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Preface

Almost everyone on the planet, it seems, has been touched in some way by advances in
information technology and the proliferation of the Internet. Recently, multimedia infor-
mation sources have become increasingly popular. Nevertheless, the sheer volume of raw
natural language text keeps increasing, and this text is being generated in all the major
languages on Earth. For example, the English Wikipedia reports that 101 language-specific
Wikipedias exist with at least 10,000 articles each. There is therefore a pressing need for
countries, companies, and individuals to analyze this massive amount of text, translate it,
and synthesize and distill it.

Previously, to build robust and accurate multilingual natural language processing (NLP)
applications, a researcher or developer had to consult several reference books and dozens,
if not hundreds, of journal and conference papers. Our aim for this book is to provide a
“one-stop shop” that offers all the requisite background and practical advice for building
such applications. Although it is quite a tall order, we hope that, at a minimum, you find
this book a useful resource.

In the last two decades, NLP researchers have developed exciting algorithms for process-
ing large amounts of text in many different languages. By far, the dominant approach has
been to build a statistical model that can learn from examples. In this way, a model can be
robust to changes in the type of text and even the language of text on which it operates.
With the right design choices, the same model can be trained to work in a new domain or
new language simply by providing new examples in that domain. This approach also obvi-
ates the need for researchers to lay out, in a painstaking fashion, all the rules that govern
the problem at hand and the manner in which those rules must be combined. Rather, a sta-
tistical system typically allows for researchers to provide an abstract expression of possible
features of the input, where the relative importance of those features can be learned during
the training phase and can be applied to new text during the decoding, or inference, phase.

The field of statistical NLP is rapidly changing. Part of the change is due to the field’s
growth. For example, one of the main conferences in the field is that of the Association of
Computational Linguistics, where conference attendance has doubled in the last five years.
Also, the share of NLP papers in the IEEE speech and language processing conferences and
journals more than doubled in the last decade; IEEE constitutes one of the world’s largest
professional associations for the advancement of technology. Not only are NLP researchers
making inherent progress on the various subproblems of the field, but NLP continues to ben-
efit (and borrow) heavily from progress in the machine learning community and linguistics
alike. This book devotes some attention to cutting-edge algorithms and techniques, but its
primary purpose is to be a thorough explication of best practices in the field. Furthermore,
every chapter describes how the techniques discussed apply in a multilingual setting.

This book is divided into two parts. Part I, In Theory, includes the first seven chapters
and lays out the various core NLP problems and algorithms to attack those problems. The

xxi



xxii Preface

first three chapters focus on finding structure in language at various levels of granularity.
Chapter 1 introduces the important concept of morphology, the study of the structure of
words, and ways to process the diverse array of morphologies present in the world’s lan-
guages. Chapter 2 discusses the methods by which documents may be decomposed into
more manageable parts, such as sentences and larger units related by topic. Finally, in this
initial trio of chapters, Chapter 3 investigates the various methods of uncovering a sentence’s
internal structure, or syntax. Syntax has long been a dominant area of research in linguistics,
and that dominance has been mirrored in the field of NLP as well. The dominance, in part,
stems from the fact that the structure of a sentence bears relation to the sentence’s meaning,
so uncovering syntactic structure can serve as a first step toward a full “understanding” of
a sentence.

Finding a structured meaning representation for a sentence, or for some other unit of
text, is often called semantic parsing, which is the concern of Chapter 4. That chapter covers,
inter alia, a related subproblem that has garnered much attention in recent years known
as semantic role labeling, which attempts to find the syntactic phrases that constitute the
arguments to some verb or predicate. By identifying and classifying a verb’s arguments,
we come one step closer to producing a logical form for a sentence, which is one way to
represent a sentence’s meaning in such a way as to be readily processed by machine, using
the rich array of tools available from logic that mankind has been developing since ancient
times.

But what if we do not want or need the deep syntactico-semantic structure that seman-
tic parsing would provide? What if our problem is simply to decide which among many
candidate sentences is the most likely sentence a human would write or speak? One way to
do so would be to develop a model that could score each sentence according to its gram-
maticality and pick the sentence with the highest score. The problem of producing a score
or probability estimate for a sequence of word tokens is known as language modeling and is
the subject of Chapter 5.

Representing meaning and judging a sentence’s grammaticality are only two of many
possible first steps toward processing language. Moving further toward some sense of under-
standing, we might wish to have an algorithm make inferences about facts expressed in
a piece of text. For example, we might want to know if a fact mentioned in one sentence
is entailed by some previous sentence in a document. This sort of inference is known as
recognizing textual entailment and is the subject of Chapter 6.

Finding which facts or statements are entailed by others is clearly important to the
automatic understanding of text, but there is also the nature of those statements. Under-
standing which statements are subjective and the polarity of the opinion expressed is the
subject matter of Chapter 7. Given how often people express opinions, this is clearly an
important problem area, all the more so in an age when social networks are fast becoming
the dominant form of person-to-person communication on the Internet. This chapter rounds
out Part I of our book.

Part II, In Practice, takes the various core areas of NLP described in Part I and explains
how to apply them to the diverse array of real-world NLP applications. Engineering is often
about trade-offs, say, between time and space, and so the chapters in this applied part of our
book explore the trade-offs in making various algorithmic and design choices when building
a robust, multilingual NLP application.
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Chapter 8 describes ways to identify and classify named entities and other mentions
of those entities in text, as well as methods to identify when two or more entity mentions
corefer. These two problems are typically known as mention detection and coreference res-
olution; they are two of the core parts of a larger application area known as information
extraction.

Chapter 9 continues the information extraction discussion, exploring techniques for find-
ing out how two entities are related to each other, known as relation extraction, and identi-
fying and classifying events, or event extraction. An event, in this case, is when something
happens involving multiple entities, and we would like a machine to uncover who the par-
ticipants are and what their roles are. In this way, event extraction is closely related to the
core NLP problem of semantic role labeling.

Chapter 10 describes one of the oldest problems in the field, and one of the few that
is an inherently multilingual NLP problem: machine translation, or MT. Automatically
translating from one language to another has long been a holy grail of NLP research, and in
recent years the community has developed techniques and can obtain hardware that make
MT a practical reality, reaping rewards after decades of effort.

It is one thing to translate text, but how do we make sense of all the text out there
in seemingly limitless quantity? Chapters 8 and 9 make some headway in this regard by
helping us automatically produce structured records of information in text. Another way to
tackle the quantity problem is to narrow down the scope by finding the few documents,
or subparts of documents, that are relevant based on a search query. This problem is
known as information retrieval and is the subject of Chapter 11. In many ways, com-
mercial search engines such as Google are large-scale information retrieval systems. Given
the popularity of search engines, this is clearly an important NLP problem—all the more
so given the number of corpora that are not public and therefore searchable by commercial
engines.

Another way we might tackle the sheer quantity of text is by automatically summarizing
it, which is the topic of Chapter 12. This very difficult problem involves either finding
the sentences, or bits of sentences, that contribute to providing a relevant summary of a
larger quantity of text or else ingesting the text summarizing its meaning in some internal
representation, and then generating the text that constitutes a summary, much as a human
might do.

Often, humans would like machines to process text automatically because they have
questions they seek to answer. These questions can range from simple, factoid-like questions,
such as “When was John F. Kennedy born?” to more complex questions such as “What is
the largest city in Bavaria, Germany?” Chapter 13 discusses ways to build systems to answer
these types of questions automatically.

What if the types of questions we might like to answer are even more complex? Our
queries might have multiple answers, such as “Name all the foreign heads of state President
Barack Obama met with in 2010.” These types of queries are handled by a relatively new
subdiscipline within NLP known as distillation. In a very real way, distillation combines the
techniques of information retrieval with information extraction and adds a few of its own.

In many cases, we might like to have machines process language in an interactive way,
making use of speech technology that both recognizes and synthesizes speech. Such systems
are known as dialog systems and are covered in Chapter 15. Due to advances in speech
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recognition, dialog management, and speech synthesis, such systems are becoming increas-
ingly practical and are seeing widespread, real-world deployment.

Finally, we, as NLP researchers and engineers, might like to build systems using diverse
arrays of components developed across the world. This aggregation of processing engines
is described in Chapter 16. Although it is the final chapter of our book, in some ways it
represents a beginning, not an end, to processing text, for it describes how a common
infrastructure can be used to produce a combinatorically diverse array of processing
pipelines.

As much as we hope this book is self-contained, we also hope that for you it serves as
the beginning and not an end. Each chapter has a long list of relevant work upon which it
is based, allowing you to explore any subtopic in great detail. The large community of NLP
researchers is growing throughout the world, and we hope you join us in our exciting efforts
to process text automatically and that you interact with us at universities, at industrial
research labs, at conferences, in blogs, on social networks, and elsewhere. The multilingual
NLP systems of the future are going to be even more exciting than the ones we have now,
and we look forward to all your contributions!
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Chapter 1

Finding the Structure of Words

Otakar Smrž and Hyun-Jo You

Human language is a complicated thing. We use it to express our thoughts, and through
language, we receive information and infer its meaning. Linguistic expressions are not unor-
ganized, though. They show structure of different kinds and complexity and consist of more
elementary components whose co-occurrence in context refines the notions they refer to in
isolation and implies further meaningful relations between them.

Trying to understand language en bloc is not a viable approach. Linguists have developed
whole disciplines that look at language from different perspectives and at different levels of
detail. The point of morphology, for instance, is to study the variable forms and functions
of words, while syntax is concerned with the arrangement of words into phrases, clauses,
and sentences. Word structure constraints due to pronunciation are described by phonology,
whereas conventions for writing constitute the orthography of a language. The meaning of
a linguistic expression is its semantics, and etymology and lexicology cover especially the
evolution of words and explain the semantic, morphological, and other links among them.

Words are perhaps the most intuitive units of language, yet they are in general tricky to
define. Knowing how to work with them allows, in particular, the development of syntactic
and semantic abstractions and simplifies other advanced views on language. Morphology is
an essential part of language processing, and in multilingual settings, it becomes even more
important.

In this chapter, we explore how to identify words of distinct types in human languages,
and how the internal structure of words can be modeled in connection with the grammatical
properties and lexical concepts the words should represent. The discovery of word structure
is morphological parsing.

How difficult can such tasks be? It depends. In many languages, words are delimited in
the orthography by whitespace and punctuation. But in many other languages, the writing
system leaves it up to the reader to tell words apart or determine their exact phonologi-
cal forms. Some languages use words whose form need not change much with the varying
context; others are highly sensitive about the choice of word forms according to particular
syntactic and semantic constraints and restrictions.

3
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1.1 Words and Their Components

Words are defined in most languages as the smallest linguistic units that can form a com-
plete utterance by themselves. The minimal parts of words that deliver aspects of meaning
to them are called morphemes. Depending on the means of communication, morphemes are
spelled out via graphemes—symbols of writing such as letters or characters—or are realized
through phonemes, the distinctive units of sound in spoken language.1 It is not always easy
to decide and agree on the precise boundaries discriminating words from morphemes and
from phrases [1, 2].

1.1.1 Tokens

Suppose, for a moment, that words in English are delimited only by whitespace and punc-
tuation [3], and consider Example 1–1:

Example 1–1: Will you read the newspaper? Will you read it? I won’t read it.

If we confront our assumption with insights from etymology and syntax, we notice two
words here: newspaper and won’t. Being a compound word, newspaper has an interesting
derivational structure. We might wish to describe it in more detail, once there is a lexicon or
some other linguistic evidence on which to build the possible hypotheses about the origins of
the word. In writing, newspaper and the associated concept is distinguished from the isolated
news and paper. In speech, however, the distinction is far from clear, and identification of
words becomes an issue of its own.

For reasons of generality, linguists prefer to analyze won’t as two syntactic words, or
tokens, each of which has its independent role and can be reverted to its normalized form.
The structure of won’t could be parsed as will followed by not. In English, this kind of
tokenization and normalization may apply to just a limited set of cases, but in other
languages, these phenomena have to be treated in a less trivial manner.

In Arabic or Hebrew [4], certain tokens are concatenated in writing with the preceding or
the following ones, possibly changing their forms as well. The underlying lexical or syntactic
units are thereby blurred into one compact string of letters and no longer appear as distinct
words. Tokens behaving in this way can be found in various languages and are often called
clitics.

In the writing systems of Chinese, Japanese [5], and Thai, whitespace is not used to
separate words. The units that are delimited graphically in some way are sentences or
clauses. In Korean, character strings are called eojeol ‘word segment’ and roughly correspond
to speech or cognitive units, which are usually larger than words and smaller than clauses [6],
as shown in Example 1–2:

Example 1–2: 학생들에게만 주셨는데

hak.sayng.tul.ey.key.man cwu.syess.nun.te2

haksayng-tul-eykey-man cwu-si-ess-nunte
student+plural+dative+only give+honorific+past+while
while (he/she) gave (it) only to the students

1. Signs used in sign languages are composed of elements denoted as phonemes, too.
2. We use the Yale romanization of the Korean script and indicate its original characters by dots. Hyphens
mark morphological boundaries, and tokens are separated by plus symbols.
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Nonetheless, the elementary morphological units are viewed as having their own syntactic
status [7]. In such languages, tokenization, also known as word segmentation, is the
fundamental step of morphological analysis and a prerequisite for most language processing
applications.

1.1.2 Lexemes

By the term word, we often denote not just the one linguistic form in the given context
but also the concept behind the form and the set of alternative forms that can express
it. Such sets are called lexemes or lexical items, and they constitute the lexicon of a lan-
guage. Lexemes can be divided by their behavior into the lexical categories of verbs, nouns,
adjectives, conjunctions, particles, or other parts of speech. The citation form of a lexeme,
by which it is commonly identified, is also called its lemma.

When we convert a word into its other forms, such as turning the singular mouse into
the plural mice or mouses, we say we inflect the lexeme. When we transform a lexeme into
another one that is morphologically related, regardless of its lexical category, we say we
derive the lexeme: for instance, the nouns receiver and reception are derived from the verb
to receive.

Example 1–3: Did you see him? I didn’t see him. I didn’t see anyone.

Example 1–3 presents the problem of tokenization of didn’t and the investigation of
the internal structure of anyone. In the paraphrase I saw no one, the lexeme to see would
be inflected into the form saw to reflect its grammatical function of expressing positive
past tense. Likewise, him is the oblique case form of he or even of a more abstract lexeme
representing all personal pronouns. In the paraphrase, no one can be perceived as the
minimal word synonymous with nobody. The difficulty with the definition of what counts as
a word need not pose a problem for the syntactic description if we understand no one as
two closely connected tokens treated as one fixed element.

In the Czech translation of Example 1–3, the lexeme vidět ‘to see’ is inflected for past
tense, in which forms comprising two tokens are produced in the second and first person
(i.e., viděla jsi ‘you-fem-sg saw’ and neviděla jsem ‘I-fem-sg did not see’). Negation in
Czech is an inflectional parameter rather than just syntactic and is marked both in the verb
and in the pronoun of the latter response, as in Example 1–4:

Example 1–4: Vidělas ho? Neviděla jsem ho. Neviděla jsem nikoho.
saw+you-are him? not-saw I-am him. not-saw I-am no-one.

Here, vidělas is the contracted form of viděla jsi ‘you-fem-sg saw’. The s of jsi ‘you are’
is a clitic, and due to free word order in Czech, it can be attached to virtually any part of
speech. We could thus ask a question like Nikohos neviděla? ‘Did you see no one?’ in which
the pronoun nikoho ‘no one’ is followed by this clitic.

1.1.3 Morphemes

Morphological theories differ on whether and how to associate the properties of word forms
with their structural components [8, 9, 10, 11]. These components are usually called seg-
ments or morphs. The morphs that by themselves represent some aspect of the meaning
of a word are called morphemes of some function.
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Human languages employ a variety of devices by which morphs and morphemes are
combined into word forms. The simplest morphological process concatenates morphs one by
one, as in dis-agree-ment-s, where agree is a free lexical morpheme and the other elements
are bound grammatical morphemes contributing some partial meaning to the whole word.

In a more complex scheme, morphs can interact with each other, and their forms may
become subject to additional phonological and orthographic changes denoted as morpho-
phonemic. The alternative forms of a morpheme are termed allomorphs.

Examples of morphological alternation and phonologically dependent choice of the form
of a morpheme are abundant in the Korean language. In Korean, many morphemes change
their forms systematically with the phonological context. Example 1–5 lists the allomorphs
-ess-, -ass-, -yess- of the temporal marker indicating past tense. The first two alter according
to the phonological condition of the preceding verb stem; the last one is used especially for
the verb ha- ‘do’. The appropriate allomorph is merely concatenated after the stem, or it can
be further contracted with it, as was -si-ess- into -syess- in Example 1–2. During morpho-
logical parsing, normalization of allomorphs into some canonical form of the morpheme is
desirable, especially because the contraction of morphs interferes with simple segmentation:

Example 1–5: concatenated contracted
(a) 보았- po-ass- 봤- pwass- ‘have seen’
(b) 가지었- ka.ci-ess- 가졌- ka.cyess- ‘have taken’
(c) 하였- ha-yess- 했- hayss- ‘have done’
(d) 되었- toy-ess- 됐- twayss- ‘have become’
(e) 놓았- noh-ass- 놨- nwass- ‘have put’

Contractions (a, b) are ordinary but require attention because two characters are reduced
into one. Other types (c, d, e) are phonologically unpredictable, or lexically dependent. For
example, coh-ass- ‘have been good’ may never be contracted, whereas noh- and -ass- are
merged into nwass- in (e).

There are yet other linguistic devices of word formation to account for, as the morpho-
logical process itself can get less trivial. The concatenation operation can be complemented
with infixation or intertwining of the morphs, which is common, for instance, in Arabic.
Nonconcatenative inflection by modification of the internal vowel of a word occurs even in
English: compare the sounds of mouse and mice, see and saw, read and read.

Notably in Arabic, internal inflection takes place routinely and has a yet different quality.
The internal parts of words, called stems, are modeled with root and pattern morphemes.
Word structure is then described by templates abstracting away from the root but showing
the pattern and all the other morphs attached to either side of it.

Example 1–6: hl stqrO h*h AljrA}d?3 � ������	 
 � � ��
�
������� �

hal sa-taqra↩u hād
¯
ihi ’l-ǧarā↩ida?

whether will+you-read this the-newspapers?
hl stqrWhA? ln OqrOhA. 	 �

�
����

�
� ��
 � � �������� �

hal sa-taqra↩uhā? lan ↩aqra↩ahā.
whether will+you-read+it? not-will I-read+it.

3. The original Arabic script is transliterated using Buckwalter notation. For readability, we also provide
the standard phonological transcription, which reduces ambiguity.
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The meaning of Example 1–6 is similar to that of Example 1–1, only the phrase
hād

¯
ihi ’l-ǧarā↩ida refers to ‘these newspapers’. While sa-taqra↩u ‘you will read’ combines

the future marker sa- with the imperfective second-person masculine singular verb taqra↩u
in the indicative mood and active voice, sa-taqra↩uhā ‘you will read it’ also adds the cliticized
feminine singular personal pronoun in the accusative case.4

The citation form of the lexeme to which taqra↩u ‘you-masc-sg read’ belongs is qara↩,
roughly ‘to read’. This form is classified by linguists as the basic verbal form represented
by the template fa↪al merged with the consonantal root q r ↩, where the f ↪ l symbols of the
template are substituted by the respective root consonants. Inflections of this lexeme can
modify the pattern fa↪al of the stem of the lemma into f↪al and concatenate it, under rules
of morphophonemic changes, with further prefixes and suffixes. The structure of taqra↩u is
thus parsed into the template ta-f↪al-u and the invariant root.

The word al-ǧarā↩ida ‘the newspapers’ in the accusative case and definite state is another
example of internal inflection. Its structure follows the template al-fa↪̄a↩il-a with the root ǧ
r d. This word is the plural of ǧar̄ıdah ‘newspaper’ with the template fa↪̄ıl-ah. The links
between singular and plural templates are subject to convention and have to be declared in
the lexicon.

Irrespective of the morphological processes involved, some properties or features of a
word need not be apparent explicitly in its morphological structure. Its existing structural
components may be paired with and depend on several functions simultaneously but may
have no particular grammatical interpretation or lexical meaning.

The -ah suffix of ǧar̄ıdah ‘newspaper’ corresponds with the inherent feminine gender of
the lexeme. In fact, the -ah morpheme is commonly, though not exclusively, used to mark the
feminine singular forms of adjectives: for example, ǧad̄ıd becomes ǧad̄ıdah ‘new’. However,
the -ah suffix can be part of words that are not feminine, and there its function can be seen
as either emptied or overridden [12]. In general, linguistic forms should be distinguished
from functions, and not every morph can be assumed to be a morpheme.

1.1.4 Typology

Morphological typology divides languages into groups by characterizing the prevalent mor-
phological phenomena in those languages. It can consider various criteria, and during the
history of linguistics, different classifications have been proposed [13, 14]. Let us outline the
typology that is based on quantitative relations between words, their morphemes, and their
features:

Isolating, or analytic, languages include no or relatively few words that would comprise
more than one morpheme (typical members are Chinese, Vietnamese, and Thai; ana-
lytic tendencies are also found in English).

Synthetic languages can combine more morphemes in one word and are further divided
into agglutinative and fusional languages.

Agglutinative languages have morphemes associated with only a single function at a time
(as in Korean, Japanese, Finnish, and Tamil, etc.).

4. The logical plural of things is formally treated as feminine singular in Arabic.
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Fusional languages are defined by their feature-per-morpheme ratio higher than one (as in
Arabic, Czech, Latin, Sanskrit, German, etc.).

In accordance with the notions about word formation processes mentioned earlier, we
can also discern:

Concatenative languages linking morphs and morphemes one after another.

Nonlinear languages allowing structural components to merge nonsequentially to apply
tonal morphemes or change the consonantal or vocalic templates of words.

While some morphological phenomena, such as orthographic collapsing, phonological
contraction, or complex inflection and derivation, are more dominant in some languages
than in others, in principle, we can find, and should be able to deal with, instances of these
phenomena across different language families and typological classes.

1.2 Issues and Challenges

Morphological parsing tries to eliminate or alleviate the variability of word forms to provide
higher-level linguistic units whose lexical and morphological properties are explicit and well
defined. It attempts to remove unnecessary irregularity and give limits to ambiguity, both
of which are present inherently in human language.

By irregularity, we mean existence of such forms and structures that are not described
appropriately by a prototypical linguistic model. Some irregularities can be understood by
redesigning the model and improving its rules, but other lexically dependent irregularities
often cannot be generalized.

Ambiguity is indeterminacy in interpretation of expressions of language. Next to acci-
dental ambiguity and ambiguity due to lexemes having multiple senses, we note the issue of
syncretism, or systematic ambiguity.

Morphological modeling also faces the problem of productivity and creativity in language,
by which unconventional but perfectly meaningful new words or new senses are coined.
Usually, though, words that are not licensed in some way by the lexicon of a morphological
system will remain completely unparsed. This unknown word problem is particularly
severe in speech or writing that gets out of the expected domain of the linguistic model,
such as when special terms or foreign names are involved in the discourse or when multiple
languages or dialects are mixed together.

1.2.1 Irregularity

Morphological parsing is motivated by the quest for generalization and abstraction in the
world of words. Immediate descriptions of given linguistic data may not be the ultimate
ones, due to either their inadequate accuracy or inappropriate complexity, and better for-
mulations may be needed. The design principles of the morphological model are therefore
very important.

In Arabic, the deeper study of the morphological processes that are in effect during
inflection and derivation, even for the so-called irregular words, is essential for mastering the
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whole morphological and phonological system. With the proper abstractions made, irregular
morphology can be seen as merely enforcing some extended rules, the nature of which is
phonological, over the underlying or prototypical regular word forms [15, 16].

Example 1–7: hl rOyth? lm Orh. lm Or OHdA. 	 ���
�
� �

�
� �
 	 ��

�
� �
 � �����

�
�� �

hal ra↩aytihi? lam ↩arahu. lam ↩ara ↩ah. adan.
whether you-saw+him? not-did I-see+him. not-did I-see anyone.

In Example 1–7, ra↩ayti is the second-person feminine singular perfective verb in active
voice, member of the ra↩̄a ‘to see’ lexeme of the r ↩ y root. The prototypical, regularized
pattern for this citation form is fa↪al, as we saw with qara↩ in Example 1–6. Alternatively,
we could assume the pattern of ra↩̄a to be fa↪̄a, thereby asserting in a compact way that
the final root consonant and its vocalic context are subject to the particular phonological
change, resulting in ra↩̄a like fa↪̄a instead of ra↩ay like fa↪al. The occurrence of this change
in the citation form may have possible implications for the morphological behavior of the
whole lexeme.

Table 1–1 illustrates differences between a naive model of word structure in Arabic and
the model proposed in Smrž [12] and Smrž and Bielický [17] where morphophonemic merge
rules and templates are involved. Morphophonemic templates capture morphological pro-
cesses by just organizing stem patterns and generic affixes without any context-dependent
variation of the affixes or ad hoc modification of the stems. The merge rules, indeed very
terse, then ensure that such structured representations can be converted into exactly the
surface forms, both orthographic and phonological, used in the natural language. Applying
the merge rules is independent of and irrespective of any grammatical parameters or infor-
mation other than that contained in a template. Most morphological irregularities are thus
successfully removed.

Table 1–1: Discovering the regularity of Arabic morphology using
morphophonemic templates, where uniform structural operations apply to
different kinds of stems. In rows, surface forms S of qara↩ ‘to read’ and ra↩̄a
‘to see’ and their inflections are analyzed into immediate I and
morphophonemic M templates, in which dashes mark the structural boundaries
where merge rules are enforced. The outer columns of the table correspond to
P perfective and I imperfective stems declared in the lexicon; the inner columns
treat active verb forms of the following morphosyntactic properties: I indicative,
S subjunctive, J jussive mood; 1 first, 2 second, 3 third person; M masculine, F

feminine gender; S singular, P plural number

P-stem P−3MS P−2FS P−3MP II2MS IS1−S IJ1−S I-stem

qara↩ qara↩a qara↩ti qara↩̄u taqra↩u ↩aqra↩a ↩aqra↩ qra↩ S

fa↪al fa↪al-a fa↪al-ti fa↪al-ū ta-f↪al-u ↩a-f↪al-a ↩a-f↪al f↪al I

fa↪al fa↪al-a fa↪al-ti fa↪al-ū ta-f↪al-u ↩a-f↪al-a ↩a-f↪al- f↪al M

... ...-a ...-ti ...-ū ta-...-u ↩a-...-a ↩a-...- ...
fa↪̄a fa↪̄a-a fa↪̄a-ti fa↪̄a-ū ta-fā-u ↩a-fā-a ↩a-fā- fā M

fa↪̄a fa↪̄a fa↪al-ti fa↪-aw ta-fā ↩a-fā ↩a-fa fā I

ra↩̄a ra↩̄a ra↩ayti ra↩aw tarā ↩arā ↩ara rā S
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Table 1–2: Examples of major Korean irregular verb classes compared
with regular verbs

Base Form (-e) Meaning Comment

집- cip- 집어 cip.e ‘pick’ regular
깁- kip- 기워 ki.we ‘sew’ p-irregular

믿- mit- 믿어 mit.e ‘believe’ regular
싣- sit- 실어 sil.e ‘load’ t-irregular

씻- ssis- 씻어 ssis.e ‘wash’ regular
잇- is- 이어 i.e ‘link’ s-irregular

낳- nah- 낳아 nah.a ‘bear’ regular
까맣- kka.mah- 까매 kka.may ‘be black’ h-irregular

치르- chi.lu- 치러 chi.le ‘pay’ regular u-ellipsis
이르- i.lu- 이르러 i.lu.le ‘reach’ le-irregular
흐르- hu.lu- 흘러 hul.le ‘flow’ lu-irregular

In contrast, some irregularities are bound to particular lexemes or contexts, and can-
not be accounted for by general rules. Korean irregular verbs provide examples of such
irregularities.

Korean shows exceptional constraints on the selection of grammatical morphemes. It
is hard to find irregular inflection in other agglutinative languages: two irregular verbs
in Japanese [18], one in Finnish [19]. These languages are abundant with morphological
alternations that are formalized by precise phonological rules. Korean additionally features
lexically dependent stem alternation. As in many other languages, i- ‘be’ and ha- ‘do’ have
unique irregular endings. Other irregular verbs are classified by the stem final phoneme.
Table 1–2 compares major irregular verb classes with regular verbs in the same phonological
condition.

1.2.2 Ambiguity

Morphological ambiguity is the possibility that word forms be understood in multiple ways
out of the context of their discourse. Words forms that look the same but have distinct
functions or meaning are called homonyms.

Ambiguity is present in all aspects of morphological processing and language processing
at large. Morphological parsing is not concerned with complete disambiguation of words in
their context, however; it can effectively restrict the set of valid interpretations of a given
word form [20, 21].

In Korean, homonyms are one of the most problematic objects in morphological analysis
because they prevail all around frequent lexical items. Table 1–3 arranges homonyms on
the basis of their behavior with different endings. Example 1–8 is an example of homonyms
through nouns and verbs.
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Table 1–3: Systematic homonyms arise as verbs combined with endings
in Korean

(-ko) (-e) (-un) Meaning

묻고 mwut.ko 묻어 mwut.e 묻은 mwut.un ‘bury’
묻고 mwut.ko 물어 mwul.e 물은 mwul.un ‘ask’
물고 mwul.ko 물어 mwul.e 문 mwun ‘bite’

걷고 ket.ko 걷어 ket.e 걷은 ket.un ‘roll up’
걷고 ket.ko 걸어 kel.e 걸은 kel.un ‘walk’
걸고 kel.ko 걸어 kel.e 건 ken ‘hang’

굽고 kwup.ko 굽어 kwup.e 굽은 kwup.un ‘be bent’
굽고 kwup.ko 구워 kwu.we 구운 kwu.wun ‘bake’

이르고 i.lu.ko 이르러 i.lu.le 이른 i.lun ‘reach’
이르고 i.lu.ko 일러 il.le 이른 i.lun ‘say’

Example 1–8: 난 ‘orchid’ ← 난 nan ‘orchid’
난 ‘I’ ← 나 na ‘I’ + -n (topic)
난 ‘which flew’ ← 날- nal- ‘fly’ + -n (relative, past)
난 ‘which got out’ ← 나- na- ‘get out’ + -n (relative, past)

We could also consider ambiguity in the senses of the noun nan, according to the Standard
Korean Language Dictionary: nan1 ‘egg’, nan2 ‘revolt’, nan5 ‘section (in newspaper)’, nan6

‘orchid’, plus several infrequent readings.
Arabic is a language of rich morphology, both derivational and inflectional. Because

Arabic script usually does not encode short vowels and omits yet some other diacritical
marks that would record the phonological form exactly, the degree of its morphological
ambiguity is considerably increased. In addition, Arabic orthography collapses certain word
forms together. The problem of morphological disambiguation of Arabic encompasses not
only the resolution of the structural components of words and their actual morphosyntactic
properties (i.e., morphological tagging [22, 23, 24]) but also tokenization and normalization
[25], lemmatization, stemming, and diacritization [26, 27, 28].

When inflected syntactic words are combined in an utterance, additional phonological
and orthographic changes can take place, as shown in Figure 1–1. In Sanskrit, one such
euphony rule is known as external sandhi [29, 30]. Inverting sandhi during tokenization is
usually nondeterministic in the sense that it can provide multiple solutions. In any language,
tokenization decisions may impose constraints on the morphosyntactic properties of the
tokens being reconstructed, which then have to be respected in further processing. The
tight coupling between morphology and syntax has inspired proposals for disambiguating
them jointly rather than sequentially [4].

Czech is a highly inflected fusional language. Unlike agglutinative languages, inflec-
tional morphemes often represent several functions simultaneously, and there is no partic-
ular one-to-one correspondence between their forms and functions. Inflectional paradigms
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dirāsat̄ı ��
������ drAsty → dirāsatu ı̄ ��  ������ drAsp y

→ dirāsati ı̄ ��  ������ drAsp y

→ dirāsata ı̄ ��  ������ drAsp y

mu↪allimı̄ya !� "#$% mElmy → mu↪allimū ı̄ ��  &"#$% mElmw y

→ mu↪allimı̄ ı̄ ��  !� "#$% mElmy y

katabtumūhā �&"��'	 ��( ktbtmwhA → katabtum hā � � ���	 ��( ktbtm hA

↩iǧrā↩uhu � ����)	 �� IjrAWh → ↩iǧrā↩u hu � * ��)	 �� IjrA’ h

↩iǧrā↩ihi ��� ��)	 �� IjrA}h → ↩iǧrā↩i hu � * ��)	 �� IjrA’ h

↩iǧrā↩ahu �* ��)	 �� IjrA’h → ↩iǧrā↩a hu � * ��)	 �� IjrA’ h

li-’l-↩asafi �+�
�
,
 llOsf → li ’l-↩asafi li �+�

�
-� . l AlOsf

Figure 1–1: Complex tokenization and normalization of euphony in Arabic. Three nominal cases are
expressed by the same word form with dirāsat̄ı ‘my study’ and mu↪allimı̄ya ‘my teachers’, but the
original case endings are distinct. In katabtumūhā ‘you-masc-pl wrote them’, the liaison vowel ū is
dropped when tokenized. Special attention is needed to normalize some orthographic conventions, such
as the interaction of ↩iǧrā↩ ‘carrying out’ and the cliticized hu ‘his’ respecting the case ending or the
merge of the definite article of ↩asaf ‘regret’ with the preposition li ‘for’

(i.e., schemes for finding the form of a lexeme associated with the required properties) in
Czech are of numerous kinds, yet they tend to include nonunique forms in them.

Table 1–4 lists the paradigms of several common Czech words. Inflectional paradigms
for nouns depend on the grammatical gender and the phonological structure of a lexeme.
The individual forms in a paradigm vary with grammatical number and case, which are the
free parameters imposed only by the context in which a word is used.

Looking at the morphological variation of the word staveńı ‘building’, we might wonder
why we should distinguish all the cases for it when this lexeme can take only four different
forms. Is the detail of the case system appropriate? The answer is yes, because we can find
linguistic evidence that leads to this case category abstraction. Just consider other words of
the same meaning in place of staveńı in various contexts. We conclude that there is indeed
a case distinction made by the underlying system, but it need not necessarily be expressed
clearly and uniquely in the form of words.

The morphological phenomenon that some words or word classes show instances of
systematic homonymy is called syncretism. In particular, homonymy can occur due to
neutralization and uninflectedness with respect to some morphosyntactic parameters.
These cases of morphological syncretism are distinguished by the ability of the context to
demand the morphosyntactic properties in question, as stated by Baerman, Brown, and
Corbett [10, p. 32]:

Whereas neutralization is about syntactic irrelevance as reflected in morphology,
uninflectedness is about morphology being unresponsive to a feature that is
syntactically relevant.

For example, it seems fine for syntax in Czech or Arabic to request the personal pronoun
of the first-person feminine singular, equivalent to ‘I’, despite it being homonymous with
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Table 1–4: Morphological paradigms of the Czech words d̊um ‘house’,
budova ‘building’, stavba ‘building’, staveńı ‘building’. Despite systematic
ambiguities in them, the space of inflectional parameters could not be
reduced without losing the ability to capture all distinct forms elsewhere: S

singular, P plural number; 1 nominative, 2 genitive, 3 dative, 4 accusative, 5

vocative, 6 locative, 7 instrumental case

Masculine inanimate Feminine Feminine Neuter

S1 d̊um budova stavba staveńı
S2 domu budovy stavby staveńı
S3 domu budově stavbě staveńı
S4 d̊um budovu stavbu staveńı
S5 dome budovo stavbo staveńı
S6 domu / domě budově stavbě staveńı
S7 domem budovou stavbou staveńım
P1 domy budovy stavby staveńı
P2 domů budov staveb staveńı
P3 domům budovám stavbám staveńım
P4 domy budovy stavby staveńı
P5 domy budovy stavby staveńı
P6 domech budovách stavbách staveńıch
P7 domy budovami stavbami staveńımi

the first-person masculine singular. The reason is that for some other values of the person
category, the forms of masculine and feminine gender are different, and there exist syntactic
dependencies that do take gender into account. It is not the case that the first-person singular
pronoun would have no gender nor that it would have both. We just observe uninflectedness
here. On the other hand, we might claim that in English or Korean, the gender category is
syntactically neutralized if it ever was present, and the nuances between he and she, him
and her, his and hers are only semantic.

With the notion of paradigms and syncretism in mind, we should ask what is the minimal
set of combinations of morphosyntactic inflectional parameters that covers the inflectional
variability in a language. Morphological models that would like to define a joint system of
underlying morphosyntactic properties for multiple languages would have to generalize the
parameter space accordingly and neutralize any systematically void configurations.

1.2.3 Productivity

Is the inventory of words in a language finite, or is it unlimited? This question leads
directly to discerning two fundamental approaches to language, summarized in the dis-
tinction between langue and parole by Ferdinand de Saussure, or in the competence versus
performance duality by Noam Chomsky.

In one view, language can be seen as simply a collection of utterances (parole) actually
pronounced or written (performance). This ideal data set can in practice be approximated
by linguistic corpora, which are finite collections of linguistic data that are studied with
empirical methods and can be used for comparison when linguistic models are developed.
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Yet, if we consider language as a system (langue), we discover in it structural devices
like recursion, iteration, or compounding that allow to produce (competence) an infinite set
of concrete linguistic utterances. This general potential holds for morphological processes as
well and is called morphological productivity [31, 32].

We denote the set of word forms found in a corpus of a language as its vocabulary. The
members of this set are word types, whereas every original instance of a word form is a word
token.

The distribution of words [33] or other elements of language follows the “80/20 rule,”
also known as the law of the vital few. It says that most of the word tokens in a given corpus
can be identified with just a couple of word types in its vocabulary, and words from the rest
of the vocabulary occur much less commonly if not rarely in the corpus. Furthermore, new,
unexpected words will always appear as the collection of linguistic data is enlarged.

In Czech, negation is a productive morphological operation. Verbs, nouns, adjectives, and
adverbs can be prefixed with ne- to define the complementary lexical concept. In Example
1–9, budeš ‘you will be’ is the second-person singular of být ‘to be’, and nebudu ‘I will not
be’ is the first-person singular of nebýt, the negated být. We could easily have č́ıst ‘to read’
and neč́ıst ‘not to read’, or we could create an adverbial phrase like noviny nenoviny that
would express ‘indifference to newspapers’ in general:

Example 1–9: Budeš č́ıst ty noviny? Budeš je č́ıst? Nebudu je č́ıst.
you-will read the newspaper? you-will it read? not-I-will it read.

Example 1–9 has the meaning of Example 1–1 and Example 1–6. The word noviny
‘newspaper’ exists only in plural whether it signifies one piece of newspaper or many of
them. We can literally translate noviny as the plural of novina ‘news’ to see the origins of
the word as well as the fortunate analogy with English.

It is conceivable to include all negated lexemes into the lexicon and thereby again achieve
a finite number of word forms in the vocabulary. Generally, though, the richness of a mor-
phological system of a language can make this approach highly impractical.

Most languages contain words that allow some of their structural components to repeat
freely. Consider the prefix pra- related to a notion of ‘generation’ in Czech and how it can
or cannot be iterated, as shown in Example 1–10:

Example 1–10: vnuk ‘grandson’ pravnuk ‘great-grandson’
prapra...vnuk ‘great-great-...grandson’

les ‘forest’ prales ‘jungle’, ‘virgin forest’
zdroj ‘source’ prazdroj ‘urquell’, ‘original source’
starý ‘old’ prastarý ‘time-honored’, ‘dateless’

In creative language, such as in blogs, chats, and emotive informal communication,
iteration is often used to accent intensity of expression. Creativity may, of course, go beyond
the rules of productivity itself [32].

Let us give an example where creativity, productivity, and the issue of unknown words
meet nicely. According to Wikipedia, the word googol is a made-up word denoting the
number “one followed by one hundred zeros,” and the name of the company Google is an
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inadvertent misspelling thereof. Nonetheless, both of these words successfully entered the
lexicon of English where morphological productivity started working, and we now know the
verb to google and nouns like googling or even googlish or googleology [34].

The original names have been adopted by other languages, too, and their own morpho-
logical processes have been triggered. In Czech, one says googlovat, googlit ‘to google’ or
vygooglovat, vygooglit ‘to google out’, googlováńı ‘googling’, and so on. In Arabic, the names
are transcribed as ǧūǧūl ‘googol’ and ǧūǧil ‘Google’. The latter one got transformed to the
verb ǧawǧal ‘to google’ through internal inflection, as if there were a genuine root ǧ w ǧ l,
and the corresponding noun ǧawǧalah ‘googling’ exists as well.

1.3 Morphological Models

There are many possible approaches to designing and implementing morphological models.
Over time, computational linguistics has witnessed the development of a number of for-
malisms and frameworks, in particular grammars of different kinds and expressive power,
with which to address whole classes of problems in processing natural as well as formal
languages.

Various domain-specific programming languages have been created that allow us to
implement the theoretical problem using hopefully intuitive and minimal programming
effort. These special-purpose languages usually introduce idiosyncratic notations of programs
and are interpreted using some restricted model of computation. The motivation for such
approaches may partly lie in the fact that, historically, computational resources were too
limited compared to the requirements and complexity of the tasks being solved. Other
motivations are theoretical given that finding a simple but accurate and yet generalizing
model is the point of scientific abstraction.

There are also many approaches that do not resort to domain-specific programming.
They, however, have to take care of the runtime performance and efficiency of the computa-
tional model themselves. It is up to the choice of the programming methods and the design
style whether such models turn out to be pure, intuitive, adequate, complete, reusable,
elegant, or not.

Let us now look at the most prominent types of computational approaches to morphology.
Needless to say, this typology is not strictly exclusive in the sense that comprehensive
morphological models and their applications can combine various distinct implementational
aspects, discussed next.

1.3.1 Dictionary Lookup

Morphological parsing is a process by which word forms of a language are associated with
corresponding linguistic descriptions. Morphological systems that specify these associations
by merely enumerating them case by case do not offer any generalization means. Likewise
for systems in which analyzing a word form is reduced to looking it up verbatim in word



16 Chapter 1 Finding the Structure of Words

lists, dictionaries, or databases, unless they are constructed by and kept in sync with more
sophisticated models of the language.

In this context, a dictionary is understood as a data structure that directly enables
obtaining some precomputed results, in our case word analyses. The data structure can
be optimized for efficient lookup, and the results can be shared. Lookup operations are
relatively simple and usually quick. Dictionaries can be implemented, for instance, as lists,
binary search trees, tries, hash tables, and so on.

Because the set of associations between word forms and their desired descriptions is
declared by plain enumeration, the coverage of the model is finite and the generative
potential of the language is not exploited. Developing as well as verifying the association list
is tedious, liable to errors, and likely inefficient and inaccurate unless the data are retrieved
automatically from large and reliable linguistic resources.

Despite all that, an enumerative model is often sufficient for the given purpose, deals eas-
ily with exceptions, and can implement even complex morphology. For instance, dictionary-
based approaches to Korean [35] depend on a large dictionary of all possible combinations
of allomorphs and morphological alternations. These approaches do not allow development
of reusable morphological rules, though [36].

The word list or dictionary-based approach has been used frequently in various
ad hoc implementations for many languages. We could assume that with the availability of
immense online data, extracting a high-coverage vocabulary of word forms is feasible these
days [37]. The question remains how the associated annotations are constructed and how
informative and accurate they are. References to the literature on the unsupervised learn-
ing and induction of morphology, which are methods resulting in structured and therefore
nonenumerative models, are provided later in this chapter.

1.3.2 Finite-State Morphology

By finite-state morphological models, we mean those in which the specifications written
by human programmers are directly compiled into finite-state transducers. The two most
popular tools supporting this approach, which have been cited in literature and for which
example implementations for multiple languages are available online, include XFST (Xerox
Finite-State Tool) [9] and LexTools [11].5

Finite-state transducers are computational devices extending the power of finite-state
automata. They consist of a finite set of nodes connected by directed edges labeled with
pairs of input and output symbols. In such a network or graph, nodes are also called states,
while edges are called arcs. Traversing the network from the set of initial states to the set
of final states along the arcs is equivalent to reading the sequences of encountered input
symbols and writing the sequences of corresponding output symbols.

The set of possible sequences accepted by the transducer defines the input language;
the set of possible sequences emitted by the transducer defines the output language. For
example, a finite-state transducer could translate the infinite regular language consisting
of the words vnuk, pravnuk, prapravnuk, . . . to the matching words in the infinite regular
language defined by grandson, great-grandson, great-great-grandson, . . .

5. See http://www.fsmbook.com/ and http://compling.ai.uiuc.edu/catms/ respectively.

http://www.fsmbook.com/
http://compling.ai.uiuc.edu/catms/
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The role of finite-state transducers is to capture and compute regular relations on sets
[38, 9, 11].6 That is, transducers specify relations between the input and output languages.
In fact, it is possible to invert the domain and the range of a relation, that is, exchange the
input and the output. In finite-state computational morphology, it is common to refer to the
input word forms as surface strings and to the output descriptions as lexical strings, if
the transducer is used for morphological analysis, or vice versa, if it is used for morphological
generation.

The linguistic descriptions we would like to give to the word forms and their components
can be rather arbitrary and are obviously dependent on the language processed as well as
on the morphological theory followed. In English, a finite-state transducer could analyze the
surface string children into the lexical string child [+plural], for instance, or generate women
from woman [+plural]. For other examples of possible input and output strings, consider
Example 1–8 or Figure 1–1.

Relations on languages can also be viewed as functions. Let us have a relation R, and
let us denote by [Σ] the set of all sequences over some set of symbols Σ, so that the domain
and the range of R are subsets of [Σ]. We can then consider R as a function mapping an
input string into a set of output strings, formally denoted by this type signature, where [Σ]
equals String:

R :: [Σ] → {[Σ]} R :: String → {String} (1.1)

Finite-state transducers have been studied extensively for their formal algebraic proper-
ties and have proven to be suitable models for miscellaneous problems [9]. Their applications
encoding the surface rather than lexical string associations as rewrite rules of phonology
and morphology have been around since the two-level morphology model [39], further pre-
sented in Computational Approaches to Morphology and Syntax [11] and Morphology and
Computation [40].

Morphological operations and processes in human languages can, in the overwhelming
number of cases and to a sufficient degree, be expressed in finite-state terms. Beesley and
Karttunen [9] stress concatenation of transducers as the method for factoring surface and
lexical languages into simpler models and propose a somewhat unsystematic compile-
replace transducer operation for handling nonconcatenative phenomena in morphology.
Roark and Sproat [11], however, argue that building morphological models in general using
transducer composition, which is pure, is a more universal approach.

A theoretical limitation of finite-state models of morphology is the problem of capturing
reduplication of words or their elements (e.g., to express plurality) found in several human
languages. A formal language that contains only words of the form λ1+k, where λ is some
arbitrary sequence of symbols from an alphabet and k ∈ {1, 2, . . . } is an arbitrary natural
number indicating how many times λ is repeated after itself, is not a regular language, not
even a context-free language. General reduplication of strings of unbounded length is thus
not a regular-language operation. Coping with this problem in the framework of finite-state
transducers is discussed by Roark and Sproat [11].

6. Regular relations and regular languages are restricted in their structure by the limited memory of the
device (i.e., the finite set of configurations in which it can occur). Unlike with regular languages, intersection
of regular relations can in general yield nonregular results [38].
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Finite-state technology can be applied to the morphological modeling of isolating and
agglutinative languages in a quite straightforward manner. Korean finite-state models are
discussed by Kim et al. [41], Lee and Rim [42], and Han [43], to mention a few. For treat-
ments of nonconcatenative morphology using finite-state frameworks, see especially Kay [44],
Beesley [45], Kiraz [46], and Habash, Rambow, and Kiraz [47]. For comparison with finite-
state models of the rich morphology of Czech, compare Skoumalová [48] and Sedláĉek and
Smrž [49].

Implementing a refined finite-state morphological model requires careful fine-tuning of
its lexicons, rewrite rules, and other components, while extending the code can lead to
unexpected interactions in it, as noted by Oazer [50]. Convenient specification languages
like those mentioned previously are needed because encoding the finite-state transducers
directly would be extremely arduous, error prone, and unintelligible.

Finite-state tools are available in most general-purpose programming languages in the
form of support for regular expression matching and substitution. While these may not
be the ultimate choice for building full-fledged morphological analyzers or generators of a
natural language, they are very suitable for developing tokenizers and morphological guessers
capable of suggesting at least some structure for words that are formed correctly but cannot
be identified with concrete lexemes during full morphological parsing [9].

1.3.3 Unification-Based Morphology

Unification-based approaches to morphology have been inspired by advances in various for-
mal linguistic frameworks aiming at enabling complete grammatical descriptions of human
languages, especially head-driven phrase structure grammar (HPSG) [51], and by develop-
ment of languages for lexical knowledge representation, especially DATR [52]. The concepts
and methods of these formalisms are often closely connected to those of logic programming.
In the excellent thesis by Erjavec [53], the scientific context is discussed extensively and
profoundly; refer also to the monographs by Carpenter [54] and Shieber [55].

In finite-state morphological models, both surface and lexical forms are by themselves
unstructured strings of atomic symbols. In higher-level approaches, linguistic information is
expressed by more appropriate data structures that can include complex values or can be
recursively nested if needed. Morphological parsing P thus associates linear forms φ with
alternatives of structured content ψ, cf. (1.1):

P :: φ → {ψ} P :: form → {content} (1.2)

Erjavec [53] argues that for morphological modeling, word forms are best captured by
regular expressions, while the linguistic content is best described through typed feature
structures. Feature structures can be viewed as directed acyclic graphs. A node in a feature
structure comprises a set of attributes whose values can be feature structures again. Nodes
are associated with types, and atomic values are attributeless nodes distinguished by their
type. Instead of unique instances of values everywhere, references can be used to establish
value instance identity. Feature structures are usually displayed as attribute-value matrices
or as nested symbolic expressions.

Unification is the key operation by which feature structures can be merged into a more
informative feature structure. Unification of feature structures can also fail, which means
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that the information in them is mutually incompatible. Depending on the flavor of the
processing logic, unification can be monotonic (i.e., information-preserving), or it can allow
inheritance of default values and their overriding. In either case, information in a model can
be efficiently shared and reused by means of inheritance hierarchies defined on the feature
structure types.

Morphological models of this kind are typically formulated as logic programs, and unifi-
cation is used to solve the system of constraints imposed by the model. Advantages of this
approach include better abstraction possibilities for developing a morphological grammar as
well as elimination of redundant information from it.

However, morphological models implemented in DATR can, under certain assumptions,
be converted to finite-state machines and are thus formally equivalent to them in the range
of morphological phenomena they can describe [11]. Interestingly, one-level phonology [56]
formulating phonological constraints as logic expressions can be compiled into finite-state
automata, which can then be intersected with morphological transducers to exclude any
disturbing phonologically invalid surface strings [cf. 57, 53]

Unification-based models have been implemented for Russian [58], Czech [59], Slovene
[53], Persian [60], Hebrew [61], Arabic [62, 63], and other languages. Some rely on DATR;
some adopt, adapt, or develop other unification engines.

1.3.4 Functional Morphology

This group of morphological models includes not only the ones following the methodology
of functional morphology [64], but even those related to it, such as morphological resource
grammars of Grammatical Framework [65]. Functional morphology defines its models using
principles of functional programming and type theory. It treats morphological operations
and processes as pure mathematical functions and organizes the linguistic as well as abstract
elements of a model into distinct types of values and type classes.

Though functional morphology is not limited to modeling particular types of mor-
phologies in human languages, it is especially useful for fusional morphologies. Linguistic
notions like paradigms, rules and exceptions, grammatical categories and parameters, lex-
emes, morphemes, and morphs can be represented intuitively and succinctly in this ap-
proach. Designing a morphological system in an accurate and elegant way is encouraged by
the computational setting, which supports logical decoupling of subproblems and reinforces
the semantic structure of a program by strong type checking.

Functional morphology implementations are intended to be reused as programming
libraries capable of handling the complete morphology of a language and to be incorporated
into various kinds of applications. Morphological parsing is just one usage of the system,
the others being morphological generation, lexicon browsing, and so on. Next to parsing
(1.2), we can describe inflection I, derivation D, and lookup L as functions of these generic
types:

I :: lexeme → {parameter} → {form} (1.3)
D :: lexeme → {parameter} → {lexeme} (1.4)
L :: content → {lexeme} (1.5)
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A functional morphology model can be compiled into finite-state transducers if needed,
but can also be used interactively in an interpreted mode, for instance. Computation within
a model may exploit lazy evaluation and employ alternative methods of efficient parsing,
lookup, and so on [see 66, 12].

Many functional morphology implementations are embedded in a general-purpose pro-
gramming language, which gives programmers more freedom with advanced programming
techniques and allows them to develop full-featured, real-world applications for their mod-
els. The Zen toolkit for Sanskrit morphology [67, 68] is written in OCaml. It influenced
the functional morphology framework [64] in Haskell, with which morphologies of Latin,
Swedish, Spanish, Urdu [69], and other languages have been implemented.

In Haskell, in particular, developers can take advantage of its syntactic flexibility and
design their own notation for the functional constructs that model the given problem. The
notation then constitutes a so-called domain-specific embedded language, which makes pro-
gramming even more fun. Figure 1–2 illustrates how the ElixirFM implementation of Ara-
bic morphology [12, 17] captures the structure of words and defines the lexicon. Despite
the entries being most informative, their format is simply similar to that found in printed
dictionaries. Operators like >|, |<, |<< and labels like verb are just infix functions; patterns
and affixes like FaCY, FCI, At are data constructors.

|> ”d r y” <| [

FaCY ‘ verb ‘ [ ”know” , ” n o t i c e ” ]

‘ imper f ‘ FCI ,

FACY ‘ verb ‘ [ ” f l a t t e r ” , ” d e c e i v e ” ] ,

HaFCY ‘ verb ‘ [ ” i n fo rm ” , ” l e t know” ] ,

lA >| ” ’ a” >>| FCI |<< ” I y ” ‘ adj ‘ [ ” a g n o s t i c ” ] ,

FiCAL |< aT ‘ noun ‘ [ ” knowledge ” , ” knowing” ] ,

MuFACY |< aT ‘ noun ‘ [ ” f l a t t e r y ” ]

‘ p l u r a l ‘ MuFACY |< At ,

FACI ‘ adj ‘ [ ” aware ” , ” knowing” ] ]

d r y �� ��
fa↪̄a

f↪̄ı

fā↪̄a

↩af↪̄a

lā-↩a-f↪̄ı-̄ıy

fi↪̄al-ah

mufā↪̄a-ah

mufā↪̄a-āt

fā↪̄ı

know, notice I (i) darā ���
flatter, deceive III dārā ����
inform, let know IV ↩adrā ���

�
�

agnostic lā-↩adr̄ıy �� ��
�
�-

knowledge, knowing dirāyah
���� ���

flattery mudārāh
�� ����%

(mudārayāt �/������%)
aware, knowing dārin ���

Figure 1–2: Excerpt from the ElixirFM lexicon and a layout generated from it. The source code of
entries nested under the d r y root is shown in monospace font. Note the custom notation and the
economy yet informativeness of the declaration



1.3 Morphological Models 21

Even without the options provided by general-purpose programming languages, func-
tional morphology models achieve high levels of abstraction. Morphological grammars in
Grammatical Framework [65] can be extended with descriptions of the syntax and seman-
tics of a language. Grammatical Framework itself supports multilinguality, and models of
more than a dozen languages are available in it as open-source software [70, 71].

Grammars in the OpenCCG project [72] can be viewed as functional models, too.
Their formalism discerns declarations of features, categories, and families that provide type-
system-like means for representing structured values and inheritance hierarchies on them.
The grammars leverage heavily the functionality to define parametrized macros to mini-
mize redundancy in the model and make required generalizations. Expansion of macros in
the source code has effects similar to inlining of functions. The original text of the gram-
mar is reduced to associations between word forms and their morphosyntactic and lexical
properties.

1.3.5 Morphology Induction

We have focused on finding the structure of words in diverse languages supposing we know
what we are looking for. We have not considered the problem of discovering and induc-
ing word structure without the human insight (i.e., in an unsupervised or semi-supervised
manner). The motivation for such approaches lies in the fact that for many languages,
linguistic expertise might be unavailable or limited, and implementations adequate to a
purpose may not exist at all. Automated acquisition of morphological and lexical infor-
mation, even if not perfect, can be reused for bootstrapping and improving the classical
morphological models, too.

Let us skim over the directions of research in this domain. In the studies by
Hammarström [73] and Goldsmith [74], the literature on unsupervised learning of mor-
phology is reviewed in detail. Hammarström divides the numerous approaches into three
main groups. Some works compare and cluster words based on their similarity according to
miscellaneous metrics [75, 76, 77, 78]; others try to identify the prominent features of word
forms distinguishing them from the unrelated ones. Most of the published approaches cast
morphology induction as the problem of word boundary and morpheme boundary detection,
sometimes acquiring also lexicons and paradigms [79, 80, 81, 82, 83].7

There are several challenging issues about deducing word structure just from the forms
and their context. They are caused by ambiguity [76] and irregularity [75] in morphology,
as well as by orthographic and phonological alternations [85] and nonlinear morphological
processes [86, 87].

In order to improve the chances of statistical inference, parallel learning of morphologies
for multiple languages is proposed by Snyder and Barzilay [88], resulting in discovery of
abstract morphemes. The discriminative log-linear model of Poon, Cherry, and Toutanova
[89] enhances its generalization options by employing overlapping contextual features when
making segmentation decisions [cf. 90].

7. Compare these with a semisupervised approach to word hyphenation [84].
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1.4 Summary

In this chapter, we learned that morphology can be looked at from opposing viewpoints:
one that tries to find the structural components from which words are built versus a more
syntax-driven perspective wherein the functions of words are the focus of the study. Another
distinction can be made between analytic and generative aspects of morphology or can
consider man-made morphological frameworks versus systems for unsupervised induction
of morphology. Yet other kinds of issues are raised about how well and how easily the
morphological models can be implemented.

We described morphological parsing as the formal process recovering structured infor-
mation from a linear sequence of symbols, where ambiguity is present and where multiple
interpretations should be expected.

We explored interesting morphological phenomena in different types of languages and
mentioned several hints in respect to multilingual processing and model development.

With Korean as a language where agglutination moderated by phonological rules is the
dominant morphological process, we saw that a viable model of word decomposition can
work at the morphemes level, regardless of whether they are lexical or grammatical.

In Czech and Arabic as fusional languages with intricate systems of inflectional and
derivational parameters and lexically dependent word stem variation, such factorization is
not useful. Morphology is better described via paradigms associating the possible forms of
lexemes with their corresponding properties.

We discussed various options for implementing either of these models using modern
programming techniques.
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[48] H. Skoumalová, “A Czech morphological lexicon,” in Proceedings of the Third Meeting
of the ACL Special Interest Group in Computational Phonology, pp. 41–47, 1997.
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[63] S. Köprü and J. Miller, “A unification based approach to the morphological analy-
sis and generation of Arabic,” in CAASL-3: Third Workshop on Computational Ap-
proaches to Arabic Script-based Languages, 2009.

[64] M. Forsberg and A. Ranta, “Functional morphology,” in Proceedings of the 9th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2004,
pp. 213–223, 2004.

[65] A. Ranta, “Grammatical Framework: A type-theoretical grammar formalism,” Journal
of Functional Programming, vol. 14, no. 2, pp. 145–189, 2004.



Bibliography 27
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