctant to refactor own
programs, 381–93

implications regarding software reuse,
395–96

reality check, 380–81, 394
resources and references for refactor-

ing, 394–95
technology transfer, 395–96

INDEX 429

safely, 390–93
starting point, 1–7
with tools, 401–3
verb form, 54
why it works, 60

Refactoring tools, 401–7
practical criteria for, 405–6

integrated with tools, 406
speed, 405–6
undo, 406

technical criteria for, 403–5
tools, technical criteria for

accuracy, 404–5
parse trees, 404
program database, 403–4

wrap up, 407
Refactorings; See also Refactor; Refactor-

ing
big, 359–78

convert procedural design to objects,
368–69

extract hierarchy, 375–78
four, 361
importance of, 360
nature of game, 359–60
separate domain from presentation,

370–74
tease apart inheritance, 362–67

catalog of, 103–7
finding references, 105–6
maturity of refactorings, 106–7

format of, 103–5
maturity of, 106–7
reduce amount of code, 32

Reference
change to value, 183–85

example, 184–85
mechanics, 184
motivation, 183

change value to, 179–82
example, 180–82
mechanics, 179–80
motivation, 179

References, finding, 105–6
RegularPrice class, 47
Removing temps, 26–33
Rename method, 273–74

Renaming code, 15
Rental class, 3, 23, 34–37, 48
Rental.getCharge, 20
Renter points, extracting frequent, 22–25
Replacing totalAmount, 27
Rule of three, 58

S
Salesman class, 259
Scoped variables, locally, 23
Self encapsulate field, 171–74

example, 172–74
mechanics, 172
motivation, 171–72

Self-encapsulation, using, 148
Self-testing code, 89–91
Setting method, remove, 300–302

example, 301–2
mechanics, 300
motivation, 300

Shotgun surgery, 80
Site class, 262, 264
Software

and refactoring, 56–57
refactoring, does not change, 54
refactoring improves design of, 55–56
reuse, 395–96

Speculative generality, 83–84
StartField_FocusLost, 192
State/strategy, replace type code with,

227–31
example, 228–31
mechanics, 227–28
motivation, 227

Statement
case, 47
class, 351

Statement method, decomposing and
redistributing, 8–33

Statements
parent case, 47
switch, 82

Subclass; See also Subclasses
extract, 330–35

example, 332–35
mechanics, 331
motivation, 330

430 INDEX

Subclass (continued)
replace with fields, 232–35

example, 233–35
mechanics, 232–33
motivation, 232

using, 166
Subclasses

creating with explicit methods, 307
replace type code with, 223–26

example, 224–26
mechanics, 224
motivation, 223–24

Superclass, extract, 336–40
example, 337–40
mechanics, 337
motivation, 336

Surgery, shotgun, 80
Switch statements, 82
Symbolic constant, replace magic number

with, 204–5

T
Technology transfer, 395–96
Temp

inline, 119
replace with query, 120–23

example, 122–23
mechanics, 121
motivation, 120–21

Template method, form, 345–51
example, 346–51
mechanics, 346
motivation, 346

Temporary field, 84
Temporary variables, 21, 128–30
Temps, See also Temporary variables

removing, 26–33
Test

replace exception with, 315–18
example, 316–18
mechanics, 315–16
motivation, 315

suite, 98
TestEmptyRead, 99
testRead, 95

testReadAtEnd, 98
testReadBoundaries()throwsIOException,

99–100
Tests

adding more, 97–102
and boundary conditions, 99
bugs and fear of writing, 101
building, 89–102

adding more tests, 97–102
JUnit testing framework, 91–97
self-testing code, 89–91

and exceptions, 100
frequently run, 94
fully automatic, 90
localized, 94
unit and functional, 96–97
writing and running incomplete, 98

TextStatement class, 348–50
thisAmount, 9, 21
Tools, refactoring, 401–7
totalAmount, 26

replacing, 27
Trees, parse, 404
Type code

replace with class, 218–22
example, 220–22
mechanics, 219
motivation, 218–19

replace with state/strategy, 227–31
example, 228–31
mechanics, 227–28
motivation, 227

replace with subclasses, 223–26
example, 224–26
mechanics, 224
motivation, 223–24

U
UML (Unified Modeling Language), 104

diagrams, 24–25
Unidirectional association, change to bidi-

rectional, 197–99
example, 198–99
mechanics, 197–98
motivation, 197

INDEX 431

Unit and functional tests, 96–97
Up front design, 67

V
Value, change reference to, 183–85

example, 184–85
mechanics, 184
motivation, 183

Value, change to reference, 179–82
example, 180–82
mechanics, 179–80
motivation, 179

Variables
introduce explaining, 124–27

example, 125–26
example with Extract Method,

126–27
mechanics, 125
motivation, 124

local, 13
locally scoped, 23
no local, 112
reassigning local, 114–16
split temporary, 128–30

example, 129–30
mechanics, 128–29
motivation, 128

temporary, 21
using local, 113–14

View, 370

W
Wrappers, using, 166–68

	Contents
	Foreword
	Preface
	What Is Refactoring?
	What’s in This Book?
	Who Should Read This Book?
	Building on the Foundations Laid by Others
	Acknowledgments

	Chapter 3: Bad Smells in Code (by Kent Beck and Martin Fowler)
	Duplicated Code
	Long Method
	Large Class
	Long Parameter List
	Divergent Change
	Shotgun Surgery
	Feature Envy
	Data Clumps
	Primitive Obsession
	Switch Statements
	Parallel Inheritance Hierarchies
	Lazy Class
	Speculative Generality
	Temporary Field
	Message Chains
	Middle Man
	Inappropriate Intimacy
	Alternative Classes with Different Interfaces
	Incomplete Library Class
	Data Class
	Refused Bequest
	Comments

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

