A
vy

The IXTEX Companion

Second Edition

Frank Mittelbach and Michel Goossens

with Johannes Braams, David Carlisle, and Chris Rowley

FREE SAMPLE CHAPTER
¥ 9 B 0 =

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780201362992
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780201362992
https://plusone.google.com/share?url=http://www.informit.com/title/9780201362992
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780201362992
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780201362992/Free-Sample-Chapter

The IAIEX Companion

Second Edition

Addison-Wesley Series on
Tools and Techniques for Computer Typesetting

This series focuses on tools and techniques needed for computer typesetting and informa-
tion processing with traditional and new media. Books in the series address the practical
needs of both users and system developers. Initial titles comprise handy references for
XX users; forthcoming works will expand that core. Ultimately, the series will cover other
typesetting and information processing systems, as well, especially insofar as those sys-
tems offer unique value to the scientific and technical community. The series goal is to
enhance your ability to produce, maintain, manipulate, or reuse articles, papers, reports,
proposals, books, and other documents with professional quality.

Ideas for this series should be directed to the editor: mittelbach®@aw.com.
Send all other comments to the publisher: awprofessional®@aw. com.

Series Editor

Frank Mittelbach
Manager IATEX3 Project, Germany

Editorial Board

Jacques André
Irisa/Inria-Rennes, France

Barbara Beeton
Editor, TUGboat, USA

David Brailsford
University of Nottingham,
UK

Series Titles

Tim Bray

Textuality Services, Canada
Peter Flynn

University College, Cork,
Ireland

Leslie Lamport

Creator of IATEX, USA

Chris Rowley

Open University, UK
Richard Rubinstein
Human Factors
International, USA

Paul Stiff

University of Reading, UK

Guide to IATEX, Fourth Edition, by Helmut Kopka and Patrick W. Daly
The IATEX Companion, Second Edition, by Frank Mittelbach and Michel Goossens

with Johannes Braams, David Carlisle, and Chris Rowley
The IATEX Graphics Companion, by Michel Goossens, Sebastian Rahtz, and Frank Mittelbach
The IATEX Web Companion, by Michel Goossens and Sebastian Rahtz

Also from Addison-Wesley:
IATEX: A Document Preparation System, Second Edition, by Leslie Lamport
The Unicode Standard, Version 4.0, by the Unicode Consortium

The IAIEX Companion

Second Edition

Frank Mittelbach

ITEX3 Project, Mainz, Germany

Michel Goossens
CERN, Geneva, Switzerland

with Johannes Braams, David Carlisle,
and Chris Rowley

and contributions by
Christine Detig and Joachim Schrod

vvAddison-Wesley

Boston e San Francisco e New York e Toronto e Montreal
London e Munich e Paris e Madrid
Capetown e Sydney e Tokyo e Singapore e Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit Addison-Wesley on the Web: www.awprofessional.com
Library of Congress Cataloging-in-Publication Data

Mittelbach, Frank.

The LaTeX Companion.- 2nd ed. / Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle, and Chris Rowley.

p. cm.

Goossens’ name appears first on the earlier edition.

Includes bibliographical references and index.

ISBN 0-201-36299-6 (pbk. : alk. paper)

1. LaTeX (Computer file) 2. Computerized typesetting. I. Goossens,
Michel. II. Rowley, Chris, 1948- III. Title.

7253.4.1.38G66 2004

686.272544536-dc22 2003070810

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.

The foregoing notwithstanding, the examples contained in this book, and included on the
accompanying CD-ROM, are made available under the XX Project Public License (for
information on the LPPL, see www.latex-project.org/lppl).

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

ISBN 0-201-36299-6
Text printed in the United States on recycled paper at Courier in Westford Massachusetts.

Fourth printing (with corrections), September 2005

www.awprofessional.com
www.latex-project.org/lppl

We dedicate this book to the memory of Michael Downes (1958-2003),
a great friend and wonderful colleague on the IXIEX Team.

His thoughtful contributions to our work and our lives are diverse
and profound. Moreover, he brightens the lives of countless grateful
(IA)TEX users through the wisdom built into his support for all
aspects of mathematical typesetting—very many masterpieces of the
publishing art will stand for ever as superb memorials to his quiet
but deep insights.

This page intentionally left blank

Contents

List of Figures Xix
List of Tables xxi
Preface XXV
Introduction 1
1.1 Abriefhistory. e 1
1.2 Today’s Systemot e e e e 6
1.3 Working with thishbook 10
1.3.1 What'shere 10
1.3.2 Typographic conventions. 11
1.3.3 Usingtheexamples 14
The Structure of a IATEX Document 15
2.1 The structure of asourcefile 15
2.1.1 Processing of options and packages 17
2.1.2 Splitting the source fileintoparts 18
2.1.3 Combining several files 20
2.1.4 optional—Providing variants in the document source ... 21
2.2 Sectioning commandso 22
2.2.1 Numbering headings 24
2.2.2 Formatting headings 27
2.2.3 Changing fixed heading texts 34
2.2.4 fncychap—Predefined chapter heading layouts 34
2.2.5 quotchap—Mottos on chapters 35

2.2.6 titlesec—A different approach to headings 36

viii

Contents

2.3 Table of contents structures 45
2.3.1 Entering information into the contents files 46

2.3.2 Typesettingacontentslist 49

2.3.3 Combining contents lists 52

2.3.4 Providing additional contents files 54

2.3.5 shorttoc—Summary table of contents 55

2.3.6 minitoc—Multiple tables of contents 56

2.3.7 titletoc—A different approach to contents lists 58

2.4 Managing references 66
2.4.1 showkeys—Displaying the reference keys 68

2.4.2 varioref—More flexible cross-references. 68

2.4.3 prettyref—Adding frills to references 75

2.4.4 titleref—Non-numerical references 76

2.4.5 hyperref—Active references 78

2.4.6 xr—References to external documents 78

3 Basic Formatting Tools 79
3.1 Phrases and paragraphs. 80
3.1.1 xspace—Gentle spacing afteramacro 80

3.1.2 ellipsis, lips—Marks of omission 81

3.1.3 amsmath—Nonbreaking dashes 83

3.1.4 relsize—Relative changes to the font size 83

3.1.5 textcase—Change case of text intelligently 85

3.1.6 ulem—Emphasize viaunderline. 87

3.1.7 soul—Letterspacing or stealing sheep 88

3.1.8 url—Typesetting URLS, path names, and the like 93

3.1.9 euro—Converting and typesetting currencies 96

3.1.10 lettrine—Dropping your capital 99

3.1.11 Paragraph justification in BEIgX 102

3.1.12 ragged2e—Enhancing justification 105

3.1.13 setspace—Changing interline spacing 106

3.1.14 picinpar—Making rectangular holes 108

3.2 Footnotes, endnotes, and marginals 109
3.2.1 Using standard footnotes 110

3.2.2 Customizing standard footnotes 112

3.2.3 ftnright—Right footnotes in a two-column environment . . 114

3.2.4 footmisc—Various footnotes styles 114

3.2.5 perpage—Resetting counters on a “per-page” basis 120

3.2.6 manyfoot—Independent footnotes 122

3.2.7 endnotes—An alternative to footnotes 125

3.2.8 Marginalnotes 126

3.3 LISTSIrUCtUreS o o ot e e e e e e e e e e e e e 128
3.3.1 Modifying the standard lists 128

3.3.2 paralist—Extended list environments 132

Contents

3.3.3 amsthm—Providing headed lists 138

3.34 Makingyourownlists. 144

3.4 Simulating typed text 151
3.4.1 Simple verbatim extensions 152

3.4.2 upquote—Computer program style quoting 153

3.4.3 fancyvrb—Highly customizable verbatim environments . . 155

3.4.4 listings—Pretty-printing program code 168

3.5 Linesand columns, 175
3.5.1 lineno—Numbering lines of text 176

3.5.2 parallel—Two text streams aligned 181

3.5.3 multicol—A flexible way to handle multiple columns ... 184

3.5.4 changebar—Adding revision bars to documents 189

4 The Layout of the Page 193
4.1 Geometrical dimensions of the layout 193
4.2 Changing the layout 197
4.2.1 layouts—Displaying your layout 199

4.2.2 A collection of page layout packages 202

4.2.3 typearea—A traditional approach 203

4.2.4 geometry—Layout specification with auto-completion . . . 206

4.2.5 Iscape—Typesetting individual pages in landscape mode . 211

4.2.6 crop—Producing trimming marks 212

4.3 Dynamic page data: page numbers and marks 215
4.3.1 KX pagenumbers 215

4.3.2 lastpage—A way to referenceit 216

4.3.3 chappg—Page numbers by chapters 216

434 KXmarkcommands 217

4.3.5 extramarks—Providing newmarks 220

4.4 Page styles e 221
4.4.1 The low-level page style interface 223

4.4.2 fancyhdr—Customizing page styles 224

4.4.3 truncate—Truncate text to a givenlength. 232

4.5 Visual formatting 234
4.5.1 nextpage—Extensions to \clearpage 235

4.6 Doing layout withclass, 236
4.6.1 KOMA-Script—A drop-in replacement for article et al.. . . 236

4.6.2 memoir—Producing complex publications 237

5 Tabular Material 239
5.1 Standard KIEX environmentso 240
5.1.1 Using the tabbing environment 241

5.1.2 Using the tabular environment 242

5.2 array—Extending the tabular environments. 243

5.2.1 Examples of preamble commands 244

Contents

6

5.2.2 Defining new column specifiers 248
5.3 Calculating columnwidths 249
5.3.1 Explicit calculation of column widths 250
5.3.2 tabularx—Automatic calculation of column widths 251
5.3.3 tabulary—Column widths based on content 253
5.3.4 Differences between tabular*, tabularx, and tabulary 255
5.4 Multipage tabular material 255
5.4.1 supertabular—Making multipage tabulars 256
5.4.2 longtable—Alternative multipage tabulars 259
5.5 Colorintables. e 264
5.6 Customizing table rules and spacing 265
5.6.1 Colored tablerules. 265
5.6.2 Variable-widthrules 266
5.6.3 hhline—Combining horizontal and vertical lines 266
5.6.4 arydshln—Dashedrules. 267
5.6.5 tabls—Controlling row spacing 269
5.6.6 booktabs—Formal ruled tables 269
5.7 Further extensions 272
5.7.1 multirow—Vertical alignment in tables 273
5.7.2 dcolumn—Decimal column alignments 274
5.8 Footnotes in tabular material 277
5.8.1 Using minipage footnotes with tables. 277
5.8.2 threeparttable—Setting table and notes together 278
5.9 Applications 279
5.9.1 Managing tables with wide entries 279
5.9.2 Tablesinsidetables 280
Mastering Floats 283
6.1 Understanding float parameters. 284
6.2 Float placementcontrol 286
6.2.1 placeins—Preventing floats from crossing a barrier 288
6.2.2 afterpage—Taking control at the page boundary 289
6.2.3 endfloat—Placing figures and tables at theend 289
6.3 Extensions to KIEX’s float concept 291
6.3.1 float—Creating new float types 291
6.3.2 caption—For nonfloating figures and tables 295
6.3.3 rotating—Rotating floats 296
6.3.4 rotfloat—Combining float and rotating 298
6.4 Inline floats e 298
6.4.1 wrapfig—Wrapping text around a figure 299
6.4.2 picins—Placing pictures inside the text 302
6.5 Controlling the float caption 306
6.5.1 caption—Customizing your captions 308

6.5.2 subfig—Substructuring floats 315

Contents

xi

6.5.3 subfloat—Sub-numbering floats. 321

6.5.4 sidecap—Place captions sideways 323

6.5.5 fltpage—Captions on a separate page 325

7 Fonts and Encodings 327
7.1 Introduction e 327
7.1.1 The history of IXgX’s font selection scheme (NFSS) 327

7.1.2 Input and output encodings 329

7.2 Understanding font characteristics 331
7.2.1 Monospaced and proportional fonts 331

7.2.2 Serifed and sans seriffonts 332

7.2.3 Font families and their attributes. 333

724 Fontencodings 336

7.3 Using fontsintextt 337
7.3.1 Standard KX font commands L 338

7.3.2 Combining standard font commands 343

7.3.3 Font commands versus declarations 344

7.3.4 Accessing all charactersofafont. 345

7.3.5 Changing the default textfonts 346

7.3.6 KX 2.09 font commands 347

74 Usingfontsinmath 347
7.4.1 Special math alphabet identifiers 348

7.4.2 Textfont commandsinmath 351

7.4.3 Mathematical formula versions 352

7.5 Standard KIEX font support 353
7.5.1 Computer Modern—The KX standard fonts 353

7.5.2 inputenc—Selecting the input encoding 357

7.5.3 fontenc—Selecting font encodings 361

7.54 textcomp—Providing additional text symbols 362

7.5.5 exscale—Scaling large operators 368

7.5.6 tracefnt—Tracing the font selection 368

7.5.7 nfssfont.tex—Displaying font tables and samples 369

7.6 PSNFSS—PostScript fonts with BKIEX 370
7.6.1 Font samples for fonts supported by PSNFSS 373

7.6.2 mathptmx—Times Roman in math and text 376

7.6.3 mathpazo—Palatino in mathand text 377

7.6.4 pifont—Accessing Pi and Symbol fonts 378

7.7 A collection of font packages 381
7.7.1 eco—O0ld-style numerals with Computer Modern 381

7.7.2 ccfonts, concmath—The Concrete fonts 383

7.7.3 cmbright—The Computer Modern Bright fonts 385

7.7.4 luximono—A general-purpose typewriter font. 386

7.7.5 txfonts—Alternative support for Times Roman 388

7.7.6 pxfonts—Alternative support for Palatino 390

Contents

8

7.7.7 The Fourier-GUTenberg fonts 391
7.7.8 The URW Antiqua and Grotesk fonts 393
7.7.9 yfonts—Typesetting with Old German fonts 394
7.7.10 euler, eulervm—Accessing the Euler fonts 396
7.8 The KX worldof symbols 399
7.8.1 dingbat—A selectionof hands 400
7.8.2 wasysym—Waldi's symbol font 401
7.8.3 marvosym—Interface to the MarVoSym font 401
7.8.4 bbding—A METAFONT alternative to Zapf Dingbats 403
7.8.5 ifsym—Clocks, clouds, mountains, and other symbols . . . 403
7.8.6 tipa—International Phonetic Alphabet symbols 405
7.8.7 Typesetting the eurosymbol (€) 407
7.9 The low-level interface 412
7.9.1 Setting individual font attributes 413
7.9.2 Setting several font attributes 417
7.9.3 Automatic substitution of fonts 418
7.9.4 Using low-level commands in the document 418
7.10 Settingupnewfonts 419
7.00.1 OVervVIeW . . . oo e e e e e e 419
7.10.2 Naming those thousands of fonts 420
7.10.3 Declaring new font families and font shape groups 421
7.10.4 Modifying font families and font shape groups 429
7.10.5 Declaring new font encoding schemes. 430
7.10.6 Internal file organization 431
7.10.7 Declaring new fonts foruseinmath 432
7.10.8 Example: Defining your own .fd files 437
7.10.9 The order of declaration 439
711 KIEX'sencodingmodels oL 440
7.11.1 Character data within the KX system 440
7.11.2 KIEX’s internal character representation (LICR) 442
7.11.3 Inputencodings, 443
7.11.4 Outputencodings, 447
7.12 Compatibility packages for very old documents 463
7.12.1 oldlfont, rawfonts, newlfont—Processing old documents . 463
7.12.2 latexsym—Providing symbols from KIX 2.09 lasy fonts . 464
Higher Mathematics 465
8.1 Introductionto ApS-EIEX 466
8.2 Display and alignment structures for equations 468
8.2.1 Comparison with standard BIgX 470
8.2.2 Asingle equationononeline 471
8.2.3 A single equation on several lines: no alignment 471
8.2.4 A single equation on several lines: with alignment 473

8.2.5 Equation groups without alignment 474

Contents

xiii

8.3

8.4

8.5

8.6

8.7

8.8

8.2.6 Equation groups with simple alignment. 475
8.2.7 Multiple alignments: align and flalign........... 475
8.2.8 Display environments as mini-pages 477
8.2.9 Interrupting displays: \intertext 479
8.2.10 Vertical space and page breaks in and around displays . . 479
8.2.11 Equation numberingand tags 482
8.2.12 Fine-tuning tag placement 483
8.2.13 Subordinate numbering sequences 484
8.2.14 Resetting the equation counter 485
Matrix-like environments oo 485
8.3.1 The cases environment 486
8.3.2 The matrix environments. 486
8.3.3 Stacking in subscripts and superscripts. 487
8.3.4 Commutative diagrams 488
8.3.5 delarray—Delimiters surrounding an array 489
Compound structures and decorations 490
8.4.1 Decorated artOWS v v v it it e 490
8.4.2 Continued fractions 490
8.4.3 Boxedformulas........................... 491
8.4.4 Limiting positions, 491
8.4.5 Multiple integral signs 492
8.4.6 Modularrelations 492
8.4.7 Fractions and generalizations 493
8.4.8 Dottieraccents 494
8.4.9 amsxtra—Accents as superscripts L. .. 495
8.4.10 Extradecorations 495
Variable symbol commands 495
8.5.1 EllipsiS... 496
8.5.2 Horizontal extensions 497
8.5.3 Vertical extensions. 498
Words in mathematics 499
8.6.1 The\textcommand 499
8.6.2 Operator and functionnames 499
Fine-tuning the mathematical layout 502
8.7.1 Controlling the automatic sizing and spacing 502
8.7.2 Sub-formulas, 503
8.7.3 Big-gdelimiters. 504
8.74 Radicalmovements, 504
8.7.5 Ghostbusters™ 505
8.7.6 Horizontal spaceso iiuuie... 507
Fontsinformulas., 508
8.8.1 Additional math font commands 509
8.8.2 bm—Makingbold 510
8.8.3 A collection of math font set-ups. 513

Contents

8.9 Symbolsinformulas 524
8.9.1 Mathematical symbol classes 524

8.9.2 Letters, numerals, and other Ordinary symbols 526

8.9.3 Mathematical accents 529

8.9.4 Binary operator symbols 529

8.9.5 Relationsymbols 531

8.9.6 Punctuation 535

8.9.7 Operatorsymbols 536

8.9.8 Opening and Closing symbols 537

9 IIEX in a Multilingual Environment 539
9.1 TgX and non-English languages 539
9.1.1 Language-related aspects of typesetting 541

9.1.2 Culture-related aspects of typesetting 542

9.1.3 Babel—I4TjX speaks multiple languages 542

9.2 The babel user interface 543
9.2.1 Setting or getting the current language 544

9.2.2 Handling shorthands 547

9.2.3 Language attributes 549

9.3 User commands provided by language options 550
9.3.1 Translations 550

9.3.2 Available shorthands 550

9.3.3 Language-specific commands 558

9.3.4 Layout considerations. 564

9.3.5 Languages and font encoding 566

9.4 Support for non-Latin alphabets 569
9.4.1 The Cyrillic alphabet 569

9.4.2 The Greek alphabet 574

9.4.3 The Hebrew alphabet 576

9.5 Tailoring babel 579
9.5.1 Hyphenating in several languages 580

9.5.2 Thepackagefile 581

9.5.3 The structure of the babel language definition file 582

9.6 Other approaches 0.... 591
9.6.1 More complex languages 591

9.6.2 0Omega e 592

10 Graphics Generation and Manipulation 593
10.1 Producing portable graphics and ornaments 595
10.1.1 boxedminipage—Boxes with frames 595

10.1.2 shadow—Boxes with shadows 595

10.1.3 fancybox—Ornamental boxes 596

10.1.4 epic—An enhanced picture environment 600

10.1.5 eepic—Extending the epic package 607

10.1.6 Special-purpose languages 611

Contents

10.2

KTEX’s device-dependent graphics support 613
10.2.1 Options for graphics and graphicx 614
10.2.2 The \includegraphics syntax in the graphics package . 616
10.2.3 The \includegraphics syntax in the graphicx package . 618

10.2.4 Setting default key values for the graphicx package 623

10.2.5 Declarations guiding the inclusion of images 624

10.2.6 A caveat: Encapsulation is important 627

10.3 Manipulating graphical objects in KIgX 628
10.3.1 Scalinga KIEXbox oo 628

10.3.2 Resizingtoagivensize 629

10.3.3 Rotatinga KX box 630

10.3.4 rotating—Revisited 633

10.4 Display languages: PostScript, PDF,and SVG 634
10.4.1 The PostScript language 635

10.4.2 The dvips PostScript driver 637

10.4.3 pspicture—An enhanced picture environment for dvips . 638

10.4.4 The Portable Document Format 642

10.4.5 Scalable Vector Graphics 644

11 Index Generation 647
11.1 Syntax of the index entries 648
11.1.1 Simple indexentries 650

11.1.2 Generating subentries 650

11.1.3 Page ranges and cross-references. 651

11.1.4 Controlling the presentationform 651

11.1.5 Printing special characters 652

11.1.6 Creatingaglossary 653

11.1.7 Defining your own index commands 653

11.1.8 Special considerations 654

11.2 makeindex—A program to format and sort indexes 654
11.2.1 Generating the formattedindex. 655

11.2.2 Detailed options of the Makelndex program 655

11.2.3 EITOr mesSsSages v v v v v i e e e e e e 658

11.2.4 Customizing the index with Makelndex 659

11.2.5 Makelndex pitfalls 665

11.3 xindy—An alternative to Makelndex 666
11.3.1 Generating the formatted index with xindy 668

11.3.2 International indexing with xindy 669

11.3.3 Modules for common tasks 671

11.3.4 Style files for individual solutions 673

11.4 Enhancing the index with KX features 679
11.4.1 Modifying the layout 679

11.4.2 showidx, repeatindex, tocbibind, indxcite—Little helpers . 680
11.4.3 index—Producing multiple indexes 681

Contents

12 Managing Citations

12.1

12.2

12.3

12.4

12.5

12.6

Introduction
12.1.1 Bibliographical reference schemes
12.1.2 Markup structure for citations and bibliography . . .
12.1.3 Using BBTEX to produce the bibliography input
The number-only system
12.2.1 Standard IK[pX—Reference by number
12.2.2 cite—Enhanced references by number

12.2.3 notoccite—Solving a problem with unsorted citations . .

The author-datesystem
12.3.1 Earlyattempts
12.3.2 natbib—Customizable author-date references

12.3.3 bibentry—Full bibliographic entries in running text

The author-number system.
12.4.1 natbib—Revisited
The short-titlesystem
12.5.1 jurabib—Customizable short-title references
12.5.2 camel—Dedicated law support
Multiple bibliographies in one document
12.6.1 chapterbib—Bibliographies per included file
12.6.2 bibunits—Bibliographies for arbitrary units
12.6.3 bibtopic—Combining references by topic
12.6.4 multibib—Separate global bibliographies

13 Bibliography Generation

13.1

13.2

13.3
13.4

The BrIEX program and some variants
13.1.1 bibtex8—An 8-bit reimplementation of BBTEX
13.1.2 Recent developments
The BBIEX database format.
13.2.1 Entrytypesandfields
13.2.2 The text part of a field explained
13.2.3 Abbreviations in BBTEX
13.2.4 The BBTgX preamble
13.2.5 Cross-referencing entries.
On-line bibliographies
Bibliography database management tools
13.4.1 biblist—Printing BBTEX database files
13.4.2 bibtools—A collection of command-line tools
13.4.3 bibclean, etc.—A second set of command-line tools
13.4.4 bibtool—A multipurpose command-line tool

13.4.5 pybliographer—An extensible bibliography manager
13.4.6 JBibtexManager—A BBBTEX database manager in Java
13.4.7 BibTexMng—A BETEX database manager for Windows . . .

683
...683
...684
... 686
... 687
... 0691
... 0691
... 693
. 697
... 698
... 699
... 700
710
... 712
... 712
... 715
... 715
... 743
... 745
... 747
... 749
... 753
... 755

757
... 758
... 759
... 759
... 761
... 762
... 764
... 769
... 771
... 772
... 773
... 774
... 774
... 775
e 777
... 778
784
787
789

Contents

13.5

13.6

Formatting the bibliography with BBTEX styles
13.5.1 A collection of BBIEX style files
13.5.2 custom-bib—Generate BEIEX styles with ease
The BiIEX style language
13.6.1 The BBTEX style file commands and built-in functions . .
13.6.2 The documentation style btxbst.doc.
13.6.3 Introducing small changes in a style file

14 IATEX Package Documentation Tools

14.1

14.2

14.3

14.4

doc—Documenting XX and othercode
14.1.1 General conventions for the source file
14.1.2 Describing new macros and environments
14.1.3 Cross-referencing all macrosused
14.1.4 The documentationdriver
14.1.5 Conditional code in the source
docstrip.tex—Producing ready-to-runcode
14.2.1 Invocation of the pocSTRIP utility
14.2.2 DOCSTRIP scriptcommands
14.2.3 Installation support and configuration
14.2.4 Using DOCSTRIP with other languages
ltxdoc—A simple KX documentationclass
14.3.1 Extensions provided by Iltxdoc
14.3.2 Customizing the output of documents that use ltxdoc
Making use of version controltools
14.4.1 rcs—Accessing individual keywords
14.4.2 rcsinfo—Parsing the Id keyword

A A KKIEX Overview for Preamble, Package, and Class Writers

Al

A2

A3

Linking markup and formatting
A.1.1 Command and environment names
A.1.2 Defining new commands
A.1.3 Defining new environments
A.1.4 Defining and changing counters
A.1.5 Defining and changing space parameters
Page markup—Boxesandrules
A2.1 LRboxes
A.2.2 Paragraphboxes
A.2.3 Ruleboxes
A.2.4 Manipulating boxed material
A.2.5 Boxcommandsandcolor.....................
Control structure extensions oo v v vt e
A.3.1 calc—Arithmetic calculations
A.3.2 ifthen—Advanced control structures

790
791
798
805

. 805

806
809

813
813
814
815
817
818
819
824
825
826
830
833
834
834

. 835

836
837
838

xviii

Contents

A.4 Package and class file structure 877
A.4.1 Theidentificationpart 877

A4.2 Theinitialcodepart.......... 880

A.4.3 The declarationof options 880

A.4.4 Theexecutionofoptions 881

A.4.5 The package loadingpart. 882

A4.6 Themaincodepart 883

A.4.7 Special commands for package and class files 883

A.4.8 Special commands for class files 886

A49 Aminimalclassfile 888

B Tracing and Resolving Problems 889
B.1 Error messages e 890
B.1.1 Dying with memory exceeded 915

B.2 Warnings and informational messages. 920
B.3 TgX and KX commands for tracing 931
B.3.1 Displaying command definitions and register values 932

B.3.2 Diagnosing page-breaking problems 935

B.3.3 Diagnosing and solving paragraph-breaking problems. . . 939

B.3.4 Other low-level tracing tools 943

B.3.5 trace—Selectively tracing command execution 945

C IATEX Software and User Group Information 947
C.1 Gettinghelp e 947
C.2 Howtogetthose TEXfiles? 948
C3 Using CTAN e e e e e 950
C.3.1 Finding files on the archive 950

C.3.2 Using the TgX file catalogue 950

C.3.3 Getting multiple files 952

C.4 Finding the documentation on your TgX system 954
C4.1 texdoc—Command-line interface for a search by name . . 954

C.4.2 texdoctk—Panel interface for a search by subject. 955

C.5 TEX USer groups o o i i e e e e 956
D TLC2 TgX CD 959
Bibliography 963
Index of Commands and Concepts 983
People 1080
Biographies 1083

Production Notes 1089

Preface

A full decade has passed since the publication of the first edition of The IATEX
Companion—a decade during which some people prophesied the demise of TgX
and KIEX and predicted that other software would take over the world. There have
been a great many changes indeed, but neither prediction has come to pass: TEX
has not vanished and the interest in IXTiX has not declined, although the approach
to both has gradually changed over time.

When we wrote the Companion in 1993 [55], we intended to describe what
is usefully available in the XX world (though ultimately we ended up describing
what was available at CERN in those days). As an unintentional side effect, the first
edition defined for most readers what should be available in a then-modern KX
distribution. Fortunately, most of the choices we made at that time proved to be
reasonable, and the majority (albeit not all) of the packages described in the first
edition are still in common use today. Thus, even though “the book shows its age,
it still remains a solid reference in most parts”, as one reviewer put it recently.

Nevertheless, much has changed and a lot of new and exciting functionality
has been added to IXIEX during the last decade. As a result, while revising the
book we ended up rewriting 90% of the original content and adding about 600
additional pages describing impressive new developments.

What you are holding now is essentially a new book—a book that we hope
preserves the positive aspects of the first edition even as it greatly enhances them,
while at the same time avoiding the mistakes we made back then, both in content
and presentation (though doubtless we made some others). For this book we used
the CTAN archives as a basis and also went through the comp.text.tex news
group archives to identify the most pressing questions and queries.

XXVi

Preface

Thanks to a great
guy!

Haunted package
authors

In addition to highlighting a good selection of the contributed packages avail-
able on the CTAN archives, the book describes many aspects of the basic KX
system that are not fully covered in the KIEX Manual, Leslie Lamport’s KTEX: A
Document Preparation System [104]. Note, however, that our book is not a replace-
ment for the IATEX Manual but rather a companion to it: a reader of our book is
assumed to have read at least the first part of that book (or a comparable introduc-
tory work, such as the Guide to IATEX [101]) and to have some practical experience
with producing KIEX documents.

The second edition has seen a major change in the authorship; Frank took
over as principal author (so he is to blame for all the faults in this book) and
several members of the IXEX3 project team joined in the book’s preparation, en-
riching it with their knowledge and experience in individual subject areas.

The preparation of the book was overshadowed by the sudden death of our
good friend, colleague, and prospective co-author Michael Downes, whose great
contributions to KIgX, and A4,S-KIEX in particular, are well known to many people.
We dedicate this book to him and his memory.

k% X

We first of all wish to thank Peter Gordon, our editor at Addison-Wesley, who
not only made this book possible, but through his constant encouragement also
kept us on the right track (just a few years late). When we finally went into produc-
tion, Elizabeth Ryan was unfailingly patient with our idiosyncrasies and steered
us safely to completion.

We are especially indebted to Barbara Beeton, David Rhead, Lars Hellstrom,
and Walter Schmidt for their careful reading of individual parts of the manuscript.
Their numerous comments, suggestions, corrections, and hints have substantially
improved the quality of the text.

Our very special thanks go to our contributing authors Christine Detig and
Joachim Schrod for their invaluable help with Chapter 11 on index preparation.

Those who keep their ears to the ground for activities in the KX world may
have noticed an increased number of new releases of several well-established
packages in 2002 and 2003. Some of these releases were triggered by our ques-
tions and comments to the package authors as we were preparing the manuscript
for this second edition. Almost all package authors responded favorably to our
requests for updates, changes, and clarifications, and all spent a considerable
amount of time helping us with our task. We would particularly like to thank
Jens Berger (jurabib), Axel Sommerfeldt (caption), Steven Cochran (subfig), Mel-
chior Franz (soul, euro), and Carsten Heinz (listings) who had to deal with the
bulk of the nearly 6000 e-mail messages that have been exchanged with various
package authors.

Hearty thanks for similar reasons go to Alexander Rozhenko (manyfoot),
Bernd Schandl (paralist), David Kastrup (perpage), Donald Arseneau (cite,
relsize, threeparttable, url), Fabrice Popineau (TgX Live CD), Frank Bennett, Jr.
(camel), Gerd Neugebauer (bibtool), Harald Harders (subfloat), Hideo Umeki

Preface

xxvii

(geometry), Hubert GaRlein (sidecap, pict2e), Javier Bezos (titlesec, titletoc), Jean-
Pierre Drucbert (minitoc), Jeffrey Goldberg (endfloat, lastpage), John Lavagnino
(endnotes), Markus Kohm (typearea), Martin Schréder (ragged2e), Matthias Eck-
ermann (parallel), Michael Covington (upquote), Michel Bovani (fourier), Patrick
Daly (custom-bib, natbib), Peter Heslin (ellipsis), Peter Wilson (layouts), Piet van
Oostrum (extramarks, fancyhdr), Rei Fukui (tipa), Robin Fairbairns (footmisc), Rolf
Niepraschk (sidecap, pict2e), Stephan Bottcher (lineno), Thomas Esser (teTgX dis-
tribution), Thomas Henlich (marvosym), Thorsten Hansen (bibunits, multibib), and
Walter Schmidt (fix-cm, PSNFSS). Our apologies if we missed someone.

We gratefully recognize all of our many colleagues in the (IA)TgX world who
developed the packages—not only those described here, but also the hundreds
of others—that aim to help users meet the typesetting requirements for their
documents. Without the continuous efforts of these enthusiasts, KX would not
be the magnificent and flexible tool it is today.

We would also like to thank Blenda Horn from Y&Y and Michael Vulis from
MicroPress for supplying the fonts used to typeset the pages of this book.

The picture of Chris Rowley, taken after a good lunch at the Hong Kong Inter-
national Airport, appears courtesy of Wai Wong. The picture of Michael Downes,
taken at the TgX 2000 conference, Oxford, appears courtesy of Alan Wetmore.

* ok ok

Any mistake found and reported is a gain for all readers of our book. We
would therefore like to thank those readers who reported any of the mistakes
which had been overlooked so far. The latest version of the errata file can be found
on the KIEX project site at http://www.latex-project.org/guides/tlc2.err
where you will also find an on-line version of the index and other extracts from
the book.

* ok ok

We would like to thank our families and friends for the support given during
the preparation of this book—though this may sound like an alibi sentence to
many, it never felt truer than with this book.

Chris would like to thank the Open University, United Kingdom, for support-
ing his work on X and the School of Computer Science and Engineering, Univer-
sity of New South Wales, for providing a most pleasant environment in which to
complete his work on this book.

Frank Mittelbach
Michel Goossens
Johannes Braams
David Carlisle
Chris Rowley

August 2004

To Err is Human

http://www.latex-project.org/guides/tlc2.err

This page intentionally left blank

CHAPTER 3

Basic Formatting Tools

The way information is presented visually can influence, to a large extent, the
message as it is understood by the reader. Therefore, it is important that you use
the best possible tools available to convey the precise meaning of your words.
It must, however, be emphasized that visual presentation forms should aid the
reader in understanding the text, and should not distract his or her attention. For
this reason, visual consistency and uniform conventions for the visual clues are a
must, and the way given structural elements are highlighted should be the same
throughout a document. This constraint is most easily implemented by defining
a specific command or environment for each document element that has to be
treated specially and by grouping these commands and environments in a package
file or in the document preamble. By using exclusively these commands, you can
be sure of a consistent presentation form.

This chapter explains various ways for highlighting parts of a document. The
first part looks at how short text fragments or paragraphs can be made to stand
out and describes tools to manipulate such elements.

The second part deals with the different kind of “notes”, such as footnotes,
marginal notes, and endnotes, and explains how they can be customized to con-
form to different styles, if necessary.

Typesetting lists is the subject of the third part. First, the various parame-
ters and commands controlling the standard IXTgX lists, enumerate, itemize, and
description, are discussed. Then, the extensions provided by the paralist pack-
age and the concept of “headed lists” exemplified by the amsthm package are
presented. These will probably satisfy the structure and layout requirements of
most readers. If not, then the remainder of this part introduces the generic 1list

80

Basic Formatting Tools

environment and explains how to build custom layouts by varying the values of
the parameters controlling it.

The fourth part explains how to simulate “verbatim” text. In particular, we
have a detailed look at the powerful packages fancyvrb and listings.

The final part presents packages that deal with line numbering, handling of
columns, such as parallel text in two columns, or solving the problem of producing
multiple columns.

3.1 Phrases and paragraphs

In this section we deal with small text fragments and explain how they can be
manipulated and highlighted in a consistent manner by giving them a visual ap-
pearance different from the one used for the main text.

We start by discussing how to define commands that take care of the space
after them, then show a way to produce professional-looking marks of omission.

For highlighting text you can customize the font shape, weight, or size (see
Section 7.3.1 on page 338). Text can also be underlined, or the spacing between
letters can be varied. Ways for performing such operations are offered by the four
packages relsize, textcase, ulem, and soul.

The remainder of this section then turns to paragraph-related issues, such as
producing large initial letters at the start of a paragraph, modifying paragraph
justification, altering the vertical spacing between lines of a paragraph, and in-
troducing rectangular holes into it, that can be filled with small pictures, among
other things.

3.1.1 xspace—Gentle spacing after a macro

The small package xspace (by David Carlisle) defines the \xspace command, for
use at the end of macros that produce text. It adds a space unless the macro is
followed by certain punctuation characters.

The \xspace command saves you from having to type \,, or {} after most
occurrences of a macro name in text. However, if either of these constructs follows
\xspace, a space is not added by \xspace. This means that it is safe to add
\xspace to the end of an existing macro without making too many changes in
your document. Possible candidates for \xspace are commands for abbreviations
such as “e.g.,” and “i.e.,”.

\newcommand\eg{e.g.,\xspace}
\newcommand\ie{i.e.,\xspace}
\newcommand\etc{etc.\@\xspace}

Notice the use of the \@ command to generate the correct kind of space. If used to
the right of a punctuation character, it prevents extra space from being added: the

3-1-2

3.1 Phrases and paragraphs 81

dot will not be regarded as an end-of-sentence symbol. Using it on the left forces
KX to interpret the dot as an end-of-sentence symbol.

Sometimes \xspace may make a wrong decision and add a space when it is
not required. In such cases, follow the macro with {3}, which will suppress this
space.

\usepackage{xspace}
\newcommand\USA{United States of America\xspace}

Great Britain was unified in 1707. \newcommand\GB {Great Britain\xspace}
Great Britain, the United States of America, \GB was unified in 1707.\\ \GB, the \USA, and
and Canada have close cultural links. Canada have close cultural links.

3.1.2 ellipsis, lips—Marks of omission

Omission marks are universally represented by three consecutive periods (also
known as an ellipsis). Their spacing, however, depends on house style and typo-
graphic conventions, and significant difference are observed. In French, according
to Hart [63] or The Chicago Manual of Style [38], “points de suspension” are set
close together and immediately follow the preceding word with a space on the
right:

C’est une chose... bien difficile.

In German, according to the Duden [44], “Auslassungspunkte” have space on the
left and right unless they mark missing letters within a word or a punctuation
after them is kept:

Du E... du! Scher dich zum ...!

Elsewhere, such as in British and American typography, the dots are sometimes
set with full word spaces between them and rather complex rules determine how
to handle other punctuation marks at either end.

IKTgEX offers the commands \dots and \textellipsis to produce closely
spaced omission marks. Unfortunately, the standard definition (inherited from
plain TgX) produces uneven spacing at the left and right—unsuitable to typeset
some of the above examples properly. The extra thin space at the right of the el-
lipsis is correct in certain situations (e.g., when a punctuation character follows).
If the ellipsis is followed by space, however, it looks distinctly odd and is best can-
celed as shown in the example below (though removing the space in the second
instance brings the exclamation mark a bit too close).

\newcommand\lips{\dots\unkern}
Compare the following: Compare the following:\\
DuE... du! Scher dich zum ...! Du E\dots\ du! Scher dich zum \dots!\\
DuE... du! Scher dich zum ...! Du E\lips\ du! Scher dich zum \lips!

82

Basic Formatting Tools

This problem is addressed in the package ellipsis written by Peter Heslin,
which redefines the \dots command to look at the following character to decide
whether to add a final separation. An extra space is added if the following charac-
ter is listed in the command \ellipsispunctuation, which defaults to “, . :;!7?”.
When using some of the language support packages that make certain characters
active, this list may have to be redeclared afterwards to enable the package to still
recognize the characters.

The spacing between the periods and the one possibly added after the ellipsis
can be controlled through the command \ellipsisgap. To allow for automatic
adjustments depending on the font size use a font-dependent unit like em or a
fraction of a \fontdimen (see page 428).

\usepackage{ellipsis}

Compare the following:\\
Du E\dots\ du! Scher dich zum \dots!'\\

Compare the following: \renewcommand\ellipsisgap{1.5\fontdimen3\font}
DuE... du! Scher dich zum ...! Du E\dots\ du! Scher dich zum \dots!\\
DuE... du! Scher dich zum . . . ! \renewcommand\ellipsisgap{0.3em}

DuE. . . du! Scher dich zum. . .! Du E\dots\ du! Scher dich zum \dots!

Elsewhere . .

For the special case when you need an ellipsis in the middle of a word (or for
other reasons want a small space at either side), the package offers the command
\midwordellipsis. If the package is loaded with the option mla (Modern Lan-
guage Association style), the ellipsis is automatically bracketed without any extra
space after the final period.

If one follows The Chicago Manual of Style [38], then an ellipsis is set with full
word spaces between the dots. For this, one can deploy the lips package! by Matt
Swift. It implements the command \1lips, which follows the recommendations
in this reference book. For example, an ellipsis denoting an omission at the end
of a sentence should, according to [38, §10.48-63], consist of four dots with the
first dot being the sentence period.? The \1lips command implements this by
interpreting “\1ips.” like “.\1ips”, as can be seen in the next example.

\usepackage{moredefs,lips}
. the dots are normally set Elsewhere \lips the dots are normally set with

with full word spaces between them. . . . An full word spaces between them \lips. An example

example would be this paragraph.

would be this paragraph.

The \lips command looks for punctuation characters following it and en-
sures that in case of , : ;?!)’]/ the ellipsis and the punctuation are not separated
by a line break. In other cases (e.g., an opening parenthesis), a line break would
be possible. The above list is stored in \LPNobreakList and can be adjusted if

Hips is actually part of a larger suite of packages. If used on a stand-alone basis, you also have to
load the package moredefs by the same author.
2Not that the authors of this book can see any logic in this.

3-1-4

3.1 Phrases and paragraphs 83

necessary. To force an unbreakable space following \1ips, follow the command
with a tie (~).

When applying the mla option the ellipsis generated will be automatically
bracketed and a period after the \1ips command will not be moved to the front.
If necessary, \olips will produce the original unbracketed version.

\usepackage{moredefs}\usepackage [mla]{lips}

Elsewhere . . . the dots are normally set Elsewhere \olips the dots are normally set with
with full word spaces between them [...]. An full word spaces between them \lips. An example
example would be this paragraph. would be this paragraph.

3.1.3 amsmath—Nonbreaking dashes

The amsmath package, extensively discussed in Chapter 8, also offers one com-
mand for use within paragraphs. The command \nobreakdash suppresses any
possibility of a line break after the following hyphen or dash. A very common use
of \nobreakdash is to prevent undesirable line breaks in usages such as “p-adic”
but here is another example: if you code “Pages 3-9” as Pages 3\nobreakdash--9
then a line break will never occur between the dash and the 9.

This command must be used immediately before a hyphen or dash (-, --,
or ——-). The following example shows how to prohibit a line break after the hy-
phen but allow normal hyphenation in the following word (it suffices to add a
zero-width space after the hyphen). For frequent use, it’s advisable to make ab-
breviations, such as \p. As a result “dimension” is broken across the line, while a
break after “p-” is prevented (resulting in a overfull box in the example) and “3-9”
is moved to the next line.

\usepackage{amsmath}
\newcommand\p{p\nobreakdash}y, "\p-adic"
\newcommand\Ndash{\nobreakdash--1}J, "3\Ndash 9"
\newcommand\n[1]{n\nobreakdash-\hspace{Opt}}
The generalization to the n-dimen- % "\n-dimensional"
sional case (using the standard p-adic \noindent The generalization to the \n-dimensional
tOPOIOgY) can be found on Pages case (using the standard \p-adic topology) can be found
3-9 of Volume IV. on Pages 3\Ndash 9 of Volume IV.

3.1.4 relsize—Relative changes to the font size

Standard XX offers 10 predefined commands that change the overall font size
(see Table 7.1 on page 342). The selected sizes depend on the document class but
are otherwise absolute in value. That is, \small will always select the same size
within a document regardless of surrounding conditions.

84

Basic Formatting Tools

Some large text with a

However, in many situations it is desirable to change the font size relative
to the current size. This can be achieved with the relsize package, originally de-
veloped by Bernie Cosell and later updated and extended for KX 2¢ by Donald
Arseneau and Matt Swift.

The package provides the declarative command \relsize, which takes a num-
ber as its argument denoting the number of steps by which to change the size.
For example, if the current size is \Large then \relsize{-2} would change to
\normalsize. If the requested number of steps is not available then the small-
est (i.e.,, \tiny) or largest (i.e., \Huge) size command is selected. This means that
undoing a relative size change by negating the argument of \relsize is not guar-
anteed to bring you back to the original size—it is better to delimit such changes
by a brace group and let KIgX undo the modification.

The package further defines \smaller and \larger, which are simply ab-
breviations for \relsize with the arguments -1 and 1, respectively. Convenient
variants are \textsmaller and \textlarger, whose argument is the text to re-
duce or enlarge in size. These four commands take as an optional argument the
number of steps to change if something different from 1 (the default) is needed.

\usepackage{relsize}

\Large Some large text with a few

few small words inside. {\relsize{-2}small words} inside.

SmaLL Caps (faked)

SMALL CAPS (real;

ning length and
previous line).

\par\medskip
\normalsize\noindent
compare the run- s\textsmaller[2]{MALL} C\textsmaller[2]{APS} (faked)\\
stem thickness to \textsc{Small Caps} (real; compare the running length
and stem thickness to previous line).

In fact, the above description for \relsize is not absolutely accurate: it tries
to increase or decrease the size by 20% for each step and selects the KIEX font
size command that is closest to the resulting target size. It then compares the
selected size and target size. If they differ by more than the current value of
\RSpercentTolerance (interpreted as a percentage), the package calls \fontsize
with the target size as one of the arguments. If this happens it is up to KIEX’s font
selection scheme to find a font matching this request as closely as possible. By
default, \RSpercentTolerance is an empty macro, which is interpreted as 30
(percent) when the current font shape group is composed of only discrete sizes
(see Section 7.10.3), and as 5 when the font shape definition covers ranges of sizes.

Using a fixed factor of 1.2 for every step may be too limiting in certain cases.
For this reason the package additionally offers the more general declarative com-
mand \relscale{factor} and its variant \textscale{factor}{text}, to select the
size based on the given factor, such as 1.3 (enlarge by 30%).

There are also two commands, \mathsmaller and \mathlarger, for use
in math mode. KIEX recognizes only four different math sizes, of which two
(\displaystyle and \textstyle) are nearly identical for most symbols, so the
application domain of these commands is somewhat limited. With exscale addi-

3.1 Phrases and paragraphs 85

tionally loaded the situation is slightly improved: the \mathlarger command,
when used in \displaystyle, will then internally switch to a larger text font
size and afterwards select the \displaystyle corresponding to that size.

Z £ E \usepackage{exscale,relsize}

\[\sum \neq \mathlarger{\sum} \]
and $\frac{1}{2} \neq \frac{\mathlarger 1}
{2}$ but $N = \mathlarger {N}$

1
and § # 5 but N = N
These commands will attempt to correctly attach superscripts and subscripts
to large operators. For example,

\usepackage{exscale,relsize}
n n oo 00 \[\mathsmaller\sum_{i=1}"n \neq
n § 00 \sum_{i=1}"n \neq \mathlarger\sum_{i=1}"n
3-1-9 i
Zl*l 7 ; 7 - fo 7 /0 7 /0 \qquad \mathsmaller\int_0~\infty \neq
=t \int_0~\infty \neq \mathlarger\int_O~\infty
\1

Be aware that the use of these commands inside formulas will hide the true
nature of the math atoms inside the argument, so that the spacing in the formula,
without further help, might be wrong. As shown in following example, you may
have to explicitly use \mathrel, \mathbin, or \mathop to get the correct spacing.

\usepackage{exscale,relsize}

axb£axXb£aXb \[a \times b \neq a \mathlarger{\times} b \neq
a \mathbin{\mathlarger\times} b \]

Due to these oddities, the \mathlarger and \mathsmaller commands should not
be trusted blindly, and they will not be useful in every instance.

3.1.5 textcase—Change case of text intelligently

The standard KIEX commands \MakeUppercase and \MakeLowercase change the
characters in their arguments to uppercase or lowercase, respectively, thereby
expanding macros as needed. For example,

\MakeUppercase{On \today}

will result in “ON 2ND AUGUST 2004”. Sometimes this will change more characters
than desirable. For example, if the text contains a math formula, then uppercas-
ing this formula is normally a bad idea because it changes its meaning. Similarly,
arguments to the commands \label, \ref, and \cite represent semantic infor-
mation, which, if modified, will result in incorrect or missing references, because
KTEX will look for the wrong labels.

86 Basic Formatting Tools

\MakeTextUppercase{text} \MakeTextLowercaseq{text}

The package textcase by David Carlisle overcomes these defects by providing two
alternative commands, \MakeTextUppercase and \MakeTextLowercase, which
recognize math formulas and cross-referencing commands and leave them alone.

\usepackage{textcase}

1 Textcase example \section{Textcase example}\label{exa}
\MakeTextUppercase{Text in section~\ref{exal},

TEXT IN SECTION 1, ABOUT ¢ =bAND o # a about $a=b$ and \(\alpha \neq a \) }

Sometimes portions of text should be left unchanged for one reason or an-
other. With \NoCaseChange the package provides a generic way to mark such
parts. For instance:

\usepackage{textcase}

\MakeTextUppercase{Some text
SOME TEXT Some More TEXT \NoCaseChange{Some More} text}

If necessary, this method can be used to hide syntactic information, such as
\NoCaseChange{\begin{tabular}{11}} ... \NoCaseChange{\end{tabular}}

thereby preventing tabular and 11 from incorrectly being uppercased.

All this works only as long as the material is on the top level. Anything that is
inside a group of braces (other than the argument braces to \1label, \ref, \cite,
or \NoCaseChange) will be uppercased or lowercased regardless of its nature.

\usepackage{textcase}

\MakeTextUppercase{Both of these will
BOTH OF THESE WILL FAIL A + B =C \textbf{fail $a+b=c$}

UNFORTUNATELY \emph{\NoCaseChange{unfortunatelyl}}}

In the above case you could avoid this pitfall by taking the formula out of the
argument to \textbf and moving \emph inside the argument to \NoCaseChange.
In other situations this kind of correction might be impossible. In such a case
the (somewhat cumbersome) solution is to hide the problem part inside a private
macro and protect it from expansion during the case change; this method works
for the standard KIEX commands as well, as shown in the next example.

\newcommand\mymath{$a+b=c$}
\MakeUppercase{But this will
BUT THIS WILL WORK a + b = ¢ ALWAYS \textbf{work \protect\mymath} always}

Some classes and packages employ \MakeUppercase internally—for example,
in running headings. If you wish to use \MakeTextUppercase instead, you should

3-1-15

3.1 Phrases and paragraphs

87

load the textcase package with the option overload. This option will replace the
standard IXIEX commands with the variants defined by the package.

3.1.6 ulem—Emphasize via underline

IXTEX encourages the use of the \emph command and the \em declaration for mark-
ing emphasis, rather than explicit font-changing declarations, such as \bfseries
and \itshape. The ulem package (by Donald Arseneau) redefines the command
\emph to use underlining, rather than italics. It is possible to have line breaks and
even primitive hyphenation in the underlined text. Every word is typeset in an
underlined box, so automatic hyphenation is normally disabled, but explicit dis-
cretionary hyphens (\-) can still be used. The underlines continue between words
and stretch just like ordinary spaces do. As spaces delimit words, some difficulty
may arise with syntactical spaces (e.g., "2.3 pt"). Some effort is made to handle
such spaces. If problems occur you might try enclosing the offending command
in braces, since everything inside braces is put inside an \mbox. Thus, braces sup-
press stretching and line breaks in the text they enclose. Note that nested empha-
sis constructs are not always treated correctly by this package (see the gymnastics
performed below to get the interword spaces correct in which each nested word
is put separately inside an \emph expression).

\usepackage{ulem}

No, I did not act in the movie The
Persecution and Assassination of Jean-Paul
Marat, as performed by the Inmates of the
Asylum of Charenton under the direction of
the Marquis de Sade! But I did see it.

3-1-16

No, I did \emph{not} act in the movie
\emph{\emph{The} \emph{Persecution} \emph{and}
\emph{Assassination} \emph{of} \emph{Jean-Paul}
\emph{Marat}, as performed by the Inmates of
the Asylum of Charenton under the direc\-tion of
the Marquis de~Sade!} But I \emph{did} see it.

Alternatively, underlining can be explicitly requested using the \uline com-
mand. In addition, a number of variants are available that are common in editorial
markup. These are shown in the next example.

Double underlining (under-line),
a wavy underline (under-wave),
a line through text (strike-eut),
crossing out text (dvés&/ bt/ X/dilt),

\usepackage{ulem}

Double underlining (\uuline{under-line}),\\
a wavy underline (\uwave{under-wave}), \\
a line through text (\sout{strike outl}), \\
crossing out text (\xout{cross out, X outl}),

The redefinition of \emph can be turned off and on by using \normalem and
\ULforem. Alternatively, the package can be loaded with the option normalem to
suppress this redefinition. Another package option is UWforbf, which replaces
\textbf and \bfseries by \uwave whenever possible.

The position of the line produced by \uline can be set explicitly by specifying
a value for the length \ULdepth. The default value is font-dependent, denoted

88

Basic Formatting Tools

With the soul package youcan letter-

by the otherwise senile value \maxdimen. Similarly, the thickness of the line can
be controlled via \ULthickness, which, for some historical reason, needs to be
redefined using \renewcommand.

3.1.7 soul—Letterspacing or stealing sheep

Frederic Goudy supposedly said, “Anyone who would letterspace black letter
would steal sheep”. Whether true or a myth, the topic of letterspacing clearly pro-
vokes heated discussions among typographers and is considered bad practice in
most situations because it changes the “grey” level of the text and thus disturbs
the flow of reading. Nevertheless, there are legitimate reasons for undertaking
letterspacing. For example, display type often needs a looser setting and in most
fonts uppercased text is improved this way. You may also find letterspacing being
used to indicate emphasis, although this exhibits the grey-level problem.

TgX is ill equipped when it comes to supporting letterspacing. In theory, the
best solution is to use specially designed fonts rather than trying to solve the
problem with a macro package. But as this requires the availability of such fonts,
it is not an option for most users. Thus, in practice, the use of a macro-based so-
lution is usually easier to work with, even though it means dealing with a number
of restrictions. Some information about the font approach can be found in the
documentation for the fontinst package [74,75].

The soul package written by Melchior Franz provides facilities for letterspac-
ing and underlining, but maintains TgX’s ability to automatically hyphenate words,
a feature not available in ulem. The package works by parsing the text to be let-
terspaced or underlined, token by token, which results in a number of peculiarities
and restrictions. Thus, users who only wish to underline a few words and do not
need automatic hyphenation are probably better off with ulem, which is far less
picky about its input.

\caps{text} \h1{text} \so{text} \st{text} \ul{text}

The use of the five main user commands of soul are shown in the next example. In
cases where TgX’s hyphenation algorithm fails to find the appropriate hyphenation
points, you can guide it as usual with the \- command. If the color package is
loaded, \h1 will work like a text marker, coloring the background using yellow as
the default color; otherwise, it will behave like \ul and underline its argument.

\usepackage{soul,color}

With the \texttt{soull} package you can
\so{letter\-space words and phrases}. Capitals

space words and phrases. Capi- are \caps{LETTERSPACED} with a different
tals are LETTERSPACED with a different command. Interfaces for \ul{underlining},

command. Interfaces for underlining, strike- \st{strikeouts}, and \hl{highlighting} are
euts, and highlighting are also provided. also provided.

3.1 Phrases and paragraphs 89

Normally, the soul package interprets one token after another in the argument
of \so, \st, and so on. However, in case of characters that are represented by
more than one token (e.g., accented characters) this might fail with some low-level
TgX error messages. Fortunately, the package already knows about all common
accent commands, so these are handled correctly. For others, such as those pro-
vided by the textcomp package, you can announce them to soul with the help of a
\soulaccent declaration. The alternative is to surround the tokens by braces.

~ < o \usepackage{soul} \usepackage{textcomp}
a1 m S(v \soulaccent{\capitalgrave}

A 11
O O 7Y 1 \Huge \st{\"a \‘u \~0 \capitalgrave X {\capitalbreve Y}}

The soul package already knows that quotation characters, en dash, and em
dash consist of several tokens and handles them correctly. In case of other syn-
tactical ligatures, such as the Spanish exclamation mark, you have to help it along
with a brace group.

“So there,” hesaid. \usepackage{soul}
iHOLA—MY FRIEND! \so{‘‘So there,’’} he said. \caps{{!‘}Hola---my \textbf{friend}!}

The soul package also knows about math formulas as long as they are sur-
rounded by $ signs (the form \(...\) is not supported) and it knows about all
standard font-changing commands, such as \textbf. If you have defined your
own font-switching command or use a package that provides additional font com-
mands, you have to register them with soul using \soulregister. This declara-
tion expects the font command to be registered as its first argument and the num-
ber of arguments (i.e., 0 or 1) for that command to appear as its second argument.
Within the soul commands none of the font commands inserts any (necessary)
italic correction. If needed, one has to provide it manually using \/.

\newcommand\textsfbf [1]{\textsf{\bfseries#1}}
Here we see soul \usepackage{soul} \soulregister{\textsfbf}{1}

inaction: x#y OK? \so{Here we see \textsfbf{soul} in \emph{action}: $x\neq y$ OK?}

If you look carefully, you will see that the font commands suppress letterspac-
ing directly preceding and following them, such as between “action” and the colon.
This can be corrected by adding \>, which forces a space.

\usepackage{soul}
bloody viz. bloody \so{bl\textbf{oo}dy viz. bl\>\textbf{oo}\>dy}

Text inside a brace group is regarded as a single object during parsing and
is therefore not spaced out. This is handy if certain ligatures are to be kept in-
tact inside spaced-out text. However, this method works only if the text inside
the brace group contains no hyphenation points. If it does, you will receive the
package error message “Reconstruction failed”. To hide such hyphenation points

90

Basic Formatting Tools

Sdhupvorridtung
Gddel, Escher, Bach
Temporarily disabling the scanner

you need to put the text inside an \mbox, as shown in the second text line of the
next example (TEX would hyphenate this as “Es-cher”—that is, between the “sch”
that we try to keep together). You can also use \soulomit to achieve this effect,
but then your text will work only when the soul package is loaded.

\usepackage{soul,yfonts} \usepackage[latini]{inputenc}

\textfrak{\so{S{ch}u{tz}vorri{ch}tung}} \par
\so{Goédel, E\mbox{sch}er, Bach} \par

\ul{Temporarily dis\soulomit{abl}ing the scanner}

One of the most important restrictions of the above commands is that they
cannot be nested; any attempt to nest soul commands will result in low-level TgX
errors. If you really need nesting you will have to place the inner material in a box,
which means you lose the possibility to break the material at a line ending.

\usepackage{soul} \newsavebox\soulbox
\sbox\soulbox{\so{ is hell }}

This is hell forall of us! \ul{This\mbox{\usebox{\soulbox}}for all of us!}

“So there”
produce a
OK?

A few other commands are special within the argument of \so and friends.
Spacing out at certain points can be canceled using \< or forced with \> as we
saw above. As usual with KX a ~ will produce an unbreakable space. The \\
command is supported, though only in its basic form—no star, no optional argu-
ment. You can also use \linebreak to break a line at a certain point, but again
the optional argument is not supported. Other XX commands are likely to break
the package—some experimentation will tell you what is safe and what produces
havoc. The next example shows applications of these odds and ends.

he said. Let’s \usepackage{soul}
spaced out line, \so{‘‘\<So there\<’’ he said. Let’s\\
produce a spaced out line\>,\linebreak 0K7}

\sodef{cmd}{font}{inter-letter space}{word space}{ outer space}

The \sodef declaration allows you to define your own letterspacing commands. It
can also be used to overwrite the defaults for \so.

The letterspacing algorithm works by putting a certain inter-letter space be-
tween characters of a word, a certain word space between words, and a certain
outer space at the beginning and end of the letterspaced text section. The latter
space is added only if it is appropriate at that point. The default values for these
spaces are adjusted for typesetting texts in Fraktur fonts but with the help of the
\sodef declaration it is easy to adjust them for your own needs. The font argu-
ment allows you to specify font attributes; in most cases it will be empty. Rather
than using explicit dimensions in the other arguments it is advisable to resort to

3-1-23

3-1-24

3.1 Phrases and paragraphs 91

em values, thereby making your definition depend on the current font and its size.

\usepackage{soul}
\sodef\sobf{\bfseries}{.3em}{lem plus .lem}
{1.3em plus.lem minus.2em}
3-1-25 Herewe emphas ize words alot. Here we \sobf{emphasize words} a lot.

While \so or any new command defined via \sodef simply retrieves and ex-
ecutes its stored definition, the \caps command works somewhat differently. It
examines the current font and tries to find it (or a close match) in an internal
database. It then uses the letterspacing values stored there. You can extend this
database using the \capsdef declaration by providing values for individual fonts
or groups of fonts. In this way you can fine-tune the letterspacing—for example,
for text in headings. It is even possible to keep several such databases and change
them on the fly within a document.

\capsdef{match spec}{font}{inter-letter space}{word space}{outer space’}

Apart from the first argument, which is totally different, the other arguments to
\capsdef are identical to those of \sodef. The first argument, match spec, defines
the font (or fonts) to which the current declaration applies.

Its syntax is encoding, family, series, shape, and size separated by slashes
using the naming conventions of NFSS. Empty values match anything, so ////
matches any font, /ptm///10 matches all Times fonts in 10 points, and
0T1/cmr/m/n/ matches Computer Modern (cmr) medium series (m) normal shape
(n) encoded in OT1 in any size. It is also possible to specify size ranges. For exam-
ple, 5-14 means 5pt < size < 14pt and 14- matches all sizes equal or greater 14 pt.
Refer to the tables in Chapter 7 for details on the NFSS font naming conventions.

As with \sodef, in most declarations the font argument will be empty. On
some occasions it may make sense to use \scshape in this place, such as to
change the font shape to small caps before applying letterspacing.

Because \caps uses the first matching entry in its database, the order of
\capsdef declarations is important. Later declarations are examined first so that
it is possible to overwrite or extend existing declarations.

\usepackage{titlesec,soul}
\newcommand\allcaps[1]{\MakeUppercase{\caps{#1}}}
\titleformat{\section}[block]{\centering\sffamily}
A SAMPLE HEADING . . . {\thesection.}{.5em}{\allcaps}
\titlespacing*{\section}{Opt}{8pt}{3pt}

The \capsdef declaration ap- \capsdef{/phv///}{\scshape}{.17em}{.55em}{.4em}

plies here, because the heading \section*{A Sample Heading}

definition specifies sans serif and The \verb=\capsdef= declaration applies here, because the

our examples are typeset with heading definition specifies sans serif and our examples
Times and Helvetica (phv). are typeset with Times and Helvetica (\texttt{phv}).

92

Basic Formatting Tools

Customized
letterspacing for
different occasions

The previous example also contained an interesting combination of \caps and
\MakeUppercase: the command \allcaps changes its argument to uppercase and
then uses \caps to letterspace the result.

\capssave{name} \capsselect{name} \capsreset

With \capsreset the database is restored to its initial state containing only a
generic default. You can then add new entries using \capsdef. The current state

of the \caps database can be stored away under a name by using \capssave.

You can later retrieve this state by recalling it with \capsselect. If you use the
capsdefault option when loading the package, then all uses of \caps that have
no matching declaration are flagged by underlining the text.

\usepackage{titlesec} \usepackage[capsdefault]{soul}
\capsdef{/phv///}{\scshape}{.17em}{.55em}{.4em}
\capssave{display} \capsreset
\capsdef{/phv///}{\scshape}{.04em}{.35em}{.35em}

A SAMPLE HEADING \titlespacing*{\section}{Opt}{8pt}{3pt}

\titleformat{\section}[block]{\centering\sffamily}

Notice the different letterspac-
ing in the heading and RUNNING
TEXT. For Times we have no def-

inition above so that the DEFAULT

will match.

{\thesection.}{.5em}{\capsselect{display}\caps}
\section*{A Sample Heading}
Notice the different letterspacing in the heading and
\textsf{\caps{Running Text}}. For Times we have no

Customizing

definition above so that the \caps{default} will match.

The position and the height of the line produced by the \ul command can
be customized using either \setul or \setuldepth. The command \setul takes

underlining two dimensions as arguments: the position of the line in relation to the baseline
and the height of the line. Alternatively, \setuldepth can be used to specify that
the line should be positioned below the text provided as an argument. Finally,
\resetul will restore the default package settings.
\usepackage{soul}
Here we test
. c \setul{Opt}{.4pt} \ul{Here we test} \par
diff . \setul{-.6ex}{.3ex} \ul{a number of} \par
different settings. | \setuldepth{g} \ul{different settings.} \par
And back to normal! \resetul \ul{And back to normal!}

Both \ul and \st use a black rule by default. If you additionally load the color
package, you can use colored rules instead and, if desired, modify the highlighting
color as demonstrated below:

\usepackage{soul,color}
\sethlcolor{green} \setulcolor{blue} \setstcolor{red}

Rules can be in black blue. Rules \hl{can} be in \st{black} \ul{blue}.

3-1-29

3.1 Phrases and paragraphs

3.1.8 url—Typesetting URLSs, path names, and the like

E-mail addresses, URLs, path or directory names, and similar objects usually re-
quire some attention to detail when typeset. For one thing, they often contain
characters with special significance to KX, such as ~, #, &, {, or }. In addition,
breaking them across lines should be avoided or at least done with special care.
For example, it is usually not wise to break at a hyphen, because then it is not
clear whether the hyphen was inserted because of the break (as it would be the
case with normal words) or was already present. Similar reasons make breaks at
a space undesirable. To help with these issues, Donald Arseneau wrote the url
package, which attempts to solve most of these problems.

\url{text} \url!text! \path{text} \path=text=

The base command provided by the package is \url, which is offered in two
syntax variants: the text argument either can be surrounded by braces (in which
case the text must not contain unbalanced braces) or, like \verb, can be delimited
by using an arbitrary character on both sides that is not used inside text. (The
syntax box above uses ! and = but these are really only examples.) In that second
form one can have unbalanced braces in the argument.

The \path command is the same except that it always uses typewriter fonts
(\ttfamily), while \url can be customized as we will see below. The argument to
both commands is typeset pretty much verbatim. For example, \url{~2} produces
a tilde. Spaces are ignored by default, as can be seen in the following example.

\usepackage{url}
The ISTEX project web pages are athttp: The \LaTeX{} project web pages are at
//www.latex-project.org and my home \url{http://www . latex-project . org} and my
directory is ~frank (sometimes). home directory is \path+~frank+ (sometimes).

Line breaks can happen at certain symbols (by default, not between letters
or hyphens) and in no case can the commands add a hyphen at the break point.
Whenever the text contains either of the symbols % or #, or ends with \, it cannot
be used in the argument to another command without producing errors (just like
the \verb command). Another case that does not work properly inside the argu-
ment of another command is the use of two ~ characters in succession. However,
the situation is worse in that case because one might not even get an error but
simply incorrect output! as the next example shows.

\usepackage{url}
~frank and ~frank (OK) \url{~frank} and \mbox{\url{~frank}} (OK)\par
~~frank but &rank (bad) \url{~~frank} but \mbox{\url{~~frank}} (bad)

L1t depends on the letter that is following. An uppercase F instead of the lowercase £ would
produce an error.

http://www.latex-project.org
http://www.latex-project.org

94

Basic Formatting Tools

Even if the text does not contain any critical symbols, it is always forbidden
to use such a command inside a moving argument—for instance, the argument of
a \section. If used there, you will get the error message

! Undefined control sequence.
\Url Error ->\url used in a moving argument.

followed by many strange errors. Even the use of \protect will not help in that
case. So what can be done if one needs to cite a path name or a URL in such a
place? If you are prepared to be careful and only use “safe” characters inside text,
then you can enable the commands for use in moving arguments by specifying the
option allowmove when loading the package. But this does not help if you actually
need a character like “#”. In that case the solution is to record the information first
using \urldef and then reuse it later.

\urldef{cmd}{url-cmd}{text} \urldef{cmd}{url-cmd}=text=

The declaration \urldef defines a new command cmd to contain the url-cmd
(which might be \url, \path, or a newly defined command—see below) and the
text in a way such that they can be used in any place, including a moving argument.
The url-cmd is not executed at this point, which means that style changes can
still affect the typesetting (see Example 3-1-33 on the facing page). Technically,
what happens is that the \catcodes of characters in text are frozen during the
declaration, so that they cannot be misinterpreted in places like arguments.

\usepackage{url}
1 “”frank~#$\ works? \urldef\test\path{~~frank~#$\}
\section{\test{} works?}
It does—in contrast to the earlier example. It does---in contrast to the earlier example.
\urlstyle{style}

We have already mentioned style changes. For this task the url package offers
the \urlstyle command, which takes one mandatory argument: a named style.
Predefined styles are rm, sf, tt, and same. The first three select the font family of
that name, while the same style uses the current font and changes only the line
breaking.

The \url command uses whatever style is currently in force (the default is
tt, i.e., typewriter), while \path internally always switches to the tt style. In the
following example we typeset a URL saved in \1project several times using differ-
ent styles. The particular example may look slightly horrifying, but imagine how

3.1 Phrases and paragraphs

95

it would have looked if the URL had not been allowed to split at all in this narrow
measure.

Zapf Chancery! http://www.
latex-project.org (default set-
up) http://www.latex-project.org

\usepackage [hyphens] {url}

project.org (CM Sans Serif) http:// \urlstyle{rm}\1lproject\ (CM Roman)

\urldef\lproject\url{http://www.latex-project.org}

\fontfamily{pzc}\selectfont Zapf Chancery!
(CM Roman) http://www.latex- \lproject\ (default set-

up) \quad
\quad

www.latex-project.org (CM Type- \urlstyle{sf}\lproject\ (CM Sans Serif) \quad
writer) http://www.latex-project.ory \urlstyle{tt}\lproject\ (CM Typewriter) \quad
(Zapf Chancery) \urlstyle{same}\lproject\ (Zapf Chancery)

If you studied the previous example closely you will have noticed that the
option hyphens was used. This option allows breaking at explicit hyphens, some-
thing normally disabled for \url-like commands. Without this option breaks
would have been allowed only at the periods, after the colon, or after “//”.

As mentioned earlier spaces inside text are ignored by default. If this is not
desired one can use the option obeyspaces. However, this option may introduce
spurious spaces if the \url command is used inside the argument of another
command and text contains any “\” character. In that case \urldef solves the
problem. Line breaks at spaces are not allowed unless you also use the option
spaces.

The package automatically detects which font encoding is currently in use. In
case of T1 encoded fonts it will make use of the additional glyphs available in this
encoding, which improves the overall result.

The package offers two hooks, \UrlLeft and \UrlRight, that by default do
nothing but can be redefined to typeset material at the left or right of text. The
material is typeset in the same fashion as the text. For example, spaces are ignored
unless one uses \, or specifies obeyspaces as an option. If the commands are
redefined at the top level, they act on every \url-like command. See Example 3-1-
34 on the next page for a possibility to restrict their scope.

\DeclareUrlCommand{cmd}{style-information}

It is sometimes helpful to define your own commands that work similarly to \url
or \path but use their own fonts, and so on. The command \DeclareUrlCommand
can be used to define a new \url-like command or to modify an existing one. It
takes two arguments: the command to define or change and the style-information
(e.g., \urlstyle).

In the next example, we define \email to typeset e-mail addresses in rm style,
prepending the string “e-mail: ” via \UrlLeft. The example clearly shows that the
scope for this redefinition is limited to the \email command. If you look closely,

Spaces in the
argument

Appending material
at left or right

Defining URL-like
commands

http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org

96

Basic Formatting Tools

you can see that a space inside \UrlLeft (as in the top-level definition) has no
effect, while \, produces the desired result.

\usepackage{url}
\renewcommand\UrlLeft{<url: }
\renewcommand\UrlRight{>}
\DeclareUrlCommand\email{\urlstyle{rm}%
\renewcommand\UrlLeft{e-mail:\ }%
\renewcommand\UrlRight{}}

<url:http://wuw.latex-project.org> \url{http://www.latex-project.org} \par
e-mail: frank.mittelbach @latex-project.org \email{frank.mittelbach@latex-project.org} \par
<url:$HOME/figures> oops, wrong! \path{$HOME/figures} oops, wrong!

The url package offers a number of other hooks that influence line breaking,
among them \UrlBreaks, \UrlBigBreaks, and \UrlNoBreaks. These hooks can
be redefined in the style-information argument of \DeclareUrlCommand to set up
new or special conventions. For details consult the package documentation, which
can be found at the end of the file url.sty.

3.1.9 euro—Converting and typesetting currencies

To ease the calculations needed to convert between national units and the euro,
Melchior Franz developed the package euro. In fact, the package converts arbi-
trary currencies using the euro as the base unit. The calculations are done with
high precision using the fp package written by Michael Mehlich. The formatting
is highly customizable on a per-currency basis, so that this package can be used
for all kind of applications involving currencies whether or not conversions are
needed.

\EURO{ from-currency? [to-currency] {amount}

The main command \EURO converts an amount in from-currency into to-currency
or, if this optional argument is missing, into euros. The arguments from-currency
and to-currency are denoted in ISO currency codes, as listed in Table 3.1 on the fac-
ing page. When inputting the amount a dot must separate the integer value from
any fractional part, even if the formatted number uses a different convention.

With the default settings the amount is displayed in the from-currency with
the converted value in the to-currency shown in parentheses.

\usepackage{euro}

\EURO{DEM} [FRF]{7}\quad \EURO{FRF}[DEM]{23.48}

7 DM (23,48 FRF) 23,48 FRF (7 DM) X\
10 Euro (19,56 DM) 20 DM (10,23 Euro) \EURO{EUR} [DEM] {10.00}\quad \EURO{DEM}{20}

http://www.latex-project.org

3.1 Phrases and paragraphs 97

EUR Europe GRD Greece

ATS Austria IEP Ireland

BEF Belgium ITL Italy

DEM Germany LUF Luxembourg
ESP Spain NLG The Netherlands
FIM Finland PTE Portugal

FRF France

Table 3.1: ISO currency codes of the euro and the 12 euro-zone countries

The package offers a number of options to influence the general style of the
output (unless overwritten by the more detailed formatting declarations discussed The package options
below). With eco the ISO codes precede the value and no customized symbols are
used; with dots a period is inserted between every three-digit group (the default
is to use a small space).
By default, integer amounts are printed as such, without adding a decimal
separator and a (zero) fractional part. If the table option is specified this behavior
is globally changed and either a — (option emdash, also the default), a - (option
endash), or the right number of zeros (option zeros) is used.

\usepackage [eco,table,endash] {euro}

DEM 7,— (FRF 23,48) FRF 23,48 (DEM 7,-) \EURO{DEM} [FRF]{7}\quad \EURO{FRF} [DEM]{23.48}
EUR 10,- (DEM 19,56) DEM 20,- (EUR 10,23) ~ \\ \EURO{EUR} [DEM]{10.00}\quad \EURO{DEM}{20}

The more detailed output customizations, which we discuss below, can be
placed anywhere in the document. It is, however, advisable to keep them together
in the preamble, or even to put them into the file euro.cfg, which is consulted
upon loading the package.

The monetary symbols typeset can be adjusted with a \EUROSYM declaration;
as defaults the package uses the ISO codes for most currencies. The example
below changes the presentation for lira and euro using the currency symbols from
the textcomp package. It also uses dots to help with huge lira amounts.

\usepackage{textcomp}\usepackage [dots] {euro}
\EUROSYM{ITL}{\textlira}\EUROSYM{EUR}{\texteuro}

10.000 £ (5,16 €) 1.000 DM (989.999 £) \EURO{ITL}{10000}\quad \EURO{DEM} [ITL]{1000}

The package is well prepared for new countries to join the euro-zone. In fact,
it is well prepared to deal with conversions from and to any currency as long as
the conversion rate to the euro is known. To add a new currency use the \EUROADD
declaration, which takes three arguments: the ISO currency code, the symbol or
text to display for the currency, and the conversion rate to the euro. The next

98

Basic Formatting Tools

example makes the British pound available. Note the abbreviation \GBP, which
makes the input a bit easier.

\usepackage{eurosans,euro}

14,90 £ (23,29 €) \EUROADD{GBP}{\textsterling}{0.6397} % 2002/12/21
10 £ (102,54 FRF) \newcommand*\GBP{\EURO{GBP}} \EUROSYM{EUR}{\euro}
10 € (6,40 £) \noindent \GBP{14.9}\\ \GBP[FRF1{10}\\ \EURO{EUR}[GBP]{10}

The conversion rates for the national currencies of the euro-zone countries
are fixed (and predefined by the package). With other currencies the rates may
change hourly, so you have to be prepared for frequent updates.

The package allows you to tailor the presentation via \EUROFORMAT declara-
tions, either to provide new defaults or to adjust the typesetting of individual
currencies. The first argument specifies which part of the formatting should be
adjusted, and the second argument describes the formatting.

The main format specifies how the source and target currencies are to be
arranged using the reserved keywords \in and \out to refer to the source and
target currencies, respectively. In the example below the first line implements a
format close to the default, the second line displays the result of the conversion,
and the third line does not show the conversion at all (although it happens behind
the scenes). The latter is useful if you want to make use of the currency formatting
features of the package without being interested in any conversion.

\usepackage{euro}
1000 DM (=3 353,385 FRF) \EUROFORMAT{main}{\in\ (=\,\out)} \EURO{DEM} [FRF]{1000}\par
3353,85FRF \EUROFORMAT{main}{\out} \EURO{DEM} [FRF] {1000} \par
1000 DM \EUROFORMAT{main}{\in} \EURO{DEM} {10002}

The in and out formats specify how the source and target currencies should
be formatted using the reserved keywords \val (monetary amount), \iso (cur-
rency code), and \sym (currency symbol if defined; ISO code otherwise).

\usepackage{euro}
\EUROFORMAT{in}{\sym~\val} \EUROFORMAT{out}{\iso~\val}
DM 1000 (FRF 3 353,85) \EURO{DEM} [FRF]1{1000}

Perhaps more interesting are the possibilities to influence the formatting of
monetary amounts, for which the package offers five declarations to be used in
the second argument to \EUROFORMAT. The \round declaration specifies where
to round the monetary amount: positive values round to the integer digits and
negative values to the fractional digits. For example, \round{-3} means show and
round to three fractional digits. The \form declaration takes three arguments: the
integer group separator (default \,), the decimal separator (default a comma), and
the fractional group separator (default \,).

3-1-38

3-1-40

3.1 Phrases and paragraphs 99

The first argument can be either all to define the default number formatting
or an ISO currency code to modify the formatting for a single currency.

\usepackage{euro} \EUROFORMAT{main}{\out}
\EUROFORMAT{all}{\round{-4}\form{, }{\textperiodcentered}{}}

1,022-5838 Euro \EUROFORMAT{ITL}{\round{2}}
—335-3855 FRF \noindent \EURO{DEM}{2000}\\ \EURO{DEM} [FRF]{-100}\\
9,900,000 Lit. \EURO{DEM} [ITL] {10000}

The \minus declaration formats negative values by executing its first
argument before the number and its second argument after it (default
\minus{$-$}{}). The number itself is typeset unsigned, so that a minus sign has
to be supplied by the declaration. The \plus declaration is the analogue for deal-
ing with positive numbers (default \plus{}{}).

\usepackage{color,euro} \EUROFORMAT{main}{\out}
\EUROFORMAT{all}{\plus{$+$}{}\minus{\color{blue}$-$}{}}

+1022,58 Euro —335,39 FRF \EURO{DEM}{2000}\quad \EURO{DEM} [FRF]{-100}

The \zero declaration takes three arguments to describe what to do if every-
thing is zero, the integer part is zero, or the fractional part is zero. In the first
and third arguments, the decimal separator has to be entered as well, so it should
correspond to the default or the value given in the \form command.

\usepackage{eurosans,euro}
\EUROFORMAT{main}{\out} \EUROSYM{EUR}{\euro}
\EUROFORMAT{all}{\zero{0,00}{0}{,--}}

0,00€ 051€ 1,-€ \EURO{DEM}{0}\quad \EURO{DEM}{1}\quad \EURO{EUR}{1}

3.1.10 lettrine—Dropping your capital

In certain types of publications you may find the first letter of some paragraphs
being highlighted by means of an enlarged letter often dropped into the paragraph
body (so that the paragraph text flows around it) and usually followed by the
first phrase or sentence being typeset in a special font. Applications range from
chapter openings in novels, or indications of new thoughts in the text, to merely
decorative elements to produce lively pages in a magazine. This custom can be
traced back to the early days of printing, when such initials were often hand-
colored after the printing process was finished. It originates in the manuscripts of
the Middle Ages; that is, it predates the invention of printing.

\lettrine [key/val-list] {initial}{text}

The package lettrine written by Daniel Flipo lets you create such initials by pro-
viding the command \lettrine. In its simplest form it takes two arguments: the

100 Basic Formatting Tools

letter to become an initial and the follow-up text to be typeset in a special font, by
default in \scshape.

\usepackage{lettrine} \usepackage[latinl]{inputenc}
A MOITIE DES PASSAGERS, affai- \ysepackage[french]{babel}
blis, expirants de ces angoisses in- \lettrine{L}{a moitié des passagers,} affaiblis,
concevables que le roulis d’un vais- expirants de ces angoisses inconcevables que le
seau porte dans les nerfs et dans toutes roulis d’un vaisseau porte dans les nerfs et
les humeurs du corps agitées en sens dans toutes les humeurs du corps agitées en sens
contraire, . .. contraire, \ldots

The font used for the initial is, by default, a larger size of the current
text font. Alternatively, you can specify a special font family by redefining the
command \LettrineFontHook using standard NFSS commands. Similarly, the
font used for the text in the second argument can be modified by changing
\LettrineTextFont.

Because the \lettrine command calculates the initial size to fit a certain
number of lines, you need scalable fonts to obtain the best results. As the exam-
ples in this book are typeset in Adobe Times and Helvetica by default, we have no
problems here. Later examples use Palatino, which is also a scalable Type 1 font.
But if you use a bitmapped font, such as Computer Modern, you might have to
use special . fd files (see Chapter 7, pages 419ff) to achieve acceptable results.

\usepackage{lettrine} \usepackage[latinl]{inputenc}
\usepackage [french] {babel}
\renewcommand\LettrineFontHook{\sffamily\bfseries}
A MOITIE DES PASSAGERS, affai- \renewcommand\LettrineTextFont{\sffamily\scshape}
blis, expirants de ces angoisses \lettrine{L}{a moitié des passagers,} affaiblis,
inconcevables que le roulis d’un vais- expirants de ces angoisses inconcevables que le
seau porte dans les nerfs et dans toutes roulis d’un vaisseau porte dans les nerfs et
les humeurs du corps agitées en sens dans toutes les humeurs du corps agitées en sens
contraire, . .. contraire, \ldots

Many books on typography give recommendations about how to best set large
initials with respect to surrounding text. For highest quality it is often necessary
to manually adjust the placement depending on the shape of the initial. For exam-
ple, it is often suggested that letters with a projecting left stem should overhang
into the margin. The \lettrine command caters to this need by supporting an
optional argument in which you can specify adjustments in the form of a comma-
separated list of key/value pairs.

The size of the initial is calculated by default to have a height of two text lines
(stored in \DefaultLines); with the keyword 1lines you can change this value to
a different number of lines. There is an exception: if you specify lines=1 the
initial is still made two lines high, but instead of being dropped is placed onto the
baseline of the first text line.

3.1 Phrases and paragraphs 101

If you want a dropped initial that also extends above the first line of text, then
use the keyword loversize. A value of .2 would enlarge the initial by 20%. The
default value for this keyword is stored in \DefaultLoversize. This keyword is
also useful in conjunction with 1raise (default 0 in \DefaultLraise). In case of
an initial with a large descender such as a “Q” you may have to raise the initial to
avoid it overprinting following lines. In that case loversize can be used to reduce
the height so as to align the initial properly.

With the keyword lhang you specify how much the initial extends into the
margin. The value is specified as a fraction—that is, between 0 and 1. Its document
default is stored in \DefaultLhang.

\usepackage{palatino,lettrine}

\usepackage [latinl] {inputenc}
UAND ILS FURENT revenus un \usepackage [french] {babel}

peu a eux, ils marcherent \lettrine[lines=3, loversize=-0.1, lraise=0.1,

vers Lisbonne; il leur restait lhang=.2]{Q}{uand ils furent} revenus un peu & eux,
quelque argent, avec lequel ils es- j15 marchérent vers Lisbonne ; il leur restait quelque
péraient se sauver de la faim apres argent, avec lequel ils espéraient se sauver de la
3-1-46 | avoir échappé a la tempéte . .. faim aprés avoir échappé & la tempéte \ldots

The distance between the initial and the following text in the first line is con-
trolled by the command \DefaultFindent (default Opt) and can be overwritten
using the keyword findent. The indentation of following lines is by default 0.5em
(stored in \DefaultNindent) but can be changed through the keyword nindent.
If you want to specify a sloped indentation you can use the keyword slope, which
applies from the third line onward. Again the default value can be changed via
the command \DefaultSlope, though it seems questionable that you would ever
want anything different than Opt since a slope is normally only used for letters
like “A” or “V”.

\usepackage{palatino,lettrine}
\usepackage [latinl] {inputenc}
PEINE ONT-ILS MIS le pied \usepackage [french]{babel}
dans la ville en pleurant la \lettrine[lines=4, slope=0.6em, findent=-lem,

mort de leur bienfaiteur, nindent=0.6em] {A} { peine ont-ils mis} le pied dans
qU’lls sentent la terre 1a ville en pleurant la mort de leur bienfaiteur,
trembler sous leurs pas; ... qu’ils sentent la terre trembler sous leurs pas; \ldots

The example above clearly demonstrates that the size calculation for the ini-
tial does not take accents into account, which is normally the desired behavior. It
is nevertheless possible to manually adjust the size using loversize.

To attach material to the left of the initial, such as some opening quote, you
can use the keyword ante. It is the only keyword for which no command exists to
set the default.

By modifying the default settings you can easily adapt the package to typeset
initials the way you like. This can be done either in the preamble or in a file with
the name lettrine.cfg, which is loaded if found.

102

Basic Formatting Tools

3.1.11 Paragraph justification in IATgX

For formatting paragraphs IKIgEX deploys the algorithms already built into the TgX
program, which by default produce justified paragraphs. In other words, spaces
between words will be slightly stretched or shortened to produce lines of equal
length. TgX achieves this outcome with an algorithm that attempts to find an opti-
mal solution for a whole paragraph, using the current settings of about 20 internal
parameters. They include aspects such as trying to produce visually compatible
lines, such that a tight line is not followed by one very loosely typeset, or con-
sidering several hyphens in a row as a sign of bad quality. The interactions be-
tween these parameters are very subtle and even experts find it difficult to predict
the results when tweaking them. Because the standard settings are suitable for
nearly all applications, we describe only some of the parameters in this book. Ap-
pendix B.3.3 discusses how to trace the algorithm. If you are interested in delving
further into the matter of automatic paragraph breaking, refer to The TgXbook
[82, chap.14], which describes the algorithm in great detail, or to the very interest-
ing article by Michael Plass and Donald Knuth on the subject, which is reprinted
in Digital Typography [98].

The downside of the global optimizing approach of TgX, which you will en-
counter sooner or later, is that making small changes, like correcting a typo near
the end of a paragraph, can have drastic and surprising effects, as it might affect
the line breaking of the whole paragraph. It is possible, and not even unlikely, that,
for example, the removal of a word might actually result in making a paragraph
one line longer. This behavior can be very annoying if you are near the end of
finishing an important project (like the second edition of this book) and a cor-
rection wreaks havoc on your already manually adjusted page breaks. In such a
situation it is best to place \1inebreak or \pagebreak commands into strategic
places to force TgX to choose a solution that it would normally consider inferior.
To be able to later get rid of such manual corrections you can easily define your
own commands, such as

\newcommand\finallinebreak{\linebreak}

rather than using the standard KX commands directly. This helps you to distin-
guish the layout adjustments for a particular version from other usages of the
original commands—a method successfully used in the preparation of this book.
The interword spacing in a justified paragraph (the white space between
individual words) is controlled by several TEX parameters—the most important
ones are \tolerance and \emergencystretch. By setting them suitably for your
document you can prevent most or all of the “Overfull box” messages without any
manual line breaks. The \tolerance command is a means for setting how much
the interword space in a paragraph is allowed to diverge from its optimum value.!
This command is a TgX (not KIjX) counter and therefore it has an uncommon

IThe optimum is font defined; see Section 7.10.3 on page 428.

3.1 Phrases and paragraphs 103

assignment syntax—for example, \tolerance=500. Lower values make TgX try
harder to stay near the optimum; higher values allow for loose typesetting. The
default value is often 200. When TgX is unable to stay in the given tolerance you
will find overfull boxes in your output (i.e., lines sticking out into the margin like this).
Enlarging the value of \tolerance means that TgX will also consider poorer
but still acceptable line breaks, instead of turning the problem over to
you for manual intervention. Sensible values are between 50 and 9999. Do Careful with
not use 10000 or higher, as it allows TgX to produce arbitrarily bad lines TEX's idea about
(like this one). Infinitely bad
If you really need fully automated line breaking, it is better to set the length
parameter \emergencystretch to a positive value. If TgX cannot break a para-
graph without producing overfull boxes (due to the setting of \tolerance) and
\emergencystretch is positive, it will add this length as stretchable space to
every line, thereby accepting line-breaking solutions that have been rejected
before. You may get some underfull box messages because all the lines are now
set in a loose measure, but this result will still look better than a single horrible
line in the middle of an otherwise perfectly typeset paragraph.
KX has two predefined commands influencing the above parameters:
\fussy, which is the default, and \sloppy, which allows for relatively bad lines.
The \sloppy command is automatically applied by KIgX in some situations (e.g.,
when typesetting \marginpar arguments or p columns in a tabular environment)
where perfect line breaking is seldom possible due to the narrow measure.

Unjustified text

While the theory on producing high-quality justified text is well understood (even
though surprisingly few typesetting systems other than TgX use algorithms that
can produce high quality other than by chance), the same cannot be said for the
situation when unjustified text is being requested. This may sound strange at
first hearing. After all, why should it be difficult to break a paragraph into lines
of different length? The answer lies in the fact that we do not have quantifiable
quality measures that allow us to easily determine whether a certain breaking is
good or bad. In comparison to its work with justified text, TgX does a very poor job
when asked to produce unjustified paragraphs. Thus, to obtain the highest quality
we have to be prepared to help TgX far more often by adding explicit line breaks
in strategic places. A good introduction to the problems in this area is given in an
article by Paul Stiff [154].

The main type of unjustified text is the one in which lines are set flush left
but are unjustified at the right. For this arrangement IKIgX offers the environment
flushleft. It typesets all text in its scope “flush left” by adding very stretch-
able white space at the right of each line; that is, it sets the internal parameter
\rightskip to Opt plus 1fil. This setting often produces very ragged-looking
paragraphs as it makes all lines equally good independent of the amount of text
they contain. In addition, hyphenation is essentially disabled because a hyphen

104 Basic Formatting Tools

adds to the “badness” of a line and, as there is nothing to counteract it, TgX’s
paragraph-breaking algorithm will normally choose line breaks that avoid them.

“The I4TEX document preparation
system is a special version of

. \begin{flushleft}
Donald Knuth’s TEX program. ‘‘The \LaTeX{} document preparation system is a special
TgX is a sophisticated program version of Donald Knuth’s \TeX{} program. \TeX{} is a
designed to produce high-quality sophisticated program designed to produce high-quality
typesetting, especially for typesetting, especially for mathematical text.’’
mathematical text.” \end{flushleft}

In summary, IKIEX’s flushleft environment is not particularly well suited to
continuous unjustified text, which should vary at the right-hand boundary only
to a certain extent and where appropriate should use hyphenation (see the next
section for alternatives). Nevertheless, it can be useful to place individual objects,
like a graphic, flush left to the margin, especially since this environment adds
space above and below itself in the same way as list environments do.

Another important restriction is the fact that the settings chosen by this en-
vironment have no universal effect, because some environments (e.g., ninipage
or tabular) and commands (e.g., \parbox, \footnote, and \caption) restore
the alignment of paragraphs to full justification. That is, they set the \rightskip
length parameter to Opt and thus cancel the stretchable space at the right line
endings. A way to automatically deal with this problem is provided by the pack-
age ragged2e (see next section).

Other ways of typesetting paragraphs are flush right and centered, with the
flushright and center environments, respectively. In these cases the line breaks
are usually indicated with the \\ command, whereas for ragged-right text (the
flushleft environment discussed above) you can let XIEX do the line breaking
itself (if you are happy with the resulting quality).

The three environments discussed in this section work by changing declara-
tions that control how TgX typesets paragraphs. These declarations are also avail-
able as KIEX commands, as shown in the following table of correspondence:

environment: center flushleft flushright
command: \centering \raggedright \raggedleft

The commands neither start a new paragraph nor add vertical space, unlike
the corresponding environments. Hence, the commands can be used inside other
environments and inside a \parbox, in particular, to control the alignment in
p columns of an array or tabular environment. Note, however, that if they are
used in the last column of a tabular or array environment, the \\ is no longer
available to denote the end of a row. Instead, the command \tabularnewline can
be used for this purpose (see also Section 5.2.1).

3.1 Phrases and paragraphs

105

3.1.12 ragged2e—Enhancing justification

The previous subsection discussed the deficiencies of KIEX’s flushleft and
flushright environments. The package ragged2e written by Martin Schroder sets
out to provide alternatives that do not produce such extreme raggedness. This ven-
ture is not quite as simple as it sounds, because it is not enough to set \rightskip
to something like Opt plus 2em. Notwithstanding the fact that this would result
in TgX trying hard to keep the line endings within the 2em boundary, there remains
a subtle problem: by default, the interword space is also stretchable for most fonts.
Thus, if \rightskip has only finite stretchability, TEX will distribute excess space
equally to all spaces. As a result, the interword spaces will have different width,
depending on the amount of material in the line. The solution is to redefine the
interword space so that it no longer can stretch or shrink by specifying a suitable
(font-dependent) value for \spaceskip. This internal TgX parameter, if nonzero,
represents the current interword space, overwriting the default that is defined by
the current font.

By default, the package does not modify the standard IKIEX commands and
environments discussed in the previous section, but instead defines its own using
the same names except that some letters are uppercased.! The new environments
and commands are given in the following correspondence table:

environment: Center FlushLeft FlushRight
command: \Centering \RaggedRight \RaggedLeft

They differ from their counterparts of the previous section not only in the fact
that they try to produce less ragged output, but also in their attempt to provide
additional flexibility by easily letting you change most of their typesetting aspects.

As typing the mixed-case commands and environments is somewhat te-
dious, you can overload the original commands and environments, such as
\raggedright, with the new definitions by supplying the newcommands option
when loading the package.

The package offers a large number of parameters to define the exact behav-
ior of the new commands and environments (see Table 3.2 on the next page).
For \RaggedRight or FlushLeft the white space added at the right of each line
can be specified as \RaggedRightRightskip, the one at the left can be speci-
fied as \RaggedRightLeftskip, the paragraph indentation to use is available as
\RaggedRightParindent, and even the space added to fill the last line is avail-
able as \RaggedRightParfillskip. Similarly, the settings for \Centering and
\RaggedLeft can be altered; just replace RaggedRight in the parameter names
with either Centering or RaggedLeft.

To set a whole document unjustified, specify document as an option to
the ragged2e package. For the purpose of justifying individual paragraphs the

IThis is actually against standard naming conventions. In most packages mixed-case commands
indicate interface commands to be used by designers in class files or in the preamble, but not
commands to be used inside documents.

Overloading the
original commands

Unjustified setting
as the default

106 Basic Formatting Tools
\RaggedLeftParindent Opt \RaggedLeftLeftskip Opt plus 2em
\RaggedLeftRightskip Opt \RaggedLeftParfillskip Opt
\CenteringParindent Opt \CenteringLeftskip Opt plus 2em
\CenteringRightskip Opt plus 2em \CenteringParfillskip Opt
\RaggedRightParindent Opt \RaggedRightLeftskip Opt

\RaggedRightRightskip Opt plus 2em \RaggedRightParfillskip Opt plus 1fil

\JustifyingParindent 1 em \JustifyingParfillskip Opt plus 1fil

“The I4TEX document prepa-

Table 3.2: Parameters used by ragged?2e

package offers the command \justifying and the environment justify. Both
can be customized using the length parameters \JustifyingParindent and
\JustifyingParfillskip.

Thus, to produce a document with a moderate amount of raggedness and
paragraphs indented by 12 pt, you could use a setting like the one in the following
example (compare it to Example 3-1-48 on page 104).

\usepackage [document] {ragged2e}

ration system is a special version \setlength\RaggedRightRightskip{Opt plus lcm}

of Donald Knuth’s TgX program. \setlength\RaggedRightParindent{12pt}

TgX is a sophisticated program ¢‘“The \LaTeX{} document preparation system is a special
designed to produce high-quality version of Donald Knuth’s \TeX{} program. \TeX{} is a
typesetting, especially for mathe- sophisticated program designed to produce high-quality

matical text.”

Unjustified settings
in narrow columns

The default values

typesetting, especially for mathematical text.’’

In places with narrow measures (e.g., \marginpars, \parboxes, minipage en-
vironments, or p-columns of tabular environments), the justified setting usually
produces inferior results. With the option raggedrightboxes, paragraphs in such
places are automatically typeset using \RaggedRight. If necessary, \justifying
can be used to force a justified paragraph in individual cases.

The use of em values in the defaults (see Table 3.2) means that special care is
needed when loading the package, as the em is turned into a real dimension at this
point! The package should therefore be loaded after the body font and size have
been established—for example, after font packages have been loaded.

Instead of using the defaults listed in Table 3.2, one can instruct the
package to mimic the original IXIEX definitions by loading it with the option
originalparameters and then changing the parameter values as desired.

3.1.13 setspace—Changing interline spacing

The \baselineskip command is TgX’s parameter for defining the leading (normal
vertical distance) between consecutive baselines. Standard XX defines a leading
approximately 20% larger than the design size of the font (see Section 7.9.1 on

3.1 Phrases and paragraphs 107

page 413). Because it is not recommended to change the setting of \baselineskip
directly, KIpX2¢ provides the \linespread declaration to allow for changing
\baselineskip at all sizes globally. After \1inespread{1l.5}\selectfont the
leading will increase immediately.!

The package setspace (by Geoffrey Tobin and others) provides commands
and environments for typesetting with variable spacing (primarily double and
one-and-a-half). Three commands—\singlespacing, \onehalfspacing, and
\doublespacing—are available for use in the preamble to set the overall spac-
ing for the document. Alternatively, a different spacing value can be defined by
placing a \setstretch command in the preamble. It takes the desired spacing
factor as a mandatory argument. In the absence of any of the above commands,
the default setting is single spacing.

To change the spacing inside a document three specific environments—
singlespace, onehalfspace, and doublespace —are provided. They set the spac-
ing to single, one-and-a-half, and double spacing, respectively. These environ-
ments cannot be nested.

\usepackage{setspace}

\begin{doublespace}

In the beginning God created the heaven

earth. Now the earth was unformed and void, and and the earth. Now the earth was unformed
and void, and darkness was upon the face

darkness was upon the face of the deep; and the of the deep; and the spirit of God

o hovered over the face of the waters.
3-1.50 | spirit of God hovered over the face of the waters. \end{doublespace}

In the beginning God created the heaven and the

For any other spacing values the generic environment spacing should be
used. Its mandatory parameter is the value of \baselinestretch for the text
enclosed by the environment.

\usepackage{setspace}

\begin{spacing}{2.0}

In the beginning God created the heaven
and the earth. Now the earth was unformed
and void, and darkness was upon the face
of the deep; and the spirit of God
hovered over the face of the waters.

spirit of God hovered over the face of the waters. \end{spacing}

In the beginning God created the heaven and the
earth. Now the earth was unformed and void, and

darkness was upon the face of the deep; and the

In the above example the coefficient “2.0” produces a larger leading than
the “double spacing” (doublespace environment) required for some publications.
With the spacing environment the leading is effectively increased twice—once
by \baselineskip (which KX already sets to about 20% above the font size)
and a second time by setting \baselinestretch. “Double spacing” means that
the vertical distance between baselines is about twice as large as the font size.

lIn contrast the obsolete KX 2.09 solution \renewcommand\baselinestretch{1.5} requires a
following font size changing command (e.g., \small, \Large) to make the new value take effect.

108 Basic Formatting Tools
spacing 10pt 11pt 12pt
one and one-half | 1.25 1.21 1.24
double 1.67 1.62 1.66

Table 3.3: Effective \baselinestretch values for different font sizes

Since \baselinestretch refers to the ratio between the desired distance and the
\baselineskip, the values of \baselinestretch for different document base
font sizes (and at two different optical spacings) can be calculated and are pre-
sented in Table 3.3.

3.1.14 picinpar—Making rectangular holes

The package picinpar (created by Friedhelm Sowa based on earlier work by Alan
Hoenig) allows “windows” to be typeset inside paragraphs. The basic environment
is window. It takes one mandatory argument specified in contrast to KX conven-
tions in square brackets, in the form of a comma-separated list of four elements.
These elements are the number of lines before the window starts; the alignment
of the window inside the paragraph (1 for left, ¢ for centered, and r for right);
the material shown in the window; and explanatory text about the contents in the
window (e.g., the caption).

\usepackage{picinpar}
\begin{window}[1,c,%
\fbox{\shortstack{H\\e\\1\\1\\o}},]

In this case we center a word printed

In this case we center a word printed vertically
inside the paragraph. It is not difficult to
understand that tables | e | can also be easily
included with the | | | tabwindow environ-
ment. (1) When a paragraph
ends, like here, and the window is not yet
finished, then it just continues past the paragraph
boundary, right into the next one(s).

vertically inside the paragraph. It is not
difficult to understand that tables can also

be easily included with the \texttt{tabwindow}

environment.\par When a paragraph ends, like
here, and the window is not yet finished,
then it just continues past the paragraph
boundary, right into the next one(s).
\end{window}

If you look at the above example you will notice that the second paragraph is
not properly indented. You can fix this defect by requesting an explicit indentation
using \par\indent, if necessary.

Centering a window as in the previous example works only if the remaining
text width on either side is still suitably wide (where “suitably” means larger than
one inch). Otherwise, the package will simply fill it with white space.

The package also provides two variant environments, figwindow and
tabwindow. They can format the explanatory text as a caption, by adding a cap-
tion number. You should, however, be careful when mixing such “nonfloating”

3.2 Footnotes, endnotes, and marginals 109

floats with standard figure or table environments, because the latter might get
deferred and this way mess up the numbering of floats.

The next example shows such an embedded figure—a map of Great Britain
placed inside a paragraph. Unfortunately, the caption formatting is more or less
hard-wired into the package; if you want to change it, you have to modify an
internal command named \@nakewincaption.

\usepackage{picinpar,graphicx}

\begin{figwindow}[3,1,%

\fbox{\includegraphics [width=30mm] {ukmapl}},%
{United Kingdom}]

Is this a dagger which I see before me, The

handle toward my hand? Come, let me clutch

or art thou but A dagger thee. I have thee not, and yet I see thee

of the mind, a false cre- still. Art thou not, fatal vision,

ation, Proceeding from the = sensible To feeling as to sight? or art

heat-oppressed brain? Isee ~ thou but A dagger of the mind, a false

thee yet, in form as pal- creation, Proceeding from the

pable As this which now I heat-oppressed brain? I see thee yet, in

draw. Thou marshall’st me form as palpable As this which now I draw.
the way that I was going; Thou marshall’st me the way that I was

And such an instrument I going; And such an instrument I was to use.
was to use. Mine eyes are Mine eyes are made the fools o’ the other

senses, Or else worth all the rest; I see
made the fools o’ the other senses, Or else worth

. thee still, And on thy blade and dudgeon
all the rest; I see thee still, And on thy blade and gouts of blood, Which was not so before.

dudgeon gouts of blood, Which was not so before. (\emph{Macbeth}, Act II, Scene 1).
(Macbeth, Act 11, Scene 1). \end{figwindow}

Is this a dagger which I see before me, The
handle toward my hand? Come, let me clutch
thee. I have thee not, and yet I see thee still. Art
thou not, fatal vision, sen-
sible To feeling as to sight?

Figure 1: United Kingdom

3.2 Footnotes, endnotes, and marginals

KX has facilities to typeset “inserted” text, such as marginal notes, footnotes,
figures, and tables. The present section looks more closely at different kinds of
notes, while Chapter 6 describes floats in more detail.

We start by discussing the possibilities offered through standard IXX’s foot-
note commands and explain how (far) they can be customized. For two-column
documents, a special layout for footnotes is provided by the ftnright package,
which moves all footnotes to the bottom of the right column. This is followed by a
presentation of the footmisc package, which overcomes most of the limitations of
the standard commands and offers a wealth of additional features. The manyfoot
package (which can be combined with footmisc) extends the footnote support for
disciplines like linguistics by providing several independent footnote commands.

Support for endnotes is provided through the package endnotes, which al-
lows for mixing footnotes and endnotes and can also be used to provide chapter

110

Basic Formatting Tools

text text text* text text! text.

notes, as required by some publishers. The section concludes with a discussion of
marginal notes, which are already provided by standard KIgX.

3.2.1 Using standard footnotes

A sharp distinction is made between footnotes in the main text and footnotes
inside a minipage environment. The former are numbered using the footnote
counter, while inside aminipage the \footnote command is redefined to use the
mpfootnote counter. Thus, the representation of the footnote mark is obtained by
the \thefootnote or the \thempfootnote command depending on the context.
By default, it typesets an Arabic number in text and a lowercase letter inside a
minipage environment. You can redefine these commands to get a different rep-
resentation by specifying, for example, footnote symbols, as shown in the next
example.

\renewcommand\thefootnote

{\fnsymbol{footnote}}
*The first text text text\footnote{The first}
TThe second text text\footnote{The second} text.

Footnotes produced with the \footnote command inside a minipage envi-

Peculiarities inside a ronment use the mpfootnote counter and are typeset at the bottom of the parbox

Footnotes in a minipage are num-
bered using lowercase letters.”

This text references a footnote at the
bottom of the page.! And another”

“Inside minipage
bInside again

minipage produced by the minipage. However, if you use the \footnotemark command in

a minipage, it will produce a footnote mark in the same style and sequence as
the main text footnotes—that is, stepping the footnote counter and using the
\thefootnote command for the representation. This behavior allows you to pro-
duce a footnote inside your minipage that is typeset in sequence with the main
text footnotes at the bottom of the page: you place a \footnotemark inside the
minipage and the corresponding \footnotetext after it.

. main text ... \noindent\ldots{} main text \ldots

\begin{center}
\begin{minipage}{.7\linewidth}
Footnotes in a minipage are numbered using

\par This text references a footnote at the
bottom of the page.\footnotemark{}

And another\footnote{Inside again} note.

\end{center}

1 At bottom of page \ldots{} main text \ldots

As the previous example shows, if you need to reference a minipage footnote
several times, you cannot use \footnotemark because it refers to footnotes type-

lowercase letters.\footnote{Inside minipage}

\end{minipage}\footnotetext{At bottom of page}

3-2-2

3.2 Footnotes, endnotes, and marginals

111

set at the bottom of the page. You can, however, load the package footmisc and
then use \mpfootnotemark in place of \footnotemark. Just like \footnotemark,
the \mpfootnotemark command first increments its counter and then displays its
value. Thus, to refer to the previous value you typically have to decrement it first,

as shown in the next example.

Main text ...

Footnotes in a minipage are num-
bered using lowercase letters.”
This text references the previous
footnote.” And another” note.

“Inside minipage
bInside as well

\usepackage{footmisc}

\noindent Main text \ldots \begin{center}

\begin{minipage}{.7\linewidth}

Footnotes in a minipage are numbered using

lowercase letters.\footnote{Inside minipage}

\par This text references the previous

footnote.\addtocounter{mpfootnote}{-11}/
\mpfootnotemark{}

And another\footnote{Inside as well} note.

\end{minipage}

\end{center} \ldots{} main text \ldots

X does not allow you to use a \footnote inside another \footnote
command, as is common in some disciplines. You can, however, use the
\footnotemark command inside the first footnote and then put the text of the
footnote’s footnote as the argument of a \footnotetext command. For other
special footnote requirements consider using the manyfoot package (described

below).

Some' text and some more text.

A sample? footnote.
2 A subfootnote.

Some\footnote{A sample\footnotemark{}
footnote.}\footnotetext{A subfootnote.}
text and some more text.

What if you want to reference a given footnote? You can use KIEX’s normal
\label and \ref mechanism, although you may want to define your own com-
mand to typeset the reference in a special way. For instance:

This is some text.!
...as shown in footnote (1) on page 6....

I Text inside referenced footnote.

\newcommand\fnref [1]{\unskip~(\ref{#1})}
This is some text.\footnote{Text inside
referenced footnote\label{fn:myfoot}.}\par
\ldots as shown in footnote\fnref{fn:myfoot}
on page~\pageref{fn:myfoot},\ldots

Standard IKIgX does not allow you to construct footnotes inside tabular mate-
rial. Section 5.8 describes several ways of tackling that problem.

112

Basic Formatting Tools

3.2.2 Customizing standard footnotes

Footnotes in KIEX are generally simple to use and provide a quite powerful mech-
anism to typeset material at the bottom of a page.! This material can consist of
several paragraphs and can include lists, inline or display mathematics, tabular
material, and so on.

KX offers several parameters to customize footnotes. They are shown
schematically in Figure 3.1 on the next page and are described below:

\footnotesize The font size used inside footnotes (see also Table 7.1 on
page 342).

\footnotesep The height of a strut placed at the beginning of every footnote.
If it is greater than the \baselineskip used for \footnotesize, then addi-
tional vertical space will be inserted above each footnote. See Appendix A.2.3
for more information about struts.

\skip\footins A low-level TgX length parameter that defines the space between
the main text and the start of the footnotes. You can change its value with the
\setlength or \addtolength command by putting \skip\footins into the
first argument:

\addtolength{\skip\footins}{10mm plus 2mm}

\footnoterule A macro to draw the rule separating footnotes from the main
text that is executed right after the vertical space of \skip\footins. It should
take zero vertical space; that is, it should use a negative skip to compensate
for any positive space it occupies. The default definition is equivalent to the
following:

\renewcommand\footnoterule{\vspace*{-3pt}%
\hrule width 2in height 0.4pt \vspace*{2.6pt}}

Note that TgX’s \hrule command and not KIX’s \rule command is used. Be-
cause the latter starts a paragraph, it would be difficult to calculate the spaces
needed to achieve a net effect of zero height. For this reason producing a
fancier “rule” is perhaps best done by using a zero-sized picture environment
to position the rule object without actually adding vertical space.

In the report and book classes, footnotes are numbered inside chapters;
in article, footnotes are numbered sequentially throughout the document. You
can change the latter default by using the \@addtoreset command (see Ap-
pendix A.1.4). However, do not try to number your footnotes within pages with

L An interesting and complete discussion of this subject appeared in the French TgX Users’ Group
magazine Cahiers GUTenberg [10,133].

3.2 Footnotes, endnotes, and marginals

113

Main body text

\footnotesep

1

I \footnoterule \skip\footins
A \@makefntext

{
produced by \@makefnmark

2

I\footnotesep
A \@makefntext

N
produced by \@makefnmark

Figure 3.1: Schematic layout of footnotes

the help of this mechanism. IKTgX is looking ahead while producing the final pages,
so your footnotes would most certainly be numbered incorrectly. To number foot-
notes on a per-page basis, use the footmisc or perpage package (described below).

The command \@makefnmark is normally used to generate the footnote mark.
One would expect this command to take one argument (the current footnote num-
ber), but in fact it takes none. Instead, it uses the command \@thefnmark to indi-
rectly refer to that number. The reason is that depending on the position (inside
or outside of aminipage) a different counter needs to be accessed. The definition,
which by default produces a superscript mark, looks roughly as follows:

\renewcommand\@mnakefnmark
{\mbox{\normalfont\@thefnmark}}

The \footnote command executes \@makefntext inside a \parbox, with a
width of \columnwidth. The default version looks something like:

\newcommand\@makefntext [1]
{\noindent\makebox[1.8em] [r]{\@makefnmark}#1}

This will place the footnote mark right aligned into a box of width 1.8em directly
followed by the footnote text. Note that it reuses the \@makefnmark macro, So any
change to it will, by default, modify the display of the mark in both places. If you
want the text set flush left with the number placed into the margin, then you could
use the redefinition shown in the next example. Here we do not use \@makefnmark
to format the mark, but rather access the number via \@thefnmark. As a result,

114 Basic Formatting Tools
the mark is placed onto the baseline instead of being raised. Thus, the marks in
the text and at the bottom are formatted differently.

\makeatletter
|) \renewcommand\@makefntext [1]%
text text text” text text” text. {\noindent\makebox [Opt] [r]{\@thefnmark.\, }#1}
\makeatother
1. The first text text text\footnote{The first}

2. The second

text text\footnote{The second} text.

3.2.3 ftnright—Right footnotes in a two-column environment

It is sometimes desirable to group all footnotes in a two-column document at the
bottom of the right column. This can be achieved by specifying the ftnright pack-
age written by Frank Mittelbach. The effect of this package is shown in Figure 3.2
on the facing page—the first page of the original documentation (including its
spelling errors) of the ftnright implementation. It is clearly shown how the vari-
ous footnotes collect in the lower part of the right-hand column.

The main idea for the ftnright package is to assemble the footnotes of all
columns on a page and place them all together at the bottom of the right column.
The layout produced allows for enough space between footnotes and text and, in
addition, sets the footnotes in smaller type.! Furthermore, the footnote markers
are placed at the baseline instead of raising them as superscripts.?

This package can be used together with most other class files for KIgX. Of
course, the ftnright package will take effect only with a document using a two-
column layout specified with the twocolumn option on the \documentclass com-
mand. In most cases, it is best to use ftnright as the very last package to make
sure that its settings are not overwritten by other options.

3.2.4 footmisc—Various footnotes styles

Since standard KIEX offers only one type of footnotes and only limited (and
somewhat low-level) support for customization, several people developed small
packages that provided features otherwise not available. Many of these earlier ef-
forts were captured by Robin Fairbairns in his footmisc package, which supports,
among other things, page-wise numbering of footnotes and footnotes formatted
as a single paragraph at the bottom of the page. In this section we describe the fea-
tures provided by this package, showing which packages it supersedes whenever
applicable.

1Some journals use the same size for footnotes and text, which sometimes makes it difficult to
distinguish footnotes from the main text.

20f course, this is done only for the mark preceding the footnote text and not the one used
within the main text, where a raised number or symbol set in smaller type will help to keep the flow
of thoughts uninterrupted.

3.2 Footnotes, endnotes, and marginals

115

Footnotes in a multi-column layout*

Frank Mittelbach

August 10, 1991

1 Introduction

The placement of footnotes in a multi-column layout
always bothered me. The approach taken by ISX
(i.e., placing the footnotes separately under each column)
might be all right if nearly no footnotes are present. But
it looks clumsy when both columns contain footnotes,
especially when they occupy different amounts of space.

In the multi-column style option [5], I used page-wide
footnotes at the bottom of the page, but again the result
doesn’t look very pleasant since short footnotes produce
undesired gaps of white space. Of course, the main goal
of this style option was a balancing algorithm for columns
which would allow switching between different numbers
of columns on the same page. With this feature, the
natural place for footnotes seems to be the bottom of the
page! but looking at some of the results it seems best to
avoid footnotes in such a layout entirely.

Another possibility is to turn footnotes into endnotes,
i.e., printing them at the end of every chapter or the end
of the entire document. But I assume everyone who has
ever read a book using such a layout will agree with me,
that it is a pain to search back and forth, so that the reader
is tempted to ignore the endnotes entirely.

When I wrote the article about “Future extensions of
TEX” [6] I was again dissatisfied with the outcome of
the footnotes, and since this article should show certain
aspects of high quality typesetting, I decided to give the
footnote problem a try and modified the I5TEX output
routine for this purpose. The layout I used was inspired
by the yearbook of the Gutenberg Gesellschaft Mainz
[1]. Later on, I found that it is also recommended by Jan
White [9]. On the layout of footnotes I also consulted
books by Jan Tschichold [8] and Manfred Simoneit [7],
books, I would recommend to everyone being able to
read German texts.

1.1 Description of the new layout

The result of this effort is presented in this paper and the
reader can judge for himself whether it was successful
or not.2 The main idea for this layout is to assemble the
footnotes of all columns on a page and place them all

1

Figure 3.2: The placement of text and footnotes with the ftnright package

The interface for footmisc is quite simple: nearly everything is customized
by specifying options when the package is loaded, though in some cases further
control is possible via parameters.
In the article class, footnotes are numbered sequentially throughout the doc-
ument; in report and book, footnotes are numbered inside chapters. Sometimes,

together at the bottom of the right column. Allowing for
enough space between footnotes and text, and in addition,
setting the footnotes in smaller type® I decided that one
could omit the footnote separator rule which is used in
most publications prepared with TgX.* Furthermore, 1
decided to place the footnote markers® at the baseline
instead of raising them as superscripts.®

All in all, I think this generates a neat layout, and
surprisingly enough, the necessary changes to the ISTEX
output routine are nevertheless astonishingly simple.

1.2 The use of the style option

This style option might be used together with any other
style option for ISTEX which does not change the three
internals changed by ftnright . sty.” In most cases,
it is best to use this style option as the very last option in
the \documentstyle command to make sure that its
settings are not overwritten by other options.®

*. The I4TEX style option ftnright which is described in this ar-
ticle has the version number v1.0d dated 92/06/19. The documentation
was last revised on 92/06/19.

1. You can not use column footnotes at the bottom, since the number
of columns can differ on one page.

2. Please note, that this option only changed the placement of foot-
notes. Since this article also makes use of the doc option [4], that
assigns tiny numbers to code lines sprincled throughout the text, the
resulting design is not perfect.

3. The standard layout in TUGboat uses the same size for foot-
notes and text, giving the footnotes, in my opinion, much too much
prominence.

4. People who prefer the rule can add it by redefining the command
\footnoterule [2, p. 156]. Please, note, that this command should
occupy no space, so that a negative space should be used to compensate
for the width of the rule used.

5. The tiny numbers or symbols, e.g., the 5" in front of this footnote.

6. Of course, this is only done for the mark preceeding the footnote
text and not the one used within the main text where a raised number
or symbol set in smaller type will help to keep the flow of thoughts,
uninterrupted.

7. These are the macros \@startcolumn, \@makecol and
\@outputdblcol as we will see below. Of course, the option will
take only effect with a document style using a twocolumn layout (like
ltugboat) or when the user additionally specifies twocolumn as a
document style option in the \document style command.

8. The 1tugboat option (which is currently set up as a style option
instead of a document style option which it actually is) will overwrite

116

Basic Formatting Tools

however, it is more appropriate to number footnotes on a per-page basis. This can
be achieved by loading footmisc with the option perpage. The package footnpag
(by Joachim Schrod) provides the same feature with a somewhat different imple-
mentation as a stand-alone package. A generalized implementation for resetting
counters on a per-page basis is provided by the package perpage (see Section 3.2.5
on page 120). Since TgX's page-building mechanism is asynchronous, it is always
necessary to process the document at least twice to get the numbering correct.
Fortunately, the package warns you via “Rerun to get cross-references right” if the
footnote numbers are incorrect. The package stores information between runs in
the . aux file, so after a lot of editing this information is sometimes not even close
to reality. In such a case deleting the . aux file helps the package to find the correct
numbering faster.!

Some text* with a| |Even more text.* And
More! text.| |even’ more text. Some

footnote.

*First.
TSecond.

\usepackage [perpage, symbol] {footmisc}

More\footnote{Second.} text. Even more
*Third. text.\footnote{Third.} And even\footnote
T Fourth. {Fourth.} more text. Some final text.

Counter too large

errors

For this special occasion our example shows two pages side by side, so you
can observe the effects of the perpage option. The example also shows the effect
of another option: symbol will use footnote symbols instead of numbers. As only
a limited number of such symbols are available, you can use this option only
if there are few footnotes in total or if footnote numbers restart on each page.
There are six different footnote symbols and, by duplicating some, standard KIEX
supports nine footnotes. By triplicating some of them, footmisc supports up to
16 footnotes (per page or in total). If this number is exceeded you will get a IXTEX
error message.

In particular with the perpage option, this behavior can be a nuisance because
the error could be spurious, happening only while the package is still trying to
determine which footnotes belong on which page. To avoid this problem, you
can use the variant option symbol*, which also produces footnote symbols but
numbers footnotes for which there are no symbols left with Arabic numerals. In
that case you will get a warning at the end of the run that some footnotes were
out of range and detailed information is placed in the transcript file.

\setfnsymbol{name} \Def ineFNsymbols*{name} [typel {symbol-list}

If the symbol or symbol* option is selected, a default sequence of footnote sym-
bols defined by Leslie Lamport is used. Other authorities suggest different se-

1In fact, during the preparation of this chapter we managed to confuse footmisc (by changing the
\textheight in an example) so much that it was unable to find the correct numbering thereafter
and kept asking for a rerun forever. Removing the .aux file resolved the problem.

Some text\footnote{First.} with a footnote.

3-2-7

3.2 Footnotes, endnotes, and marginals 117

lamport * t F 8 9 I k% Tt 4+ 88§ 97 *kkx fTt++ +++ 88§ T19
bringhurst * T+ $ § | 9

chicago *x t + § | #

wiley * xx T £ § 9 |

Table 3.4: Footnote symbol lists predefined by footmisc

quences, so footmisc offers three other sequences to chose from using the dec-
laration \setfnsymbol (see Table 3.4).

In addition, you can define your own sequence using the \DefineFNsymbols
declaration in the preamble. It takes two mandatory arguments: the name to ac-
cess the list later via \setfnsymbol and the symbol-list. From this list symbols are
taken one after another (with spaces ignored). If a symbol is built from more than
one glyph, it has to be surrounded by braces. If the starred form of the declaration
is used, KIEX issues an error message if it runs out of symbols. Without it, you will
get Arabic numerals and a warning at the end of the KIEX run.

Due to an unfortunate design choice, footnote symbols (as well as some other
text symbols) were originally added to the math fonts of TgX, rather than to the
text fonts, with the result that they did not change when the text font was mod-
ified. In KTEX this flaw was partly corrected by adding these symbols to the text
symbol encoding (TS1; see Section 7.5.4). However, for compatibility reasons the
footnote symbols are still taken by default from the math fonts, even though this
choice is not appropriate if one has changed the text font from Computer Modern
to some other typeface. By using the optional type argument with the value text,
you can tell footmisc that your list consists of text symbols. Note that all prede-
fined symbol lists consist of math symbols and may need redeclaring if used with
fonts other than Computer Modern.

Some text” with a footnote. More™ text.

ok \usepackage [symbol] {footmisc}
Even more text.” And even™™" more text. P ge 8y

\DefineFNsymbols{stars} [text]{* {**} {x*x*} {x*x*x}}

Some more text to finish up. \setfnsymbol{stars}
*First. Some text\footnote{First.} with a footnote.
**Second. More\footnote{Second.} text. Even more
“**Third. text.\footnote{Third.} And even\footnote{Fourth.}
“*Eourth. more text. Some more text to finish up.

If you have many short footnotes then their default placement at the bottom
of the page, stacked on top of each other, is perhaps not completely satisfactory.
A typical example would be critical editions, which contain many short footnotes.!
The layout of the footnotes can be changed using the para option, which formats

Isee, for example, the ledmac package [171] for the kinds of footnotes and endnotes that are
common in critical editions. This package is a reimplementation of the EDMAC system [112] for IXIpX
and was recently made available by Peter Wilson. See also the bigfoot package by David Kastrup.

118 Basic Formatting Tools

them into a single paragraph. If this option is chosen then footnotes never split
across pages. The code for this option is based on work by Chris Rowley and
Dominik Wujastyk (available as the package fnpara), which in turn was inspired
by an example in The TgXbook by Donald Knuth.

1

Some text with a footnote.! More text.2 Even \usepackage[para]{footmisc}

more text.? Some final text. Some text with a footnote.\footnote{A first.}
More text.\footnote{A second.} Even more
L' Afirst. 2 Asecond. 3 A third. text.\footnote{A third.} Some final text. 3-2-9

Another way to deal with footnotes is given by the option side. In this case
footnotes are placed into the margin, if possible on the same line where they
are referenced. What happens internally is that special \marginpar commands
are used to place the footnote text, so everything said in Section 3.2.8 about the
\marginpar commands is applicable. This option cannot be used together with
the para option, described earlier, but can be combined with most others.

\usepackage[side,flushmargin]{footmisc}

Some text with a footnote.\footnote{A first.}
A lot of additional text here with a

TA first. Some text with a footnote.! A lot footnote. \footnote{A second.}
2A second. of additional text here with a footnote.? Even more text and then another
Even more text and then another foot- footnote.\footnote{A third.}
3 A third. note.> Some more text.* A lot of ad- Some more text.\footnote{A fourth.} A lot of
4A fourth. ditional lines of text here to fill up the additional lines of text here to fill up the

space on the left. space on the left.

The option flushmargin used in the previous example makes the footnote
text start at the left margin with the footnote marker protruding into the margin;
by default, the footnote text is indented. For obvious reasons this option is incom-
patible with the para option. A variant form is called marginal. If this option is
used then the marker sticks even farther into the margin, as shown in the example
below.

Some text! with a footnote. More text.2 Even

\usepackage [marginal] {footmisc}
more text.> Some final text.

Some text\footnote{A first.} with a

1A first. footnote. More text.\footnote{A second.}
2 A second. Even more text.\footnote{A third.} Some
3 A third. final text. 3-2-11

Instead of using one of the above options, the position of the footnote marker
can be directly controlled using the parameter \footnotemargin. If set to a neg-
ative value the marker is positioned in the margin. A value of Opt is equivalent
to using the option flushmargin. A positive value means that the footnote text

3.2 Footnotes, endnotes, and marginals 119

is indented by this amount and the marker is placed flush right in the space pro-
duced by the indentation.

\usepackage{footmisc}
\setlength\footnotemargin{10pt}

Some text\footnote{A first.} with a

1A first. footnote. More text.\footnote{A second.}
2A second. Even more text.\footnote{A third.} Some

3A third. final text.

By default, the footnote text is justified but this does not always give satis-
factory results, especially with the options para and side. In case of the para
option nothing can be done, but for other layouts you can switch to ragged-
right typesetting by using the option ragged. The next example does not spec-
ify flushmargin, so we get an indentation of width \footnotemargin—compare
this to Example 3-2-10 on the preceding page.

Some text! with a footnote. More text.2 Even
more text.> Some final text.

\usepackage [side,ragged] {footmisc}

.) L Some text\footnote{In the margin ragged
In Fhe margin Some te)st. with a footnote right often looks better.} with a footnote
ragged right often A lot of additional text here t0 A 1ot of additional text here to fill

looks better. . ;
fill up the space in the example. up the space in the example. A lot of
A lot of additional text here to additional text here to fill up the space
fill up the space in the example. in the example.

The two options norule and splitrule (courtesy of Donald Arseneau) mod-
ify the rule normally placed between text and footnotes. If norule is speci-
fied, then the separation rule will be suppressed. As compensation the value of
\skip\footins is slightly enlarged. If a footnote does not fit onto the current
page it will be split and continued on the next page, unless the para option
is used (as it does not support split footnotes). By default, the rule separating
normal and split footnotes from preceding text is the same. If you specify the
option splitrule, however, it becomes customizable: the rule above split foot-
notes will run across the whole column while the one above normal footnotes
will retain the default definition given by \footnoterule. More precisely, this
option will introduce the commands \mpfootnoterule (for use in minipages),
\pagefootnoterule (for use on regular pages), and \splitfootnoterule (for
use on pages starting with a split footnote). By modifying their definitions, similar
to the example given earlier for the \footnoterule command, you can customize
the layout according to your needs.

Some text with a footnote.! More text.2 Even \usepackage[norule,paral{footmisc}
more text.> Some final text. Some text with a footnote.\footnote{A first.}
More text.\footnote{A second.} Even more
U Afirst. 2 Asecond. 3 A third. text.\footnote{A third.} Some final text.

120

Basic Formatting Tools

In classes such as article or report in which \raggedbotton is in effect, so
that columns are allowed to be of different heights, the footnotes are attached at
a distance of \skip\footins from the column text. If you prefer them aligned at
the bottom, so that any excess space is put between the text and the footnotes,
specify the option bottom. In classes for which \flushbottom is in force, such as
book, this option does nothing.

In some documents, e.g., literary analysis, several footnotes may appear at a
single point. Unfortunately, IKX’s standard footnote commands are not able to
handle this situation correctly: the footnote markers are simply clustered together
so that you cannot tell whether you are to look for the footnotes 1 and 2, or for
the footnote with the number 12.

Some text'? with two footnotes. Even \ysepackage [paral {footmisc}

3
more text. Some text\footnote{A first.}\footnote{A second.} with
I Afirst. 2 Asecond. 2 A third. two footnotes. Even more text.\footnote{A third.}

This problem will be resolved by specifying the option multiple, which en-
sures that footnotes in a sequence will display their markers separated by com-
mas. The separator can be changed to something else, such as a small space, by
changing the command \multfootsep.

1,2 i
Some gext with two footnotes. Even \usepackage [multiple,paral {footmisc}
more text. Some text\footnote{A first.}\footnote{A second.} with
L Afirst. 2 Asecond. 3 A third. two footnotes. Even more text.\footnote{A third.}

The footmisc package deals with one other potential problem: if you put a
footnote into a sectional unit, then it might appear in the table of contents or
the running header, causing havoc. Of course, you could prevent this dilemma
(manually) by using the optional argument of the heading command; alternatively,
you could specify the option stable, which prevents footnotes from appearing in
such places.

3.2.5 perpage—Resetting counters on a “per-page” basis

As mentioned earlier, the ability to reset arbitrary counters on a per-page basis is
implemented in the small package perpage written by David Kastrup.

\MakePerPage [start] {counter}

The declaration \MakePerPage defines counter to be reset on every page, option-
ally requesting that its initial starting value be start (default 1). For demonstration

3-2-15

3.2 Footnotes, endnotes, and marginals

121

we repeat Example 3-2-7 on page 116 but start each footnote marker sequence
with the second symbol (i.e., “1” instead of “*”).

\usepackage [symbol] {footmisc}

. \usepackage{perpage}

Some text' with a| |Even more text.” And packageiperpag

\MakePerPage [2] {footnote}
footnote. More* text.| |even? more text. Some . .

Some text\footnote{First.} with a footnote.
More\footnote{Second.} text. Even more

T First. T Third. text.\footnote{Third.} And even\footnote

|3-2-17| ¥Second. Fourth. {Fourth.} more text. Some final text.

The package synchronizes the numbering via the .aux file of the document,
thus requiring at least two runs to get the numbering correct. In addition, you may
get spurious “Counter too large” error messages on the first run if \fnsymbol or
\alph is used for numbering (see the discussion of the symbol* option for the
footmisc package on page 116).

Among KIEX’s standard counters probably only footnote can be sensibly
modified in this way. Nevertheless, one can easily imagine applications that pro-
vide, say, numbered marginal notes, which could be defined as follows:

\newcounter{mnote}
\newcommand\mnote [1]{{\refstepcounter{mnotel}y,
\marginpar [\itshape\small\raggedleft\themnote.\ #1]7
{\itshape\small\raggedright\themnote.\ #1}}}
\usepackage{perpage} \MakePerPage{mnote}

We step the new counter mnote outside the \marginpar so that it is executed
only once;! we also need to limit the scope of the current redefinition of \label
(through \refstepcounter) so we put braces around the whole definition. Notes
on left-hand pages should be right aligned, so we use the optional argument of
\marginpar to provide different formatting for this case.

% code as above

1. First.

3-2-18

Some text with a
footnote. More! text.

2. Third! Even more text. And

1Second as footnote.

even more text. Some 1. Fourth.
final text.?

2Fifth!

Some text\mnote{First.} with a
footnote. More\footnote{Second
as footnote.} text. Even more
text.\mnote{Third!} And even
more\mnote {Fourth.} text. Some
final text.\footnote{Fifth!'}

Another application for the package is given in Example 3-2-24 on page 125,
where several independent footnote streams are all numbered on a per-page basis.

11f placed in both arguments of \marginpar it would be executed twice. It would work if placed
in the optional argument only, but then we would make use of an implementation detail (that the
optional argument is evaluated first) that may change.

122

Basic Formatting Tools

3.2.6 manyfoot—Independent footnotes

Most documents have only a few footnotes, if any. For them KIgEX’s standard com-
mands plus the enhancements offered by footmisc are usually sufficient. However,
certain applications, such as critical editions, require several independently num-
bered footnote streams. For these situations the package manyfoot by Alexander
Rozhenko can provide valuable help.!

\DeclareNewFootnote [fn-style] {suffix} [enum-style]

This declaration can be used to introduce a new footnote level. In its simplest
form you merely specify a suffix such as “B”. This allocates a new counter
footnote(suffix) that is used to automatically number the footnotes on the new
level. The default is to use Arabic numerals; by providing the optional argument
enum-style, some other counter style (e.g., roman or alph) can be selected.

The optional fn-style argument defines the general footnote style for the new
level; the default is plain. If the package was loaded with the para or para*
option, then para can also be selected as the footnote style.

The declaration will then automatically define six commands for you. The first
three are described here:

\footnote(suffix) [(number]{text} Same as \footnote but for the new level.
Steps the footnote(suffix) counter unless the optional number argument is
given. Generates footnote markers and puts text at the bottom of the page.

\footnotemark(suffix) [number] Same as \footnotemark but for the new level.
Steps the corresponding counter (if no optional argument is used) and prints
a footnote marker corresponding to its value.

\footnotetext(suffix) (number]{text} Same as \footnotetext but for the
new level. Puts text at the bottom of the page using the current value of
footnote(suffix) or the optional argument to generate a footnote marker in
front of it.

In all three cases the style of the markers depends on the chosen enum-style.

The remaining three commands defined by \DeclareNewFootnote for
use in the document are \Footnote(suffix), \Footnotemark(suffix), and
\Footnotetext(suffix) (i.e., same names as above but starting with an upper-
case F). The important difference to the previous set is the following: instead of
the optional number argument, they require a mandatory marker argument allow-
ing you to specify arbitrary markers if desired. Some examples are given below.

The layout of the footnotes can be influenced by loading the footmisc package
in addition to manyfoot, except that the para option of footmisc cannot be used.
In the next example we use the standard footnote layout for top-level footnotes
and the run-in layout (option para) for the second level. Thus, if all footnote
levels should produce run-in footnotes, the solution is to avoid top-level footnotes

1A more comprehensive package, bigfoot, is currently being developed by David Kastrup.

3-2-21

3.2 Footnotes, endnotes, and marginals

123

completely (e.g., \footnote) and provide all necessary levels through manyfoot.
Note how footmisc’s multiple option properly acts on all footnotes.

Some text!? with footnotes. Even
more text.® Some text?” with footnotes.

Even more text.¢

LA first.
2 Another main note.

aB-level. PA second.
¢ Another B note.

*
A manual marker.

\usepackage [multiple] {footmisc}
\usepackage [para] {manyfoot}

\DeclareNewFootnote [para] {B} [alph]

Some text\footnote{A first.}\footnoteB{B-level.}
with footnotes. Even more text.\footnoteB{A second.}
Some text\footnote{Another main note.l}%

\FootnoteB{*}{A manual marker.} with footnotes.

Even more text.\footnoteB{Another B note.}

In the following example the top-level footnotes are moved into the margin by
loading footmisc with a different set of options. This time manyfoot is loaded with
the option para*, which differs from the para option used previously in that it
suppresses any indentation for the run-in footnote block. In addition, the second-
level notes are now numbered with Roman numerals. For comparison the example
typesets the same input text as Example 3-2-19 but it uses a different measure, as
we have to show marginal notes now.

LA first.

2 Another
main note.

iB-level.
iii Apother B note.

Some text'! with footnotes.
Even more text.! Some text>" with
footnotes. Even more text.™

1A second.

\usepackage[side,flushmargin,ragged,multiple]

{footmisc}

\usepackage [para*]{manyfoot}
\DeclareNewFootnote [para] {B} [roman]

Some text\footnote{A first.}\footnoteB{B-level.}
with footnotes. Even more text.\footnoteB{A
second.} Some text\footnote{Another main note.}),

*
A manual marker.

\FootnoteB{*}{A manual marker.} with footnotes.

Even more text.\footnoteB{Another B note.}

The use of run-in footnotes, with either the para or the parax option, is likely
to produce one particular problem: very long footnotes near a page break will
not be split. To resolve this problem the manyfoot package offers a (semi)manual
solution: at the point where you wish to split your note you place a \SplitNote
command and end the footnote. You then place the remaining text of the footnote
one paragraph farther down in the document in a \Footnotetext (suffix) using
an empty marker argument.

Some! text with two
footnotes.! More text."
Even more text.

VA first.

IA second. iThis is a
very very long footnote that

Some text here and?
even more there. Some
text for this block to fill
the page.

2 Another first.

is continued here.

\usepackage [para] {manyfoot}
\DeclareNewFootnote [para] {B} [roman]
Some\footnote{A first.} text with two
footnotes.\footnoteB{A second.} More
text.\footnoteB{This is a very very long
footnote that\SplitNote} Even more text.

Some\FootnotetextB{}{is continued here.}
text here and\footnote{Another first.}
even more there. \sample 7, as elsewhere

124

Basic Formatting Tools

If both parts of the footnote fall onto the same page after reformatting the
document, the footnote parts get correctly reassembled, as we prove in the next
example, which uses the same example text but a different measure. However, if
the reformatting requires breaking the footnote in a different place, then further
manual intervention is unavoidable. Thus, such work is best left until the last
stage of production.

\usepackage [para] {manyfoot}

Some! text with two footnotes.! More text! Even \DPeclareNewFootnote[para]{B}[roman]

more text. Some\footnote{A first.} text with two
Some text here and? even more there. Some text for ~footnotes.\footnoteB{A second.} More
this block to fill the page. text.\footnoteB{This is a very very long
footnote that\SplitNote} Even more text.
LA first.
2
Another first. Some\FootnotetextB{}{is continued here.}
iIA second. UThis is a very very long footnote that is continued text here and\footnote{Another first.}
here. even more there. \sample % as elsewhere |3-2-22

The vertical separation between a footnote block and the previous one is spec-
ified by \skip\footins(suffix). By default, it is equal to \skip\footins (i.e., the
separation between main text and footnotes). Initially the extra blocks are only
separated by such spaces, but if the option ruled is included a \footnoterule is
used as well. In fact, arbitrary material can be placed in that position by redefining
the command \extrafootnoterule—the only requirement being that the typeset
result from that command does not take up any additional vertical space (see the
discussion of \footnoterule on page 112 for further details). It is even possi-
ble to use different rules for different blocks of footnotes; consult the package
documentation for details.

\usepackage [marginal ,multiple]{footmisc}
\usepackage [ruled] {manyfoot}

1,% :
Some text Wlth.a footnote. Even more \pe 1 areNeuFootnote B} [fnsymbol]
text.* Some text! with a footnote.® Some \peciareNewFootnote{C} [Alph]
more text for the example. \setlength{\skip\footinsB}{5pt minus 1pt}

LA first.

* A second.
T A sample.

A A third.
B Another sample.

Number the
footnotes per page

\setlength{\skip\footinsC}{5pt minus 1pt}

Some text\footnote{A first.}\footnoteB{A second.}
with a footnote. Even more text.\footnoteC{A third
Some text\footnoteB{A sample.} with a
footnote.\footnoteC{Another sample.} Some more
text for the example.

The previous example deployed two additional enum-styles, Alph and
fnsymbol. However, as only a few footnote symbols are available in both styles,
that choice is most likely not a good one, unless we ensure that these footnote
streams are numbered on a per-page basis. The perpage option of footmisc will
not help here, as it applies to only the top-level footnotes. We can achieve the

»

3-2-23

3-2-24

3.2 Footnotes, endnotes, and marginals

125

desired effect either by using \MakePerPage from the perpage package on the
counters footnoteB and footnoteC (as done below), or by using the perpage
option of manyfoot (which calls on the perpage package to do the job, which will
number all new footnote levels defined on a per-page basis). Note that the top-level
footnotes are still numbered sequentially the way the example was set up.

Some text! with
a footnote. Even
more™ A text. Some

LA first.
*Second.

AThird.

text® with a foot-
note here2 Some
more text. And>* a

2 Again.
*A last.

AA sample.
B Another sample.

\usepackage [multiple] {footmisc}
\usepackage{manyfoot,perpage’}
\DeclareNewFootnote{B} [fnsymbol]
\DeclareNewFootnote{C} [Alph]
\MakePerPage{footnoteB}\MakePerPage{footnoteC}
Some text\footnote{A first.} with a footnote.
Even more\footnoteB{Second.}\footnoteC{Third.}
text. Some text\footnoteC{A sample.} with a
footnote here.\footnoteC{Another sample.} Some
more text. And\footnote{Again.}\footnoteB{A
last.} a last note.

3.2.7 endnotes—An alternative to footnotes

Scholarly works usually group notes at the end of each chapter or at the end of
the document. Such notes are called endnotes. Endnotes are not supported in
standard IXTgX, but they can be created in several ways.

The package endnotes (by John Lavagnino) provides its own \endnote com-
mand, thus allowing footnotes and endnotes to coexist.

The document-level syntax is modeled after the footnote commands if you re-
place foot with end—for example, \endnote produces an endnote, \endnotemark
produces just the mark, and \endnotetext produces just the text. The counter
used to hold the current endnote number is called endnote and is stepped when-
ever \endnote or \endnotemark without an optional argument is used.

All endnotes are stored in an external file with the extension .ent and are
made available when you issue the command \theendnotes.

This is simple text.! This is simple
text.2 Some more text with a mark.!

Notes

IThe first endnote.
2The second endnote.

\usepackage{endnotes}

This is simple text.\endnote{The first endnote.}
This is simple text.\endnote{The second endnote.}
Some more text with a mark.\endnotemark[1]

\theendnotes

% output endnotes here

This process is different from the way the table of contents is built; the end-
notes are written directly to the file, so that you will see only those endnotes which
are defined earlier in the document. The advantage of this approach is that you
can have several calls to \theendnotes, for example, at the end of each chapter.

126

Basic Formatting Tools

This is simple

simple text.”’ Some more text

with a mark.?

Chapter Notes

®The first endnote.

To additionally restart the numbering you have to set the endnote counter to zero
after calling \theendnotes.

The heading produced by \theendnotes can be controlled in several ways.
The text can be changed by modifying \notesname (default is the string Notes).
If that is not enough you can redefine \enoteheading, which is supposed to pro-
duce the sectioning command in front of the notes.

The layout for endnote numbers is controlled through \theendnote, which
is the standard way IXIEX handles counter formatting. The format of the mark is
produced from \makeenmark with \theenmark, holding the formatted number
for the current mark.

\usepackage{endnotes}
\renewcommand\theendnote{\alph{endnotel}}
\renewcommand\makeenmark{\theenmark) }
\renewcommand\notesname {Chapter Notes}

text.® This is

This is simple text.\endnote{The first endnote.}
This is simple text.\endnote{The second endnote.}
Some more text with a mark.\endnotemark[1]

Y The second endnote. \theendnotes

The font size for the list of endnotes is controlled through \enotesize, which
defaults to \footnotesize. Also, by modifying \enoteformat you can change the
display of the individual endnotes within their list. This command is supposed to
set up the paragraph parameters for the endnotes and to typeset the note number
stored in \theenmark. In the example we start with no indentation for the first
paragraph and with the number placed into the margin.

\usepackage{endnotes}

This is simple text." This is \renewcommand\enoteformat{\noindent\raggedright

simple text.> Some more text

with a mark.!

Notes

\setlength\parindent{12pt}\makebox [Opt] [r]{\theenmark.\,}}
\renewcommand\enotesize{\scriptsize}
This is simple text.\endnote{The first endnote with a lot
of text to produce two lines.\par And even a second
paragraph.}

1. The first endnote with a lot of text to This is simple text.\endnote{The second endnote.}

produce two lines.

And even a second paragraph.

2. The second endnote.

Some more text with a mark.\endnotemark[1]
\theendnotes

3.2.8 Marginal notes

The standard KEX command \marginpar generates a marginal note. This com-
mand typesets the text given as its argument in the margin, with the first line
being at the same height as the line in the main text where the \marginpar com-
mand occurs. When only the mandatory argument is specified, the text goes to the
right margin for one-sided printing; to the outside margin for two-sided printing;

3-2-27

3.2 Footnotes, endnotes, and marginals

127

and to the nearest margin for two-column formatting. When you also specify an
optional argument, its text is used if the left margin is chosen, while the second
(mandatory) argument is used for the right margin.

This placement strategy can be reversed (except for two-column formatting)
using \reversemarginpar, which acts on all marginal notes from there on. You
can return to the default behavior with \normalmarginpar.

There are a few important things to understand when using marginal notes.
First, the \marginpar command does not start a paragraph. Thus, if it is used
before the first word of a paragraph, the vertical alignment will not match the
beginning of the paragraph. Second, the first word of its argument is not auto-
matically hyphenated. Thus, for a narrow margin and long words (as in German),
you may have to precede the first word by a \hspace{Opt} command to allow hy-
phenation of that word. These two potential problems can be eased by defining a
command like \marginlabel, which starts with an empty box \mbox{}, typesets
a marginal note ragged right, and adds a \hspace{Opt} in front of the argument.

Some text with a ASuperLongFirstWord
marginal note. Some with problems

more text. Another ASuperLong- {\raggedright\hspace{Opt}#1}}

text with a marginal = Firstword Some\marginpar{ASuperLongFirstWord with problems}
note. Some more without text with a marginal note. Some more text.

text. A lot of addi- problems Another\marginlabel{ASuperLongFirstword without
tional text here to fill problems} text with a marginal note. Some more
up the space in the ex- text. A lot of additional text here to fill
ample on the left. up the space in the example on the left.

Of course, the above definition can no longer produce different texts depend-
ing on the chosen margin. With a little more finesse this problem could be solved,
using, for example, the \ifthenelse constructs from the ifthen package.

The IKIEX kernel tries hard (without producing too much processing overhead)

\newcommand\marginlabel [1] {\mbox{}\marginpar

to ensure that the contents of \marginpar commands always show up in the cor- Incorrectly placed

rect margin and in most circumstances will make the right decisions. In some
cases, however, it will fail. If you are unlucky enough to stumble across one of
them, a one-off solution is to add an explicit \pagebreak to stop the page genera-
tion from looking too far ahead. Of course, this has the disadvantage that the cor-
rection means visual formatting and has to be undone if the document changes.
A better solution is to load the package mparhack written by Tom Sgouros and
Stefan Ulrich. Once this package is loaded all \marginpar positions are tracked
(internally using a label mechanism and writing the information to the .aux file).
You may then get a warning “Marginpars may have changed. Rerun to get them
right”, indicating that the positions have changed in comparison to the previous
KTEX run and that a further run is necessary to stabilize the document.

As explained in Table 4.2 on page 196, there are three length parameters to
customize the style of marginal notes: \marginparwidth, \marginparsep, and
\marginparpush.

\marginpars

128

Basic Formatting Tools

Command Default Definition Representation

First Level \labelitemi \textbullet °

Second Level \labelitemii \normalfont\bfseries \textendash -

Third Level \labelitemiii \textasteriskcentered *
Fourth Level \labelitemiv \textperiodcentered

Table 3.5: Commands controlling an itemize list environment

3.3 List structures

Lists are very important IXIEX constructs and are used to build many of KIEX’s
display-like environments. KIEX’s three standard list environments are discussed
in Section 3.3.1, where we also show how they can be customized. Section 3.3.2
starting on page 132 provides an in-depth discussion of the paralist package,
which introduces a number of new list structures and offers comprehensive meth-
ods to customize them, as well as the standard lists. It is followed by a discus-
sion of “headed lists”, such as theorems and exercises. Finally, Section 3.3.4 on
page 144 discusses IK[EX’s general list environment.

3.3.1 Modifying the standard lists

It is relatively easy to customize the three standard KIEX list environments
itemize, enumerate, and description, and the next three sections will look at
each of these environments in turn. Changes to the default definitions of these
environments can either be made globally by redefining certain list-defining pa-
rameters in the document preamble or can be kept local.

Customizing the itemize list environment

For a simple unnumbered itemize list, the labels are defined by the commands
shown in Table 3.5. To create a list with different-looking labels, you can redefine
the label-generating command(s). You can make that change local for one list, as
in the example below, or you can make it global by putting the redefinition in the
document preamble. The following simple list is a standard itemize list with a
marker from the PostScript Zapf Dingbats font (see Section 7.6.4 on page 378) for
the first-level label:

\usepackage{pifont}

\newenvironment{MYitemize}{\renewcommand\labelitemi

{\ding{43}}\begin{itemize}}{\end{itemizel}}

1 Text of the first item in the list. \begin{MYitemize}

\item Text of the first item in the list.

s Text of the first sentence in the \item Text of the first sentence in the second

second item of the list. And the item of the list. And the second sentence.
second sentence. \end{MYitemize}

3.3 List structures 129

Customizing the enumerate list environment

KIEX’s enumerated (numbered) list environment enumerate is characterized by
the commands and representation forms shown in Table 3.6 on the next page.
The first row shows the names of the counter used for numbering the four pos-
sible levels of the list. The second and third rows are the commands giving the
representation of the counters and their default definition in the standard KTEX
class files. Rows four, five, and six contain the commands, the default definition,
and an example of the actual enumeration string printed by the list.

A reference to a numbered list element is constructed using the \theenumi,
\theenumii, and similar commands, prefixed by the commands \p@enumi,
\p@enumii, etc., respectively. The last three rows in Table 3.6 on the following
page show these commands, their default definition, and an example of the repre-
sentation of such references. It is important to consider the definitions of both the
representation and reference-building commands to get the references correct.

We can now create several kinds of numbered description lists simply by ap-
plying what we have just learned.

Our first example redefines the first- and second-level counters to use capital
Roman digits and Latin characters. The visual representation should be the value
of the counter followed by a dot, so we can use the default value from Table 3.6
on the next page for \labelenumi.

\renewcommand\theenumi {\Roman{enumil}}
\renewcommand\theenumii {\Alph{enumii}}
\renewcommand\labelenumii{\theenumii.}

L Introduction \begin{enumerate}
\item \textbf{Introduction} \label{ql}
A. Applications \begin{enumerate}
Motivation for research and appli- \item. \te}.{tbf{Applications} A\ o
cations related to the subject. Motivation for rese'arch and applications
related to the subject. \label{qg2}
B. Organization \item \textbf{Organization} \\
Explain organization of the report, Explain organization of the report, what
what is included, and what is not. is included, and what is not. \label{qg3}
\end{enumerate}
II. Literature Survey \item \textbf{Literature Survey} \label{q4}
\end{enumerate}
ql=I q2=IA g3=IB g4=II qi=\ref{ql} q2=\ref{q2} q3=\ref{q3} g4=\ref{qd}

After these redefinitions we get funny-looking references; to correct this we
have to adjust the definition of the prefix command \p@enumii. For example, to
get a reference like “I-A” instead of “IA” as in the previous example, we need

\makeatletter \renewcommand\p@enumii{\theenumi--} \makeatother

because the reference is typeset by executing \p@enumii followed by \theenumii.

130 Basic Formatting Tools
First Level Second Level Third Level Fourth Level
Counter enumi enumii enumiii enumiv
Representation \theenumi \theenumii \theenumiii \theenumiv
Default Definition \arabic{enumi} \alph{enumii} \roman{enumiii} \Alph{enumiv}
Label Field \labelenumi \labelenumii \labelenumiii \labelenumiv
Default Form \theenumi . (\theenumii) \theenumiii. \theenumiv.
Numbering Example 1., 2. (a), (b) i., ii. A., B.
Reference representation
Prefix \p@enumi \pQ@enumii \p@enumiii \p@enumiv
Default Definition {} \theenumi \theenumi (\theenumii) \p@enumiiiltheenumiii
Reference Example 1,2 1a, 2b 1(a)i, 2(b)ii 1(a)iA, 2(b)iiB
Table 3.6: Commands controlling an enumerate list environment
Note that we need \makeatletter and \makeatother because the command
name to redefine contains an @ sign. Instead of this low-level method, consider
using \labelformat from the varioref package described in Section 2.4.2.

You can also decorate an enumerate field by adding something to the label
field. In the example below, we have chosen for the first-level list elements the
paragraph sign (§) as a prefix and a period as a suffix (omitted in references).

§1. textinside list, more text in-
\renewcommand\labelenumi{\S\theenumi.}
§2. textinside list, more textin- \usepackage{varioref} \labelformat{enumi}{\S#1}
\begin{enumerate}
o) \item \label{wl} text inside list, more text inside list
§3. textinside list, more textin- \jtem \label{w2} text inside list, more text inside list
\item \label{w3} text inside list, more text inside list
\end{enumerate}
wl=81 w2=§2 w3=§3 wi=\ref{w1l} w2=\ref{w2} w3=\ref{w3}

You might even want to select different markers for consecutive labels. For in-
stance, in the following example, characters from the PostScript font ZapfDingbats
are used. In this case there is no straightforward way to automatically make the
\ref commands produce the correct references. Instead of \theenumi simply pro-
ducing the representation of the enumi counter, we define it to calculate from the
counter value which symbol to select. The difficulty here is to create this definition
in a way such that it survives the label-generating process. The trick is to add the
\protect commands so that \setcounter and \ding are not executed when the
label is written to the .aux file, yet to ensure that the current value of the counter
is stored therein. The latter goal is achieved by prefixing \value by the (internal)

11=0 12=@ 13=®

3.3 List structures

131

TgX command \the within \setcounter (but not within \ding!); without it the

references would all show the same values.!

\usepackage{calc,pifont} \newcounter{local}
\renewcommand\theenumi{\protect\setcounter{locall}y,
{171+\the\value{enumi}}\protect\ding{\value{local}}}
@ text inside list, text inside list, text \renewcommand\labelenumi{\theenumil}

inside list, more text inside list; \begin{enumerate}
\item text inside list,
@ text inside list, text inside list, text text inside list,
inside list, more text inside list; \item text inside list,

text inside list,

® textinside list, text inside list, text \item text inside list,

inside list, more text inside list. text inside list,
\end{enumerate}

text
more
text
more
text
more

inside list, \label{1l1}
text inside list;
inside list, \label{12}
text inside list;
inside list, \label{13}
text inside list.

11=\ref{11} 12=\ref{12} 13=\ref{13}

The same effect is obtained with the dingautolist environment defined
in the pifont package, which is part of the PSNFSS system (see Section 7.6.4 on

page 378).

Customizing the description list environment

With the description environment you can change the \descriptionlabel com-
mand that generates the label. In the following example the font for typesetting

the labels is changed from boldface (default) to sans serif.

\renewcommand\descriptionlabel[1]%
{\hspace{\labelsep}\textsf{#1}}

\begin{description}
A. text inside list, text inside list, teXt \item[A.] text inside list, text inside list,
inside list, more text inside list; text inside list, more text inside list;
\item[B.] text inside list, text inside list,
B. text inside list, text inside list, text text inside list, more text inside list;
inside list, more text inside list; \end{description}

The standard KIEX class files set the starting point of the label box in a
description environment at a distance of \labelsep to the left of the left mar-
gin of the enclosing environment. Thus, the \descriptionlabel command in the
example above first adds a value of \labelsep to start the label aligned with the

left margin (see page 147 for detailed explanations).

1For the TgXnically interested: EX’s \value command, despite its name, does not produce the
“value” of a IKIEX counter but only its internal TgX register name. In most circumstances this can
be used as the value but unfortunately not inside \edef or \write, where the internal name rather
than the “value” will survive. By prefixing the internal register name with the command \the, we get

the “value” even in such situations.

132

Basic Formatting Tools

3.3.2 paralist—Extended list environments

The paralist package created by Bernd Schandl provides a number of new list
environments and offers extensions to KIgX’s standard ones that make their cus-
tomization much easier. Standard and new list environments can be nested within
each other and the enumeration environments support the \label/\ref mecha-

nism.

Enumerations

All standard IIgX lists are display lists; that is, they leave some space at their
top and bottom as well as between each item. Sometimes, however, one wishes
to enumerate something within a paragraph without such visual interruption. The
inparaenum environment was developed for this purpose. It supports an optional
argument that you can use to customize the generated labels, the exact syntax of
which is discussed later in this section.

\usepackage{paralist}
We may want to enumerate items within a paragraph to
\begin{inparaenum}[(a)]

We may want to enumerate items \item save space

within a paragraph to (a) save space \item make a less prominent statement, or
(b) make a less prominent statement, or \item for some other reason.
(c) for some other reason. \end{inparaenum}

But perhaps this is not precisely what you are looking for. A lot of people
like to have display lists but prefer them without much white space surrounding
them. In that case compactenum might be your choice, as it typesets the list like
enumerate but with all vertical spaces set to Opt.

\usepackage{paralist}
On the other hand we may want to enumerate like this:

On the other hand we may want to \begin{compactenum} [i)]

enumerate like this: \item still make a display list
i) still make a display list \item format items as usual but with less
ii) format items as usual but with less vertical space, that is
vertical space, that is \item similar to normal \texttt{enumeratel}.
iii) similar to normal enumerate. \end{compactenum}

Actually, our previous statement was not true—you can customize the verti-
cal spaces used by compactenum. Here are the parameters: \pltopsep is the space
above and below the environment, \plpartopsep is the extra space added to the
previous space when the environment starts a paragraph on its own, \plitemsep
is the space between items, and \plparsep is the space between paragraphs
within an item.

3.3 List structures

133

A final enumeration alternative is offered with the asparaenum environment,
which formats the items as individual paragraphs. That is, their first line is in-
dented by \parindent and following lines are aligned with the left margin.

Or perhaps we may want to enumer-
ate like this:

1) still make a display list

2) format items as paragraphs with
turnover lines not indented, that is

\usepackage{paralist}

Or perhaps we may want to enumerate like this:
\begin{asparaenum}[1)]

\item still make a display list \item format items
as paragraphs with turnover lines not indented,
that is \item similar to normal \texttt{enumeratel}.

3) similar to normal enumerate. \end{asparaenum}

As seen in the previous examples all enumeration environments support one
optional argument that describes how to format the item labels. Within the argu-
ment the tokens A, a, I, i, and 1 have a special meaning: they are replaced by
the enumeration counter displayed in style \Alph, \alph, \Roman, \roman, or
\arabic, respectively. All other characters retain their normal meanings. Thus,
the argument [(a)] will result in labels like (a), (b), (c), and so on, while [\S 1i:]
will produce 8§i:, §ii:, §iii:, and so on.

You have to be a bit careful if your label contains text strings, such as la-
bels like Example 1, Example 2, ... In this case you have to hide the “a” inside a
brace group—that is, use an argument like [{Example} 1]. Otherwise, you will
get strange results, as shown in the next example.

\usepackage{paralist}

Item~\ref{bad} shows what can go wrong:

Item b shows what can go wrong: \begin{asparaenun} [Example a:]

) Exampl§ a:.On the first item we \item On the first item we will not notice it
will not notice it but but \item the second item then shows what
Exbmple b: the second item then happens if a special character is mistakenly

shows what happens if a special char- matched. \label{bad}
acter is mistakenly matched. \end{asparaenum}

Fortunately, the package usually detects such incorrect input and will issue
a warning message. A consequence of hiding special characters by surrounding
them with braces is that an argument like [\textbf{a)}] will not work either,
because the “a” will not be considered as special any more. A workaround for this
case is to use something that does not require braces, such as \bfseries.

As can be seen above, referencing a \label will produce only the counter
value in the chosen representation but not any frills added in the optional argu-
ment. This is the case for all enumeration environments.

It is not possible with this syntax to specify that a label should show the outer
as well as the inner enumeration counter, because the special characters always
refer to the current enumeration counter. There is one exception: if you load the

134

Basic Formatting Tools

1. First level.

package with the option pointedenum or with the option pointlessenum, you will
get labels like those shown in the next example.

\usepackage [pointedenum] {paralist}
\begin{compactenum}
\item First level.
\begin{compactenum}
\item Second level.
\begin{compactenum} \item Third level. \end{compactenum}

1.1. Second level. \item Second level again.
1.1.1. Third level. \end{compactenum}
1.2. Second level again. \end{compactenum}

The difference between the two options is the presence or absence of the
trailing period. As an alternative to the options you can use the commands
\pointedenum and \pointlessenum. They enable you to define your own envi-
ronments that format labels in this way while other list environments show labels
in different formats. If you need more complicated labels, such as those involving
several enumeration counters from different levels, then you have to construct
them manually using the methods described in Section 3.3.1 on page 129.

The optional argument syntax for specifying the typesetting of enumeration
labels was first implemented in the enumerate package by David Carlisle, who
extended the standard enumerate environment to support such an optional ar-
gument. With paralist the optional argument is supported for all enumeration
environments, including the standard enumerate environment (for which it is an
upward-compatible extension).

If an optional argument is used on any of the enumeration environments,
then by default the left margin will be made only as wide as necessary to hold
the labels. More exactly, the indentation is adjusted to the width of the label as
it would be if the counter value is currently seven. This produces a fairly wide
number (vii) if the numbering style is “Roman” and does not matter otherwise.
This behavior is shown in the next example. For some documents this might be
the right behavior, but if you prefer a more uniform indentation use the option
neverdecrease, which will ensure that the left margin is always at least as wide
as the default setting.

\usepackage{paralist}

The left margin may vary if we are not careful.

The left margin may vary if we are not \begin{enumerate}

careful. \item An item in a normal \texttt{enumerate}.
\end{enumerate}
1. Anitem in a normal enumerate. \begin{compactenum}
o \item Same left margin in \item this case.
1. Same left margin in \end{compactenum}
2. this case. \begin{compactenum} [i)]
i) But a different one \item But a different one \item here.
ii) here. \end{compactenum}

3-3-11

3.3 List structures 135

On the other hand, you can always force that kind of adjustment, even for envi-
ronments without an optional argument, by specifying the option alwaysadjust.

\usepackage [alwaysadjust]{paralist}
Here we force the shortest possible Here we force the shortest possible indentation always:

indentation always: \begin{enumerate}
\item An item in a normal \texttt{enumerate}.
1. Anitem in a normal enumerate. \end{enumerate}
\begin{compactenum}[i)]
i) But a different \item But a different \item indentation \item here.
ii) indentation \end{compactenum}
iii) here. \begin{compactenum}[1.]
1. Same left margin as \item Same left margin as \item in the first case.
2. in the first case. \end{compactenum}

Finally, with the option neveradjust the standard indentation is used in all
cases. Thus, labels that are too wide will extend into the left margin.

\usepackage [neveradjust] {paralist}
With this option the label is With this option the label is pushed into the margin.

pushed into the margin. \begin{enumerate}
\item An item in a normal\\ \texttt{enumeratel}.
1. Anitem in a normal \end{enumerate}
enumerate. \begin{compactenum} [{Task} A)]
\item Same left indentation in \item this case.
Task A) Same left indentation in \end{compactenum}
Task B) this case. \begin{compactenum}[1)]
1) And the same indentation \item And the same indentation \item here.
2) here. \end{compactenum}
Itemizations

For itemized lists the paralist package offers the environments compactitem,
which is a compact version of the standard itemize environment; asparaitem
which formats the items as paragraphs; and inparaitem, which produces an in-
line itemization. The last environment was added mainly for symmetry reasons.
All three environments accept an optional argument, that specifies the label to be
used for each item.

.) .) \usepackage [neverdecrease] {paralist}
. Produc.mg itemized lists with spe- Producing itemized lists with special labels is easy.
cial labels is easy. \begin{compactitem} [\star]
* This example uses the package \item This example uses the package option

option neverdecrease. \texttt{neverdecrease}.
* Without it the left margin would \item Without it the left margin would be smaller.
be smaller. \end{compactitem}

136 Basic Formatting Tools

The three label justification options neverdecrease, alwaysadjust, and
neveradjust are also valid for the itemized lists, as can be seen in the previ-
ous example. When the paralist package is loaded, KX’s itemize environment is
extended to also support that type of optional argument.

Descriptions

For descriptions the paralist package introduces three additional environments:
compactdesc, which is like the standard IXIgX description environment but with
all vertical spaces reduced to zero (or whatever you specify as a customization);
asparadesc, which formats each item as a paragraph; and inparadesc, which
allows description lists within running text.

Because description-type environments specify each label at the \item com-
mand, these environments have no need for an optional argument.

Do you like inline description lists? \usepackage{paralist}

Try them out! Do y?u like inline description lists? Try them out!

\begin{compactdesc}

\item[paralist] A useful package as it supports
\begin{inparadesc} \item[compact\ldots] environments
that have zero vertical space, \item[aspara\ldots]
environments formatted as paragraphs, and

paralist A useful package as it sup-
ports compact... environments
that have zero vertical space, as-
para... environments formatted

as paragraphs, and inpara... en- \item[inpara\ldots] environments as inline lists.
vironments as inline lists. \end{inparadesc}
enumerate A package that is super- \item[enumerate] A package that is superseded now.
seded now. \end{compactdesc}
Adjusting defaults

Besides providing these useful new environments the paralist package lets you
customize the default settings of enumerated and itemized lists.

You can specify the default labels for different levels of itemized lists with
the help of the \setdefaultitem declaration. It takes four arguments (as four
levels of nesting are possible). In each argument you specify the desired label
(just as you do with the optional argument on the environment itself) or, if you
are satisfied with the default for the given level, you specify an empty argument.

\usepackage{paralist} \setdefaultitem{}{\textbullet}{\star}{}

\begin{compactitem}
\item Outer level is using the default label.
. . \begin{compactitem}
e Outer level is using the de- \itim On tie second level we use again a bullet.
fault label. \begin{compactitem}
* On the second level \item And on the third level a star.

we use again a bullet. \end{compactitem}

* And on the third \end{compactitem}
level a star. \end{compactitem}

3.3 List structures

137

The changed defaults apply to all subsequent itemized environments. Nor-
mally, such a declaration is placed into the preamble, but you can also use it to
change the defaults mid-document. In particular, you can define environments
that contain a \setdefaultitem declaration which would then apply only to that
particular environment—and to lists nested within its body.

You will probably not be surprised to learn that a similar declaration exists
for enumerations. By using \setdefaultenum you can control the default look
and feel of such environments. Again, there are four arguments corresponding to
the four levels. In each you either specify your label definition (using the syntax
explained earlier) or you leave it empty to indicate that the default for this level
should be used.

\usepackage{paralist} \setdefaultenum{1)}{a)}{i)}{A)}

\begin{compactenum}

1) All levels get a closing

parenthesis in this example. \pegin{compactenun}

\item Lowercase letters here.

a) Lowercase letters \begin{compactenum}
hére. \item Roman numerals here. \item Really!
i) Roman numerals \end{compactenum}
here. \end{compactenum}
ii) Really! \end{compactenum}

There is also the possibility of adjusting the indentation for the various list
levels using the declaration \setdefaultleftmargin. However, this command
has six arguments (there are a total of six list levels in the standard IXTgX classes),
each of which takes either a dimension denoting the increase of the indention at
that level or an empty argument indicating to use the current value as specified by
the class or elsewhere. Another difference from the previous declarations is that in
this case we are talking about the absolute list levels and not about relative levels
related to either enumerations or itemizations (which can be mixed). Compare the
next example with the previous one to see the difference.

\usepackage{paralist}
\setdefaultenum{1)}{a)}{i)HA)}

\setdefaultleftmargin{\parindent}{\parindent}

{\parindent {3}

\begin{compactenum}

\item All levels get a closing parenthesis in this example.

\item All levels get a closing parenthesis in this example.

\begin{compactenum}

\item Lowercase letters here.
\begin{compactenum}
\item Roman numerals here. \item Really!

1) All levels get a closing paren-
thesis in this example.
a) Lowercase letters here.

X \end{compactenum}
i) Roman numerals here. \end{compactenum}
ii) Really! \end{compactenum}

138

Basic Formatting Tools

By default, enumeration and itemized lists set their labels flush right. This
behavior can be changed with the help of the option flushleft.

As described earlier, the label of the standard description list can be ad-
justed by modifying \descriptionlabel, which is also responsible for format-
ting the label in a compactdesc environment. With inparadesc and asparadesc,
however, a different command, \paradescriptionlabel, is used for this pur-
pose. As these environments handle their labels in slightly different ways, they
do not need adjustments involving \labelsep (see page 147). Thus, its default
definition is simply:

\newcommand*\paradescriptionlabel [1]{\normalfont\bfseries #1}

Finally, the paralist package supports the use of a configuration file named
paralist.cfg, which by default is loaded if it exists. You can prevent this by
specifying the option nocfg.

3.3.3 amsthm—Providing headed lists

The term “headed lists” describes typographic structures that, like other lists such
as quotations, form a discrete part of a section or chapter and whose start and fin-
ish, at least, must be clearly distinguished. This is typically done by adjusting the
vertical space at the start or adding a rule, and in this case also by including some
kind of heading, similar to a sectioning head. The end may also be distinguished
by a rule or other symbol, maybe within the last paragraph, and by extra vertical
space.

Another property that distinguishes such lists is that they are often num-
bered, using either an independent system or in conjunction with the sectional
numbering.

Perhaps one of the more fruitful sources of such “headed lists” is found in
the so-called “theorem-like” environments. These had their origins in mathemat-
ical papers and books but are equally applicable to a wide range of expository
material, as examples and exercises may take this form whether or not they con-
tain mathematical material.

Because their historical origins lie in the mathematical world, we choose to
describe the amsthm package [7] by Michael Downes from the American Mathe-
matical Society (AMS) as a representative of this kind of extension.! This package
provides an enhanced version of standard IIEX’s \newtheorem declaration for
specifying theorem-like environments (headed lists).

As in standard IATgX, environments declared in this way take an optional ar-
gument in which extra text, known as “notes”, can be added to the head of the
environment. See the example below for an illustration.

l'When the amsthm package is used with a non-AMS document class and with the amsmath pack-
age, amsthm must be loaded after amsmath. The AMS document classes incorporate both packages.

3.3 List structures

139

\newtheorem*{name}{heading}

The \newtheorem declaration has two mandatory arguments. The first is the envi-
ronment name that the author would like to use for this element. The second is
the heading text.

If \newtheoremx* is used instead of \newtheorem, no automatic numbers will
be generated for the environments. This form of the command can be useful if
you have only one lemma or exercise and do not want it to be numbered; it is also
used to produce a special named variant of one of the common theorem types.

\usepackage{amsthm}
\newtheorem{lem}{Lemma}
\newtheorem*{ML}{Mittelbach’s Lemma}

Lemma 1 (Main). The BIgX Compan- \begin{lem}[Main] The \LaTeX{} Companion

ion complements any BIEX introduction. complements any \LaTeX{} introduction.
\end{lem}

Mittelbach’s Lemma. The BIgX Com- \begin{ML} The \LaTeX{} Companion contains

panion contains packages from all ap- packages from all application areas.

plication areas. \end{ML}

In addition to the two mandatory arguments, \newtheorem has two mutually
exclusive optional arguments. They affect the sequencing and hierarchy of the
numbering.

\newtheorem{name} [use-counter] { heading}
\newtheorem{name}{heading} [number-within]

By default, each kind of theorem-like environment is numbered independently.
Thus, if you have lemmas, theorems, and some examples interspersed, they will
be numbered something like this: Example 1, Lemma 1, Lemma 2, Theorem 1,
Example 2, Lemma 3, Theorem 2. If, for example, you want the lemmas and the-
orems to share the same numbering sequence—Example 1, Lemma 1, Lemma 2,
Theorem 3, Example 2, Lemma 4, Theorem 5—then you should indicate the de-
sired relationship as follows:

\newtheorem{thm}{Theorem} \newtheorem{lem} [thm] {Lemma}

The optional use-counter argument (value thm) in the second statement means
that the lem environment should share the thm numbering sequence instead of
having its own independent sequence.

To have a theorem environment numbered subordinately within a sectional
unit—for example, to get exercises numbered Exercise 2.1, Exercise 2.2, and so on,
in Section 2—put the name of the parent counter in square brackets in the final
position:

\newtheorem{exa}{Exercise} [section]

140

Basic Formatting Tools

With the optional argument [section], the exa counter will be reset to 0 when-
ever the parent counter section is incremented.

Defining the style of headed lists

The specification part of the amsthm package supports the notion of a current
theorem style, which determines the formatting that will be set up by a collection
of \newtheorem commands.!

\theoremstyle{style}

The three theorem styles provided by the package are plain, definition, and
remark; they specify different typographical treatments that give the environ-
ments a visual emphasis corresponding to their relative importance. The details of
this typographical treatment may vary depending on the document class, but typ-
ically the plain style produces italic body text and the other two styles produce
Roman body text.

To create new theorem-like environments in these styles, divide your
\newtheorem declarations into groups and preface each group with the appro-
priate \theoremstyle. If no \theoremstyle command is given, the style used
will be plain. Some examples follow:

Definition 1. A typographical chal- \usepackage{amsthm}
lenge is a problem that cannot be ~ \theoremstyle{plain} \newtheorem{thm}{Theorem}
solved with the help of The BIEX \theoremstyle{definition} \newtheorem{defn}[thm]{Definition}

Companion. \theoremstyle{remark} \newtheorem*{rem}{Remark}
\begin{defn}

Theorem 2. There are no typo- A typographical challenge is a problem that cannot be

graphical challenges. solved with the help of \emph{The \LaTeX{} Companion}.
\end{defn}

Remark. The proof is left to the \begin{thm}There are no typographical challenges.\end{thm}

reader.

Number swapping

\begin{rem}The proof is left to the reader.\end{rem}

Note that the fairly obvious choice of “def” for the name of a “Definition” environ-
ment does not work, because it conflicts with the existing low-level TgX command
\def.

A fairly common style variation for theorem heads is to have the theorem
number on the left, at the beginning of the heading, instead of on the right.
As this variation is usually applied across the board regardless of individual
\theoremstyle changes, swapping numbers is done by placing a \swapnumbers
declaration at the beginning of the list of \newtheorem statements that should be
affected.

IThis was first introduced in the now-superseded theorem package by Frank Mittelbach.

3.3 List structures

141

Advanced customization

More extensive customization capabilities are provided by the package through
the \newtheoremstyle declaration and through a mechanism for using package
options to load custom theorem style definitions.

\newtheoremstyle{name}{space-above}{space-below}{body-style}{indent}
{head-style}{ head-after-punct}{head-after-space}{ head-full-speck

To set up a new style of “theorem-like” headed list, use this declaration with the
nine mandatory arguments described below. For many of these arguments, if they
are left empty, a default is used as listed here.

name The name used to refer to the new style.

space-above The vertical space above the headed list, a rubber length (default
\topsep).

space-below The vertical space below the headed list, a rubber length (default
\topsep).

body-style A declaration of the font and other aspects of the style to use for the
text in the body of the list (default \normalfont).

indent The extra indentation of the first line of the list, a non-rubber length (de-
fault is no extra indent).

head-style A declaration of the font and other aspects of the style to use for the
text in the head of the list (default \normalfont).

head-after-punct The text (typically punctuation) to be inserted after the head
text, including any note text.

head-after-space The horizontal space to be inserted after the head text and
“punctuation”, a rubber length. It cannot be completely empty. As two very
special cases it can contain either a single space character to indicate that
just a normal interword space is required or, more surprisingly, just the com-
mand \newline to indicate that a new line should be started for the body of
the list.

head-full-spec A non-empty value for this argument enables a complete specifica-
tion of the setting of the head itself to be supplied; an empty value means that
the layout of the “plain” theorem style is used. See below for further details.

Any extra set-up code for the whole environment is best put into the body-
style argument, although care needs to be taken over how it will interact with
what is set up automatically. Anything that applies only to the head can be put in
head-style.

142 Basic Formatting Tools

In the example below we define a break theorem style, which starts a new line
after the heading. The heading text is set in bold sans serif, followed by a colon
and outdented into the margin by 12pt. Since the book examples are typeset in a
very small measure, we added \raggedright! to the body-style argument.

\usepackage{amsthm}

\newtheoremstyle{breakl}’%
{9pt}{opt}’ Space above and below
{\itshape\raggedright}), Body style
{-12pt}V Heading indent amount
{\sffamily\bfseries}{:}) Heading font and punctuation after it
{\newlinel}y, Space after heading (\newline = linebreak)

o,

. . {3% Head spec (empty = same as ‘plain’ style)
Exercise 1 (Active author): \theorenstyle{breax}

Find the author \newtheorem{exa}{Exercise}

responsible for the largest \begin{exa} [Active author]

number of packages Find the author responsible for the largest number of
described in The BIEX packages described in The \LaTeX{} Companion.
Companion. \end{exa}

The head-full-spec argument, if non-empty, becomes the definition part of an

Specifying the internal command that is used to typeset the (up to) three bits of information
heading format contained in the head of a theorem-like environment: its number (if any), its name,
and any extra notes supplied by the author when using the environment. Thus, it

should contain references to three arguments that will then be replaced as follows:

#1 The fixed text that is to be used in the head (for example, “Exercises”), It
comes from the \newtheorem used to declare an environment.

#2 A representation of the number of the element, if it should be numbered. It
is conventionally left empty if the environment should not be numbered.

#3 The text for the optional note, from the environment’s optional argument.

Assuming all three parts are present, the contents of the head-full-spec argument
could look as follows:

#1 #2 \textup{(#3)}

Although you are free to make such a declaration, it is normally best not to use
these arguments directly as this might lead to unwanted extra spaces if, for exam-
ple, the environment is unnumbered.

To account for this extra complexity, the package offers three additional com-
mands, each of which takes one argument: \thmname, \thmnumber, and \thmnote.
These three commands are redefined at each use of the environment so as to pro-
cess their arguments in the correct way. The default for each of them is simply to
“typeset the argument”. Nevertheless, if, for example, the particular occurrence is

1The example does not work if ragged?2e is loaded (as of 2005), so \RaggedRight cannot be used.

3-3-22

3.3 List structures

143

unnumbered, then \thmnumber gets redefined to do no typesetting. Thus, a better
definition for the head-full-spec argument would be

\thmname{#1}\thmnumber{ #2}\thmnote{ \textup{(#3)}}

which corresponds to the set-up used by the default plain style. Note the spaces
within the last two arguments: they provide the interword spaces needed to sepa-
rate the parts of the typeset head but, because they are inside the arguments, they
are present only if that part of the head is typeset.

In the following example we provide a “Theorem” variation in which the whole
theorem heading has to be supplied as an optional note, such as for citing theo-
rems from other sources.

\usepackage{amsthm}

\newtheoremstyle{citing}), Name
{3pt}{3pt}% Space above and below
{\itshapel}’ Body font
{\parindent}{\bfseries}), Heading indent and font
{.}Y% Punctuation after heading
{ }. Space after head (" " = normal interword space)
{\thmnote{#3}}/ Typeset note only, if present

\theoremstyle{citing} \newtheorem*{varthm}{}

Theorem 3.16 in [87]. By fo- \pegin{varthm}[Theorem 3.16 in \cite{Knuth90}]
cusing on small details, it is possi- By focusing on small details, it is possible to
ble to understand the deeper sig- understand the deeper significance of a passage.

nificance of a passage. \end{varthm}

Proofs and the QED symbol

Of more specifically mathematical interest, the package defines a proof environ-
ment that automatically adds a “QED symbol” at the end. This environment pro-
duces the heading “Proof” with appropriate spacing and punctuation.!

An optional argument of the proof environment allows you to substitute a
different name for the standard “Proof”. If you want the proof heading to be, for
example, “Proof of the Main Theorem”, then put this in your document:

\begin{proof} [Proof of the Main Theorem]
\end{proof}

A “QED symbol” (default) is automatically appended at the end of a proof
environment. To substitute a different end-of-proof symbol, use \renewcommand
to redefine the command \gedsymbol. For a long proof done as a subsection or

IThe proof environment is primarily intended for short proofs, no more than a page or two
in length. Longer proofs are usually better done as a separate \section or \subsection in your
document

144

Basic Formatting Tools

section, you can obtain the symbol and the usual amount of preceding space by
using the command \ged where you want the symbol to appear.

Automatic placement of the QED symbol can be problematic if the last part
of a proof environment is, for example, tabular or a displayed equation or list. In
that case put a \qedhere command at the somewhat earlier place where the QED
symbol should appear; it will then be suppressed from appearing at the logical end
of the proof environment. If \gedhere produces an error message in an equation,
try using \mbox{\gedhere} instead.

\usepackage{amsthm}

Proof (sufficiency). This proof involves ~ \begin{proof}[Proof (sufficiency)]

a list:

parts —

This proof involves a list:

\begin{enumerate}

1. because the proof comes in two \item because the proof comes in two parts ---
\item --- we need to use \verb|\gedhere|. \gedhere
\end{enumerate}

2. —weneed touse \qedhere. [1 \end{proof}

3.3.4 Making your own lists

Most lists in KIEX, including those we have seen previously, are internally built
using the generic 1ist environment. It has the following syntax:

\begin{list}{default-label}{decls} item-list \end{1list}

The argument default-label is the text to be used as a label when an \item com-
mand is found without an optional argument. The second argument, decls, can
be used to modify the different geometrical parameters of the 1ist environment,
which are shown schematically in Figure 3.3 on the next page.

The default values of these parameters typically depend on the type size and
the level of the list. Those being vertically oriented are rubber lengths, meaning
that they can stretch or shrink. They are set by the 1list environment as fol-
lows: upon entering the environment the internal command \@list(level) is exe-
cuted, where (level) is the list nesting level represented as a Roman numeral (e.g.,
\@listi for the first level, \@listii for the second, \@listiii for the third, and
so on). Each of these commands, defined by the document class, holds appropri-
ate settings for the given level. Typically, the class contains separate definitions
for each major document size available via options. For example, if you select
the option 11pt, one of its actions is to change the list defaults. In the standard
classes this is done by loading the file size11.clo, which contains the definitions
for the 11 pt document size.

In addition, most classes contain redefinitions of \@listi (i.e., first-level
list defaults) within the size-changing commands \normalsize, \small, and
\footnotesize, the assumption being that one might have lists within “small”

3.3 List structures

145

Preceding Text

\topsep

\labelwidth
-~ \labelsep"

+ \parskip [+ \partopsep]
I

Lahel™

—>
itemindent Item 1

\1istparindent¢ \parsep

>

— 1

\leftmargin \rightmargin

—> Item 1, Paragraph 2 —

| I

| I

| \itemsep + \parsep |

| I

[v I

| I

\ [Labell | |

| I

| Item 2 I

| I

| I

! \topsep + \parskip [+ \partopsep]
| I

| I

| I

[I

|

Y

Following Text

\topsep rubber space between first item and pre-
ceding paragraph.

\partopsep extra rubber space added to \topsep
when environment starts a new paragraph.

\itemsep rubber space between successive items.

\parsep rubber space between paragraphs within
an item.

\leftmargin space between left margin of enclos-
ing environment (or of page if top-level list) and
left margin of this list. Must be non-negative. Its
value depends on the list level.

\rightmargin similar to \leftmargin but for the
right margin. Its value is usually Opt.

\listparindent extra indentation at beginning of
every paragraph of a list except the one started
by \item. Can be negative, but is usually Opt.

\itemindent extra indentation added to the hori-
zontal indentation of the text part of the first
line of an item. The starting position of the la-
bel is calculated with respect to this reference
point by subtracting the values of \labelsep and
\labelwidth. Its value is usually Opt.

\labelwidth the nominal width of the box con-
taining the label. If the natural width of the la-
bel is <\labelwidth, then by default the la-
bel is typeset flush right inside a box of width
\labelwidth. Otherwise, a box of the natural
width is employed, which causes an indentation
of the text on that line. It is possible to modify
the way the label is typeset by providing a defini-
tion for the \makelabel command.

\labelsep the space between the end of the label
box and the text of the first item. Its default value
is 0.5 em.

Figure 3.3: Parameters used by the 1ist environment

146

Basic Formatting Tools

Global changes are
difficult

Page breaking
around lists

Many environments
are implemented as
lists

or “footnote-sized” text. However, since this is a somewhat incomplete set-up,
strange effects are possible if you

e Use nested lists in such small sizes (the nested lists get the standard defaults
intended for \normalsize),

e Jump from \small or \footnotesize directly to a large size, such as \huge
(a first-level list now inherits the defaults from the small size, since in this
set-up \huge does not reset the list defaults).

With a more complex set-up these defects could be mended. However, since the
simpler set-up works well in most practical circumstances, most classes provide
only this restricted support.

Because of this size- and nesting-dependent set-up for the list parameters, it
is not possible to change any of them globally in the preamble of your document.
For global changes you have to provide redefinitions for the various \@list. .
commands discussed above or select a different document class.

Page breaking around and within a list structure is controlled by three TgX
counters: \@beginparpenalty (for breaking before the list), \@itempenalty (for
breaking before an item within the list), and \@endparpenalty (for breaking the
page after a list). By default, all three are set to a slightly negative value, meaning
that it is permissible (and even preferable) to break a page in these places com-
pared to other break points. However, this outcome may not be appropriate. You
may prefer to discourage or even prevent page breaks directly before a list. To
achieve this, assign a high value to \@beginparpenalty (10000 or more prohibits
the break in all circumstances), for example:

\makeatletter \@beginparpenalty=9999 \makeatother

TgX counters need this unusual assignment form and since all three contain
an @ sign in their name, you have to surround them with \makeatletter and
\makeatother if the assignment is done in the preamble.

It is important to realize that such a setting is global to all environments
based on the generic 1ist environment (unless it is made in the decls argument)
and that several IKIEX environments are defined with the help of this environment
(for example, quote, quotation, center, flushleft, and flushright). These
environments are “lists” with a single item, and the \item[] command is specified
in the environment definition. The main reason for them to be internally defined
as lists is that they then share the vertical spacing with other display objects and
thus help achieve a uniform layout.

As an example, we can consider the quote environment, whose definition
gives the same left and right margins. The simple variant Quote, shown below,
is identical to quote apart from the double quote symbols added around the
text. Note the special precautions, which must be taken to eliminate undesirable
white space in front of (\ignorespaces) and following (\unskip) the text. We also
placed the quote characters into boxes of zero width to make the quotes hang into

3.3 List structures

147

the margin. (This trick is worth remembering: if you have a zero-width box and
align the contents with the right edge, they will stick out to the left.)

\newenvironment{Quotel}%

{\begin{list}{}

{\setlength\rightmargin{\leftmargin}}/

\item[]\makebox [0pt] [r]{‘ ‘}\ignorespaces}/

.. text before. {\unskip\makebox [Opt] [1]1{’’}\end{list}}
\ldots\ text before.
“Some quoted text, followed \begin{Quote}
by more quoted text.” Some quoted text, followed by more quoted text.
) \end{Quote}
Text following ... Text following \ldots

In the remainder of this section we will construct a number of different
“description” lists, thereby explaining the various possibilities offered by the
generic list environment. We start by looking at the default definition of the
description environment as it can be found in KIEX’s standard classes such as
article or report.!

\newenvironment{description}
{\begin{list}{}{\setlength\labelwidth{Optl}/
\setlength\itemindent{-\leftmargin}y,
\let\makelabel\descriptionlabel}}
{\end{list}}

To understand the reasoning behind this definition recall Figure 3.3 on page 145,
which explains the relationship between the various list parameters. The param-
eter settings start by setting \labelwidth to zero, which means that we do not
reserve any space for the label. Thus, if the label is being typeset, it will move the
text of the first line to the right to get the space it needs. Then the \itemindent
parameter is set to the negation of \leftmargin. As a result, the starting point
for the first text line is moved to the enclosing margin but all turnover lines are
still indented by \leftmargin. The last declaration makes \makelabel identical
to the command \descriptionlabel. The command \makelabel is called by the
list environment whenever it has to format an item label. It takes one argument
(the label) and is supposed to produce a typeset version of that argument. So the
final task to finish the definition of the description environment is to provide a
suitable definition for \descriptionlabel. This indirection is useful because it
allows us to change the label formatting without modifying the rest of the envi-
ronment definition.

How should \descriptionlabel be defined? It has to provide the formatting
for the label. With the standard description environment this label is supposed

11f you look into article.cls or report.cls you will find a slightly optimized coding that uses,
for example, low-level assignments instead of \setlength. However, conceptually, the definitions
are identical.

148

Basic Formatting Tools

Description: Returns from a function.

to be typeset in boldface. But recall that the label is separated from the following
text by a space of width \labelsep. Due to the parameter settings given above
this text starts at the outer margin. Thus, without correction our label would end
up starting in the margin (by the width of \labelsep). To prevent this outcome
the standard definition for the \descriptionlabel command has the following
curious definition, in that it first moves to the right and then typesets the label:

\newcommand*\descriptionlabel[1]
{\hspace{\labelsep}\normalfont\bfseries #1}

To remove this dependency, one would need to change the setting of \itemindent
to already take the \labelsep into account, which in itself would not be difficult.
You may call this behavior an historical artifact, but many documents rely on this
somewhat obscure feature. Thus, it is difficult to change the setting in the IXEX
kernel without breaking those documents.

With the parameter settings of the standard description environment, in
case of short labels the text of the first line starts earlier than the text of remain-
ing lines. If we always want a minimal indentation we can try a definition simi-
lar to the one in the following example, where we set \labelwidth to 40pt and
\leftmargin to \labelwidth plus \labelsep. This means that \makelabel has
to concern itself only with formatting the label. However, given that we now have
a positive nominal label width, we need to define what should happen if the label
is small. By using \hfil we specify where extra white space should be inserted.

\usepackage{calc}
\newenvironment{Description}
{\begin{list}{}{\let\makelabel\Descriptionlabel
\setlength\labelwidth{40pt}’
\setlength\leftmargin{\labelwidth+\labelsep}}1}/
{\end{list}}
\newcommand*\Descriptionlabel [1]{\textsf{#1:}\hfil}

\begin{Description}

If issued at top level, the in-
terpreter simply terminates,
just as if end of input had
been reached.

Errors: None.

Return values:
Any arguments in effect are
passed back to the caller.

\item[Description]
Returns from a function. If issued at top level,
the interpreter simply terminates, just as if
end of input had been reached.

\item[Errors] None.

\item[Return values]
\mbox{}\\
Any arguments in effect are passed back to the
caller.

\end{Description}

This example shows a typical problem with description-like lists when the
text in the label (term) is wider than the width of the label. Our definition lets the
text of the term continue into the text of the description part. This is often not

3.3 List structures

149

desired, and to improve the visual appearance of the list we have started one of
the description parts on the next line. A new line was forced by putting an empty
box on the same line, followed by the ‘\\’ command.

In the remaining part of this section various possibilities for controlling the
width and mutual positioning of the term and description parts will be investi-
gated. The first method changes the width of the label. The environment is de-
clared with an argument specifying the desired width of the label field (normally
chosen to be the widest term entry). Note the redefinition of the \makelabel
command where you specify how the label will be typeset. As this redefinition is
placed inside the definition! of the altDescription environment, the argument
placeholder character # must be escaped to ## to signal KIEX that you are refer-
ring to the argument of the \makelabel command, and not to the argument of
the outer environment. In such a case, \labelwidth is set to the width of the en-
vironment’s argument after it is processed by \makelabel. This way formatting
directives for the label that might change its width are taken into account.

\usepackage{calc}
\newenvironment{altDescription}[1]
{\begin{list}{}%

{\renewcommand\makelabel [1]{\textsf{##1:}\hfil}},

\settowidth\labelwidth{\makelabel{#1}}/

\setlength\leftmargin{\labelwidth+\labelsep}}}%

Description: ~ Returns from a func- {\end{list}}

tion. If issued at top \begin{altDescription}{Return values}
level, the interpreter \item[Description]

simply terminates, just Returns from a function. If issued at top level,
as if end of input had the interpreter simply terminates, just as if end
been reached. of input had been reached.
\item[Errors]
Errors: None. None.
\item[Return values]
Return values: Any arguments in ef- Any arguments in effect are passed back to the
fect are passed back to caller.
the caller. \end{altDescription}

A similar environment (but using an optional argument) is shown in Exam-
ple A-1-9 on page 850. However, having several lists with varying widths for the
label field on the same page might look typographically unacceptable. Evaluating
the width of the term is another possibility that avoids this problem. If the width
is wider than \labelwidth, an additional empty box is appended with the ef-
fect that the description part starts on a new line. This matches the conventional
method for displaying options in UN*X manuals.

To illustrate this method we reuse the Description environment defined

LThis is done for illustration purposes. Usually the solution involving an external name is prefer-
able, as with \Descriptionlabel in Example 3-3-26 on the preceding page.

150 Basic Formatting Tools
in Example 3-3-26 but provide a different definition for the \Descriptionlabel
command as follows:

\usepackage{calc,ifthen} \newlength{\Mylen}
% definition of Description environment as before
\newcommand*\Descriptionlabel[1]{%
\settowidth\Mylen{\textsf{#1:}}), determine width
\ifthenelse{\lengthtest{\Mylen > \labelwidth}}}
Description: {\parbox[b]{\labelwidth}’ term > labelwidth
Returns from a function. If {\makebox [0pt] [1]{\textsf{#1:}}\\\mbox{}}}%
issued at top level, the in- {\textsf{#1:}}% term <= labelwidth
terpreter simply terminates, \nfill}
just as if end of input had \Pegin{Description}
been reached. \item[Description] Returns from a function.
If issued at top level, the interpreter simply
Errors: None. terminates, just as if end of input had been reached.

Return values:

Descrip-
tion:

Errors:

Return
values:

Any arguments in effect are
passed back to the caller.

\item[Errors] None.

\item[Return values]

Any arguments in effect are passed back to the caller.
\end{Description}

The definition of \Descriptionlabel sets the length variable \Mylen equal
to the width of the label. It then compares that length with \1labelwidth. If the
label is not wider than \labelwidth, then it is typeset on the same line as the de-
scription term. Otherwise, it is typeset in a zero-width box with the material stick-
ing out to the right as far as needed. It is placed into a bottom-aligned \parbox
followed by a forced line break so that the description term starts one line lower.
This somewhat complicated maneuver is necessary because \makelabel, and
thus \Descriptionlabel, are executed in a strictly horizontal context in which
vertical spaces or \\ commands have no effect.

Yet another possibility is to allow multiple-line labels.

Returns from a function. If
issued at top level, the in-
terpreter simply terminates,
just as if end of input had
been reached.

None.

Any arguments in effect are
passed back to the caller.

\usepackage{calc}
% definition of Description environment as before
\newcommand*\Descriptionlabel[1]
{\raisebox{Opt}[1lex] [Opt]%
{\makebox[\labelwidth] [1]%
{\parbox[t]{\labelwidth}/
{\hspace{Opt}\textsf{#1:}}}}}

\begin{Description}

\item[Description] Returns from a function.

If issued at top level, the interpreter simply
terminates, just as if end of input had been reached.
\item[Errors] None.

\item[Return\\values]

Any arguments in effect are passed back to the caller.
\end{Description}

3-3-28

3.4 Simulating typed text

151

In the previous example, we once again used the Description environment
as a basis, with yet another redefinition of the \Descriptionlabel command.
The idea here is that large labels may be split over several lines. Certain precau-
tions have to be taken to allow hyphenation of the first word in a paragraph, and
therefore the \hspace{Opt} command is introduced in the definition. The mate-
rial gets typeset inside a paragraph box of the correct width \1abelwidth, which
is then top and left aligned into a box that is itself placed inside a box with a
height of 1ex and no depth. In this way, KX does not realize that the material
extends below the first line.

The final example deals with the definition of enumeration lists. An environ-
ment with an automatically incremented counter can be created by including a
\usecounter command in the declaration of the list environment. This func-
tion is demonstrated with the Notes environment, which produces a sequence of
notes. In this case, the first parameter of the 1ist environment is used to provide
the automatically generated text for the term part.

After declaring the notes counter, the default label of the Notes environment
is defined to consist of the word NOTE in small caps, followed by the value of the
notes counter, using as its representation an Arabic numeral followed by a dot.
Next \labelsep is set to a relatively large value and \itemindent, \leftmargin,
and \labelwidth are adjusted in a way such that the label nevertheless starts
out at the left margin. Finally, the already-mentioned \usecounter declaration
ensures that the notes counter is incremented for each \item command.

\newcounter{notes}
\newenvironment{Notes}

{\begin{list}{\textsc{Note} \arabic{notes}.}%
{\setlength\labelsep{10pt}%
\setlength\itemindent{10pt}%
\setlength\leftmargin{Opt}%
\setlength\labelwidth{Opt}/

\usecounter{notes}}}%
NOTE 1. This is the text of the {\end{1list}}
first note item. Some more text \begin{Notes}

for the first note item. \item This is the text of the first note item.
Some more text for the first note item.

NOTE 2. This is the text of the \item This is the text of the second note item.

second note item. Some more text Some more text for the second note item.

for the second note item. \end{Notes}

3.4 Simulating typed text

It is often necessary to display information verbatim—that is, “as entered at the
terminal”. This ability is provided by the standard KX environment verbatim.
However, to guide the reader it might be useful to highlight certain textual strings

152

Basic Formatting Tools

One can have font changes, like

emphasized tezt. Some special characters: # $ % ~ & ~

in a particular way, such as by numbering the lines. Over time a number of pack-
ages have appeared that addressed one or the other extra feature—unfortunately,
each with its own syntax.

In this section we will review a few such packages. Since they have been used
extensively in the past, you may come across them in document sources on the
Internet or perhaps have used them yourself in the past. But we then concentrate
on the package fancyvrb written by Timothy Van Zandt, which combines all such
features and many more under the roof of a single, highly customizable package.

This coverage is followed by a discussion of the listings package, which pro-
vides a versatile environment in which to pretty print computer listings for a large
number of computer languages.

3.4.1 Simple verbatim extensions

The package alltt (by Leslie Lamport) defines the alltt environment. It acts like
a verbatim environment except that the backslash “\” and braces “{” and “}”
retain their usual meanings. Thus, other commands and environments can appear
inside an alltt environment. A similar functionality is provided by the fancyvrb
environment keyword commandchars (see page 161).

\usepackage{alltt}
\begin{alltt}

One can have font changes, like
\emph{emphasized text}.

Some special characters: # $ % ~ & ~ _ \end{alltt}

The use of \MakeShortVerb can make

In documents where a lot of \verb commands are needed the source soon
becomes difficult to read. For this reason the doc package, described in Chapter 14,
introduces a shortcut mechanism that lets you use a special character to denote
the start and stop of verbatim text, without having to repeatedly write \verb in
front of it. This feature is also available in a stand-alone package called shortvrb.
With fancyvrb the same functionality is provided, unfortunately using a slightly
different syntax (see page 168).

\usepackage{shortvrb}

\MakeShortVerb{\ |}

The use of |\MakeShortVerb| can make sources
much more readable.

sources much more readable. And with the \peleteShortVerb{\|}\MakeShortVerb{\+}
declaration \DeleteShortVerb{\ |} we can And with the declaration +\DeleteShortVerb{\|}+
return the | character back to normal. we can return the +|+ character back to normal.

The variant form, \MakeShortVerb*, implements the same shorthand mech-
anism for the \verb* command. This is shown in the next example.

3-4-1

3-4-2

3-4-4

3.4 Simulating typed text 153

\usepackage{shortvrb} \MakeShortVerb*{\+}
Instead of |, we can now write ;. Instead of \verb*/ / we can now write + +.

The package verbatim (by Rainer Schopf) reimplements the IIEX environ-
ments verbatim and verbatim*. One of its major advantages is that it allows ar-
bitrarily long verbatim texts, something not possible with the basic IXIgX versions
of the environments. It also defines a comment environment that skips all text
between the commands \begin{comment} and \end{comment}. In addition, the
package provides hooks to implement user extensions for defining customized
verbatim-like environments.

A few such extensions are realized in the package moreverb (by Angus Dug-
gan). It offers some interesting verbatim-like commands for writing to and reading
from files as well as several environments for the production of listings and deal-
ing with tab characters. All of these extensions are also available in a consistent
manner with the fancyvrb package, so here we only give a single example to show
the flavor of the syntax used by the moreverb package.

\usepackage{verbatim,moreverb}
Text before listing environment. Text before listing environment.
\begin{listing*}[2]{3}
The listing environment numbers the
lines in it. It takes an optional

The listing ,environment numbers jthe
4 linesyingit. It takes an optional

argument, which is the step between argument, which is the step between
6 numbered,lines;(line 1, is always numbered lines (line 1 is always
numbered_if present),_and a required numbered if present), and a required
8 argument, which,is the starting line. argument, which is the starting line.
The ;star form makes blanks visible. The star form makes blanks visible.
\end{listing*}
Text between listing environments. Text between listing environments.
\begin{listingcont}

10 This listingcont environment continues qpig listingcont environment continues
where the previous listing environment yhere the previous listing environment

12 left off. Both the listing and left off. Both the listing and
listingcont environments expand tabs listingcont environments expand tabs
14 with a default tab width of 8. with a default tab width of 8.
\end{listingcont}
Text following listing environments. Text following listing environments.

3.4.2 upquote—Computer program style quoting

The Computer Modern Typewriter font that is used by default for typesetting
“verbatim” is a very readable monospaced typeface. Due to its small running length
it is very well suited for typesetting computer programs and similar material. See
Section 7.7.4 for a comparison of this font with other monospaced typefaces.

154 Basic Formatting Tools

There is, however, one potential problem when using this font to render com-
puter program listings and similar material: most people expect to see a (right)
quote in a computer listing represented with a straight quote character (i.e., ') and
aleft or back quote as a kind of grave accent on its own (i.e., *). The Computer Mod-
ern Typewriter font, however, displays real left and right curly quote characters
(as one would expect in a normal text font). In fact, most other typewriter fonts
when set up for use with KIgX follow this pattern. This produces somewhat un-
conventional results that many people find difficult to understand. Consider the
following example, which shows the standard behavior for three major typewriter
fonts: LuxiMono, Courier, and Computer Modern Typewriter.

\usepackage [scaled=0.85]{luximono}
\raggedright

\verb+TEST=‘1ls -1 |awk ’{print $3}’ ‘+
\par \renewcommand\ttdefault{pcr}

TEST=‘1ls -1 |awk ’{print :$3}” \verb+TEST=‘1ls -1 |awk ’{print $3}’ ‘+
TEST='1ls -1 |awk ’{print $3} \par \renewcommand\ttdefault{cmtt}
TEST=‘1ls -1 |awk ’{print $3}’¢ \verb+TEST=‘1s -1 |awk ’{print $3}’‘+

This behavior can be changed by loading the package upquote (writ-
ten by Michael Covington), which uses the glyphs \textasciigrave and
\textquotesingle from the textcomp package instead of the usual left and right
curly quote characters within \verb or the verbatim environment. Normal type-
writer text still uses the curly quotes, as shown in the last line of the example.

\usepackage[scaled=0.85]{luximono}
\usepackage{upquote}

\raggedright

\verb+TEST=‘1ls -1 |awk ’{print $3}’ ‘+
\par \renewcommand\ttdefault{pcr}

TEST="1s -1 |awk '{print $3}'" \verb+TEST=‘1ls -1 |awk ’{print $3}’>‘+
TEST="1s -1 |aWk "{print $3}'"° \par \renewcommand\ttdefault{cmtt}
TEST="1s -1 |awk '{print $3}'" \verb+TEST=‘1ls -1 |awk ’{print $3}’ ‘+
but ‘text’ is unaffected! \par \texttt{but ‘text’ is unaffected!}

The package works well together with “verbatim” extensions as described in
this chapter, except for the listings package; it conflicts with the scanning mecha-
nism of that package. If you want this type of quoting with listings simply use the
\1stset keyword upquote.

\usepackage{textcomp}

\usepackage{listings} \lstset{upquotel}

\begin{lstlisting}[language=ksh]

TEST=‘1ls -1 |awk ’{print $3}’°¢
TEST="1s, —1_|awk_ '{ print_$3} ' \end{lstlisting}

3-4-6

3.4 Simulating typed text

155

3.4.3 fancyvrb—Highly customizable verbatim environments

The fancyvrb package by Timothy Van Zandt (these days maintained by Denis
Girou and Sebastian Rahtz) offers a highly customizable set of environments and
commands to typeset and manipulate verbatim text.

It works by parsing one line at a time from an environment or a file (a concept
pioneered by the verbatim package), thereby allowing you to preprocess lines in
various ways. By incorporating features found in various other packages it pro-
vides a truly universal production environment under a common set of syntax
rules.

The main environment provided by the package is the Verbatim environment,
which, if used without customization, is much like standard IX[FX’s verbatim envi-
ronment. The main difference is that it accepts an optional argument in which you
can specify customization information using a key/value syntax. However, there
is one restriction to bear in mind: the left bracket of the optional argument must
appear on the same line as \begin. Otherwise, the optional argument will not be
recognized but instead typeset as verbatim text.

More than 30 keywords are available, and we will discuss their use and possi-
ble values in some detail.

A number of variant environments and commands will be discussed near
the end of this section as well. They also accept customization via the key/value
method. Finally, we cover possibilities for defining your own variants in a straight-
forward way.

Customization keywords for typesetting

To manipulate the fonts used by the verbatim environments of the fancyvrb pack-
age, four environment keywords, corresponding to the four axes of NFSS, are
available. The keyword fontfamily specifies the font family to use. Its default
is Computer Modern Typewriter, so that when used without keywords the envi-
ronments behave in a fashion similar to standard IXX’s verbatim. However, the
value of this keyword can be any font family name in NFSS notation, such as pcr
for Courier or cmss for Computer Modern Sans, even though the latter is not a
monospaced font as would normally be used in a verbatim context. The keyword
also recognizes the special values tt, courier, and helvetica and translates
them internally into NFSS nomenclature.

Because typesetting of verbatim text can include special characters like “\”
you must be careful to ensure that such characters are present in the font. This
should be no problem when a font encoding such as T1 is active, which could be
loaded using the fontenc package. It is, however, not the case for KIEX’s default
font encoding 0T1, in which only some monospaced fonts, such as the default
typewriter font, contain all such special characters. The type of incorrect output
you might encounter is shown in the second line of the next example.

156

Basic Formatting Tools

\usepackage{fancyvrb}

\usepackage [0T1,T1] {fontenc}
\fontencoding{0T1}\selectfont
\begin{Verbatim} [fontfamily=tt]

Family ‘tt’ is fine in 0T1: \sum_{i=1}"n
\end{Verbatim}

\begin{Verbatim} [fontfamily=helvetical

But ‘helvetica’ fails in O0T1: \sum_{i=1}"n

Family ‘tt’ is fine in OT1: \sum_{i=1}"n \cpd{vVerbatim}

\fontencoding{T1}\selectfont

But ‘helvetica’ fails in OT1: “sum’-i=1"n \begin{Verbatim} [fontfamily=helvetical

while it works in T1: \sum_{i=1}"n

. while it works in T1: \sum_{i=1}"n \end{Verbatim}

\sum_{i=1}"n

A line of text to show the body size.

Since all examples in this book are typeset using the T1 encoding this kind
of problem will not show up elsewhere in the book. Nevertheless, you should be
aware of this danger. It represents another good reason to use T1 in preference to
TgX’s original font encoding; for a more in-depth discussion see Section 7.2.4 on
page 336.

The other three environment keywords related to the font set-up are
fontseries, fontshape, and fontsize. They inherit the current NFSS settings
from the surrounding text if not specified. While the first two expect values that
can be fed into \fontseries and \fontshape, respectively (e.g., bx for a bold
extended series or it for an italic shape), the fontsize is special. It expects
one of the higher-level NFSS commands for specifying the font size—for exam-
ple, \small. If the relsize package is available then you could alternatively specify
a change of font size relative to the current text font by using something like
\relsize{-2}

\usepackage{relsize,fancyvrb}

\begin{Verbatim} [fontsize=\relsize{-2}]
\sum_{i=1}"n

\end{Verbatim}

A line of text to show the body size.

\begin{Verbatim} [fontshape=sl,fontsize=\Large]
\sum_{i=1}"n

\SUIII_ {l=1} “n \end{Verbatim}

A more general form for customizing the formatting is available through
the environment keyword formatcom, which accepts any KX code and exe-
cutes it at the start of the environment. For example, to color the verbatim
text you could pass it something like \color{blue}. It is also possible to op-
erate on each line of text by providing a suitable redefinition for the command
\FancyVerbFormatLine. This command is executed for every line, receiving the
text from the line as its argument. In the next example every second line is

3.4 Simulating typed text 157

colored in blue, a result achieved by testing the current value of the counter
FancyVerbLine. This counter is provided automatically by the environment and
holds the current line number.

\usepackage{ifthen, color,fancyvrb}
\renewcommand\FancyVerbFormatLine [1]
{\ifthenelse{\isodd{\value{FancyVerbLinel}}}%
{\textcolor{blue}{#1}}{#1}}
\begin{Verbatim} [gobble=2]
This line should become blue while

This line should become blue while this ome will be black. And here

this one will be black. And here
you can observe that gobble removes
u can observe that gobble removes not only blanks but any character.

t only blanks but any character. \end{Verbatim}

As shown in the previous example the keyword gobble can be used to remove
anumber of characters or spaces (up to nine) from the beginning of each line. This
is mainly useful if all lines in your environments are indented and you wish to get
rid of the extra space produced by the indentation. Sometimes the opposite goal
is desired: every line should be indented by a certain space. For example, in this
book all verbatim environments are indented by 24pt. This indentation is con-
trolled by the keyword xleftmargin. There also exists a keyword xrightmargin
to specify the right indentation, but its usefulness is rather limited, since verbatim
text is not broken across lines. Thus, its only visible effect (unless you use frames,
as discussed below) is potentially more overfull box messages! that indicate that
your text overfloods into the right margin. Perhaps more useful is the Boolean key-
word resetmargins, which controls whether preset indentations by surrounding
environments are ignored.

\usepackage{fancyvrb}
\begin{itemize} \item Normal indentation left:
\begin{Verbatim} [frame=single,xrightmargin=2pc]

e Normal indentation left: A verbatim line of text!
\end{Verbatim}
\item No indentation at either side:
\begin{Verbatim} [resetmargins=true,
¢ No indentation at either side: frame=single]

A verbatim line of text!

A verbatim line of text! \end{Verbatim}

\end{itemize}

The previous example demonstrates one use of the frame keyword: to draw a
frame around verbatim text. By providing other values for this keyword, different-

A verbatim line of text!

I'Whether overfull boxes inside a verbatim environment are shown is controlled the hfuzz key-
word, which has a default value of 2pt. A warning is issued only if boxes protrude by more than the
keywords’s value into the margin.

158 Basic Formatting Tools
looking frames can be produced. The default is none, that is, no frame. With
topline, bottomline, or leftline you get a single line at the side indicated;!
lines produces a line at top and bottom; and single, as we saw in Example 3-4-
11, draws the full frame. In each case, the thickness of the rules can be customized
by specifying a value via the framerule keyword (default is 0.4pt). The separa-
tion between the lines and the text can be controlled with framesep (default is
the current value of \fboxsep).

If the color package is available, you can color the rules using the environment
keyword rulecolor (default is black). If you use a full frame, you can also color
the separation between the frame and the text via fillcolor.

\usepackage{color,fancyvrb}

\begin{Verbatim} [frame=single,rulecolor=\color{blue},
A framed verbatim line! framerule=3pt,framesep=1pc,fillcolor=\color{yellow}]

A framed verbatim line!

\end{Verbatim}

Unfortunately, there is no direct way to fill the entire background. The closest
you can get is by using \colorbox inside \FancyVerbFormatLine. But this ap-
proach will leave tiny white rules between the lines and—without forcing the lines
to be of equal length, such as via \makebox—will also result in colored blocks of
different widths.

\usepackage{color,fancyvrb}
\renewcommand\FancyVerbFormatLine [1]
{\colorbox{green}{#1}}
\begin{Verbatim}
Some verbatim lines with a
background color.
\end{Verbatim}
Some verbatim lines with a \renewcommand\FancyVerbFormatLine [1]
background color. {\colorbox{yellow}{\makebox [\linewidth] [1]{#13}}}
\begin{Verbatim}

Some verbatim lines with a
background color.

Some verbatim lines with a
background color.
\end{Verbatim}

It is possible to typeset text as part of a frame by supplying it as the value
of the label keyword. If this text contains special characters, such as brackets,
equals sign, or comma, you have to hide them by surrounding them with a brace
group. Otherwise, they will be mistaken for part of the syntax. The text appears
by default at the top, but is printed only if the frame set-up would produce a line
in that position. Alternate positions can be specified by using labelposition,
which accepts none, topline, bottomline, or all as values. In the last case the
text is printed above and below. If the label text is unusually large you may need

IThere is no value to indicate a line at the right side.

3-4-15

3-4-16

3.4 Simulating typed text 159

to increase the separation between the frame and the verbatim text by using the
keyword framesep. If you want to cancel a previously set label string, use the
value none—if you really need “none” as a label string, enclose it in braces.

\usepackage{fancyvrb}

) \begin{Verbatim} [frame=single,label=\fbox{Example codel},
Some verbatim text framed framesep=5mm,labelposition=bottomline]

‘ ‘ Some verbatim text framed
Example code .
\end{Verbatim}

You can, in fact, provide different texts to be placed at top and bottom by
surrounding the text for the top position with brackets, as shown in the next
example. For this scheme to work frame needs to be set to either single or lines.

\usepackage{fancyvrb}
Start of code ——— \pegin{Verbatim}[frame=lines,framesep=5mm,
label={[Start of codelEnd of codel}]
A line of code
End of code - \end{Verbatim}

A line of code

By default, the typeset output of the verbatim environments can be broken
across pages by KX if it does not fully fit on a single page. This is even true in
cases where a frame surrounds the text. If you want to ensure that this cannot
happen, set the Boolean keyword samepage to true.

The vertical spacing between lines in a verbatim environment is the same as
in normal text, but if desired you can enlarge it by a factor using the keyword
baselinestretch. Shrinking so that lines overlap is not possible. If you want to
revert to the default line separation, use the string auto as a value.

\usepackage{fancyvrb}
\begin{Verbatim}[baselinestretch=1.6]
This text is more or less double-spaced.
See also the discussion about the See also the discussion about the

setspace package elsewhere.
setspace package elsewhere. \end{Verbatim}

This text is more or less double-spaced.

When presenting computer listings, it is often helpful to number some or all
of the lines. This can be achieved by using the keyword numbers, which accepts
none, left, or right as a value to control the position of the numbers. The dis-
tance between the number and the verbatim text is 12pt by default but it can be
adjusted by specifying a different value via the keyword numbersep. Usually, num-
bering restarts at 1 with each environment, but by providing an explicit number
with the keyword firstnumber you can start with any integer value, even a nega-
tive one. Alternatively, this keyword accepts the word last to indicate that num-
bering should resume where it had stopped in the previous Verbatim instance.

160

Basic Formatting Tools

\usepackage{fancyvrb}

\begin{Verbatim} [numbers=left,numbersep=6pt]
Verbatim lines can be numbered

1 Verbatim lines can be numbered at either left or right.

3

> at either left or right. \end{Verbatim}
Some intermediate text\ldots
Some intermediate text. .. \begin{Verbatim} [numbers=left,firstnumber=last]
Continuation is possible too
Continuation is possible too as we can see here.
as we can see here. \end{Verbatim}

4

3.2

3.4

3.6

Normally empty lines in
in a verbatim will not receive
numbers---here they do!

Admittedly using stepnumber
with such a redefinition of FancyVerbLine looks a bit odd.
FancyVerbLine looks a bit odd. \end{Verbatim}

Some people prefer to number only some lines, and the package caters to this
possibility by providing the keyword stepnumber. If this keyword is assigned a
positive integer number, then only line numbers being an integer multiple of that
number will get printed. We already learned that the counter that is used internally
to count the lines is called FancyVerbLine, so it comes as no surprise that the ap-
pearance of the numbers is controlled by the command \theFancyVerbLine. By
modifying this command, special effects can be obtained; a possibility where the
current chapter number is prepended is shown in the next example. It also shows
the use of the Boolean keyword numberblanklines, which controls whether blank
lines are numbered (default is false, i.e., to not number them).

\usepackage{fancyvrb}

\renewcommand\theFancyVerbLine{\footnotesize
\thechapter.\arabic{FancyVerbLine}}

\begin{Verbatim} [numbers=left,stepnumber=2,

numberblanklines=true]

Normally empty lines in

in a verbatim will not receive

numbers---here they do!

Admittedly using stepnumber
with such a redefinition of

In some situations it helps to clearly identify white space characters by
displaying all blanks as . This can be achieved with the Boolean keyword
showspaces or, alternatively, the Verbatim#* variant of the environment.

Another white space character, the tab, plays an important réle in some pro-
gramming languages, so there may be a need to identify it in your source. This
is achieved with the Boolean keyword showtabs. The tab character displayed is
defined by the command \FancyVerbTab and can be redefined, as seen below. By
default, tab characters simply equal eight spaces, a value that can be changed with
the keyword tabsize. However, if you set the Boolean keyword obeytabs to true,
then each tab character produces as many spaces as necessary to move to the next

3-4-18

3.4 Simulating typed text 161

integer multiple of tabsize. The example input contains tabs in each line that are
displayed on the right as spaces with the default tabsize of 8. Note in particular
the difference between the last input and output line.

\usepackage{fancyvrb}
\begin{Verbatim} [showtabs=true]
123456789012345678901234567890

Two default tabs
\end{Verbatim}
\begin{Verbatim} [obeytabs=true,showtabs=true]
Two real tabs
123456789012345678901234567890 \epnd{Verbatim}
Two “default Jtabs \renewcommand\FancyVerbTab{\triangleright}
\begin{Verbatim} [obeytabs=true, showtabs=true]
Two Jreal ltabs Two new tabs
\end{Verbatim}
Two bnew >tabs \begin{Verbatim} [obeytabs=true,tabsize=3,showtabs=true]
Using a special tab size
Usingpra Pspecial tabpsize \end{Verbatim}

If you wish to execute commands within the verbatim text, then you need one
character to act as an escape character (i.e., to denote the beginning of a command
name) and two characters to serve as argument delimiters (i.e., to play the role
that braces normally play within IKX). Such special characters can be specified
with the commandchars keyword as shown below; of course, these characters then
cannot appear as part of the verbatim text. The characters are specified by putting
a backslash in front of each one so as to mask any special meaning they might
normally have in IXgX. The keyword commentchar allows you to define a comment
character, which will result in ignoring everything following it until and including
the next new line. Thus, if this character is used in the middle of a line, this line
and the next will be joined together. If you wish to cancel a previous setting for
commandchars or commentchar, use the string value “none”.

\usepackage{fancyvrb}

\begin{Verbatim} [commandchars=\|\[\], commentchar=\!]
We can |emph[emphasize] text

! see above (this line is invisible)

We can emphasize text Line with label|label[linea] ! removes new line
Line with label is shown here. is shown here.
\end{Verbatim}
On line 2 we see. .. On line~\ref{linea} we see\ldots

If you use \label within the verbatim environment, as was done in the previ-
ous example, it will refer to the internal line number whether or not that number is
displayed. This requires the use of the commandchars keyword, a price you might
consider too high because it deprives you of the use of the chosen characters in
your verbatim text.

162

Basic Formatting Tools

Two other keywords let you change the parsing and manipulation of verbatim
data: codes and defineactive. They allow you to play some devious tricks but
their use is not so easy to explain: one needs a good understanding of TgX’s inner
workings. If you are interested, please check the documentation provided with the
fancyvrb package.

Limiting the displayed data

Normally, all lines within the verbatim environment are typeset. But if you want
to display only a subset of lines, you have a number of choices. With the key-
words firstline and lastline, you can specify the start line and (if necessary)
the final line to typeset. Alternatively, you can specify a start and stop string to
search for within the environment body, with the result that all lines between (but
this time not including the special lines) will be typeset. The strings are spec-
ified in the macros \FancyVerbStartString and \FancyVerbStopString. To
make this work you have to be a bit careful: the macros need to be defined with
\newcommand* and redefined with \renewcommand*. Using \newcommand will not
work! To cancel such a declaration is even more complicated: you have to \let
the command to \relax, for example,

\let\FancyVerbStartString\relax

or ensure that your definition is confined to a group—everything else fails.

\usepackage{fancyvrb}
\newcommand*\FancyVerbStartString{START}
\newcommand*\FancyVerbStopString{STOP}
\begin{Verbatim}

A verbatim line not shown.
START

Only the third line is shown.
STOP

But the remainder is left out.

Only the third line is shown. \end{Verbatim}

How the book
examples have been
produced

You may wonder why one would want to have such functionality available,
given that one could simply leave out the lines that are not being typeset. With an
environment like Verbatim they are indeed of only limited use. However, when
used together with other functions of the package that write data to files and read
it back again, they offer powerful solutions to otherwise unsolvable problems.

For instance, all examples in this book use this method. The example body
is written to a file together with a document preamble and other material, so
that the resulting file will become a processable IK[X document. This document is
then externally processed and included as an EPS graphic image into the book.
Beside it, the sample code is displayed by reading this external file back in
but displaying only those lines that lie between the strings \begin{document}

3.4 Simulating typed text

163

and \end{document}. This accounts for the example lines you see being type-
set in black. The preamble part, which is shown in blue, is produced in a
similar fashion: for this the start and stop strings are redefined to include
only those lines lying between the strings \StartShownPreambleCommands and
\StopShownPreambleCommands. When processing the example externally, these
two commands are simply no-ops; that is, they are defined by the “example” class
(which is otherwise close to the article document class) to do nothing. As a con-
sequence, the example code will always (for better or worse) correspond to the
displayed result.!

To write data verbatim to a file the environment VerbatimOut is available.
It takes one mandatory argument: the file name into which to write the data.
There is, however, a logical problem if you try to use such an environment in-
side your own environments: the moment you start the VerbatimOut environ-
ment, everything is swallowed without processing and so the end of your environ-
ment is not recognized. As a solution the fancyvrb package offers the command
\VerbatimEnvironment, which, if executed within the \begin code of your en-
vironment, ensures that the end tag of your environment will be recognized in
verbatim mode and the corresponding code executed.

To read data verbatim from a file, the command \VerbatimInput can be used.
It takes an optional argument similar to the one of the Verbatim environment (i.e.,
it accepts all the keywords discussed previously) and a mandatory argument to
specify the file from which to read. The variant \BVerbatimInput puts the typeset
result in a box without space above and below. The next example demonstrates
some of the possibilities: it defines an environment example that first writes its
body verbatim to a file, reads the first line back in and displays it in blue, reads
the file once more, this time starting with the second line, and numbers the lines
starting with the number 1. As explained above, a similar, albeit more complex
definition was used to produce the examples in this book.

\usepackage{fancyvrb,color}

\newenvironment{example}
{\VerbatimEnvironment\begin{VerbatimQut}{test.outl}}
{\end{VerbatimOut}\noindent

\BVerbatimInput [lastline=1,formatcom=\color{blue}]{test.outl}’

\VerbatimInput [numbers=left,firstnumber=1,firstline=2]{test.outl}}

\begin{example}
A blue line. A blue line.
Two lines
i1 Two lines with numbers.
> with numbers. \end{example}

An interesting set of sample environments can be found in the package
fvrb-ex written by Denis Girou, which builds on the features provided by fancyvrb.

IIn the first edition we unfortunately introduced a number of mistakes when showing code in
text that was not directly used.

164

Basic Formatting Tools

Variant environments and commands

So far, all examples have used the Verbatim environment, but there also exist a
number of variants that are useful in certain circumstances. BVerbatim is similar
to Verbatim but puts the verbatim lines into a box. Some keywords discussed
above (notably those dealing with frames) are not supported, but two additional
ones are available. The first, baseline, denotes the alignment point for the box;
it can take the values t (for top), c (for center), or b (for bottom—the default).
The second, boxwidth, specifies the desired width of the box; if it is missing or
given the value auto, the box will be as wide as the widest line present in the
environment. We already encountered \BVerbatimInput; it too, supports these
additional keywords.

\usepackage{fancyvrb}

\begin{BVerbatim} [boxwidth=4pc,baseline=t]
first line

second line

\end{BVerbatim}

\begin{BVerbatim} [baseline=c]

first line first line

first line second line

second line

second line \end{BVerbatim}

All environments and commands for typesetting verbatim text also have star
variants, which, as in the standard XX environments, display blanks as . In
other words, they internally set the keyword showspaces to true.

Defining your own variants

Defining customized variants of verbatim commands and environments is quite
simple. For starters, the default settings built into the package can be changed
with the help of the \fvset command. It takes one argument, a comma-separated
list of key/value pairs. It applies them to every verbatim environment or command.
Of course, you can still overwrite the new defaults with the optional argument on
the command or environment. For example, if nearly all of your verbatim envi-
ronments are indented by two spaces, you might want to remove them without
having to deploy gobble on each occasion.

\usepackage{fancyvrb} \fvset{gobble=2}
\noindent A line of text to show the left margin.

\begin{Verbatim}
A line of text to show the left margin. The new ‘normal’ case.
\end{Verbatim}
The new ‘normal’ case. \begin{Verbatim} [gobble=0]
We now need to explicitly
We now need to explicitly cancel gobble occasionally!
cancel gobble occasionally! \end{Verbatim}

3-4-23

3.4 Simulating typed text 165

However, \fvset applies to all environments and commands, which may not
be what you need. So the package offers commands to define your own verbatim
environments and commands or to modify the behavior of the predefined ones.

\CustomVerbatimEnvironment {new-envi}{base-envi{key/val-list}
\RecustomVerbatimEnvironment{change-env}{base-env}{key/val-list}
\CustomVerbatimCommand {new-cmd}{base-cmd}{key/val-list}

\RecustomVerbatimCommand {change-cmd}{base-cmd}{key/val-list}

These declarations take three arguments: the name of the new environment
or command being defined, the name of the environment or command (with-
out a leading backslash) on which it is based, and a comma-separated list
of key/value pairs that define the new behavior. To define new structures,
you use \CustomVerbatimEnvironment or \CustomVerbatimCommand and to
change the behavior of existing environments or commands (predefined ones
as well as those defined by you), you use \RecustomVerbatimEnvironment or
\RecustomVerbatimCommand. As shown in the following example, the default val-
ues, set in the third argument, can be overwritten as usual with the optional argu-
ment when the environment or command is instantiated.

\usepackage{fancyvrb}

\CustomVerbatimEnvironment{myverbatim}{Verbatim}
{numbers=left,frame=lines,framerule=2pt}

\begin{myverbatim}

The normal case with thick

rules and numbers on the left.

\end{myverbatim}
1 The normal case with thick \begin{myverbatim} [numbers=none,framerule=.6pt]
» rules and numbers on the left. The exception without numbers

and thinner rules.

\end{myverbatim}

\RecustomVerbatimEnvironment{myverbatim}{Verbatim}
{numbers=left,frame=none, showspaces=true}

\begin{myverbatim}

And from here on the environment

i And, from here on the environment behaves differently again.

: behaves differently again. \end{myverbatim}

The exception without numbers
and thinner rules.

Miscellaneous features

KTEX’s standard \verb command normally cannot be used inside arguments, be-
cause in such places the parsing mechanism would go astray, producing incorrect
results or error messages. A solution to this problem is to process the verbatim
data outside the argument, save it, and later use the already parsed data in such
dangerous places. For this purpose the fancyvrb package offers the commands
\SaveVerb and \UseVerb.

166

Basic Formatting Tools

1 Real \danger

\SaveVerb [key/val-list1{label}=data= \UseVerbx* [key/val-list]{label}

The command \SaveVerb takes one mandatory argument, a label denoting the
storage bin in which to save the parsed data. It is followed by the verbatim data
surrounded by two identical characters (= in the syntax example above), in the
same way that \verb delimits its argument. To use this data you call \UseVerb
with the label as the mandatory argument. Because the data is only parsed but
not typeset by \SaveVerb, it is possible to influence the typesetting by applying
a list of key/value pairs or a star as with the other verbatim commands and en-
vironments. Clearly, only a subset of keywords make sense, irrelevant ones being
silently ignored. The \UseVerb command is unnecessarily fragile, so you have to
\protect it in moving arguments.

\usepackage{fancyvrb}

Contents \SaveVerb{danger}=Real \danger=

1 Real \danger 6 \tableofcontents

\section{\protect\UseVerb{dangerl}}

\UseVerb*{danger} is no longer dangerous

Real \danger is no longer dan- and can\marginpar{\UseVerb[fontsize=\tiny]

neal \aanger ZEroUSs and can be reused as often {danger}}

as desired. be reused as often as desired.

It is possible to reuse such a storage bin when it is no longer needed, but if
you use \UseVerb inside commands that distribute their arguments over a large
distance you have to be careful to ensure that the storage bin still contains the
desired contents when the command finally typesets it. In the previous example
we placed \SaveVerb into the preamble because the use of its storage bin inside
the \section command eventually results in an execution of \UseVerb inside the
\tableofcontents command.

\SaveVerb also accepts an optional argument in which you can put key/value
pairs, though again only a few are relevant (e.g., those dealing with parsing). There
is one additional keyword aftersave, which takes code to execute immediately
after saving the verbatim text into the storage bin. The next example shows an ap-
plication of this keyword: the definition of a special variant of the \item command
that accepts verbatim text for display in a description environment. It also sup-
ports an optional argument in which you can put a key/value list to influence the
formatting. The definition is worth studying, even though the amount of mixed
braces and brackets seems distressingly complex at first. They are necessary to
ensure that the right brackets are matched by \SaveVerb, \item, and \UseVerb—
the usual problem, since brackets do not nest like braces do in TgX.! Also note the
use of \textnormal, which is needed to cancel the \bfseries implicitly issued

IThe author confesses that it took him three trials (close to midnight) to make this example work.

3-4-26

3.4 Simulating typed text 167

by the \item command. Otherwise, the \emph command in the example would not
show any effect since no Computer Modern bold italic face exists.

\usepackage{fancyvrb}
\ddanger Dangerous beast; \newcommand\vitem[1] [J{\SaveVerb[commandchars=\|\<\>,%
found in TgXbooks. aftersave={\item[\textnormal{\UseVerb[#1]{vsave}}]}]1{vsave}}
\begin{description}
\aanger 1ts small brother, still \vitem+\ddanger+ Dangerous beast;\\ found in \TeX books.
dangerous. \vitem[fontsize=\tiny]+\danger+ Its small brother,

still dangerous.
\dddanger{arg} Theulti- \vitem+\dddanger{|emph<arg>}+ The ultimate horror.

mate horror. \end{description}

In the same way you can save whole verbatim environments using the environ-
ment SaveVerbatim, which takes the name of a storage bin as the mandatory ar-
gument. To typeset them, \UseVerbatim or \BUseVerbatim (boxed version) with
the usual key/value machinery can be used.

Even though verbatim commands or environments are normally not allowed
inside footnotes, you do not need to deploy \SaveVerb and the like to get ver-
batim text into such places. Instead, place the command \VerbatimFootnotes
at the beginning of your document (following the preamble!) and from that point
onward, you can use verbatim commands directly in footnotes. However, this was
only implemented for footnotes—for other commands, such as \section, you
still need the more complicated storage bin method described above.

A bit of text to give us a reason to \usepackage{fancyvrb}

use a footnote.! Was this good enough? ~ \VerbatimFootnotes

A bit of text to give us a reason to use a
- footnote.\footnote{Here is proof: \verb=\danger{}_~}=}
3-4-28 'Here is proof: \danger{%_~} Was this good enough?

The fancyvrb version of \verb is called \Verb, and it supports all applica-
ble keywords, which can be passed to it via an optional argument as usual. The
example below creates \verbx as a variant of \Verb with a special setting of
commandchars so that we can execute commands within its argument. We have to
use \CustomVerbatimCommand for this purpose, since \verbx is a new command
not available in standard IXIgX.

\usepackage{fancyvrb}
\CustomVerbatimCommand\verbx{Verb}{commandchars=\|\<\>}
\realdanger{ |emph<arg>} \Verb [fontfamily=courier]+\realdanger{|emph<arg>}+ \\
\realdanger{arg} \verbx [fontfamily=courier]+\realdanger{|emph<arg>}+

As already mentioned, fancyvrb offers a way to make a certain character
denote the start and stop of verbatim text without the need to put \verb in
front. The command to declare such a delimiting character is \DefineShortVerb.

168 Basic Formatting Tools

Like other fancyvrb commands it accepts an optional argument that allows you
to set key/value pairs. These influence the formatting and parsing, though this
time you cannot overwrite your choices on the individual instance. Alternatively,
\fvset can be used, since it works on all verbatim commands and environments
within its scope. To remove the special meaning from a character declared with
\DefineShortVerb, use \UndefineShortVerb.

\usepackage{fancyvrb}
\DefineShortVerb[fontsize=\tiny]l{\ |}

The use of |\DefineShortVerb| can make sources
much more readable---or unreadable! \par

The use of \wetinesnortvers can make SOUICES \ypgefineShortVerb{\ | }\DefineShortVerb{\+}
much more readable—or unreadable! \fvset{fontfamily=courier}

And with \UndefineShortVerb{\ |} And with +\UndefineShortVerb{\|}+
we can return the | character back to normal. we can return the +|+ character back to normal.

Your favorite extensions or customizations can be grouped in a file with the
name fancyvrb.cfg. After fancyvrb finishes loading, the package will automati-
cally search for this file. The advantage of using such a file, when installed in a
central place, is that you do not have to put your extensions into all your docu-
ments. The downside is that your documents will no longer be portable unless
you distribute this file in tandem with them.

3.4.4 listings—Pretty-printing program code

A common application of verbatim typesetting is presenting program code. While
one can successfully deploy a package like fancyvrb to handle this job, it is often
preferable to enhance the display by typesetting certain program components
(such as keywords, identifiers, and comments) in a special way.

Two major approaches are possible: one can provide commands to identify
the logical aspects of algorithms or the programming language, or the application
can (try to) analyze the program code behind the scenes. The advantage of the
first approach is that you have potentially more control over the presentation;
however, your program code is intermixed with TgX commands and thus may be
difficult to maintain, unusable for direct processing, and often rather complicated
to read in the source. Examples of packages classified into this category are alg
and algorithmic. Here is an example:

if 7 < 0 then
i1 \usepackage{algorithmic}
else \begin{algorithmic}
if 7« > 0 then \IF {$i\leq0$} \STATE $i\getsi$ \ELSE
140 \IF {$i\geq0$} \STATE $i\getsO$ \ENDIF
end if \ENDIF

end if \end{algorithmic}

3.4 Simulating typed text

169

ABAP (R/2 4.3,R/2 5.0,R/3
3.1,R/3 4.6C,R/3 6.10)
ACSL
Ada (83, 95)
Algol (60, 68)
Assembler (x86masm)
Awk (gnu, POSIX)
Basic (Visual)
C (ANSI, Objective, Sharp)
C++ (ANSI, GNU, IS0, Visual)
Caml (1ight, Objective)
Clean
Cobol (1974, 1985, ibm)
Comal 80
csh
Delphi
Eiffel
Elan
erlang
Euphoria
Fortran (77, 90, 95)
GCL
Gnuplot
blue indicates default dialect

Haskell

HTML

IDL (empty, CORBA)
Java (empty, AspectJ)
ksh

Lisp (empty, Auto)
Logo

Make (empty, gnu)
Mathematica (1.0, 3.0)
Matlab

Mercury

MetaPost

Miranda

Mizar

ML

Modula-2

MuPAD

NASTRAN

Oberon-2

OCL (decorative, OMG)
Octave

Pascal (Borland6, Standard, XSC)
Perl

PHP

PL/1

POV

Prolog

Python

R

Reduce

S (empty, PLUS)

SAS

Scilab

SHELXL

Simula (67, CII, DEC, IBM)

SQL

tcl (empty, tk)

TeX (AlLaTeX, common, LaTeX,
plain, primitive)

VBScript

Verilog

VHDL (empty, AMS)

VRML (97)

XML

Table 3.7: Languages supported by listings (Winter 2003)

The second approach is exemplified in the package listings! written by

Carsten Heinz. This package first analyzes the code, decomposes it into its compo-
nents, and then formats those components according to customizable rules. The
package parser is quite general and can be tuned to recognize the syntax of many
different languages (see Table 3.7). New languages are regularly added, so if your
target language is not listed it might be worth checking the latest release of the
package on CTAN. You may even consider contributing the necessary declarations
yourself, which involves some work but is not very difficult.

The user commands and environments in this package share many similari-
ties with those in fancyvrb. Aspects of parsing and formatting are controlled via
key/value pairs specified in an optional argument, and settings for the whole doc-
ument or larger parts of it can be specified using \1stset (the corresponding
fancyvrb command is \fvset). Whenever appropriate, both packages use the same
keywords so that users of one package should find it easy to make the transition
to the other.

IThe package version described here is 1.0. Earlier releases used a somewhat different syntax in
some cases, so please upgrade if you find that certain features do not work as advertised.

170

Basic Formatting Tools

After loading the package it is helpful to specify all program languages
needed in the document (as a comma-separated list) using \1stloadlanguages.
Such a declaration does not select a language, but merely loads the necessary
support information and speeds up processing.

Program fragments are included inside a 1stlisting environment. The lan-
guage of the fragment is specified with the language keyword. In the following
example we set this keyword via \1stset to C and then overwrite it later in the
optional argument to the second 1stlisting environment.

A “for” loop in C:

int sum;
int 1; /% for loop variable */
sum=0;
for (i=0;i<n;i++) {
sum += al[i];

}

Now the same loop in Ada:

Sum: Integer;
—— mno decl for I necessary
Sum := 0;
for I in 1..N loop
Sum := Sum + A(I);
end loop;

\usepackage{listings}
\1lstloadlanguages{C,Ada}
\1lstset{language=C, commentstyle=\scriptsize}
A “‘for’’ loop in C:
\begin{lstlisting}[keywordstyle=\underbar]
int sum;
int i; /*for loop variablex/
sum=0;
for (i=0;i<n;i++) {

sum += al[i]l;
}
\end{1lstlisting}
Now the same loop in Ada:
\begin{lstlisting}[language=Ada]
Sum: Integer;
-- no decl for I necessary
Sum := O;
for I in 1..N loop

Sum := Sum + A(I);
end loop;

\end{lstlisting}

This example also uses the keyword commentstyle, which controls the lay-
out of comments in the language. The package properly identifies the different
syntax styles for comments. Several other such keywords are available as well—
basicstyle to set the overall appearance of the listing, stringstyle to for-
mat strings in the language, and directivestyle to format compiler directives,

among others.

To format the language keywords, keywordstyle and ndkeywordstyle (sec-
ond order) are used. Other identifiers are formatted according to the setting of
identifierstyle. The values for the “style” keywords (except basicstyle) ac-
cept a one-argument XX command such as \textbf as their last token. This
scheme works because the “identifier text” is internally surrounded by braces and
can thus be picked up by a command with an argument.

Thus, highlighting of keywords, identifiers, and other elements is done au-
tomatically in a customizable way. Nevertheless, you might want to additionally
emphasize the use of a certain variable, function, or interface. For this purpose

3.4 Simulating typed text 171

you can use the keywords emph and emphstyle. The first gets a list of names you
want to emphasize; the second specifies how you want them typeset.

\usepackage{listings,color}

\1lstset{emph={Sum,N},emphstyle=\color{blue},
emph=[2] I, emphstyle=[2] \underbar}

\begin{lstlisting}[language=Adal

Sum: Integer; Sum := 0;

Sum: Integer; Sum := 0; for T in 1..N loop

for I in 1..N loop Sum := Sum + A(I);
Sum := Sum + A(IL); end loop; ’

end loop; \end{1lstlisting}

If you want to typeset a code fragment within normal text you can use the com-
mand \1stinline. The code is delimited in the same way as with the \verb com-
mand, meaning that you can choose any character (other than the open bracket)
that is not used within the code fragment and use it as delimiter. An open bracket
cannot be used because the command also accepts an optional argument in which
you can specify a list of key/value pairs.

\usepackage{listings} \lstset{language=C}

))])) The \lstinline[keywordstyle=\underbar]'!for!
3-434| The for loop is specified as i=0;i<nji++. 150p is specified as \lstinline!i=0;i<n;i++!.

Of course, it is also possible to format the contents of whole files; for this
purpose you use the command \1stinputlisting. It takes an optional argument
in which you can specify key/value pairs and a mandatory argument in which you
specify the file name to process. In the following example, the package identifies
keywords of case-insensitive languages, even if they are written in an unusual
mixed-case (WrItE) manner.

\usepackage{listings}
\begin{filecontents*}{pascal.src}
for i:=1 to maxint do

begin
for i:=1 to maxint do WrItE(’This is stupid’);
begin end.
WrItE (’ This_is_stupid’); \end{filecontents*}
end . \1lstinputlisting[language=Pascal]{pascal.src}

Spaces in strings are shown as , by default. This behavior can be turned off
by setting the keyword showstringspaces to false, as seen in the next example.
It is also possible to request that all spaces be displayed in this way by setting
the keyword showspaces to true. Similarly, tab characters can be made visible by
using the Boolean keyword showtabs.

172

Basic Formatting Tools

Line numbering is possible, too, using the same keywords as employed with
fancyvrb: numbers accepts either left, right, or none (which turns numbering
on or off), numberblanklines decides whether blank lines count with respect
to numbering (default false), numberstyle defines the overall look and feel of
the numbers, stepnumber defines which line numbers will appear (0 means no
numbering), and numbersep defines the separation between numbers and the start
of the line. By default, line numbering starts with 1 on each \1stinputlisting
but this can be changed using the firstnumber keyword. If you specify 1last as a
special value to firstnumber, numbering is continued.

\usepackage{listings}

Some text before ... % pascal.src as defined before

o for i:=1 to maxint do

begin

\1lstset{numberstyle=\tiny,numbers=1left,
stepnumber=2,numbersep=5pt,firstnumber=10,
xleftmargin=12pt,showstringspaces=false}

12 WrItE(’ This is stupid’); \noindent Some text before \ldots

end .

\1lstinputlisting[language=Pascal]{pascal.src}

An overall indentation can be set using the xleftmargin keyword, as shown
in the previous example, and gobble can be used to remove a certain number of
characters (hopefully only spaces) from the left of each line displayed. Normally,
indentations of surrounding environments like itemize will be honored. This fea-
ture can be turned off using the Boolean keyword resetmargin. Of course, all
such keywords can be used together. To format only a subrange of the code lines
you can specify the first and/or last line via firstline and lastline; for exam-
ple, lastline=10 would typeset a maximum of 10 code lines.

Another way to provide continued numbering is via the name keyword. If you
define “named” environments using this keyword, numbering is automatically con-
tinued with respect to the previous environment with the same name. This allows
independent numbering if the need arises.

\usepackage{listings} \lstset{language=Ada,numbers=right,
numberstyle=\tiny, stepnumber=1,numbersep=5pt}
\begin{lstlisting}[name=Test]

Sum: Integer; ., Sum: Integer;

\end{1lstlisting}

The second fragment contin- The second fragment continues the numbering.
ues the numbering. \begin{lstlisting} [name=Test]

Sum := 0;
for I in

Sum :=
end loop;

1..N loop 3
Sum + A(I); 4

Sum := 0;

for I in 1..N loop
Sum := Sum + A(I);

end loop;

5 \end{lstlisting}

If a listing contains very long lines they may not fit into the available mea-
sure. In that case listings will produce overfull lines sticking out to the right, just

3-4-38

3.4 Simulating typed text

173

like a verbatim environment would do. However, you can direct it to break long
lines at spaces or punctuation characters by specifying the keyword breaklines.
Wrapped lines are indented by 20pt, a value that can be adjusted through the
keyword breakindent.

If desired, you can add something before (keyword prebreak) and after (key-
word postbreak) the break to indicate that the line was artificially broken in the
listing. We used this ability below to experiment with small arrows and later on
with the string “(cont.)” in tiny letters. Both keywords are internally implemented
as a TgX \discretionary, which means that they accept only certain input (char-
acters, boxes, and kerns). For more complicated material it would be best to wrap
everything in an \mbox, as we did in the example. In case of color changes, even
that is not enough: you need an extra level of braces to prevent the color \special
from escaping from the box (see the discussion in Appendix A.2.5).

The example exhibits another feature of the breaking mechanism—namely, if
spaces or tabs appear in front of the material being broken, then these spaces are
by default repeated on continuation lines. If this behavior is not desired, set the
keyword breakautoindent to false as we did in the second part of the example.

\usepackage{color,listings}
\1lstset{breaklines=true,breakindent=0pt,

Text at left margin
prebreak=\mbox{\tiny\searrow},

/*A long -~
—string is ~
~broken -
—across the -

\begin{lstlisting}
Text at left margin

~line tx/ \end{lstlisting}
\begin{lstlisting}[breakautoindent=false,
/+*A long -~ postbreak=\tiny (cont.)\,]
ey String 1is broken -, /*A long string is broken across the line!x/
wwacross the line !x/ \end{1lstlisting}

You can put frames or rules around listings using the frame keyword, which
takes the same values as it does in fancyvrb (e.g., single, lines). In addition, it
accepts a subset of the string trb1TRBL as its value. The uppercase letters stand
for double rules the lowercase ones for single rules. There are half a dozen more
keywords: to influence rule widths, create separation from the text, make round
corners, and so on—all of them are compatible with fancyvrb if the same function-
ality is provided.

/*A long string is broken across the line!x*/

postbreak=\mbox{{\color{blue}\tiny\rightarrow}}}

for,f i:=1_to_maxint, _do \usepackage{listings}

begin % pascal.src as defined before

o WrItE (" This Jis _stupid”); \1lstset{frame=trBL, framerule=2pt,framesep=4pt,
end. rulesep=1pt,showspaces=true}

\1lstinputlisting[language=Pascal]{pascal.src}

174

Basic Formatting Tools

Listings

You can specify a caption for individual listings using the keyword caption.
The captions are, by default, numbered and prefixed with the string Listing
stored in \1lstlistingname. The counter used is 1stlisting; thus, to change
its appearance you could modify \thelstlisting. The caption is positioned ei-
ther above (default) or below the listing, and this choice can be adjusted using the
keyword captionpos.

To get a list of all captions, put the command \1stlistoflistings at an
appropriate place in your document. It produces a heading containing the words
stored in \lstlistlistingname (default is Listings). If you want the caption
text in the document to differ from the caption text in the list of listings, use an
optional argument as shown in the following example. Note that in this case you
need braces around the value to hide the right bracket. To prevent the caption
from appearing in the list of listings, use the keyword nolol with a value of true.
By using the keyword label you can specify a label for referencing the listing
number via \ref, provided you have not suppressed the number.

\usepackage{listings}
% pascal.src as defined before

\1lstset{frame=single,frameround=tftt,

1 Pascal listing 6 language=Pascal, captionpos=b}

\1lstlistoflistings

The Pascal code in listing 1 shows. .. YA

for i:=1
begin

\bigskip 7% normally the above is in the

to maxint do \noindent % front matter section, but here ...

%

WrItE (’ This_is_stupid’); The Pascal code in listing~\ref{foo} shows\ldots

end .

\1lstinputlisting

! [caption={[Pascal listing]Pascal},label=foo]

Listing 1: Pascal {pascal.src}

The keyword frameround used in the previous example allows you to specify
round corners by giving t for true and f for false, starting with the upper-right
corner and moving clockwise. This feature is not available with fancyvrb frames.

Instead of formatting your listings within the text, you can turn them into
floats by using the keyword float, typically together with the caption keyword.
Its value is a subset of htbp specifying where the float is allowed to go (using it
without a value is equivalent to tbp). You should, however, avoid mixing floating
and nonfloating listings as this could sometimes result in captions being num-
bered out of order, as in Example 6-3-5 on page 296.

By default, listings only deals with input characters in the ASCII range; unex-
pected 8-bit input can produce very strange results, like the misordered letters in
the following example. By setting extendedchars to true you can enable the use
of 8-bit characters, which makes the package work harder, but (usually) produces

3.5 Lines and columns

175

the right results. Of course, if you use an extended character set you would nor-
mally add the keyword to the \1stset declaration instead of specifying it every
time on the environment. It is also possible to specify an input encoding for the
code fragments (if different from the input encoding used for the remainder of
the document) by using the keyword inputencoding. This keyword can be used
only if the inputenc package is loaded.

\usepackage [latinl] {inputenc}
\usepackage{listings}

\1lstset{language=C, commentstyle=\scriptsize}

\begin{lstlisting}

int i; /*fiir die &duflere Schleifex/

\end{1lstlisting}

int i; /xlifr die @uere Schleife «/ \begin{lstlisting}[extendedchars=true]
int i; /*fiir die &uBlere Schleifex*/

int 1; /« fir die duBere Schleife */ \end{1stlisting}

The package offers many more keys to influence the presentation. For in-
stance, you can escape to KIgX for special formatting tricks, display tab or form-
feed characters, index certain identifiers, or interface to hyperref so that clicking
on some identifier will jump to the previous occurrence. Some of the features are
still considered experimental and you have to request them using an optional ar-
gument during package loading. These are all documented in great detail in the
manual (roughly 50 pages) accompanying the package.

As a final example of the kind of treasures you can find in that manual, look at
the following example. It shows code typesetting as known from Donald Knuth’s
literate programming conventions.

\usepackage{listings}
\lstset{literate={:=}{{\gets}}1

{<=H{\leq}}1 {>=}{{3\geq$}}1 {<>}{{$\neq$}}1}

\begin{lstlisting} [gobble=2]
var i:integer;

var i:integer;
& if (i<=0) i := 1;

if (i<0) i « 1;

: : : if (i>=0) i := 0;
if (i>0) i « 0; ;f (i<>0) 1 = 0;
if (i£0) i « 0; \end{lstlisting}

3.5 Lines and columns

In the last part of this chapter we present a few packages that help in manipulating
the text stream in its entirety. The first package deals with attaching line numbers
to paragraphs, supporting automatic references to them. This can be useful in
critical editions and other scholarly works.

176

Basic Formatting Tools

The second package deals with the problem of presenting two text streams
side by side—for example, some original and its translation. We will show how
both packages can be combined in standard cases.

The third package deals with layouts having multiple columns. It allows
switching between different numbers of columns on the same page and supports
balancing textual data. Standard XX already offers the possibility of typesetting
text in one- or two-column mode, but one- and two-column output cannot be
mixed on the same page.

We conclude by introducing a package that allows you to mark the modifica-
tions in your source with vertical bars in the margin.

3.5.1 lineno—Numbering lines of text

In certain applications it is useful or even necessary to number the lines of para-
graphs to be able to refer to them. As TgX optimizes the line breaking over the
whole paragraph, it is ill equipped to provide such a facility, since technically line
breaking happens at a very late stage during the processing, just before the final
pages are constructed. At that point macro processing, which could add the right
line number or handle automatic references, has already taken place. Hence, the
only way to achieve line numbering is by deconstructing the completed page line
by line in the “output routine” (i.e., the part of KIgX, that normally breaks the para-
graph galley into pages and adds running headers and footers) and attaching the
appropriate line numbers at that stage.

This approach was taken by Stephan Bottcher in his lineno package. Al-
though one would expect such an undertaking to work only in a restricted en-
vironment, his package is surprisingly robust and works seamlessly with many
other packages—even those that modify the KX output routine, such as ftnright,
multicol, and wrapfig. It also supports layouts produced with the twocolumn op-
tion of the standard XX classes.

\linenumbers* [start-number] \nolinenumbers

Loading the lineno package has no direct effect: to activate line numbering, a
\linenumbers command must be specified in the preamble or at some point in
the document. The command \nolinenumbers deactivates line numbering again.
Line numbering works on a per-paragraph basis. Thus, when XX sees the end of
a paragraph, it checks whether line numbering is currently requested and, if so,
attaches numbers to all lines of that paragraph. It is therefore best to put these
commands between paragraphs rather than within them.

The \1linenumbers command can take an optional argument that denotes the
number to use for the first line. If used without such an argument, it continues
from where it stopped numbering previously. You can also use a star form, which

3-5-1

3.5 Lines and columns 177

is a shorthand for \1linenumbers[1].

No line numbers here. Some text to ex-
periment with line numbering.
1 But here we get line numbers. Some text

\usepackage{lineno}
\newcommand\para{ Some text to experiment
with line numbering.\par}

No line numbers here.\para

2 to experiment with line numbering. \linenumbers
3 And here too. Some text to experiment But here we get line numbers.\para
+ with line numbering. And here too.\para
-10 Restart with a negative number. Some \linenumbers[-10]
o text to experiment with line numbering. Restart with a negative number.\para

Rather than starting or stopping line numbering with the above commands,
you can use the environment linenumbers to define the region that should get
line numbers. This environment will automatically issue a \par command at the
end to terminate the current paragraph. If line numbers are needed only for short
passages, the environment form (or one of the special environments numquote
and numquotation described later) is preferable.
As the production of line numbers involves the output routine, numbering will
take place only for paragraphs being built and put on the “main vertical list” but Numbering boxed
not for those built inside boxes (e.g., not inside a \marginpar or within the body paragraphs
of a float). However, the package offers some limited support for numbering lines
in such places via the \internallinenumbers command. Restrictions are that
the baselines within such paragraphs need to be a fixed distance apart (otherwise,
the numbers will not get positioned correctly) and that you may have to end such
paragraphs with explicit \par commands. The \internallinenumbers command
accepts a star and an optional argument just as \linenumbers does. However,
the starred form not only ensures that line numbering is (re)started with 1, but
also that the line numbers do not affect line numbering in the main vertical list;
compare the results in the two \marginpars below.

1 Some text to experi-
2 ment with line num-
3 bering.

6 Some text to experi-
7 ment with line num-
8 bering.

1

\usepackage{lineno}

Some text on the main verti-
% \para defined as before

cal list! Some text to experiment
with line numbering.

Some text to experiment with
line numbering.

\linenumbers

Some text on the main vertical list!

\marginpar{\footnotesize

\internallinenumbers* \para}

In this paragraph we use a \para \para In this paragraph we use

second marginal note affecting a second marginal note affecting the

the line numbers this time. Some \marginpar{\footnotesize

text to experiment with line num- \internallinenumbers \para}

bering. line numbers this time.\para

The line numbers in the second \marginpar continue the numbering on the
main vertical list (the last line of the preceding paragraph was 5) and the third

178

Basic Formatting Tools

Handling display

1

2

3

math

No line number before the display:

paragraph then continues with line number 9. Such \marginpar commands are
processed before the paragraph containing them is broken into lines, which ex-
plains the ordering of the numbers.

As lineno needs \par to attach line numbers when the output routine is in-
voked, a TgXnical problem arises when certain display math constructs are used:
the partial paragraph above such a display is broken into lines by TgX without
issuing a \par. As a consequence, without further help such a partial paragraph
will not get any line numbers attached. The package’s solution, as illustrated in
the next example, is to offer the environment 1inenomath, which, if it surrounds
such a display, will take care of the line numbering problem. It also has a starred
form that also numbers the display lines.

\usepackage{lineno} \linenumbers
\newcommand\sample{ Some text to

x#y experiment with line numbering.}
No line number before the display:
Some text to experiment with line numbering. \[x \neq y \] \sample \par
But line numbers in this case: But line numbers in this case:
\begin{linenomath}
T#Y \[x \neq y \]
\end{linenomath}
Some text to experiment with line numbering. \sample\par

If there are many such displays the need for surrounding each of them with a
linenomath environment is cumbersome. For this reason the package offers the
option displaymath, which redefines the basic KX math display environments
so that they internally use 1inenomath environments. The option mathlines will
make linenomath behave like its starred form so that the displayed mathematical
formulas get line numbers as well.

Some text to experiment with line numbering. ~ \usepackage[displaymath,mathlines]
{lineno}
Tz #y \linenumbers
% \sample as defined before
Some text to experiment with line numbering. \sample \[x \neq y \] \sample\par
Some text to experiment with line numbering. \sample
\begin{displaymath}
TH#y x \neq y
\end{displaymath}
Some text to experiment with line numbering. \sample

To reference line numbers put a \linelabel into the line and then refer to

Cross-references to it via \ref or \pageref, just as with other references defined using \1abel. The

line numbers exception is that \1inelabel can only be used on the main vertical list and should

only be used within paragraphs that actually carry numbers. If it is used elsewhere,

3.5 Lines and columns 179
you get either a bogus reference (if the current line does not have a line number)
or an error message (in places where \linelabel is not allowed).
\usepackage{lineno}
. T \linenumbers
1 Some text to experiment with line num- 0 .
. . . % \sample as defined before

2 bering. Some text to experiment with line

3 n.umberlng. ‘Some text to experlment' with \sample\linelabel{first}\sample\sample

« line numbering. Some text to experiment \sample\linelabel{second}\sample

s with line numbering. Some text to experi-

s ment with line numbering. In the text on lines~\ref{first},

7 In the text on lines 2, 3, up to and includ- \lineref[1]{first}, up to and including

s ing line 5 we see refererences to individual line~\ref{second} we see refererences to

s lines... individual lines \ldots

It is also possible to refer to a line that carries no \1linelabel, by using the
\lineref command with an optional argument specifying the offset. This ability
can be useful if you need to refer to a line that cannot be easily labeled, such as
a math display, or if you wish to refer to a sequence of lines, as in the previous
example.

There are several ways to customize the visual appearance of line numbers.
Specifying the option modulo means that line numbers will only appear on some
lines (default is every fifth). This effect can also be achieved by using the command
\modulolinenumbers. Calling this command with an optional argument attaches
numbers to lines that are multiples of the specified number (in particular, a value
of 1 corresponds to normal numbering). Neither command nor option initiates
line numbering mode, for that a \linenumbers command is still necessary.

1 Some text to experiment with line num-

2 bering. Some text to experiment with line \usepackage{lineno}

Labeling only some
lines

s numbering. Some text to experiment with \linenumbers
« line numbering. % \sample defined as before
And now a paragraph with numbers on
s every second line. Some text to experiment \sample \sample \sample \par
with line numbering. Some text to experi- \modulolinenumbers [2]
s ment with line numbering. Some text to ex- And now a paragraph with numbers on every
periment with line numbering. second line.\sample \sample \sample \par

The font for line numbers is controlled by the hook \1inenumberfont. Its de-
fault definition is to use tiny sans serif digits. The numbers are put flush right in a
box of width \1linenumberwidth. This box is separated from the line by the value
stored in \linenumbersep. To set the number flush left you have to dig deeper,
but even for this case you will find hooks like \makeLineNumberRight in the pack-
age. Although changing the settings in the middle of a document is usually not a

180

Basic Formatting Tools

good idea, it was done in the next example for demonstration purposes.

The option “right” changes the line num- 1
ber position. Some text to experiment with
line numbering. Some text to experiment s
with line numbering. 4

Now we use a different font and a big-
ger separation. Some text to experiment
with line numbering. Some text to experi-
ment with line numbering.

0w N o o

\usepackage [right]{lineno}
\linenumbers
% \sample defined as before

¢

The option ‘‘right’’ changes the line

number position. \sample \sample \par

\renewcommand\linenumberfont
{\normalfont\footnotesize\ttfamily}

\setlength\linenumbersep{20pt}

Now we use a different font and a bigger

separation. \sample \sample \par

For special applications the package offers two environments that provide
line numbers automatically: numquote and numquotation. They are like their
IXTEX cousins quote and quotation, except that their lines are numbered. They
accept an optional argument denoting the line number with which to start (if the
argument is omitted, they restart with 1) and they have starred forms that will
suppress reseting the line numbers.

The main difference from their IXIEX counterparts (when used together with
the \linenumbers command) is the positioning of the numbers, which are in-
dented inward. Thus, their intended use is for cases when only the quoted text
should receive line numbers that can be referenced separately.

1 Some text to experiment with line
2 numbering.

s Some text to experiment with line number-
+ ing. Some text to experiment with line num-
s bering.

1 Some text to experiment with line
2 numbering.

s Some more text.

\usepackage{lineno}

\linenumbers

% \sample defined as before

\begin{quote}
\sample

\end{quote}

\sample \sample

\begin{numquote}
\sample

\end{numquote}

Some more text.

Using the machinery provided by the package material, it is fairly easy to
Providing your own develop your own environments that attach special items to each line. The main
extensions macro to customize is \makeLineNumber, which gets executed inside a box of
zero width at the left edge of each line (when line numbering mode is turned on).
The net effect of your code should take up no space, so it is best to operate with
\1lap or \rlap. Apart from that you can use basically anything. You should only
remember that the material is processed and attached after the paragraph has
been broken into lines and normal macro-processing has finished, so, you should
not expect it to interact with data in mid-paragraph. You can produce the current
line number with the \LineNumber command, which will supply the number or
nothing, depending on whether line numbering mode is on.

3.5 Lines and columns

181

The following example shows the definition and use of two new environments
that (albeit somewhat crudely, as they do not care about setting fonts and the
like) demonstrate some of the possibilities. Note that even though the second
environment does not print any line numbers, the lines are internally counted, so
that line numbering resumes afterwards with the correct value.

\usepackage{lineno} \linenumbers
1— Some text to experiment /4 \sample defined as before
2— with line numbering. \newenvironment{numarrows}
Some text to experiment {\renewcommand\makeLineNumber

with line numbering. Some text <

. o {\par}
to experiment with line number- <— P

{\1lap{\LineNumber\rightarrow }}}

\newenvironment{arrows}{\renewcommand\makeLineNumber

Ing. = {\rlap{\hspace{\textwidth} \leftarrow}}}{\par}

T— Some text to experiment
8— with line numbering. Some text
9— to experiment with line number- \sample

10— ing. \begin{numarrows} \sample \end{numarrows}

The appearance and behavior of the line numbers can be further controlled by
a set of options or, alternatively, by a set of commands equivalent to the options
(see the package documentation for details on the command forms). With the
options left (default) and right, you specify in which margin the line numbers
should appear. Using the option switch or switch#*, you get them in the outer
and inner margins, respectively.

At least two KIgX runs of the document are required before the line numbers
will appear in the appropriate place. Unfortunately, there is no warning about the
need to rerun the document, so you have to watch out for this issue yourself.

You can also request that numbers restart on each page by specifying the
option pagewise. This option needs to come last.

3.5.2 parallel—Two text streams aligned

Sometimes it is necessary to typeset something in parallel columns, such as when
presenting some text and its translation. Parallel in this context means that at
certain synchronization points the two text streams are vertically (re)aligned. This
type of layout is normally not supported by KIEX (which by default only works
with a single text stream), but it can be achieved by using Matthias Eckermann’s
parallel package.

This package provides the Parallel environment, which surrounds the mate-
rial to be typeset in parallel. It takes two mandatory arguments: the widths of the
left and right columns. Their sum should be less than \textwidth; otherwise, the
text in the two columns will touch or even overlap. To ease usage, one or both argu-
ments can be left empty, in which case the appropriate width for the column(s) will
be calculated automatically, using the current value of \ParallelUserMidSkip as
the column separation. To mark up the left and the right text streams, you use

\begin{numarrows} \sample \end{numarrows}
\begin{arrows} \sample \sample \end{arrows}

182

Basic Formatting Tools

\verb is allowed

This is text in
the English lan-
guage explaining
the command \foo

I just go online
2 and download

\ParallellLText and \ParallelRText, respectively. Although both commands
expect the text as an argument, it is nevertheless possible to use \verb or a
verbatim environment inside, as the following example shows.

\usepackage{parallel}
\begin{Parallel}{}{}

\ParallellLText{This is text in the English
language explaining the command \verb=\foo=.}
\ParallelRText{Dies ist Text in deutscher Sprache,

der das Kommando \verb=\foo= erl\"autert.}
\end{Parallel}

Dies ist Text in
deutscher Sprache,
der das Kommando

. \foo erldutert.

To align certain lines of text you split the two text streams at appropriate
points by using pairs of \ParallelLText and \ParallelRText commands and
separating each pair with \ParallelPar. If you forget one of the \ParallelPar
commands, some of your text will get lost without warning. Moreover, as its
name suggests, the \ParallelPar command introduces a paragraph break, so
that alignment is possible only at paragraph boundaries. Additional paragraph
breaks inside the argument of a \Parallel..Text command are also possible
but in that case no alignment is attempted.

In the next example, displaying a few “direct” translations of computer jargon
into German (taken from [54] with kind permission by Eichborn Verlag), we define
a shorthand command \LR to make it easier to input the text. If such a shorthand
is used, \verb can no longer be used in the argument. Thus, if you need \verb,
use the package commands directly. We also use the lineno package since line
numbers can be useful when talking about a text and its translation.

\usepackage{parallel,lineno}

\linenumbers \modulolinenumbers [2]

\setlength\linenumbersep{ipt}

\newcommand\LR [2] {\ParallelLText{#1}/
\ParallelRText{#2}\ParallelPar}

Ich geh mal eben
auf den Strich

an update. und lade mir
. ein Auffrisch \begin{Parallel}{.45\1linewidth}{}
herunter. \raggedright \setlength\leftskip{10pt}
+This laptop is Dieser \setlength\parindent{-\leftskip}
. . \LR{I just go online and download an update.}{Ich
missing SchoBspitze . . .
geh mal eben auf den Strich und lade mir ein
» several fehltso Auffrisch herunter.} \LR{This laptop is missing
interfaces. manches .ZW1' several interfaces.} {Dieser Scho\ss\-spitze
10 schengesicht. fehlt so manches Zwi\-schen\-ge\-sicht.}
Microsoft Office Kleinweich Biiro \LR{Microsoft Office on floppy disks.}{Kleinweich
12 on floppy auf Schlabber- B\"uro auf Schlabberscheiben.}
disks. scheiben. \end{Parallel}

As you can see, it is possible to adjust paragraph parameters within the

scope of the Parallel environment. The negative \parindent cancels the pos-

3.5 Lines and columns 183

itive \leftskip so that each paragraph starts flush left but following lines are
indented by \leftskip (and both must be changed after calling \raggedright,
as the latter also sets these registers).

The Parallel environment works by aligning line by line, which has a sur-
prising consequence when one block contains unusually large objects, such as a
display. Thus, the method is suitable only for normal text lines.

\usepackage{parallel}

This is text that con- And here is the ex-
tains: \begin{Parallel}{}{}
\ParallelLText{This is text that contains:
i .) \[\sum_{n=1}"x2 a_n \1}
Z 2an planation showing some \ParallelRText{And here is the explanation
n=1 o showing some surprising effect.}
surprising effect. \end{Parallel}

Footnotes within the parallel text are not placed at the bottom of the current
page, but rather are typeset directly after the end of the current Parallel envi- Footnotes in parallel
ronment and separated from it by the result of executing \ParallelAtEnd, which text
is a command defined to do nothing. You can, however, redefine it to place some-
thing between footnotes and preceding text. If the redefinition should apply only
to a single Parallel environment, place it within the scope of the environment.

The presentation of the footnotes is controlled by four package options:
01dStyleNums sets footnote numbers using old-style numerals, RaiseNums gener-
ates raised footnote numbers, and ItalicNums produces italic numbers. If none
of these options is given, then Arabic numerals at the baseline position are used.
The options affect only the numbers in front of the footnote text; the markers
within the parallel text are always raised Arabic numerals. The fourth option,
SeparatedFootnotes, can be combined with one of the three other options and
indicates that footnotes in each column should be independently numbered. The
numbers from the right column are then postfixed with \ParallelDot, which
by default produces a centered dot. In the next example its definition is slightly
modified so that the dot itself does not take up any space.

\usepackage [01dStyleNums,SeparatedFootnotes]{parallel}
\renewcommand\ParallelAtEnd{\vspace{7pt}\footnoterule}
\renewcommand\ParallelDot

This is text in the | Dies ist Text! in {\makebox [0pt] [1]{\textperiodcentered}}
English language' | deutscher \begin{Parallel}[vl{}{} \raggedright
explaining the Sprachez, der das \ParallelLText{This is text in the English
command \foo. Kommando \foo language\footnote{We hope!} explaining the
erlziutert. command \verb=\foo=.}
\ParallelRText{Dies ist Text\footnote{Ein Satz.} in
1 We hope! deutscher Sprache\footnote{Schlechter Stil!}, der
1- Ein Satz. das Kommando \verb=\foo= erl\"autert.}
2. Schlechter Stil! \end{Parallel}

184

Basic Formatting Tools

Here is
some text to
be distributed

over

several

The Parallel environment can sport an optional argument before the manda-
tory ones, whose value can be ¢ (make two columns—the default), v (separate
columns with a vertical rule as shown in the previous example), or p (put left text
on left-hand pages and right text on right-hand pages). If the “page” variant is
chosen it is possible that you get empty pages. For example, if you are on a verso
page the environment has to skip to the next recto page in order to display the
texts on facing pages.

3.5.3 multicol—A flexible way to handle multiple columns

With standard ITgX it is possible to produce documents with one or two columns
(using the class option twocolumn). However, it is impossible to produce only
parts of a page in two-column format as the commands \twocolumn and
\onecolumn always start a fresh page. Additionally, the columns are never bal-
anced, which sometimes results in a slightly weird distribution of the material.

The multicol package! by Frank Mittelbach solves these problems by defining
an environment, multicols, with the following properties:

e Support is provided for 2-10 columns, which can run for several pages.

e When the environment ends, the columns on the last page are balanced so
that they are all of nearly equal length.

e The environment can be used inside other environments, such as figure or
minipage, where it will produce a box containing the text distributed into the
requested number of columns. Thus, you no longer need to hand-format your
layout in such cases.

e Between individual columns, vertical rules of user-defined widths can be in-
serted.

e The formatting can be customized globally or for individual environments.

\begin{multicols}{columns} [preface] [skip]

Normally, you can start the environment simply by specifying the number of de-
sired columns. By default paragraphs will be justified, but with narrow measures—
as in the examples—they would be better set unjustified as we show later on.

\usepackage{multicol}
\begin{multicols}{3}
columns. If setting ragged Here is some text to be distributed over
the columns right. several columns. If the columns are very
are very nar- narrow try typesetting ragged right.
row try type- \end{multicols}

1Although the multicol package is distributed under LPPL (IXIzX Project Public License) [111], for
historical reasons its copyright contains an additional “moral obligation” clause that asks commer-
cial users to consider paying a license fee to the author or the KX3 fund for their use of the
package. For details see the head of the package file itself.

3-5-14

3.5 Lines and columns 185

\premulticols 50.0pt \postmulticols 20.0pt
\columnsep 10.0pt \columnseprule 0.0pt
\multicolsep 12.0pt plus 4.0pt minus 3.0pt

Table 3.8: Length parameters used by multicols

You may be interested in prefixing the multicolumn text with a bit of single-
column material. This can be achieved by using the optional preface argument.
KTEX will then try to keep the text from this argument and the start of the multi-
column text on the same page.

\usepackage{multicol}
\begin{multicols}{2}

[\section*{Some useful advicel}]
Here is some text to be distributed over

Some useful advice

Here is some text to columns are very nar- several columns. If the columns are very
be distributed over sev- row try typesetting narrow try typesetting ragged right.
3-5-15 | eral columns. If the ragged right. \end{multicols}

The multicols environment starts a new page if there is not enough free
space left on the current page. The amount of free space is controlled by a global
parameter. However, when using the optional argument the default setting for
this parameter may be too small. In this case you can either change the global
default (see below) or adjust the value for the current environment by using a
second optional skip argument as follows:

\begin{multicols}{3}[\section*{Index}] [7cm]
Text Text Text Text ...
\end{multicols}

This would start a new page if less than 7cm free vertical space was available.

The multicols environment balances the columns on the last page (it was
originally developed for exactly this purpose). If this effect is not desired you can Preventing
use the multicols* variant instead. Of course, this environment works only in balancing
the main vertical galley, since inside a box one has to balance the columns to
determine a column height.

The multicols environment recognizes several formatting parameters. Their
meanings are described in the following sections. The default values can be found
in Table 3.8 (dimensions) and Table 3.9 (counters). If not stated otherwise, all
changes to the parameters have to be placed before the start of the environment
to which they should apply.

The multicols environment first checks whether the amount of free space
left on the page is at least equal to \premulticols or to the value of the sec- The required free
ond optional argument, when specified. If the requested space is not available, a space

186 Basic Formatting Tools

\multicolpretolerance -1 \multicoltolerance 9999
columnbadness 10000 finalcolumnbadness 9999
collectmore 0 unbalance 0
tracingmulticols 0

Table 3.9: Counters used by multicols

\newpage is issued. A new page is also started at the end of the environment if the
remaining space is less than \postmulticols. Before and after the environment,
a vertical space of length \multicolsep is placed.
The column width inside the multicols environment will automatically be
Column width and calculated based on the number of requested columns and the current value of
separation \1inewidth. It will then be stored in \columnwidth. Between columns a space of
\columnsep is left.
Adding vertical lines Between any two columns, a rule of width \columnseprule is placed. If this
parameter is set to Opt (the default), the rule is suppressed. If you choose a rule
width larger than the column separation, the rule will overprint the column text.

\usepackage{multicol,ragged2e}
\setlength\columnseprule{0.4pt}
\addtolength\columnsep{2pt}

\begin{multicols}{3}
\RaggedRight
Here is some text to be distributed over
Here is some | over several | ragged-right several columns. In this example ragged-right
text to be columns. In | typesetting typesetting is used.
distributed this example | is used. \end{multicols}

Column formatting

By default (the \flushcolumns setting), the multicols environment tries to type-
set all columns with the same length by stretching the available vertical space
inside the columns. If you specify \raggedcolumns the surplus space will instead
be placed at the bottom of each column.

Paragraphs are formatted using the default parameter settings (as de-
scribed in Sections 3.1.11 and 3.1.12) with the exception of \pretolerance
and \tolerance, for which the current values of \multicolpretolerance and
\multicoltolerance are used, respectively. The defaults are -1 and 9999, so
that the paragraph-breaking trial without hyphenation is skipped and relatively
bad paragraphs are allowed (accounting for the fact that the columns are typically
very narrow). If the columns are wide enough, you might wish to change these
defaults to something more restrictive, such as

\multicoltolerance=3000

3.5 Lines and columns

187

Note the somewhat uncommon assignment form: \multicoltolerance is an in-
ternal TgX counter and is controlled in exactly the same way as \tolerance.

Balancing control

At the end of the multicols environment, remaining text will be balanced to
produce columns of roughly equal length. If you wish to place more text in the
left columns you can advance the counter unbalance. This counter determines
the number of additional lines in the columns in comparison to the number that
the balancing routine has calculated. It will automatically be restored to zero after
the environment has finished. To demonstrate the effect, the next example uses
the text from Example 3-5-16 on the facing page but requests one extra line.

\usepackage{multicol,ragged2e}
\addtolength\columnsep{2pt}

\begin{multicols}{3}
\RaggedRight
\setcounter{unbalance}{1}
Here is some columns. In is used. Here is some text to be distributed over
text to be this example several columns. In this example ragged-right
distributed ragged-right typesetting is used.
over several typesetting \end{multicols}

Column balancing is further controlled by the two counters columnbadness
and finalcolumnbadness. Whenever KIEX is constructing boxes (such as a col-
umn) it will compute a badness value expressing the quality of the box—that is,
the amount of excess white space. A zero value is optimal, and a value of 10000
is infinitely bad in IATX’s eyes.2 While balancing, the algorithm compares the bad-
ness of possible solutions and, if any column except the last one has a badness
higher than columnbadness, the solution is ignored. When the algorithm finally
finds a solution, it looks at the badness in the last column. If it is larger than
finalcolumnbadness, it will typeset this column with the excess space placed at
the bottom, allowing it to come out short.

Collecting material

To be able to properly balance columns the multicols environment needs to
collect enough material to fill the remaining part of the page. Only then does it
cut the collected material into individual columns. It tries to do so by assuming
that not more than the equivalent of one line of text per column vanishes into the
margin due to breaking at vertical spaces. In some situations this assumption is
incorrect and it becomes necessary to collect more or less material. In such a case

Lvery bad for reading but too good to fix: this problem of a break-stack with "the" four times in
a row will not be detected by TgX’s paragraph algorithm—only a complete paragraph rewrite would
resolve it.

2For an overfull box the badness value is set to 100000 by TgX, to mark this special case.

188

Basic Formatting Tools

you can adjust the default setting for the counter collectmore. Changing this
counter by one means collecting material for one more (or less) \baselineskip.

There are, in fact, reasons why you may want to reduce that collection. If your
document contains many footnotes and a lot of surplus material is collected, there
is a higher chance that the unused part will contain footnotes, which could come
out on the wrong page. The smallest sensible value for the counter is the negative
number of columns used. With this value multicols will collect exactly the right
amount of material to fill all columns as long as no space gets lost at a column
break. However, if spaces are discarded in this set up, they will show up as empty
space in the last column.

Tracing the algorithm

You can trace the behavior of the multicol package by loading it with one of the fol-
lowing options. The default, errorshow, displays only real errors. With infoshow,
multicol becomes more talkative and you will get basic processing information
such as

Package multicol: Column spec: 185.0pt = indent + columns + sep =
(multicol) 0.0pt + 3 x 55.0pt + 2 x 10.0pt on input line 32.

which is the calculated column width.

With balancingshow, you get additional information on the various trials
made by multicols when determining the optimal column height for balancing,
including the resulting badness of the columns, reasons why a trial was rejected,
and so on.

Using markshow will additionally show which marks for the running header
or footer are generated on each page. Instead of using the options you can (tem-
porarily) set the counter tracingmulticols to a positive value (higher values give
more tracing information).

Manually breaking columns

Sometimes it is necessary to overrule the column-breaking algorithm. We have al-
ready seen how the unbalance counter is used to influence the balancing phase.
But on some occasions one wishes to explicitly end a column after a certain line.
In standard KX this can be achieved with a \pagebreak command, but this ap-
proach does not work within a multicols environment because it will end the
collection phase of multicols and thus end all columns on the page. As an al-
ternative the command \columnbreak is provided. If used within a paragraph it
marks the end of the current line as the desired breakpoint. If used between para-
graphs it forces the next paragraph into the next column (or page) as shown in
the following example. If \flushcolumns is in force, the material in the column is
vertically stretched (if possible) to fill the full column height. If this effect is not
desired one can prepend a \vfill command to fill the bottom of the column with
white space.

3.5 Lines and columns 189

\usepackage{multicol,ragged2e}

\begin{multicols}{2} \RaggedRight

Here is some text to With the help of the Here is some text to be distributed over several

be distributed over \columnbreak com- columns. \par \vfill\columnbreak

several columns. mand this paragraph With the help of the \verb=\columnbreak= command
was forced into the this paragraph was forced into the second column.
second column. \end{multicols}

Floats and footnotes in multicol

Floats (e.g., figures and tables) are only partially supported withinmulticols. You
can use starred forms of the float environments, thereby requesting floats that
span all columns. Column floats and \marginpars, however, are not supported.

Footnotes are typeset (full width) on the bottom of the page, and not under
individual columns (a concession to the fact that varying column widths are sup-
ported on a single page).

Under certain circumstances a footnote reference and its text may fall on
subsequent pages. If this is a possibility, multicols produces a warning. In that
case, you should check the page in question. If the footnote reference and footnote
text really are on different pages, you will have to resolve the problem locally by
issuing a \pagebreak command in a strategic place. The reason for this behavior
is that multicols has to look ahead to assemble material and may not be able to
use all material gathered later on. The amount of looking ahead is controlled by
the collectmore counter.

3.5.4 changebar—Adding revision bars to documents

When a document is being developed it is sometimes necessary to (visually) indi-

cate the changes in the text. A customary way of doing that is by adding bars in

the margin, known as “changebars”. Support for this functionality is offered by

the changebar package, originally developed by Michael Fine and Neil Winton, and

now supported by Johannes Braams. This package works with most PostScript Supported printer
drivers, but in particular dvips, which is the default driver when the package is drivers

loaded. Other drivers can be selected by using the package option mechanism.

Supported options are dvitoln03, dvitops, dvips, emtex, textures, and vtex.

\begin{changebar} [barwidth] \cbstart [barwidth] ... \cbend

When you add text to your document and want to signal this fact, you should sur-
round it with the changebar environment. Doing so ensures that KIEX will warn
you when you forget to mark the end of a change. This environment can be (prop-
erly) nested within other environments. However, if your changes start within one
KX environment and end inside another, the environment form cannot be used
as this would result in improperly nested environments. Therefore, the package
also provides the commands \cbstart and \cbend. These should be used with

190

Basic Formatting Tools

care, because there is no check that they are properly balanced. Spaces after them
might get ignored.

If you want to give a single bar a different width you may use the optional
argument and specify the width as a normal KX length.

\cbdelete [barwidth]

Text that has been removed can be indicated by inserting the \cbdelete com-
mand. Again, the width of the bar can be changed.

\usepackage{changebar}

\cbstart

This is the text in the first paragraph.

This is the text in the first paragraph.\cbend

This is the text in the first para- This is the text in the second paragraph.

graph. This is the text in the first para-

graph.

This is the text in the second para-
graph. This is the text in the second

\cbdelete
This is the text in the second paragraph.

\setcounter{changebargrey}{35}
\begin{changebar} [4pt]

paragra.lpl}. This is paragraph three. \par
I ThTS 1 paragraph three. This is paragraph four.
This is paragraph four. \end{changebar}

Changing the width

Positioning
changebars

Coloring
changebars

\nochangebars

When your document has reached the final stage you can remove the effect of
using the changebar package by inserting the command \nochangebars in the
preamble of the document.

Customizations

If you want to change the width of all changebars you can do so by changing the
value of \changebarwidth via the command \setlength. The same can be done
for the deletion bars by changing the value of \deletebarwidth .

By default, the changebars will show up in the “inner margin”, but this can be
changed by using one of the following options: outerbars, innerbars, leftbars,
or rightbars.

The distance between the text and the bars is controlled by \changebarsep.
It can can be changed only in the preamble of the document.

The color of the changebars can be changed by the user as well. By default,
the option grey is selected so the changebars are grey (grey level 65%). The drivers
dvitoln03 and emtex are exceptions that will produce black changebars.

The “blackness” of the bars can be controlled with the help of the IXIEX counter
changebargrey. A command like \setcounter{changebargrey}{85} changes

3-5-19

3.5 Lines and columns 191

that value. The value of the counter is a percentage, where 0 yields black bars,
and 100 yields white bars.

The option color makes it possible to use colored changebars. It internally
loads dvipsnames, so you can use a name when selecting a color.

\cbcolor{namel}

The color to use when printing changebars is selected with the command
\cbcolor, which accepts the same arguments as the \color command from the
color package [57, pp.317-326].

\usepackage [rightbars,color]{changebar}
\cbcolor{blue}

\setlength\changebarsep{10pt}

\cbstart

This is the text in the first paragraph.

This is the text in the first paragraph.\cbend

This is the text in the second paragraph.
| \cbdelete

This is the text in the first paragraph.
This is the text in the second paragraph.

This is the text in the first paragraph.
This is the text in the second paragraph.

.. . \begin{changebar}
This is the text in the second paragraph.] Thii is parigraph three. \par
This is paragraph three. This is paragraph four.
This is paragraph four. \end{changebar}

You can trace the behavior of the changebar package by loading it with one
of the following options. The default, traceoff, displays the normal information Tracing the
IAIEX always shows. The option traceon informs you about the beginning and algorithm
end points of changebars being defined. The additional option tracestacks adds
information about the usage of the internal stacks.

This page intentionally left blank

	Contents
	Preface
	3 Basic Formatting Tools
	3.1 Phrases and paragraphs
	3.1.1 xspace—Gentle spacing after a macro
	3.1.2 ellipsis, lips—Marks of omission
	3.1.3 amsmath—Nonbreaking dashes
	3.1.4 relsize—Relative changes to the font size
	3.1.5 textcase—Change case of text intelligently
	3.1.6 ulem—Emphasize via underline
	3.1.7 soul—Letterspacing or stealing sheep
	3.1.8 url—Typesetting URLs, path names, and the like
	3.1.9 euro—Converting and typesetting currencies
	3.1.10 lettrine—Dropping your capital
	3.1.11 Paragraph justification in LaTeX
	3.1.12 ragged2e—Enhancing justification
	3.1.13 setspace—Changing interline spacing
	3.1.14 picinpar—Making rectangular holes

	3.2 Footnotes, endnotes, and marginals
	3.2.1 Using standard footnotes
	3.2.2 Customizing standard footnotes
	3.2.3 ftnright—Right footnotes in a two-column environment
	3.2.4 footmisc—Various footnotes styles
	3.2.5 perpage—Resetting counters on a “per-page” basis
	3.2.6 manyfoot—Independent footnotes
	3.2.7 endnotes—An alternative to footnotes
	3.2.8 Marginal notes

	3.3 List structures
	3.3.1 Modifying the standard lists
	3.3.2 paralist—Extended list environments
	3.3.3 amsthm—Providing headed lists
	3.3.4 Making your own lists

	3.4 Simulating typed text
	3.4.1 Simple verbatim extensions
	3.4.2 upquote—Computer program style quoting
	3.4.3 fancyvrb—Highly customizable verbatim environments
	3.4.4 listings—Pretty-printing program code

	3.5 Lines and columns
	3.5.1 lineno—Numbering lines of text
	3.5.2 parallel—Two text streams aligned
	3.5.3 multicol—A flexible way to handle multiple columns
	3.5.4 changebar—Adding revision bars to documents

