

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein. Before you use any IBM or non-IBM or open-source product mentioned in this
book, make sure that you accept and adhere to the licenses and terms and conditions for any such product.

© Copyright 2010 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer

Cover design: IBM Corporation

Associate Publisher: Greg Wiegand
Marketing Manager: Kourtnaye Sturgeon
Publicist: Heather Fox
Acquisitions Editor: Bernard Goodwin
Managing Editor: Kristy Hart
Designer: Alan Clements
Project Editor: Andy Beaster
Copy Editor: Paula Lowell
Senior Indexer: Cheryl Lenser
Compositor: Gloria Schurick
Proofreader: Leslie Joseph
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com.

For sales outside the U.S., please contact:

International Sales
international@pearson.com.

The following terms are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both: IBM, the IBM logo, IBM Press, DB2, pureXML, z/OS, ibm.com,
WebSphere, System z, developerWorks, InfoSphere, DRDA, Rational, AIX, OmniFind, i5/OS, Lotus, and
DataPower. Microsoft, Windows, Microsoft Word, Microsoft Visual Studio, Visual Basic, and Visual C# are
trademarks of Microsoft Corporation in the United States, other countries, or both. UNIX is a registered
trademark of The Open Group in the United States and other countries. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both. Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc., in the United States, other countries, or both. Other company, product,
or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data

Nicola, Matthias.
DB2 PureXML cookbook : master the power of IBM’s hybrid data server / Matthias Nicola and

Pav Kumar-Chatterjee.
p. cm.

Includes indexes.
ISBN-13: 978-0-13-815047-1 (hardback : alk. paper)
ISBN-10: 0-13-815047-8 (hardback : alk. paper) 1. IBM Database 2. 2. XML (Document markup

language) 3. Database management. I. Kumar-Chatterjee, Pav. II. Title.
QA76.9.D3N525 2009
006.7’4—dc22

2009020222

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-815047-1

ISBN-10: 0-13-815047-8

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing August 2009

xxv

Foreword

n the years since E.F. Codd’s groundbreaking work in the 1970s, relational database sys-
tems have become ubiquitous in the business world. Today, most of the world’s business

data is stored in the rows and columns of relational databases. The relational model is ideally
suited to applications in which data has a relatively simple and uniform structure, and in which
database structure evolves much more slowly than data values.

With the advent of the Web, however, big changes began to occur in the database world, driven by
globalization and by dramatic reductions in the cost of storing, transmitting, and processing data.
Today, businesses are globally interconnected and exchange large volumes of data with cus-
tomers, suppliers, and governments. Much of this data consists of things that do not fit neatly into
rows and columns, such as medical records, legal documents, incident reports, tax returns, and
purchase orders. The new kinds of data tend to be more heterogeneous than traditional business
data, having more variation and a more rapidly evolving structure.

In response to the changing requirements of business data, a new generation of standards have
appeared. XML has emerged as an international standard for the exchange of self-describing
data, unifying structured, unstructured, and semi-structured information formats. XML Schema
has been adopted as the metadata syntax for describing the structure of XML documents.
Industry-specific XML schemas have been developed for medical, insurance, retail, publishing,
banking, and other industries. XPath and XQuery have been adopted as standard languages for
retrieving and manipulating data in XML format, and new facilities have been added to the SQL
standard for interfacing between relational and XML data.

In DB2, the new generation of XML-related standards is reflected in pureXML, a broad new set of
XML functionality implemented in both DB2 for z/OS and DB2 for Linux, UNIX, and Windows.
pureXML bridges the gap between the XML and relational worlds and makes DB2 a true hybrid
database management system. DB2 pureXML stores and indexes XML data alongside relational
data in a highly efficient new storage format, and supports XML query languages such as XPath
and XQuery alongside the traditional SQL.

pureXML is perhaps the largest new package of functionality in the history of DB2, impacting
nearly every aspect of the system. The implementation of pureXML required deep changes in the
database kernel, optimization methods, database administrator tools, system utilities, and appli-
cation programming interfaces. New facilities were added for registering XML schemas and
using them to validate stored documents. New kinds of statistics on XML documents had to be
gathered and exploited. Facilities for replicated, federated, and partitioned databases had to be
updated to accommodate the new XML storage format.

pureXML provides DB2 users with a new level of capability, but using this capability to full
advantage requires users to have a new level of sophistication. A new user of pureXML is

I

confronted with many complex choices. What kinds of data should be represented in XML rather
than in normalized tables? How can data be converted between XML and relational formats?
How can a hybrid database be designed to take advantage of both data formats? What are the
most appropriate uses for SQL, XQuery, and XPath? What kinds of indexes should be maintained
on XML data? What is the XML equivalent of a NULL value? These and many other questions
are considered in detail in the DB2 pureXML Cookbook.

Matthias Nicola has been deeply involved in the design and implementation of DB2 pureXML
since its inception. As a Senior Engineer at IBM’s Silicon Valley Laboratory, his work has
focused on measuring and optimizing the performance of new storage and indexing techniques
for XML. After the release of pureXML, he worked with many IBM customers and business part-
ners to create, deploy, and optimize XML applications for government, banking, telecommunica-
tions, retail, and other industries.

Pav Kumar-Chatterjee is a technical specialist with many years of experience in consulting with
IBM customers throughout the UK and Europe on developing and deploying DB2 and XML
solutions.

Through their work with customers, Matthias and Pav have learned how to explain concepts
clearly and how to identify and avoid common pitfalls in the application development process.
They have also developed a set of “best practices” that they have shared at numerous conferences,
classes, workshops, and customer engagements. Between them, Matthias and Pav have accumu-
lated all the knowledge and experience you need to successfully create and deploy solutions
using DB2 pureXML. Their expertise is encapsulated in this book in the form of hundreds of
practical examples, tested and clearly explained. The book also includes a comprehensive set of
questions to test your understanding.

DB2 pureXML Cookbook includes both an introduction to basic XML concepts and a compre-
hensive description of the XML-related features of DB2 for z/OS and DB2 for Linux, UNIX, and
Windows. Chapters are organized around tasks that reflect the lifecycle of XML projects, includ-
ing designing databases, loading and validating data, writing queries and updates, developing
applications, optimizing performance, and diagnosing problems. Each topic provides a clear pro-
gression from introductory material to more advanced concepts. The writing style is informal and
easy to understand for both beginners and experts.

If you are an application developer, database administrator, or system architect, this is the book
you need to gain a comprehensive understanding of DB2 pureXML.

Don Chamberlin
IBM Fellow, Emeritus
Almaden Research Center
April 10, 2009

xxvi DB2® pureXML® Cookbook: Master the Power of the IBM® Hybrid Data Server

xxvii

Preface

n recent years XML has continued to emerge as the de-facto standard for data exchange,
because it is flexible, extensible, self-describing, and suitable for any combination of struc-

tured and unstructured data. With the increasing use of XML as a pervasive data format, there is a
growing need to store, index, query, update, and validate XML documents in database systems.
In response to this demand, IBM has developed sophisticated XML data management capabili-
ties that are deeply integrated in the DB2 database system. This novel technology is called DB2
pureXML and is available in DB2 for z/OS and DB2 for Linux, UNIX, and Windows. With
pureXML, DB2 has evolved into a hybrid database system that allows you to manage both XML
and relational data in a tightly integrated manner.

The DB2 pureXML Cookbook provides the single most comprehensive coverage of DB2’s
pureXML functionality in DB2 for Linux, UNIX, and Windows as well as DB2 for z/OS. This
book is a “cookbook” because it is more than just a description of functions and features (“ingre-
dients”). This book provides “recipes” that show you how to combine the pureXML ingredients
to efficiently perform typical user tasks for managing XML data. This book explains DB2
pureXML in more than 700 practical examples, including 250+ XQuery and SQL/XML queries,
taking you from simple introductions all the way to advanced scenarios, tuning, and trou-
bleshooting.

Since the first release of DB2 pureXML in 2006 we have worked with numerous companies to
help them design, implement, optimize, and deploy XML applications with DB2. In this book we
have distilled our experience from these pureXML projects so that you can benefit from proven
implementation techniques, best practices, tips and tricks, and performance guidelines that are
not described elsewhere.

WHO SHOULD READ THIS BOOK?
This book is written for database administrators, application developers, IT architects, and every-
one who wants to get a deep technical understanding of DB2’s pureXML technology and how to
use it most effectively. As a DBA you will learn, for example, how to design and manage XML
storage objects, how to index XML data, where to find XML-related information in the DB2 cat-
alog, and how to mange XML with DB2 utilities. Application developers learn, among other
things, how to write XML queries and XML updates with XPath, SQL/XML, and XQuery, and
how to code XML applications with Java, .NET, C, COBOL, PL/1, PHP, or Perl.

This book is suitable for both beginners and experts. Each topic starts with simple examples,
which provide an easy introduction, and works towards advanced concepts and solutions to com-
plex problems. Extensive XML knowledge is not required to read this book because it includes
the necessary introductions to XML, XPath, XQuery, XML Schema, and namespaces. These

I

concepts are explained through numerous examples that are easy to follow. We assume that you
have some experience with relational databases and SQL, but we show all the relevant DB2 com-
mands that are required to work through the examples in this book. Appendix C, Further Read-
ing, also contains links to additional educational material about both DB2 and XML.

COVERAGE OF DB2 FOR Z/OS AND DB2 FOR LINUX, UNIX,AND WINDOWS

IN THIS BOOK

The book describes DB2 pureXML on all supported platforms and versions, which at the time of
writing are DB2 9 for z/OS as well as DB2 9.1, 9.5, and 9.7 for Linux, UNIX, and Windows.
Many pureXML features and functions are identical across DB2 for Linux, UNIX, and Windows
and DB2 for z/OS.

Where platform-specific differences exist we point them out along the way. However, this book
does not intend to be a reference that lists all functions and features according to platform and
version of DB2. Instead, this book is a “cookbook” that focuses on concepts, examples, and best
practices. The capabilities in DB2 for z/OS and DB2 for Linux, UNIX, and Windows continue to
grow and converge over time. For the latest information on which feature is available in which
version, please consult the respective DB2 information center. DB2 for z/OS also continues to
deliver pureXML enhancements via APARs. Please look at APAR II14426, which is an informa-
tional APAR that summarizes and links all other XML-related APARs for DB2 on z/OS.

In our work with users who adopt DB2 pureXML we have made the following observation: Some
of the users who begin to use DB2 pureXML on Linux, UNIX, and Windows have little or no
prior experience with DB2. In contrast, most users who are interested in DB2 pureXML on z/OS
are already familiar with DB2 for z/OS in general. This difference is reflected in this book; that is,
we describe some DB2 concepts, such as monitoring or the use of DB2 utilities, in more detail for
DB2 for Linux, UNIX, and Windows than for DB2 for z/OS.

DO ITYOURSELF!
The best way to learn a new technology is hands-on. We strongly recommend that you download
DB2 Express-C, which is free, and try the concepts that you learn in this book in DB2’s sample
database. Appendixes A and B contain the necessary information to get you started.

DON’T HESITATE TO ASK QUESTIONS!
If any pureXML question is not covered in this book, the fastest way to get an answer is to post a
question in the DB2 pureXML forum at http://www.ibm.com/developerworks/forums/forum.
jspa?forumID=1423.

Whether you seek clarification about specific features or functions, or if you need help with a
tricky query, this forum is the right place to ask for help. You are also welcome to contact the

xxviii DB2® pureXML® Cookbook: Master the Power of the IBM® Hybrid Data Server

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1423
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1423

authors directly. If you want to discuss an XML project or if you have comments or feedback on
the material in this book—we will be happy to hear from you. Please contact Matthias at
mnicola@us.ibm.com and Pav at kumarp2@uk.ibm.com.

HOW THIS BOOK IS STRUCTURED

The DB2 pureXML Cookbook takes you through the different tasks and topics that you typically
encounter during the life cycle of an XML project. The structure of this book with its 23 chapters
is the following:

Planning
Chapter 1, Introduction, provides an overview of XML and its differences to relational data, and
discusses scenarios where XML has advantages over the relational model. This chapter also
includes a summary of the pureXML technology.

Chapter 2, Designing XML Data and Applications, covers fundamental XML design questions
such as choosing between XML elements and attributes, selecting an appropriate XML document
granularity, and deciding on a “good” mix of XML and relational data for your application.

Designing and Populating an XML Database
Chapter 3, Designing and Managing XML Storage Objects, first explains the tree representa-
tion of XML documents and how they are physically stored in DB2. Then it describes how to cre-
ate and manage tables and table spaces for XML, including compression, reorganization, and
partitioning.

Chapter 4, Inserting and Retrieving XML Data, looks at “full document” operations such as
insert, delete, and retrieval of XML documents. This chapter also explains how to handle XML
declarations, white space, and reserved characters in XML documents.

Chapter 5, Moving XML Data, looks at importing, exporting, loading, replicating, and federat-
ing XML data in DB2. A technique to split large XML documents into smaller ones is also
demonstrated.

Querying XML Data
Chapter 6, Querying XML Data: Introduction and XPath, is the first of four chapters on query-
ing XML data. This chapter provides an overview of the different options for querying XML,
introduces the XPath and XQuery data model, and describes the XPath language in detail. These
concepts are fundamental for the subsequent chapters.

Preface xxix

xxx DB2® pureXML® Cookbook: Master the Power of the IBM® Hybrid Data Server

Chapter 7, Querying XML Data with SQL/XML, explains how XPath can be included in SQL
statements with the SQL/XML functions XMLQUERY and XMLTABLE and the XMLEXISTS predi-
cate. The use of SQL/XML is illustrated through a rich collection of examples and a discussion of
common mistakes and how to avoid them.

Chapter 8, Querying XML Data with XQuery, introduces the XQuery language, which is a
superset of XPath. Among other things, this chapter describes XQuery FLWOR expressions,
combinations of SQL and XQuery, and a comparison of XPath, XQuery, and SQL/XML.

Chapter 9, Querying XML Data: Advanced XML Queries and Troubleshooting, takes query-
ing XML data to the expert level. It demonstrates how to perform grouping, aggregation, and
joins over XML data or a mix of XML and relational data. The troubleshooting section discusses
“bad” XML queries, common errors, and how to avoid both.

Converting, Updating, and Transforming
Chapter 10, Producing XML from Relational Data, begins the discussion of converting, updat-
ing, and transforming data. This chapter explains how to read relational data from existing data-
base tables and construct XML documents from it.

Chapter 11, Converting XML to Relational Data, describes the opposite of Chapter 10, that is,
the process of decomposing or shredding XML documents into relational tables. Two shredding
methods are discussed, one using the XMLTABLE function and the other using annotated XML
Schemas.

Chapter 12, Updating and Transforming XML Documents, covers three techniques for updat-
ing XML documents: Full document replacement, XSLT transformations, and the XQuery
Update Facility that allows you to modify, insert, delete, or rename individual elements and
attributes within an XML document.

Performance and Monitoring
Chapter 13, Defining and Using XML Indexes, is one of two chapters dedicated to perfor-
mance. It describes how to create XML indexes to improve query performance and explains
under which conditions query predicates can or cannot use XML indexes.

Chapter 14, Performance and Monitoring, looks at analyzing the performance of XML opera-
tions with particular emphasis on understanding XML query access plans. A summary of best
practices for XML performance in DB2 is also provided.

Ensuring Data Quality
Chapter 15, Managing XML Data with Namespaces, introduces XML namespaces and
explains how they avoid naming conflicts and ambiguity, thus contributing to data quality. This
chapter illustrates how to index, query, update, and construct XML documents that contain name-
spaces.

Chapter 16, Managing XML Schemas, first describes how XML Schemas can constrain XML
documents in terms of their structure, element and attribute names, data types, and other charac-
teristics. Then this chapter walks you through the concepts of registering, managing, and evolv-
ing XML Schemas in DB2.

Chapter 17, Validating XML Documents against XML Schemas, concentrates on the validation
of XML documents to ensure XML data quality in DB2. You can validate XML documents in
INSERT and UPDATE statements, queries, and import and load operations.

Application Development
Chapter 18, Using XML in Stored Procedures, UDFs, and Triggers, demonstrates how you can
implement application-specific processing logic with XML manipulation in SQL stored proce-
dures, user-defined functions, and triggers.

Chapter 19, Performing Full-Text Search, describes how the DB2 Net Search Extender and
DB2 Text Search support efficient full-text search in collections of XML documents.

Chapter 20, Understanding XML Data Encoding, explains internal and external XML encod-
ing, how DB2 determines and handles XML encoding, and how you can avoid code page conver-
sion.

Chapter 21, Developing XML Application with DB2, contains techniques and best practices for
application programs that exchange XML data with the DB2 server. Code samples are provided
for Java, .NET, C, COBOL, PL/1, PHP, and Perl programmers.

Reference Material
Chapter 22, Exploring XML Information in the DB2 Catalog, is a guide to how XML storage
objects, XML indexes, and XML Schemas are listed in the database catalog.

Chapter 23, Test Your Knowledge—The DB2 pureXML Quiz, offers 82 questions to revisit spe-
cific topic areas.

The Appendixes list supporting information and further reading for each chapter.

Preface xxxi

297

C H A P T E R

Converting XML to
Relational Data

his chapter describes methods to convert XML documents to rows in relational tables. This
conversion is commonly known as shredding or decomposing of XML documents. Given

the rich support for XML columns in DB2 you might wonder in which cases it can still be useful
or necessary to convert XML data to relational format. One common reason for shredding is that
existing SQL applications might still require access to the data in relational format. For example,
legacy applications, packaged business applications, or reporting software do not always under-
stand XML and have fixed relational interfaces. Therefore you might sometimes find it useful to
shred all or some of the data values of an incoming XML document into rows and columns of
relational tables.

In this chapter you learn:

• The advantages and disadvantages of shredding and of different shredding methods
(section 11.1)

• How to shred XML data to relational tables using INSERT statements that contain the
XMLTABLE function (section 11.2)

• How to use XML Schema annotations that map and shred XML documents to relational
tables (section 11.3)

11.1 ADVANTAGES AND DISADVANTAGES OF SHREDDING

The concept of XML shredding is illustrated in Figure 11.1. In this example, XML documents
with customer name, address, and phone information are mapped to two relational tables. The
documents can contain multiple phone elements because there is a one-to-many relationship

11

T

between customers and phones. Hence, phone numbers are shredded into a separate table. Each
repeating element, such as phone, leads to an additional table in the relational target schema.
Suppose the customer information can also contain multiple email addresses, multiple accounts,
a list of most recent orders, multiple products per order, and other repeating items. The number of
tables required in the relational target schema can increase very quickly. Shredding XML into a
large number of tables can lead to a complex and unnatural fragmentation of your logical busi-
ness objects that makes application development difficult and error-prone. Querying the shredded
data or reassembling the original documents may require complex multiway joins.

298 Chapter 11 Converting XML to Relational Data

845 Kean Street
STREET

1003
CID

Robert Shoemaker
NAME

Aurora
CITY

cell
home
work
PHONETYPE

1003
1003
1003
CID

905-555-8743
416-555-2937
905-555-7258
PHONENUM

<customerinfo Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>845 Kean Street</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X 7F8</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
</customerinfo>

CREATE TABLE address(
 cid INTEGER,
 name VARCHAR(30),
 street VARCHAR(40),
 city VARCHAR(30))

CREATE TABLE phones(
 cid INTEGER,
 phonetype VARCHAR(10),
 phonenum VARCHAR(20))

Figure 11.1 Shredding of an XML document

Depending on the complexity, variability, and purpose of your XML documents, shredding may
or may not be a good option. Table 11.1 summarizes the pros and cons of shredding XML data to
relational tables.

Table 11.1 When Shredding Is and Isn’t a Good Option

Shredding Can Be Useful When… Shredding Is Not A Good Option When…

• Incoming XML data is just feeding an existing • Your XML data is complex and nested, and
relational database. difficult to map to a relational schema.

• The XML documents do not represent logical • Mapping your XML format to a relational
business objects that should be preserved. schema leads to a large number of tables.

• Your primary goal is to enable existing • Your XML Schema is highly variable or
relational applications to access XML data. tends to change over time.

• You are happy with your relational schema and • Your primary goal is to manage XML
would like to use it as much as possible. documents as intact business objects.

Table 11.1 When Shredding Is and Isn’t a Good Option (Continued)

Shredding Can Be Useful When… Shredding Is Not A Good Option When…

• The structure of your XML data is such that it • You frequently need to reconstruct the
can easily be mapped to relational tables. shredded documents or parts of them.

• Your XML format is relatively stable and • Ingesting XML data into the database at a
changes to it are rare. high rate is important for your application.

• You rarely need to reconstruct the shredded
documents.

• Querying or updating the data with SQL is
more important than insert performance.

In many XML application scenarios the structure and usage of the XML data does not lend itself
to easy and efficient shredding. This is the reason why DB2 supports XML columns that allow
you to index and query XML data without conversion. Sometimes you will find that your applica-
tion requirements can be best met with partial shredding or hybrid XML storage.

• Partial shredding means that only a subset of the elements or attributes from each
incoming XML document are shredded into relational tables. This is useful if a rela-
tional application does not require all data values from each XML document. In cases
where shredding each document entirely is difficult and requires a complex relational
target schema, partial shredding can simplify the mapping to the relational schema
significantly.

• Hybrid XML storage means that upon insert of an XML document into an XML column,
selected element or attribute values are extracted and redundantly stored in relational
columns.

If you choose to shred XML documents, entirely or partially, DB2 provides you with a rich set of
capabilities to do some or all of the following:

• Perform custom transformations of the data values before insertion into relational
columns.

• Shred the same element or attribute value into multiple columns of the same table or dif-
ferent tables.

• Shred multiple different elements or attributes into the same column of a table.

• Specify conditions that govern when certain elements are or are not shredded. For exam-
ple, shred the address of a customer document only if the country is Canada.

• Validate XML documents with an XML Schema during shredding.

• Store the full XML document along with the shredded data.

11.1 Advantages and Disadvantages of Shredding 299

DB2 9 for z/OS and DB2 9.x for Linux, UNIX, and Windows support two shredding methods:

• SQL INSERT statements that use the XMLTABLE function. This function navigates into
an input document and produces one or multiple relational rows for insert into a rela-
tional table.

• Decomposition with an annotated XML Schema. Since an XML Schema defines the
structure of XML documents, annotations can be added to the schema to define how ele-
ments and attributes are mapped to relational tables.

Table 11.2 and Table 11.3 discuss the advantages and disadvantages of the XMLTABLE method
and the annotated schema method.

Table 11.2 Considerations for the XMLTABLE Method

Advantages of the XMLTABLE Method Disadvantages of the XMLTABLE Method

• It allows you to shred data even if you do • For each target table that you want to shred
not have an XML Schema. into you need one INSERT statement.

• It does not require you to understand the XML • You might have to combine multiple
Schema language or to understand schema INSERT statements in a stored procedure.
annotations for decomposition.

• It is generally easier to use than annotated • There is no GUI support for implementing the
schemas because it is based on SQL and XPath. INSERT statements and the required

XMLTABLE functions. You need to be familiar• You can use familiar XPath, XQuery, or SQL
with XPath and SQL/XML.functions and expressions to extract and

optionally modify the data values.

• It often requires no or little work during
XML Schema evolution.

• The shredding process can consume data
from multiple XML and relational sources,
if needed, such as values from DB2 sequences
or look-up data from other relational tables.

• It can often provide better performance than
annotated schema decompositions.

300 Chapter 11 Converting XML to Relational Data

Table 11.3 Considerations for Annotated Schema Decomposition

Advantages of the Annotated Disadvantages of the Annotated
Schema Method Schema Method

• The mapping from XML to relational tables • It does not allow shredding without an XML
can be defined using a GUI in IBM Data Schema.
Studio Developer.

• If you shred complex XML data into a large • You might have to manually copy annotations
number of tables, the coding effort can be when you start using a new version of your
lower than with the XMLTABLE approach. XML Schema.

• It offers a bulk mode with detailed diagnostics • Despite the GUI support, you need to be
if some documents fail to shred. familiar with the XML Schema language for

all but simple shredding scenarios.

• Annotating an XML Schema can be complex, if
the schema itself is complex.

11.2 SHREDDING WITH THE XMLTABLE FUNCTION

The XMLTABLE function is an SQL table function that uses XQuery expressions to create rela-
tional rows from an XML input document. For details on the XMLTABLE function, see Chapter 7,
Querying XML Data with SQL/XML. In this section we describe how to use the XMLTABLE func-
tion in an SQL INSERT statement to perform shredding. We use the shredding scenario in Figure
11.1 as an example.

The first step is to create the relational target tables, if they don’t already exist. For the scenario in
Figure 11.1 the target tables are defined as follows:

CREATE TABLE address(cid INTEGER, name VARCHAR(30),
street VARCHAR(40), city VARCHAR(30))

CREATE TABLE phones(cid INTEGER, phonetype VARCHAR(10),
phonenum VARCHAR(20))

Based on the definition of the target tables you construct the INSERT statements that shred
incoming XML documents. The INSERT statements have to be of the form INSERT INTO …
SELECT … FROM … XMLTABLE, as shown in Figure 11.2. Each XMLTABLE function contains a
parameter marker (“?”) through which an application can pass the XML document that is to be
shredded. SQL typing rules require the parameter marker to be cast to the appropriate data type.
The SELECT clause selects columns produced by the XMLTABLE function for insert into the
address and phones tables, respectively.

11.2 Shredding with the XMLTABLE Function 301

INSERT INTO address(cid, name, street, city)
SELECT x.custid, x.custname, x.str, x.place
FROM XMLTABLE('$i/customerinfo' PASSING CAST(? AS XML) AS "i"

COLUMNS
custid INTEGER PATH '@Cid',
custname VARCHAR(30) PATH 'name',
str VARCHAR(40) PATH 'addr/street',
place VARCHAR(30) PATH 'addr/city') AS x ;

INSERT INTO phones(cid, phonetype, phonenum)
SELECT x.custid, x.ptype, x.number
FROM XMLTABLE('$i/customerinfo/phone'

PASSING CAST(? AS XML) AS "i"
COLUMNS
custid INTEGER PATH '../@Cid',
number VARCHAR(15) PATH '.',
ptype VARCHAR(10) PATH './@type') AS x ;

Figure 11.2 Inserting XML element and attribute values into relational columns

To populate the two target tables as illustrated in Figure 11.1, both INSERT statements have to be
executed with the same XML document as input. One approach is that the application issues both
INSERT statements in one transaction and binds the same XML document to the parameter mark-
ers for both statements. This approach works well but can be optimized, because the same XML
document is sent from the client to the server and parsed at the DB2 server twice, once for each
INSERT statement. This overhead can be avoided by combining both INSERT statements in a sin-
gle stored procedure. The application then only makes a single stored procedure call and passes
the input document once, regardless of the number of INSERT statements in the stored procedure.
Chapter 18, Using XML in Stored Procedures, UDFs, and Triggers, demonstrates such a stored
procedure as well as other examples of manipulating XML data in stored procedures and user-
defined functions.

Alternatively, the INSERT statements in Figure 11.2 can read a set of input documents from an
XML column. Suppose the documents have been loaded into the XML column info of the
customer table. Then you need to modify one line in each of the INSERT statements in Figure
11.2 to read the input document from the customer table:

FROM customer, XMLTABLE('$i/customerinfo' PASSING info AS "i"

Loading the input documents into a staging table can be advantageous if you have to shred many
documents. The LOAD utility parallelizes the parsing of XML documents, which reduces the time
to move the documents into the database. When the documents are stored in an XML column in
parsed format, the XMLTABLE function can shred the documents without XML parsing.

The INSERT statements can be enriched with XQuery or SQL functions or joins to tailor the
shredding process to specific requirements. Figure 11.3 provides an example. The SELECT clause

302 Chapter 11 Converting XML to Relational Data

contains the function RTRIM to remove trailing blanks from the column x.ptype. The row-gen-
erating expression of the XMLTABLE function contains a predicate that excludes home phone
numbers from being shredded into the target table. The column-generating expression for the
phone numbers uses the XQuery function normalize-space, which strips leading and trailing
whitespace and replaces each internal sequence of whitespace characters with a single blank
character. The statement also performs a join to the lookup table areacodes so that a phone
number is inserted into the phones table only if its area code is listed in the areacodes table.

INSERT INTO phones(cid, phonetype, phonenum)
SELECT x.custid, RTRIM(x.ptype), x.number
FROM areacodes a,

XMLTABLE('$i/customerinfo/phone[@type != "home"]'
PASSING CAST(? AS XML) AS "i"

COLUMNS
custid INTEGER PATH '../@Cid',
number VARCHAR(15) PATH 'normalize-space(.)',
ptype VARCHAR(10) PATH './@type') AS x

WHERE SUBSTR(x.number,1,3) = a.code;

Figure 11.3 Using functions and joins to customize the shredding

11.2.1 Hybrid XML Storage

In many situations the complexity of the XML document structures makes shredding difficult,
inefficient, and undesirable. Besides the performance penalty of shredding, scattering the values
of an XML document across a large number of tables can make it difficult for an application
developer to understand and query the data. To improve XML insert performance and to reduce
the number of tables in your database, you may want to store XML documents in a hybrid man-
ner. This approach extracts the values of selected XML elements or attributes and stores them in
relational columns alongside the full XML document.

The example in the previous section used two tables, address and phones, as the target tables
for shredding the customer documents. You might prefer to use just a single table that contains
the customer cid, name, and city values in relational columns and the full XML document with
the repeating phone elements and other information in an XML column. You can define the fol-
lowing table:

CREATE TABLE hybrid(cid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30), city VARCHAR(25), info XML)

Figure 11.4 shows the INSERT statement to populate this table. The XMLTABLE function takes an
XML document as input via a parameter marker. The column definitions in the XMLTABLE func-
tion produce four columns that match the definition of the target table hybrid. The row-
generating expression in the XMLTABLE function is just $i, which produces the full input
document. This expression is the input for the column-generating expressions in the COLUMNS
clause of the XMLTABLE function. In particular, the column expression '.' returns the full input

11.2 Shredding with the XMLTABLE Function 303

document as-is and produces the XML column doc for insert into the info column of the target
table.

INSERT INTO hybrid(cid, name, city, info)
SELECT x.custid, x.custname, x.city, x.doc
FROM XMLTABLE('$i' PASSING CAST(? AS XML) AS "i"

COLUMNS
custid INTEGER PATH 'customerinfo/@Cid',
custname VARCHAR(30) PATH 'customerinfo/name',
city VARCHAR(25) PATH 'customerinfo/addr/city',
doc XML PATH '.') AS x;

Figure 11.4 Storing an XML document in a hybrid fashion

It is currently not possible to define check constraints in DB2 to enforce the integrity between
relational columns and values in an XML document in the same row. You can, however, define
INSERT and UPDATE triggers on the table to populate the relational columns automatically when-
ever a document is inserted or updated. Triggers are discussed in Chapter 18, Using XML in
Stored Procedures, UDFs, and Triggers.

It can be useful to test such INSERT statements in the DB2 Command Line Processor (CLP). For
this purpose you can replace the parameter marker with a literal XML document as shown in Fig-
ure 11.5. The literal document is a string that must be enclosed in single quotes and converted to
the data type XML with the XMLPARSE function. Alternatively, you can read the input document
from the file system with one of the UDFs that were introduced in Chapter 4, Inserting and
Retrieving XML Data. The use of a UDF is demonstrated in Figure 11.6.

INSERT INTO hybrid(cid, name, city, info)
SELECT x.custid, x.custname, x.city, x.doc
FROM XMLTABLE('$i' PASSING
XMLPARSE(document
'<customerinfo Cid=”1001”>

<name>Kathy Smith</name>
<addr country=”Canada”>
<street>25 EastCreek</street>
<city>Markham</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9C 3T6</pcode-zip>

</addr>
<phone type=”work”>905-555-7258</phone>

</customerinfo>') AS "i"
COLUMNS
custid INTEGER PATH 'customerinfo/@Cid',
custname VARCHAR(30) PATH 'customerinfo/name',
city VARCHAR(25) PATH 'customerinfo/addr/city',
doc XML PATH '.') AS x;

Figure 11.5 Hybrid insert statement with a literal XML document

304 Chapter 11 Converting XML to Relational Data

INSERT INTO hybrid(cid, name, city, info)
SELECT x.custid, x.custname, x.city, x.doc
FROM XMLTABLE('$i' PASSING
XMLPARSE(document
blobFromFile('/xml/mydata/cust0037.xml')) AS "i"
COLUMNS
custid INTEGER PATH 'customerinfo/@Cid',
custname VARCHAR(30) PATH 'customerinfo/name',
city VARCHAR(25) PATH 'customerinfo/addr/city',
doc XML PATH '.') AS x;

Figure 11.6 Hybrid insert statement with a “FromFile” UDF

The insert logic in Figure 11.4, Figure 11.5, and Figure 11.6 is identical. The only difference is
how the input document is provided: via a parameter marker, as a literal string that is enclosed in
single quotes, or via a UDF that reads a document from the file system.

11.2.2 Relational Views over XML Data

You can create relational views over XML data using XMLTABLE expressions. This allows you to
provide applications with a relational or hybrid view of the XML data without actually storing the
data in a relational or hybrid format. This can be useful if you want to avoid the overhead of con-
verting large amounts of XML data to relational format. The basic SELECT … FROM …
XMLTABLE constructs that were used in the INSERT statements in the previous section can also be
used in CREATE VIEW statements.

As an example, suppose you want to create a relational view over the elements of the XML docu-
ments in the customer table to expose the customer identifier, name, street, and city values. Fig-
ure 11.7 shows the corresponding view definition plus an SQL query against the view.

CREATE VIEW custview(id, name, street, city)
AS
SELECT x.custid, x.custname, x.str, x.place
FROM customer,

XMLTABLE('$i/customerinfo' PASSING info AS "i"
COLUMNS
custid INTEGER PATH '@Cid',
custname VARCHAR(30) PATH 'name',
str VARCHAR(40) PATH 'addr/street',
place VARCHAR(30) PATH 'addr/city') AS x;

SELECT id, name FROM custview WHERE city = 'Aurora';

ID NAME
----------- ------------------------------

1003 Robert Shoemaker

1 record(s) selected.

Figure 11.7 Creating a view over XML data

11.2 Shredding with the XMLTABLE Function 305

The query over the view in Figure 11.7 contains an SQL predicate for the city column in the
view. The values in the city column come from an XML element in the underlying XML col-
umn. You can speed up this query by creating an XML index on /customerinfo/addr/city
for the info column of the customer table. DB2 9 for z/OS and DB2 9.7 for Linux, UNIX, and
Windows are able to convert the relational predicate city = 'Aurora' into an XML predicate
on the underlying XML column so that the XML index can be used. This is not possible in DB2
9.1 and DB2 9.5 for Linux, UNIX, and Windows. In these previous versions of DB2, include the
XML column in the view definition and write the search condition as an XML predicate, as in the
following query. Otherwise an XML index cannot be used.

SELECT id, name
FROM custview
WHERE XMLEXISTS('$INFO/customerinfo/addr[city = "Aurora"]')

11.3 SHREDDING WITH ANNOTATED XML SCHEMAS

This section describes another approach to shredding XML documents into relational tables. The
approach is called annotated schema shredding or annotated schema decomposition because it is
based on annotations in an XML Schema. These annotations define how XML elements and
attributes in your XML data map to columns in your relational tables.

To perform annotated schema shredding, take the following steps:

• Identify or create the relational target tables that will hold the shredded data.

• Annotate your XML Schema to define the mapping from XML to the relational tables.

• Register the XML Schema in the DB2 XML Schema Repository.

• Shred XML documents with Command Line Processor commands or built-in stored
procedures.

Assuming you have defined the relational tables that you want to shred into, let’s look at annotat-
ing an XML Schema.

11.3.1 Annotating an XML Schema

Schema annotations are additional elements and attributes in an XML Schema to provide map-
ping information. DB2 can use this information to shred XML documents to relational tables.
The annotations do not change the semantics of the original XML Schema. If a document is valid
for the annotated schema then it is also valid for the original schema, and vice versa. You can use
an annotated schema to validate XML documents just like the original XML Schema. For an
introduction to XML Schemas, see Chapter 16, Managing XML Schemas.

The following is one line from an XML Schema:

<xs:element name="street" type="xs:string" minOccurs="1"/>

306 Chapter 11 Converting XML to Relational Data

This line defines an XML element called street and declares that its data type is xs:string
and that this element has to occur at least once. You can add a simple annotation to this element
definition to indicate that the element should be shredded into the column STREET of the table
ADDRESS. The annotation consists of two additional attributes in the element definition, as
follows:

<xs:element name="street" type="xs:string" minOccurs="1"
db2-xdb:rowSet="ADDRESS" db2-xdb:column="STREET"/>

The same annotation can also be provided as schema elements instead of attributes, as shown
next. You will see later in Figure 11.8 why this can be useful.

<xs:element name="street" type="xs:string" minOccurs="1">
<xs:annotation>
<xs:appinfo>
<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>ADDRESS</db2-xdb:rowSet>
<db2-xdb:column>STREET</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
<xs:element/>

The prefix xs is used for all constructs that belong to the XML Schema language, and the prefix
db2-xdb is used for all DB2-specific schema annotations. This provides a clear distinction and
ensures that the annotated schema validates the same XML documents as the original schema.

There are 14 different types of annotations. They allow you to specify what to shred, where to
shred to, how to filter or transform the shredded data, and in which order to execute inserts into
the target tables. Table 11.4 provides an overview of the available annotations, broken down into
logical groupings by user task. The individual annotations are further described in Table 11.5.

Table 11.4 Overview and Grouping of Schema Annotations

If You Want to Use This Annotation

Specify the target tables to shred into db2-xdb:rowSet
db2-xdb:column
db2-xdb:SQLSchema
db2-xdb:defaultSQLSchema

Specify what to shred db2-xdb:contentHandling

Transform data values while shredding db2-xdb:expression
db2-xdb:normalization
db2-xdb:truncate

Filter data db2-xdb:condition
db2-xdb:locationPath

11.3 Shredding with Annotated XML Schemas 307

(continues)

Table 11.4 Overview and Grouping of Schema Annotations (Continued)

If You Want to Use This Annotation

Map an element or attribute to multiple columns db2-xdb:rowSetMapping

Map several elements or attributes to the db2-xdb:table
same column

Define the order in which rows are inserted db2-xdb:rowSetOperationOrder
into the target table, to avoid referential db2-xdb:order
integrity violations

Table 11.5 XML Schema Annotations

Annotation Description

db2-xdb:defaultSQLSchema The default relational schema for the target tables.

db2-xdb:SQLSchema Overrides the default schema for individual tables.

db2-xdb:rowSet The table name that the element or attribute is
mapped to

db2-xdb:column The column name that the element or attribute is
mapped to.

db2-xdb:contentHandling For an XML element, this annotation defines how
to derive the value that will be inserted into the tar-
get column. You can chose the text value of just this
element (text), the concatenation of this element’s
text and the text of all its descendant nodes
(stringValue), or the serialized XML (including
all tages) of this element and all descendants
(serializeSubtree). If you omit this annotation,
DB2 chooses an appropriate default based on the
nature of the respective element.

db2-xdb:truncate Specifies whether a value should be truncated if
its length is greater than the length of the target
column.

db2-xdb:normalization Specifies how to treat whitespace—valid values are
whitespaceStrip, canonical, and
original

db2-xdb:expression Specifies an expression that is to be applied to the
data before insertion into the target table.

308 Chapter 11 Converting XML to Relational Data

Table 11.5 XML Schema Annotations (Continued)

Annotation Description

db2-xdb:locationPath Filters based on the XML context. For example, if it is a
customer address then shred to the cust table; if it is an
employee address then shred to the employee table.

db2-xdb:condition Specifies value conditions so that data is inserted into a
target table only if all conditions are true.

db2-xdb:rowSetMapping Enables users to specify multiple mappings, to the same or
different tables, for an element or attribute.

db2-xdb:table Maps multiple elements or attributes to a single column.

db2-xdb:order Specifies the insertion order of rows among multiple
tables.

db2-xdb:rowSetOperationOrder Groups together multiple db2-xdb:order annotations.

To demonstrate annotated schema decomposition we use the shredding scenario in Figure 11.1 as
an example. Assume that the target tables have been defined as shown in Figure 11.1. An anno-
tated schema that defines the desired mapping is provided in Figure 11.8. Let’s look at the lines
that are highlighted in bold font. The first bold line declares the namespace prefix db2-xdb,
which is used throughout the schema to distinguish DB2-specific annotations from regular XML
Schema tags. The first use of this prefix is in the annotation db2-xdb:defaultSQLSchema,
which defines the relational schema of the target tables. The next annotation occurs in the defini-
tion of the element name. The two annotation attributes db2-xdb:rowSet="ADDRESS" and
db2-xdb:column="NAME" define the target table and column for the name element. Similarly,
the street and city elements are also mapped to respective columns of the ADDRESS table. The
next two annotations map the phone number and the type attribute to columns in the PHONES
table. The last block of annotations belongs to the XML Schema definition of the Cid attribute.
Since the Cid attribute value becomes the join key between the ADDRESS and the PHONE table, it
has to be mapped to both tables. Two row set mappings are necessary, which requires the use of
annotation elements instead of annotation attributes. The first db2-xdb:rowSetMapping maps
the Cid attribute to the CID column in the ADDRESS table. The second db2-xdb:rowSet
Mapping assigns the Cid attribute to the CID column in the PHONES table.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1" >
<xs:annotation>
<xs:appinfo>
<db2-xdb:defaultSQLSchema>db2admin</db2-xdb:defaultSQLSchema>
</xs:appinfo>

</xs:annotation>

11.3 Shredding with Annotated XML Schemas 309

Figure 11.8 Annotated schema to implement the shredding in Figure 11.1 (continues)

<xs:element name="customerinfo">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="1"
db2-xdb:rowSet="ADDRESS" db2-xdb:column="NAME"/>
<xs:element name="addr" minOccurs="1"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="street" type="xs:string"
minOccurs="1" db2-xdb:rowSet="ADDRESS"
db2-xdb:column="STREET"/>
<xs:element name="city" type="xs:string"
minOccurs="1" db2-xdb:rowSet="ADDRESS"
db2-xdb:column="CITY"/>
<xs:element name="prov-state" type="xs:string"
minOccurs="1" />
<xs:element name="pcode-zip" type="xs:string"
minOccurs="1" />

</xs:sequence>
<xs:attribute name="country" type="xs:string" />

</xs:complexType>
</xs:element>
<xs:element name="phone" minOccurs="0"
maxOccurs="unbounded" db2-xdb:rowSet="PHONES"
db2-xdb:column="PHONENUM">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="type" form="unqualified"
type="xs:string" db2-xdb:rowSet="PHONES"
db2-xdb:column="PHONETYPE"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="Cid" type="xs:integer">
<xs:annotation>
<xs:appinfo>
<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>ADDRESS</db2-xdb:rowSet>
<db2-xdb:column>CID</db2-xdb:column>

</db2-xdb:rowSetMapping>
<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>PHONES</db2-xdb:rowSet>
<db2-xdb:column>CID</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>

</xs:complexType>
</xs:element>

</xs:schema>

Figure 11.8 Annotated schema to implement the shredding in Figure 11.1 (Continued)

310 Chapter 11 Converting XML to Relational Data

11.3.2 Defining Schema Annotations Visually in IBM Data Studio

You can add annotations to an XML Schema manually, using any text editor or XML Schema
editor. Alternatively, you can use the Annotated XSD Mapping Editor in IBM Data Studio
Developer. To invoke the editor, right-click on an XML Schema name and select Open With,
Annotated XSD Mapping Editor. A screenshot of the mapping editor is shown in Figure
11.9. The left side of the editor shows the hierarchical document structure defined by the XML
Schema (Source). The right side shows the tables and columns of the relational target schema
(Target). You can add mapping relationships by connecting source items with target columns.
There is also a discover function to find probable relationships. Mapped relationships are repre-
sented in the mapping editor by lines drawn between source elements and target columns.

11.3 Shredding with Annotated XML Schemas 311

Figure 11.9 Annotated XSD Mapping Editor in Data Studio Developer

11.3.3 Registering an Annotated Schema

After you have created your annotated XML Schema you need to register it in the XML Schema
Repository of the database. DB2’s XML Schema Repository is described in detail in Chapter 16,
Managing XML Schemas. For the annotated schema in Figure 11.8 it is sufficient to issue the
REGISTER XMLSCHEMA command with its COMPLETE and ENABLE DECOMPOSITION options as
shown in Figure 11.10. In this example the XML Schema is assumed to reside in the file
/xml/myschemas/cust2.xsd. Upon registration it is assigned the SQL identifier db2admin.
cust2xsd. This identifier can be used to reference the schema later. The COMPLETE option of the
command indicates that there are no additional XML Schema documents to be added. The option
ENABLE DECOMPOSITION indicates that this XML Schema can be used not only for document
validation but also for shredding.

REGISTER XMLSCHEMA 'http://pureXMLcookbook.org'
FROM '/xml/myschemas/cust2.xsd'
AS db2admin.cust2xsd COMPLETE ENABLE DECOMPOSITION;

Figure 11.10 Registering an annotated XML schema

Figure 11.11 shows that you can query the DB2 catalog view syscat.xsrobjects to deter-
mine whether a registered schema is enabled for decomposition (Y) or not (N).

SELECT SUBSTR(objectname,1,10) AS objectname,
status, decomposition

FROM syscat.xsrobjects ;

OBJECTNAME STATUS DECOMPOSITION
---------- ------ -------------
CUST2XSD C Y

Figure 11.11 Checking the status of an annotated XML schema

The DECOMPOSITION status of an annotated schema is automatically changed to X (inoperative)
and shredding is disabled, if any of the target tables are dropped or a target column is altered. No
warning is issued when that happens and subsequent attempts to use the schema for shredding
fail. You can also use the following commands to disable and enable an annotated schema for
shredding:

ALTER XSROBJECT cust2xsd DISABLE DECOMPOSITION;
ALTER XSROBJECT cust2xsd ENABLE DECOMPOSITION;

11.3.4 Decomposing One XML Document at a Time

After you have registered and enabled the annotated XML Schema you can decompose XML
documents with the DECOMPOSE XML DOCUMENT command or with a built-in stored procedure.
The DECOMPOSE XML DOCUMENT command is convenient to use in the DB2 Command Line
Processor (CLP) while the stored procedure can be called from an application program or the
CLP. The CLP command takes two parameters as input: the filename of the XML document that
is to be shredded and the SQL identifier of the annotated schema, as in the following example:

DECOMPOSE XML DOCUMENT /xml/mydocuments/cust01.xml
XMLSCHEMA db2admin.cust2xsd VALIDATE;

The keyword VALIDATE is optional and indicates whether XML documents should be validated
against the schema as part of the shredding process. While shredding, DB2 traverses both the
XML document and the annotated schema and detects fundamental schema violations even if the
VALIDATE keyword is not specified. For example, the shredding process fails with an error if a

312 Chapter 11 Converting XML to Relational Data

mandatory element is missing, even if this element is not being shredded and the VALIDATE key-
word is omitted. Similarly, extraneous elements or data type violations also cause the decomposi-
tion to fail. The reason is that the shredding process walks through the annotated XML Schema
and the instance document in lockstep and therefore detects many schema violations “for free”
even if the XML parser does not perform validation.

To decompose XML documents from an application program, use the stored procedure XDBDE-
COMPXML. The parameters of this stored procedure are shown in Figure 11.12 and described in
Table 11.6.

>>-XDBDECOMPXML--(--rschema--,--xmlschemaname--,--xmldoc--,---->

>--documentid--,--validation--,--reserved--,--reserved--,------>

>--reserved--)--><

Figure 11.12 Syntax and parameters of the stored procedure XDBDECOMPXML

Table 11.6 Description of the Parameters of the Stored Procedure XDBDECOMPXML

Parameter Description

rschema The relational schema part of the two-part SQL identifier of the annotated XML
Schema. For example, if the SQL identifier of the XML Schema is
db2admin.cust2xsd, then you should pass the string 'db2admin' to this
parameter. In DB2 for z/OS this value must be either 'SYSXSR' or NULL.

xmlschemaname The second part of the two-part SQL identifier of the annotated XML Schema. If
the SQL identifier of the XML Schema is db2admin.cust2xsd, then you pass
the string 'cust2xsd' to this parameter. This value cannot be NULL.

xmldoc In DB2 for Linux, UNIX, and Windows, this parameter is of type BLOB(1M)
and takes the XML document to be decomposed. In DB2 for z/OS this parame-
ter is of type CLOB AS LOCATOR. This parameter cannot be NULL.

documentid A string that the caller can use to identify the input XML document. The value
provided will be substituted for any use of $DECOMP_DOCUMENTID specified in
the db2-xdb:expression or db2-xdb:condition annotations.

validation Possible values are: 0 (no validation) and 1 (validation is performed). This
parameter does not exist in DB2 for z/OS.

reserved Parameters reserved for future use. The values passed for these arguments must
be NULL. These parameters do not exist in DB2 for z/OS.

11.3 Shredding with Annotated XML Schemas 313

A Java code snippet that calls the stored procedure using parameter markers is shown in Fig-
ure 11.13

CallableStatement callStmt = con.prepareCall(
"call SYSPROC.XDBDECOMPXML(?,?,?,?,?, null, null, null)");

File xmldoc = new File("c:\mydoc.xml");
FileInputStream xmldocis = new FileInputStream(xmldoc);

callStmt.setString(1, "db2admin");
callStmt.setString(2, "cust2xsd");

// document to be shredded:
callStmt.setBinaryStream(3,xmldocis,(int)xmldoc.length());

callStmt.setString(4, "mydocument26580");

// no schema validation in this call:
callStmt.setInt(5, 0);

callStmt.execute();

Figure 11.13 Java code that invokes the stored procedure XDBDECOMPXML

While the input parameter for XML documents is of type CLOB AS LOCATOR in DB2 for z/OS, it
is of type BLOB(1M) in DB2 for Linux, UNIX, and Windows. If you expect your XML docu-
ments to be larger than 1MB, use one of the stored procedures listed in Table 11.7. These stored
procedures are all identical except for their name and the size of the input parameter xmldoc.
When you call a stored procedure, DB2 allocates memory according to the declared size of the
input parameters. For example, if all of your input documents are at most 10MB in size, the
stored procedure XDBDECOMPXML10MB is a good choice to conserve memory.

Table 11.7 Stored Procedures for Different Document Sizes (DB2 for Linux, UNIX,
and Windows)

Stored Procedure Document Size Supported since

XDBDECOMPXML ≤1MB DB2 9.1

XDBDECOMPXML10MB ≤10MB DB2 9.1

XDBDECOMPXML25MB ≤25MB DB2 9.1

XDBDECOMPXML50MB ≤50MB DB2 9.1

XDBDECOMPXML75MB ≤75MB DB2 9.1

XDBDECOMPXML100MB ≤100MB DB2 9.1

XDBDECOMPXML500MB ≤500MB DB2 9.5 FP3

314 Chapter 11 Converting XML to Relational Data

Table 11.7 Stored Procedures for Different Document Sizes (DB2 for Linux, UNIX,
and Windows) (Continued)

Stored Procedure Document Size Supported since

XDBDECOMPXML1GB ≤1GB DB2 9.5 FP3

XDBDECOMPXML1_5GB ≤1.5GB DB2 9.7

XDBDECOMPXML2GB ≤2GB DB2 9.7

For platform compatibility, DB2 for z/OS supports the procedure XDBDECOMPXML100MB with the
same parameters as DB2 for Linux, UNIX, and Windows, including the parameter for validation.

11.3.5 Decomposing XML Documents in Bulk

DB2 9.7 for Linux, UNIX, and Windows introduces a new stored procedure called
XDB_DECOMP_XML_FROM_QUERY. It uses an annotated schema to decompose one or multiple
XML documents selected from a column of type XML, BLOB, or VARCHAR FOR BIT DATA. The
main difference to the procedure XDBDECOMPXML is that XDB_DECOMP_XML_FROM_QUERY
takes an SQL query as a parameter and executes it to obtain the input documents from a DB2
table. For a large number of documents, a LOAD operation followed by a “bulk decomp” can be
more efficient than shredding these documents with a separate stored procedure call for each doc-
ument. Figure 11.14 shows the parameters of this stored procedure. The parameters commit_
count and allow_access are similar to the corresponding parameters of DB2’s IMPORT utility.
The parameters total_docs, num_docs_decomposed, and result_report are output
parameters that provide information about the outcome of the bulk shredding process. All
parameters are explained in Table 11.8.

>>--XDB_DECOMP_XML_FROM_QUERY--(--rschema--,--xmlschema--,-->

>--query--,--validation--,--commit_count--,--allow_access--,---->

>--reserved--,--reserved2--,--continue_on_error--,-------------->

>--total_docs--,--num_docs_decomposed--,--result_report--)--><

Figure 11.14 The stored procedure XDB_DECOMP_XML_FROM_QUERY

11.3 Shredding with Annotated XML Schemas 315

Table 11.8 Parameters for XDB_DECOMP_XML_FROM_QUERY

Parameter Description

rschema Same as for XDBDECOMPXML.

xmlschema Same as xmlschemaname for XDBDECOMPXML.

query A query string of type CLOB(1GB), which cannot be NULL. The query must be
an SQL or SQL/XML SELECT statement and must return two columns. The first
column must contain a unique document identifier for each XML document in
the second column of the result set. The second column contains the XML
documents to be shredded and must be of type XML, BLOB, VARCHAR FOR BIT
DATA, or LONG VARCHAR FOR BIT DATA.

validation Possible values are: 0 (no validation) and 1 (validation is performed).

commit_count An integer value equal to or greater than 0. A value of 0 means the stored proce-
dure does not perform any commits. A value of n means that a commit is per-
formed after every n successful document decompositions.

allow_access A value of 1 or 0. If the value is 0, then the stored procedure acquires an exclu-
sive lock on all tables that are referenced in the annotated XML Schema. If the
value is 1, then the stored procedure acquires a shared lock.

reserved, These parameters are reserved for future use and must be NULL.
reserved2

continue_on Can be 1 or 0. A value of 0 means the procedure stops upon the first document
_error that cannot be decomposed; for example, if the document does not match the

XML Schema.

total_docs An output parameter that indicates the total number of documents that the pro-
cedure tried to decompose.

num_docs_ An output parameter that indicates the number of documents that were
decomposed successfully decomposed.

result_report An output parameter of type BLOB(2GB). It contains an XML document that
provides diagnostic information for each document that was not successfully
decomposed. This report is not generated if all documents shredded success-
fully. The reason this is a BLOB field (rather than CLOB) is to avoid codepage
conversion and potential truncation/data loss if the application code page is
materially different from the database codepage.

Figure 11.15 shows an invocation of the XDB_DECOMP_XML_FROM_QUERY stored procedure in
the CLP. This stored procedure call reads all XML documents from the info column of the
customer table and shreds them with the annotated XML Schema db2admin.cust2xsd. The
procedure commits every 25 documents and does not stop if a document cannot be shredded.

316 Chapter 11 Converting XML to Relational Data

call SYSPROC.XDB_DECOMP_XML_FROM_QUERY
('DB2ADMIN', 'CUST2XSD', 'SELECT cid, info FROM customer',
0, 25, 1, NULL, NULL, '1',?,?,?) ;

Value of output parameters

Parameter Name : TOTALDOCS
Parameter Value : 100

Parameter Name : NUMDOCSDECOMPOSED
Parameter Value : 100

Parameter Name : RESULTREPORT
Parameter Value : x''

Return Status = 0

Figure 11.15 Calling the procedure SYSPROC.XDB_DECOMP_XML_FROM_QUERY

If you frequently perform bulk shredding in the CLP, use the command DECOMPOSE XML DOCU-
MENTS instead of the stored procedure. It is more convenient for command-line use and performs
the same job as the stored procedure XDB_DECOMP_XML_FROM_QUERY. Figure 11.16 shows the
syntax of the command. The various clauses and keywords of the command have the same mean-
ing as the corresponding stored procedure parameters. For example, query is the SELECT state-
ment that provides the input documents, and xml-schema-name is the two-part SQL identifier
of the annotated XML Schema.

>>-DECOMPOSE XML DOCUMENTS IN----'query'----XMLSCHEMA------->

.-ALLOW NO ACCESS-.
>--xml-schema-name--+----------+--+-----------------+----------->

'-VALIDATE-' '-ALLOW ACCESS----'

>--+----------------------+--+-------------------+-------------->
'-COMMITCOUNT--integer-' '-CONTINUE_ON_ERROR-'

>--+--------------------------+--------------------------------><
'-MESSAGES--message-file-'

Figure 11.16 Syntax for the DECOMPOSE XML DOCUMENTS command

Figure 11.17 illustrates the execution of the DECOMPOSE XML DOCUMENTS command in the DB2
Command Line Processor.

DECOMPOSE XML DOCUMENTS IN 'SELECT cid, info FROM customer'
XMLSCHEMA db2admin.cust2xsd MESSAGES decomp_errors.xml ;

DB216001I The DECOMPOSE XML DOCUMENTS command successfully
decomposed all "100" documents.

Figure 11.17 Example of the DECOMPOSE XML DOCUMENTS command

11.3 Shredding with Annotated XML Schemas 317

If you don’t specify a message-file then the error report is written to standard output. Figure
11.18 shows a sample error report. For each document that failed to shred, the error report shows
the document identifier (xdb:documentId). This identifier is obtained from the first column that
is produced by the SQL statement in the DECOMPOSE XML DOCUMENTS command. The error
report also contains the DB2 error message for each document that failed. Figure 11.18 reveals
that document 1002 contains an unexpected XML attribute called status, and that document
1005 contains an element or attribute value abc that is invalid because the XML Schema
expected to find a value of type xs:integer. If you need more detailed information on why a
document is not valid for a given XML Schema, use the stored procedure XSR_GET_PARSING_
DIAGNOSTICS, which we discuss in section 17.6, Diagnosing Validation and Parsing Errors.

<?xml version='1.0' ?>
<xdb:errorReport

xmlns:xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">
<xdb:document>

<xdb:documentId>1002</xdb:documentId>
<xdb:errorMsg>SQL16271N Unknown attribute "status" at or
near line “1" in document "1002".</xdb:errorMsg>

</xdb:document>
<xdb:document>

<xdb:documentId>1005</xdb:documentId>
<xdb:errorMsg> SQL16267N An XML value "abc" at or near
line "1" in document "1005" is not valid according to
its declared XML schema type "xs:integer" or is outside
the supported range of values for the XML schema type

</xdb:errorMsg>
</xdb:document>

</xdb:errorReport>

Figure 11.18 Sample error report from bulk decomp

11.4 SUMMARY

When you consider shredding XML documents into relational tables, remember that XML and
relational data are based on fundamentally different data models. Relational tables are flat and
unordered collections of rows with strictly typed columns, and each row in a table must have the
same structure. One-to-many relationships are expressed by using multiple tables and join rela-
tionships between them. In contrast, XML documents tend to have a hierarchical and nested
structure that can represent multiple one-to-many relationships in a single document. XML
allows elements to be repeated any number of times, and XML Schemas can define hundreds or
thousands of optional elements and attributes that may or may not exist in any given document.
Due to these differences, shredding XML data to relational tables can be difficult, inefficient, and
sometimes prohibitively complex.

318 Chapter 11 Converting XML to Relational Data

If the structure of your XML data is of limited complexity such that it can easily be mapped to
relational tables, and if your XML format is unlikely to change over time, then XML shredding
can sometimes be useful to feed existing relational applications and reporting software.

DB2 offers two methods for shredding XML data. The first method uses SQL INSERT statements
with the XMLTABLE function. One such INSERT statement is required for each target table and
multiple statements can be combined in a stored procedure to avoid repetitive parsing of the same
XML document. The shredding statements can include XQuery and SQL functions, joins to other
tables, or references to DB2 sequences. These features allow for customization and a high degree
of flexibility in the shredding process, but require manual coding. The second approach for shred-
ding XML data uses annotations in an XML Schema to define the mapping from XML to rela-
tional tables and columns. IBM Data Studio Developer provides a visual interface to create this
mapping conveniently with little or no manual coding.

11.4 Summary 319

727

Index

Symbols
& (ampersand), escaping 88
* (asterisk) as wildcard

character, 140, 594
@ (at sign) in XPath, 135
@* XPath wildcard, 140
, (comma) operator, construc-

tion of sequences, 154
$ (dollar sign)

in XML column
references, 161

XQuery variable
names, 196

. (dot), current context in
XPath, 151-153

// (double slash)
in XPath, 141-142
in XPath predicates, 146

!= (not equal) comparison
operator, not() function
versus, 150

% (percent sign) in wildcard
searches, 583

.. (parent directory) in file sys-
tem navigation, 133

.. (parent step) in XPath,
151-153

| (pipe) character
union of sequences, 154
as XPath union

operator, 585
? (question mark) as wildcard

character, 594
; (semicolon)

in namespace
declarations, 448

in stored procedures, 549
’ (single quotes),

escaping, 571
/ (slash)

in file system
navigation, 133

in XPath, 141
in XPath predicates, 145

_ (underscore character) in
wildcard searches, 583

A
abbreviated syntax in

XPath, 157
access control, 9
access plans. See execution

plans
ADD XMLSCHEMA

command, 485

adjust-date-to-timezone
function (XQuery), 226

ADMIN_EST_INLINE_
LENGTH function, 45-47

ADMIN_IS_INLINED
function, 44-45

ADO.NET data providers, list
of, 631

aggregate functions, 278
aggregation. See also

grouping
XML construction with,

207-208
of XML data, 233-239

within and across
documents, 236-237

XMLTABLE function,
234-236

with XMLAGG function
(SQL/XML), 277-283

aggregation functions in
XQuery, 218-220

ALTER INDEX command
(DB2 Net Search Extender),
580

altering text indexes
with DB2 Net Search
Extender, 580

Altova XML tools, 656-658

728 Index

ampersand (&), escaping 88
AND operator, 149

in full-text searches, 584
annotated schema shredding,

306-318
advantages/disadvantages

of, 301
annotating XML Schema,

306-310
defining annotations

in Data Studio
Developer, 311

registering annotated
schemas, 311-312

shredding multiple XML
documents, 315-318

shredding single XML
documents, 312-315

Annotated XSD Mapping
Editor, 311

APAR II14426, xxvi
APARs, list of, 72-73
APIs, 9
application code page, 599
application development, 609

CLI applications, 636-639
embedded SQL

applications, 639-647
C applications with,

645-647
COBOL applications

with, 640-642
PL/1 applications with,

643-644
for DB2 pureXML, 9
host variables, 613-614
Java applications,

615-631
JDBC 3.0, XML

support in, 615-619
JDBC 4.0, example

usage, 621-627
JDBC 4.0, XML

support in, 619-621
pureQuery, 629-631
XML data binding, 629
XML documents,

creating from applica-
tion data, 627-628

.NET applications, 631-636
ADO.NET data

providers, list of, 631
inserting XML data

from, 635
manipulating XML data

in, 633-635
querying XML data in,

632-633
XML Schema and DTD

handling, 636
parameter markers, 613-614
Perl applications, 650-651
PHP applications, 647-649
pureXML, benefits of,

610-613
tools for

Altova XML tools,
656-658

IBM Data Studio Devel-
oper, 652-653, 655

IBM Database Add-ins
for Visual Studio, 656

list of, 651
<oXygen/>, 658-659
Stylus Studio, 659

application layer, avoiding
parsing in, 610-612

application-centric
validation, 545

applications (XML), best
practices, 434-435

arithmetic expressions, 190
in XQuery, 212-214

asterisk (*) as wildcard
character, 140, 594

atomic values (XQuery Data
Model), 129

attaching partitions, 57
attribute axis, 157
attribute constructors

(XQuery), 290-292
attribute expressions, XML

construction with, 206
attribute nodes, 29, 129

attribute values versus, 136
attribute values, attribute nodes

versus, 136

attributes
in path expressions, 135
XPath wildcards for, 141

attributes (objects),
sparse, 13

attributes (XML), 2-4. See also
nodes

constructing from
relational data, 275-277

converting to/from XML
elements, 345-346

elements versus, 15-19
extracting value of, 557
full names, 441, 443-444
index creation and, 459
indexing, 8
inserting, defining

position for, 336-337
namespaces and, 440-441
optional, 13
renaming, 334-335
updating with stored

procedures, 554-555
values, replacing,

327-328
automatic updates for text

indexes, 574-576
axes in XPath, 157

B
BACKUP PENDING

status, 111
backward compatibility of

XML Schema versions,
495-498

base table row storage. See
inlining

BEFORE triggers, 523
Bernoulli sampling, 419
best practices for XML

performance, 428-435
between predicates, 431

in XML queries, 254-256
binary data as internally

encoded, 618
binary data types, 606

Index 729

binary SQL types, converting
XML values to, 187-188

binding. See XML data
binding

BLOB data type, inserting
XML documents 80

blobFromFile UDF, 81
blobsFromZipURL UDF,

81-82
blocking cursors, 435
BOM (Byte-Order Mark), 599
Boolean expressions,

predicates versus, 146
Boolean functions in

XQuery, 226
Boolean operators in full-text

searches, 583-584
boost modifiers, 594
boundary whitespace, 90-91

preserving 91-93
bulk shredding of XML

documents, 315-318
business data. See data
business objects

data representation of,
12-13

storage of, 612
Byte-Order Mark (BOM), 599

C
C applications with embedded

SQL, 645-647
Call Level Interface. See CLI

application development
cardinality of XML

indexes, 363
Cartesian products, 240
case-insensitive XML queries,

252-253
cast expressions, 190

in XQuery, 208-212
castable XQuery

expression, 211
casting. See converting

catalog tables (DB2 for z/OS),
XML-related, 667-673

for XML indexes, 671-672
XML Schema Repository

(XSR), 503-508, 672
for XML storage objects,

667-670
catalog views (DB2 for Linux,

UNIX, and Windows),
XML-related, 661-667

SYSCAT.COLUMNS,
661-662

SYSCAT.INDEXES,
663-664

SYSCAT.INDEXXML-
PATTERNS, 664-666

SYSIBM.SYSXMLPATHS,
663

SYSIBM.SYSXML-
STRINGS, 662-663

XML Schema Repository
(XSR), 503-508, 667

change requests, response time
for, 613

character data, as externally
encoded, 619

character data types, blocking
usage of, 606

character encoding. See XML
encoding

character references,
list of, 87

character type application vari-
ables, fetching non-Unicode
data into, 603-604

check constraints, 8,
520-523

CHECK DATA utility, 69-70
CHECK INDEX utility, 66
CHECK PENDING status, 110
child axis, 157
Chinese characters in code

page ISO-8859-1 (code page
conversion example),
602-603

CLI (Call Level Interface)
application development,
636-639

CLOB data type, inserting
XML documents 80

CLP (Command Line
Processor)

DESCRIBE command,
84-85

escaping quotes in, 571
input parameters, text files

as, 708
INSERT statements, 76-77
registering XML Schemas

in, 484-486
retaining whitespace, 527
terminating characters,

changing, 549
testing stored

procedures, 555
truncated XML document

display 83
viewing XML documents,

704-705
XML declarations,

inserting 86
XML options

list of, 706
usage examples,

706-707
coarse granularity of XML

documents, 22
COBOL applications with

embedded SQL, 640-642
code page conversions, 597

avoiding, 601
examples of, 602-605
with non-Unicode database

code pages, 601-602
performance considerations,

434
code pages, selecting, 27
column references

dollar sign ($) in, 161
in XMLQUERY function,

162-163
columns (XML)

dropping, 40
generating from XML data,

165-166

730 Index

inserting constructed XML
data into, 294-295

comma (,) operator, construc-
tion of sequences, 154

Command Line Processor. See
CLP

commands for full-text
searches, list of, 594-595

comment nodes,
constructing, 290

common table expressions,
282-283

comparison expressions, 190
comparison operations in

predicates, 143
comparison operators

numeric versus string
comparison, 144

in XPath, 156-157
compatibility. See backward

compatibility
compliance, data storage

for, 94
components. See schema

documents
compression

of XML data, 48-51
XML space management

example, 54-57
computed values

replacing values in XML
documents with, 329-331

XML construction with,
202-204

concat function (XQuery),
215-216

concat() function, 155
concatenation of text

nodes, 30
concurrency control, XML

documents, 9
conditional expressions, 190

XML construction with, 205
conditional triggers, 524
conditional XML element con-

struction, 284-285
leading zeros in, 285-286

configuring XML inlining,
43-47

constraints on XML
documents, 8, 520-523

constructing XML data. See
converting relational data
to XML data; XML
construction

construction of sequences in
XPath, 154-155

constructor expressions, 190
constructor functions. See pub-

lishing functions (SQL/XML)
constructors (XQuery),

290-292
XML namespaces and,

462-463
contains function (XQuery),

216-217, 587
CONTAINS scalar function,

581-583
content-centric XML

documents, 567
context (file system

navigation), 133
context nodes, 136, 139
convert function, 229
converting. See also

shredding
relational data to XML

data, 267
inserting in XML

columns, 294-295
with SQL/XML

publishing functions,
268-290

XML declarations for,
292-294

with XQuery construc-
tors, 290-292

XML elements to/from
XML attributes, 345-346

XML values to binary SQL
types, 187-188

COPY TABLESPACE
utility, 66

copying XML documents 86

COPYTOCOPY utility, 66
count() function, 155
Creat Index Wizard, 366-367
CREATE INDEX command

(DB2 Text Search), 591-592
CREATE INDEX command

(DB2 Net Search Extender),
572-579

advanced options, 578-579
with automatic updates,

574-576
for parts of documents,

576-577
with specific storage paths,

573-574
CREATE INDEX statement,

362-364
current context in XPath,

151-153
current directory (file system

navigation), 133
CURRENT IMPLICIT

XMLPARSE OPTION
register 93

current-date function
(XQuery), 225-226

current-dateTime function
(XQuery), 225

current-time function
(XQuery), 225

cursors
loading from, 111
in stored procedures,

553-554
update cursors, modifying

XML documents in,
350-351

custom document models, full-
text searches with,
585-586

custom XML Schemas,
industry standard XML
Schemas versus, 474-476

customer table (XML sample
database), contents of,
710-712

Index 731

D
data, distinguishing from meta-

data, 19-21. See also rela-
tional data; XML data

data binding (XML)
to Java objects, 629
pureQuery and, 631

data exchange, metadata
for, 13

data expansion/shrinkage (code
page conversion example),
605

data function (XQuery), 221
data loss due to XML

encoding, avoiding, 606
data models. See also design

decisions
XML data, when to use,

11-13
XQuery 1.0 and XPath 2.0

Data Model, 126-131
sequence construction,

128-130
sequence input/output,

130-131
data providers, list of, 631
data storage. See storage
Data Studio, support for DB2

pureXML, 9
Data Studio Developer,

652-655
defining schema

annotations, 311
profiling stored

procedures, 556
data types (SQL)

BLOB, inserting XML
documents, 80

CLOB, inserting XML
documents, 80

converting XML values
to binary SQL types,
187-188

DESCRIBE command,
84-85

index eligibility and,
374-375

type errors, avoiding in
XMLTABLE function,
168-169

XML, 7-9, 160
for XML indexes, 367-372

DATE, 369
DECFLOAT, 369
DOUBLE, 369
rejecting invalid

values, 371-372
selecting, 369-371
TIMESTAMP, 369
VARCHAR HASHED,

368-369
VARCHAR(n), 367-368

in XQuery, 208-212
data types (Java), SQLXML, 9
data() function, 134-135
data-centric XML

documents, 567
database code page,

non-Unicode database usage,
601-602

database nodes. See
partitioned databases

Database Partitioning Feature
(DPF), 59-60

database utilities,
monitoring, 427-428

database-centric
validation, 545

databases
disabling

for DB2 Net Search
Extender, 572

for DB2 Text
Search, 591

enabling
for DB2 Net Search

Extender, 571-572
for DB2 Text Search,

590-591
XML sample database. See

XML sample database
DatabaseSpy, 658
DataDirect, 659

date comparisons, string
comparisons versus,
210-211

date functions in XQuery,
224-226

DATE index data type, 369
DB2 .NET Data Provider, 632
DB2 Control Center

Creat Index Wizard,
366-367

support for DB2
pureXML, 9

viewing XML documents,
703-704

DB2 Express-C, 196
DB2 for Linux, UNIX, and

Windows, xxvi
explain facility, 396-409
exporting XML

documents, 98-106
importing XML

documents, 106-109
index implementation,

387-390
loading XML documents,

109-111
snapshot monitor,

424-427
statistics collection in,

418-419
validation in, DB2 for z/OS

versus, 543-544
XML compression, 48
XML index data types, 367
XML index statistics,

390-393
XML sample database,

creating, 709-710
XML Schemas in, 510-511
XML storage, 33-41

in DB2 9.7 release,
40-41

dropping XML
columns, 40

storage objects, types of,
33-35

table space page size,
36-39

732 Index

XML-related catalog views,
661-667

SYSCAT.COLUMNS,
661-662

SYSCAT.INDEXES,
663-664

SYSCAT.INDEXXML-
PATTERNS, 664-666

SYSIBM.SYSXML-
PATHS, 663

SYSIBM.SYSXML-
STRINGS, 662-663

XML Schema
Repository (XSR), 667

DB2 9.1 for Linux, UNIX,
and Windows, XML
encoding, 597

DB2 9.5 for Linux, UNIX,
and Windows, XML
encoding, 597

DB2 9.7 for Linux, UNIX, and
Windows, optimized XML
storage format, 40-41

DB2 for z/OS, xxvi
explain facility, 409-416
full-text searches in, 596
loading XML documents,

114-116
statistics collection in,

417-418
unloading XML

documents, 111-114
updating XML documents

in, 351-352
validation in, 540-544

DB2 for Linux, UNIX,
and Windows versus,
543-544

for existing XML
documents, 543

with INSERT statement,
541-542

with UPDATE
statement, 542-543

XML compression, 48
XML encoding, 598
XML index data types, 367

XML sample database,
creating, 710

XML Schemas in, 510-511
XML storage, 60-73

limiting memory
consumption, 71

multiple XML
columns, 64

naming conventions,
64-65

offloading XML
parsing, 72-73

storage objects, types of,
61-62

table space
characteristics, 63

utilities for, 65-70
XML-related catalog tables,

667-673
for XML indexes,

671-672
XML Schema Reposi-

tory (XSR), 672
for XML storage objects,

667-670
DB2 Net Search Extender

administration commands,
list of, 594-595

altering text indexes, 580
creating text indexes,

572-579
DB2 Text Search versus,

568-570
disabling databases for, 572
enabling databases for,

571-572
performing full-text

searches, 581-590
reorganizing text indexes,

579-580
updating text indexes,

579-580
DB2 pureXML. See pureXML
DB2 Text Search, 590

administration commands,
list of, 594-595

creating text indexes,
591-592

DB2 Net Search Extender
versus, 568-570

disabling databases
for, 591

enabling databases for,
590-591

performing full-text
searches, 592-594

db2-fn:sqlquery function, 139,
166, 227, 229-230, 582

db2-fn:xmlcolumn()
function, 137, 166

db2-fn:xmlcolumn-contains
function, 592

db2cat utility, 419-423
db2exfmt command-line tool,

396-399
db2look utility, XML

documents and, 122
db2move utility, XML

documents and, 123
DB2Xml class (.NET),

632-633
DB2Xml object (JDBC 3.0),

benefits of, 616
DECFLOAT index data

type, 369
declarations (XML), 2,

599-600
in CLI applications, 638
for constructed XML data,

292-294
in embedded SQL

applications, 639
handling documents with,

85-86
declaring namespaces, 4

XML, 439-441
in SQL/XML, 451
in XML indexes,

456-460
in XMLTABLE function,

452-453
in XQuery, 448-450

XSLT, 356
DECOMPOSE XML

DOCUMENT command, 312

Index 733

DECOMPOSE XML
DOCUMENTS command,
317-318

decomposing. See shredding
dedicated directories,

exporting XML documents
to, 102-104

default namespaces (XML),
renaming nodes in, 467-468

default tagging of relational
data, 286-289

default whitespace
preservation option,
changing 93-94

default XML namespaces,
442-444

default XML Schemas,
validation against with LOAD
and IMPORT
utilities, 532

defining XML indexes,
362-367

delete expression
(XQuery), 333

DELETE operator (execution
plans), 401

DELETE statement, 82-83
delete triggers, 563
deleting

XML documents, 82-83
XML nodes, 333-334

delimited format files, 99
descendant axis, 157
descendant nodes, 141
descendant-or-self axis, 157
DESCRIBE command 84-85
describing queries, 137
design decisions, XML

documents, 15-25, 428-429
elements versus attributes,

15-19
granularity, 22-24
hybrid storage, 24-25
performance, role of, 16
tags versus values, 19-21

detaching partitions, 57
DFETCH operator (execution

plans), 413

digital signatures, effect of
stripping whitespace on, 78

direct element construction,
171

direct element/attribute
constructors (XQuery), XML
namespaces and, 462-463

direct XML construction, 202
directories, exporting XML

documents to, 102-104
directoryInfo UDF, 81
disabling

annotated schemas for
shredding, 312

databases
for DB2 Net Search

Extender, 572
for DB2 Text

Search, 591
distinct-values function

(XQuery), 221
distribution keys, 60
document ID index, 61
document models, 576-577

custom document models,
full-text searches with,
585-586

document nodes, 29, 129
constructing, 294-295

Document Object Model
(DOM) parsers, 610

Document Object Model
fidelity, 94

document trees (XML), 28-30
storage of, 30-33

Document Type Definitions
(DTDs), 501-502

document validation. See
validation

document-centric XML
documents. See content-
centric XML

documents (XML)
access control, 9
attribute values, replacing,

327-328
checking for validation,

534-535

constraints, 8
constructing

from multiple relational
rows, 277-280

from multiple relational
tables, 281-283

content-centric versus
data-centric, 567

copying, 86
creating from Java

application data,
627-628

db2look utility and, 122
db2move utility and, 123
deleting, 82-83
description of, 2-4
design decisions, 15-25,

428-429
elements versus

attributes, 15-19
granularity, 22-24
hybrid storage, 24-25
performance, role of, 16
tags versus values,

19-21
document trees, 28-30

storage of, 30-33
element values, replacing,

326-327
elements/attributes, renam-

ing, 334-335
escaping special

characters, 87-89
exporting, 98-106

to dedicated directories,
102-104

fragments of documents,
104-105

to multiple files,
100-102

to single file, 98-100
with XML Schema

information, 105-106
federating, 120-121
importing, 106-109

input files and, 107-108
performance tips,

108-109

734 Index

indexing, 8
inserting, 76-82

from files, 79-82
INSERT statement,

76-79
loading

in DB2 for Linux,
UNIX, and Windows,
109-111

in DB2 for z/OS,
114-116

modifying
in insert operations,

349-350
in queries, 346-349
in update cursors,

350-351
with XQuery Update

Facility, 324-326
namespace declarations,

439-441
namespace usage examples,

444-447
nodes

deleting, 333-334
inserting, 335-340
modifying multiple,

343-346
repeating/missing,

340-343
replacing, 331-332

parameter markers, replac-
ing values with, 328

parsing, 9
avoiding in application

layer, 610-612
publishing, 118-119
queries on, 8-9
removing validation, 540
replacing, 322-324

multiple values in,
328-329

values with computed
values, 329-331

replicating, 118-119
retaining invalid, 519-520
retrieving, 83-85, 161-165

shredding, 10
advantages/

disadvantages of,
297-301

with annotated schema
shredding, 306-318

with XMLTABLE
function, 301-306

splitting, 116-118
storage. See XML storage
transforming with XSLT,

352-358
traversing, 197
unloading, 111-114
updating, 433

in DB2 for z/OS,
351-352

with UDFs, 559-561
valid documents

determining XML
Schemas for, 538-540

well-formed documents
versus, 473

validation. See validation
viewing structure of,

703-705
well-formed, 76
whitespace, 89-94

changing default preser-
vation option 93-94

preserving, 91-93
types of, 90

with XML declarations,
handling, 85-86

dollar sign ($)
in XML column

references, 161
XQuery variable

names, 196
DOM (Document Object

Model) parsers, 610
dot notation in XPath,

151-153
DOUBLE index data type, 369
double slash (//)

in XPath, 141-142
in XPath predicates, 146

DPF (Database Partitioning
Feature), 59-60

DROP XSROBJECT
command, 492

dropping
check constraints, 522
XML columns, 40

DSNTIAUL command,
111-112

DSN_XMLVALIDATE
function, 541-543

DTDs (Document Type
Definitions), 501-502

in .NET applications,
handling, 636

registering, 501
dynamic XPath expressions,

185-186

E
EAV (Entity-Attribute-Value

model). See Name/Value Pairs
editing (Data Studio Developer)

queries, 654
XML Schemas, 653

element constructors
(XQuery), 290-292

element nodes, 29-30, 129
element values, returning with-

out XML tags, 163-164
elements (XML), 2-4. See also

nodes
attributes versus, 15-19
constructing from

relational data, 269-273
conditional construction,

284-286
empty, missing, NULL

elements, 274-275
converting to/from XML

attributes, 345-346
extracting repeating

values, 557-558
extracting value of, 557
full names, 441-444

Index 735

indexing, 8
inserting, defining

position for, 335-336
leaf elements, 383
non-leaf elements, XML

indexes on, 383-384
optional elements

handling in XMLTABLE
function, 167-168

schema flexibility of, 5
renaming, 334-335
repeating elements

numbering rows based
on, 173-174

returning multiple,
174-176

returning with
XMLQUERY function,
164-165

returning with
XMLTABLE function,
169-173

schema flexibility of, 5
root elements, 28
updating with stored

procedures, 554-555
values

replacing, 326-327
as text node

concatenations, 30
XPath wildcards for, 140

embedded SQL application
development, 639-647

C applications with,
645-647

COBOL applications with,
640-642

PL/1 applications with,
643-644

embedding SQL in XQuery,
227-228

empty elements (relational
data), converting to XML
data, 274-275

“Empty on NULL”
behavior, 274

enabling
annotated schemas for

shredding, 312
databases

for DB2 Net Search
Extender, 571-572

for DB2 Text Search,
590-591

encoding (XML). See also
Unicode

code page conversions
avoiding, 601
examples of, 602-605

code pages, selecting, 27
data loss, avoiding, 606
embedded SQL application

development and, 639
external encoding,

599-601
internal encoding,

599-600
non-Unicode database

usage, 601-602
overview, 597

encoding declaration, 599
enforcing validation

with check constraints,
520-523

with triggers, 523-525
entities (XML), 87, 501
entity references, list of 87
Entity-Attribute-Value model

(EAV). See Name/Value Pairs
error codes

explained, 258-264
SQL0104N, 500
SQL0242N, 277
SQL0401N, 186
SQL0443N 81
SQL0544N, 521
SQL0545N, 521
SQL0551N, 500
SQL1354N, 548
SQL1407N, 111
SQL16001N, 259
SQL16002N, 146,

259-260, 605

SQL16003N, 156,
169-170, 210, 213,
249, 260-261

SQL16005N, 261-262
SQL16011N, 263
SQL16015N, 262-263
SQL16061N, 144, 169, 211,

263-264, 551
SQL16075N, 136, 264
SQL16085N, 336, 339,

341-342
SQL16088N, 467
SQL16103N, 601
SQL16110N 87
SQL16168N, 600
SQL16168N 85
SQL16193N, 440
SQL16196N, 517
SQL16267N, 318
SQL16271N, 318
SQL20329N, 491
SQL20335N, 514
SQL20340N, 491
SQL20345N, 294, 337
SQL20353N, 186
SQL20412N, 604
SQL20429N, 606
SQL20432N, 498
SQLCODE -904, 71
SQLCODE 16002, 705
SQLSTATE 2200M, 519

error handling
for registered XML

Schemas, 490-491
in stored procedures,

551-553
for validation/parsing

errors, 525-529
escaping

ampersand (&), 88
less-than character (<), 87
quotes (’), 77, 88, 571
special characters, 87-89

except operator, 155
exchanging data. See data

exchange

736 Index

executing
stored procedures, 547
triggers, 547
UDFs, 547

execution plans, 395-396
obtaining

with db2exfmt
command-line tool,
397-399

with SPUFI, 410-411
with Visual Explain tool,

400-401,
411-413

operators, list of,
401-403, 413-414

of stored procedures,
555-556

usage examples, 403-409,
414-416

existential semantics, 241,
254, 377

logical expressions
and, 149

in XPath, 147-148
existing XML documents,

validating, 535-538
in DB2 for z/OS, 543

expanded names of XML
elements/attributes,
441-444

explain facility
in DB2 for Linux, UNIX,

and Windows, 396-409
db2exfmt command-line

tool, 397-399
execution plan

operators, 401-403
explain tables,

396-397
usage examples,

403-409
Visual Explain tool,

400-401
in DB2 for z/OS, 409-416

execution plan
operators, 413-414

explain tables,
409-410

SPUFI, 410-411
usage examples,

414-416
Visual Explain tool,

411-413
explain tables

in DB2 for Linux, UNIX,
and Windows, 396-397

in DB2 for z/OS, 409-410
EXPLAIN utility, 9
explaining stored procedure

statements, 555-556
explicit serialization, 83, 294
EXPORT command, 98-106
exporting XML documents,

98-106
to dedicated directories,

102-104
fragments of documents,

104-105
to multiple files, 100-102
to single file, 98-100
with XML Schema

information, 105-106
extensibility

in design decisions, 17
of XML, 1

eXtensible Markup Language.
See XML

eXtensible Stylesheet
Language Transformation.
See XSLT

eXtensible Stylesheet
Language. See XSL

external DTDs, 501
external encoding of character

data, 619
external XML encoding,

599-601
extracting

repeating XML element val-
ues, 557-558

XML element/attribute
values, 557

F
-f CLP option, 708
federating XML documents,

120-121
FETCH operator (execution

plans), 401
file paths. See paths
file system navigation, 133
files, inserting XML

documents from, 79-82
FILTER operator (execution

plans), 401
filtering conditions on

XMLQUERY function, 587
fine granularity of XML

documents, 23
flexibility

in design decisions, 17
of XML Schema, 5-6

FLWOR expressions,
190-196

comparing with XPath and
SQL/XML, 196-202

for and let clauses,
compared, 193-194

for and let clauses, nested,
195-196

handling repeating/
missing XML nodes, 342

join queries in, 247
in SQL/XML, 201-202
syntax of, 191-193
where and order by

clauses, 194
for clause (FLWOR

expressions)
let clause versus, 193-194
nested, 195-196

fragments of XML documents,
exporting, 104-105

full names of XML
elements/attributes, 441,
443-444

full-text searches
DB2 for z/OS, 596
DB2 Net Search Extender

administration
commands, list of,
594-595

Index 737

altering text
indexes, 580

creating text indexes,
572-579

DB2 Text Search versus,
568-570

disabling databases
for, 572

enabling databases for,
571-572

performing searches,
581-590

reorganizing text
indexes, 579-580

updating text indexes,
579-580

DB2 Text Search, 590
administration

commands, list of,
594-595

creating text indexes,
591-592

disabling databases
for, 591

enabling databases for,
590-591

performing searches,
592-594

sample table for examples,
570-571

fullselect (SQL), 555
functions

XPath, 155
XQuery, 214-226

Boolean functions, 226
date and time functions,

224-226
namespace and node

functions, 222-224
numeric and aggregation

functions,
218-220

sequence functions,
220-222

string functions,
215-218

fuzzy searches, 586-587

G
general comparison operators

in XPath, 156
generated column, 557
GENROW operator (execution

plans), 402
GET SNAPSHOT

command, 425
global declarations in XML

Schemas, 478
global indexes, 58
global sequences,

performance optimization,
256-257

GRANT command, 499
granting XML Schema usage

privileges, 499-500
granularity of XML

documents, 22-24, 428, 433
grouping XML data, 233-239.

See also aggregation
in SQL/XML versus

XQuery, 237-239
XMLTABLE function,

234-236
GUI for defining SQL/XML

publishing functions,
289-290

H
HADR (High Availability

Disaster Recovery), 121
hashed indexes, 368
help. See technical support
hierarchical data, 12
hierarchical format, XML

document trees, 28-30
High Availability Disaster

Recovery (HADR), 121
host variables, 183-184,

613-614
INSERT statements 78
performance considerations,

434
HSJOIN operator (execution

plans), 402

HTML. See XML to HTML
transformation

hybrid storage, 24-25, 299,
303-305

with stored procedures,
550-553

I
IBM Data Server Driver for

JDBC and SQLJ. See JCC
IBM Data Studio Developer,

652-655
IBM Database Add-ins for

Visual Studio, 656
IBM OmniFind Text

Search Server for DB2
for z/OS, 596

IBM pureXML Technical
Mastery Test, 675

ibm_db2 PHP extension, 647
identifiers for XML Schemas,

483, 516
ignoring stop words, 578
implicit parsing, 516
implicit serialization,

83, 294
implicit XML parsing, 354
IMPORT command, 106-109

input files and, 107-108
LOAD command

versus, 106
performance tips, 108-109
triggers and, 573
validating XML documents,

116, 530-534
against default XML

Schemas, 532
against multiple XML

Schemas, 530-532
against single XML

Schema, 530-531
overriding XML Schema

references, 532-534
schema location

hints, 534

738 Index

importing
schema documents in XML

Schemas, 479-482
XML documents, 106-109

input files and, 107-108
performance tips,

108-109
in-scope namespaces,

445, 455
in-scope-prefixes

function, 445
including schema documents in

XML Schemas, 479-482
index directories, locating with

work directories, 574
index eligibility, 373-374

data types and, 374-375
parent steps and, 385-386
text nodes and, 375-376
wildcards and, 376-377
XML namespaces and,

458-459
XMLQUERY and, 385
XQuery let and return

clauses, 386-387
indexes

catalog tables for,
671-672

logical, 664-666
path indexes, 663
physical, 664-666
on range-partitioned

tables, 58
regions indexes, 663
reorganization, 54
text indexes (DB2 Net

Search Extender)
altering, 580
creating, 572-579
reorganizing, 579-580
updating, 579-580

user-defined XML,
664-666

on XML documents, 8
indexes (XML)

best practices, 432-433
cardinality of, 363

creating
with DB2 Control

Center, 366-367
with XML namespaces,

456-460
data types for, 367-372

DATE, 369
DECFLOAT, 369
DOUBLE, 369
rejecting invalid

values, 371-372
selecting, 369-371
TIMESTAMP, 369
VARCHAR HASHED,

368-369
VARCHAR(n), 367-368

DB2 for Linux, UNIX,
and Windows implementa-
tion, 387-390

defining, 362-367
explain facility. See explain

facility
join predicates and, 379-383
lean indexes, 365
logical and physical

indexes, 389-390
on non-leaf elements,

383-384
parent steps and, 385-386
path indexes for, 387-389
query predicates and,

373-379
relational indexes

versus, 361
statistics, 390-393
for structural predicates,

377-379
unique indexes, 364-365
in XMLQUERY, 385
XQuery let and return

clauses, 386-387
industry standard XML

Schemas, custom XML
Schemas versus, 474-476

InfoSphere Data Architect,
289-290

InfoSphere Federation
Server, 120

inlining, 41-48, 429-430
benefits of, 47-48
drawbacks of, 48
monitoring and

configuring, 43-47
viewing percentage of,

661-662
XML space management

example, 54-57
input, sequences as, 130-131
input files, IMPORT command

and, 107-108
input parameters (CLP), text

files as, 708
input parameters (XML) in

stored procedures, 548
insert operations, modifying

XML documents in,
349-350

INSERT statement, 76-79
copying XML

documents, 86
preserving whitespace,

92-93
validation, 514-517

in DB2 for z/OS,
541-542

XMLTABLE function,
shredding XML
documents with, 301-306

insert triggers, 562-563
inserting

constructed XML data into
XML columns, 294-295

nodes in XML documents
with namespaces,
468-469

XML data from .NET
applications, 635

XML documents, 76-82
from files, 79-82
INSERT statement,

76-79
XML nodes, 335-340

insignificant whitespace 90
instances of the data

model, 128

Index 739

integer division in
XQuery, 214

integration, resources for infor-
mation, 726

internal DTDs, 501
internal encoding

of binary data, 618
XML encoding, 599-600

intersect operator, 155
INTERSECT operator

(execution plans), 413
invalid XML documents,

retaining, 519-520
invalid XML index data type

values, rejecting, 371-372
ISO-8859-1, Chinese

characters in (code page
conversion example),
602-603

items (XQuery Data
Model), 129

J
Japanese literal values in non-

Unicode database
(code page conversion
example), 605

Java application
development, 615-631

JDBC 3.0, XML support in,
615-619

JDBC 4.0, 9
example usage,

621-627
XML support in,

619-621
pureQuery, 629-631
XML data binding, 629
XML documents, creating

from application data,
627-628

Java applications
inserting XML documents

from, 78-79
registering XML Schemas

from, 488

JCC (Java Common
Client), 615

JDBC
registering XML Schemas

with, 488
support for, 615

JDBC 3.0, XML support in,
615-619

JDBC 4.0, 9
example usage, 621-627
XML support in, 619-621

join predicates, XML indexes
and, 379-383

join queries, 239
outer joins, 250-252
in SQL/XML, 242-247
XML-to-relational joins,

248-250
in XQuery, 240-242

joins
best practices, 431
XML versus relational data,

7, 241

K
key cardinalities in XML

indexes, 390
Key-Value Pairs (KVP). See

Name/Value Pairs
known whitespace 90
Korean character code page

conversion example, 605
KVP (Key-Value Pairs). See

Name/Value Pairs

L
last function (XQuery), 222
last() function, 153
leading zeros in conditional

XML element construction,
285-286

leaf elements, 383
lean XML indexes, 365
left outer joins, 250
legacy functions

(SQL/XML), 290

less-than character (<),
escaping, 87

let clause (FLWOR expressions)
for clause versus, 193-194
nested, 195-196

let clause (XQuery), index
eligibility and, 386-387

Linux. See DB2 for Linux,
UNIX, and Windows

list tablespaces command, 51
LIST UTILITIES

command, 427
LISTDEF utility, 69
LOAD command, 109-111,

114-116
IMPORT command

versus, 106
triggers and, 573
validating XML

documents, 116, 530-534
against default XML

Schemas, 532
against multiple XML

Schemas, 530-532
against single XML

Schema, 530-531
overriding XML Schema

references, 532-534
schema location

hints, 534
LOAD QUERY command, 428
loading XML documents

in DB2 for Linux, UNIX,
and Windows, 109-111

in DB2 for z/OS, 114-116
LOB storage

pureXML storage versus,
10-11

for XML data, 10
local declarations in XML

Schemas, 478
local indexes, 58
local names of XML

elements/attributes,
441-444

local-name function
(XQuery), 223

740 Index

locale-aware Unicode
collations, 252

locators, 577
locking XML documents, 9
logical expressions, 190

in XPath, 148-151
logical indexes, 664-666

XML indexes, 389-390
loops in stored procedures,

553-554

M
manipulating XML data. See

XML manipulation
MapForce, 657
mapping

path indexes for XML
indexes, 387-389

paths to pathIDs, 663
relational data to XML data,

GUI-based
definition, 289-290

tag names to stringIDs,
31-33

XML data to relational data.
See annotated schema
shredding

XML Schema pairs, 533
XML tags to

stringIDs, 662
marshalling, 629
MDC (multidimensional

clustering), 58-59
medium granularity of XML

documents, 22
memory consumption,

limiting in DB2 for
z/OS, 71

metadata
distinguishing from data,

19-21
for data exchange, 13

missing elements (relational
data), converting to XML
data, 274-275. See also
optional elements

missing XML nodes,
handling, 340-343

mixed content, 143
in XML document trees,

29-30
modifying. See also updating

multiple XML nodes,
343-346

XML documents
in insert operations,

349-350
in queries, 346-349
in update cursors,

350-351
with XQuery Update

Facility, 324-326
monitoring

performance, 424
of database utilities,

427-428
with snapshot monitor,

424-427
XML inlining, 43-47

moving. See exporting; import-
ing; inserting; loading;
unloading

multidimensional clustering
(MDC), 58-59

multiple documents,
constructing from queries,
253-254

multiple files, exporting XML
documents to, 100-102

multiple for/let clauses
(FLWOR expressions),
195-196

multiple namespaces in XML
documents, 440-441

multiple nesting levels, XML
construction with, 206-207

multiple node values in XML
documents, replacing,
328-329

multiple relational rows,
constructing XML
documents from, 277-280

multiple relational tables,
constructing XML
documents from, 281-283

multiple repeating elements,
returning, 174-176

multiple schema documents in
XML Schemas, 479-482

multiple table spaces,
performance and, 37

multiple XML columns
in DB2 for z/OS, 64
populating, 108

multiple XML documents,
shredding, 315-318

multiple XML namespaces,
querying XML documents
with, 454-456

multiple XML nodes,
modifying, 343-346

multiple XML Schemas,
validation

with LOAD and IMPORT
utilities, 530-532

with triggers, 524

N
Name/Value Pairs (NVP),

20-21
namespace functions

in XQuery, 222-224
namespaces (XML), 437-439

constructing XML data
with, 460-463

creating indexes with,
456-460

declaring, 4, 439-441
for XSLT, 356

default, 442-444
full-text searches and,

588-590
querying XML data with,

447-456
updating XML data with,

463-469
usage examples, 444-447

Index 741

XML indexes and, 432
in XML sample database

tables, 710
naming conventions

XML storage in DB2
for z/OS, 64-65

XML tags, 4
nested for/let clauses (FLWOR

expressions), 195-196
nested predicates, 150
nested XQuery functions, 217
nesting

SQL and XQuery, 257-258
XML tags, 3
XMLELEMENT functions,

270-273
nesting levels, XML

construction with, 206-207
.NET application

development, 631-636
ADO.NET data providers,

list of, 631
inserting XML data

from, 635
manipulating XML data in,

633-635
querying XML data in,

632-633
XML Schema and DTD

handling, 636
Net Search Extender. See DB2

Net Search Extender
node functions in XQuery,

222-224
node tests, 133
NodeID index, 62
nodes. See also partitioned

databases
attribute nodes, attribute

values versus, 136
context nodes, 136, 139
descendant nodes, 141
document nodes,

constructing, 294-295
inserting/replacing in XML

documents with name-
spaces, 468-469

renaming
in XML documents with

default namespaces,
467-468

in XML documents with
prefixed namespaces,
465-467

text nodes, index
eligibility and, 375-376

types of, 28
values, replacing

with computed values,
329-331

multiple values,
328-329

with parameter
markers, 328

in XML documents
deleting, 333-334
inserting, 335-340
modifying multiple,

343-346
repeating/missing,

340-343
replacing, 331-332

XQuery Data Model, 129
non-leaf elements, 30, 134

XML indexes on, 383-384
non-Unicode databases

avoiding data loss in, 606
for XML data management,

601-602
normalization, 7

of business objects, 12
not equal (!=) comparison

operator, not() function
versus, 150

NOT operator in full-text
searches, 584

not() function, 148, 150
not equal (!=) comparison

operator versus, 150
NSE. See DB2 Net Search

Extender
NULL, setting XML columns

to, 82

NULL elements (relational
data), converting to XML
data, 274-275

“NULL on NULL” behavior,
274

numbering rows based on
repeating elements,
173-174

NUMBEROFMATCHES
scalar function, 581-583

numeric comparisons, string
comparisons versus, 144,
211-212

numeric functions in XQuery,
218-220

NVP (Name/Value Pairs),
20-21

O
octets, 188
offloading XML parsing in

DB2 for z/OS, 72-73
OmniFind Text Search Server

for DB2 for z/OS, 596
one-to-many relationships,

XML elements, 3
online table moves, 40
operators (for execution

plans), 395
list of, 401-403, 413-414
usage examples, 403-409,

414-416
optimization of queries,

253-258
between predicates,

254-256
large global sequences,

256-257
nesting SQL and XQuery,

257-258
single versus multiple

document construction,
253-254

optional attributes (XML), 13

742 Index

optional elements (XML)
handling in XMLTABLE

function, 167-168
schema flexibility of, 5

OR operator, 149-150
in full-text searches,

583-584
order by clause (FLWOR

expressions), 194
ordering result sets by XML

values, 186-187
outer joins, 250-252
output, sequences as, 130-131
overriding XML Schema

references in LOAD and
IMPORT utilities, 532-534

<oXygen/>, 658-659

P
page size

of table spaces, 36-39
for XML storage, 429

page-level sampling, 419
pairs (XML Schemas),

mapping, 533
parameter markers, 183-184,

613-614
INSERT statements 78
performance

considerations, 434
replacing values with, 328

parent axis, 157
parent of current directory (file

system navigation), 133
parent steps

index eligibility and,
385-386

in XPath, 151-153
parsing, 30

avoiding in application
layer, 610-612

error handling, 525-529
implicit parsing, 516
pureQuery and, 631
valid versus well-formed

XML documents, 473

XML documents, 9
offloading in DB2

for z/OS, 72-73
performance

considerations, 434
with special

characters 88
partial shredding, 299
partition elimination, 57
PARTITION operator

(execution plans), 413
partitioned databases, 59-60
partitioning, range, 57-58
path expressions, 190
path indexes, 35, 58, 663

for XML indexes, 387-389
pathIDs, mapping to paths, 663
paths

in IMPORT command, 107
mapping to pathIDs, 663
storage paths for text

indexes, 573-574
pdo_ibm PHP extension, 647
percent sign (%) in wildcard

searches, 583
performance

best practices, 428-435
explain facility

in DB2 for Linux,
UNNIX, and Windows,
396-409

in DB2 for z/OS,
409-416

importing XML
documents, 108-109

LOAD command, 110
mapping tag names to

stringIDs, 32
monitoring, 424

of database utilities, 427-
428

with snapshot monitor,
424-427

multiple table spaces
and, 37

partition elimination, 57
query optimization, 253-258

between predicates,
254-256

large global sequences,
256-257

nesting SQL and
XQuery, 257-258

single versus multiple
document construction,
253-254

role in design decisions, 16
text indexes and, 574
of XSLT processing, 353

Perl application
development, 650-651

PHP application
development, 647-649

physical indexes, 664-666
physical XML indexes,

389-390
pipe (|) character

union of sequences, 154
as XPath union

operator, 585
PL/1 applications with embed-

ded SQL, 643-644
plain SQL (XML data

queries), 127
position() function, 154
positional predicates in XPath,

153-154
positional relationships in

search conditions, 588
positioning

inserted XML attributes,
336-337

inserted XML elements,
335-336

predicates
in FLWOR expressions, 192
join predicates, XML

indexes and, 379-383
query examples of,

198-199
query predicates, XML

indexes and, 373-379
structural predicates, XML

indexes for, 377-379

Index 743

usage with SQL/XML,
177-181

common mistakes,
181-182

XML construction with,
204-205

in XPath, 142-146
dot notation, 151-153
existential semantics,

147-148
logical expressions,

148-151
positional predicates,

153-154
prefixed namespaces (XML),

438-439
mixing with default XML

namespaces, 442
renaming nodes in,

465-467
PreparedStatement interface

(JDBC 3.0), 618
preserving whitespace, 91-93

changing default, 93-94
during import, 108
validation and, 517

pretty print, CLP option
for, 707

primary schema
documents, 481

privileges for XML Schema
usage, granting/revoking,
499-500

processing instruction nodes,
constructing, 290

product table (XML sample
database), contents of,
712-713

profiling stored
procedures, 556

prototyping, XML flexibility
for, 612-613

proximity searches, 586
publishing functions

(SQL/XML), 160, 268-290
combining with XQuery

constructors, 292

empty, missing, NULL
elements, 274-275

GUI-based definition,
289-290

legacy functions, 290
list of, 268
XML namespaces and,

460-462
XMLAGG, 277-283
XMLAGG, XMLCONCAT,

XMLFOREST compared,
284

XMLATTRIBUTES,
275-277

XMLCOMMENT, 290
XMLCONCAT, 270
XMLELEMENT, 269-273
XMLFOREST, 272-273
XMLGROUP, 286-289
XMLPI, 290
XMLROW, 286-289
XMLTEXT, 290

publishing XML documents,
118-119

purchaseorder table (XML
sample database), contents of,
713-714

pureQuery, 629-631
pureXML

for application
development, benefits
of, 610-613

functionality of,
xxiii-xxiv, 7-10

quiz, 675-702
XML data storage methods

versus, 10-11

Q
Q Apply, 119
-q CLP option, 527, 706
Q replication, 119
queries. See also querying

XML data
against XSR (XML Schema

Repository), 508-510

editing in Data Studio
Developer, 654

query predicates, XML indexes
and, 373-379

querying XML data, 8-9
best practices, 430-432
case-insensitive queries,

252-253
error codes, 258-264
execution plans, 395-396
explain facility

in DB2 for Linux,
UNIX, and Windows,
396-409

in DB2 for z/OS,
409-416

grouping and aggregation,
233-239

in SQL/XML versus
XQuery, 237-239

within and across
documents, 236-237

XMLTABLE function,
234-236

join queries, 239
in SQL/XML, 242-247
in XQuery, 240-242
outer joins, 250-252
XML-to-relational joins,

248-250
methods of, 126-127
in .NET applications,

632-633
overview, 126-128
performance optimization,

253-258
between predicates,

254-256
large global sequences,

256-257
nesting SQL and

XQuery, 257-258
single versus multiple

document construction,
253-254

744 Index

sample data for examples,
131-132

SQL/XML, 159-160
converting XML values

to binary SQL types,
187-188

dynamic XPath
expressions, 185-186

host variables,
183-184

namespace declarations,
451

ordering result sets,
186-187

overview, 160
parameter markers,

183-184
performance considera-

tions, 434
retrieving XML

documents, 161-165
retrieving XML values in

relational format,
165-176

XPath predicate usage,
177-182

with XML namespaces,
447-456

XPath
axes, 157
comparison operators,

156-157
construction of

sequences, 154-155
data() function,

134-135
dot notation, 151-153
double slash (//),

141-142
empty results, reasons

for, 134
executing in DB2,

137-140
existential semantics,

147-148
file system navigation

analogy, 133
functions, 155

logical expressions,
148-151

node tests, 133
positional predicates,

153-154
predicates, 142-146
simple query examples,

133-136
slash (/), 141
string() function, 135
text() node test, 134
unabbreviated

syntax, 157
union of sequences,

154-155
wildcards, 140-141

XQuery
arithmetic expressions,

212-214
attribute expressions

in XML construction,
206

comparing FLWOR
expressions, XPath,
SQL/XML, 196-202

computed value
XML construction,
202-204

conditional expressions
in XML
construction, 205

data types, cast
expressions, type
errors, 208-212

direct XML
construction, 202

embedding SQL in,
227-228

FLWOR expressions,
191-196

functions, 214-226
modifying XML

documents in,
346-349

multiple nesting levels in
XML construction,
206-207

namespace and node
functions, 445

namespace declarations,
448-450

overview, 190
predicates in XML

construction,
204-205

SQL functions and
UDFs in, 229-230

XML aggregation in
XML construction,
207-208

XQuery Data Model,
128-131

sequence construction,
128-130

sequence input/output,
130-131

question mark (?) as wildcard
character, 594

questions. See technical
support

quiz on pureXML, 675-702
quotes (’), escaping, 77,

88, 571

R
range partitioning, 57-58
rapid prototyping, 612-613
RDA (Rational Data

Architect), 289
REAL TIME STATISTICS

utility, 66
REC2XML function

(SQL/XML), 290
RECOVER INDEX utility, 66
RECOVER TABLESPACE

utility, 66
referencing

XML columns. See XML
column references

XML Schemas, 484
referential integrity of XML

documents, 8
regions, 34-35

page size and, 36

Index 745

regions indexes, 34, 58, 663
REGISTER XMLSCHEMA

command, 311, 484
registering

annotated schemas, 311-312
DTDs, 501
XML Schemas, 483-491

in CLP (command-line
processor), 484-486

error handling for,
490-491

identifiers, 483
with JDBC, 488
with shared schema

documents, 489-490
steps in, 483
with stored procedures,

486-487
relational data

converting to XML
data, 267

inserting in XML
columns, 294-295

with SQL/XML
publishing functions,
268-290

XML declarations for,
292-294

with XQuery construc-
tors, 290-292

converting XML
documents to

advantages/
disadvantages, 297-301

with annotated schema
shredding, 306-318

with XMLTABLE
function, 301-306

generating Java classes
from, 629-631

hybrid storage, 24-25
XML versus, 4-7

when to use XML data,
11-13

XML-to-relational joins,
248-250

relational format, retrieving
XML values in, 165-176

relational indexes, XML
indexes versus, 361

relational joins, XML joins
versus, 241

relational views over XML
data, 305-306

relationships,
one-to-many, 3

removing. See also deleting;
stripping

validation from XML
documents, 540

XML Schemas from XSR,
492-493

renaming
nodes

in XML documents with
default namespaces,
467-468

in XML documents with
prefixed namespaces,
465-467

XML elements/attributes,
334-335

REORG command, 53-54,
68-69

reorganizing
text indexes with DB2

Net Search Extender,
579-580

XML indexes, 433
XML space management

example, 54-57
XML table data, 53-54,

68-69
repeating elements (XML), 3

extracting values of,
557-558

numbering rows based on,
173-174

returning
multiple elements,

174-176
with XMLQUERY

function, 164-165

with XMLTABLE
function, 169-173

schema flexibility of, 5
repeating XML nodes,

handling, 340-343
replace expression

(XQuery), 331
replacing. See also updating

nodes in XML documents
with namespaces,
468-469

XML attribute values,
327-328

XML documents, 322-324
XML element values,

326-327
XML node values

with computed values,
329-331

multiple node values,
328-329

with parameter
markers, 328

XML nodes, 331-332
replicating XML documents,

118-119
REPORT TABLESPACESET

utility, 67-68
reserved characters. See

special characters
RESET MONITOR

command, 425
resources for information,

717-726
on Altova XML tools, 658

response time for change
requests, 613

result set cardinalities,
200-201

result sets, ordering by XML
values, 186-187

ResultSet interface
(JDBC 3.0), 615

retaining
invalid XML documents,

519-520
whitespace in CLP, 527

746 Index

retrieving
XML documents, 83-85,

161-165
XML values in relational

format, 165-176
return clause (XQuery), index

eligibility and, 386-387
RETURN operator (execution

plans), 402
returning element values

without XML tags, 163-164
revised XML Schemas. See

XML Schema evolution
REVOKE command, 500
revoking XML Schema usage

privileges, 499-500
RIDSCN operator (execution

plans), 402
right outer joins, 251
root elements (XML), 4, 28
row-level sampling, 419
rows

generating from XML data,
165-166

numbering based on
repeating elements,
173-174

RPD operator (execution
plans), 402

RUNSTATS INDEX utility, 67
RUNSTATS TABLESPACE

utility, 67
RUNSTATS utility, 9, 50, 417,

666
in DB2 for Linux, UNIX,

and Windows, 418-419
in DB2 for z/OS, 417-418

S
sample database. See XML

sample database
sampling in statistics

collection, 419
SAX (Simple API for XML)

parsers, 611

scalar functions, 162, 200, 557
for full-text searches,

581-583
scalar subselects, 282
schema documents, 476

multiple schema
documents in XML
Schemas, 479-482

sharing between XML
Schemas, 489-490

schema location hints in LOAD
and IMPORT
utilities, 534

schema names, comparison
with XML namespaces, 438

schema validation. See
validation

schemas (XML). See also
XML Schema

best practices, 434
volatility of, 12

SCORE scalar function,
581-583

search conditions. See also
predicates

parts of, 582
positional relationships in,

588
search term (in search

conditions), 582
searches. See full-text searches
section (in search

conditions), 582
SELECT statement, retrieving

XML documents, 83-85
selecting

code pages, 27
XML index data types,

369-371
self axis, 157
self-describing data format,

XML as, 19
self-joins, 228
semicolon (;)

in namespace
declarations, 448

in stored procedures, 549

sequence constructors, 175
sequence expressions, 190
sequence functions in XQuery,

220-222
sequences, 550

constructing, 128-130
global sequences,

performance optimization,
256-257

as input/output, 130-131
in XPath, 154-155

serialization, 30, 83, 138
SET INTEGRITY

command, 110
SET INTEGRITY PENDING

status, 110
sharing schema documents

between XML Schemas,
489-490

SHIP operator (execution
plans), 402

shredding
pureXML storage versus,

10-11
XML data with UDFs,

558-559
XML documents, 10

advantages/disadvan-
tages of, 297-301

with annotated schema
shredding, 306-318

with XMLTABLE
function, 301-306

sibling branches, search
conditions on, 588

significant whitespace 90
Simple API for XML (SAX)

parsers, 611
SimpleXML PHP

extension, 647
single documents,

constructing from queries,
253-254

single quotes (’), escaping, 77,
88, 571

size. See granularity

Index 747

slash (/)
in file system

navigation, 133
in XPath, 141
in XPath predicates, 145

snapshot monitor, 424-427
snapshot semantics, 343-345
SNAPTAB_REORG

administrative view, 428
SNAPUTIL administrative

view, 427
SNAPUTIL_PROGRESS

administrative view, 427
SORT operator (execution

plans), 402
sparse attributes, 13
special characters, escaping,

87-89
splitting XML documents,

116-118
SPUFI

execution plans,
obtaining, 410-411

viewing XML
documents, 705

SQL. See also SQL/XML
embedding in XQuery, 127,

227-228
nesting with XQuery,

257-258
scalar functions for

full-text searches,
581-583

stored procedures. See
stored procedures

for XML data queries, 127
SQL functions in XQuery,

229-230
SQL statements, embedding

XPath/XQuery in, 127
SQL/XML, 8, 159-160

comparing with FLWOR
expressions and XPath,
196-202

converting XML values
to binary SQL types,
187-188

dynamic XPath
expressions, 185-186

FLWOR expressions in,
201-202

grouping queries in,
XQuery versus, 237-239

host variables, 183-184
INSERT statement,

validation on, 514-517
join queries, XML-to-XML

joins, 242-247
namespace declarations,

451
ordering result sets,

186-187
overview, 160
parameter markers,

183-184
performance considerations,

434
publishing functions,

268-290
combining with XQuery

constructors, 292
empty, missing, NULL

elements, 274-275
GUI-based definition,

289-290
legacy functions, 290
list of, 268
XML namespaces and,

460-462
XMLAGG, 277-283
XMLAGG, XMLCON-

CAT, XMLFOREST
compared, 284

XMLATTRIBUTES,
275-277

XMLCOMMENT, 290
XMLCONCAT, 270
XMLELEMENT,

269-273
XMLFOREST, 272-273
XMLGROUP, 286-289
XMLPI, 290
XMLROW, 286-289
XMLTEXT, 290

UPDATE statement,
validation on, 518-519

XML aggregation, XML
construction with,
207-208

XML documents,
retrieving, 161-165

XML values, retrieving
in relational format,
165-176

XPath and XQuery
versus, 201

XPath predicate usage,
177-181

common mistakes,
181-182

SQL0104N error code, 500
SQL0242N error code, 277
SQL0401N error code, 186
SQL0443N error code 81
SQL0544N error code, 521
SQL0545N error code, 521
SQL0551N error code, 500
SQL1354N error code, 548
SQL1407N error code, 111
SQL16001N error code, 259
SQL16002N error code, 146,

259-260, 605
SQL16003N error code, 156,

169-170, 210, 213, 249,
260-261

SQL16005N error code,
261-262

SQL16011N error code, 263
SQL16015N error code,

262-263
SQL16061N error code, 144,

169, 211, 263-264, 551
SQL16075N error code,

136, 264
SQL16085N error code, 336,

339, 341-342
SQL16088N error code, 467
SQL16103N error code, 601
SQL16110N error code 87
SQL16168N error code, 600
SQL16168N error code 85

748 Index

SQL16193N error code, 440
SQL16196N error code, 517
SQL16267N error code, 318
SQL16271N error code, 318
SQL20329N error code, 491
SQL20335N error code, 514
SQL20340N error code, 491
SQL20345N error code,

294, 337
SQL20353N error code, 186
SQL20412N error code, 604
SQL20429N error code, 606
SQL20432N error code, 498
SQLCODE -904 error code, 71
SQLCODE 16002 error

code, 705
SQLSTATE 2200M error

code, 519
SQLXML interface

(JDBC 4.0), 619-621
SQLXML Java data type, 9
star. See asterisk (*)
starts-with function

(XQuery), 218
statement heap, size of, 432
statistics

db2cat utility, 419-423
RUNSTATS utility, 417

in DB2 for Linux,
UNIX, and Windows,
418-419

in DB2 for z/OS,
417-418

for XML indexes, 390-393
StAX (Streaming API for

XML) parsers, 611
stemming in full-text searches,

586
steps (file system

navigation), 133
stop words, ignoring, 578
storage. See also data storage

of business objects, 612
for compliance 94
hybrid XML data storage

with stored procedures,
550-553

pureXML versus
alternative XML storage
methods, 10-11

of XML document trees,
30-33

XML storage, 429-430
in DB2 for Linux,

UNIX, and Windows,
33-41

in DB2 for z/OS, 60-73
inlining, 41-48
MDC (multidimensional

clustering), 58-59
partitioned databases,

59-60
range partitioning, 57-58
space consumption of,

51-53
space management

example, 54-57
storage objects

catalog tables for, 667-670
in DB2 for Linux, UNIX,

and Windows, types of,
33-35

in DB2 for z/OS, types of,
61-62

storage paths for text indexes,
573-574

stored procedures, 548-556
benefits of, 547
for dynamic XPath

expressions, 185-186
executing, 547
for hybrid XML data

storage, 550-553
loops and cursors,

553-554
registering XML Schemas

with, 486-487
retaining invalid XML

documents, 519-520
for shredding XML

documents, 313-315
testing, 555-556
updating XML

elements/attributes,
554-555

Streaming API for XML
(StAX) parsers, 611

string comparisons
case-insensitivity,

252-253
date comparisons versus,

210-211
numeric comparisons

versus, 144, 211-212
string functions in XQuery,

215-218
string() function, 135
string-join function, 171, 216
stringIDs, mapping

tag names to, 31-33
to XML tags, 662

stripping whitespace, 78
changing default, 93-94

structural predicates, 147, 153
XML indexes for, 377-379

structure of XML documents,
viewing, 703-705

style sheets. See XSLT
StyleVision, 657
Stylus Studio, 659
subselects, 282
substring-after function

(XQuery), 217
synchronous index

maintenance, 361
syntax of FLWOR

expressions, 191-193
SYSCAT.COLUMNS catalog

view, 661-662
SYSCAT.INDEXES catalog

view, 663-664
SYSCAT.INDEXXML-

PATTERNS catalog view,
664-666

SYSCAT.XDBMAPGRAPHS
catalog view, 504, 508, 667

SYSCAT.XDBMAP-
SHREDTREES catalog view,
504, 508, 667

SYSCAT.XSROBJECTAUTH
catalog view, 504, 507, 667

Index 749

SYSCAT.XSROBJECT-
COMPONENTS catalog
view, 504, 506, 667

SYSCAT.XSROBJECTDEP
catalog view, 504, 507, 667

SYSCAT.XSROBJECT-
HIERARCHIES catalog
view, 504, 506, 667

SYSCAT.XSROBJECTS
catalog view, 503, 505, 667

SYSIBM.SYSINDEXES
catalog table, 671

SYSIBM.SYSKEYTARGETS
catalog table, 671-672

SYSIBM.SYSTABLES catalog
table, 668-670

SYSIBM.SYSTABLESPACE
catalog table, 670

SYSIBM.SYSXMLPATHS
catalog view, 663

SYSIBM.SYSXMLRELS
catalog table, 667-668

SYSIBM.SYSXMLSTRINGS
catalog table, 668

SYSIBM.SYSXMLSTRINGS
catalog view, 662-663

SYSIBMTS.TSCOLLEC-
TIONNAMES table, 591

SYSIBMTS.TSCONFIGURA-
TION table, 591

SYSIBMTS.TSDEFAULTS
table, 591

SYSIBMTS.TSINDEXES
table, 591

SYSIBMTS.TSLOCKS
table, 591

SYSIN cards, unloading large
XML documents, 113

SYSSTAT.INDEXES catalog
view, 391

system sampling, 419
System z Application Assist

Processors (zAAP), 71-72
System z Integrated

Information Processors
(zIIP), 71-72

T
table functions, 200, 557
table partitioning. See range

partitioning
table spaces

characteristics in DB2 for
z/OS, 63

defined, 34
page size, 36-39
XML storage, 51-53, 429

tables. See also catalog tables
online table moves, 40
reorganizing XML data,

53-54, 68-69
XML columns,

dropping, 40
in XML sample database

in DB2 for Linux,
UNIX, and
Windows, 710

in DB2 for z/OS, 710
tags (XML), 1-4

mapping to stringIDs,
31-33, 662

returning element values
without, 163-164

values versus, 19-21
target namespaces, 438

for XML Schemas, 476
TBSCAN operator (execution

plans), 402
technical support, xxvi.

See also resources for
information

TEMP operator (execution
plans), 402

terminating characters
changing, 549
CLP option for, 706

test on pureXML, 675-702
testing stored procedures,

555-556
text files as input parameters

for CLP, 708
text indexes (DB2 Net Search

Extender)
altering, 580

creating, 572-579,
591-592

reorganizing, 579-580
updating, 579-580

text nodes, 29-30
concatenation, 30
constructing, 290
index eligibility and,

375-376
text searches. See DB2 Text

Search; full-text searches
text() node test, 134
time functions in XQuery,

224-226
time zone indicators, 210
TIMESTAMP index data type,

369
tokenize function (XQuery),

217-218
TQ operator (execution plans),

402
transform expression

(XQuery), 190, 325
XML attribute values,

replacing, 327-328
XML element values,

replacing, 326-327
XML node values,

replacing
with computed values,

329-331
multiple values,

328-329
with parameter

markers, 328
transformation functions, 579
transforming

XML documents, 352-358
with XQuery, 203

transition variables, 561
transitivity of value

comparisons, 156
translate function

(XQuery), 218
traversing XML

documents, 197

750 Index

trees of nodes, 28-30
storage of, 30-33

triggers, 523-525, 561-564
delete triggers, 563
executing, 547
IMPORT utility and, 573
insert triggers, 562-563
LOAD utility and, 573
update triggers, 564

troubleshooting
empty XPath query

results, 134
SQL/XML predicates,

181-182
truncated XML document

display, 83
avoiding, 138

type constructors, 212
type errors

avoiding in XMLTABLE
function, 168-169

in XQuery, 208-212

U
UCA (Unicode Collation Algo-

rithm), 252
UDFs (user-defined functions),

547, 556-561
benefits of, 547
executing, 547
extracting

repeating XML element
values, 557-558

XML element/attribute
values, 557

inserting XML documents
from files, 79-82

shredding XML data,
558-559

updating XML documents,
559-561

in XQuery, 229-230
unabbreviated syntax in

XPath, 157
underscore character (_) in

wildcard searches, 583

Unicode
explained, 598
locale-aware collations, 252
UTF-8, 27, 597-598
UTF-16, 598
UTF-32, 598

Unicode Byte-Order Mark
(BOM), 599

Unicode Collation Algorithm
(UCA), 252

union keyword, 154
union of sequences in XPath,

154-155
UNION operator (execution

plans), 402
union operator (|) in XPath, 585
UNIONA operator (execution

plans), 414
UNIQUE operator (execution

plans), 402
unique XML indexes, 364-365
Universal Resource Identifier

(URI), 438-439
UNIX. See DB2 for Linux,

UNIX, and Windows
UNLOAD utility, 67, 112
unloading XML documents,

111-114
unmarshalling, 629
update cursors, modifying

XML documents in, 350-351
UPDATE INDEX command

(DB2 Net Search Extender),
579-580

UPDATE operator (execution
plans), 414

UPDATE statement. See also
XQuery Update Facility

replacing XML documents,
322-324

validation, 518-519,
542-543

update triggers, 564
UPDATE XMLSCHEMA

command, XML Schema
evolution with, 495-498

updating. See also modifying;
replacing

text indexes
automatic updates,

574-576
with DB2 Net Search

Extender, 579-580
XML data with XML

namespaces, 463-469
XML documents, 433

in DB2 for z/OS,
351-352

with UDFs, 559-561
XML elements/attributes

with stored procedures,
554-555

upper-case function
(XQuery), 221

upper-case() function, 155
“upsert” operations, 342, 560
URI (Universal Resource

Identifier), 438-439
USC-2, 598
user-defined functions.

See UDFs
user-defined XML indexes,

664-666
UTF-8, 27, 597-598
UTF-16, 598
UTF-32, 598
utilities

monitoring performance of,
427-428

XML support in DB2 for
z/OS, 65-67

CHECK DATA utility,
69-70

REORG utility, 68-69
REPORT TABLE-

SPACESET utility,
67-68

V
-v CLP option, 708
valid XML documents

determining XML Schemas
for, 538-540

Index 751

well-formed documents
versus, 473

validation, 8, 473
application-centric versus

database-centric, 545
checking XML documents

for, 534-535
in DB2 for z/OS, 540-544

DB2 for Linux, UNIX,
and Windows versus,
543-544

for existing XML
documents, 543

with INSERT statement,
541-542

with UPDATE
statement, 542-543

dropped XML Schemas
and, 493

during loading or
importing, 116

during shredding
process, 312

enforcing
with check constraints,

520-523
with triggers, 523-525

error handling, 525-529
of existing XML

documents, 535-538
on INSERT, 514-517
with LOAD and IMPORT

utilities, 530-534
against default XML

Schemas, 532
against multiple XML

Schemas, 530-532
against single XML

Schema, 530-531
overriding XML Schema

references, 532-534
schema location

hints, 534
performance considerations,

434
removing from XML

documents, 540

retaining invalid XML
documents, 519-520

space consumption
and, 51

on UPDATE, 518-519
when to use, 474
whitespace preservation

and, 517
XML Schema evolution

with/without, 494-495
value comparison operators in

XPath, 156-157
value predicates, 147, 153
values

attribute values, attribute
nodes versus, 136

of repeating XML
elements, extracting,
557-558

updating in XML
documents with
namespaces, 464-465

of XML attributes
extracting, 557
replacing, 327-328

of XML elements
extracting, 557
replacing, 326-327

of XML nodes, replacing
with computed values,

329-331
multiple values,

328-329
with parameter

markers, 328
values (XML)

converting to binary SQL
types, 187-188

ordering result sets by,
186-187

retrieving in relational
format, 165-176

tags versus, 19-21
values (XQuery Data

Model), 128
VARCHAR HASHED index

data type, 368-369, 433

VARCHAR(n) index data type,
367-368

variables
host variables, 613-614
in stored procedures, 548

viewing XML document
structure, 703-705

views. See catalog views;
relational views

Visual Explain tool, 396
execution plans, obtaining,

400-401, 411-413
Visual Studio, IBM

Database Add-ins for
Visual Studio, 656

volatility of schema, 12

W
WebSphere Replication

Server, 119
well-formed XML documents,

4, 76
valid documents

versus, 473
where clause (FLWOR

expressions), 194
whitespace

in XML documents, 89-94
changing default preser-

vation option, 93-94
data storage for

compliance, 94
preserving, 91-93
types of, 90

preserving
during import, 108
validation and, 517

retaining in CLP, 527
stripping, 78

wildcard searches, 583
wildcards

in full-text searches, 594
index eligibility and,

376-377

752 Index

for namespace queries,
449-450

in XPath, 140-141
Windows. See DB2 for Linux,

UNIX, and Windows
work directories, locating with

index directories, 574

X
XANDOR operator (execution

plans), 402-403
XDBDECOMPXML stored

procedure, 313-314
XDB_DECOMP_XML_

FROM_QUERY stored
procedure, 315-317

XDS (XML Data
Specifiers), 99

XISCAN operator (execution
plans), 403

XIXAND operator (execution
plans), 414

XIXOR operator (execution
plans), 414

XIXSCAN operator (execution
plans), 414

XML (eXtensible Markup
Language), 1

application development.
See application
development

applications, best
practices, 434-435

attributes. See attributes
(XML)

CLP options
list of, 706
usage examples, 706-707

documents. See documents
(XML)

for data exchange, 1
for data storage, 2

pureXML versus
alternative storage
methods, 10-11

indexes. See indexes (XML)
monitoring performance,

424
of database utilities,

427-428
with snapshot monitor,

424-427
namespaces. See name-

spaces (XML)
performance. See

performance
pureXML. See pureXML
relational data versus, 4-7

when to use XML data,
11-13

reorganizing table data,
53-54, 68-69

schemas, best practices, 434
as self-describing data

format, 19
as standard, xxiii, xxv, 1
tags. See tags (XML)
values

converting to binary
SQL types, 187-188

ordering result sets by,
186-187

retrieving in relational
format, 165-176

tags versus, 19-21
XML 1.0 standard, 2
XML 1.1 standard, 2
XML aggregation. See

aggregation
XML column references. See

column references (XML)
XML columns. See columns

(XML)
XML compression. See

compression
XML construction

with attribute
expressions, 206

with computed values,
202-204

with conditional
expressions, 205

direct XML
construction, 202

with multiple nesting
levels, 206-207

with predicates, 204-205
with XML aggregation,

207-208
with XML namespaces,

460-463
XML data

converting relational data
to, 267

inserting in XML
columns, 294-295

with SQL/XML
publishing functions,
268-290

XML declarations for,
292-294

with XQuery construc-
tors, 290-292

generating rows/columns
from, 165-166

querying. See querying
XML data

statistics collection
in DB2 for Linux,

UNIX, and Windows,
418-419

in DB2 for z/OS,
417-418

with db2cat utility,
419-423

truncation, avoiding, 138
XML data binding

to Java objects, 629
pureQuery and, 631

XML Data Specifiers
(XDS), 99

XML data type, 7-9, 160
XML declarations. See

declarations (XML)
XML document trees, 28-30

storage of, 30-33
XML encoding. See encoding

(XML); Unicode

Index 753

XML joins, relational joins
versus, 7, 241

XML manipulation
in .NET applications,

633-635
in stored procedures,

548-556
hybrid XML data

storage, 550-553
loops and cursors,

553-554
testing, 555-556
updating XML

elements/attributes,
554-555

with triggers, 561-564
delete triggers, 563
insert triggers,

562-563
update triggers, 564

in UDFs, 556-561
extracting repeating

XML element values,
557-558

extracting XML
element/attribute
values, 557

shredding XML data,
558-559

updating XML
documents, 559-561

XML predicates. See
predicates

XML publishing functions. See
publishing functions
(SQL/XML)

XML sample database
creating, 709-710
customer table contents,

710-712
product table contents,

712-713
purchaseorder table

contents, 713-714
XML Schema, xxiii, 2, 471

annotated schema
shredding, 306-318

advantages/disadvan-
tages of, 301

annotating XML
Schema, 306-310

defining annotations
in Data Studio
Developer, 311

registering annotated
schemas, 311-312

shredding multiple XML
documents, 315-318

shredding single XML
documents, 312-315

custom versus industry
standard, 474-476

DB2 for z/OS versus DB2
for Linux, UNIX, and
Windows, 510-511

determining for validated
XML documents,
538-540

DTDs versus, 501
editing in Data Studio

Developer, 653
exporting

information with
db2look utility, 122

XML documents
containing, 105-106

flexibility of, 5-6
granting/revoking usage

privileges, 499-500
identifiers, 516
with multiple schema

documents, 479-482
in .NET applications,

handling, 636
as optional in DB2, 8
parts of, 476-478
reasons for using, 472-473
referencing, 484
registering, 483-491

in CLP (command-line
processor), 484-486

error handling for,
490-491

identifiers, 483
with JDBC, 488

with shared schema
documents, 489-490

steps in, 483
with stored procedures,

486-487
removing from XSR,

492-493
target namespaces, 438
valid versus well-formed

XML documents, 473
validation. See validation
when to validate, 474

XML Schema evolution,
493-498

with document validation,
494-495

with UPDATE
XMLSCHEMA com-
mand, 495-498

without document
validation, 494

XML Schema Repository
(XSR), 483, 502-503, 667,
672. See also registering
XML Schemas

catalog tables/views,
503-508

queries against, 508-510
registering annotated

schemas, 311-312
XML storage, 429-430

for compliance 94
in DB2 for Linux, UNIX,

and Windows, 33-41
dropping XML

columns, 40
in DB2 9.7 release,

40-41
storage objects, types of,

33-35
table space page size,

36-39
in DB2 for z/OS, 60-73

CHECK DATA utility,
69-70

limiting memory
consumption, 71

754 Index

multiple XML
columns, 64

naming conventions,
64-65

offloading XML
parsing, 72-73

REORG utility, 68-69
REPORT TABLE-

SPACESET utility,
67-68

storage objects, types of,
61-62

table space characteris-
tics, 63

utilities for, 65-67
inlining, 41-48

benefits of, 47-48
drawbacks of, 48
monitoring and

configuring, 43-47
MDC (multidimensional

clustering), 58-59
partitioned databases,

59-60
range partitioning, 57-58
space consumption of,

51-53
space management

example, 54-57
XML System Services

(XMLSS), 72
XML to HTML transforma-

tion, 356-358
XML-related catalog tables,

667-673
for XML indexes, 671-672
XML Schema Repository

(XSR), 672
for XML storage objects,

667-670
XML-related catalog views,

661-667
SYSCAT.COLUMNS,

661-662
SYSCAT.INDEXES,

663-664

SYSCAT.INDEXXML-
PATTERNS, 664-666

SYSIBM.SYSXMLPATHS,
663

SYSIBM.SYSXML-
STRINGS, 662-663

XML Schema Repository
(XSR), 667

XML-to-relational joins, 239,
248-250

XML-to-XML joins, 239
outer joins, 250-252
in SQL/XML, 242-247
in XQuery, 240-242

XML2CLOB function
(SQL/XML), 290

xml:space attribute, 91-92
XMLAGG function

(SQL/XML), 160, 207,
277-283

XMLCONCAT,
XMLFOREST
compared, 284

XMLATTRIBUTES function
(SQL/XML), 160, 275-277

XMLCAST function, 119, 160,
163, 186-187

code page conversion
example, 604

XMLCOMMENT function
(SQL/XML), 290

XMLCONCAT function
(SQL/XML), 270

XMLAGG, XMLFOREST
compared, 284

XmlDocument class
(.NET), 634

XMLDOCUMENT function,
117, 119, 294-295

XMLELEMENT function
(SQL/XML), 160, 268-273,
460-462

XMLEXISTS predicate, 160,
177-182, 188, 431

XMLFOREST function
(SQL/XML), 272-273

XMLAGG, XMLCONCAT
compared, 284

XMLGROUP function
(SQL/XML), 286-289

XMLNAMESPACES function,
453, 460-462

XMLPARSE function, 92-93,
119, 160, 354

XMLPATTERN function in
index definitions, 363

XMLPI function (SQL/XML),
290

XMLQUERY function, 119,
160-165, 188, 430

filtering conditions, 587
index eligibility and, 385
returning

element values without
XML tags, 163-164

repeating elements,
164-165

XML column references in,
162-163

XMLReader class (.NET), 634
XMLROW function

(SQL/XML), 286-289
XMLSERIALIZE function,

83, 86, 119, 160, 293,
435, 640

XMLSpy, 657
XMLSS (XML System

Services), 72
XMLTABLE function, 160,

165-176, 188
advantages/disadvantages

of, 300
aggregation and grouping

queries, 234-236
code page conversion

example, 604
generating rows/columns

from XML data, 165-166
namespace declarations,

452-453
numbering rows based

on repeating elements,
173-174

optional elements,
handling, 167-168

Index 755

pureQuery and, 631
returning

multiple repeating
elements, 174-176

repeating elements,
169-173

shredding XML documents
with, 301-306

splitting XML documents,
116-118

type errors, avoiding,
168-169

XMLTEXT function
(SQL/XML), 290

XMLVALIDATE function,
119, 160, 514-519, 535-536

XMLXSROBJECTID
function, 492, 535, 538-539

XPath, xxiii, 8, 126.
See also XQuery

axes, 157
comparing with FLWOR

expressions and
SQL/XML, 196-202

comparison operators,
156-157

construction of sequences,
154-155

data() function, 134-135
dot notation, 151-153
double slash (//), 141-142
dynamic expressions,

185-186
embedding in SQL

statements, 127
empty results, reasons

for, 134
executing in DB2,

137-140
existential semantics,

147-148
file system navigation

analogy, 133
full-text searches in, 582
functions, 155
logical expressions,

148-151

node tests, 133
positional predicates,

153-154
predicates, 142-146

usage with SQL/XML,
177-182

sample data for examples,
131-132

simple query examples,
133-136

slash (/), 141
SQL/XML versus, 201
string() function, 135
text() node test, 134
unabbreviated syntax, 157
union of sequences,

154-155
union operator (|), 585
wildcards, 140-141

XPath expressions
best practices, 430
full-text searches

with, 593
XPath queries, design

decisions and, 17-18
XQuery, xxiii, 8, 126. See also

XPath
arithmetic expressions,

212-214
attribute expressions in

XML construction, 206
“between” predicates, 431
computed value XML

construction, 202-204
conditional expressions in

XML construction, 205
constructors, 290-292

XML namespaces and,
462-463

contains function, 587
data types, cast expressions,

type errors, 208-212
direct XML construction,

202
with embedded SQL, 127
embedding

in SQL statements, 127
SQL in, 227-228

FLWOR expressions,
191-196

comparing with XPath
and SQL/XML,
196-202

join queries in, 247
full-text searches,

582, 592
functions, 214-226

Boolean functions, 226
date and time functions,

224-226
namespace and node

functions, 222-224
numeric and aggregation

functions, 218-220
sequence functions,

220-222
string functions,

215-218
grouping queries in,

SQL/XML versus,
237-239

join queries, XML-to-XML
joins, 240-242

let and return clauses, index
eligibility and, 386-387

modifying XML documents
in, 346-349

multiple nesting levels
in XML construction,
206-207

namespace and node
functions, 445

namespace declarations,
448-450

nesting with SQL,
257-258

outer joins, 250-252
overview, 190
predicates in XML

construction, 204-205
sample data for examples,

131-132
SQL functions and UDFs

in, 229-230
SQL/XML versus, 201

756 Index

as stand-alone
language, 127

in stored procedures, 554
XML aggregation in XML

construction, 207-208
XSLT versus, 353

XQuery 1.0 and XPath 2.0
Data Model, 126, 128-131

sequences
constructing, 128-130
as input/output,

130-131
xquery keyword, 137
XQuery Update Facility, 9,

324-326
XML attribute values,

replacing, 327-328
XML element values,

replacing, 326-327
XML elements/attributes,

renaming, 334-335
XML node values,

replacing
with computed values,

329-331
multiple values, 328-329
with parameter

markers, 328

XML nodes
deleting, 333-334
inserting, 335-340
modifying multiple,

343-346
repeating/missing,

340-343
replacing, 331-332

XSCAN operator (execution
plans), 402

XSL (eXtensible Stylesheet
Language), 352

XSLT (eXtensible Stylesheet
Language Transformation),
352-358

XML to HTML transforma-
tion, 356-358

XQuery versus, 353
XSLTRANSFORM

function, 353-356
XSLTRANSFORM function,

352-356
XSR (XML Schema

Repository), 483, 502-503,
667, 672. See also
registering XML Schemas

catalog tables/views,
503-508

queries against, 508-510
registering DTDs, 501
removing XML Schemas

from, 492-493
XSR Objects, 483
XSR_GET_PARSING_

DIAGNOSTICS stored
procedure, 525-528

Y–Z
z/OS. See DB2 for z/OS
zAAP (System z Application

Assist Processors), 71-72
zeros, leading zeros in XML

element construction,
285-286

zIIP (System z Integrated
Information Processors),
71-72

	Chapter 11 Converting XML to Relational Data
	11.1 Advantages and Disadvantages of Shredding
	11.2 Shredding with the XMLTABLE Function
	11.2.1 Hybrid XML Storage
	11.2.2 Relational Views over XML Data

	11.3 Shredding with Annotated XML Schemas
	11.3.1 Annotating an XML Schema
	11.3.2 Defining Schema Annotations Visually in IBM Data Studio
	11.3.3 Registering an Annotated Schema
	11.3.4 Decomposing One XML Document at a Time
	11.3.5 Decomposing XML Documents in Bulk

	11.4 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y–Z

