Back in the 1960s, it was discovered that glial cells are 90 percent of the brain. Neurons make up 10 percent. One would think that as a result of this revelation, the conclusion reached would have been that glial cells function as a main component of the nervous system. But it wasn’t. The conclusion was that we use only 10 percent of our brain.

From an early age, we are taught that the major cell in the brain is the neuron. We are also taught that neurons hold all the information in the brain. Even through graduate-level studies, the central tenant of neuronal importance is the basis of the study of neuroscience. But the Neuron Doctrine has become more religion than scientific truth, explaining away even the most blatant facts with assertions such as, “We use only 10 percent of our brain.”

However, no sustainable argument or discovery has been made to give insight to where our thoughts come from, where our imagination resides, our dreams ignite, and how creativity burgeons. These are mysteries that have been explained with ideas such as “random neuronal firing” or “interconnectibility.” But the truth is that the neuron is the least likely cell in the brain for the root of thought.

Until recently, glia have been considered the structural elements to the active neurons, like void space with no purpose except to hold the brain together—the nuts, bolts, and the frame of the engine of our minds.

The importance of the neuron is being aggressively challenged in the field. The recovery from brain injury, the cause of degenerative diseases of the brain, the treatments for psychiatric disorders, and an understanding of human intelligence can be fully realized only through the study of glia.
The surge in glial interest is due to three main reasons. First, glia signal to each other in a manner conducive to storage of information. Second, glia have long been known to be the cellular makeup of most brain tumors. Third, researchers now know glia are the adult stem cells in the brain.

It was once thought that our brains develop in the womb and during early childhood, and then remained in this state until we died. It is now known that we regenerate cells throughout adulthood. The stem cells of the brain are glia, which can reproduce themselves and neurons if needed.

Glia can also regenerate locally in order to store more information. One of the most fascinating studies in the last 30 years was the analysis of Albert Einstein’s brain. When markers for different types of cells were analyzed, Einstein’s brain was discovered to contain significantly more glia than normal brains in the left angular gyrus, an area thought to be responsible for mathematical processing and language.

If glia are the libraries for information storage in the brain, and assuming humans have the highest intelligence, then lower life forms should have less glia. One of the most striking research events has been the discovery of a single glial cell for every 30 neurons in the leech. This single glial cell receives neuronal sensory input and controls neuronal firing to the body. As we move up the evolutionary ladder, in a widely researched worm, *Caenorhabditis elegans*, glia are 16 percent of the nervous system. The fruit fly’s brain has about 20 percent glia. In rodents such as mice and rats, glia make up 60 percent of the nervous system. The nervous system of the chimpanzee has 80 percent glia, with the human at 90 percent. The ratio of glia to neurons increases with our definition of intelligence.

Not only does the ratio of glia to neurons increase through evolution, but so does the size of the glia. Astroglial cells in the human have a volume 27 times greater than the same cells in the mouse’s brain.

The folded cortex of humans is not noticed in other animals until you reach higher-level species such as cats, dolphins, and other primates. Humans have 35 percent more glia in its cortex than the chimpanzee.

This excess glia in our brains might explain the fact that humans are more susceptible than other animals to develop degenerative diseases of the brain such as Alzheimer’s and Parkinson’s, which disrupt thought. In
fact, in all degenerative diseases of the brain, loss of sense of smell is the first sign before the onset of symptoms. The olfactory bulb is known to have the highest turnover of cells in the brain because of the nature of smell. It is ever changing, and our olfactory bulb has to adjust as such. Glia are the stem cells necessary for this turnover.

The study of degenerative diseases of the brain in most labs today focuses on proteins that aggregate in neurons, the byproduct of the disease. This is like thinking a pothole is the reason a road is falling apart.

When a mechanism for glial proliferation is overactive, glia turn cancerous. Almost all tumors of the brain are gliomas, which are comprised of glia. Is it possible that glial regeneration is a normal process of the brain that needs to remain at a constant level depending on the amount of information learned and integrated? Is it possible that when it is lacking, degenerative disease occurs, and when it is aggressive, a tumor grows?

Our brains were also always thought to lose neurons as we grow older. Upon further review, it has been shown that neuronal numbers remain the same, whereas increases and disruptions are seen in glia. And just recently, it has been revealed that glia communicate to themselves in electrical waves through extensive nets involving calcium ion influx. These influxes of calcium can spread locally through glial networks. It has also been shown that glia express the receptors necessary to receive basic input from neurons, as well as signal to neurons themselves.

Neurons communicate down long processes called axons. Neurons either fire or they don’t. This is called the “all-or-nothing” phenomenon. Glia are much more complex. Their wavelike communication may be more conducive to fluid information processing.

What are neurons if glia process and store information? Since researchers know that glia signal to neurons, it would seem neurons are simply static cells that fire at the beck and call of glia to other glial areas, which need to be ignited to produce related thoughts.

For instance, if you, like the author, think about pizza, and then you think about mozzarella, which leads you to think about Italy, you are igniting three glial centers in your brain. To get from one center to the next, if they are a significant distance, you must connect through a neuron. When the glial center for mozzarella receives strong neural firing from the center for pizza, then it ignites and thinks about everything related to mozzarella in that glial center.
For a century, scientists have barely questioned the idea of the dominance of the neuron. Even today, it’s not a stretch to say that 99 percent of the laboratories studying the brain around the world focus on neuronal research.

But, as will be seen, this is the equivalent of aliens landing on earth in southern California and arriving at the conclusion that the freeway between San Diego and Los Angeles is more important to explore than the cities themselves.

References
Index

A

acetylcholine, 23
action potentials, 42
Adenosine-5-triphosphate (ATP), 50
adult neurogenesis, 84
alcohol
 effect on astrocytes, 118
 effect on mammillary bodies, 139
Aldini, Giovanni, 19
all-or-nothing phenomenon, 3
alpha-synuclein, 124-125
ALS (Amyotrophic Lateral Sclerosis)
 identification of, 122
 problems with glutamate transporters in, 126
Altman, Joseph, 84, 90
Alvarez-Buylla, Arturo, 85, 89-93
Alzheimer's Disease
 identification of, 123
 link with apoE gene, 125
 protein deposits in neurons observed in, 124-125
Alzheimer, Alois, 123

amphibians, ratio of glia to neurons in, 36
amygdala, 151
amyloid beta, 124, 127, 139
amyloid tau, 124
Amyotrophic Lateral Sclerosis.
 See ALS
angiogenesis, 147
angular gyrus, 104
anions, 44
aplysia, 83
apoE gene, link with Alzheimer's Disease, 125
APP, 139
Araque, Alfonso, 117
Aristophanes, 7
Aristotle, 6
aspartate, 56
astrocytes
 as area between sensory processing and motor output, 38-40
 astrocyte reaction, 127
 astrocyte-to-neuron ratio of Albert Einstein, 101-108
 in psychiatric disorders, 115-116
calcium waves, 156
 calcium as a cellular regulator, 43-46
 calcium puffs, 49-51
 calcium signaling, 47-52
 curvilinear pattern of movement, 48-50
dreams as evidence of, 111-114
effect of marijuana on, 117-118
extracellular versus intracellular calcium, 46
internal calcium stores, 46
cortical gliogenesis in adults, 89-96
effect of alcohol on, 118
endfeet, 55
endoplasmic reticulum, 48
gap junctions, 47-48
 glutamate-mediated astrocyte-neuron signaling
 astrocyte influence on axon outgrowth, 62-63
 glutamate concentration in astrocytes, 60
 overview, 55-59
 release of transmitters from astrocytes, 60-62
 glutamate receptors, 56
 Golgi complex, 48
growth
 in adulthood, 71
 in early childhood, 71
importance of, 155-158
as mediators between sensory experiences and motor action, 41
mitochondria, 48
neuronal signaling and, 34, 38-40
nineteenth-century research into, 33-34
overview, 34
pre- and post-natal development, 65-66, 69-71
reaction, 127
regenerative ability, 72-74, 85-87
relationship between quantity of astrocytes and ability for complex thinking, 101-110
relationship with consciousness, creativity, and imagination, 156-158
response to closed head injury, 136-141
role in processing recreational drugs, 116-119
 self-sufficient nature of, 39
astrocytomas, 147-148

ATP (Adenosine-5-triphosphate), 50
axons, 3
 astrocyte influence on axon outgrowth, 62-63
 cutting to reduce seizures, 25
 myelin, 32
 postnatal development, 70
 Wallerian degeneration, 139

B
basal ganglia, 69, 124
batteries, invention of, 19
bees, ratio of glia to neurons in, 35
Bergmann glia, 34
bipolar disorder, 115
birds
 ability to learn to new songs, 85
 ratio of glia to neurons in, 36
Bliss, Tim, 84
Bois-Reymond, Emile du, 21-22
Botox (botulinum neurotoxin A),
 ability to block astrocytic release
 of transmitters, 60
boxing, 136
brain injury
 closed head injury
 astrocytic response to, 136-141
 definition of, 135
 effect of protective helmets, 136
 link to degenerative disease, 140
open head injury
 primary injury, 134
 secondary degeneration of
 brain cells, 135
overview, 133
research models, 140-141
brain tumors. See gliomas
BrdU (5-Bromodeoxyuridine), 90
Brightman, Milton, 47
Broca, Paul, 38
Broca’s area, 149
Byron, Lord George Gordon, 20
C
Caenorhabditis elegans, ratio of glia
to neurons in, 2
caffeine, 116
Cajal, Santiago Ramón y, 9-13,
22, 138
calcium waves, 156
calcium as a cellular regulator, 43-46
calcium ion influx, 3
calcium puffs, 49-51
calcium signaling, 47-52
curvilinear pattern of movement,
48-50
dreams as evidence of, 111-114
effect of marijuana on, 117-118
extracellular versus intracellular
calcium, 46
internal calcium stores, 46
cancer. See gliomas
Carlsson, Arvid, 123
Caton, Richard, 22
cellular regulation, role of calcium
in, 43-45
cephalopods, ratio of glia to
neurons in, 36
cerebrospinal fluid, ancient Roman
beliefs about, 6
Charcot, Jean-Martin, 122
Charcot-Marie-Tooth syndrome, 122
chimpanzees, ratio of glia to
neurons in, 2
cholesterol, synthesis by
astrocytes, 62
Cicero, 86
clinical depression, reduced number
of astrocytes in, 115
closed head injury
 astrocytic response to, 136-141
 definition of, 135
 effect of protective helmets, 136
research models, 140-141
cocaine, 118
conduction of electricity. See electrophysiology

Confessions of an Opium-Eater (Quincey), 118

Cornell-Bell, Ann H., 47
corpus callosum, 81
cortex
 angular gyrus, 104
 Broca’s area, 149
cortical gliogenesis in adults, 89-97
cortical thinning process, 71-72
eyearly research into, 25
left temporal cortex, 38
motor cortex, 38
parietal cortex, 38
visual cortex, 38, 72
curvilinear pattern of calcium waves, 48-50
cytosol, 48

D

Darwin, Charles, 8
daydreaming, 114
Deep Brain Stimulation, 124
degenerative diseases of brain
 Alzheimer’s Disease
 identification of, 123
 link with apoE gene, 125
 protein deposits in neurons observed in, 124-125
 Amyotrophic Lateral Sclerosis (ALS)
 identification of, 122
 problems with glutamate transporters in, 126
 astrocyte reaction in, 127
 and inadequate turnover rate of glial cells, 127-130
 link to brain injury, 140
 Parkinson’s Disease
 Deep Brain Stimulation, 124
 identification of, 122
 loss of substantia nigra in, 123
 mutations in alpha-synuclein observed in, 125
 related nature of degenerative diseases, 121-122
 susceptibility to, 2-3
 Deiters, Otto, 8, 33
dementia, 108
depolarization of glia, 43
depression, reduced number of astrocytes in, 115
Descartes, 6-7
Deter, Auguste, 123
Diamond, Marian, 104
diffuse axonal injury. See closed head injury

Dissertation on the Sensible and Irritable Parts of Animals (Franklin), 26
dopamine, 124
Down’s Syndrome
 reduction in synaptogenesis in, 70
 and synaptic complexity, 100
dreams
 daydreaming, 114
 EEGs (electroencephalographs) of brain activity during, 112
 as evidence of sporadic calcium waves, 111-114
 in other species, 114
overview, 111-112
recurring dreams, 113
relationship with experience, 113
Driving Mr. Albert: A Trip Across America with Einstein’s Brain (Paterniti), 109

E
early childhood brain development, 71
Ebbinghaus, Hermann, 79, 86
Eccles, John, 24
Eddington, Arthur Stanley, 103
Edison, Thomas, 17
EEGs (electroencephalographs) of dreams, 112
Einstein, Albert, 2
astrocyte-to-neuron ratio, 101-108
fate of brain after death, 102-110
Einstein’s Brain (i), 106
electrical conductance. See electrophysiology
electroencephalographs (EEGs) of dreams, 112
electrophysiology
eighteenth-century research into, 16-17, 26
medical use of electricity in ancient Rome, 15
nineteenth-century research into, 18-22
twentieth-century research into, 23-25
End of Days, 106
endfeet, 55
endoplasmic reticulum, 48
ependymal cells, 32
Exner, Sigmund, 11
extracellular calcium, 46

F
Ferrier, David, 25
Finkbeiner, Steven, 48
5-Bromodeoxyuridine (BrdU), 90
flatworms, glia-to-neuron ratio in, 35
Flourens, Pierre, 25, 80
Frankenstein (Shelley), 20
Franklin square, 17
Franklin, Benjamin, 17
Freeman, Walter, 25
Fritsch, Gustav, 22, 37
Fritz, Gustav, 80
frontal lobotomy, 25
fruit flies, ratio of glia to neurons in, 2

G
GABA, 56
Gage, Fred, 85, 93
Gage, Phineas, 134
Galen, 6
Galvani, Luigi, 17-19
Gama, Jean-Pierre, 136
gap junctions, 47-48
Gehrig, Lou, 122
GFAP (glial fibrillary acidic protein), 127, 146
Gierke, Edgar von, 34
Glees, Paul, 42
glia
astrocytes. See astrocytes
Bergmann glia, 34
and degenerative diseases of brain.

See degenerative diseases of brain

depolarization, 43
ependymal cells, 32
glia-to-neuron ratio and

corresponding behavior, 1

in amphibians, 36
in birds, 36
in cephalopods, 36
in flatworms, 35
in insects, 35
in jellyfish, 35
in leeches, 35
in mammals, 36-37

gliomas

angiogenesis, 147
astrocyte behavior in, 152-153
astrocytomas, 147-148
cognitive problems resulting
from, 148-151
glioblastoma multiform, 146-148
glioblastomas, 148
medullablastoma, 149
overview, 3, 145-146

 glutamate-mediated astrocyte-
 neuronal signaling

astrocyte influence on axon
outgrowth, 62-63
 glutamate concentration in
astrocytes, 60
overview, 55-59
 release of transmitters from
astrocytes, 60-62

importance of, 2-4
influence on hormone
secretion, 62

microglia, 32
Müller cells, 31
oligodendrocytes, 32
origin of term, 7
overview, 29
radial glia, 66-67
regenerative ability, 2
Schwann cells, 32
tanycytes, 32
twentieth-century research
into, 42-43
wavelike nature of
communication, 3

glial fibrillary acidic protein (GFAP), 127, 146
glioblastoma multiform, 146-148
glioblastomas, 148

gliomas

angiogenesis, 147
astrocyte behavior in, 152-153
astrocytomas, 147-148
cognitive problems resulting
from, 148-151
glioblastoma multiform, 146-148
glioblastomas, 148
medullablastoma, 149
overview, 3, 145-146

 glutamate

and ALS (Amyotrophic Lateral
Sclerosis), 126
receptors, 56
release from astrocytes, 56

Goldman, Patricia, 66
Golgi, Camillo, 8-13
Golgi complex, 48
Golgi stain, 8-10
Gordon, George, Lord Byron, 20
H

habituation, 83
Haller, Albrecht von, 26
hallucinogens, 118
Harvey, Thomas, 102-104, 107, 110
Haydon, Philip G., 56-58
Hebb, Donald, 37, 73, 82
Hebbian philosophy of neuronal plasticity, 73
helmets, 136
Helmholtz, Hermann von, 7
hemispheres of brain, 26
Henle, Jakob, 33
Herodotus, 7
hippocampus, 81
Hippocrates, 5
history
 of electrophysiology
 eighteenth-century research into, 16-17, 26
 medical use of electricity in ancient Rome, 15
 nineteenth-century research into, 18-22
 twentieth-century research into, 23-25
 of neuroscience, 7-9, 12-13
 of neuroscientific concepts, 5-13
Hitzig, Eduard, 22, 37, 80
HM (memory-impaired patient), 81-82
Hodgkin, Alan, 23
Hoover, J. Edgar, 104
Hubel, David, 72
Hull, Kevin, 106
Hunter, John, 16
Huxley, Aldous, 24
Huxley, Andrew, 24

I

imagination, passive versus active, 114
improving memory, 79
inositol triphosphate, 48-49
insects, glia-to-neuron ratio in, 35
intelligence versus learning, 85
internal calcium stores, 46
interneurons, prenatal development of, 69
intracellular calcium, 46

J-K

James, William, 79
jellyfish, glia-to-neuron ratio in, 35
Kandel, Eric, 82-83
Kennedy, Rosemary, 25
Kennedy, Ted, 147
Kettenmann, Helmet, 56
Kimelberg, Harold, 56
knee jerk reflex, 30
Kolliker, Albreicht von, 8
Korsakoff's syndrome, 139
Krauss, Elliot, 110
Kuffler, Stephen W., 42, 55

L

Lashley, Karl, 80
learning. See also memory
 adult neurogenesis, 84
 compared to intelligence, 85
habituation, 83
long-term potentiation (LTP), 84-85
reflexive learning, 80
sensitization, 83
synaptogenesis, 82
leeches, glia-to-neuron ratio in, 2, 35
Leeuwenhoek, Anton von, 7
left brain, 26
left temporal cortex, 38
Lewy Bodies, 124
Lewy, Frederick, 124
Leyden jar, 16-17
limbic system, 69
lithium, 115
Littré, Alexis, 135
lobotomy, 25
localization of thought, twentieth century research into, 24-26
Lømo, Terje, 84
long- versus short-term memory, 79-80
long-term potentiation (LTP), 84-85
Lou Gehrig’s Disease. See ALS (Amyotrophic Lateral Sclerosis)
Louis XIV, 16
LSD, 118
LTP (long-term potentiation), 84-85
Luria, Alexander, 134

M
Maladie de Charcot. See ALS (Amyotrophic Lateral Sclerosis)
mammals, glia-to-neuron ratio in, 36-37
mammillary bodies, effect of alcohol on, 139

The Man with a Shattered World (Luria), 135
manic-depression, 115
marijuana, effect on calcium waves, 117-118
Matteucci, Carlo, 20
memory. See also learning
biological basis of, 81-87
adult neurogenesis, 84
astrocyte regeneration, 85-87
hippocampus, 81-82
long-term potentiation (LTP), 84-85
nineteenth-century research, 80-81
synaptogenesis, 82
improving, 79
long- versus short-term memory, 79
overview, 77
personal nature of, 78
plasticity, 79
Memory: A Contribution to Experimental Psychology (Ebbinghaus), 79
mescaline, 118
mice, ratio of glia to neurons in, 2
microglia, 32
mitochondria, 48
mnemonics, 79
motor cortex, 38
motor neurons, 31
Müller cells, 31
Müller, Heinrich, 31
multiple sclerosis, 152
Murphy, Sean, 43
Musschenbroek, Pieter Van, 16
myelin, 32

N
Nedergaard, Maiken, 56
Nernst, Walther, 24
neuroglia, 34
Neuroglia: Morphology and Function (Glees), 42
Neuron Doctrine, 12
 weaknesses of, 38-39
neurons
 all-or-nothing phenomenon, 3
 astrocyte-to-neuron ratio
 of Albert Einstein, 101-108
 in psychiatric disorders, 115-116
 basal ganglia, 124
 communication between, 3
 corpus callosum, 81
 dependent nature of, 39
 effect of environment on neuronal
 wiring, 72
 electrical conductance, 24.
 See also electrophysiology
 glia-to-neuron ratio and
 corresponding behavior, 1-2
 in amphibians, 36
 in birds, 36
 in cephalopods, 36
 in flatworms, 35
 in insects, 35
 in jellyfish, 35
 in leeches, 35
 in mammals, 36-37
 glutamate-mediated
 astrocyte-neuron signaling
 astrocyte influence on axon
 outgrowth, 62-63
 glutamate concentration in
 astrocytes, 60
 overview, 55-59
 release of transmitters from
 astrocytes, 60-62
 Hebbian philosophy of neuronal
 plasticity, 73
 importance of, 1
 motor neurons, 31
 Neuron Doctrine, 12
 weaknesses of, 38-39
 overview, 30-31
 Purkinje cells, 30
 refractory period, 24
 sensory neurons, 31
 substantia nigra, 123
 synapses, 100, 157
neuroscientific concepts, history
 of, 5-13
nicotine, 116
Nobili, Leopold, 20
Nottebohm, Fernando, 85, 89-91

O
octopi, glia-to-neuron ratio in, 36
oligodendrocytes, 32
 gap junctions with astrocytes, 47
 prenatal development, 69
open head injury
 primary injury, 134
 research models, 140-141
 secondary degeneration of brain
 cells, 135
The Organization of Behavior: A Neuropsychological Theory (Hebb), 37
Orkland, Richard K., 55
oxidative stress, 126
oxytocin, influence of glia on oxytocin levels, 62

P
parietal cortex, 38
Parkinson, James, 122
Parkinson’s Disease
- Deep Brain Stimulation
treatment, 124
identification of, 122
loss of substantia nigra in, 123
mutations in alpha-synuclein observed in, 125
Parpura, Vladimir, 56
passive imagination, 114
patellar reflex, 30
Paterniti, Michael, 110
Pavlov, Ivan, 80
Penfield, Wilder, 25, 37, 81
Pfrieger, Frank W., 62
physical conduction of electricity.
- See electrophysiology

plasticity, 73, 79
The Poem of Hashish (Baudelaire), 111
polyopic heautoscopy, 151
Positron Emission Tomography, 38
potassium ions, electric potential of, 21
prenatal brain development, 65-66, 69-71

Q-R
Quincey, Thomas de, 118
radial glia, 66-67
Rakic, Pasko, 66
rats, ratio of glia to neurons in, 2
recreational drugs, 116-119
recurring dreams, 113
Reese, Thomas S., 47
reflexive learning, 50
refractory period, 24
regenerative ability of astrocytes, 72-74
regenerative ability of glia, 2
Remak, Robert, 8
Restoration of Function after Brain Injury (Luria), 134
retinal glia cells (Müller cells), 31
right brain, 26
Ringer, Sydney, 44
Roosevelt, Franklin, 104
Roosevelt, Teddy, 136
Rothstein, Jeffrey, 126

S
schizophrenia, 116
Schleich, Carl Ludwig, 11
Schulte, Max, 33
Schwann, Theodore, 32
Schwann cells, 32
Seinfeld, Jerry, 136
sensitization, 83
sensory deprivation, 114
sensory neurons, 31
serotonin, 116
serotonin reuptake inhibitors, 116
Shelley, Mary, 20
Shelley, Percy Bysshe, 20
Sherrington, Charles Scott, 23
short-versus long-term memory, 79-80
signals
calcium waves, 156
calcium as a cellular regulator, 43-46
calcium ion influx, 3
calcium puffs, 49-51
calcium signaling, 47-52
curvilinear pattern of movement, 48-50
dreams as evidence of, 111-114
effect of marijuana on, 117-118
extracellular versus intracellular calcium, 46
internal calcium stores, 46
 glutamate-mediated astrocyte-neuron signaling
astrocyte influence on axon outgrowth, 62-63
 glutamate concentration in astrocytes, 60
overview, 55-59
release of transmitters from astrocytes, 60-62
Simonides, 86
Snowdon, David, 108
sodium ions, electric potential of, 21
songbirds, ability to learn to new songs, 85
Sonic Hedge Hog, 48
Sperry, Roger, 26
squid, glia-to-neuron ratio in, 36
substantia nigra, 123
Sugimoto, Kenji, 106
susceptibility to degenerative diseases of brain, 2-3
synapses, 23, 157
synaptic elimination process, 100
synaptogenesis, 70, 82
Szilard, Leo, 103
T
tanyocytes, 32
thymidine, 84
toxins, ability to block astrocytic release of transmitters, 60
transmitters, release from astrocytes, 60-62
Tretiakoff, Konstantin, 123
tripartite synapse theory, 58
tumors. See gliomas
Tyson, Mike, 155
V
vasopressin, influence of glia on, 62
Virchow, Rudolf, 7, 31
visual cortex, 38, 72
Volta, Alessandro, 18-19
voltaiic pile, 19
W-X-Y-Z

Waldeyer, Gottfried von, 12
Wallerian degeneration, 139
Walsh, John, 16
Weigert, Carl, 12
Whitman, Walt, 23
Wiesel, Torsten, 72
withdrawal, 116

Zimmerman, Harry, 102