Multilingual Natural Language Processing Applications

From Theory to Practice

Edited by Daniel M. Bikel and Imed Zitouni
Register Your Book
at ibmpressbooks.com/ibmregister

Upon registration, we will send you electronic sample chapters from two of our popular IBM Press books. In addition, you will be automatically entered into a monthly drawing for a free IBM Press book.

Registration also entitles you to:

- Notices and reminders about author appearances, conferences, and online chats with special guests
- Access to supplemental material that may be available
- Advance notice of forthcoming editions
- Related book recommendations
- Information about special contests and promotions throughout the year
- Chapter excerpts and supplements of forthcoming books

Contact us
If you are interested in writing a book or reviewing manuscripts prior to publication, please write to us at:

Editorial Director, IBM Press
c/o Pearson Education
800 East 96th Street
Indianapolis, IN 46240

e-mail: IBMPress@pearsoned.com

Visit us on the Web: ibmpressbooks.com
Related Books of Interest

The IBM Style Guide
Conventions for Writers and Editors
by Francis DeRespinis, Peter Hayward, Jana Jenkins, Amy Laird, Leslie McDonald, Eric Radzinski
ISBN: 0-13-210130-0

The IBM Style Guide distills IBM wisdom for developing superior content: information that is consistent, clear, concise, and easy to translate. This expert guide contains practical guidance on topic-based writing, writing content for different media types, and writing for global audiences and can help any organization improve and standardize content across authors, delivery mechanisms, and geographic locations.

The IBM Style Guide can help any organization or individual create and manage content more effectively. The guidelines are especially valuable for businesses that have not previously adopted a corporate style guide, for anyone who writes or edits for IBM as an employee or outside contractor, and for anyone who uses modern approaches to information architecture.

DITA Best Practices
By Laura Bellamy, Michelle Carey, and Jenifer Schlotfeldt

Darwin Information Typing Architecture (DITA) is today’s most powerful toolbox for constructing information. By implementing DITA, organizations can gain more value from their technical documentation than ever before. In DITA Best Practices, three DITA pioneers offer the first complete roadmap for successful DITA adoption, implementation, and usage. Drawing on years of experience helping large organizations adopt DITA, the authors answer crucial questions the “official” DITA documents ignore. An indispensable resource for every writer, editor, information architect, manager, or consultant involved with evaluating, deploying, or using DITA.

Sign up for the monthly IBM Press newsletter at ibmpressbooks/newsletters
Developing Quality Technical Information, Second Edition
By Gretchen Hargis, Michelle Carey, Ann Kilty Hernandez, Polly Hughes, Deirdre Longo, Shannon Rouiller, and Elizabeth Wilde
ISBN: 0-13-147749-8
Direct from IBM’s own documentation experts, this is the definitive guide to developing outstanding technical documentation—for the Web and for print. Using extensive before-and-after examples, illustrations, and checklists, the authors show exactly how to create documentation that’s easy to find, understand, and use. This edition includes extensive new coverage of topic-based information, simplifying search and retrievability, internationalization, visual effectiveness, and much more.

Data Integration Blueprint and Modeling
Techniques for a Scalable and Sustainable Architecture
By Anthony David Giordano
Making Data Integration Work: How to Systematically Reduce Cost, Improve Quality, and Enhance Effectiveness
This book presents the solution: a clear, consistent approach to defining, designing, and building data integration components to reduce cost, simplify management, enhance quality, and improve effectiveness. Leading IBM data management expert Tony Giordano brings together best practices for architecture, design, and methodology and shows how to do the disciplined work of getting data integration right.

Mr. Giordano begins with an overview of the “patterns” of data integration, showing how to build blueprints that smoothly handle both operational and analytic data integration. Next, he walks through the entire project lifecycle, explaining each phase, activity, task, and deliverable through a complete case study. Finally, he shows how to integrate data integration with other information management disciplines, from data governance to metadata. The book’s appendices bring together key principles, detailed models, and a complete data integration glossary.
Related Books of Interest

Search Engine Marketing, Inc.
By Mike Moran and Bill Hunt

The #1 Step-by-Step Guide to Search Marketing Success...Now Completely Updated with New Techniques, Tools, Best Practices, and Value-Packed Bonus DVD!

In this book, two world-class experts present today's best practices, step-by-step techniques, and hard-won tips for using search engine marketing to achieve your sales and marketing goals, whatever they are. Mike Moran and Bill Hunt thoroughly cover both the business and technical aspects of contemporary search engine marketing, walking beginners through all the basics while providing reliable, up-to-the-minute insights for experienced professionals.

Thoroughly updated to fully reflect today's latest search engine marketing opportunities, this book guides you through profiting from social media marketing, site search, advanced keyword tools, hybrid paid search auctions, and much more.

Listen to the author's podcast at: ibmpressbooks.com/podcasts

Do It Wrong Quickly
How the Web Changes the Old Marketing Rules
Moran
ISBN: 0-13-225596-0

Get Bold
Using Social Media to Create a New Type of Social Business
Carter
ISBN: 0-13-261831-1

The Social Factor
Innovate, Ignite, and Win through Mass Collaboration and Social Networking
Azua
ISBN: 0-13-701890-8

Audience, Relevance, and Search
Targeting Web Audiences with Relevant Content
Mathewson, Donatone, Fishel
ISBN: 0-13-700420-6

Making the World Work Better
The Ideas That Shaped a Century and a Company
Maney, Hamm, O’Brien
ISBN: 0-13-275510-6

Sign up for the monthly IBM Press newsletter at ibmpressbooks/newsletters
Multilingual Natural Language Processing Applications
This page intentionally left blank
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both: IBM, the IBM press logo, IBM Watson, ThinkPlace, WebSphere, and InfoSphere. A current list of IBM trademarks is available on the web at “copyright and trademark information” as www.ibm.com/legal/copytrade.shtml. Microsoft, Windows, Windows NT, and the Windows logo are trademarks of the Microsoft Corporation in the United States, other countries, or both. Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates. Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data is on file with the Library of Congress.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-10: 0-13-715144-6

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, May 2012
I dedicate this book to
my mother Rita, my brother Robert, my sister-in-law Judi,
my nephew Wolfie, and my niece Freya—Bikels all.
I also dedicate it to Science.

DMB

I dedicate this book to
my parents Ali and Radhia, who taught me the love of science,
my wife Barbara, for her support and encouragement,
my kids Nassim and Ines, for the joy they give me.
I also dedicate it to my grandmother Zohra,
my brother Issam, my sister-in-law Chahnez,
as well as my parents-in-law Alain and Pilar.

IZ
Contents

Preface xxi
Acknowledgments xxv
About the Authors xxvii

Part I In Theory 1

Chapter 1 Finding the Structure of Words 3
1.1 Words and Their Components 4
 1.1.1 Tokens 4
 1.1.2 Lexemes 5
 1.1.3 Morphemes 5
 1.1.4 Typology 7
1.2 Issues and Challenges 8
 1.2.1 Irregularity 8
 1.2.2 Ambiguity 10
 1.2.3 Productivity 13
1.3 Morphological Models 15
 1.3.1 Dictionary Lookup 15
 1.3.2 Finite-State Morphology 16
 1.3.3 Unification-Based Morphology 18
 1.3.4 Functional Morphology 19
 1.3.5 Morphology Induction 21
1.4 Summary 22

Chapter 2 Finding the Structure of Documents 29
2.1 Introduction 29
 2.1.1 Sentence Boundary Detection 30
 2.1.2 Topic Boundary Detection 32
2.2 Methods 33
 2.2.1 Generative Sequence Classification Methods 34
 2.2.2 Discriminative Local Classification Methods 36
2.2.3 Discriminative Sequence Classification Methods
2.2.4 Hybrid Approaches
2.2.5 Extensions for Global Modeling for Sentence Segmentation
2.3 Complexity of the Approaches
2.4 Performances of the Approaches
2.5 Features
 2.5.1 Features for Both Text and Speech
 2.5.2 Features Only for Text
 2.5.3 Features for Speech
2.6 Processing Stages
2.7 Discussion
2.8 Summary

Chapter 3 Syntax
3.1 Parsing Natural Language
3.2 Treebanks: A Data-Driven Approach to Syntax
3.3 Representation of Syntactic Structure
 3.3.1 Syntax Analysis Using Dependency Graphs
 3.3.2 Syntax Analysis Using Phrase Structure Trees
3.4 Parsing Algorithms
 3.4.1 Shift-Reduce Parsing
 3.4.2 Hypergraphs and Chart Parsing
 3.4.3 Minimum Spanning Trees and Dependency Parsing
3.5 Models for Ambiguity Resolution in Parsing
 3.5.1 Probabilistic Context-Free Grammars
 3.5.2 Generative Models for Parsing
 3.5.3 Discriminative Models for Parsing
3.6 Multilingual Issues: What Is a Token?
 3.6.1 Tokenization, Case, and Encoding
 3.6.2 Word Segmentation
 3.6.3 Morphology
3.7 Summary

Chapter 4 Semantic Parsing
4.1 Introduction
4.2 Semantic Interpretation
 4.2.1 Structural Ambiguity
 4.2.2 Word Sense
 4.2.3 Entity and Event Resolution
 4.2.4 Predicate-Argument Structure
 4.2.5 Meaning Representation
4.3 System Paradigms
4.4 Word Sense
 4.4.1 Resources
4. Systems

4.4. Systems

- 4.4.2 Systems
 Resources
 Systems
 Software

4.5. Software

- 4.5.3 Software

4.6 Meaning Representation

4.6.1 Resources

- 4.6.2 Systems

4.6.3 Software

4.7 Summary

4.7.1 Word Sense Disambiguation

4.7.2 Predicate-Argument Structure

4.7.3 Meaning Representation

Chapter 5 Language Modeling

5.1 Introduction

5.2 n-Gram Models

5.3 Language Model Evaluation

5.4 Parameter Estimation

- 5.4.1 Maximum-Likelihood Estimation and Smoothing
- 5.4.2 Bayesian Parameter Estimation
- 5.4.3 Large-Scale Language Models

5.5 Language Model Adaptation

5.6 Types of Language Models

- 5.6.1 Class-Based Language Models
- 5.6.2 Variable-Length Language Models
- 5.6.3 Discriminative Language Models
- 5.6.4 Syntax-Based Language Models
- 5.6.5 MaxEnt Language Models
- 5.6.6 Factored Language Models
- 5.6.7 Other Tree-Based Language Models
- 5.6.8 Bayesian Topic-Based Language Models
- 5.6.9 Neural Network Language Models

5.7 Language-Specific Modeling Problems

- 5.7.1 Language Modeling for Morphologically Rich Languages
- 5.7.2 Selection of Subword Units
- 5.7.3 Modeling with Morphological Categories
- 5.7.4 Languages without Word Segmentation
- 5.7.5 Spoken versus Written Languages

5.8 Multilingual and Crosslingual Language Modeling

- 5.8.1 Multilingual Language Modeling
- 5.8.2 Crosslingual Language Modeling

5.9 Summary
Chapter 6 Recognizing Textual Entailment 209
6.1 Introduction 209
6.2 The Recognizing Textual Entailment Task 210
 6.2.1 Problem Definition 210
 6.2.2 The Challenge of RTE 212
 6.2.3 Evaluating Textual Entailment System Performance 213
 6.2.4 Applications of Textual Entailment Solutions 214
 6.2.5 RTE in Other Languages 218
6.3 A Framework for Recognizing Textual Entailment 219
 6.3.1 Requirements 219
 6.3.2 Analysis 220
 6.3.3 Useful Components 220
 6.3.4 A General Model 224
 6.3.5 Implementation 227
 6.3.6 Alignment 233
 6.3.7 Inference 236
 6.3.8 Training 238
6.4 Case Studies 238
 6.4.1 Extracting Discourse Commitments 239
 6.4.2 Edit Distance-Based RTE 240
 6.4.3 Transformation-Based Approaches 241
 6.4.4 Logical Representation and Inference 242
 6.4.5 Learning Alignment Independently of Entailment 244
 6.4.6 Leveraging Multiple Alignments for RTE 245
 6.4.7 Natural Logic 245
 6.4.8 Syntactic Tree Kernels 246
 6.4.9 Global Similarity Using Limited Dependency Context 247
 6.4.10 Latent Alignment Inference for RTE 247
6.5 Taking RTE Further 248
 6.5.1 Improve Analytics 248
 6.5.2 Invent/Tackle New Problems 249
 6.5.3 Develop Knowledge Resources 249
 6.5.4 Better RTE Evaluation 251
6.6 Useful Resources 252
 6.6.1 Publications 252
 6.6.2 Knowledge Resources 252
 6.6.3 Natural Language Processing Packages 253
6.7 Summary 253

Chapter 7 Multilingual Sentiment and Subjectivity Analysis 259
7.1 Introduction 259
7.2 Definitions 260
7.3 Sentiment and Subjectivity Analysis on English 262
 7.3.1 Lexicons 262
9.5 Other Approaches to Relation Extraction
9.5.1 Unsupervised and Semisupervised Approaches
9.5.2 Kernel Methods
9.5.3 Joint Entity and Relation Detection
9.6 Events
9.7 Event Extraction Approaches
9.8 Moving Beyond the Sentence
9.9 Event Matching
9.10 Future Directions for Event Extraction
9.11 Summary

Chapter 10 Machine Translation
10.1 Machine Translation Today
10.2 Machine Translation Evaluation
10.2.1 Human Assessment
10.2.2 Automatic Evaluation Metrics
10.2.3 WER, BLEU, METEOR, ...
10.3 Word Alignment
10.3.1 Co-occurrence
10.3.2 IBM Model 1
10.3.3 Expectation Maximization
10.3.4 Alignment Model
10.3.5 Symmetrization
10.3.6 Word Alignment as Machine Learning Problem
10.4 Phrase-Based Models
10.4.1 Model
10.4.2 Training
10.4.3 Decoding
10.4.4 Cube Pruning
10.4.5 Log-Linear Models and Parameter Tuning
10.4.6 Coping with Model Size
10.5 Tree-Based Models
10.5.1 Hierarchical Phrase-Based Models
10.5.2 Chart Decoding
10.5.3 Syntactic Models
10.6 Linguistic Challenges
10.6.1 Lexical Choice
10.6.2 Morphology
10.6.3 Word Order
10.7 Tools and Data Resources
10.7.1 Basic Tools
10.7.2 Machine Translation Systems
10.7.3 Parallel Corpora
Chapter 11 Multilingual Information Retrieval 365
11.1 Introduction 366
11.2 Document Preprocessing 366
 11.2.1 Document Syntax and Encoding 367
 11.2.2 Tokenization 369
 11.2.3 Normalization 370
 11.2.4 Best Practices for Preprocessing 371
11.3 Monolingual Information Retrieval 372
 11.3.1 Document Representation 372
 11.3.2 Index Structures 373
 11.3.3 Retrieval Models 374
 11.3.4 Query Expansion 376
 11.3.5 Document A Priori Models 377
 11.3.6 Best Practices for Model Selection 377
11.4 CLIR 378
 11.4.1 Translation-Based Approaches 378
 11.4.2 Machine Translation 380
 11.4.3 Interlingual Document Representations 381
 11.4.4 Best Practices 382
11.5 MLIR 382
 11.5.1 Language Identification 383
 11.5.2 Index Construction for MLIR 383
 11.5.3 Query Translation 384
 11.5.4 Aggregation Models 385
 11.5.5 Best Practices 385
11.6 Evaluation in Information Retrieval 386
 11.6.1 Experimental Setup 387
 11.6.2 Relevance Assessments 387
 11.6.3 Evaluation Measures 388
 11.6.4 Established Data Sets 389
 11.6.5 Best Practices 391
11.7 Tools, Software, and Resources 391
11.8 Summary 393

Chapter 12 Multilingual Automatic Summarization 397
12.1 Introduction 397
12.2 Approaches to Summarization 399
 12.2.1 The Classics 399
 12.2.2 Graph-Based Approaches 401
 12.2.3 Learning How to Summarize 406
 12.2.4 Multilingual Summarization 409
12.3 Evaluation
 12.3.1 Manual Evaluation Methodologies 413
 12.3.2 Automated Evaluation Methods 415
 12.3.3 Recent Development in Evaluating Summarization Systems 418
 12.3.4 Automatic Metrics for Multilingual Summarization 419

12.4 How to Build a Summarizer
 12.4.1 Ingredients 422
 12.4.2 Devices 423
 12.4.3 Instructions 423

12.5 Competitions and Datasets
 12.5.1 Competitions 424
 12.5.2 Data Sets 425

12.6 Summary 426

Chapter 13 Question Answering 433
13.1 Introduction and History 433
13.2 Architectures 435
13.3 Source Acquisition and Preprocessing 437
13.4 Question Analysis 440
 13.4.1 Search over Unstructured Sources 443
 13.4.2 Candidate Extraction from Unstructured Sources 445
 13.4.3 Candidate Extraction from Structured Sources 449

13.5 Search and Candidate Extraction
 13.5.1 Overview of Approaches 450
 13.5.2 Combining Evidence 452
 13.5.3 Extension to List Questions 453

13.6 Answer Scoring
 13.6.1 Evaluation Tasks 460
 13.6.2 Judging Answer Correctness 461
 13.6.3 Performance Metrics 462

13.7 Crosslingual Question Answering 454
13.8 A Case Study 455

13.9 Evaluation
 13.9.1 Evaluation Tasks 460
 13.9.2 Judging Answer Correctness 461
 13.9.3 Performance Metrics 462

13.10 Current and Future Challenges 464
13.11 Summary and Further Reading 465

Chapter 14 Distillation 475
14.1 Introduction 475
14.2 An Example 476
14.3 Relevance and Redundancy 477
14.4 The Rosetta Consortium Distillation System
 14.4.1 Document and Corpus Preparation 479
 14.4.2 Indexing 483
 14.4.3 Query Answering 483
14.5 Other Distillation Approaches
- **14.5.1 System Architectures**
- **14.5.2 Relevance**
- **14.5.3 Redundancy**
- **14.5.4 Multimodal Distillation**
- **14.5.5 Crosslingual Distillation**

14.6 Evaluation and Metrics
- **14.6.1 Evaluation Metrics in the GALE Program**

14.7 Summary

Chapter 15 Spoken Dialog Systems

15.1 Introduction

15.2 Spoken Dialog Systems
- **15.2.1 Speech Recognition and Understanding**
- **15.2.2 Speech Generation**
- **15.2.3 Dialog Manager**
- **15.2.4 Voice User Interface**

15.3 Forms of Dialog

15.4 Natural Language Call Routing

15.5 Three Generations of Dialog Applications

15.6 Continuous Improvement Cycle

15.7 Transcription and Annotation of Utterances
- **15.8.1 Call-Flow Localization**
- **15.8.2 Prompt Localization**
- **15.8.3 Localization of Grammars**
- **15.8.4 The Source Data**
- **15.8.5 Training**
- **15.8.6 Test**

15.9 Summary

Chapter 16 Combining Natural Language Processing Engines

16.1 Introduction

16.2 Desired Attributes of Architectures for Aggregating Speech and NLP Engines
- **16.2.1 Flexible, Distributed Componentization**
- **16.2.2 Computational Efficiency**
- **16.2.3 Data-Manipulation Capabilities**
- **16.2.4 Robust Processing**

16.3 Architectures for Aggregation
- **16.3.1 UIMA**
- **16.3.2 GATE: General Architecture for Text Engineering**
- **16.3.3 InfoSphere Streams**
16.4 Case Studies
 16.4.1 The GALE Interoperability Demo System 531
 16.4.2 Translingual Automated Language Exploitation System (TALES) 538
 16.4.3 Real-Time Translation Services (RTTS) 538

16.5 Lessons Learned 540
 16.5.1 Segmentation Involves a Trade-off between Latency and Accuracy 540
 16.5.2 Joint Optimization versus Interoperability 540
 16.5.3 Data Models Need Usage Conventions 540
 16.5.4 Challenges of Performance Evaluation 541
 16.5.5 Ripple-Forward Training of Engines 541

16.6 Summary 542
16.7 Sample UIMA Code 542

Index 551
Almost everyone on the planet, it seems, has been touched in some way by advances in information technology and the proliferation of the Internet. Recently, multimedia information sources have become increasingly popular. Nevertheless, the sheer volume of raw natural language text keeps increasing, and this text is being generated in all the major languages on Earth. For example, the English Wikipedia reports that 101 language-specific Wikipedias exist with at least 10,000 articles each. There is therefore a pressing need for countries, companies, and individuals to analyze this massive amount of text, translate it, and synthesize and distill it.

Previously, to build robust and accurate multilingual natural language processing (NLP) applications, a researcher or developer had to consult several reference books and dozens, if not hundreds, of journal and conference papers. Our aim for this book is to provide a “one-stop shop” that offers all the requisite background and practical advice for building such applications. Although it is quite a tall order, we hope that, at a minimum, you find this book a useful resource.

In the last two decades, NLP researchers have developed exciting algorithms for processing large amounts of text in many different languages. By far, the dominant approach has been to build a statistical model that can learn from examples. In this way, a model can be robust to changes in the type of text and even the language of text on which it operates. With the right design choices, the same model can be trained to work in a new domain or new language simply by providing new examples in that domain. This approach also obviates the need for researchers to lay out, in a painstaking fashion, all the rules that govern the problem at hand and the manner in which those rules must be combined. Rather, a statistical system typically allows for researchers to provide an abstract expression of possible features of the input, where the relative importance of those features can be learned during the training phase and can be applied to new text during the decoding, or inference, phase.

The field of statistical NLP is rapidly changing. Part of the change is due to the field’s growth. For example, one of the main conferences in the field is that of the Association of Computational Linguistics, where conference attendance has doubled in the last five years. Also, the share of NLP papers in the IEEE speech and language processing conferences and journals more than doubled in the last decade; IEEE constitutes one of the world’s largest professional associations for the advancement of technology. Not only are NLP researchers making inherent progress on the various subproblems of the field, but NLP continues to benefit (and borrow) heavily from progress in the machine learning community and linguistics alike. This book devotes some attention to cutting-edge algorithms and techniques, but its primary purpose is to be a thorough explication of best practices in the field. Furthermore, every chapter describes how the techniques discussed apply in a multilingual setting.

This book is divided into two parts. Part I, In Theory, includes the first seven chapters and lays out the various core NLP problems and algorithms to attack those problems. The
first three chapters focus on finding structure in language at various levels of granularity. Chapter 1 introduces the important concept of **morphology**, the study of the structure of words, and ways to process the diverse array of morphologies present in the world’s languages. Chapter 2 discusses the methods by which documents may be decomposed into more manageable parts, such as sentences and larger units related by topic. Finally, in this initial trio of chapters, Chapter 3 investigates the various methods of uncovering a sentence’s internal structure, or **syntax**. Syntax has long been a dominant area of research in linguistics, and that dominance has been mirrored in the field of NLP as well. The dominance, in part, stems from the fact that the structure of a sentence bears relation to the sentence’s meaning, so uncovering syntactic structure can serve as a first step toward a full “understanding” of a sentence.

Finding a structured meaning representation for a sentence, or for some other unit of text, is often called **semantic parsing**, which is the concern of Chapter 4. That chapter covers, inter alia, a related subproblem that has garnered much attention in recent years known as **semantic role labeling**, which attempts to find the syntactic phrases that constitute the arguments to some verb or predicate. By identifying and classifying a verb’s arguments, we come one step closer to producing a **logical form** for a sentence, which is one way to represent a sentence’s meaning in such a way as to be readily processed by machine, using the rich array of tools available from logic that mankind has been developing since ancient times.

But what if we do not want or need the deep syntactico-semantic structure that semantic parsing would provide? What if our problem is simply to decide which among many candidate sentences is the most likely sentence a human would write or speak? One way to do so would be to develop a model that could score each sentence according to its grammaticality and pick the sentence with the highest score. The problem of producing a score or probability estimate for a sequence of word tokens is known as **language modeling** and is the subject of Chapter 5.

Representing meaning and judging a sentence’s grammaticality are only two of many possible first steps toward processing language. Moving further toward some sense of understanding, we might wish to have an algorithm make inferences about facts expressed in a piece of text. For example, we might want to know if a fact mentioned in one sentence is entailed by some previous sentence in a document. This sort of inference is known as **recognizing textual entailment** and is the subject of Chapter 6.

Finding which facts or statements are entailed by others is clearly important to the automatic understanding of text, but there is also the nature of those statements. Understanding which statements are subjective and the polarity of the opinion expressed is the subject matter of Chapter 7. Given how often people express opinions, this is clearly an important problem area, all the more so in an age when social networks are fast becoming the dominant form of person-to-person communication on the Internet. This chapter rounds out Part I of our book.

Part II, In Practice, takes the various core areas of NLP described in Part I and explains how to apply them to the diverse array of real-world NLP applications. Engineering is often about trade-offs, say, between time and space, and so the chapters in this applied part of our book explore the trade-offs in making various algorithmic and design choices when building a robust, multilingual NLP application.
Chapter 8 describes ways to identify and classify named entities and other mentions of those entities in text, as well as methods to identify when two or more entity mentions corefer. These two problems are typically known as mention detection and coreference resolution; they are two of the core parts of a larger application area known as information extraction.

Chapter 9 continues the information extraction discussion, exploring techniques for finding out how two entities are related to each other, known as relation extraction, and identifying and classifying events, or event extraction. An event, in this case, is when something happens involving multiple entities, and we would like a machine to uncover who the participants are and what their roles are. In this way, event extraction is closely related to the core NLP problem of semantic role labeling.

Chapter 10 describes one of the oldest problems in the field, and one of the few that is an inherently multilingual NLP problem: machine translation, or MT. Automatically translating from one language to another has long been a holy grail of NLP research, and in recent years the community has developed techniques and can obtain hardware that make MT a practical reality, reaping rewards after decades of effort.

It is one thing to translate text, but how do we make sense of all the text out there in seemingly limitless quantity? Chapters 8 and 9 make some headway in this regard by helping us automatically produce structured records of information in text. Another way to tackle the quantity problem is to narrow down the scope by finding the few documents, or subparts of documents, that are relevant based on a search query. This problem is known as information retrieval and is the subject of Chapter 11. In many ways, commercial search engines such as Google are large-scale information retrieval systems. Given the popularity of search engines, this is clearly an important NLP problem—all the more so given the number of corpora that are not public and therefore searchable by commercial engines.

Another way we might tackle the sheer quantity of text is by automatically summarizing it, which is the topic of Chapter 12. This very difficult problem involves either finding the sentences, or bits of sentences, that contribute to providing a relevant summary of a larger quantity of text or else ingesting the text summarizing its meaning in some internal representation, and then generating the text that constitutes a summary, much as a human might do.

Often, humans would like machines to process text automatically because they have questions they seek to answer. These questions can range from simple, factoid-like questions, such as “When was John F. Kennedy born?” to more complex questions such as “What is the largest city in Bavaria, Germany?” Chapter 13 discusses ways to build systems to answer these types of questions automatically.

What if the types of questions we might like to answer are even more complex? Our queries might have multiple answers, such as “Name all the foreign heads of state President Barack Obama met with in 2010.” These types of queries are handled by a relatively new subdiscipline within NLP known as distillation. In a very real way, distillation combines the techniques of information retrieval with information extraction and adds a few of its own.

In many cases, we might like to have machines process language in an interactive way, making use of speech technology that both recognizes and synthesizes speech. Such systems are known as dialog systems and are covered in Chapter 15. Due to advances in speech
recognition, dialog management, and speech synthesis, such systems are becoming increasingly practical and are seeing widespread, real-world deployment.

Finally, we, as NLP researchers and engineers, might like to build systems using diverse arrays of components developed across the world. This aggregation of processing engines is described in Chapter 16. Although it is the final chapter of our book, in some ways it represents a beginning, not an end, to processing text, for it describes how a common infrastructure can be used to produce a combinatorially diverse array of processing pipelines.

As much as we hope this book is self-contained, we also hope that for you it serves as the beginning and not an end. Each chapter has a long list of relevant work upon which it is based, allowing you to explore any subtopic in great detail. The large community of NLP researchers is growing throughout the world, and we hope you join us in our exciting efforts to process text automatically and that you interact with us at universities, at industrial research labs, at conferences, in blogs, on social networks, and elsewhere. The multilingual NLP systems of the future are going to be even more exciting than the ones we have now, and we look forward to all your contributions!
Acknowledgments

This book was, from its inception, designed as a highly collaborative effort. We are immensely grateful for the encouraging support obtained from the beginning from IBM Press/Prentice Hall, especially from Bernard Goodwin and all the others at IBM Press who helped us get this project off the ground and see it to completion. A book of this kind would also not have been possible without the generous time, effort, and technical acumen of our fellow chapter authors, so we owe huge thanks to Otakar Smrž, Hyun-Jo You, Dilek Hakkani-Tür, Gokhan Tur, Benoit Favre, Elizabeth Shriberg, Anoop Sarkar, Sameer Pradhan, Katrin Kirchhoff, Mark Sammons, V.G. Vinod Vydiswaran, Dan Roth, Carmen Banea, Rada Mihalcea, Janice Wiebe, Xiaqiang Luo, Philipp Koehn, Philipp Sorg, Philipp Cimiano, Frank Schilder, Liang Zhou, Nico Schlaefer, Jennifer Chu-Carroll, Vittorio Castelli, Radu Florian, Roberto Pieraccini, David Suendermann, John F. Pitrelli, and Burn Lewis. Daniel M. Bikel is also grateful to Google Research, especially to Corinna Cortes, for her support during the final stages of this project. Finally, we—Daniel M. Bikel and Imed Zitouni—would like to express our great appreciation for the backing of IBM Research, with special thanks to Ellen Yoffa, without whom this project would not have been possible.
This page intentionally left blank
About the Authors

Daniel M. Bikel (dbikel@google.com) is a senior research scientist at Google. He graduated with honors from Harvard in 1993 with a degree in Classics–Ancient Greek and Latin. From 1994 to 1997, he worked at BBN on several natural language processing problems, including development of the first high-accuracy stochastic name-finder, for which he holds a patent. He received M.S. and Ph.D. degrees in computer science from the University of Pennsylvania, in 2000 and 2004 respectively, discovering new properties of statistical parsing algorithms. From 2004 through 2010, he was a research staff member at IBM Research, working on a wide variety of natural language processing problems, including parsing, semantic role labeling, information extraction, machine translation, and question answering. Dr. Bikel has been a reviewer for the *Computational Linguistics* journal, and has been on the program committees of the ACL, NAACL, EACL, and EMNLP conferences. He has published numerous peer-reviewed papers in the leading conferences and journals and has built software tools that have seen widespread use in the natural language processing community. In 2008, he won a Best Paper Award (Outstanding Short Paper) at the ACL-08: HLT conference. Since 2010, Dr. Bikel has been doing natural language processing and speech processing research at Google.

Imed Zitouni (izitouni@us.ibm.com) is a senior researcher working for IBM since 2004. He received his M.Sc. and Ph.D. in computer science with honors from University of Nancy, France in 1996 and 2000 respectively. In 1995, he obtained an MEng degree in computer science from Ecole Nationale des Sciences de l’Informatique, a prestigious national computer institute in Tunisia. Before joining IBM, he was a principal scientist at a startup company, DIALOCA, in 1999 and 2000. He then joined Bell Laboratories Lucent-Alcatel between 2000 and 2004 as a research staff member. His research interests include natural language processing, language modeling, spoken dialog systems, speech recognition, and machine learning. Dr. Zitouni is a member of the IEEE Speech and Language Technical Committee in 2009–2011. He is the associate editor of the *ACM Transactions on Asian Language Information Processing* and the information officer of the Association for Computational Linguistics (ACL) Special Interest Group on Computational Approaches to Semitic Languages. He is a senior member of IEEE and member of ISCA and ACL. He served on the program
committee and as a chair for several peer-review conferences and journals. He holds several patents in the field and authored more than seventy-five papers in peer-review conferences and journals.

Carmen Banea (carmen.banea@gmail.com) is a doctoral student in the Department of Computer Science and Engineering, University of North Texas. She is working in the field of natural language processing. Her research work focuses primarily on multilingual approaches to subjectivity and sentiment analysis, where she developed both dictionary- and corpus-based methods that leverage languages with rich resources to create tools and data in other languages. Carmen has authored papers in major natural language processing conferences, including the Association for Computational Linguistics, Empirical Methods in Natural Language Processing, and the International Conference on Computational Linguistics. She served as a program committee member in numerous large conferences and was also a reviewer for the *Computational Linguistics Journal* and the *Journal of Natural Language Engineering*. She cochaired the TextGraphs 2010 Workshop collocated with ACL 2010 and was one of the organizers of the University of North Texas site of the North American Computational Linguistics Olympiad in 2009 to 2011.

Vittorio Castelli (vittorio@us.ibm.com) received a Laurea degree in electrical engineering from Politecnico di Milano in 1988, an M.S. in electrical engineering in 1990, an M.S. in statistics in 1994, and a Ph.D. in electrical engineering in 1995, with a dissertation on information theory and statistical classification. In 1995 he joined the IBM T. J. Watson Research Center. His recent work is in natural language processing, specifically in information extraction; he has worked on the DARPA GALE and machine reading projects. Vittorio previously started the Personal Wizards project, aimed at capturing procedural knowledge from observation of experts performing a task. He has also done work on foundations of information theory, memory compression, time series prediction and indexing, performance analysis, methods for improving the reliability and serviceability of computer systems, and digital libraries for scientific imagery. From 1996 to 1998 he was coinvestigator of the NASA/CAN project no. NCC5-101. His main research interests include information theory, probability theory, statistics, and statistical pattern recognition. From 1998 to 2005 he was an adjunct assistant professor at Columbia University, teaching information theory and statistical pattern recognition. He is a member of Sigma Xi, of the IEEE IT Society, and of the American Statistical Association. Vittorio has published papers on natural language processing computer-assisted instruction, statistical classification, data compression, image processing, multimedia databases, database mining and multidimensional indexing structures, intelligent user interface, and foundational problems in information theory, and he coedited *Image Databases: Search and Retrieval of Digital Imagery* (Wiley, 2002).
Jennifer Chu-Carroll (jencc@us.ibm.com) is a research staff member in the Semantic Analysis and Integration Department at the IBM T. J. Watson Research Center. Before joining IBM in 2001, she spent five years as a member of technical staff at Lucent Technologies Bell Laboratories. Her research interests include question answering, semantic search, discourse processing, and spoken dialog management.

Philipp Cimiano (cimiano@cit-ec.uni-bielefeld.de) is professor in computer science at the University of Bielefeld, Germany. He leads the Semantic Computing Group that is affiliated with the Cognitive Interaction Technology Excellence Center, funded by the Deutsche Forschungsgemeinschaft in the framework of the excellence initiative. Philipp Cimiano graduated in computer science (major) and computational linguistics (minor) from the University of Stuttgart. He obtained his doctoral degree (summa cum laude) from the University of Karlsruhe. His main research interest lies in the combination of natural language with semantic technologies. In the last several years, he has focused on multilingual information access. He has been involved as main investigator in a number of European (Dot.Kom, X-Media, Monnet) as well as national research projects such as SmartWeb (BMBF) and Multipla (DFG).

Benoit Favre (benoit.favre@lif.univ-mrs.fr) is an associate professor at Aix-Marseille Université, Marseille, France. He is a researcher in the field of natural language understanding. His research interests are in speech and text understanding with a focus on machine learning approaches. He received his Ph.D. from the University of Avignon, France, in 2007 on the topic of automatic speech summarization. Benoit was a teaching assistant at University of Avignon between 2003 and 2007 and a research engineer at Thales Land & Joint Systems, Paris, during the same period. Between 2007 and 2009, Benoit held a postdoctoral position at the International Computer Institute (Berkeley, CA) working with the speech group. From 2009 to 2010, he held a postdoctoral position at University of Le Mans, France. Since 2010, he is a tenured associate professor at Aix-Marseille Université, member of Laboratoire d’Informatique Fondamentale. Benoit is the coauthor of more than thirty refereed papers in international conferences and journals. He was a reviewer for major conferences in the field (ICASSP, Interspeech, ACL, EMNLP, Coling, NAACL) and for the IEEE Transactions on Speech and Language Processing. He is a member of the International Speech Communication Association and IEEE.
Radu Florian (raduf@us.ibm.com) is the manager of the Statistical Content Analytics (Information Extraction) group at IBM. He received his Ph.D. in 2002 from Johns Hopkins University, when he joined the Multilingual NLP group at IBM. At IBM, he has worked on a variety of research projects in the area of information extraction: mention detection, coreference resolution, relation extraction, cross-document coreference, and targeted information retrieval. Radu led research groups participating in several DARPA programs (GALE Distillation, MRP) and NIST-organized evaluations (ACE, TAC-KBP) and joint development programs with IBM partners for text mining in the medical domain (with Nuance), and contributed to the Watson Jeopardy! project.

Dilek Hakkani-Tür (Dilek.Hakkani-Tur@microsoft.com) is a principal scientist at Microsoft. Before joining Microsoft, she was with the International Computer Science Institute (ICSI) speech group (2006–2010) and AT&T Labs–Research (2001–2005). She received her B.Sc. degree from Middle East Technical University in 1994, and M.Sc. and Ph.D. degrees from Bilkent University, department of computer engineering, in 1996 and 2000 respectively. Her Ph.D. thesis is on statistical language modeling for agglutinative languages. She worked on machine translation at Carnegie Mellon University, Language Technologies Institute, in 1997 and at Johns Hopkins University in 1998. Between 1998 and 1999, Dilek worked on using lexical and prosodic information for information extraction from speech at SRI International. Her research interests include natural language and speech processing, spoken dialog systems, and active and unsupervised learning for language processing. She holds 13 patents and has coauthored over one hundred papers in natural language and speech processing. She was an associate editor of IEEE Transactions on Audio, Speech and Language Processing between 2005 and 2008 and currently serves as an elected member of the IEEE Speech and Language Technical Committee (2009–2012).

Katrin Kirchhoff (kk2@u.washington.edu) is a research associate professor in electrical engineering at the University of Washington. Her main research interests are automatic speech recognition, natural language processing, and human–computer interfaces, with particular emphasis on multilingual applications. She has authored over seventy peer-reviewed publications and is coeditor of Multilingual Speech Processing. Katrin currently serves as a member of the IEEE Speech Technical Committee and on the editorial boards of Computer, Speech and Language and Speech Communication.
Philipp Koehn (pkoehn@inf.ed.ac.uk) is a reader at the University of Edinburgh. He received his Ph.D. from the University of Southern California, where he was a research assistant at the Information Sciences Institute from 1997 to 2003. He was a postdoctoral research associate at the Massachusetts Institute of Technology in 2004 and joined the University of Edinburgh as a lecturer in 2005. His research centers on statistical machine translation, but he has also worked on speech, text classification, and information extraction. His major contribution to the machine translation community are the preparation and release of the Europarl corpus as well as the Pharaoh and Moses decoder. He is president of the ACL Special Interest Group on Machine Translation and author of *Statistical Machine Translation* (Cambridge University Press, 2010).

Burn L. Lewis (burn@us.ibm.com) is a member of the computer science department at the IBM Thomas J. Watson Research Center. He received B.E. and M.E. degrees in electrical engineering from the University of Auckland in 1967 and 1968, respectively, and a Ph.D. in electrical engineering and computer science from the University of California–Berkeley in 1974. He subsequently joined IBM at the T. J. Watson Research Center, where he has worked on speech recognition and unstructured information management.

Xiaqiang Luo (xiaoluo@us.ibm.com) is a research staff member at IBM T. J. Watson Research Center. He has extensive experiences in human language technology, including speech recognition, spoken dialog systems, and natural language processing. He is a major contributor to IBM’s success in many government-sponsored projects in the area of speech and language technology. He received the prestigious IBM Outstanding Technical Achievement Award in 2007, IBM ThinkPlace Bravo Award in 2006, and numerous invention achievement awards. Dr. Luo received his Ph.D. and M.S. in electrical engineering from Johns Hopkins University in 1999 and 1995, respectively, and B.A. in electrical engineering from University of Science and Technology of China in 1990. Dr. Luo is a member of the Association of Computational Linguistics and has served as program committee member for major technical conferences in the area of human language and artificial intelligence. He is a board member of the Chinese Association for Science and Technology (Greater New York Chapter). He served as an associate editor for *ACM Transactions on Asian Language Information Processing (TALIP)* from 2007 to 2010.
Rada Mihalcea (rada@cs.unt.edu) is associate professor in the Department of Computer Science and Engineering, University of North Texas. Her research interests are in computational linguistics, with a focus on lexical semantics, graph-based algorithms for natural language processing, and multilingual natural language processing. She is currently involved in a number of research projects, including word sense disambiguation, monolingual and crosslingual semantic similarity, automatic keyword extraction and text summarization, emotion and sentiment analysis, and computational humor. Rada serves or has served on the editorial boards of the *Journals of Computational Linguistics, Language Resources and Evaluations, Natural Language Engineering, and Research in Language in Computation*. Her research has been funded by the National Science Foundation, Google, the National Endowment for the Humanities, and the State of Texas. She is the recipient of a National Science Foundation CAREER award (2008) and a Presidential Early Career Award for Scientists and Engineers (PECASE, 2009).

Roberto Pieraccini (www.robertopieraccini.com) is chief technology officer of SpeechCycle Inc. Roberto graduated in electrical engineering at the University of Pisa, Italy, in 1980. In 1981 he started working as a speech recognition researcher at CSELT, the research institution of the Italian telephone operating company. In 1990 he joined Bell Laboratories (Murray Hill, NJ) as a member of technical staff where he was involved in speech recognition and spoken language understanding research. He then joined AT&T Labs in 1996, where he started working on spoken dialog research. In 1999 he was director of R&D for SpeechWorks International. In 2003 he joined IBM T. J. Watson Research where he managed the Advanced Conversational Interaction Technology department, and then joined SpeechCycle in 2005 as their CTO. Roberto Pieraccini is the author of more than one hundred twenty papers and articles on speech recognition, language modeling, character recognition, language understanding, and automatic spoken dialog management. He is an ISCA and IEEE Fellow, a member of the editorial board of the *IEEE Signal Processing Magazine* and of the *International Journal of Speech Technology*. He is also a member of the Applied Voice Input Output Society and Speech Technology Consortium boards.
John F. Pitrelli (pitrelli@us.ibm.com) is a member of the Multilingual Natural Language Processing department at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He received S.B., S.M., and Ph.D. degrees in electrical engineering and computer science from the Massachusetts Institute of Technology in 1983, 1985, and 1990 respectively, with graduate work in speech recognition and synthesis. Before his current position, he worked in the Speech Technology Group at NYNEX Science & Technology, Inc., in White Plains, New York; was a member of the IBM Pen Technologies Group; and worked on speech synthesis and prosody in the Human Language Technologies group at Watson. John’s research interests include natural language processing, speech synthesis, speech recognition, handwriting recognition, statistical language modeling, prosody, unstructured information management, and confidence modeling for recognition. He has published forty papers and holds four patents.

Sameer Pradhan (sameer.pradhan@Colorado.edu) is a scientist at BBN Technologies in Cambridge, Massachusetts. He is the author of a number of widely cited articles and chapters in the field of computational semantics. He is currently creating the next generation of semantic analysis engines and their applications, through algorithmic innovation, wide distribution of research tools such as Automatic Statistical SEmantic Role Tagger (ASSERT), and through the generation of rich, multilayer, multilingual, integrated resources, such as OntoNotes, that serve as a platform. Eventually these models of semantics should replace the currently impoverished, mostly word-based models, prevalent in most application domains, and help take the area of language understanding to a new level of richness. Sameer received his Ph.D. from the University of Colorado in 2005, and since then has been working at BBN Technologies developing the OntoNotes corpora as part of the DARPA Global Autonomous Language Exploitation program. He is a member of ACL, and is a founding member of ACL’s Special Interest Group for Annotation, promoting innovation in the area of annotation. He has regularly been on the program committees of various natural language processing conferences and workshops such as ACL, HLT, EMNLP, CoNLL, COLING, LREC, and LAW. He is also an accomplished chef.
Dan Roth (danr@illinois.edu) is a professor in the department of computer science and the Beckman Institute at the University of Illinois at Urbana-Champaign. He is a Fellow of AAAI, a University of Illinois Scholar, and holds faculty positions at the statistics and linguistics departments and at the Graduate School of Library and Information Science. Professor Roth’s research spans theoretical work in machine learning and intelligent reasoning with a specific focus on learning and inference in natural language processing and intelligent access to textual information. He has published over two hundred papers in these areas and his papers have received multiple awards. He has developed advanced machine learning-based tools for natural language applications that are being used widely by the research community, including an award-winning semantic parser. He was the program chair of AAAI’11, CoNLL’02, and ACL’03, and is or has been on the editorial board of several journals in his research areas. He is currently an associate editor for the Journal of Artificial Intelligence Research and the Machine Learning Journal. Professor Roth got his B.A. summa cum laude in mathematics from the Technion, Israel, and his Ph.D. in computer science from Harvard University.

Mark Sammons (mssammon@illinois.edu) is a principal research scientist working with the Cognitive Computation Group at the University of Illinois at Urbana-Champaign. His primary interests are in natural language processing and machine learning, with a focus on integrating diverse information sources in the context of textual entailment. His work has focused on developing a textual entailment framework that can easily incorporate new resources, designing appropriate inference procedures for recognizing entailment, and identifying and developing automated approaches to recognize and represent implicit content in natural language text. Mark received his M.Sc. in computer science from the University of Illinois in 2004 and his Ph.D. in mechanical engineering from the University of Leeds, England, in 2000.

Anoop Sarkar (www.cs.sfu.ca/~anoop) is an associate professor of computing science at Simon Fraser University in British Columbia, Canada, where he codirects the Natural Language Laboratory (http://natlang.cs.sfu.ca). He received his Ph.D. from the Department of Computer and Information Sciences at the University of Pennsylvania under Professor Aravind Joshi for his work on semi-supervised statistical parsing and parsing for tree-adjoining grammars. Anoop’s current research is focused on statistical parsing and machine translation (exploiting syntax or morphology, or both). His interests also include formal language theory and stochastic grammars, in particular tree automata and tree-adjoining grammars.
Frank Schilder (frank.schilder@thomsonreuters.com) is a lead research scientist at the Research & Development department of Thomson Reuters. He joined Thomson Reuters in 2004, where he has been doing applied research on summarization technologies and information extraction systems. His summarization work has been implemented as the snippet generator for search results of WestLawNext, the new legal research system produced by Thomson Reuters. His current research activities involve the participation in different research competitions such as the Text Analysis Conference carried out by the National Institute of Standards and Technology. He obtained a Ph.D. in cognitive science from the University of Edinburgh, Scotland, in 1997. From 1997 to 2003, he was employed by the Department for Informatics at the University of Hamburg, Germany, first as a postdoctoral researcher and later as an assistant professor. Frank has authored several journal articles and book chapters, including “Natural Language Processing: Overview” from the Encyclopedia of Language and Linguistics (Elsevier, 2006), coauthored with Peter Jackson, the chief scientist of Thomson Reuters. In 2011, he jointly won the Thomson Reuters Innovation challenge. He serves as reviewer for journals in computational linguistics and as program committee member of various conferences organized by the Association of Computational Linguistics.

Nico Schlaefer (nico@cs.cmu.edu) is a Ph.D. candidate in the School of Computer Science at Carnegie Mellon University and an IBM Ph.D. Fellow. His research focus is the application of machine learning techniques to natural language processing tasks. Schlaefer developed algorithms that enable question-answering systems to find correct answers, even if the original information sources contain little relevant content, and a flexible architecture that supports the integration of such algorithms. Schlaefer is the primary author of OpenEphyra, one of the most widely used open-source question-answering systems. Nico also contributed a statistical source expansion approach to Watson, the computer that won against human champions in the Jeopardy! quiz show. His approach automatically extends knowledge sources with related content from the Web and other large text corpora, making it easier for Watson to find answers and supporting evidence.
Elizabeth Shriberg (elshribe@microsoft.com) is currently a principal scientist at Microsoft; previously she was at SRI International (Menlo Park, CA). She is also affiliated with the International Computer Science Institute (Berkeley, CA) and CASL (University of Maryland). She received a B.A. from Harvard (1987) and a Ph.D. from the University of California–Berkeley (1994). Elizabeth’s main interest is in modeling spontaneous speech using both lexical and prosodic information. Her work aims to combine linguistic knowledge with corpora and techniques from automatic speech and speaker recognition to advance both scientific understanding and technology. She has published roughly two hundred papers in speech science and technology and has served as associate editor of language and speech, on the boards of Speech Communication and Computational Linguistics, on a range of conference and workshop boards, on the ISCA Advisory Council, and on the ICSLP Permanent Council. She has organized workshops and served on boards for the National Science Foundation, the European Commission, NWO (Netherlands), and has reviewed for an interdisciplinary range of conferences, workshops, and journals (e.g., *IEEE Transactions on Speech and Audio Processing, Journal of the Acoustical Society of America, Nature, Journal of Phonetics, Computer Speech and Language, Journal of Memory and Language, Memory and Cognition, Discourse Processes*). In 2009 she received the ISCA Fellow Award. In 2010 she became a Fellow of SRI.

Otakar Smrž (otakar.smrz@cmu.edu) is a postdoctoral research associate at Carnegie Mellon University in Qatar. He focuses on methods of learning from comparable corpora to improve statistical machine translation from and into Arabic. Otakar completed his doctoral studies in mathematical linguistics at Charles University in Prague. He designed and implemented the ElixirFM computational model of Arabic morphology using functional programming and has developed other open source software for natural language processing. He has been the principal investigator of the Prague Arabic Dependency Treebank. Otakar used to work as a research scientist at IBM Czech Republic, where he explored unsupervised semantic parsing as well as acoustic modeling for multiple languages. Otakar is a cofounder of the Džám-e Džam Language Institute in Prague.
Philipp Sorg (philipp.sorg@kit.edu) is a Ph.D. student at the Karlsruhe Institute of Technology, Germany. He has a researcher position at the Institute of Applied Informatics and Formal Description Methods. Philipp graduated in computer science at the University of Karlsruhe. His main research interest lies in multilingual information retrieval. His special focus is the exploitation of social semantics in the context of the Web 2.0. He has been involved in the European research project Active, as well as in the national research project Multipla (DFG).

David Suendermann (david@speechcycle.com) is the principal speech scientist at SpeechCycle Labs (New York). Dr. Suendermann has been working on various fields of speech technology research for the last ten years. He worked at multiple industrial and academic institutions including Siemens (Munich), Columbia University (New York), University of Southern California (Los Angeles), Universitat Politècnica de Catalunya (Barcelona), and Rheinisch Westfälische Technische Hochschule (Aachen, Germany). He has authored more than sixty publications and patents, including a book and five book chapters, and holds a Ph.D. from the Bundeswehr University in Munich.

Gokhan Tur (gokhan.tur@ieee.org) is currently with Microsoft working as a principal scientist. He received his B.S., M.S., and Ph.D. from the Department of Computer Science, Bilkent University, Turkey in 1994, 1996, and 2000 respectively. Between 1997 and 1999, Tur visited the Center for Machine Translation of Carnegie Mellon University, then the Department of Computer Science of Johns Hopkins University, and then the Speech Technology and Research Lab of SRI International. He worked at AT&T Labs–Research from 2001 to 2006 and at the Speech Technology and Research Lab of SRI International from 2006 to 2010. His research interests include spoken language understanding, speech and language processing, machine learning, and information retrieval and extraction. Tur has coauthored more than one hundred papers published in refereed journals or books and presented at international conferences. He is the editor of Spoken Language Understanding: Systems for Extracting Semantic Information from Speech (Wiley, 2011). Dr. Tur is a senior member of IEEE, ACL, and ISCA, was a member of IEEE Signal Processing Society (SPS), Speech and Language Technical Committee (SLTC) for 2006–2008, and is currently an associate editor for IEEE Transactions on Audio, Speech, and Language Processing.
V. G. Vinod Vydiswaran (vgvinodv@illinois.edu) is currently a Ph.D. student in the Department of Computer Science at the University of Illinois, Urbana-Champaign. His thesis is on modeling information trustworthiness on the Web and is advised by professors ChengXiang Zhai and Dan Roth. His research interests include text informatics, natural language processing, machine learning, and information extraction. V. G. Vinod’s work has included developing a textual entailment system and applying textual entailment to relation extraction and information retrieval. He received his M.S. from Indian Institute of Technology-Bombay in 2004, where he worked on conditional models for information extraction with Professor Sunita Sarawagi. Later, he worked at Yahoo! Research & Development Center at Bangalore, India, on scaling information extraction technologies over the Web.

Janyce Wiebe (wiebe@cs.pitt.edu) is a professor of computer science and codirector of the Intelligent Systems Program at the University of Pittsburgh. Her research with students and colleagues has been in discourse processing, pragmatics, word-sense disambiguation, and probabilistic classification in natural language processing. A major concentration of her research is subjectivity analysis, recognizing and interpreting expressions of opinions and sentiments in text, to support natural language processing applications such as question answering, information extraction, text categorization, and summarization. Janyce’s current and past professional roles include ACL program cochair, NAACL program chair, NAACL executive board member, computational linguistics, and language resources and evaluation, editorial board member, AAAI workshop cochair, ACM special interest group on artificial intelligence (SIGART) vice-chair, and ACM-SIGART/AAAI doctoral consortium chair.

Hyun-Jo You (youhyunjo@gmail.com) is currently a lecturer in the Department of Linguistics, Seoul National University. He received his Ph.D. from Seoul National University. His research interests include quantitative linguistics, statistical language modeling, and computerized corpus analysis. He is especially interested in studying the morpho-syntactic and discourse structure in morphologically rich, free word order languages such as Korean, Czech, and Russian.
Liang Zhou (liangz@isi.edu) is a research scientist at Thomson Reuters Corporation. She has extensive knowledge in natural language processing, including sentiment analysis, automated text summarization, text understanding, information extraction, question answering, and information distillation. During her graduate studies at the Information Sciences Institute, she was actively involved in various government-sponsored projects, such as NIST Document Understanding conferences and DARPA Global Autonomous Language Exploitation. Dr. Zhou received her Ph.D. from the University of Southern California in 2006, M.S. from Stanford University in 2001, and B.S. from the University of Tennessee in 1999, all in computer science.
This page intentionally left blank
Chapter 1
Finding the Structure of Words

Otakar Smrž and Hyun-Jo You

Human language is a complicated thing. We use it to express our thoughts, and through language, we receive information and infer its meaning. Linguistic expressions are not unorganized, though. They show structure of different kinds and complexity and consist of more elementary components whose co-occurrence in context refines the notions they refer to in isolation and implies further meaningful relations between them.

Trying to understand language en bloc is not a viable approach. Linguists have developed whole disciplines that look at language from different perspectives and at different levels of detail. The point of morphology, for instance, is to study the variable forms and functions of words, while syntax is concerned with the arrangement of words into phrases, clauses, and sentences. Word structure constraints due to pronunciation are described by phonology, whereas conventions for writing constitute the orthography of a language. The meaning of a linguistic expression is its semantics, and etymology and lexicology cover especially the evolution of words and explain the semantic, morphological, and other links among them.

Words are perhaps the most intuitive units of language, yet they are in general tricky to define. Knowing how to work with them allows, in particular, the development of syntactic and semantic abstractions and simplifies other advanced views on language. Morphology is an essential part of language processing, and in multilingual settings, it becomes even more important.

In this chapter, we explore how to identify words of distinct types in human languages, and how the internal structure of words can be modeled in connection with the grammatical properties and lexical concepts the words should represent. The discovery of word structure is morphological parsing.

How difficult can such tasks be? It depends. In many languages, words are delimited in the orthography by whitespace and punctuation. But in many other languages, the writing system leaves it up to the reader to tell words apart or determine their exact phonological forms. Some languages use words whose form need not change much with the varying context; others are highly sensitive about the choice of word forms according to particular syntactic and semantic constraints and restrictions.
1.1 Words and Their Components

Words are defined in most languages as the smallest linguistic units that can form a complete utterance by themselves. The minimal parts of words that deliver aspects of meaning to them are called morphemes. Depending on the means of communication, morphemes are spelled out via graphemes—symbols of writing such as letters or characters—or are realized through phonemes, the distinctive units of sound in spoken language. It is not always easy to decide and agree on the precise boundaries discriminating words from morphemes and from phrases [1, 2].

1.1.1 Tokens

Suppose, for a moment, that words in English are delimited only by whitespace and punctuation [3], and consider Example 1–1:

Example 1–1: Will you read the newspaper? Will you read it? I won’t read it.

If we confront our assumption with insights from etymology and syntax, we notice two words here: newspaper and won’t. Being a compound word, newspaper has an interesting derivational structure. We might wish to describe it in more detail, once there is a lexicon or some other linguistic evidence on which to build the possible hypotheses about the origins of the word. In writing, newspaper and the associated concept is distinguished from the isolated news and paper. In speech, however, the distinction is far from clear, and identification of words becomes an issue of its own.

For reasons of generality, linguists prefer to analyze won’t as two syntactic words, or tokens, each of which has its independent role and can be reverted to its normalized form. The structure of won’t could be parsed as will followed by not. In English, this kind of tokenization and normalization may apply to just a limited set of cases, but in other languages, these phenomena have to be treated in a less trivial manner.

In Arabic or Hebrew [4], certain tokens are concatenated in writing with the preceding or the following ones, possibly changing their forms as well. The underlying lexical or syntactic units are thereby blurred into one compact string of letters and no longer appear as distinct words. Tokens behaving in this way can be found in various languages and are often called clitics.

In the writing systems of Chinese, Japanese [5], and Thai, whitespace is not used to separate words. The units that are delimited graphically in some way are sentences or clauses. In Korean, character strings are called eojeol ‘word segment’ and roughly correspond to speech or cognitive units, which are usually larger than words and smaller than clauses [6], as shown in Example 1–2:

Example 1–2: 학생들에게만 주셨는데

hak.sayng.tul.ey.key.man cwu.syess.nun.te
haksayng-tul-eykey-man cwu-si-ess-nunte
student+plural+dative+only give+honorific+past+while
while (he/she) gave (it) only to the students

1. Signs used in sign languages are composed of elements denoted as phonemes, too.
2. We use the Yale romanization of the Korean script and indicate its original characters by dots. Hyphens mark morphological boundaries, and tokens are separated by plus symbols.
Nonetheless, the elementary morphological units are viewed as having their own syntactic status [7]. In such languages, tokenization, also known as word segmentation, is the fundamental step of morphological analysis and a prerequisite for most language processing applications.

1.1.2 Lexemes

By the term word, we often denote not just the one linguistic form in the given context but also the concept behind the form and the set of alternative forms that can express it. Such sets are called lexemes or lexical items, and they constitute the lexicon of a language. Lexemes can be divided by their behavior into the lexical categories of verbs, nouns, adjectives, conjunctions, particles, or other parts of speech. The citation form of a lexeme, by which it is commonly identified, is also called its lemma.

When we convert a word into its other forms, such as turning the singular *mouse* into the plural *mice* or *mouses*, we say we inflect the lexeme. When we transform a lexeme into another one that is morphologically related, regardless of its lexical category, we say we derive the lexeme: for instance, the nouns *receiver* and *reception* are derived from the verb *to receive*.

Example 1–3: Did you see him? I didn’t see him. I didn’t see anyone.

Example 1–3 presents the problem of tokenization of *didn’t* and the investigation of the internal structure of *anyone*. In the paraphrase *I saw no one*, the lexeme *to see* would be inflected into the form *saw* to reflect its grammatical function of expressing positive past tense. Likewise, *him* is the oblique case form of *he* or even of a more abstract lexeme representing all personal pronouns. In the paraphrase, *no one* can be perceived as the minimal word synonymous with *nobody*. The difficulty with the definition of what counts as a word need not pose a problem for the syntactic description if we understand *no one* as two closely connected tokens treated as one fixed element.

In the Czech translation of Example 1–3, the lexeme *vidět* ‘to see’ is inflected for past tense, in which forms comprising two tokens are produced in the second and first person (i.e., *viděla jsi* ‘you-fem-sg saw’ and *neviděla jsem* ‘I-fem-sg did not see’). Negation in Czech is an inflectional parameter rather than just syntactic and is marked both in the verb and in the pronoun of the latter response, as in Example 1–4:

Here, *vidělas* is the contracted form of *viděla jsi* ‘you-fem-sg saw’. The *s* of *jsi* ‘you are’ is a clitic, and due to free word order in Czech, it can be attached to virtually any part of speech. We could thus ask a question like *Nikohos neviděla?* ‘Did you see no one?’ in which the pronoun *nikoho* ‘no one’ is followed by this clitic.

1.1.3 Morphemes

Morphological theories differ on whether and how to associate the properties of word forms with their structural components [8, 9, 10, 11]. These components are usually called segments or morphs. The morphs that by themselves represent some aspect of the meaning of a word are called morphemes of some function.
Human languages employ a variety of devices by which morphs and morphemes are combined into word forms. The simplest morphological process concatenates morphs one by one, as in dis-agree-ment-s, where agree is a free lexical morpheme and the other elements are bound grammatical morphemes contributing some partial meaning to the whole word.

In a more complex scheme, morphs can interact with each other, and their forms may become subject to additional phonological and orthographic changes denoted as morphophonemic. The alternative forms of a morpheme are termed allomorphs.

Examples of morphological alternation and phonologically dependent choice of the form of a morpheme are abundant in the Korean language. In Korean, many morphemes change their forms systematically with the phonological context. Example 1–5 lists the allomorphs -ess-, -ass-, -yess- of the temporal marker indicating past tense. The first two alter according to the phonological condition of the preceding verb stem; the last one is used especially for the verb ha- ‘do’. The appropriate allomorph is merely concatenated after the stem, or it can be further contracted with it, as was -si-ess- into -syess- in Example 1–2. During morphological parsing, normalization of allomorphs into some canonical form of the morpheme is desirable, especially because the contraction of morphs interferes with simple segmentation:

<table>
<thead>
<tr>
<th>Concatenated</th>
<th>Contracted</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 보았-</td>
<td>po-ass-</td>
<td>‘have seen’</td>
</tr>
<tr>
<td>(b) 가지었-</td>
<td>ka.ci-ess-</td>
<td>‘have taken’</td>
</tr>
<tr>
<td>(c) 하였-</td>
<td>ha-yess-</td>
<td>‘have done’</td>
</tr>
<tr>
<td>(d) 되었-</td>
<td>toy-ess-</td>
<td>‘have become’</td>
</tr>
<tr>
<td>(e) 놓았-</td>
<td>noh-ass-</td>
<td>‘have put’</td>
</tr>
</tbody>
</table>

Contractions (a, b) are ordinary but require attention because two characters are reduced into one. Other types (c, d, e) are phonologically unpredictable, or lexically dependent. For example, coh-ass- ‘have been good’ may never be contracted, whereas noh- and -ass- are merged into nwass- in (e).

There are yet other linguistic devices of word formation to account for, as the morphological process itself can get less trivial. The concatenation operation can be complemented with infixation or intertwining of the morphs, which is common, for instance, in Arabic. Nonconcatenative inflection by modification of the internal vowel of a word occurs even in English: compare the sounds of mouse and mice, see and saw, read and read.

Notably in Arabic, internal inflection takes place routinely and has a yet different quality. The internal parts of words, called stems, are modeled with root and pattern morphemes. Word structure is then described by templates abstracting away from the root but showing the pattern and all the other morphs attached to either side of it.

Example 1–6:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>هل ستقرأ هذه الجرائد؟؟</td>
</tr>
</tbody>
</table>

3. The original Arabic script is transliterated using Buckwalter notation. For readability, we also provide the standard phonological transcription, which reduces ambiguity.
The meaning of Example 1–6 is similar to that of Example 1–1, only the phrase ḥādīhi ḡarīda refers to ‘these newspapers’. While sa-taqrāu ‘you will read’ combines the future marker sa- with the imperfective second-person masculine singular verb taqrāu in the indicative mood and active voice, sa-taqrāuhā ‘you will read it’ also adds the cliticized feminine singular personal pronoun in the accusative case.⁴

The citation form of the lexeme to which taqrāu ‘you-MASC-SG read’ belongs is qara, roughly ‘to read’. This form is classified by linguists as the basic verbal form represented by the template faa merged with the consonantal root q r ʿ, where the f l symbols of the template are substituted by the respective root consonants. Inflections of this lexeme can modify the pattern faal of the stem of the lemma into faal and concatenate it, under rules of morphophonemic changes, with further prefixes and suffixes. The structure of taqrāu is thus parsed into the template ta-fal-u and the invariant root.

The word al-ḡarīda ‘the newspapers’ in the accusative case and definite state is another example of internal inflection. Its structure follows the template al-fwaril-a with the root ġ r d. This word is the plural of ḡarīdah ‘newspaper’ with the template faal-ah. The links between singular and plural templates are subject to convention and have to be declared in the lexicon.

Irrespective of the morphological processes involved, some properties or features of a word need not be apparent explicitly in its morphological structure. Its existing structural components may be paired with and depend on several functions simultaneously but may have no particular grammatical interpretation or lexical meaning.

The -ah suffix of ḡarīdah ‘newspaper’ corresponds with the inherent feminine gender of the lexeme. In fact, the -ah morpheme is commonly, though not exclusively, used to mark the feminine singular forms of adjectives: for example, ḡadīd becomes ḡadīdah ‘new’. However, the -ah suffix can be part of words that are not feminine, and there its function can be seen as either emptied or overridden [12]. In general, linguistic forms should be distinguished from functions, and not every morph can be assumed to be a morpheme.

1.1.4 Typology

Morphological typology divides languages into groups by characterizing the prevalent morphological phenomena in those languages. It can consider various criteria, and during the history of linguistics, different classifications have been proposed [13, 14]. Let us outline the typology that is based on quantitative relations between words, their morphemes, and their features:

- **Isolating**, or analytic, languages include no or relatively few words that would comprise more than one morpheme (typical members are Chinese, Vietnamese, and Thai; analytic tendencies are also found in English).

- **Synthetic** languages can combine more morphemes in one word and are further divided into agglutinative and fusional languages.

- **Agglutinative** languages have morphemes associated with only a single function at a time (as in Korean, Japanese, Finnish, and Tamil, etc.).

⁴ The logical plural of things is formally treated as feminine singular in Arabic.
Fusional languages are defined by their feature-per-morpheme ratio higher than one (as in Arabic, Czech, Latin, Sanskrit, German, etc.).

In accordance with the notions about word formation processes mentioned earlier, we can also discern:

Concatenative languages linking morphs and morphemes one after another.

Nonlinear languages allowing structural components to merge nonsequentially to apply tonal morphemes or change the consonantal or vocalic templates of words.

While some morphological phenomena, such as orthographic collapsing, phonological contraction, or complex inflection and derivation, are more dominant in some languages than in others, in principle, we can find, and should be able to deal with, instances of these phenomena across different language families and typological classes.

1.2 Issues and Challenges

Morphological parsing tries to eliminate or alleviate the variability of word forms to provide higher-level linguistic units whose lexical and morphological properties are explicit and well defined. It attempts to remove unnecessary irregularity and give limits to ambiguity, both of which are present inherently in human language.

By irregularity, we mean existence of such forms and structures that are not described appropriately by a prototypical linguistic model. Some irregularities can be understood by redesigning the model and improving its rules, but other lexically dependent irregularities often cannot be generalized.

Ambiguity is indeterminacy in interpretation of expressions of language. Next to accidental ambiguity and ambiguity due to lexemes having multiple senses, we note the issue of syncretism, or systematic ambiguity.

Morphological modeling also faces the problem of productivity and creativity in language, by which unconventional but perfectly meaningful new words or new senses are coined. Usually, though, words that are not licensed in some way by the lexicon of a morphological system will remain completely unparsed. This unknown word problem is particularly severe in speech or writing that gets out of the expected domain of the linguistic model, such as when special terms or foreign names are involved in the discourse or when multiple languages or dialects are mixed together.

1.2.1 Irregularity

Morphological parsing is motivated by the quest for generalization and abstraction in the world of words. Immediate descriptions of given linguistic data may not be the ultimate ones, due to either their inadequate accuracy or inappropriate complexity, and better formulations may be needed. The design principles of the morphological model are therefore very important.

In Arabic, the deeper study of the morphological processes that are in effect during inflection and derivation, even for the so-called irregular words, is essential for mastering the
whole morphological and phonological system. With the proper abstractions made, irregular morphology can be seen as merely enforcing some extended rules, the nature of which is phonological, over the underlying or prototypical regular word forms [15, 16].

Example 1–7: هل رأيته؟ لم أره. لم أر أحدا.
hal raaytihi? lam ʿarahu. lam ʿara ṣahadan.
whether you-saw+him? not-did I-see+him. not-did I-see anyone.

In Example 1–7, raayti is the second-person feminine singular perfective verb in active voice, member of the raʿa ‘to see’ lexeme of the r y root. The prototypical, regularized pattern for this citation form is faal, as we saw with qara in Example 1–6. Alternatively, we could assume the pattern of raʿa to be faal, thereby asserting in a compact way that the final root consonant and its vocalic context are subject to the particular phonological change, resulting in raʿa like faal instead of raay like faal. The occurrence of this change in the citation form may have possible implications for the morphological behavior of the whole lexeme.

Table 1–1 illustrates differences between a naive model of word structure in Arabic and the model proposed in Smrž [12] and Smrž and Bielický [17] where morphophonemic merge rules and templates are involved. Morphophonemic templates capture morphological processes by just organizing stem patterns and generic affixes without any context-dependent variation of the affixes or ad hoc modification of the stems. The merge rules, indeed very terse, then ensure that such structured representations can be converted into exactly the surface forms, both orthographic and phonological, used in the natural language. Applying the merge rules is independent of and irrespective of any grammatical parameters or information other than that contained in a template. Most morphological irregularities are thus successfully removed.

Table 1–1: Discovering the regularity of Arabic morphology using morphophonemic templates, where uniform structural operations apply to different kinds of stems. In rows, surface forms S of qaraʿ ‘to read’ and raʿa ‘to see’ and their inflections are analyzed into immediate I and morphophonemic M templates, in which dashes mark the structural boundaries where merge rules are enforced. The outer columns of the table correspond to P perfective and I imperfective stems declared in the lexicon; the inner columns treat active verb forms of the following morphosyntactic properties: I indicative, S subjunctive, J jussive mood; 1 first, 2 second, 3 third person; M masculine, F feminine gender; S singular, P plural number.

<table>
<thead>
<tr>
<th>P-stem</th>
<th>P−3MS</th>
<th>P−2FS</th>
<th>P−3MP</th>
<th>H2MS</th>
<th>IS1−S</th>
<th>LJ1−S</th>
<th>I-stem</th>
</tr>
</thead>
<tbody>
<tr>
<td>qaraʿ</td>
<td>qaraʿa</td>
<td>qaraʿti</td>
<td>qaraʿu</td>
<td>taqraʿu</td>
<td>raqraʿa</td>
<td>raqraʿ</td>
<td>qraʿ</td>
</tr>
<tr>
<td>faal</td>
<td>faal−a</td>
<td>faal−ti</td>
<td>faal−ū</td>
<td>ta−fal−u</td>
<td>ra−fal−a</td>
<td>ra−fal</td>
<td>fal</td>
</tr>
<tr>
<td>faal</td>
<td>faal−a</td>
<td>faal−ti</td>
<td>faal−ū</td>
<td>ta−fal−u</td>
<td>ra−fal−a</td>
<td>ra−fal</td>
<td>fal</td>
</tr>
<tr>
<td>...</td>
<td>...−a</td>
<td>...−ti</td>
<td>...−ū</td>
<td>ta−...−u</td>
<td>ra−...−a</td>
<td>ra−...</td>
<td>...</td>
</tr>
<tr>
<td>raʿa</td>
<td>raʿa−a</td>
<td>raʿa−ti</td>
<td>raʿa−ū</td>
<td>ta−fa−u</td>
<td>ra−fa−a</td>
<td>ra−fa</td>
<td>fa</td>
</tr>
<tr>
<td>faʿa</td>
<td>faʿa−a</td>
<td>faʿa−ti</td>
<td>faʿa−ū</td>
<td>ta−fa−u</td>
<td>ra−fa−a</td>
<td>ra−fa</td>
<td>fa</td>
</tr>
<tr>
<td>raʿā</td>
<td>raʿā</td>
<td>raʿayti</td>
<td>raʿaw</td>
<td>tarā</td>
<td>raṣa</td>
<td>raṣa</td>
<td>raṣa</td>
</tr>
</tbody>
</table>
In contrast, some irregularities are bound to particular lexemes or contexts, and cannot be accounted for by general rules. Korean irregular verbs provide examples of such irregularities.

Korean shows exceptional constraints on the selection of grammatical morphemes. It is hard to find irregular inflection in other agglutinative languages: two irregular verbs in Japanese [18], one in Finnish [19]. These languages are abundant with morphological alternations that are formalized by precise phonological rules. Korean additionally features lexically dependent stem alternation. As in many other languages, *i-* ‘be’ and *ha-* ‘do’ have unique irregular endings. Other irregular verbs are classified by the stem final phoneme. Table 1–2 compares major irregular verb classes with regular verbs in the same phonological condition.

1.2.2 Ambiguity

Morphological ambiguity is the possibility that word forms be understood in multiple ways out of the context of their discourse. Words forms that look the same but have distinct functions or meaning are called homonyms.

Ambiguity is present in all aspects of morphological processing and language processing at large. Morphological parsing is not concerned with complete disambiguation of words in their context, however; it can effectively restrict the set of valid interpretations of a given word form [20, 21].

In Korean, homonyms are one of the most problematic objects in morphological analysis because they prevail all around frequent lexical items. Table 1–3 arranges homonyms on the basis of their behavior with different endings. Example 1–8 is an example of homonyms through nouns and verbs.

<table>
<thead>
<tr>
<th>Base Form</th>
<th>(-e)</th>
<th>Meaning</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>집- cip-</td>
<td>집어 cip.e</td>
<td>‘pick’</td>
<td>regular</td>
</tr>
<tr>
<td>집- kip-</td>
<td>기위 ki.we</td>
<td>‘sew’</td>
<td>p-irregular</td>
</tr>
<tr>
<td>믿- mit-</td>
<td>믿어 mit.e</td>
<td>‘believe’</td>
<td>regular</td>
</tr>
<tr>
<td>실- sit-</td>
<td>실어 sil.e</td>
<td>‘load’</td>
<td>t-irregular</td>
</tr>
<tr>
<td>셀- ssis-</td>
<td>셀어 ssis.e</td>
<td>‘wash’</td>
<td>regular</td>
</tr>
<tr>
<td>잇- is-</td>
<td>이어 i.e</td>
<td>‘link’</td>
<td>s-irregular</td>
</tr>
<tr>
<td>납- nah-</td>
<td>납아 nah.a</td>
<td>‘bear’</td>
<td>regular</td>
</tr>
<tr>
<td>까망- kka.mah-</td>
<td>까배 kka.may</td>
<td>‘be black’</td>
<td>h-irregular</td>
</tr>
<tr>
<td>치르- chi.lu-</td>
<td>치르 chi.le</td>
<td>‘pay’</td>
<td>regular u-ellipsis</td>
</tr>
<tr>
<td>이르- i.lu-</td>
<td>이르러 i.lu.le</td>
<td>‘reach’</td>
<td>le-irregular</td>
</tr>
<tr>
<td>호르- hu.lu-</td>
<td>홀러 hul.le</td>
<td>‘flow’</td>
<td>lu-irregular</td>
</tr>
</tbody>
</table>
Table 1–3: Systematic homonyms arise as verbs combined with endings in Korean

<table>
<thead>
<tr>
<th>(-ko)</th>
<th>(-e)</th>
<th>(-un)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>묻고</td>
<td>mwut.e</td>
<td>묻은 mwut.un</td>
<td>‘bury’</td>
</tr>
<tr>
<td>물고</td>
<td>mwul.e</td>
<td>물은 mwun</td>
<td>‘ask’</td>
</tr>
<tr>
<td>걷고</td>
<td>ket.e</td>
<td>걷은 ket.un</td>
<td>‘roll up’</td>
</tr>
<tr>
<td>간고</td>
<td>kel.e</td>
<td>간 ken</td>
<td>‘walk’</td>
</tr>
<tr>
<td>굽고</td>
<td>kwup.e</td>
<td>굽은 kwup.un</td>
<td>‘be bent’</td>
</tr>
<tr>
<td>이르고</td>
<td>i.lu.le</td>
<td>이른 i.lun</td>
<td>‘reach’</td>
</tr>
</tbody>
</table>

We could also consider ambiguity in the senses of the noun nan, according to the Standard Korean Language Dictionary: nan¹ ‘egg’, nan² ‘revolt’, nan⁵ ‘section (in newspaper)’, nan⁶ ‘orchid’, plus several infrequent readings.

Arabic is a language of rich morphology, both derivational and inflectional. Because Arabic script usually does not encode short vowels and omits yet some other diacritical marks that would record the phonological form exactly, the degree of its morphological ambiguity is considerably increased. In addition, Arabic orthography collapses certain word forms together. The problem of morphological disambiguation of Arabic encompasses not only the resolution of the structural components of words and their actual morphosyntactic properties (i.e., morphological tagging [22, 23, 24]) but also tokenization and normalization [25], lemmatization, stemming, and diacritization [26, 27, 28].

When inflected syntactic words are combined in an utterance, additional phonological and orthographic changes can take place, as shown in Figure 1–1. In Sanskrit, one such euphony rule is known as external sandhi [29, 30]. Inverting sandhi during tokenization is usually nondeterministic in the sense that it can provide multiple solutions. In any language, tokenization decisions may impose constraints on the morphosyntactic properties of the tokens being reconstructed, which then have to be respected in further processing. The tight coupling between morphology and syntax has inspired proposals for disambiguating them jointly rather than sequentially [4].

Czech is a highly inflected fusional language. Unlike agglutinative languages, inflectional morphemes often represent several functions simultaneously, and there is no particular one-to-one correspondence between their forms and functions. Inflectional paradigms...
Chapter 1 Finding the Structure of Words

Finding the Structure of Words

Figure 1–1: Complex tokenization and normalization of euphony in Arabic. Three nominal cases are expressed by the same word form with *dirāsati* ‘my study’ and *mu* ↪ *allimıya* ‘my teachers’, but the original case endings are distinct. In *katabtumūhā* ‘you-MASC-PL wrote them’, the liaison vowel ă is dropped when tokenized. Special attention is needed to normalize some orthographic conventions, such as the interaction of *i̇gr̄a* ‘carrying out’ and the cliticized *hu* ‘his’ respecting the case ending or the merge of the definite article of *l̄-l̄-asafı* ‘regret’ with the preposition *li* ‘for’.

(i.e., schemes for finding the form of a lexeme associated with the required properties) in Czech are of numerous kinds, yet they tend to include nonunique forms in them.

Table 1–4 lists the paradigms of several common Czech words. Inflectional paradigms for nouns depend on the grammatical gender and the phonological structure of a lexeme. The individual forms in a paradigm vary with grammatical number and case, which are the free parameters imposed only by the context in which a word is used.

Looking at the morphological variation of the word *stavenı* ‘building’, we might wonder why we should distinguish all the cases for it when this lexeme can take only four different forms. Is the detail of the case system appropriate? The answer is yes, because we can find linguistic evidence that leads to this case category abstraction. Just consider other words of the same meaning in place of *stavenı* in various contexts. We conclude that there is indeed a case distinction made by the underlying system, but it need not necessarily be expressed clearly and uniquely in the form of words.

The morphological phenomenon that some words or word classes show instances of systematic homonymy is called syncretism. In particular, homonymy can occur due to neutralization and uninflectedness with respect to some morphosyntactic parameters. These cases of morphological syncretism are distinguished by the ability of the context to demand the morphosyntactic properties in question, as stated by Baerman, Brown, and Corbett [10, p. 32]:

Whereas neutralization is about syntactic irrelevance as reflected in morphology, uninflectedness is about morphology being unresponsive to a feature that is syntactically relevant.

For example, it seems fine for syntax in Czech or Arabic to request the personal pronoun of the first-person feminine singular, equivalent to ‘I’, despite it being homonymous with...
Table 1–4: Morphological paradigms of the Czech words dům ‘house’, budova ‘building’, stavba ‘building’, stavení ‘building’. Despite systematic ambiguities in them, the space of inflectional parameters could not be reduced without losing the ability to capture all distinct forms elsewhere: S singular, P plural number; 1 nominative, 2 genitive, 3 dative, 4 accusative, 5 vocative, 6 locative, 7 instrumental case

<table>
<thead>
<tr>
<th></th>
<th>Masculine inanimate</th>
<th>Feminine</th>
<th>Feminine</th>
<th>Neuter</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>dům</td>
<td>budova</td>
<td>stavba</td>
<td>stavení</td>
</tr>
<tr>
<td>S2</td>
<td>domu</td>
<td>budovy</td>
<td>stavby</td>
<td>stavení</td>
</tr>
<tr>
<td>S3</td>
<td>domu</td>
<td>budově</td>
<td>stavbě</td>
<td>stavení</td>
</tr>
<tr>
<td>S4</td>
<td>dům</td>
<td>budovu</td>
<td>stavbu</td>
<td>stavení</td>
</tr>
<tr>
<td>S5</td>
<td>dome</td>
<td>budovo</td>
<td>stavbo</td>
<td>stavení</td>
</tr>
<tr>
<td>S6</td>
<td>domu / domě</td>
<td>budově</td>
<td>stavbě</td>
<td>stavení</td>
</tr>
<tr>
<td>S7</td>
<td>domem</td>
<td>budovou</td>
<td>stavbou</td>
<td>stavením</td>
</tr>
<tr>
<td>P1</td>
<td>domy</td>
<td>budovy</td>
<td>stavby</td>
<td>stavení</td>
</tr>
<tr>
<td>P2</td>
<td>domů</td>
<td>budov</td>
<td>staveb</td>
<td>stavení</td>
</tr>
<tr>
<td>P3</td>
<td>domům</td>
<td>budovám</td>
<td>stavbám</td>
<td>stavením</td>
</tr>
<tr>
<td>P4</td>
<td>domy</td>
<td>budovy</td>
<td>stavby</td>
<td>stavení</td>
</tr>
<tr>
<td>P5</td>
<td>domy</td>
<td>budovy</td>
<td>stavby</td>
<td>stavení</td>
</tr>
<tr>
<td>P6</td>
<td>domech</td>
<td>budováč</td>
<td>stavbáč</td>
<td>staveních</td>
</tr>
<tr>
<td>P7</td>
<td>domy</td>
<td>budovami</td>
<td>stavbami</td>
<td>staveními</td>
</tr>
</tbody>
</table>

the first-person masculine singular. The reason is that for some other values of the person category, the forms of masculine and feminine gender are different, and there exist syntactic dependencies that do take gender into account. It is not the case that the first-person singular pronoun would have no gender nor that it would have both. We just observe uninflectedness here. On the other hand, we might claim that in English or Korean, the gender category is syntactically neutralized if it ever was present, and the nuances between he and she, him and her, his and hers are only semantic.

With the notion of paradigms and syncretism in mind, we should ask what is the minimal set of combinations of morphosyntactic inflectional parameters that covers the inflectional variability in a language. Morphological models that would like to define a joint system of underlying morphosyntactic properties for multiple languages would have to generalize the parameter space accordingly and neutralize any systematically void configurations.

1.2.3 Productivity

Is the inventory of words in a language finite, or is it unlimited? This question leads directly to discerning two fundamental approaches to language, summarized in the distinction between langue and parole by Ferdinand de Saussure, or in the competence versus performance duality by Noam Chomsky.

In one view, language can be seen as simply a collection of utterances (parole) actually pronounced or written (performance). This ideal data set can in practice be approximated by linguistic corpora, which are finite collections of linguistic data that are studied with empirical methods and can be used for comparison when linguistic models are developed.
Yet, if we consider language as a system (langue), we discover in it structural devices like recursion, iteration, or compounding that allow to produce (competence) an infinite set of concrete linguistic utterances. This general potential holds for morphological processes as well and is called morphological productivity [31, 32].

We denote the set of word forms found in a corpus of a language as its vocabulary. The members of this set are word types, whereas every original instance of a word form is a word token.

The distribution of words [33] or other elements of language follows the “80/20 rule,” also known as the law of the vital few. It says that most of the word tokens in a given corpus can be identified with just a couple of word types in its vocabulary, and words from the rest of the vocabulary occur much less commonly if not rarely in the corpus. Furthermore, new, unexpected words will always appear as the collection of linguistic data is enlarged.

In Czech, negation is a productive morphological operation. Verbs, nouns, adjectives, and adverbs can be prefixed with ne- to define the complementary lexical concept. In Example 1–9, budeš ‘you will be’ is the second-person singular of být ‘to be’, and nebudu ‘I will not be’ is the first-person singular of nebýt, the negated být. We could easily have číst ‘to read’ and nečíst ‘not to read’, or we could create an adverbial phrase like noviny nenoviny that would express ‘indifference to newspapers’ in general:

you-will read the newspaper? you-will it read? not-I-will it read.

Example 1–9 has the meaning of Example 1–1 and Example 1–6. The word noviny ‘newspaper’ exists only in plural whether it signifies one piece of newspaper or many of them. We can literally translate noviny as the plural of novina ‘news’ to see the origins of the word as well as the fortunate analogy with English.

It is conceivable to include all negated lexemes into the lexicon and thereby again achieve a finite number of word forms in the vocabulary. Generally, though, the richness of a morphological system of a language can make this approach highly impractical.

Most languages contain words that allow some of their structural components to repeat freely. Consider the prefix pra- related to a notion of ‘generation’ in Czech and how it can or cannot be iterated, as shown in Example 1–10:

Example 1–10: vnuk ‘grandson’ pravnuk ‘great-grandson’
les ‘forest’ prales ‘jungle’, ‘virgin forest’
zdroj ‘source’ prazdroj ‘urquell’, ‘original source’
starý ‘old’ prastarý ‘time-honored’, ‘dateless’

In creative language, such as in blogs, chats, and emotive informal communication, iteration is often used to accent intensity of expression. Creativity may, of course, go beyond the rules of productivity itself [32].

Let us give an example where creativity, productivity, and the issue of unknown words meet nicely. According to Wikipedia, the word googol is a made-up word denoting the number “one followed by one hundred zeros,” and the name of the company Google is an
inadvertent misspelling thereof. Nonetheless, both of these words successfully entered the lexicon of English where morphological productivity started working, and we now know the verb to google and nouns like googling or even googlish or googleology [34].

The original names have been adopted by other languages, too, and their own morphological processes have been triggered. In Czech, one says googlovat, googlit ‘to google’ or vygooglovat, vygooglit ‘to google out’, googlování ‘googling’, and so on. In Arabic, the names are transcribed as ˇg¯uˇg¯ul ‘googol’ and ˇg¯uˇgil ‘Google’. The latter one got transformed to the verb ˇgawˇgal ‘to google’ through internal inflection, as if there were a genuine root ˇgwˇgl, and the corresponding noun ˇgawˇgalah ‘googling’ exists as well.

1.3 Morphological Models

There are many possible approaches to designing and implementing morphological models. Over time, computational linguistics has witnessed the development of a number of formalisms and frameworks, in particular grammars of different kinds and expressive power, with which to address whole classes of problems in processing natural as well as formal languages.

Various domain-specific programming languages have been created that allow us to implement the theoretical problem using hopefully intuitive and minimal programming effort. These special-purpose languages usually introduce idiosyncratic notations of programs and are interpreted using some restricted model of computation. The motivation for such approaches may partly lie in the fact that, historically, computational resources were too limited compared to the requirements and complexity of the tasks being solved. Other motivations are theoretical given that finding a simple but accurate and yet generalizing model is the point of scientific abstraction.

There are also many approaches that do not resort to domain-specific programming. They, however, have to take care of the runtime performance and efficiency of the computational model themselves. It is up to the choice of the programming methods and the design style whether such models turn out to be pure, intuitive, adequate, complete, reusable, elegant, or not.

Let us now look at the most prominent types of computational approaches to morphology. Needless to say, this typology is not strictly exclusive in the sense that comprehensive morphological models and their applications can combine various distinct implementational aspects, discussed next.

1.3.1 Dictionary Lookup

Morphological parsing is a process by which word forms of a language are associated with corresponding linguistic descriptions. Morphological systems that specify these associations by merely enumerating them case by case do not offer any generalization means. Likewise for systems in which analyzing a word form is reduced to looking it up verbatim in word
lists, dictionaries, or databases, unless they are constructed by and kept in sync with more sophisticated models of the language.

In this context, a dictionary is understood as a data structure that directly enables obtaining some precomputed results, in our case word analyses. The data structure can be optimized for efficient lookup, and the results can be shared. Lookup operations are relatively simple and usually quick. Dictionaries can be implemented, for instance, as lists, binary search trees, tries, hash tables, and so on.

Because the set of associations between word forms and their desired descriptions is declared by plain enumeration, the coverage of the model is finite and the generative potential of the language is not exploited. Developing as well as verifying the association list is tedious, liable to errors, and likely inefficient and inaccurate unless the data are retrieved automatically from large and reliable linguistic resources.

Despite all that, an enumerative model is often sufficient for the given purpose, deals easily with exceptions, and can implement even complex morphology. For instance, dictionary-based approaches to Korean [35] depend on a large dictionary of all possible combinations of allomorphs and morphological alternations. These approaches do not allow development of reusable morphological rules, though [36].

The word list or dictionary-based approach has been used frequently in various ad hoc implementations for many languages. We could assume that with the availability of immense online data, extracting a high-coverage vocabulary of word forms is feasible these days [37]. The question remains how the associated annotations are constructed and how informative and accurate they are. References to the literature on the unsupervised learning and induction of morphology, which are methods resulting in structured and therefore nonenumerative models, are provided later in this chapter.

1.3.2 Finite-State Morphology

By finite-state morphological models, we mean those in which the specifications written by human programmers are directly compiled into finite-state transducers. The two most popular tools supporting this approach, which have been cited in literature and for which example implementations for multiple languages are available online, include XFST (Xerox Finite-State Tool) [9] and LexTools [11].

Finite-state transducers are computational devices extending the power of finite-state automata. They consist of a finite set of nodes connected by directed edges labeled with pairs of input and output symbols. In such a network or graph, nodes are also called states, while edges are called arcs. Traversing the network from the set of initial states to the set of final states along the arcs is equivalent to reading the sequences of encountered input symbols and writing the sequences of corresponding output symbols.

The set of possible sequences accepted by the transducer defines the input language; the set of possible sequences emitted by the transducer defines the output language. For example, a finite-state transducer could translate the infinite regular language consisting of the words vnuk, pravnuk, prapraavnuk, ... to the matching words in the infinite regular language defined by grandson, great-grandson, great-great-grandson, ...

1.3 Morphological Models

The role of finite-state transducers is to capture and compute regular relations on sets \[\Sigma\] \[9, 11]\). That is, transducers specify relations between the input and output languages. In fact, it is possible to invert the domain and the range of a relation, that is, exchange the input and the output. In finite-state computational morphology, it is common to refer to the input word forms as surface strings and to the output descriptions as lexical strings, if the transducer is used for morphological analysis, or vice versa, if it is used for morphological generation.

The linguistic descriptions we would like to give to the word forms and their components can be rather arbitrary and are obviously dependent on the language processed as well as on the morphological theory followed. In English, a finite-state transducer could analyze the surface string *children* into the lexical string *child [+plural]*, for instance, or generate *women* from *woman [+plural]*. For other examples of possible input and output strings, consider Example 1–8 or Figure 1–1.

Relations on languages can also be viewed as functions. Let us have a relation \(\mathcal{R}\), and let us denote by \([\Sigma]\) the set of all sequences over some set of symbols \(\Sigma\), so that the domain and the range of \(\mathcal{R}\) are subsets of \([\Sigma]\). We can then consider \(\mathcal{R}\) as a function mapping an input string into a set of output strings, formally denoted by this type signature, where \([\Sigma]\) equals String:

\[
\mathcal{R} :: [\Sigma] \rightarrow \{[\Sigma]\} \\
\mathcal{R} :: \text{String} \rightarrow \{\text{String}\}
\]

Finite-state transducers have been studied extensively for their formal algebraic properties and have proven to be suitable models for miscellaneous problems \[9\]. Their applications encoding the surface rather than lexical string associations as rewrite rules of phonology and morphology have been around since the two-level morphology model \[39\], further presented in *Computational Approaches to Morphology and Syntax* \[11\] and *Morphology and Computation* \[40\].

Morphological operations and processes in human languages can, in the overwhelming number of cases and to a sufficient degree, be expressed in finite-state terms. Beesley and Karttunen \[9\] stress concatenation of transducers as the method for factoring surface and lexical languages into simpler models and propose a somewhat unsystematic compile-replace transducer operation for handling nonconcatenative phenomena in morphology. Roark and Sproat \[11\], however, argue that building morphological models in general using transducer composition, which is pure, is a more universal approach.

A theoretical limitation of finite-state models of morphology is the problem of capturing reduplication of words or their elements (e.g., to express plurality) found in several human languages. A formal language that contains only words of the form \(\lambda^{1+k}\), where \(\lambda\) is some arbitrary sequence of symbols from an alphabet and \(k \in \{1, 2, \ldots\}\) is an arbitrary natural number indicating how many times \(\lambda\) is repeated after itself, is not a regular language, not even a context-free language. General reduplication of strings of unbounded length is thus not a regular-language operation. Coping with this problem in the framework of finite-state transducers is discussed by Roark and Sproat \[11\].

6 Regular relations and regular languages are restricted in their structure by the limited memory of the device (i.e., the finite set of configurations in which it can occur). Unlike with regular languages, intersection of regular relations can in general yield nonregular results \[38\].
Finite-state technology can be applied to the morphological modeling of isolating and agglutinative languages in a quite straightforward manner. Korean finite-state models are discussed by Kim et al. [41], Lee and Rim [42], and Han [43], to mention a few. For treatments of nonconcatenative morphology using finite-state frameworks, see especially Kay [44], Beesley [45], Kiraz [46], and Habash, Rambow, and Kiraz [47]. For comparison with finite-state models of the rich morphology of Czech, compare Skoumalová [48] and Sedláček and Smrž [49].

Implementing a refined finite-state morphological model requires careful fine-tuning of its lexicons, rewrite rules, and other components, while extending the code can lead to unexpected interactions in it, as noted by Oazer [50]. Convenient specification languages like those mentioned previously are needed because encoding the finite-state transducers directly would be extremely arduous, error prone, and unintelligible.

Finite-state tools are available in most general-purpose programming languages in the form of support for regular expression matching and substitution. While these may not be the ultimate choice for building full-fledged morphological analyzers or generators of a natural language, they are very suitable for developing tokenizers and morphological guessers capable of suggesting at least some structure for words that are formed correctly but cannot be identified with concrete lexemes during full morphological parsing [9].

1.3.3 Unification-Based Morphology

Unification-based approaches to morphology have been inspired by advances in various formal linguistic frameworks aiming at enabling complete grammatical descriptions of human languages, especially head-driven phrase structure grammar (HPSG) [51], and by development of languages for lexical knowledge representation, especially DATR [52]. The concepts and methods of these formalisms are often closely connected to those of logic programming. In the excellent thesis by Erjavec [53], the scientific context is discussed extensively and profoundly; refer also to the monographs by Carpenter [54] and Shieber [55].

In finite-state morphological models, both surface and lexical forms are by themselves unstructured strings of atomic symbols. In higher-level approaches, linguistic information is expressed by more appropriate data structures that can include complex values or can be recursively nested if needed. Morphological parsing \(\mathcal{P} \) thus associates linear forms \(\phi \) with alternatives of structured content \(\psi \), cf. (1.1):

\[
\mathcal{P} :: \phi \rightarrow \{\psi\} \quad \mathcal{P} :: \text{form} \rightarrow \{\text{content}\}
\] (1.2)

Erjavec [53] argues that for morphological modeling, word forms are best captured by regular expressions, while the linguistic content is best described through typed feature structures. Feature structures can be viewed as directed acyclic graphs. A node in a feature structure comprises a set of attributes whose values can be feature structures again. Nodes are associated with types, and atomic values are attributeless nodes distinguished by their type. Instead of unique instances of values everywhere, references can be used to establish value instance identity. Feature structures are usually displayed as attribute-value matrices or as nested symbolic expressions.

Unification is the key operation by which feature structures can be merged into a more informative feature structure. Unification of feature structures can also fail, which means
that the information in them is mutually incompatible. Depending on the flavor of the processing logic, unification can be monotonic (i.e., information-preserving), or it can allow inheritance of default values and their overriding. In either case, information in a model can be efficiently shared and reused by means of inheritance hierarchies defined on the feature structure types.

Morphological models of this kind are typically formulated as logic programs, and unification is used to solve the system of constraints imposed by the model. Advantages of this approach include better abstraction possibilities for developing a morphological grammar as well as elimination of redundant information from it.

However, morphological models implemented in DATR can, under certain assumptions, be converted to finite-state machines and are thus formally equivalent to them in the range of morphological phenomena they can describe [11]. Interestingly, one-level phonology [56] formulating phonological constraints as logic expressions can be compiled into finite-state automata, which can then be intersected with morphological transducers to exclude any disturbing phonologically invalid surface strings [cf. 57, 53].

Unification-based models have been implemented for Russian [58], Czech [59], Slovene [53], Persian [60], Hebrew [61], Arabic [62, 63], and other languages. Some rely on DATR; some adopt, adapt, or develop other unification engines.

1.3.4 Functional Morphology

This group of morphological models includes not only the ones following the methodology of functional morphology [64], but even those related to it, such as morphological resource grammars of Grammatical Framework [65]. Functional morphology defines its models using principles of functional programming and type theory. It treats morphological operations and processes as pure mathematical functions and organizes the linguistic as well as abstract elements of a model into distinct types of values and type classes.

Though functional morphology is not limited to modeling particular types of morphologies in human languages, it is especially useful for fusional morphologies. Linguistic notions like paradigms, rules and exceptions, grammatical categories and parameters, lexemes, morphemes, and morphs can be represented intuitively and succinctly in this approach. Designing a morphological system in an accurate and elegant way is encouraged by the computational setting, which supports logical decoupling of subproblems and reinforces the semantic structure of a program by strong type checking.

Functional morphology implementations are intended to be reused as programming libraries capable of handling the complete morphology of a language and to be incorporated into various kinds of applications. Morphological parsing is just one usage of the system, the others being morphological generation, lexicon browsing, and so on. Next to parsing (1.2), we can describe inflection \mathcal{I}, derivation \mathcal{D}, and lookup \mathcal{L} as functions of these generic types:

$$\mathcal{I} :: lexeme \rightarrow \{\text{parameter}\} \rightarrow \{\text{form}\}$$

(1.3)

$$\mathcal{D} :: lexeme \rightarrow \{\text{parameter}\} \rightarrow \{\text{lexeme}\}$$

(1.4)

$$\mathcal{L} :: content \rightarrow \{\text{lexeme}\}$$

(1.5)
Chapter 1 Finding the Structure of Words

A functional morphology model can be compiled into finite-state transducers if needed, but can also be used interactively in an interpreted mode, for instance. Computation within a model may exploit lazy evaluation and employ alternative methods of efficient parsing, lookup, and so on [see 66, 12].

Many functional morphology implementations are embedded in a general-purpose programming language, which gives programmers more freedom with advanced programming techniques and allows them to develop full-featured, real-world applications for their models. The Zen toolkit for Sanskrit morphology [67, 68] is written in OCaml. It influenced the functional morphology framework [64] in Haskell, with which morphologies of Latin, Swedish, Spanish, Urdu [69], and other languages have been implemented.

In Haskell, in particular, developers can take advantage of its syntactic flexibility and design their own notation for the functional constructs that model the given problem. The notation then constitutes a so-called domain-specific embedded language, which makes programming even more fun. Figure 1–2 illustrates how the ElixirFM implementation of Arabic morphology [12, 17] captures the structure of words and defines the lexicon. Despite the entries being most informative, their format is simply similar to that found in printed dictionaries. Operators like >|, |<, |<< and labels like verb are just infix functions; patterns and affixes like FaCY, FCI, At are data constructors.

| > "d r y" < | [d r y
| FaCY 'verb' ["know", "notice"] fā
| 'imperf' FCI, fī
| FACY 'verb' ["flatter", "deceive"] fāfā
| FIC 'verb' ["inform", "let know"] lā-a-fī-īy
| IA >| "a" >>| FCI |<< "Iy" 'adj' ["agnostic"] fīvāl-ah
| FiCAL |< aT 'noun' ["knowledge", "knowing"] mufāā-ah
| MuFACY |< aT 'noun' ["flattery"] mufāā-āt
| 'plural' MuFACY |< At, fā
| FACI 'adj' ["aware", "knowing"]

Figure 1–2: Excerpt from the ElixirFM lexicon and a layout generated from it. The source code of entries nested under the d r y root is shown in monospace font. Note the custom notation and the economy yet informativeness of the declaration.
1.3 Morphological Models

Even without the options provided by general-purpose programming languages, functional morphology models achieve high levels of abstraction. Morphological grammars in Grammatical Framework [65] can be extended with descriptions of the syntax and semantics of a language. Grammatical Framework itself supports multilinguality, and models of more than a dozen languages are available in it as open-source software [70, 71].

Grammars in the OpenCCG project [72] can be viewed as functional models, too. Their formalism discerns declarations of features, categories, and families that provide type-system-like means for representing structured values and inheritance hierarchies on them. The grammars leverage heavily the functionality to define parametrized macros to minimize redundancy in the model and make required generalizations. Expansion of macros in the source code has effects similar to inlining of functions. The original text of the grammar is reduced to associations between word forms and their morphosyntactic and lexical properties.

1.3.5 Morphology Induction

We have focused on finding the structure of words in diverse languages supposing we know what we are looking for. We have not considered the problem of discovering and inducing word structure without the human insight (i.e., in an unsupervised or semi-supervised manner). The motivation for such approaches lies in the fact that for many languages, linguistic expertise might be unavailable or limited, and implementations adequate to a purpose may not exist at all. Automated acquisition of morphological and lexical information, even if not perfect, can be reused for bootstrapping and improving the classical morphological models, too.

Let us skim over the directions of research in this domain. In the studies by Hammarström [73] and Goldsmith [74], the literature on unsupervised learning of morphology is reviewed in detail. Hammarström divides the numerous approaches into three main groups. Some works compare and cluster words based on their similarity according to miscellaneous metrics [75, 76, 77, 78]; others try to identify the prominent features of word forms distinguishing them from the unrelated ones. Most of the published approaches cast morphology induction as the problem of word boundary and morpheme boundary detection, sometimes acquiring also lexicons and paradigms [79, 80, 81, 82, 83].

There are several challenging issues about deducing word structure just from the forms and their context. They are caused by ambiguity [76] and irregularity [75] in morphology, as well as by orthographic and phonological alternations [85] and nonlinear morphological processes [86, 87].

In order to improve the chances of statistical inference, parallel learning of morphologies for multiple languages is proposed by Snyder and Barzilay [88], resulting in discovery of abstract morphemes. The discriminative log-linear model of Poon, Cherry, and Toutanova [89] enhances its generalization options by employing overlapping contextual features when making segmentation decisions [cf. 90].

7. Compare these with a semisupervised approach to word hyphenation [84].
1.4 Summary

In this chapter, we learned that morphology can be looked at from opposing viewpoints: one that tries to find the structural components from which words are built versus a more syntax-driven perspective wherein the functions of words are the focus of the study. Another distinction can be made between analytic and generative aspects of morphology or can consider man-made morphological frameworks versus systems for unsupervised induction of morphology. Yet other kinds of issues are raised about how well and how easily the morphological models can be implemented.

We described morphological parsing as the formal process recovering structured information from a linear sequence of symbols, where ambiguity is present and where multiple interpretations should be expected.

We explored interesting morphological phenomena in different types of languages and mentioned several hints in respect to multilingual processing and model development.

With Korean as a language where agglutination moderated by phonological rules is the dominant morphological process, we saw that a viable model of word decomposition can work at the morphemes level, regardless of whether they are lexical or grammatical.

In Czech and Arabic as fusional languages with intricate systems of inflectional and derivational parameters and lexically dependent word stem variation, such factorization is not useful. Morphology is better described via paradigms associating the possible forms of lexemes with their corresponding properties.

We discussed various options for implementing either of these models using modern programming techniques.

Acknowledgment

We would like to thank Petr Novák for his valuable comments on an earlier draft of this chapter.

Bibliography

Index

. (period), sentence segmentation markers, 30
“” (Quotation marks), sentence segmentation markers, 30
! (Exclamation point), as sentence segmentation marker, 30
? (Question mark), sentence segmentation markers, 30
80/20 rule (vital few), 14

a priori models, in document retrieval, 377
Abbreviations, punctuation marks in, 30
Absity parser, rule-based semantic parsing, 122
Abstracts
 in automatic summarization, 397
defined, 400
Accumulative vector space model, for document retrieval, 374–375
Accuracy, in QA, 462
ACE. See Automatic content extraction (ACE)
Acquis corpus
 for evaluating IR systems, 390
 for machine translation, 358
Adequacy, of translation, 334
Adjective arguments, PropBank verb predicates, 119–120
AER (Alignment-error rate), 343
AEs (Analysis engines), UIMA, 527
Agglutinative languages
 finite-state technology applied to, 18
 linear decomposition of words, 192
 morphological typology and, 7
 parsing issues related to morphology, 90–91
Aggregate processor, combining NLP engines, 523
Aggregation architectures, for NLP. See also
 Natural language processing (NLP), combining engines for
 GATE, 529–530
 InfoSphere Streams, 530–531
 overview of, 527
 UIMA, 527–529
Aggregation models, for MLIR, 385
Agreement feature, of coreference models, 301
Air Travel Information System (ATIS)
 as resource for meaning representation, 148
 rule-based systems for semantic parsing, 150
 supervised systems for semantic parsing, 150–151
Algorithms. See by individual types
Alignment-error rate (AER), 343
Alignment, in RTE
 implementing, 233–236
 latent alignment inference, 247–248
 learning alignment independently of entailment, 244–245
 leveraging multiple alignments, 245
 modeling, 226
Allomorphs, 6
“almost-parsing” language model, 181
Ambiguity
 disambiguation problem in morphology, 91
 in interpretation of expressions, 10–13
 issues with morphology induction, 21
 PCFGs and, 80–83
 resolution in parsing, 80
 sentence segmentation markers and, 30
 structural, 99
 in syntactic analysis, 61
 types of, 8
 word sense and. See Disambiguation systems, word sense
Analysis engines (AEs), UIMA, 527
Analysis, in RTE framework
 annotators, 219
 improving, 248–249
 multiview representation of, 220–222
 overview of, 220
Analysis stage, of summarization system
 building a summarization system and, 421
 overview of, 400
551
Anaphora resolution. See also Coreference resolution
automatic summarization and, 398
cohesion of, 401
multilingual automatic summarization and, 410
QA architectures and, 438–439
zero anaphora resolution, 249, 444
Anchored speech recognition, 490
Anchors, in SSTK, 246
Annotation/annotation guidelines
entity detection and, 293
in GALE, 478
Penn Treebank and, 87–88
phrase structure trees and, 68–69
QA architectures and, 439–440
in RTE, 219, 222–224
snippet processing and, 485
for treebanks, 62
of utterances based on rule-based grammars, 502–503
of utterances in spoken dialog systems, 513
Answers, in QA
candidate answer extraction. See Candidate answer extraction, in QA
candidate answer generation. See Candidate answer generation, in QA
evaluating correctness of, 461–462
scores for, 450–453, 458–459
scoring component for, 435
type classification of, 440–442
Arabic
ambiguity in, 11–12
corpora for relation extraction, 317
distillation, 479, 490–491
EDT and, 286
ElixirFM lexicon, 20
encoding and script, 368
English-to-Arabic machine translation, 114
as fusional language, 8
GALE IOD and, 532, 534–536
IR and, 371
irregularity in, 8–9
language modeling, 189–191, 193
mention detection experiments, 294–296
morphemes in, 6
morphological analysis of, 191
multilingual issues in predicate-argument structures, 146–147
polarity analysis of words and phrases, 269
productivity/creativity in, 15
regional dialects not in written form, 195
RTE in, 218
stem-matching features for capturing morphological similarities, 301
TALES case study, 538
tokens in, 4
translingual summarization, 398–399, 424–426
unification-based models, 19
Architectures
aggregation architectures for NLP, 527–529
for question answering (QA), 435–437
of spoken dialog systems, 505
system architectures for distillation, 488
system architectures for semantic parsing, 101–102
types of EDT architectures, 286–287
Arguments
consistency of argument identification, 323
event extraction and, 321–322
in GALE distillation initiative, 475
in RTE systems, 220
Arguments, predicate-argument recognition
argument sequence information, 137–138
classification and identification, 139–140
core and adjunctive, 119
disallowing overlaps, 137
discontiguous, 121
identification and classification, 123
noun arguments, 144–146
ART (artifact) relation class, 312
ASCII
as encoding scheme, 368
parsing issues related, 89
Asian Federation of Natural Language Processing, 218
Asian languages. See also by individual Asian languages
multilingual IR and, 366, 390
QA and, 434, 437, 455, 460–461, 466
Ask.com, 435
ASR (automatic speech recognition)
sentence boundary annotation, 29
sentence segmentation markers, 31
ASSERT (Automatic Statistical SEmantic Role Tagger), 147, 447
ATIS. See Air Travel Information System (ATIS)
Atomic events, summarization and, 418
Attribute features, in coreference models, 301
Automatic content extraction (ACE)
coreference resolution experiments, 302–303
event extraction and, 320–321
mention detection and, 287, 294
relation extraction and, 311–312
in Rosetta Consortium distillation system, 480–481
Automatic speech recognition (ASR)
sentence boundary annotation, 29
sentence segmentation markers, 31
Automatic Statistical SEmantic Role Tagger (ASSERT), 147, 447
Automatic summarization
bibliography, 427–432
coherece and cohesion in, 401–404
extraction and modification processes in, 399–400
graph-based approaches, 401
history of, 398–399
introduction to, 397–398
learning how to summarize, 406–409
LexPageRank, 406
multilingual. See Multilingual automatic summarization
stages of, 400
summary, 426–427
surface-based features used in, 400–401
TextRank, 404–406
Automatic Summary Evaluation based on n-gram graphs (AutoSummENG), 419–420

Babel Fish
crosslingual question answering and, 455
Systran, 331
Backend services, of spoken dialog system, 500
Backoff smoothing techniques
generalized backoff strategy, 183–184
in language model estimation, 172
nonnormalized form, 175
parallel backoff, 184
Backus-Naur form, of context-free grammar, 59
BananaSplit, IR preprocessing and, 392
Base phrase chunks, 132–133
BASEBALL system, in history of QA systems, 434
Basic Elements (BE)
automatic evaluation of summarization, 417–419
metrics in, 420
Bayes rule, for sentence or topic segmentation, 39–40
Bayes theorem, maximum-likelihood estimation and, 376
Bayesian parameter estimation, 173–174
Bayesian topic-based language models, 186–187
BBN, event extraction and, 322
BE (Basic Elements)
automatic evaluation of summarization, 417–419
metrics in, 420
BE with Transformations for Evaluation (BEwTE), 419–420
Beam search
machine translation and, 346
reducing search space using, 290–291
Bell tree, for coreference resolution, 297–298
Bengali. See Indian languages
Berkeley word aligner, in machine translation, 357
Bibliographic summaries, in automatic summarization, 397
Bilingual latent semantic analysis (bLSA), 197–198
Binary classifier, in event matching, 323–324
Binary conditional model, for probability of mention links, 297–300
BLEU
machine translation metrics, 334, 336
mention detection experiments and, 295
ROUGE compared with, 415–416
Block comparison method, for topic segmentation, 38
bLSA (bilingual latent semantic analysis), 197–198
BLUE (Boeing Language Understanding Engine), 242–244
BM25 model, in document retrieval, 375
BNC (British National Corpus), 118
Boeing Language Understanding Engine (BLUE), 242–244
Boolean models
 for document representation in monolingual IR, 372
 for document retrieval, 374
Boolean named entity flags, in PSG, 126

Bootstrapping
 building subjectivity lexicons, 266–267
 corpus-based approach to subjectivity and sentiment analysis, 269
dictionary-based approach to subjectivity and sentiment analysis, 273
 ranking approaches to subjectivity and sentiment analysis, 275–276
 semisupervised approach to relation extraction, 318

Boundary classification problems
 overview of, 33
 sentence boundaries. See Sentence boundary detection
topic boundaries. See Topic segmentation

British National Corpus (BNC), 118
Brown Corpus, as resource for semantic parsing, 104
Buckwalter Morphological Analyzer, 191

C-ASSERT, software programs for semantic role labeling, 147

Call-flow
 localization of, 514
 strategy of dialog manager, 504
 voice user interface (VUI) and, 505–506

Call routing, natural language and, 510

Canadian Hansards
 corpora for IR, 391
corpora for machine translation, 358

Candidate answer extraction, in QA
 answer scores, 450–453
 combining evidence, 453–454
 structural matching, 446–448
 from structured sources, 449–450
 surface patterns, 448–449
type-based, 446
 from unstructured sources, 445

Candidate answer generation, in QA
 components in QA architectures, 435
 overview of, 443

Candidate boundaries, processing stages of segmentation tasks, 48

Canonization, deferred in RTE multiview representation, 222
Capitalization (Uppercase), sentence segmentation markers, 30
CAS (Common analysis structure), UIMA, 527, 536

Cascading systems, types of EDT architectures, 286–287

Case
 parsing issues related to, 88
 sentence segmentation markers, 30

Catalan, 109

Categorical ambiguity, word sense and, 104

Cause-and-effect relations, causal reasoning and, 250

CCG (Combinatory Categorical Grammar), 129–130

CFGs. See Context-free grammar (CFGs)

Character n-gram models, 370
Charter decoding, tree-based models for machine translation, 351–352
Chart parsing, worst-case parsing algorithm for CFGs, 74–79
Charts, IXIR distillation system, 488–489

CHILL (Constructive Heuristics Induction for Language Learning), 151

Chinese
 anaphora frequency in, 444
 challenges of sentence and topic segmentation, 30
corpora for relation extraction, 317
corpus-based approach to subjectivity and sentiment analysis, 274–275
crosslingual language modeling, 197–198
data sets related to summarization, 424–426
dictionary-based approach to subjectivity and sentiment analysis, 272–273
distillation, 479, 490–491
EDT and, 286
HowNet lexicon for, 105
human assessment of word meaning, 333
IR and, 366, 390
isolating (analytic) languages, 7
as isolating or analytic language, 7
language modeling in without word segmentation, 193–194
lingPipe for word segmentation, 423
machine translation and, 322, 354, 358
mention detection experiments, 294–296
multilingual issues in predicate-argument structures, 146–147
phrase structure treebank, 70
polarity analysis of words and phrases, 269
preprocessing best practices in IR, 372
QA and, 461, 464
QA architectures and, 437–438
resources for semantic parsing, 122
RTE in, 218
scripts not using whitespace, 369
subjectivity and sentiment analysis, 259–260
TALES case study, 538
translingual summarization, 399, 410
word segmentation and parsing, 89–90
word segmentation in, 4–5
word sense annotation in, 104
Chomsky, Noam, 13, 98–99
Chunk-based systems, 132–133
Chunks
defined, 292
meaning chunks in semantic parsing, 97
CIDIR algorithm, for multilingual summarization, 411
Citations
evaluation in distillation, 493
in GALE distillation initiative, 477
CKY algorithm, worst-case parsing for CFGs, 76–78
Class-based language models, 178–179
Classes
language modeling using morphological categories, 193
of relations, 311
Classification
of arguments, 123, 139–140
data-driven, 287–289
dynamic class context in PSG, 128
event extraction and, 321–322
overcoming independence assumption, 137–138
paradigms, 133–137
problems related to sentence boundaries. See Sentence boundary detection
problems related to topic boundaries. See Topic segmentation
relation extraction and, 312–316
Classification tag lattice (trellis), searching for mentions, 289
Classifiers
in event matching, 323–324
localization of grammars and, 516
maximum entropy classifiers, 37, 39–40
in mention detection, 292–293
pipeline of, 321
in relation extraction, 313, 316–317
in subjectivity and sentiment analysis, 270–272, 274
Type classifier in QA systems, 440–442
in word disambiguation, 110
CLASSIFY function, 313
ClearTK tool, for building summarization system, 423
CLIR. See Crosslingual information retrieval (CLIR)
Clitics
Czech example, 5
defined, 4
Co-occurrence, of words between languages, 337–338
Coarse to fine parsing, 77–78
Code switchers
impact on sentence segmentation, 31
multilingual language modeling and, 195–196
COGEX, for answer scores in QA, 451
Coherence, sentence-sentence connections and, 402
Cohesion, anaphora resolution and, 401–402
Collection language, in CLIR, 365
Combination hypothesis, combining classifiers to boost performance, 293
Combinatory Categorical Grammar (CCG), 129–130
Common analysis structure (CAS), UIMA, 527, 536
Communicator program, for meaning representation, 148–150
Comparators, RTE, 219, 222–223
Competence vs. performance, Chomsky on, 13
Compile/replace transducer (Beesley and Karttunen), 17
Componentization of design, for NLP aggregation, 524–525
Components of words
lexemes, 5
morphemes, 5–7
morphological typology and, 7–8
Compound slitting
 BananaSplit tool, 392
 normalization for fusional languages, 371

Computational efficiency
 desired attributes of NLP aggregation, 525–526
 in GALE IOD, 537
 in GATE, 530
 in InfoSphere Streams, 530–531
 in UIMA, 528

Computational Natural Language Learning (CoNLL), 132

Concatenative languages, 8

Concept space, interlingual document representations, 381

Conceptual density, as measure of semantic similarity, 112

Conditional probability, MaxEnt formula for, 316

Conditional random fields (CRFs)
 in discriminative parsing model, 84
 machine learning and, 342
 measuring token frequency, 369
 mention detection and, 287
 relation extraction and, 316
 sentence or topic segmentation and, 39–40

Confidence weighted score (CWS), in QA, 463

CoNLL (Computational Natural Language Learning), 132

Constituents
 atomic events and, 418
 in PSG, 127

Constituents, in RTE
 comparing annotation constituents, 222–224
 multiview representation of analysis and, 220
 numerical quantities (NUM), 221, 233

Constraint-based language models, 177

Constructive Heuristics Induction for Language Learning (CHILL), 151

Content Analysis Toolkit (Tika), for preprocessing IR documents, 392

Content word, in PSG, 125–126

Context, as measure of semantic similarity, 112

Context-dependent process, in GALE IOD, 536–537

Context features, of Rosetta Consortium distillation system, 486

Context-free grammar (CFGs)
 for analysis of natural language syntax, 60–61
 dependency graphs in syntax analysis, 65–67
 rules of syntax, 59
 shift-reduce parsing, 72–73
 worst-case parsing algorithm, 74–78

Contextual subjectivity analysis, 261

Contradiction, in textual entailment, 211

Conversational speech, sentence segmentation in, 31

Core arguments, PropBank verb predicates, 119

Coreference resolution. See also Anaphora resolution
 automatic summarization and, 398
 Bell tree for, 297–298
 experiments in, 302–303
 information extraction and, 100, 285–286
 MaxEnt model applied to, 300–301
 models for, 298–300
 overview of, 295–296
 as relation extraction system, 311
 in RTE, 212, 227

Corpora
 for distillation, 480–483
 for document-level annotations, 274
 Europarl (European Parliament), 295, 345
 for IR systems, 390–391
 for machine translation (MT), 358
 for relation extraction, 317
 for semantic parsing, 104–105
 for sentence-level annotations, 271–272
 for subjectivity and sentiment analysis, 262–263, 274–275
 for summarization, 406, 425
 for word/phrase-level annotations, 267–269

Coverage rate criteria, in language model evaluation, 170

Cranfield paradigm, 387

Creativity/productivity, and the unknown word problem, 13–15

CRFs. See Conditional random fields (CRFs)

Cross-Language Evaluation Forum (CLEF)
 applying to RTE to non-English languages, 218
 IR and, 377, 390

QA and, 434, 454, 460–464
Cross-language mention propagation, 293, 295
Cross-lingual projections, 275
Crossdocument coreference (XDC), in Rosetta Consortium distillation system, 482–483
Crossdocument Structure Theory Bank (CSTBank), 425
Crossdocument structure theory (CST), 425
Crosslingual distillation, 490–491
Crosslingual information retrieval (CLIR) best practices, 382
interlingual document representations, 381–382
machine translation, 380–381
overview of, 365, 378
translation-based approaches, 378–380
Crosslingual language modeling, 196–198
Crosslingual question answering, 454–455
Crosslingual summarization, 398
CST (Crossdocument structure theory), 425
CSTBank (Crossdocument Structure Theory Bank), 425
Cube pruning, decoding phrase-based models, 347–348
CWS (Confidence weighted score), in QA, 463
Cyrillic alphabet, 371
Czech
ambiguity in, 11–13
dependency graphs in syntax analysis, 62–65
dependency parsing in, 79
finite-state models, 18
as fusional language, 8
language modeling, 193
morphological richness of, 355
negation indicated by inflection, 5
 parsing issues related to morphology, 91
productivity/creativity in, 14–15
syntactic features used in sentence and topic segmentation, 43
unification-based models, 19

DAMSL (Dialog Act Markup in Several Layers), 31
Data-driven
 machine translation, 331
 mention detection, 287–289
Data formats, challenges in NLP aggregation, 524

Data-manipulation capabilities
desired attributes of NLP aggregation, 526
in GATE, 530
 in InfoSphere Streams, 531
 in UIMA, 528–529
Data reorganization, speech-to-text (STT) and, 535–536
Data sets
for evaluating IR systems, 389–391
for multilingual automatic summarization, 425–426
Data types
GALE Type System (GTS), 534–535
usage conventions for NLP aggregation, 540–541
Databases
of entity relations and events, 309–310
relational, 449
DATR, unification-based morphology and, 18–19
DBpedia, 449
de Saussure, Ferdinand, 13
Decision trees, for sentence or topic segmentation, 39–40
Decoding phrase-based models
cube pruning approach, 347–348
overview of, 345–347
Deep representation, in semantic interpretation, 101
Deep semantic parsing
coverage in, 102
overview of, 98
Defense Advanced Research Projects Agency (DARPA)
GALE distillation initiative, 475–476
GALE IOD case study. See Interoperability Demo (IOD), GALE case study
Topic Detection and Tracking (TDT) program, 32–33
Definitional questions, QA and, 433
Deletions metrics, machine translation, 335
Dependencies
global similarity in RTE and, 247
high-level features in event matching, 324–326
Dependency graphs
phrase structure trees compared with, 69–70
in syntactic analysis, 63–67
in treebank construction, 62
Dependency parsing
implementing RTE and, 227
Minipar and Stanford Parser, 456
MST algorithm for, 79–80
shift-reduce parsing algorithm for, 73
structural matching and, 447
tree edit distance based on, 240–241
worst-case parsing algorithm for CFGs, 78
Dependency trees
non projective, 65–67
overview of, 130–132
patterns used in relation extraction, 318
projective, 64–65
Derivation, parsing and, 71–72
Devanagari, preprocessing best practices in IR, 371
Dialog Act Markup in Several Layers (DAMSL), 31
Dialog manager
directing speech generation, 499–500
overview of, 504–505
Dialog module (DM)
call-flow localization and, 514
voice user interface and, 507–508
Dialogs
forms of, 509–510
rules of, 499–500
Dictionary-based approach, in subjectivity and sentiment analysis
document-level annotations, 272–273
sentence-level annotations, 270–271
word/phrase-level annotations, 264–267
Dictionary-based morphology, 15–16
Dictionary-based translations
applying to CLIR, 380
crosslingual modeling and, 197
Directed dialogs, 509
Directed graphs, 79–80
Dirichlet distribution
Hierarchical Dirichlet process (HDP), 187
language models and, 174
Latent Dirichlet allocation (LDA) model, 186
DIRT (Discovery of inference rules from text), 242
Disambiguation systems, word sense
overview of, 105
rule-based, 105–109
semantic parsing and, 152–153
semi-supervised, 114–116
software programs for, 116–117
supervised, 109–112
unsupervised, 112–114
Discontiguous arguments, PropBank verb predicates, 121
Discourse commitments (beliefs), RTE system based on, 239–240
Discourse connectives, relating sentences by, 29
Discourse features
relating sentences by discourse connectives, 29
in sentence and topic segmentation, 44
Discourse segmentation. See Topic segmentation
Discourse structure
automatic summarization and, 398, 410
RTE applications and, 249
Discovery of inference rules from text (DIRT), 242
Discriminative language models
modeling using morphological categories, 192–193
modeling without word segmentation, 194
overview of, 179–180
Discriminative local classification methods, for sentence/topic boundary detection, 36–38
Discriminative parsing models
morphological information in, 91–92
overview of, 84–87
Discriminative sequence classification methods
complexity of, 40–41
overview of, 34
performance of, 41
for sentence/topic boundary detection, 38–39
Distance-based reordering model, in machine translation, 344
Distance, features of coreference models, 301
Distillation
bibliography, 495–497
crosslingual, 490–491
document and corpus preparation, 480–483
evaluation and metrics, 491–494
example, 476–477
indexing and, 483
introduction to, 475–476
multimodal, 490
query answers and, 483–487
redundancy reduction, 489–490
relevance and redundancy and, 477–479
relevance detection, 488–489
Rosetta Consortium system, 479–480
summary, 495
system architectures for, 488
DM (Dialog module)
call-flow localization and, 514
voice user interface and, 507–508
Document-level annotations, for subjectivity
and sentiment analysis
corpus-based, 274
dictionary-based, 272–273
overview of, 272
Document retrieval system, INDRI, 323
Document structure
bibliography, 49–56
comparing segmentation methods, 40–41
discourse features of segmentation methods, 44
discriminative local classification method
for segmentation, 36–38
discriminative sequence classification
method for segmentation, 38–39
discussion, 48–49
extensions for global modeling sentence
segmentation, 40
features of segmentation methods, 41–42
generative sequence classification method
for segmentation, 34–36
hybrid methods for segmentation, 39–40
introduction to, 29–30
lexical features of segmentation methods, 42–43
methods for detecting probable sentence or
topic boundaries, 33–34
performance of segmentation methods, 41
processing stages of segmentation tasks, 48
prosodic features for segmentation, 45–48
sentence boundary detection
(segmentation), 30–32
speech-related features for segmentation, 45
summary, 49
syntactic features of segmentation methods, 43–44
topic boundary detection (segmentation), 32–33
typographical and structural features for
segmentation, 44–45
Document Understanding Conference (DUC), 404, 424
Documents, in distillation systems
indexing, 483
preparing, 480–483
retrieving, 483–484
Documents, in IR
interlingual representation, 381–382
monolingual representation, 372–373
preprocessing, 366–367
a priori models, 377
reducing MLIR to CLIR, 383–384
syntax and encoding, 367–368
translating entire collection, 379
Documents, QA searches, 444
Domain dependent scope, for semantic
parsing, 102
Domain independent scope, for semantic
parsing, 102
Dominance relations, 325
DSO Corpus, of Sense-Tagged English, 104
DUC (Document Understanding Conference), 404, 424
Dutch
IR and, 390–391
normalization and, 371
QA and, 439, 444, 461
RTE in, 218
Edit distance, features of coreference models, 301
Edit Distance Textual Entailment Suite
(EDITS), 240–241
EDT. See Entity detection and tracking
(EDT)
Elaborative summaries, in automatic
summarization, 397
ElixirFM lexicon, 20
Ellipsis, linguistic supports for cohesion, 401
EM algorithm. See Expectation-maximization
(EM) algorithm
Encoding
of documents in information retrieval, 368
parsing issues related to, 89
English

call-flow localization and, 514
co-occurrence of words between languages, 337–339
corpora for relation extraction, 317
corpus-based approach to subjectivity and sentiment analysis, 271–272
crosslingual language modeling, 197–198
dependency graphs in syntax analysis, 65
discourse parsers for, 403
distillation, 479, 490–491
finite-state transducer applied to English example, 17
GALE IOD and, 532, 534–536
IR and, 390
as isolating or analytic language, 7
machine translation and, 322, 354, 358
manually annotated corpora for, 274
mention detection, 287
mention detection experiments, 294–296
multilingual issues in predicate-argument structures, 146–147
normalization and, 370
phrase structure trees in syntax analysis, 62
polarity analysis of words and phrases, 269
productivity/creativity in, 14–15
QA and, 444, 461
QA architectures and, 437
RTE in, 218
sentence segmentation markers, 30
subjectivity and sentiment analysis, 259–260, 262
as SVO language, 356
TALES case study, 538
tokenization and, 410
translingual summarization, 398–399, 424–426
word order and, 356
WordNet and, 109
Enrichment, in RTE
implementing, 228–231
modeling, 225
Ensemble clustering methods, in relation extraction, 317–318

Entities

classifiers, 292–293
dependency-based relation extraction, 314–315
events. See Events
overview of, 412–413
recent developments in, 418–419
Evaluation, in distillation
citation checking, 493
GALE and, 492
metrics, 493–494
overview of, 491–492
relevance and redundancy and, 492–493
Evaluation, in IR
best practices, 391
data sets for, 389–390
experimental setup for, 387
measures in, 388–389
overview of, 386–387
relevance assessment, 387–388
trec-eval tool for, 393
Evaluation, in MT
automatic evaluation, 334–335
human assessment, 332–334
meaning and, 332
metrics for, 335–337
Evaluation, in QA
answer correctness, 461–462
performance metrics, 462–464
tasks, 460–461
Evaluation, in RTE
general model and, 224
improving, 251–252
performance evaluation, 213–214
Evaluation, of aggregated NLP, 541
Evaluative summaries, in automatic summarization, 397
Events. See also Entities
extraction, 320–322
future directions in extraction, 326
matching, 323–326
moving beyond sentence processing, 323
overview of, 320
resolution in semantic interpretation, 100
Exceptions
challenges in NLP aggregation, 524
functional morphology models and, 19
Exclamation point (!), as sentence segmentation marker, 30
Existence classifier, in relation extraction, 313
Expansion documents, query expansion and, 377
Expansion rules, features of predicate-argument structures, 145
Expectation-maximization (EM) algorithm
split-merge over trees using, 83
symmetrization and, 340–341
word alignment between languages and, 339–340
Experiments
in coreference resolution, 302–303
in mention detection, 294–295
setting up for IR evaluation, 387
Explicit semantic analysis (ESA), for interlingual document representation, 382
eXtended WordNet (XWN), 451
Extraction
in automatic summarization, 399–400
as classification problem, 312–313
of events, 320–322, 326
of relations, 310–311
Extraction, in QA
candidate extraction from structured sources, 449–450
candidate extraction from unstructured sources, 445–449
candidate extraction techniques in QA, 443
Extracts
in automatic summarization, 397
defined, 400
Extrinsic evaluation, of summarization, 412
F-measure, in mention detection, 294
Factoid QA systems
answer correctness, 461
answer scores and, 450–453
baseline, 443
candidate extraction or generation and, 435
challenges in, 464–465
crosslingual question answering and, 454
evaluation tasks, 460–461
extracting using high-level searches, 445
extracting using structural matching, 446
MURAX and, 434
performance metrics, 462–463
questions, 433
type classification of, 440
Factoids, in manual evaluation of summarization, 413
Factored (cascaded) model, 313
Factored language models (FLM)
machine translation and, 355
Factored language models (continued)
morphological categories in, 193
overview of, 183–184
Feature extractors
building summarization systems, 423
distillation and, 485–486
summarization and, 406
Features
in mention detection system, 291–294
typed feature structures and unification, 18–19
in word disambiguation system, 110–112
Features, in sentence or topic segmentation
defined, 33
discourse features, 44
lexical features, 42–43
overview of, 41–42
predictions based on, 29
prosodic features, 45–48
speech-related features, 45
syntactic features, 43–44
typographical and structural features, 44–45
Fertility, word alignment and, 340
Files types, document syntax and, 367–368
Finite-state morphology, 16–18
Finite-state transducers, 16–17, 20
Finnish
as agglutinative language, 7
IR and, 390–391
irregular verbs, 10
language modeling, 189–191
 parsing issues related to morphology, 91
summarization and, 399
FIRE (Forum for Information Retrieval Evaluation), 390
Flexible, distributed componentization
desired attributes of NLP aggregation, 524–525
in GATE, 530
in InfoSphere Streams, 530
in UIMA, 528
FLM. See Factored language models (FLM)
Fluency, of translation, 334
Forum for Information Retrieval Evaluation (FIRE), 390
FraCaS corpus, applying natural logic to RTE, 246
Frame elements
in PSG, 126
semantic frames in FrameNet, 118
FrameNet
limitation of, 122–123
resources, 122
resources for predicate-argument recognition, 118–122
Freebase, 449
French
automatic speech recognition (ASR), 179
dictionary-based approach to subjectivity and sentiment analysis, 267
human assessment of translation English to, 332–333
IR and, 378, 390–391
language modeling, 188
localization of spoken dialog systems, 513
machine translation and, 350, 353–354, 358
phrase structure trees in syntax analysis, 62
polarity analysis of words and phrases, 269
QA and, 454, 461
RTE in, 217–218
translingual summarization, 398
word segmentation and, 90
WordNet and, 109
Functional morphology, 19–21
Functions, viewing language relations as, 17
Fusional languages
functional morphology models and, 19
morphological typology and, 8
normalization and, 371
preprocessing best practices in IR, 371
GALE. See Global Autonomous Language Exploitation (GALE)
GALE Type System (GTS), 534–535
GATE. See General Architecture for Text Engineering (GATE)
Gazetteer, features of mention detection system, 293
GEN-AFF (general-affiliation), relation class, 312
Gender
ambiguity resolution, 13
multilingual approaches to grammatical gender, 398
General Architecture for Text Engineering (GATE)
attributes of, 530
history of summarization systems, 399
overview of, 529–530
summarization frameworks, 422
General Inquirer, subjectivity and sentiment analysis lexicon, 262
Generalized backoff strategy, in FLM, 183–184
Generative parsing models, 83–84
Generative sequence classification methods
complexity of, 40
overview of, 34
performance of, 41
for sentence/topic boundary detection, 34–36
Geometric vector space model, for document retrieval, 375
GeoQuery
resources for meaning representation, 149
supervised systems for semantic parsing, 151
German
co-occurrence of words between languages, 337–339
dictionary-based approach to subjectivity and sentiment analysis, 265–266, 273
discourse parsers for, 403
as fusional language, 8
IR and, 390–392
language modeling, 189
mention detection, 287
morphological richness of, 354–355
normalization, 370–371
OOV rate in, 191
phrase-based model for decoding, 345
polarity analysis of words and phrases, 269
QA and, 461
RTE in, 218
subjectivity and sentiment analysis, 259, 276
summarization and, 398, 403–404, 420
WordNet and, 109
Germanic languages, language modeling for, 189
GetService process, of voice user interface (VUI), 506–507
Giza, machine translation program, 423
GIZA toolkit, for machine translation, 357
Global Autonomous Language Exploitation (GALE)
distillation initiative of DARPA, 475–476
evaluation in distillation, 492
Interoperability Demo case study. See
Interoperability Demo (IOD), GALE case study
metrics for evaluating distillation, 494
relevance and redundancy in, 477–479
Global linear model, discriminative approach to learning, 84
Good-Turing
machine translation and, 345
smoothing techniques in language model estimation, 172
Google, 435
Google Translate, 331, 455
Grammars
Combinatory Categorical Grammar (CCG), 129–130
context-free. See Context-free grammar (CFGs)
head-driven phrase structure grammar (HPSG), 18
localization of, 514, 516–517
morphological resource grammars, 19, 21
phrase structure. See Phrase Structure Grammar (PSG)
probabilistic context-free. See Probabilistic context-free grammars (PCFGs)
rule-based grammars in speech recognition, 501–503
Tree-Adjoining Grammar (TAG), 130
voice user interface (VUI), 508–509
Grammatical Framework, 19, 21
Graph-based approaches, to automatic summarization
applying RST to summarization, 402–404
coherence and cohesion and, 401–402
LexPageRank, 406
overview of, 401
TextRank, 404–406
Graph generation, in RTE
implementing, 231–232
modeling, 226
Graphemes, 4
Greedy best-fit decoding, in mention detection, 322
Groups, aligning views in RTE, 233
Grow-diag-final method, for word alignment, 341
GTS (GALE Type System), 534–535
Gujarati. See Indian languages

HDP (Hierarchical Dirichlet process), 187
Head-driven phrase structure grammar (HPSG), 18
Head word
dependency trees and, 131
in Phrase Structure Grammar (PSG), 124
Headlines, typographical and structural features for sentence and topic segmentation, 44–45
Hebrew
encoding and script, 368
preprocessing best practices in IR, 371
tokens in, 4
unification-based models, 19
HELM (hidden event language model)
applied to sentence segmentation, 36
methods for sentence or topic segmentation, 40
Hidden event language model (HELM)
applied to sentence segmentation, 36
methods for sentence or topic segmentation, 40
Hidden Markov model (HMM)
applied to topic and sentence segmentation, 34–36
measuring token frequency, 369
mention detection and, 287
methods for sentence or topic segmentation, 39
word alignment between languages and, 340
Hierarchical Dirichlet process (HDP), 187
Hierarchical phrase-based models, in machine translation, 350–351
Hierarchical phrase pairs, in machine translation, 351
High-level features, in event matching, 324
Hindi. See also Indian languages
IR and, 390
resources for semantic parsing, 122
translational summarization, 399
History, conditional context of probability, 83
HMM. See Hidden Markov model (HMM)

Homonymy
in Korean, 10
word sense ambiguities and, 104
HowNet
dictionary-based approach to subjectivity and sentiment analysis, 272–273
semantic parsing resource, 105
HTML Parser, preprocessing IR documents, 392
Hunalign tool, for machine translation, 357
Hungarian
dependency graphs in syntax analysis, 65
IR and, 390
morphological richness of, 355
Hybrid methods, for segmentation, 39–40
Hypergraphs, worst-case parsing algorithm for CFGs, 74–79
Hyponyms, 442
Hyponymy, 310
Hypotheses, machine translation and, 346

IBM Models, for machine translation, 338–341
Identification, of arguments, 123, 139–140
IDF. See Inverse document frequency (IDF)
IE. See Information extraction (IE)
ILP (Integer linear programming), 247
Implementation process, in RTE alignment, 233–236
enrichment, 228–231
graph generation, 231–232
inference, 236–238
overview of, 227
preprocessing, 227–228
training, 238
IMS (It Makes Sense), program for word sense disambiguation, 117
Independence assumption
document retrieval and, 372
overcoming in predicate-argument structure, 137–138
Indexes
of documents in distillation system, 483
for IR generally, 366
latent semantic indexing (LSI), 381
for monolingual IR, 373–374
for multilingual IR, 383–384
phrase indices, 366, 369–370
positional indices, 366
translating MLIR queries, 384
Indian languages, IR and. See also Hindi, 390
INDRI document retrieval system, 323
Inexact retrieval models, for monolingual
information retrieval, 374
InfAP metrics, for IR performance, 389
Inference, textual. See Textual inference
Inflectional paradigms
in Czech, 11–12
in morphologically rich languages, 189
Information context, as measure of semantic
similarity, 112
Information extraction (IE). See also Entity
detection and tracking (EDT)
defined, 285
entity and event resolution and, 100
Information retrieval (IR)
bibliography, 394–396
crosslingual. See Crosslingual information
retrieval (CLIR)
data sets used in evaluation of, 389–391
distillation compared with, 475
document preprocessing for, 366–367
document syntax and encoding, 367–368
evaluation in, 386–387, 391
introduction to, 366
key word searches in, 433
measures in, 388–389
monolingual. See Monolingual information
retrieval
multilingual. See Multilingual information
retrieval (MLIR)
normalization and, 370–371
preprocessing best practices, 371–372
redundancy problem and, 488
relevance assessment, 387–388
summary, 393
tokenization and, 369–370
tools, software, and resources, 391–393
translingual, 491
Informative summaries, in automatic
summarization, 401–404
InfoSphere Streams, 530–531
Insertion metric, in machine translation, 335
Integer linear programming (ILP), 247
Interactive voice response (IVR), 505, 511
Interoperability Demo (IOD), GALE case
study
computational efficiency, 537
flexible application building with, 537
functional description, 532–534
implementing, 534–537
overview of, 531–532
Interoperability, in aggregated NLP, 540
Interpolation, language model adaptation
and, 176
Intrinsic evaluation, of summarization, 412
Inverse document frequency (IDF)
answer scores in QA and, 450–451
document representation in monolingual IR,
373
relationship questions and, 488
searching over unstructured sources, 445
Inverted indexes, for monolingual information
retrieval, 373–374
IOD case study. See Interoperability Demo
(IOD), GALE case study
IR. See Information retrieval (IR)
Irregularity
defined, 8
issues with morphology induction, 21
in linguistic models, 8–10
IRSTLM toolkit, for machine translation, 357
Isolating (analytic) languages
finite-state technology applied to, 18
morphological typology and, 7
It Makes Sense (IMS), program for word
sense disambiguation, 117
Italian
dependency graphs in syntax analysis, 65
IR and, 390–391
normalization and, 371
polarity analysis of words and phrases, 269
QA and, 461
RTE in, 218
summarization and, 399
WordNet and, 109
IVR (interactive voice response), 505, 511
IXIR distillation system, 488–489
Japanese
as agglutinative language, 7
anaphora frequency in, 444
call-flow localization and, 514
crosslingual QA, 455
discourse parsers for, 403
EDT and, 286
GeoQuery corpus translated into, 149
IR and, 390
Japanese (continued)
irregular verbs, 10
language modeling, 193–194
polarity analysis of words and phrases, 269
preprocessing best practices in IR, 371–372
QA architectures and, 437–438, 461, 464
semantic parsing, 122, 151
subjectivity and sentiment analysis, 259, 267–271
word order and, 356
word segmentation in, 4–5
JAVELIN system, for QA, 437
Joint inference, NLP and, 320
Joint systems
optimization vs. interoperability in aggregated NLP, 540
types of EDT architectures, 286
Joshua machine translation program, 357, 423
JRC-Acquis corpus
for evaluating IR systems, 390
for machine translation, 358

KBP (Knowledge Base Population), of Text Analysis Conferences (TAC), 481–482
Kernel functions, SVM mapping and, 317
Kernel methods, for relation extraction, 319
Keyword searches
in IR, 433
searching over unstructured sources, 443–445
KL-ONE system, for predicate-argument recognition, 122
Kneser-Ney smoothing technique, in language model estimation, 172
Knowledge Base Population (KBP), of Text Analysis Conferences (TAC), 481–482
Korean
as agglutinative language, 7
ambiguity in, 10–11
dictionary-based approach in, 16
EDT and, 286
encoding and script, 368
finite-state models, 18
gender, 13
generative parsing model, 92
IR and, 390
irregular verbs, 10
language modeling, 190
language modeling using subword units, 192
morphemes in, 6–7
polarity analysis of words and phrases, 269
preprocessing best practices in IR, 371–372
resources for semantic parsing, 122
word segmentation in, 4–5
KRISPER program, for rule-based semantic parsing, 151

Language identification, in MLIR, 383
Language models
adaptation, 176–178
Bayesian parameter estimation, 173–174
Bayesian topic-based, 186–187
bibliography, 199–208
class-based, 178–179
crosslingual, 196–198
discriminative, 179–180
for document retrieval, 375–376
evaluation of, 170–171
factored, 183–184
introduction to, 169
language-specific problems, 188–189
large-scale models, 174–176
MaxEnt, 181–183
maximum-likelihood estimation and smoothing, 171–173
morphological categories in, 192–193
for morphologically rich languages, 189–191
multilingual, 195–196
n-gram approximation, 170
neural network, 187–188
spoken vs. written languages and, 194–195
subword unit selection, 191–192
summary, 198
syntax-based, 180–181
tree-based, 185–186
types of, 178
variable-length, 179
word segmentation and, 193–194
The Language Understanding Annotated Corpus, 425
Langue and parole (de Saussure), 13
Latent Dirichlet allocation (LDA) model, 186
Latent semantic analysis (LSA)
bilingual (bLSA), 197–198
language model adaptation and, 176–177
probabilistic (PLSA), 176–177
Latent semantic indexing (LSI), 381

Latin
 as fusional language, 8
 morphologies of, 20
 preprocessing best practices in IR, 371
 transliteration of scripts to, 368

Latvian
 IR and, 390
 summarization and, 399

LDA (Latent Dirichlet allocation) model, 186

LDC. See Linguistic Data Consortium (LDC)

LDOCE (Longman Dictionary of Contemporary English), 104

LEA. See Lexical entailment algorithm (LEA)

Learning, discriminative approach to, 84

Lemmas
 defined, 5
 machine translation metrics and, 336
 mapping terms to, 370

Lemmatizers
 mapping terms to lemmas, 370
 preprocessing best practices in IR, 371

Lemur IR framework, 392

Lesk algorithm, 105–106

Lexemes
 functional morphology models and, 19
 overview of, 5

Lexical chains, in topic segmentation, 38, 43

Lexical choice, in machine translation, 354–355

Lexical collocation, 401

Lexical entailment algorithm (LEA)
 alignment stage of RTE model, 236
 enrichment stage of RTE model, 228–231
 inference stage of RTE model, 237
 preprocessing stage in RTE model, 227–228
 training stage of RTE model, 238

Lexical features
 context as, 110
 in coreference models, 301
 in event matching, 324
 in mention detection, 292
 of relation extraction systems, 314
 in sentence and topic segmentation, 42–43

Lexical matching, 212–213

Lexical ontologies, relation extraction and, 310

Lexical strings, 17, 18

Lexicon, of languages
 building, 265–266
 dictionary-based approach to subjectivity and sentiment analysis, 270, 273
 ElixirFM lexicon of Arabic, 20
 sets of lexemes constituting, 5
 subjectivity and sentiment analysis with, 262, 275–276
 LexPageRank, approach to automatic summarization, 406, 411
 LexTools, for finite-state morphology, 16
 Linear model interpolation, for smoothing language model estimates, 173
 LinearRank algorithm, learning summarization, 408
 lingPipe tool, for summarization, 423
 Linguistic challenges, in MT
 lexical choice, 354–355
 morphology and, 355
 word order and, 356
 Linguistic Data Consortium (LDC)
 corpora for machine translation, 358
 evaluating co-occurrence of word between languages, 337
 history of summarization systems, 399
 OntoNotes corpus, 104
 on sentence segmentation markers in conversational speech, 31
 summarization frameworks, 422

List questions
 extension to, 453
 QA and, 433

Local collocations, features of supervised systems, 110–111

Localization, of spoken dialog systems
 call-flow localization, 514
 localization of grammars, 516–517
 overview of, 513–514
 prompt localization, 514–516
 testing, 519–520
 training, 517–519

Log-linear models, phrase-based models for MT, 348–349

Logic-based representation, applying to RTE, 242–244

Logographic scripts, preprocessing best practices in IR, 371

Long-distance dependencies, syntax-based language models for, 180–181

Longman Dictionary of Contemporary English (LDOCE), 104
Lookup operations, dictionaries and, 16
Loudness, prosodic cues, 45–47
Low-level features, in event matching, 324
Lucene
 document indexing with, 483
 document retrieval with, 483–484
 IR frameworks, 392
LUNAR QA system, 434

Machine learning. See also Conditional random fields (CRFs)
 event extraction and, 322
 measuring token frequency, 369
 summarization and, 406–409
 word alignment as learning problem, 341–343
Machine translation (MT)
 alignment models, 340
 automatic evaluation, 334–335
 bibliography, 360–363
 chart decoding, 351–352
 CLIR applied to, 380–381
 co-occurrence of words and, 337–338
 coping with model size, 349–350
 corpora for, 358
 crosslingual QA and, 454
 cube pruning approach to decoding, 347–348
 data reorganization and, 536
 data resources for, 356–357
 decoding phrase-based models, 345–347
 expectation maximization (EM) algorithm, 339–340
 future directions, 358–359
 in GALE IOD, 532–533
 hierarchical phrase-based models, 350–351
 history and current state of, 331–332
 human assessment and, 332–334
 IBM Model 1, 338–339
 lexical choice, 354–355
 linguistic choices, 354
 log-linear models and parameter tuning, 348–349
 meaning evaluation, 332
 metrics, 335–337
 morphology and, 355
 multilingual automatic summarization and, 410
 overview of, 331
 paraphrasing and, 59
 phrase-based models, 343–344
 programs for, 423
 RTE applied to, 217–218
 in RTTS, 538
 sentences as processing unit in, 29
 statistical. See Statistical machine translation (SMT)
 summary, 359
 symmetrization, 340–341
 syntactic models, 352–354
 systems for, 357–358
 in TALES, 538
 tools for, 356–357, 392
 training issues, 197
 training phrase-based models, 344–345
 translation-based approach to CLIR, 378–380
 tree-based models, 350
 word alignment and, 337, 341–343
 word order and, 356
MAP (maximum a posteriori)
 Bayesian parameter estimation and, 173–174
 language model adaptation and, 177–178
MAP (Mean average precision), metrics for IR systems, 389
Marathi, 390
Margin infused relaxed algorithm (MIRA)
 methods for sentence or topic segmentation, 39
 unsupervised approaches to machine learning, 342
Markov model. See also Hidden Markov model (HMM), 34–36
Matches, machine translation metrics, 335
Matching events, 323–326
Mate retrieval setup, relevance assessment and, 388
MaxEnt model
 applied to distillation, 480
 classifiers for relation extraction, 316–317
 classifiers for sentence or topic segmentation, 37, 39–40
 coreference resolution with, 300–301
 language model adaptation and, 177
 memory-based learning compared with, 322
 mention detection, 287–289
modeling using morphological categories, 193
modeling without word segmentation, 194
overview of, 181–183
subjectivity and sentiment analysis with, 274
unsupervised approaches to machine learning, 342
Maximal marginal relevance (MMR), in automatic summarization, 399
Maximum a posteriori (MAP)
 Bayesian parameter estimation and, 173–174
 language model adaptation and, 177–178
Maximum-likelihood estimation
 Bayesian parameter estimation and, 173–174
 as parameter estimation language model, 171–173
 used with document models in information retrieval, 375–376
MEAD system, for automatic summarization, 410–411, 423
Mean average precision (MAP), metrics for IR systems, 389
Mean reciprocal rank (MRR), metrics for QA systems, 462–463
Meaning chunks, semantic parsing and, 97
Meaning of words. See Word meaning
Meaning representation
 Air Travel Information System (ATIS), 148
 Communicator program, 148–149
 GeoQuery, 149
 overview of, 147–148
 RoboCup, 149
 rule-based systems for, 150
 semantic interpretation and, 101
 software programs for, 151
 summary, 153–154
 supervised systems for, 150–151
Measures. See Metrics
Media Resource Control Protocol (MRCP), 504
Meeting Recorder Dialog Act (MRDA), 31
Memory-based learning, 322
MEMT (multi-engine machine translation), in GALE IOD, 532–533
Mention detection
 Bell tree and, 297
 computing probability of mention links, 297–300
data-driven classification, 287–289
experiments in, 294–295
features for, 291–294
greedy best-fit decoding, 322
MaxEnt model applied to entity-mention relationships, 301
mention-matching features in event matching, 324
overview of, 287
problems in information extraction, 285–286
in Rosetta Consortium distillation system, 480–481
searching for mentions, 289–291
Mention-synchronous process, 297
Mentions
 entity relations and, 310–311
 named, nominal, prenominal, 287
Meronymy, 310
MERT (minimum error rate training), 349
METEOR, metrics for machine translation, 336
METONYMY class, ACE, 312
Metrics
 distillation, 491–494
 graph generation and, 231
 IR, 388
 machine translation, 335–337
 magnitude of RTE metrics, 233
 for multilingual automatic summarization, 419–420
 QA, 462–464
 RTE annotation constituents, 222–224
Microsoft, history of QA systems and, 435
Minimum error rate training (MERT), 349
Minimum spanning trees (MSTs), 79–80
Minipar
 dependency parsing with, 456
 rule-based dependency parser, 131–132
MIRA (margin infused relaxed algorithm)
 methods for sentence or topic segmentation, 39
 unsupervised approaches to machine learning, 342
Mixed initiative dialogs, in spoken dialog systems, 509
MLIR. See Multilingual information retrieval (MLIR)
MLIS-MUSI summarization system, 399
MMR (maximal marginal relevance), in automatic summarization, 399
Models, information retrieval
monolingual, 374–376
selection best practices, 377–378
Models, word alignment
EM algorithm, 339–340
IBM Model 1, 338–339
improvements on IBM Model 1, 340
Modern Standard Arabic (MSA), 189–191
Modification processes, in automatic summarization, 399–400
Modifier word, dependency trees and, 131
Monolingual information retrieval. See also Information retrieval (IR)
document a priori models, 377
document representation, 372–373
index structures, 373–374
model selection best practices, 377–378
models for, 374–376
overview of, 372
query expansion technique, 376–377
Monotonicity
applying natural logic to RTE, 246
defined, 224
Morfessor package, for identifying morphemes, 191–192
Morphemes
abstract in morphology induction, 21
automatic algorithms for identifying, 191–192
defined, 4
examples of, 6–7
functional morphology models and, 19
Japanese text segmented into, 438
language modeling for morphologically rich languages, 189
overview of, 5–6
parsing issues related to, 90–91
typology and, 7–8
Morphological models
automating (morphology induction), 21
dictionary-based, 15–16
finite-state, 16–18
functional, 19–21
overview of, 15
unification-based, 18–19
Morphological parsing
ambiguity and, 10–13
dictionary lookup and, 15
discovery of word structure by, 3
irregularity and, 8–10
issues and challenges, 8
Morphology
categories in language models, 192–193
compared with syntax and phonology and orthography, 3
induction, 21
language models for morphologically rich languages, 189–191
linguistic challenges in machine translation, 355
parsing issues related to, 90–92
typology, 7–8
Morphs (segments)
data-spariness problem and, 286
defined, 5
functional morphology models and, 19
not all morphs can be assumed to be morphemes, 7
typology and, 8
Moses system
grow-diag-final method, 341
machine translation, 357, 423
MPQA corpus
manually annotated corpora for English, 274
subjectivity and sentiment analysis, 263, 272
MRCP (Media Resource Control Protocol), 504
MRDA (Meeting Recorder Dialog Act), 31
MRR (Mean reciprocal rank), metrics for QA systems, 462–463
MSA (Modern Standard Arabic), 189–191
MSE (Multilingual Summarization Evaluation), 399, 425
MSTs (minimum spanning trees), 79–80
Multext Dataset, corpora for evaluating IR systems, 390
Multi-engine machine translation (MEMT), in GALE IOD, 532–533
Multilingual automatic summarization
automated evaluation methodologies, 415–418
building a summarization system, 420–421, 423–424
challenges in, 409–410
competitions related to, 424–425
data sets for, 425–426
devices/tools for, 423
evaluating quality of summaries, 412–413
frameworks summarization system can be
implemented in, 422–423
manual evaluation methodologies, 413–415
metrics for, 419–420
recent developments, 418–419
systems for, 410–412
Multilingual information retrieval (MLIR)
aggregation models, 385
best practices, 385–386
defined, 382
index construction, 383–384
language identification, 383
overview of, 365
query translation, 384
Multilingual language modeling, 195–196
Multilingual Summarization Evaluation
(MSE), 399, 425
Multimodal distillation, 490
Multiple reference translations, 336
Multiple views, overcoming parsing errors, 142–144
MURAX, 434

\textit{n}-gram
localization of grammars and, 516
trigrams, 502–503
\textit{n}-gram approximation
language model evaluation and, 170–171
language-specific modeling problems, 188–189
maximum-likelihood estimation, 171–172
smoothing techniques in language model
estimation, 172
statistical language models using, 170
subword units used with, 192
\textit{n}-gram models. See also Phrase indices
AutoSummENG graph, 419
character models, 370
defined, 369–370
document representation in monolingual
IR, 372–373
Na\öve Bayes
classifiers for relation extraction, 316
subjectivity and sentiment analysis, 274
Named entity recognition (NER)
aligning views in RTE, 233
automatic summarization and, 398
candidate answer generation and, 449
challenges in RTE, 212
enrichment stage of RTE model, 229–230
features of supervised systems, 112
graph generation stage of RTE model, 231
impact on searches, 444
implementing RTE and, 227
information extraction and, 100
mention detection related to, 287
in PSG, 125–126
QA architectures and, 439
in Rosetta Consortium distillation system, 480
in RTE, 221
National Institute of Standards and
Technology (NIST)
BLEU score, 295
relation extraction and, 311
summarization frameworks, 422
textual entailment and, 211, 213
Natural language
call routing, 510
parsing, 57–59
Natural language generation (NLG), 503–504
Natural language processing (NLP)
applications of syntactic parsers, 59
applying to non-English languages, 218
distillation and. See Distillation
extraction of document structure as aid in,
29
joint inference, 320
machine translation and, 331
minimum spanning trees (MST) and, 79
multiview representation of analysis, 220–222
packages for, 253
problems in information extraction, 286
relation extraction and, 310
RTE applied to NLP problems, 214
RTE as subfield of. See Recognizing textual
entailment (RTE)
syntactic analysis of natural language, 57
textual inference, 209
Natural language processing (NLP), combining engines for aggregation architectures, 527
bibliography, 548–549
computational efficiency, 525–526
data-manipulation capacity, 526
flexible, distributed componentization, 524–525
GALE Interoperability Demo case study, 531–537
General Architecture for Text Engineering (GATE), 529–530
InfoSphere Streams, 530–531
introduction to, 523–524
lessons learned, 540–542
robust processing, 526–527
RTTS case study, 538–540
summary, 542
TALES case study, 538
Unstructured Information Management Architecture (UIMA), 527–529, 542–547
Natural Language Toolkit (NLTK), 422
Natural language understanding (NLU), 209
Natural logic-based representation, applying to RTE, 245–246
NDCG (Normalized discounting cumulative gain), 389
NER. See Named entity recognition (NER)
Neural network language models (NNLMs) language modeling using morphological categories, 193
overview of, 187–188
NNLMs (neural network language models) language modeling using morphological categories, 193
overview of, 187–188
NOMinalization LEXicon (NOMLEX), 121
Non projective dependency trees, 65–66
Nonlinear languages, morphological typology and, 8
Normalization
Arabic, 12
overview of, 370–371
tokens and, 4
Z-score normalization, 385
Normalized discounting cumulative gain (NDCG), 389
Norwegian, 461
Noun arguments, 144–146
Noun head, of prepositional phrases in PSB, 127
NTCIR. See NII Test Collection for IR Systems (NTCIR)
Numerical quantities (NUM) constituents, in RTE, 221, 233
Objective word senses, 261
OCR (Optical character recognition), 31
One vs. All (OVA) approach, 136–137
OntoNotes corpus, 104
OOV (out of vocabulary)
coverage rates in language models, 170
morphologically rich languages and, 189–190
OOV rate
in Germanic languages, 191
inventorying morphemes and, 192
language modeling without word segmentation, 194
Open-domain QA systems, 434
Open Standard by the Organization for the Advancement of Structured Information Standards (OASIS), 527
OpenCCG project, 21
openNLP, 423
Opinion questions, QA and, 433
OpinionFinder
as rule-based system, 263
subjectivity and sentiment analysis, 271–272, 275–276
subjectivity and sentiment analysis lexicon, 262
Optical character recognition (OCR), 31
OPUS project, corpora for machine translation, 358
Ordinal constituent position, in PSG, 127
ORG-AFF (organization-affiliation) class, 311–312
Orthography
Arabic, 11
issues with morphology induction, 21
Out of vocabulary (OOV)
coverage rates in language models, 170
morphologically rich languages and, 189–190

PageRank
automatic summarization, 401
LexPageRank compared with, 406
TextRank compared with, 404
Paradigms
classification, 133–137
functional morphology models and, 19
inflectional paradigms in Czech, 11–12
inflectional paradigms in morphologically rich languages, 189
ParaEval
automatic evaluation of summarization, 418
metrics in, 420
Paragraphs, sentences forming, 29
Parallel backoff, 184
Parameter estimation language models
Bayesian parameter estimation, 173–174
large-scale models, 174–176
maximum-likelihood estimation and smoothing, 171–173
Parameter tuning, 348–349
Parameters, functional morphology models and, 19
Paraphrasing, parsing natural language and, 58–59
Parasitic gap recovery, in RTE, 249
parole and langue (de Saussure), 13
Parsing
algorithms for, 70–72
ambiguity resolution in, 80
defined, 97
dependency parsing, 79–80
discriminative models, 84–87
generative models, 83–84
hypergraphs and chart parsing, 74–79
natural language, 57–59
semantic parsing. See semantic parsing sentences as processing unit in, 29
shift-reduce parsing, 72–73
Part of speech (POS)
class-based language models and, 178
features of supervised systems, 110
implementing RTE and, 227
natural language grammars and, 60
in PSG, 125–127
QA architectures and, 439
in Rosetta Consortium distillation system, 480
for sentence segmentation, 43
syntactic analysis of natural language, 57–58
PART-WHOLE relation class, 311
Partial order method, for ranking sentences, 407
Particle language model, subword units in, 192
Partition function, in MaxEnt formula, 316
PASCAL. See Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL)
Path
in CCG, 130
in PSG, 124, 128–129
in TAG, 130
for verb sense disambiguation, 112
Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL)
evaluating textual entailment, 213
RTE challenge, 451–452
textual entailment and, 211
Pauses, prosodic cues, 45–47
Peer surveys, in evaluation of summarization, 412
Penn Treebank
dependency trees and, 130–132
parsing issues and, 87–89
performance degradation and, 147
phrase structure trees in, 68, 70
PropBank and, 123
PER (Position-independent error rate), 335
PER-SOC (personal-social) relation class, 311
Performance
of aggregated NLP, 541
Performance (continued)
combining classifiers to boost (Combination hypothesis), 293
competence vs. performance (Chomsky), 13
of document segmentation methods, 41
evaluating IR, 389
evaluating QA, 462–464
evaluating RTE, 213–214
feature performance in predicate-argument structure, 138–140
Penn Treebank, 147
Period (.), sentence segmentation markers, 30
Perplexity
criteria in language model evaluation,
170–171
inventorying morphemes and, 192
language modeling using morphological categories, 193
language modeling without word segmentation, 194
Persian
IR and, 390
unification-based models, 19
Phoenix, 150
Phonemes, 4
Phonology
compared with morphology and syntax and orthography, 3
issues with morphology induction, 21
Phrasal verb collocations, in PSG, 126
Phrase-based models, for MT
coping with model size, 349–350
cube pruning approach to decoding, 347–348
decoding, 345–347
hierarchical phrase-based models, 350–351
log-linear models and parameter tuning, 348–349
overview of, 343–344
training, 344–345
Phrase feature, in PSG, 124
Phrase indices, tokenization and, 366, 369–370
Phrase-level annotations, for subjectivity and sentiment analysis
corpus-based, 267–269
dictionary-based, 264–267
overview of, 264
Phrase Structure Grammar (PSG), 124–129
Phrase structure trees
examples of, 68–70
morphological information in, 91
in syntactic analysis, 67
treebank construction and, 62
Phrases
eyearly approaches to summarization and, 400
types in CCG, 129–130
PHYS (physical) relation class, 311
Pipeline approach, to event extraction, 320–321
Pitch, prosodic cues, 45–47
Pivot language, translation-based approach to CLIR, 379–380
Polarity
corpus-based approach to subjectivity and sentiment analysis, 269
relationship to monotonicity, 246
word sense classified by, 261
Polysemy, 104
Portuguese
IR and, 390–391
QA and, 461
RTE in, 218
POS. See Part of speech (POS)
Position-independent error rate (PER), 335
Positional features, approaches to summarization and, 401
Positional indices, tokens and, 366
Posting lists, term relationships in document retrieval, 373–374
Pre-reordering, word order in machine translation, 356
Preboundary lengthening, in sentence segmentation, 47
Precision, IR evaluation measure, 388
Predicate-argument structure
base phrase chunks, 132–133
classification paradigms, 133–137
Combinatory Categorical Grammar (CCG), 129–130
dependency trees, 130–132
feature performance, salience, and selection, 138–140
FrameNet resources, 118–119
multilingual issues, 146–147
noun arguments, 144–146
other resources, 121–122
overcoming parsing errors, 141–144
overcoming the independence assumption, 137–138
Phrase Structure Grammar (PSG), 124–129
PropBank resources, 119–121
robustness across genres, 147
semantic interpretation and, 100
semantic parsing. See Predicate-argument structure
semantic role labeling, 118
sizing training data, 140–141
software programs for, 147
structural matching and, 447–448
summary, 153
syntactic representation, 123–124
systems, 122–123
Tree-Adjoining Grammar, 130
Predicate context, in PSG, 129
Predicate feature, in Phrase Structure Grammar (PSG), 124
Prepositional phrase adjunct, features of supervised systems, 111
Preprocessing, in IR
best practices, 371–372
documents for information retrieval, 366–367
tools for, 392
Preprocessing, in RTE
implementing, 227–228
modeling, 224–225
Preprocessing queries, 483
Preterminals. See Part of speech (POS)
Previous role, in PSG, 126
PRF (Pseudo relevance feedback)
as alternative to query expansion, 445
overview of, 377
Private states. See also Subjectivity and sentiment analysis, 260
Probabilistic context-free grammars (PCFGs)
for ambiguity resolution, 80–83
dependency graphs in syntax analysis, 66–67
generative parsing models, 83–84
parsing techniques, 78
Probabilistic latent semantic analysis (PLSA), 176–177
Probabilistic models
document a priori models, 377
for document retrieval, 375
Probability
history of, 83
MaxEnt formula for conditional probability, 316
Productivity/creativity, and the unknown word problem, 13–15
Projective dependency trees
overview of, 64–65
worst-case parsing algorithm for CFGs, 78
Projectivity
in dependency analysis, 64
non projective dependency trees, 65–67
projective dependency trees, 64–65
Prompt localization, spoken dialog systems, 514–516
PropBank
annotation of, 447
dependency trees and, 130–132
limitation of, 122
Penn Treebank and, 123
as resource for predicate-argument recognition, 119–122
tagging text with arguments, 124
Prosody
defined, 45
sentence and topic segmentation, 45–48
Pseudo relevance feedback (PRF)
as alternative to query expansion, 445
overview of, 377
PSG (Phrase Structure Grammar), 124–129
Publications, resources for RTE, 252
Punctuation
in PSG, 129
typographical and structural features for sentence and topic segmentation, 44–45
PUNDIT, 122
Pushdown automaton, in CFGs, 72
Pyramid, for manual evaluation of summarization, 413–415
QA. See Question answering (QA)
QUALM QA system, 434
Queries
evaluation in distillation, 492
preprocessing, 483
QA architectures and, 439
searching unstructured sources, 443–445
translating CLIR queries, 379
translating MLIR queries, 384
Query answering distillation system
document retrieval, 483–484
overview of, 483
planning stage, 487
preprocessing queries, 483
snippet filtering, 484
snippet processing, 485–487
Query answering expansion
applying to CLIR queries, 380
for improving information retrieval, 376–377
searching over unstructured sources, 445
Query generation, in QA architectures, 435
Query language, in CLIR, 365
Question analysis, in QA, 435, 440–443
Question answering (QA)
answer scores, 450–453
architectures, 435–437
bibliography, 467–473
candidate extraction from structured sources, 449–450
candidate extraction from unstructured sources, 445–449
case study, 455–460
challenges in, 464–465
crosslingual, 454–455
evaluating answer correctness, 461–462
evaluation tasks, 460–461
introduction to and history of, 433–435
IR compared with, 366
performance metrics, 462–464
question analysis, 440–443
RTE applied to, 215
searching over unstructured sources, 443–445
source acquisition and preprocessing, 437–440
summary, 465–467
Question mark (?), sentence segmentation markers, 30
Questions, in GALE distillation initiative, 475
Quotation marks (“”), sentence segmentation markers, 30

R summarization frameworks, 422
RandLM toolkit, for machine translation, 357
Random forest language models (RFLMs)
modeling using morphological categories, 193
tree-based modeling, 185–186

Ranks methods, for sentences, 407
RDF (Resource Description Framework), 450
Real-Time Translation Services (RTTS), 538–540
Realization stage, of summarization systems
building a summarization system and, 421
overview of, 400
Recall, IR evaluation measures, 388
Recall-Oriented Understory for Gisting
Evaluation (ROUGE)
automatic evaluation of summarization, 415–418
metrics in, 420
Recognizing textual entailment (RTE)
alignment, 233–236
analysis, 220
answer scoring and, 464
applications of, 214
bibliography, 254–258
case studies, 238–239
challenge of, 212–213
comparing constituents in, 222–224
developing knowledge resources for, 249–251
discourse commitments extraction case study, 239–240
enrichment, 228–231
evaluating performance of, 213–214
framework for, 219
general model for, 224–227
graph generation, 231–232
implementation of, 227
improving analytics, 248–249
improving evaluation, 251–252
inference, 236–238
introduction to, 209–210
investing/applying to new problems, 249
latent alignment inference, 247–248
learning alignment independently of entailment, 244–245
leveraging multiple alignments, 245
limited dependency context for global similarity, 247
logical representation and inference, 242–244
machine translation, 217–218
multiview representation, 220–222
natural logic and, 245–246
in non-English languages, 218–219
PASCAL challenge, 451
preprocessing, 227–228
problem definition, 210–212
QA and, 215, 433–434
requirements for RTE framework, 219–220
resources for, 252–253
searching for relations, 215–217
summary, 253–254
Syntactic Semantic Tree Kernels (SSTKs), 246–247
training, 238
transformation-based approaches to, 241–242
tree edit distance case study, 240–241
Recombination, machine translation and, 346
Recursive transition networks (RTNs), 150
Redundancy, in distillation
detecting, 492–493
overview of, 477–479
reducing, 489–490
Redundancy, in IR, 488
Reduplication of words, limits of finite-state models, 17
Reference summaries, 412, 419
Regular expressions
 surface patterns for extracting candidate answers, 449
 in type-based candidate extraction, 446
Regular relations, finite-state transducers capturing and computing, 17
Related terms, in GALE distillation initiative, 475
Relation extraction systems
classification approach, 312–313
coreference resolution as, 311
features of classification-based systems, 313–316
kernel methods for, 319
overview of, 310
supervised and unsupervised, 317–319
Relational databases, 449
Relations
 bibliography, 327–330
classifiers for, 316
combining entity and relation detection, 320
between constituents in RTE, 220
detection in Rosetta Consortium distillation system, 480–482
extracting, 310–313
features of classification-based extractors, 313–316
introduction to, 309–310
kernel methods for extracting, 319
recognition impacting searches, 444
summary, 326–327
supervised and unsupervised approaches to extracting, 317–319
transitive closure of, 324–326
types of, 311–312
Relationship questions, QA and, 433, 488
Relevance, feedback and query expansion, 376–377
Relevance, in distillation
 analysis of, 492–493
detecting, 488–489
examples of irrelevant answers, 477
overview of, 477–479
redundancy reduction and, 488–490
Relevance, in IR
 assessment, 387–388
evaluation, 386
Remote operation, challenges in NLP aggregation, 524
Resource Description Framework (RDF), 450
Resources, for RTE
 developing knowledge resources, 249–251
 overview of, 252–253
Restricted domains, history of QA systems, 434
Result pooling, relevance assessment and, 387
Rewrite rules (in phonology and morphology), 17
RFLMs (Random forest language models)
 modeling using morphological categories, 193
tree-based modeling, 185–186
Rhetorical structure theory (RST), applying to summarization, 401–404
RoboCup, for meaning representation, 149
Robust processing
 desired attributes of NLP aggregation, 526–527
 in GATE, 529
 in InfoSphere Streams, 531
 in UIMA, 529
Robust risk minimization (RRM), mention detection and, 287
Roget’s Thesaurus
- semantic parsing, 104
- word sense disambiguation, 106–107

Role extractors, classifiers for relation extraction, 316

Romanian
- approaches to subjectivity and sentiment analysis, 276–277
- corpus-based approach to subjectivity and sentiment analysis, 271–272
- cross-lingual projections, 275
- dictionary-based approach to subjectivity and sentiment analysis, 264–266, 270

IR and, 390
QA and, 461
subjectivity and sentiment analysis, 259
summarization and, 399

Romanization, transliteration of scripts to Latin (Roman) alphabet, 368

Rosetta Consortium system
document and corpus preparation, 480–483
indexing and, 483
overview of, 479–480
query answers and, 483–487

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
- automatic evaluation of summarization, 415–418
- metrics in, 420

RRM (robust risk minimization), mention detection and, 287

RST (rhetorical structure theory), applying to summarization, 401–404

RTNs (recursive transition networks), 150

RTTS (Real-Time Translation Services), 538–540

Rule-based grammars, in speech recognition, 501–502

Rule-based sentence segmentation, 31–32

Rule-based systems
dictionary-based approach to subjectivity and sentiment analysis, 270
for meaning representation, 150
statistical models compared with, 292
subjectivity and sentiment analysis, 267
word and phrase-level annotations in subjectivity and sentiment analysis, 263
for word sense disambiguation, 105–109

Rules, functional morphology models and, 19
Russian
- language modeling using subword units, 192
- parsing issues related to morphology, 91
- unification-based models, 19

SALAAM algorithms, 114–115
SALSA project, for predicate-argument recognition, 122

Sanskrit
- ambiguity in, 11
- as fusional language, 8
- Zen toolkit for morphology of, 20

SAPT (semantically augmented parse tree), 151

Scalable entailment relation recognition (SERR), 215–217

SCGIS (Sequential conditional generalized iterative scaling), 289

Scores
- ranking answers in QA, 435, 450–453, 458–459
- ranking sentences, 407
- sentence relevance in distillation systems, 485–486

Scripts
- preprocessing best practices in IR, 371–372
- transliteration and direction of, 368

SCUs (summarization content units), in Pyramid method, 414–415

Search component, in QA architectures, 435

Searches
- broadening to overcome parsing errors, 144
- in mention detection, 289–291
- over unstructured sources in QA, 443–445
- QA architectures and, 439
- QA vs. IR, 433
- reducing search space using beam search, 290–291

for relations, 215–217

SEE (Summary Evaluation Environment), 413

Seeds, unsupervised systems and, 112

Segmentation
- in aggregated NLP, 540
- sentence boundaries. See Sentence boundary detection
topic boundaries. See Topic segmentation

Semantic concordance (SEMCOR) corpus,
WordNet, 104
Semantic interpretation
entity and event resolution, 100
meaning representation, 101
overview of, 98–99
predicate-argument structure and, 100
structural ambiguity and, 99
word sense and, 99–100
Semantic parsing
Air Travel Information System (ATIS), 148
bibliography, 154–167
Communicator program, 148–149
corpora for, 104–105
entity and event resolution, 100
GeoQuery, 149
introduction to, 97–98
meaning representation, 101, 147–148
as part of semantic interpretation, 98–99
predicate-argument structure. See
Predicate-argument structure
resource availability for disambiguation of
word sense, 104–105
RoboCup, 149
rule-based systems, 105–109, 150
semi-supervised systems, 114–116
software programs for, 116–117, 151
structural ambiguity and, 99
summary, 151
supervised systems, 109–112, 150–151
system paradigms, 101–102
unsupervised systems, 112–114
word sense and, 99–100, 102–105
Semantic role labeling (SRL). See also
Predicate-argument structure
challenges in RTE and, 212
combining dependency parsing with, 132
implementing RTE and, 227
overcoming independence assumption,
137–138
predicate-argument structure training, 447
in Rosetta Consortium distillation system,
480
in RTE, 221
sentences as processing unit in, 29
for shallow semantic parsing, 118
Semantically augmented parse tree (SAPT),
151
Semantics
defined, 97
explicit semantic analysis (ESA), 382
features of classification-based relation
extraction systems, 315–316
finding entity relations, 310
latent semantic indexing (LSI), 381
QA and, 439–440
structural matching and, 446–447
topic detection and, 33
SEMCOR (semantic concordance) corpus,
WordNet, 104
SEMEVAL, 263
Semi-supervised systems, for word sense
disambiguation, 114–116
Semistructured data, candidate extraction
from, 449–450
SemKer system, applying syntactic tree
kernels to RTE, 246
Sense induction, unsupervised systems and,
112
SENSEVAL, for word sense disambiguation,
105–107
Sentence boundary detection
cmparing segmentation methods, 40–41
detecting probable sentence or topic
boundaries, 33–34
discourse features, 44
discriminative local classification method
for, 36–38
discriminative sequence classification
method for, 38–39
extensions for global modeling, 40
features of segmentation methods, 41–42
generative sequence classification method, 34–36
hybrid methods, 39–40
implementing RTE and, 227
introduction to, 29
lexical features, 42–43
overview of, 30–32
performance of, 41
processing stages of, 48
prosodic features, 45–48
speech-related features, 45
syntactic features, 43–44
typographical and structural features, 44–45
Sentence-level annotations, for subjectivity
and sentiment analysis
corpus-based approach, 271–272
dictionary-based approach, 270–271
overview of, 269
Sentence splitters, tools for building summarization systems, 423

Sentences
- coherence of sentence-sentence connections, 402
- extracting within-sentence relations, 310
- methods for learning rank of, 407
- parasitic gap recovery, 249
- processing for event extraction, 323
- relevance in distillation systems, 485–486
- units in sentence segmentation, 33
- unsupervised approaches to selection, 489

Sentential complement, features of supervised systems, 111

Sentential forms, parsing and, 71–72

Sentiment analysis. See Subjectivity and sentiment analysis

SentiWordNet, 262

Sequential conditional generalized iterative scaling (SCGIS), 289

SERR (scalable entailment relation recognition), 215–217

Shallow semantic parsing
- coverage in semantic parsing, 102
- overview of, 98
- semantic role labeling for, 118
- structural matching and, 447

Shalmaneser program, for semantic role labeling, 147

Shift-reduce parsing, 72–73

SHRDLU QA system, 434

SIGHAN, Chinese word segmentation, 194

SIGLEX (Special Group on LEXicon), 103

Similarity enablement, relation extraction and, 310

Slovene unification-based model, 19

SLU (statistical language understanding)
- continuous improvement cycle in dialog systems, 512–513
- generations of dialog systems, 511–512

Smoothing techniques
- Laplace smoothing, 174
- machine translation and, 345
- n-gram approximation, 172–173

SMT. See Statistical machine translation (SMT)

Snippets, in distillation
- crosslingual distillation and, 491
- evaluation, 492–493

filtering, 484
main and supporting, 477–478
multimodal distillation and, 490
planning and, 487
processing, 485–487
Snowball Stemmer, 392

Software programs
- for meaning representation, 151
- for predicate-argument structure, 147
- for semantic parsing, 116–117

Sort expansion, machine translation phrase decoding, 347–348

Sources, in QA
- acquiring, 437–440
- candidate extraction from structured, 449–450
- candidate extraction from unstructured, 445–449
- searching over unstructured, 443–445

Spanish
- code switching example, 31, 195–196
- corpus-based approach to subjectivity and sentiment analysis, 272
- discriminative approach to parsing, 91–92
- GeoQuery corpus translated into, 149
- IR and, 390–391
- localization of spoken dialog systems, 513–514, 517–520
- mention detection experiments, 294–296
- morphologies of, 20
- polarity analysis of words and phrases, 269
- QA and, 461
- resources for semantic parsing, 122
- RTE in, 218
- semantic parser for, 151
- summarization and, 398
- TAC and, 424
- TALES case study, 538
- WordNet and, 109

Special Group on LEXicon (SIGLEX), 103

Speech
- discourse features in topic or sentence segmentation, 44
- lexical features in sentence segmentation, 42
- prosodic features for sentence or topic segmentation, 45–48
- sentence segmentation accuracy, 41
Speech generation
 dialog manager directing, 499–500
 spoken dialog systems and, 503–504
Speech recognition
 anchored speech recognition, 490
 automatic speech recognition (ASR), 29, 31
 language modeling using subword units, 192
 MaxEnt model applied to, 181–183
 Morfessor package applied to, 191–192
 neural network language models applied to, 188
 rule-based grammars in, 501–502
 spoken dialog systems and, 500–503
Speech Recognition Grammar Specification (SRGS), 501–502
Speech-to-text (STT)
 data reorganization and, 535–536
 in GALE IOD, 532–533
 NLP and, 523–524
 in RTTS, 538
Split-head concept, in parsing, 78
Spoken dialog systems
 architecture of, 505
 bibliography, 521–522
 call-flow localization, 514
 continuous improvement cycle in, 512–513
 dialog manager, 504–505
 forms of dialogs, 509–510
 functional diagram of, 499–500
 generations of, 510–512
 introduction to, 499
 localization of, 513–514
 localization of grammars, 516–517
 natural language call routing, 510
 prompt localization, 514–516
 speech generation, 503–504
 speech recognition and understanding, 500–503
 summary, 520–521
 testing, 519–520
 training, 517–519
 transcription and annotation of utterances, 513
 voice user interface (VUI), 505–509
Spoken languages, vs. written languages and language models, 194–195
SRGS (Speech Recognition Grammar Specification), 501–502
SRILM (Stanford Research Institute Language Modeling)
 overview of, 184
 SRILM toolkit for machine translation, 357
SRL. See Semantic role labeling (SRL)
SSI (Structural semantic interconnections) algorithm, 107–109
SSTKs (Syntactic Semantic Tree Kernels), 246–247
Stacks, of hypotheses in machine translation, 346
Stanford Parser, dependency parsing with, 456
Stanford Research Institute Language Modeling (SRILM)
 overview of, 184
 SRILM toolkit for machine translation, 357
START QA system, 435–436
Static knowledge, in textual entailment, 210
Statistical language models
 n-gram approximation, 170–171
 overview of, 169
 rule-based systems compared with, 292
 spoken vs. written languages and, 194–195
 translation with, 331
Statistical language understanding (SLU)
 continuous improvement cycle in dialog systems, 512–513
 generations of dialog systems, 511–512
Statistical machine translation (SMT)
 applying to CLIR, 381
 cross-language mention propagation, 293–294
 evaluating co-occurrence of words, 337–338
 mention detection experiments, 293–294
Stemmers
 mapping terms to stems, 370
 preprocessing best practices in IR, 371
 Snowball Stemmer, 392
Stems, mapping terms to, 370
Stop-words, removing in normalization, 371
Structural ambiguity, 99
Structural features
 of classification-based relation extraction systems, 314
 sentence and topic segmentation, 44–45
Structural matching, for candidate extraction in QA, 446–448
Structural semantic interconnections (SSI) algorithm, 107–109

Structure
of documents. See Document structure of words. See Word structure

Structured data
candidate extraction from structured sources, 449–450
candidate extraction from unstructured sources, 445–449

Structured knowledge, 434

Structured language model, 181

Structured queries, 444

STT (Speech-to-text). See Speech-to-text (STT)

Subcategorization
in PSG, 125
in TAG, 130
for verb sense disambiguation, 112

Subclasses, of relations, 311

Subject/object presence, features of supervised systems, 111

Subject, object, verb (SOV) word order, 356

Subjectivity, 260

Subjectivity analysis, 260

Subjectivity and sentiment analysis
applied to English, 262
bibliography, 278–281
comparing approaches to, 276–277
corpora for, 262–263
definitions, 260–261
document-level annotations, 272–274
introduction to, 259–260
lexicons and, 262
ranking approaches to, 274–276
sentence-level annotations, 269, 270–272
summary, 277
tools for, 263–264
word and phrase level annotations, 264–269

Substitution, linguistic supports for cohesion, 401

Subword units, selecting for language models, 191–192

SUMMA
history of summarization systems, 399
for multilingual automatic summarization, 411
summarization frameworks, 423

SUMMARIST, 398

Summarization, automatic. See Automatic summarization

Summarization content units (SCUs), in Pyramid method, 414–415

Summary Evaluation Environment (SEE), 413

SummBank
history of summarization systems, 399
summarization data set, 425

Supertags, in TAG, 130

Supervised systems
for meaning representation, 150–151
for relation extraction, 317–319
for sentence segmentation, 37
for word sense disambiguation, 109–112

Support vector machines (SVMs)
classifiers for relation extraction, 316–317
corpus-based approach to subjectivity and sentiment analysis, 272, 274
mention detection and, 287
methods for sentence or topic segmentation, 37–39
training and test software, 135–137
unsupervised approaches to machine learning, 342

Surface-based features, in automatic summarization, 400–401

Surface patterns, for candidate extraction in QA, 448–449

Surface strings
input words in input/output language relations, 17
unification-based morphology and, 18
SVMs. See Support vector machines (SVMs)
SVO (subject, verb, object) word order, 356

Swedish
IR and, 390–391
morphologies of, 20
semantic parsing and, 122
summarization and, 399

SwiRL program, for semantic role labeling, 147

Syllabic scripts, 371

Symmetrization, word alignment and, 340–341

Syncretism, 8

Synonyms
answers in QA systems and, 442
machine translation metrics and, 336
Syntactic features
 of classification-based relation extraction systems, 315
 of coreference models, 301
 of mention detection system, 292
 in sentence and topic segmentation, 43–44
 Syntactic models, for machine translation, 352–354
 Syntactic pattern, in PSG, 126
 Syntactic relations, features of supervised systems, 111
 Syntactic representation, in
 predicate-argument structure, 123–124
 Syntactic roles, in TAG, 130
 Syntactic Semantic Tree Kernels (SSTKs), 246–247
 Syntactic Structures (Chomsky), 98–99
Syntax
 ambiguity resolution, 80
 bibliography, 92–95
 compared with morphology and phonology and orthography, 3
 context-free grammar (CFGs) and, 59–61
 dependency graphs for analysis of, 63–67
 discriminative parsing models, 84–87
 of documents in IR, 367–368
 generative parsing models, 83–84
 introduction to, 57
 minimum spanning trees and dependency parsing, 79–80
 morphology and, 90–92
 parsing algorithms for, 70–72
 parsing natural language, 57–59
 phrase structure trees for analysis of, 67–70
 probabilistic context-free grammars, 80–83
 QA and, 439–440
 shift-reduce parsing, 72–73
 structural matching and, 446–447
 summary, 92
 tokenization, case, and encoding and, 87–89
 treebanks data-driven approach to, 61–63
 word segmentation and, 89–90
 worst-case parsing algorithm for CFGs, 74–79
 Syntax-based language models, 180–181
 Synthetic languages, morphological typology and, 7
 System architectures
 for distillation, 488
 for semantic parsing, 101–102
 System paradigms, for semantic parsing, 101–102
 Systran’s Babelfish program, 331

TAC. See Text Analysis Conferences (TAC)
TAG (Tree-Adjoining Grammar), 130
TALES (Translingual Automated Language Exploitation System), 538
Tamil
 as agglutinative language, 7
 IR and, 390
 Task-based evaluation, of translation, 334
 TBL (transformation-based learning), for sentence segmentation, 37
 TDT (Topic Detection and Tracking)
 program, 32–33, 42, 425–426
 Telugu, 390
 Templates, in GALE distillation initiative, 475
 Temporal cue words, in PSG, 127–128
 TER (Translation-error rate), 337
 Term-document matrix, document representation in monolingual IR, 373
 Term frequency-inverse document frequency (TF-IDF)
 multilingual automatic summarization and, 411
 QA scoring and, 450–451
 unsupervised approaches to sentence selection, 489
 Term frequency (TF)
 TF document model, 373
 unsupervised approaches to sentence selection, 489
 Terms
 applying RTE to unknown, 217
 early approaches to summarization and, 400
 in GALE distillation initiative, 475
 mapping term vectors to topic vectors, 381
 mapping to lemmas, 370
 posting lists, 373–374
 Terrier IR framework, 392
 Text Analysis Conferences (TAC)
 competitions related to summarization, 424
 data sets related to summarization, 425
Text Analysis Conferences (TAC) (continued)
evaluation of QA systems, 460–464
history of QA systems, 434
Knowledge Base Population (KBP), 481–482
learning summarization, 408
Text REtrieval Conference (TREC)
data sets for evaluating IR systems, 389–390
evaluation of QA systems, 460–464
history of QA systems, 434
redundancy reduction, 489
Text Tiling method (Hearst)
sentence segmentation, 42
topic segmentation, 37–38
Text-to-speech (TTS)
arquitectura de sistemas de diálogo hablado, 505
history of dialog managers, 504
localization of grammars and, 514
in RTTS, 538
speech generation, 503–504
TextRank, graphical approaches to automatic
summarization, 404–406
Textual entailment. See also Recognizing
textual entailment (RTE)
contradiction in, 211
defined, 210
entailment pairs, 210
Textual inference
implementing, 236–238
latent alignment inference, 247–248
modeling, 226–227
NLP and, 209
RTE and, 242–244
TF-IDF (term frequency-inverse document
frequency)
multilingual automatic summarization and, 411
QA scoring and, 450–451
unsupervised approaches to sentence
selection, 489
TF (term frequency)
TF document model, 373
unsupervised approaches to sentence
selection, 489
Thai
as isolating or analytic language, 7
word segmentation in, 4–5
Thot program, for machine translation, 423
Tika (Content Analysis Toolkit), for
preprocessing IR documents, 392
TinySVM software, for SVM training and
testing, 135–136
Token streams, 372–373
Tokenization
Arabic, 12
character n-gram models and, 370
multilingual automatic summarization and, 410
normalization and, 370–371
parsing issues related to, 87–88
phrase indices and, 369–370
in Rosetta Consortium distillation system, 480
word segmentation and, 369
Tokenizers, tools for building summarization
systems, 423
Tokens
lexical features in sentence segmentation, 42–43
mapping between scripts (normalization), 370–371
MLIR indexes and, 384
output from information retrieval, 366
processing stages of segmentation tasks, 48
in sentence segmentation, 30
translating MLIR queries, 384
in word structure, 4–5
Top-k models, for monolingual information
retrieval, 374
Topic-dependent language model adaptation, 176
Topic Detection and Tracking (TDT)
program, 32–33, 42, 425–426
Topic or domain, features of supervised
systems, 111
Topic segmentation
comparing segmentation methods, 40–41
discourse features, 44
discriminative local classification method, 36–38
discriminative sequence classification
method, 38–39
extensions for global modeling, 40
features of, 41–42
generative sequence classification method, 34–36
hybrid methods, 39–40
introduction to, 29

lexical features, 42–43

methods for detecting probable topic boundaries, 33–34

overview of, 32–33

performance of, 41

processing stages of segmentation tasks, 48

prosodic features, 45–48

speech-related features, 45

syntactic features, 43–44

typographical and structural features, 44–45

Topics, mapping term vectors to topic vectors, 381

Traces nodes, Treebanks, 120–121

Training

issues related to machine translation (MT), 197

minimum error rate training (MERT), 349

phrase-based models, 344–345

predicate-argument structure, 140–141, 447

recognizing textual entailment (RTE), 238

in RTE, 238

spoken dialog systems, 517–519

stage of RTE model, 238

support vector machines (SVMs), 135–137

Transcription

of utterances based on rule-based grammars, 502–503

of utterances in spoken dialog systems, 513

Transducers, finite-state, 16–17

Transformation-based approaches, applying to RTE, 241–242

Transformation-based learning (TBL), for sentence segmentation, 37

Transformation stage, of summarization systems, 400, 421

Transitive closure, of relations, 324–326

Translation

human assessment of word meaning, 333–334

by machines. See Machine translation (MT)

translation-based approach to CLIR, 378–380

Translation-error rate (TER), 337

Translingual Automated Language Exploitation System (TALES), 538

Translingual information retrieval, 491

Translingual summarization. See also Automatic summarization, 398

Transliteration, mapping text between scripts, 368

TREC. See Text REtrieval Conference (TREC)

trec-eval, evaluation of IR systems, 393

Tree-Adjoining Grammar (TAG), 130

Tree-based language models, 185–186

Tree-based models, for MT

chart decoding, 351–352

hierarchical phrase-based models, 350–351

linguistic choices and, 354

overview of, 350

syntactic models, 352–354

Tree edit distance, applying to RTE, 240–241

Treebanks

data-driven approach to syntactic analysis, 61–63

dependency graphs in syntax analysis, 63–67

phrase structure trees in syntax analysis, 67–70

traces nodes marked as arguments in PropBank, 120–121

worst-case parsing algorithm for CFGs, 77

Trigger models, dynamic self-adapting language models, 176–177

Triggers

consistency of, 323

finding event triggers, 321–322

Trigrams, 502–503

Troponymy, 310

Tuning sets, 348

Turkish

dependency graphs in syntax analysis, 62, 65

GeoQuery corpus translated into, 149

language modeling for morphologically rich languages, 189–191

language modeling using morphological categories, 192–193

machine translation and, 354

morphological richness of, 355

parsing issues related to morphology, 90–91

semantic parser for, 151

syntactic features used in sentence and topic segmentation, 43
Type-based candidate extraction, in QA, 446, 451

Type classifier

 answers in QA systems, 440–442
 in relation extraction, 313

Type system, GALE Type System (GTS), 534–535

Typed feature structures, unification-based morphology and, 18–19

Typographical features, sentence and topic segmentation, 44–45

Typology, morphological, 7–8

UCC (UIMA Component Container), 537

UIMA. See Unstructured Information Management Architecture (UIMA)

Understanding, spoken dialog systems and, 500–503

Unicode (UTF-8/UTF-16)

 encoding and script, 368
 parsing issues related to encoding systems, 89

Unification-based morphology, 18–19

Unigram models (Yamron), 35–36

Uninflectedness, homonyms and, 12

Units of thought, interlingual document representations, 381

Unknown terms, applying RTE to, 217

Unknown word problem, 8, 13–15

Unstructured data, candidate extraction from, 445–449

Unstructured Information Management Architecture (UIMA)

 attributes of, 528–529
 GALE IOD and, 535, 537
 overview of, 527–528
 RTTS and, 538–540
 sample code, 542–547
 summarization frameworks, 422
 UIMA Component Container (UCC), 537

Unstructured text, history of QA systems and, 434

Unsupervised adaptation, language model adaptation and, 177

Unsupervised systems

 machine learning, 342
 relation extraction, 317–319
 sentence selection, 489

subjectivity and sentiment analysis, 264

word sense disambiguation, 112–114

Update summarization, in automatic summarization, 397

Uppercase (capitalization), sentence segmentation markers, 30

UTF-8/UTF-16 (Unicode)

 encoding and script, 368
 parsing issues related to encoding systems, 89

Utterances, in spoken dialog systems

 rule-based approach to transcription and annotation, 502–503
 transcription and annotation of, 513

Variable-length language models, 179

Vector space model

 document representation in monolingual IR, 372–373
 for document retrieval, 374–375

Verb clustering, in PSG, 125

Verb sense, in PSG, 126–127

Verb, subject, object (VSO) word order, 356

VerbNet, resources for predicate-argument recognition, 121

Verbs

 features of predicate-argument structures, 145
 relation extraction and, 310

Vietnamese

 as isolating or analytic language, 7
 NER task in, 287

Views

 in GALE IOD, 534
 RTE systems, 220

Vital few (80/20 rule), 14

Viterbi algorithm

 applied to Rosetta Consortium distillation system, 480
 methods for sentence or topic segmentation, 39–40
 searching for mentions, 291

Vocabulary

 indexing IR output, 366
 language models and, 169
 in morphologically rich languages, 190
 productivity/creativity and, 14
 topic segmentation methods, 38
Voice Extensible Markup Language. See VoiceXML (Voice Extensible Markup Language)
Voice feature, in PSG, 124
Voice of sentence, features of supervised systems, 111
Voice quality, prosodic modeling and, 47
Voice user interface (VUI)
call-flow, 505–506
dialog module (DM) of, 507–508
GetService process of, 506–507
grammars of, 508–509
VUI completeness principle, 509–510
VoiceXML (Voice Extensible Markup Language)
architecture of spoken dialog systems, 505
generations of dialog systems, 511–512
history of dialog managers, 504
VUI. See Voice user interface (VUI)

W3C (World Wide Web Consortium), 504
WASP program, for rule-based semantic parsing systems, 151
Web 2.0, accelerating need for crosslingual retrieval, 365
WER (word-error rate), machine translation metrics and, 336–337
Whitespace
preprocessing best practices in IR, 371
in word separation, 369
Wikipedia
answer scores in QA and, 452
for automatic word sense disambiguation, 115–116
crosslingual question answering and, 455
as example of explicit semantic analysis, 382
predominance of English in, 438
WikiRelate! program, for word sense disambiguation, 117
Wiktionary
crosslingual question answering and, 455
as example of explicit semantic analysis, 382
Witten-Bell smoothing technique, in language model estimation, 172
Wolfram Alpha QA system, 435
Word alignment, cross-language mention propagation, 293
Word alignment, in MT
alignment models, 340
Berkeley word aligner, 357
cocurrence of words between languages, 337–338
EM algorithm, 339–340
IBM Model 1, 338–339
as machine learning problem, 341–343
overview of, 337
symmetrization, 340–341
Word boundary detection, 227
Word-error rate (WER), machine translation metrics and, 336–337
Word lists. See Dictionary-based morphology
Word meaning
automatic evaluation, 334–335
evaluation of, 332
human assessment of, 332–334
Word order, 356
Word/phrase-level annotations, for subjectivity and sentiment analysis
corpus-based approach, 267–269
dictionary-based approach, 264–267
overview of, 264
Word segmentation
in Chinese, Japanese, Thai, and Korean writing systems, 4–5
languages lacking, 193–194
phrase indices based on, 369–370
preprocessing best practices in IR, 371
syntax and, 89–90
tokenization and, 369
Word sense
classifying according to subjectivity and polarity, 261
disambiguation, 105, 152–153
overview of, 102–104
resources, 104–105
rule-based systems, 105–109
semantic interpretation and, 99–100
semi-supervised systems, 114–116
software programs for, 116–117
supervised systems, 109–112
unsupervised systems, 112–114
Word sequence, 169
Word structure
ambiguity in interpretation of expressions, 10–13
Word structure (continued)
automated morphology (morphology
induction), 21
bibliography, 22–28
dictionary-based morphology, 15–16
finite-state morphology, 16–18
functional morphology, 19–21
introduction to, 3–4
irregularity in linguistic models, 8–10
issues and challenges, 8
lexemes, 5
morphemes, 5–7
morphological models, 15
morphological typology, 7–8
productivity/creativity and the unknown
word problem, 13–15
summary, 22
tokens and, 4–5
unification-based morphology, 18–19
units in sentence segmentation, 33
WordNet
classifying word sense according to
subjectivity and polarity, 261
eXtended WordNet (XWN), 451
features of supervised systems, 112
hierarchical concept information in, 109
QA answer scores and, 452
as resource for domain-specific information,
122
RTE applied to machine translation, 218
SEMCOR (semantic concordance) corpus,
104–105
subjectivity and sentiment analysis
lexicons, 262
synonyms, 336
word sense disambiguation and, 117
World Wide Web Consortium (W3C), 504
Written languages, vs. spoken languages in
language modeling, 194–195
WSJ, 147

XDC (Crossdocument coreference), in
Rosetta Consortium distillation
system, 482–483
Xerox Finite-State Tool (XFST), 16
XWN (eXtended WordNet), 451

YamCha software, for SVM training and
testing, 135–136
Yarowsky algorithm, for word sense
disambiguation, 114–116

Z-score normalization, for MLIR aggregation,
385
Zen toolkit for morphology, applying to
Sanskrit, 20
Zero anaphora resolution, 249, 444