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Preface

I write to prod designers and design project managers into think-
ing hard about the process of designing things, especially complex 
systems. The viewpoint is that of an engineer, focused on utility 
and effectiveness but also on efficiency and elegance.1

Who Should Read This Book? 

In The Mythical Man-Month I aimed at “professional programmers, 
professional managers, and especially professional managers of 
programmers.” I argued the necessity, difficulty, and methods of 
achieving conceptual integrity when software is built by teams.

This book widens the scope considerably and adds lessons 
from 35 more years. Design experiences convince me that there 
are constants across design processes in a diverse range of design 
domains. Hence the target readers are:

1. Designers of many kinds.  Systematic design excluding intu-
ition yields pedestrian follow-ons and knock-offs; intuitive design 
without system yields flawed fancies. How to weld intuition and 
systematic approach? How to grow as a designer? How to func-
tion in a design team?

Whereas I aim for relevance to many domains, I expect an 
audience weighted toward computer software and hardware 
designers—to whom I am best positioned to speak concretely. 
Thus some of my examples in these areas will involve technical 
detail. Others should feel comfortable skipping them.

2. Design project managers.  To avoid disaster, the project man-
ager must blend both theory and lessons from hands-on experi-
ence as he designs his design process, rather than just replicating 
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some oversimplified academic model, or jury-rigging a process 
without reference to either theory or the experience of others. 

3. Design researchers.  The study of design processes has 
matured; good, but not all good. Published studies increasingly 
address narrower and narrower topics, and the large issues are 
less often discussed. The desire for rigor and for “a science of 
design” perhaps discourages publication of anything other than 
scientific studies. I challenge design thinkers and researchers 
to address again the larger questions, even when social science 
methodology is of little help. I trust they will also challenge the 
generality of my observations and the validity of my opinions. I 
hope to serve their discipline by bringing some of their results to 
practitioners.

Why Another Book on Design?

Making things is a joy—immensely satisfying. J. R. R. Tolkien 
suggests that God gave us the gift of subcreation, as a gift, just 
for our joy.2 After all, “The cattle on a thousand hills are mine. … 
If I were hungry, I would not tell you.”3 Designing per se is fun.

The design process is not well understood either psychologi-
cally or practically. This is not for lack of study. Many design-
ers have reflected on their own processes. One motivation for 
study is the wide gaps, in every design discipline, between best 
practice and average practice, and between average practice and 
semi-competent practice. Much of design cost, often as much as 
a third, is rework, the correction of mistakes. Mediocre design 
provably wastes the world’s resources, corrupts the environment, 
affects international competitiveness. Design is important; teach-
ing design is important.

So, it was reasoned, systematizing the design process would 
raise the level of average practice, and it has. German mechanical 
engineering designers were apparently the first to undertake this 
program.4

The study of the design process was immensely stimulated 
by the coming of computers and then of artificial intelligence. The 
initial hope, long delayed in realization and I think impossible, 
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was that AI techniques could not only take over much of the 
drudgery of routine design but even produce brilliant designs 
lying outside the domains usually explored by humans.5 A dis-
cipline of design studies arose, with dedicated conferences, jour-
nals, and many studies.

With so much careful study and systematic treatment already 
done, why another book? 

First, the design process has evolved very rapidly since 
World War II, and the set of changes has rarely been discussed. 
Team design is increasingly the norm for complex artifacts. Teams 
are often geographically dispersed. Designers are increasingly 
divorced from both use and implementation—typically they no 
longer can build with their own hands the things they design. All 
kinds of designs are now captured in computer models instead of 
drawings. Formal design processes are increasingly taught, and 
they are often mandated by employers.

Second, much mystery remains. The gaps in our understand-
ing become evident when we try to teach students how to design 
well. Nigel Cross, a pioneer in design research, traces four stages 
in the evolution of design process studies:

Prescription1.	  of an ideal design process
Description  2.	  of the intrinsic nature of design problems 
Observation   3.	 of the reality of design activity 
Reflection 4.	 on the fundamental concepts of design6

I have designed in five media across six decades: computer 
architecture, software, houses, books, and organizations. In each 
I have had some roles as principal designer and some roles as 
collaborator in a team.7 I have long been interested in the design 
process; my 1956 dissertation was “The analytic design of auto-
matic data processing systems.”8 Perhaps now is the time for 
mature reflection.

What Kind of Book?

I am struck by how alike these processes have been! The mental 
processes, the human interactions, the iterations, the constraints, 
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the labor—all have a great similarity. These essays reflect on what 
seems to be the underlying invariant process.

Whereas computer architecture and software architecture 
each have short histories and modest reflections about their 
design processes, building architecture and mechanical design 
have long and honorable traditions. In these fields design theo-
ries and design theorists abound.

I am a professional designer in those fields that have had 
only modest reflection, and an amateur designer in some long 
and deep fields. So I shall attempt to extract some lessons from 
the older design theories and to apply them to computers and 
software.

I believe “a science of design” to be an impossible and indeed 
misleading goal. This liberating skepticism gives license to speak 
from intuition and experience—including the experience of other 
designers who have graciously shared their insights with me.9

Thus I offer neither a text nor a monograph with a coher-
ent argument, but a few opinionated essays. Even though I have 
tried to furnish helpful references and notes that explore intrigu-
ing side alleys, I recommend that one read each essay through, 
ignoring the notes and references, and then perhaps go back and 
explore the byways. So I have sequestered them at the end of 
each chapter.

Some case studies provide concrete examples to which the 
essays can refer. These are chosen not because of their importance, 
but because they sketch some of the experience base from which 
I conclude and opine. I have favored especially those about the 
functional design of houses—designers in any medium can relate 
to them. 

I have done functional (detailed floor plan, lighting, electrical, 
and plumbing) design for three house projects as principal archi-
tect. Comparing and contrasting that process with the process of 
designing complex computer hardware and software has helped 
me postulate “essentials” of the design process, so I use these as 
some of my cases, describing those processes in some detail.

In retrospect, many of the case studies have a striking com-
mon attribute: the boldest design decisions, whoever made them, have 
accounted for a high fraction of the goodness of the outcome. These 
bold decisions were made due sometimes to vision, sometimes to 
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desperation. They were always gambles, requiring extra invest-
ment in hopes of getting a much better result.
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Endnotes

The caption for the book cover is based on Smethurst [1967],1.	  The 
Pictorial History of Salisbury Cathedral, who adds, “… Salisbury 
is thus the only English cathedral, except St. Paul’s, of which the 
whole interior structure was built to the design of one man [or one 
two-person team] and completed without a break.”

Tolkien [1964], “On Fairy Stories,” in   2.	 Tree and Leaf, 54. 

Psalm 50:10,12. Emphasis added.  3.	

Pahl and Beitz [1984], in Section 1.2.2, trace this history, starting in   4.	
1928. Their own book, Konstructionslehre, through seven editions, is 
perhaps the most important systematization. I distinguish study of 
the design process from rules for design in any particular medium. 
These are millennia older.
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The major monograph, tremendously influential, was Herbert   5.	
Simon’s The Sciences of the Artificial [1969, 1981, 1996].

Cross [1983],   6.	 Developments in Design Methodology, x.

A table of the specific design experiences is included in the    7.	
appendix materials on the Web site: 	  
http://www.cs.unc.edu/~brooks/DesignofDesign.

Brooks [1956], “The analytic design of automatic data processing   8.	
systems,” PhD dissertation, Harvard University.

I thus do not contribute to the design methodologists’ goal as   9.	
stated in http://en.wikipedia.org/wiki/Design_methods (accessed 
on January 5, 2010): 

The challenge is to transform individual experiences, frameworks and 
perspectives into a shared, understandable, and, most importantly, a 
transmittable area of knowledge. Victor Margolin states three reasons 
why this will prove difficult, [one of which is]:

‘… Individual explorations of design discourse focus too much 
on individual narratives, leading to personal point-of-view 
rather than a critical mass of shared values.’

To this I must plead, “Guilty as charged.”

Glegg [1969], 10.	 The Design of Design.

http://www.cs.unc.edu/~brooks/DesignofDesign
http://en.wikipedia.org/wiki/Design_methods
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6
Collaboration in Design

A meeting is a refuge from “the dreariness of 
labor and the loneliness of thought.”

Bernard Baruch, in Risen [1970], 
“A theory on meetings”

Menn’s Sunniberg Bridge, 1998
Christian Menn, ETH Zürich, ChristianMennPartners AG
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Is Collaboration Good Per Se?

Two big changes in design have taken place since 1900:

Design is now done mostly by teams, rather than individuals.•	
Design teams now often collaborate by using telecommuni-•	
cations, rather than by being collocated.

As a consequence of these big shifts, the design community is 
abuzz with hot topics:

Telecollaboration•	
“Virtual teams” of designers•	
“Virtual design studios”•	

All of these are enabled by telephony, networking, computers, 
graphic displays, and videoconferencing.

If we are to understand telecollaboration, we must first under-
stand the role of collaboration in modern professional design.

It is generally assumed that collaboration is, in and of itself, a 
“good thing.” “Plays well with others” is high praise from kinder-
garten onward. “All of us are smarter than any of us.” “The more 
participation in design, the better.” Now, these attractive proposi-
tions are far from self-evident. I will argue that they surely are 
not universally true.

Most great works of the human mind have been made by one 
mind, or two working closely. This is true of most of the great 
engineering feats of the 19th and early 20th centuries. But now, 
team design has become the modern standard, for good reasons. 
The danger is the loss of conceptual integrity in the product, a 
very grave loss indeed. So the challenge is how to achieve con-
ceptual integrity while doing team design, and at the same time 
to achieve the very real benefits of collaboration.

Team Design as the Modern Standard

Team design is standard for modern products, both those mass-
produced and one-offs such as buildings or software. This is 
indeed a big change since the nineteenth century. We know the 
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names of the leading 18th- and 19th-century engineering design-
ers: Cartwright, Watt, Stephenson, Brunel, Edison, Ford, the 
Wright Brothers. Consider, on the other hand, the Nautilus nuclear 
submarine (Figure 6-1). We know Rickover as the champion, the 
Will who made it happen, but which of us can name the chief 
designer? It is the product of a skilled team.

Consider great designers, and think of their works:

Homer, Dante, Shakespeare•	
Bach, Mozart, Gilbert and Sullivan•	
Brunelleschi, Michelangelo•	
Leonardo, Rembrandt, Velázquez•	
Phidias, Rodin•	

Most great works have been made by one mind. The excep-
tions have been made by two minds. And two is indeed a magic 
number for collaborations; marriage was a brilliant invention and 
has a lot to be said for it. 

Figure 6-1  The Nautilus nuclear submarine
U.S. Navy Arctic Submarine Laboratory/Wikimedia Commons
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Why Has Engineering Design Shifted from Solo to Teams?

Technological Sophistication.  The most obvious driver toward 
team design is the increasing sophistication of every aspect of 
engineering. Contrast the first iron bridge (Figure 6-2) with its 
splendid descendant (chapter frontispiece).

The first had to be wrought very conservatively, that is, heav-
ily and wastefully, even though elegantly. Both the properties of 
the iron and the distribution of static and dynamic stresses were 
understood imperfectly (though remarkably well!).

Menn’s bridge, on the other hand, soars incredibly but confi-
dently, the fruit of years of analysis and modeling.

I am impressed that there are no naive technologies left in 
modern practice. It was my privilege to tour Unilever’s research 
laboratory at Port Sunlight, Merseyside, UK. I was astonished 
to find a PhD applied mathematician doing computational fluid 
dynamics (CFD) on a supercomputer, so as to get the mixing of 
shampoo right! He explained that the shampoo is a three-layer 
emulsion of aqueous and oily components, and mixing without 
tearing is crucial. 

Figure 6-2  Pritchard and Darby’s Iron Bridge, 1779 (Shropshire, UK) 
iStockphoto
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The designers of a John Deere cotton-picking machine used 
CFD to structure the airflow carrying the cotton bolls. A modern 
farmer spends not only hours on the tractor, but also hours on 
the computer, matching fertilizer, protective chemicals, seed vari-
ety, soil analysis, and crop rotation history.2 The master cook at 
Sara Lee adjusts the cake recipe continually to match the chemi-
cal properties of the flour coming in; the boss in the paper mill 
similarly adjusts for the varying pulpwood properties.

Mastering explosive sophistication in any branch of engineer-
ing forces specialization. When I went to graduate school in 1953, 
one could keep up with all of computer science. There were two 
annual conferences and two quarterly journals. My whole intel-
lectual life has been one of throwing passionate subfield interests 
overboard as they have exploded beyond my ability to follow 
them: mathematical linguistics, databases, operating systems, 
scientific computing, software engineering, even computer archi-
tecture—my first love. This sort of splintering has happened in 
all the creative sciences, so the designer of today’s state-of-the-art 
artifact needs help from masters of various crafts.

The explosion in the need for detailed know-how of many 
technologies has been partially offset by the stunning explosion in 
the ready availability of such detailed know-how—in documents, 
in skilled people, in analysis software, and in search engines that 
find the documents and plausible candidates for collaborators.

Hurry to Market.  A second major force driving design to teams 
is hurry to get a new design, a new product, to market. A rule 
of thumb is that the first to market a new kind of product can 
reasonably expect a long-run market share of 40 percent, with the 
remainder split among multiple smaller competitors. Moreover, 
the pioneer can harvest a profit bubble while the competition 
builds up. In the biggest wins, the pioneer continues to dominate. 
These realities press design schedules hard. Team design becomes 
a necessity when it can accelerate delivery of a new product in a 
competitive environment.3

Why is this competitive time pressure more intense than 
before? Global communications and global markets mean that 
any great idea anywhere propagates more quickly now.
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Costs of Collaboration

“Many hands make light work”—Often 
But many hands make more work—Always

We all know the first adage. And it is true for tasks that are partition-
able. The burden on each worker is lighter, hence the time to com-
pletion is shorter. But no design tasks are perfectly partitionable, and 
few are highly partitionable.4 So collaboration brings extra costs.

Partitioning Cost.  Partitioning a design task is itself an added 
task. The crisp and precise definition of the interfaces between 
subtasks is a lot of work, slighted at peril. As the design pro-
ceeds, the interfaces will need continually to be interpreted, no 
matter how precisely delineated. There will be gaps. There will 
be inconsistencies in definition and conflicts in interpretation; 
these must be reconciled.

To simplify manufacture, there must be standardization of 
common elements across all the components; some commonality 
of design style must be established.

And then the separate pieces must be integrated—the ulti-
mate test of interface consistency. It is not just in shipyards where 
the reality of integration is “Cut to plan; bang to fit.”5

Learning/Teaching Cost.  If n people collaborate on a design, 
each must come up to speed on the goals, desiderata, constraints, 
utility function. The group must share a common vision of all of 
these things—of what is to be designed. To a first approximation, 
if a one-person design job consists of two parts—learning l and 
designing d—the total work when the job is shared out n ways is 
no longer
	 work= l + d 
but now at least 
	 work= n l + d
Moreover, someone with the vision and knowledge must do the 
teaching, hence will not be designing. One hopes that the effi-
ciencies of specialization will buy back some of these costs.

Communication Cost during Design.  During the design pro-
cess, the collaborating designers must be sure their pieces will fit 
together. This requires structured communication among them.
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Change Control.  A mechanism for change control must be put 
into place so that each designer makes only those changes that (1) 
affect only his part or (2) have been negotiated with the designers 
of the affected parts. Since much of the cost of design is indeed 
change and rework, the cost of change control is substantial. The 
cost of not having formal change control is much greater.6 

The Challenge Is Conceptual Integrity!

Much of what we consider elegance in a design is the integrity, 
the consistency of its concepts. Consider Wren’s masterpiece, St. 
Paul’s Cathedral (Figure 6-3).

Figure 6-3  Wren’s St. Paul’s Cathedral
iStockphoto
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Such design coherence in a tool not only delights, it also yields 
ease of learning and ease of use. The tool does what one expects it to 
do. I argued in The Mythical Man-Month that conceptual integrity 
is the most important consideration in system design.7 Sometimes 
this virtue is called coherence, sometimes consistency, sometimes 
uniformity of style. Blaauw and I have elsewhere discussed con-
ceptual integrity at some length, identifying as component prin-
ciples orthogonality, propriety, and generality.8 The solo designer or 
artist usually produces works with this integrity subconsciously; 
he tends to make each microdecision the same way each time he 
encounters it (barring strong reasons). If he fails to produce such 
integrity, we consider the work flawed, not great.

Many great engineering designs are still today principally 
the work of one mind, or two. Consider Menn’s bridges.9 Con-
sider the computers of Seymour Cray. The genius of his designs 
flowed from his total personal mastery over the whole design, 
ranging from architecture to circuits, packaging, and cooling, 
and his consequent freedom in making trades across all design 
domains.10 He took the time to do designs he could master, even 
though he used and supervised a team. Cray exerted a power-
ful counterforce against those corporate and external pressures 
that would have steered his own attention away from design to 
other matters. He repeatedly took his design team away from the 
laboratories created by his earlier successes, considering solitude 
more valuable than interaction. He was proud of having devel-
oped the CDC 6600 with a team of 35, “including the janitor.”11 

One sees this pattern—physical isolation, small teams, intense 
concentration, and leadership by one mind—repeated again and 
again in the design of truly innovative, as opposed to follow-on, 
products: for example, the Spitfire team under Joe Mitchell, off 
at Hursley House, a stately home in Hampshire, UK; Lockheed’s 
Skunk Works under Kelly Johnson, from which the U-2 spy plane 
and F-117 stealth fighter came; IBM’s closed laboratory in Boca 
Raton, Florida, home of IBM’s successful effort to catch up with 
Apple on the PC.

Dissent

Not everyone agrees with the thesis I have been arguing. Some 
argue the social justice of participatory design—that it is right 
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for users to have a significant role in the design of objects for 
their use.12 Whereas this participation is feasible (and prudent 
as well as fair) for buildings, user participation in the design of 
mass-market products is inherently limited to a small sample of 
prospective users. Such a voice must be conditioned by the repre-
sentativeness of the sampling, and the vision of the designer.

Others argue that my facts are wrong, that team design has 
in fact always been the norm.13 The reader will have to judge for 
himself.

How to Get Conceptual Integrity with Team Design?

Any product so big, so technically complex, or so urgent as to 
require the design effort of many minds must nevertheless be 
conceptually coherent to the single mind of the user.14 Whereas 
such coherence is usually a natural consequence of solo design, 
achieving it in collaborative design is a management feat, requir-
ing a great deal of attention. So, how does one organize design 
efforts to achieve conceptual integrity?

Modern Design as an Interdisciplinary Negotiation?

Many (mostly academic) writers conclude from the high degree 
of today’s specialization that the nature of design has changed: 
design today must be done as an “interdisciplinary negotiation” 
(among the team). The clear implication, though not explicit, is 
that the team members are peers, and each must be satisfied. NO! 
If conceptual integrity is the final goal, negotiation among peers 
is the classic recipe for bloated products! The result is design by 
committee, where none dare say “No” to another’s suggestion.15

A System Architect

The most important single way to ensure conceptual integrity in 
a team design is to empower a single system architect. This per-
son must be competent in the relevant technologies, of course. He 
must be experienced in the sort of system being designed. Most 
of all, he must have a clear vision of and for the system and must 
really care about its conceptual integrity.



72	 6.  Collaboration in Design

The architect serves during the entire design process as the 
agent, approver, and advocate for the user, as well as for all the 
other stakeholders. The real user is often not the purchaser. This 
is evidently true with military acquisitions, where the purchaser 
(and even the specifier) is far removed from the user. Indeed, the 
same system may have multiple users, wielding it at strategic, 
battalion, and personal levels. The purchaser is represented at the 
design table by marketers. The engineers are represented. The 
manufacturers are represented. Only the architect represents the 
users. And, for complex systems as well as for simple residences, 
it is the architect who must bring professional technology mas-
tery to bear for the users’ overall, long-run interest. The role is 
challenging.16 I have discussed it in considerable detail in Chap-
ters 4–7 of The Mythical Man-Month.

One User-Interface Designer

A major system will require not only a chief architect, but indeed 
an architectural team. So the conceptual-integrity challenge 
recurses. Even architecture work must be partitioned, controlled, 
and hence reintegrated. Here again, conceptual integrity requires 
special effort. 

The user interface, the user’s crucial system component, must 
be tightly controlled by one mind. In some teams, the chief archi-
tect can do this detailed work. Consider MacDraw and MacPaint, 
early Mac tools that were in fact built by their designers. In large 
architecture teams, the chief architect’s scope is too large for him 
to do the interface himself. Nevertheless, one person must do it. If 
one architect can’t master it, one user can’t either. At Google, for 
example, one vice president, Marissa Mayer, maintains personal 
control over the page format and the home page.17 

Such an interface designer not only needs lots of using 
experience and listening skills, he above all needs taste. I once 
asked Kenneth Iverson, Turing Award winner and inventor of 
the APL programming language, “Why is APL so easy to use?” 
His answer spoke volumes: “It does what you expect it to do.” 
APL epitomizes consistency, illustrating in detail orthogonality, 
propriety, and generality. It also epitomizes parsimony, providing 
many functions with few concepts.



	 When Collaboration Helps	 73

I once was engaged to review the architecture of a very ambi-
tious new computer family, the Future Series (FS) intended by 
IBM’s developers to be a successor to the S/360 family. The archi-
tectural team was brilliant, experienced, and inventive. I listened 
with delight as the grand vision unfolded. So many fine ideas! 
For an hour, one of the architects explained the powerful address-
ing and indexing facilities. Another hour, another architect set 
forth the instruction sequencing, looping, branching capabilities. 
Another described the rich operations set, including powerful 
new operators for data structures. Another told of the compre-
hensive I/O system.

Finally, swamped, I asked, “Can you please let me talk to the 
architect who understands it all, so I can get an overview?”

“There isn’t one. No one person understands it all.” 
I knew then that the project was doomed—the system would 

collapse of its own weight. Being handed the 800-page user man-
ual confirmed in my mind the system’s fate. How could any user 
master such a programming interface?18

When Collaboration Helps

In some aspects of design the very plurality of designers per se 
adds value.

Determining Needs and Desiderata from Stakeholders

If deciding what to design is the hardest part of the design task, 
is this a part where collaboration helps? Indeed so! A small team 
is much better than an individual at studying either an unmet 
need or an existing system to be replaced. Typically, several 
minds think of many different questions and kinds of questions. 
Many questions mean many unexpected answers. The collaborat-
ing team must ensure that each member gets full opportunity to 
explore his trains of inquisitiveness.

Establishing Objectives. Under any design process, the 
designer begins by conversing with the several stakeholders. 
These conversations are about the objectives and constraints for 
the design. The hard task is to flush out the implicit objectives 
and constraints, the ones the stakeholders don’t even recognize 



74	 6.  Collaboration in Design

that they have. Indeed, from these conversations—what is said, 
how it is said, what is unsaid—comes the designer’s first esti-
mate of the utility function.

A crucial part of this phase is observation of how the user does 
the job today, with today’s tools and circumstances. It often helps 
to videotape these observations, and to view them over and over. 

Having collaborating designers participate is extremely use-
ful for this phase. Extra minds

Ask different questions•	
Pick up different things that are not said•	
Have independent and perhaps contradictory opinions of •	
how things are said
Observe different aspects of working•	
Stimulate the discussion of the videotapes•	

Conceptual Exploration—Radical Alternatives

Early in the design process, designers begin exploring solutions—
the earlier the better (as long as no one gets wedded to any solu-
tion), for the concreteness of postulated solutions usually elicits 
hitherto unspoken user desiderata or constraints.

Brainstorming.  This is the time for brainstorming. Severally, 
each member of the design team sketches multiple individual 
schemes. Collectively, the team members prod each other into 
radical, even wild, ideas. The standard rules for this stage include 
“Focus on quantity,” “No criticism,” “Encourage wild ideas,” 
“Combine and improve ideas,” and “Sketch all of them where all 
can see.”19 More minds mean more ideas. More minds stimulat-
ing each other yield lots more ideas. 

The ideas are not necessarily better. Dornburg [2007] reports 
a controlled industrial-scale experiment at Sandia Labs:

Individuals perform at least as well as groups in producing quan-
tity of electronic ideas, regardless of brainstorming duration. How-
ever, when judged with respect to quality along three dimensions 
(originality, feasibility, and effectiveness), the individuals signifi-
cantly (p<0.05) out performed the group working together. 
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Competition as an Alternative to Collaboration.  In the concep-
tual exploration phase, one can alternatively harness and stimu-
late the creative powers of multiple designers by holding design 
competitions. These work best when the known constraints and 
objectives are concretely stated and shared, and when unneces-
sary constraints are carefully excised.

In architecture this practice has been routine for centuries. 
Brunelleschi established himself by winning the design competi-
tion for the dome of the Santa Maria del Fiore cathedral in Flor-
ence in 1419 (Figure 6-4). His radical concept, its feasibility made 
plausible by a scale model, opened new vistas, seen today in St. 
Paul’s and the U.S. Capitol. 

Figure 6-4  Brunelleschi’s Dome, Santa Maria el Fiore
Anonymous, “View of Florence from the Boboli Gardens,”  

19th Century, Watercolor, Museo di Firenze com’era, Florence, Italy/
Scala/Art Resource, New York.
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In architecture and some major civil engineering works, there 
is a single client and multiple designers hoping to get the job. So 
a competition naturally suggests itself.

The situation is quite different in the normal product- 
development environment of a computer or software developer. 
There it is customary for a single team to be assigned to develop 
a particular product. There will always be competing ideas inside 
the team about different design decisions, and debates are rou-
tine. But only rarely does a management set up multiple teams to 
pursue a single objective competitively.

Occasionally, however, there will be a formal design compe-
tition within a corporate product-development setting. During 
System/360 architectural design we worked on a stack architec-
ture for six months. Then came the first cost-estimating cycle. The 
results showed the approach to be valid for mid-range machines 
and up, but a poor cost-performer at the low end of the seven-
model family.

So we had a design competition. The architecture team self-
selected into some 13 little (one- to three-person) teamlets, and 
each did an architectural sketch, against a fixed set of rules and 
deadlines. Two of the 13 designs were best in my opinion as judge. 
They were surprisingly alike, more surprising because the teams 
were rather cool toward each other and had not communicated.

The confluence of those designs set the pattern for the proj-
ect. (Their big difference, 6-bit-byte versus 8-bit-byte, occasioned 
the sharpest, deepest, and longest debate of the whole design 
process.)

I reckon the design competition, originally suggested by Gene 
Amdahl, to have been immensely invigorating and fruitful. It put 
everyone hard to work again after a demoralizing cost estimate. 
It got each person deeply involved in all aspects of the design, 
which greatly helped morale and proved valuable in the later 
design development. It produced a consensus on many design 
decisions. And it produced a good design.20

Unplanned Design Competitions: Product Fights.  Not infre-
quently, it happens that design team B will so evolve its design 
that it begins to overlap the market objective of design team A. 
Then one has an ad hoc design competition, a product fight.
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I’ve seen many product fights. They follow a standard script 
in five acts:

The two teams, who may not already know the details of each 1.	
other’s work, meet, compare products and intended mar-
kets, and conclude unanimously that there is no real overlap 
between their products. Both should proceed full speed.
Reality appears, in the form of a market forecast or a skepti-  2.	
cal boss.
Each team changes the design of its product to encompass all   3.	
of the other product’s market, not just the overlapping part.
Each team begins wooing supporters among customers, mar-  4.	
keting groups, and product forecasters.
There comes a shootout before some executive with the 5.	
power to decide.

Scripts diverge at this point: team A wins; team B wins; both 
survive; neither survives the intense scrutiny engendered by the 
competition.

This scenario can and usually should be shortened by early 
action by a skeptical boss. Sometimes, however, it may be the 
best way to get a thorough (and impassioned) exploration of two 
quite different design approaches.

Design Review

The phase of design where collaboration is most valuable, even 
necessary, is design review. Multiple disciplines must review: 
other designers, users and/or surrogates, implementers, purchas-
ers, manufacturers, maintainers, reliability experts, safety and 
environment watchdogs.

Each disciplinary specialist must review the design docu-
ments alone, for careful review takes time, reflection, and perhaps 
the study of references, archives, and other designs.21 Each will 
bring a unique point of view; each will raise different issues and 
find different flaws. But joint, group review is also imperative. 

Demand Multidisciplinary Group Review.  Group review has 
the power of numbers, but special power comes from the view-
points of multiple disciplines. The review team should be much 
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larger than the design team. Those who will build the design, 
those who will maintain it, sample users, those who will market 
it—all must be included. Consider the review for a new subma-
rine design. The supply officer sees a shortcoming; his spoken 
concern triggers a similar concern for the damage control spe-
cialist. The manufacturing tooling expert sees something hard 
to build; his suggested solution sets off alarms in the acoustic 
expert’s mind.

Designers at the Electric Boat Division of General Dynamics 
told me of a review in which the shipyard foreman took one look 
at a semicylindrical storage tank and quickly suggested rolling 
a one-piece cylinder, cutting it in half, and roofing it with a flat 
plate. This was in place of some 20 pieces the engineer had speci-
fied. Said the foreman, “We submarine builders are good at roll-
ing cylinders.”

Similarly, a designer at Brown & Root in Leatherhead, Eng-
land, told me of a design review for a deep-sea oil-drilling plat-
form. The maintenance foreman pointed to a particular unit and 
said, “Better make that one out of heavy-gauge steel.”

“Why?”
“Well, we can paint it in the workshop before it’s installed, 

but where it goes, we’ll never be able to paint it again.”
The engineers redesigned the whole vicinity of the platform 

so the unit could be reached.

Use Graphical Representations.  For design review, the most 
important aid is a common model of the product—a drawing, a 
full-scale wooden mock-up or virtual-reality simulation of a sub-
marine, a prototype of a mechanical part, perhaps an architec-
tural diagram of a computer.

A multidisciplinary design review often demands a richer 
variety of graphical representations of the design than the 
designers themselves have been using. Not everyone in the 
review will be able to visualize the end product from the engi-
neering/architectural drawings. My observation from visiting 
various facilities is that such design reviews are probably the 
most fruitful applications of virtual-environment visualization 
technology.22
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Sharing the product model and sharing each other’s com-
ments are both vital to effective design review; tools for simulat-
ing such sharing are the sine qua non of group design reviews 
where all the players cannot be physically present. Here telecol-
laboration comes into its own.

When Collaboration Doesn’t Work—for Design Itself

The Fantasy Concept of Design Collaboration.  The computer-
supported-collaborative-work literature is peppered with a fan-
tasy version of collaborative design. This would be harmless, 
except that the fallacious concept focuses ever more elaborate 
academic research on ever less useful technological tools for 
collaboration.

In this fantasy, a design team really or virtually sees a model 
of the design object—whether a house, a mechanical part, a sub-
marine, a whiteboard diagram of software, or a shared text. Any 
team member proposes changes, usually by effecting the change 
directly in the model. Others propose amendments, discussion 
proceeds, and bit by bit the design takes form.

Not How Collaborators Design.  But the fantasy concept 
doesn’t fit how collaborators really do design, as opposed to 
design review.

In all the multi-person design teams I’ve seen, each part 
of a design has at any time one owner. That one person works 
alone preparing a proposal for the design of his part. Then he 
meets with his collaborators for what is in effect a micro-session 
of design review. Then he normally retires and works out the 
detailed consequences of the decisions and directions discussed 
collaboratively.

If alternate proposals are made in the session, and not 
accepted by the owner, the proposer will often withdraw and 
develop an alternate design. Then the session will convene again, 
to choose, fuse, or strike off in some third direction.

Where’s Design Control?  The fantasy concept has no function 
for originating designs, only refining them. The fantasy concept is 
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flawed as a model for collaborative design change, too. Schedule 
gain from collaboration implies concurrent activity; and concur-
rent activity requires synchronization, a step totally missing from 
solo design. Designer Jack owns the air ducts in an oceangoing 
tanker; Jill owns the steam pipes. As each fleshes out his design, 
and at every subsequent change, some mechanism of design con-
trol must monitor that they don’t both use the same space. Some 
resolution procedure must be in place for settling conflicts. Some 
version control must be established so that each designs against a 
single time-stamped version of all the earlier design work.

In one instance of the fantasy concept I have actually seen 
proposed, the client admiral views the design model for a nuclear 
submarine, and he moves a bulkhead to give equipment repairers 
better access. (Making this possible is a technically challenging 
task in a virtual-reality interface to a CAD system. Many tech-
niques for real-time visualization depend upon the static nature 
of most of the world-model.)

But the challenge is not worth accepting! The admiral may 
want to move the bulkhead to see how the space will look and 
feel, and he may be allowed to do that in a playpen version of the 
model. But before any such move becomes part of the standard 
design version, someone or some program must check the effects 
on the space on the other side of the bulkhead, the structural con-
sequences, the acoustic consequences, the effects on piping and 
wiring. Imagine the horror of the responsible engineers to find 
that the bulkhead has been moved by the admiral, who cannot 
possibly have known the constraints and design compromises it 
embodied. By the time there is a design for the admiral to walk 
through virtually, it is far enough along to require formal change 
control.

The fantasy model of collaborative design reflects a monu-
mental unconcern about conceptual integrity. Jill pats the design 
here; Jim nudges it there; Jack patches it yonder. It is spontane-
ous; it is collaborative; and it produces poor designs. Indeed, 
we know the process so well that we have a scornful name for 
it—committee design. If collaboration tools are designed so they 
encourage committee design, they will do more harm than good.
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Conceptual Design, Especially, Must Not Be Collaborative

Once the exploratory stage is past and a basic theme is selected, 
it’s time for conceptual integrity to rule. A design flows from 
a chief designer, supported by a design team, not partitioned 
among one.23

To be sure, the conceptual design thus pursued may run into 
a blind alley. Then a different basic scheme must be selected, and 
collaborative exploration is again in order until that new basic 
scheme is selected. 

Two-Person Teams Are Magical

The foregoing discussion of design collaboration dealt with teams 
of more than two people. Two-person teams are a special case. 
Even in the conceptual design stage, when conceptual integrity is 
most imperiled, pairs of designers acting uno animo can be more 
fruitful than solo designers. The literature on pair programming 
shows this to be true during detailed design. Typical initial pro-
ductivity runs less than two working separately, but error rates 
are radically reduced.24 Since perhaps 40 percent of the effort on 
many designs is rework, net productivity is higher and products 
are more robust.

The world is full of two-person jobs. The carpenter needs 
someone to hold the other end of the beam. The electrician needs 
help when feeding wire through studs. Child raising is best done 
by two actively collaborating parents. “It is not good for man to 
be alone,” while spoken in its truest sense about marriage,25 might 
usefully be preached to lone-ranger designers.

The typical dynamics of two-person design collaboration 
seem different from those of multi-person design and solo design. 
Two people will interchange ideas rapidly and informally, with 
neither a protocol as to who has the floor nor domination by one 
partner. Each holds the floor for short bursts. The process switches 
rapidly among micro-sessions of proposal, review and critique, 
counterproposal, synthesis, and resolution. There is typically a 
single thread of idea development, without the maintenance of 
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separate individual threads of thought as in multi-person discus-
sions. Two pencils may move over the same paper with neither 
collision nor contradiction.

“As iron sharpens iron,” each stimulates the other to more 
active thought than might occur in solo design. Perhaps the very 
need to articulate one’s thinking—to state why as well as what—
causes quicker perception of one’s own fallacies and quicker rec-
ognition of other viable design alternatives. 

A classic 1970 paper by Torrance showed that dyadic interac-
tion produced twice as many original ideas, produced ideas of 
twice as much originality, increased enjoyment, and led subjects 
to attempt more difficult tasks.26

Pair-wise design sessions still need to be interspersed with 
solo ones—to detail, to document the creative fruit, and to pre-
pare proposals for the next joint session.

So What, for Computer Scientists?

Much effort by academic computer scientists has gone into the 
design of tools for computer-assisted collaboration by workers in 
their own and other disciplines. Distressingly few of these ideas 
and tools have made it into everyday use. (Important tools that 
have succeeded are code control systems and “Track Changes” in 
Word.) Perhaps this is because it is especially easy for academic 
tool builders to overlook some crucial properties of real-world 
team design:

Real design is always more complex than we tend to imag-•	
ine.27 This is especially true since we often start with textbook 
examples, which have perforce been oversimplified. Real 
design has more complex goals, more complex constraints to 
be satisfied, more complex measures of goodness to be satis-
ficed. Real design always explodes into countless details.
Real team design always requires a design-change control •	
process, lest the left hand corrupt what the right hand has 
wrought. 
No amount of collaboration eliminates the need for the •	
“dreariness of labor and the loneliness of thought.”
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For these reasons, I think we should be very leery about 
assigning graduate students with little or no real-world design 
experience dissertation topics in the field of collaborative design 
tools. Moreover, our journals should be very slow to accept such 
papers that are not based on real-world experience and/or real 
design applications. 
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