zembly

Usin, bly.com, learn how to build, host, and deploy
Fm:e apps, iPhone apps, flickr widgets, Google mashups,
and other widgets and social applications in minutes—all using
just your browser, this book, and your creativity!

ere. Right Now. Together,

By award-winning authors

GAIL ANDERSON and PAUL ANDERSON

with zembly architects Todd Fast and Chris Webster \

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in this
publication. In particular, and without limitation, these intellectual property rights may include one or more U.S. pat-
ents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is
a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMA-
TION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or conse-
quential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government
Sales, (800) 382-3419, corpsales@pearsontechgroup.com.

For sales outside the United States please contact: International Sales, international@pearsoned.com.
Library of Congress Control Number: 2008941460

Copyright © 2009 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054 U.S.A.

All rights reserved.

Printed in the United States of America. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to: Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA
02116, Fax: (617) 671-3447.

ISBN-13: 978-0-13-714431-0
ISBN-10: 0-13-714431-8

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing December 2008

Preface

There once was an engineer named Todd who had a vision of creating the program-
mable web. He wrote a white paper describing his ideas and the social climate for
making his vision a reality. As the participation in social networking continued to
grow (and, as we have noted in Chapter 5, continues to grow each month by big num-
bers), the motivation for implementing such a widget-building, application-building
environment becomes easier and easier to justify.

This book comes out on the leading edge of zembly’s existence. The environment we
document and describe today will no doubt change, but for you pioneers of social net-
work programming, it will only get richer, easier, and more rewarding (maybe even
financially rewarding).

The biggest challenge we face in writing a book like this is keeping current with zem-
bly. As zembly evolves it will improve incrementally and continuously. One of the
great advantages in offering a web-based tool is that new “versions” happen often
and are not tied to lengthy production cycles that traditional development tools use.
To keep current, we point readers to zembly itself (zembly. com), its blog (blog.zem-
bly.com), and wiki (wiki.zembly.com). These resource points will go a long way in
keeping you up to date with new zembly features that are rolling out, even as we
finish up this manuscript.

About the Audience

This book is aimed at zembly users of all technical levels. We hope not only to help
you use zembly effectively, but to provide examples that will get you up to speed
quickly. We anticipate that zembly users will represent a whole range of technolo-
gists. You might be classically trained software engineers or what we call casual tech-
nologists; that is, users who are comfortable on the web, dabble a bit in HTML, CSS, or
JavaScript, and see the internet as a tool to be exploited. You might be a professional
social network game developer or a home-grown blogger ready to expand your wid-
getry. You might even be a community organizer ready to reach out to untapped audi-
ences for your cause célebre.

xiii

Xiv Preface

JavaScript Programming

As we write about the programmable web, the next logical question might be “What
language do I use to program this programmable web?” The short answer is Java-
Script. If you're an experienced JavaScript, HTML, and CSS coder, you will be very
comfortable constructing services, widgets, and applications on zembly. But what if
you've never used JavaScript before? Maybe you know Java, or C/C++ or even C#. Or,
perhaps you have a background in scripting languages, including Perl, Python, Ruby,
or PHP. Fear not; at least one of the author’s first exposures to JavaScript program-
ming occurred while working on this project.

To help get you up to speed with JavaScript, consult the web for tutorials at
www . w3schools. com. Here’s a few tips to get you started.

® JavaScript tutorials are at www.w3schools.com/js.
e HTML tutorials are at www.w3schools.com/html.
® (SS tutorials are at www.w3schools.com/css.

® David Flanagan’s JavaScript, The Definitive Guide is an excellent reference to have at
your desk.

® Begin by cloning and building upon already-published widgets, services, and
applications. Not only can you learn from previously written JavaScript, CSS, and
HTML code found in these examples, but you can use these as starting points to
build your own artifacts.

® Consider using the Prototype JavaScript library. This library is available for your
zembly widgets and provides some nice JavaScript programming help. Prototype
tutorials and references are at www.prototypejs.org/learn.

e zembly provides widget templates that let you easily build and configure widgets.
You just might be able to build a widget with no programming at all using tem-
plates!

® Use the zembly forum to ask questions. The forum (forum.zembly. com), is not only
a place to ask questions of other zembly users, but it also provides a place to
report bugs or anomalous behavior.

About the Examples

Use zembly’s Search mechanism to find all of the examples presented in this book.
Because the examples are live, deployed services and widgets, you will always find
the most current, published version on zembly. Provide the search term zembly-
book and click Search, as shown here in Figure 1.

www.w3schools.com
www.w3schools.com/js
www.w3schools.com/html
www.w3schools.com/css
www.prototypejs.org/learn

Preface XV

| zembly-book w
Here are your results for 'zembly-book'
All | widgets | Applications | Services | External services

zillow zembly-book-zillow Zembly-book-iphone zembly-book-gallery zembly-book-fiickr Zembly-book-faceb

zembly-book-facebook zembly-book-dapper zembly-book-basics Ze m b |y_ bOO k

tubeplanner.com real estate new profile design mortgage mlb london underground london tube iphone google maps

facebook dapper

Figure |. Finding all of the examples presented in this book

Notational Conventions

We've applied a rather light hand with font conventions in an attempt to keep the
page uncluttered. Here are the conventions we follow.

Element Font and Example

zembly UI controls Publish, Create something,
Add a new parameter

URLs zembly.com

inline code elements result.user.nsid

code blocks and listings if (result.user) { . . .}

widget names LoanPaymentWidget

service names LoanPaymentService

application names CapitalPunishment

key combinations Ctrl+Alt+E, Ctrl+Space

user input specify minimum 1 and maximum 20

2 zembly Basics

_ profile i '
widgets HTML javascript
clone keychain services
parameters
eax zembly JSON
drafts _
contacts css find & use

Welcome to zembly.

zembly lets you build services, widgets, and web applications and publicly deploy
them. The philosophy behind zembly is to encourage you to build upon previously
published services and widgets, to discover what other zembly users are building,
and to socialize the building process by collaborating with your zembly contacts. As
zembly matures, it will allow you to build widgets, services, mashups, and social
applications targeting the many social networks present on the web. This chapter is
aimed at those who are just getting started with zembly, giving you a glimpse into the
future of building the web.

zembly is a social network. It encourages you to build your own contacts and collabo-
rations. Those of you who work on group projects will appreciate the easy collabora-
tion in code development, and by extension, idea sharing. The ultimate goal for
zembly is to make the threshold very low for building and deploying a widget or
mashup that others can drop into a web page (such as a blog or Facebook profile
page). Combining social networking, collaborative development, and sharing a collec-
tion of published services and widgets, zembly facilitates each step that results in a

12

Chapter 2 zembly Basics

published, deployed, and fully accessible and easily importable widget, service, or
application.

This chapter will help you get started. It assumes that you are a registered zembly
user.

What You Will Learn

How the zembly site is organized

The types of things you can build with zembly
What you'll find on the Samples page

How to embed a widget in your web page

How to view or edit your Profile page

All about the zembly Keychain

How to find zembly service providers

How to create, test, and publish a service

How to create, test, and publish a widget

How to include a library with your JavaScript code
How to manipulate drafts, versions, and the timeline

How to create a service and widget that calls an external service

Examples in This Chapter

All examples in this chapter are tagged zembly-book-basics. To search for them,
select Search at the top of any zembly page. Supply the search term zembly-book-
basics and click the search icon as shown in Figure 2.1.

§e_arch blog forum

"

\>

i zembly-book-basics

Search for widgets, applications, services, etc

Figure 2.1 Searching for the examples in this chapter

Exploring the Samples 13

The search results lists the widgets and services discussed in this chapter.

2.1 Exploring the Samples

Let’s start with the zembly Samples section, which lists applications (Facebook and
OpenSocial), widgets (blue badge), and services (orange badge). To see zembly’s sam-
ples, select samples from the top dashboard, as shown in Figure 2.2.

you docs samples search blog forum

Figure 2.2 The zembly samples help you get started

The sample Facebook applications include CapitalPunishment, which is presented in
Chapter 6 (see “Capital Punishment— A Challenging Facebook Application” on
page 162). The sample services run on the zembly server and generally call other ser-

vices out on the web to do things. Right now! the sample services include

¢ AmazonProductSearch —lets you search Amazon’s product catalogs and retrieve
detailed product information, including prices, images, etc.

® FlickrPhotoSearchService —calls the flickr picture search service.

® GoogleGeocodeSampleService —enables you to search a ZIP code for a given
address.

® HelloWorld —takes your name and says hello.
® WeatherTodayService —retrieves weather for a specific U.S. zip code.

® YahooTripSearchService—enables your applications to use a Yahoo! API to search
for public trip plans that were created with Yahoo!.

® YouTubeSampleService—lists information about videos that have a specified tag.

e ZillowSampleService—finds a property given an address. The returned informa-
tion includes the address for the property or properties, the Zillow Property ID
(ZPID), the current Zestimate, the date the Zestimate was computed, a valuation
range, and the Zestimate ranking for the property within its ZIP code.

1. zembly will add more samples to this page, so check back often.

14 Chapter 2 zembly Basics

® zventsSearchService—search for events that are happening around a given U.S.
location.

The Sample section also includes a list of widgets. Widgets provide a user-friendly
object that you can embed in a web page. All of the above services have correspond-
ing widgets. To view a widget’s page, click its name in the Samples section. For exam-
ple, if you select HelloWorldWidget, zembly takes you to its page so you can see how
it was built. To view its source, select the View tab as shown in Figure 2.3.

HelloWorldWidget

You are looking at version 2

Figure 2.3 Exploring the HelloWorldWidget development page

Further down the page zembly shows you how to embed the widget in a page by
providing the code you can select, copy, and paste. Figure 2.4 shows the code window
to embed widget HelloWorldWidget (Share This Widget) .

Share This Widget

Use this code to embed this widget in a Web page, like your blog, wiki, or other website.
Make sure to fill in the real values where you see [value]!

|>

<iframe
src="http://dde7e%85%aa2a4122aef8a6e53f299fb. zenbly. com/things/dde7e98%9aa2

| £

& I | 5

Figure 2.4 Embedding (sharing) a widget

For example, you can create a web page and call the HelloWorldWidget using the fol-
lowing code:

<iframe

src="http://dde7e989aa2a4122aef8abe53f29e9fb.zembly.com/things/
dde7e989aa2a4122aef8a6e53129e9fb;iframe" frameborder="0">
</iframe>

You can then open this file in your web browser, which calls the HelloWorldWidget.
This widget displays a box and provides an input field to supply a name. A call is

Exploring the Samples 15

made to the HelloWorld service to display the name provided by the user, as shown
in Figure 2.5.

Name: |George Washington '

The page at http://ddefe989aa2a4122aef8a... E]

j . Hello George Washington!
[a)

Figure 2.5 Embedding and running the HelloWorldWidget in a web page

Using Clone

You can clone any application, widget, or service on zembly. This means that you cre-
ate a copy for yourself. Once you clone a thing on zembly, you own it and you can
then modify it. zembly encourages you to clone artifacts that you like; it is both a
great learning tool and more importantly, you can build something innovative based
on the work someone else has already done. This makes zembly users more produc-
tive. To clone a widget, select Clone this widget on its development page, as shown in
Figure 2.6.

Furthermore, when you clone something on zembly, the score of the original widget
(or service or application) increases to reflect the cloning. Scores also change when
people rate zembly “Things” or favorite them.

You are not allowed to edit this —
widget, but you can get your own Slanethisoidass
copy to play with by cloning it.
PY.10-play ¥ g You could also requestto be a

contributor to this widget

Actions

~ @ Add to favorites

score]2] -0 . . 1 Watch this widget

B Clone this widget

fast, awesome, useful : rate ¥

@ Rreport this widget

Figure 2.6 Cloning a widget increases its score

16 Chapter 2 zembly Basics

Widget Actions

Widgets (this applies to services and applications as well) list actions on their page.
Besides cloning, you can add a widget to your list of favorites, report a widget, or
watch a widget. When you mark something as a favorite, you have an easily accessi-
ble “bookmark” as shown in Figure 2.7.

Your Favorites
You have 3 favorites

.__,‘ getuidtest
‘Widget created by Cail
@ remove

B Moodrix
e
Application created by Gail

W remove

& Pixelife

Application created by Jirka

@ remove

Figure 2.7 Your Favorites give you a convenient bookmark

When you watch something, zembly lets you know when its owner publishes a new
version.

Tags on zembly

Use zembly tags to label your widgets, services, and applications to help others find
Things through the zembly search mechanism, as shown in Figure 2.8.

Tags ﬁ‘

flickr
zembly-book = o
zembly-book-flickr ..ﬂ|ckr

Here are your results for 'flickr’

Figure 2.8 Tags let you find widgets, services, and applications through searching

Exploring the Samples 17

AmazonProductSearchWidget—Widget Preview

Let’s explore the AmazonProductSearchWidget. From the Samples page, select Ama-
zonProductSearchWidget. zembly takes you to this widget’s page. You'll see a box
area with the instructions Click here to preview this widget. When you click the box,
the widget runs in a preview window. You can increase the size of the preview win-

dow by selecting the corner (or edges) and dragging until the preview window is the
size you want, as shown in Figure 2.9.

Widget Preview

i T A T T T b T A T T T e T ety Wfdgex Preview @
: | — : Drag corner
ol .
Please enter SearchIndex [to increase

[Pooks preview

window size
Please enter KeyWords
;globalwarming |

Figure 2.9 Previewing a widget and adjusting the preview window size

Provide product search index and keywords and click Search. Figure 2.10 shows the
result after searching for keyword “zembly” in search index “Books.”

Widget Preview 6

Please enter SearchIndex
B ooks

Please enter KeyWords
|zembly

’Assemhle the Social Web with
.. zembly
zembly

i

Figure 2.10 Previewing the AmazonProductSearchWidget

18 Chapter 2 zembly Basics

Widget code includes (X)HTML (for rendering), CSS (for styling), and JavaScript for
program logic and calls to external services. When you make a service call, results
typically come back in XML or JSON format. Exactly what the data represents
depends on the service and the format it uses. For example, with XML you may see
results that are RSS 2.0, or ATOM. As it turns out, the Amazon service that Amazon-
ProductSearchWidget calls returns data in XML format. The external web service will
specify how to interpret the data that is returned.

You are encouraged to look at the XHTML, CSS, and JavaScript code for this widget
(click View as shown in Figure 2.3 on page 14). This chapter will delve into building
widgets soon, but first let’s show you how to use this widget in a web page.

Embedding AmazonProductSearchWidget

The AmazonProductSearchWidget has sharing enabled. This means you can export
the widget to many popular web sites and pages by simply selecting the logo that
corresponds to the target site. zembly has partnered with Clearspring to provide
sharing and tracking of your widgets (see www.clearspring. com). We show you how to
enable sharing in Chapter 3 (see “Sharing Your Widget” on page 66). However, let’s
first show you how to embed a widget in a web page.

Since sharing is enabled for AmazonProductSearchWidget, select Embed from the list
of options as shown in Figure 2.11. The share window now displays option Other
Sites. Select Other Sites and you'll see the window with the JavaScript code you need
to invoke the widget from an arbitrary HTML page.

Share This Widget

Post Send Bookmark Desktop @

G Blogger E} Blogger Sidebar @ Eons

I] Facebook @ Hoverspot & iGoogle Ml s e
« | MY Live.com @ my'earbook Netvibes v

e pagefiakes P/ Piczo chpePad

c TypePad Sidebar "éé' Webwag ® WordPress,com

spring
Figure 2.11 Embedding AmazonProductSearchWidget in a web page
Cut and paste this code into the HTML editor of your choice and open it in your

browser. You can add other rendering code as shown in Listing 2.1. Here is the source
for the HTML file used to run this widget in a browser.

www.clearspring.com

Exploring the Samples 19

Listing 2.1 AmazonProductSearchWidget HTML file

<h2 style='margin-left:10px; margin-bottom: Opx'>Let's search Amazon!</h2>
<script type="text/javascript"
src="http://widgets.clearspring.com/0/49249714e57f0b59/4924d27e70974fe2/
4924971425b85ee0/cafd08e6/widget.js">

</script>

After creating the HTML file, open it in your browser. Enter a product search index
and one or more keywords, then click Search. Figure 2.12 shows the browser output.
Let's search Amazon!

Please enter SearchIndex
|Books

Please enter KeyWords
|zembly

ESE pscemble the Social Web with
w, zembly

“zembly

e

Figure 2.12 AmazonProductSearchWidget running in a browser

Sharing Your Widgets with Clearspring

Besides embedding widgets in pages, you can also share widgets by adding them to
any number of popular sites, such as your iGoogle Home page (see www.google.com/
ig). You don’t have to be the widget’s owner. Click Post from the list of options and
then select iGoogle from the option icons in the grid (see Figure 2.11). Now click
Open in the Add to your iGoogle page display, as shown in Figure 2.13

Add to your iGoogle page

iGoogle will open in a new window or

Figure 2.13 Adding AmazonProductSearchWidget to your iGoogle home page

www.google.com/ig
www.google.com/ig

20 Chapter 2 zembly Basics

After clicking Open, you'll be redirected to Google and asked to confirm. Click the big
blue Add to Google button, as shown in Figure 2.14. You will now see your iGoogle
home paged updated with the widget inside.

L
LGO L)Sle Add "AmazonProductSearchWidget" to your iGoogle page.

iGoogle is a more personal way to use Google.com. Customize your page anyway you like, by adding your favorite

themes and gadgets from across the web. /—_\
Add to Google
Please enter SearchIndex
|EIDDKS e this gadget when sit
Google.co

Please enter KeyWords

|9|0ba| warming AmazonProductSearchWidget
s h Widget lets you search Amazon's
ﬂl product catalogs and retrieve product
description.

Figure 2.14 Adding AmazonProductSearchWidget to your iGoogle home page

2.2 About You—Your Home Page

zembly is about people like you who participate in building and publishing widgets,
services, and other objects. The You tab takes you to your home page. This is the start-
ing point for the work you do on zembly. Figure 2.15 shows your home page with the
top-level tabs and the right-side navigation area. From the right-side navigation area
you can

® edit or view your profile,

® manage your Keychain (a list of API keys for web services),

® view your favorite zembly things (widgets, services, or applications).
From the Things tab, you can

® see your work in progress,

® see all the things you own,

® select one of your things to edit.

About You—Your Home Page

invite your friends

link \

Top-level
tabs

From here, you can access and edit your profile, keychain and\other informatig

related
working on, and view and modify your list of fri [invite

vi

Things What's happening | People Inbox
Work In Progress

You have no work in progress.

Things You Own

You created these things.

Sortby: name | creation | onlinestatus | type

Wwidget AmazonSearchwidget (online; creat

@ Application BuddyMugs (online; creatzd 7

@ Application BuddyPics online; cr

@ Application CapitalPunishment (online; ¢

Figure 2.15 Your home page is your starting point

From the What’s happening tab, you can see what others are doing (reported in the

news feed).

From the People tab, you can

10 yOour accou:

Right-side
navigation points

get to all the thinds you own

Your profile

y . Your profile tells others
4 aboutyou.

oy

Wiew your profila
Edit your profile

Your Keychain

for accessing other web

Y Your keychain stores keys
Q
o services.

Manage your keychain

Your Favorites
You have 2 favorites
B Moodrix
i

Application created by Gail

@ remove

® view your contacts (other zembly users that you have added to your profile),

® scarch zembly for additional contacts.

From the Inbox tab, you can
® see messages others have sent you,

® see requests to collaborate that others have sent you.

21

And the invite your friends button lets you bring your friends into the world of zem-

bly.

Your Profile

Let’s start with your profile. Your profile tells other people about you. Click View

your profile, as shown in Figure 2.16. Your profile includes a picture, your descrip-

22 Chapter 2 zembly Basics

tion, your contacts, a list of all the things you own, and a time line that shows what
you’ve been doing.

Your profile

J o Your profile tells others
¥ | aboutyou.

B

Edit your profile

Figure 2.16 You can Edit or View your profile

You can set your screen name and code name. (You can only set your code name
once.) The code name is used to group widgets, services, and applications that you
contribute. For example, if your code name is user1234 then people can call one of
your published services (say “myservice”) from a widget using something like

Things.callService("userl234.myservice")

Your screen name is a conversationally nice thing you want other people to call you.

People—Adding Contacts

Your contacts are people whom you invite to collaborate with you on creating wid-
gets, services, or applications. Contacts are visible on your profile page. You can also
view and search for contacts under the People tab on your home page as shown in
Figure 2.17.

About You—Your Home Page 23

Things | What's happening People Inbox

|
Your Contacts
You have 17 contacts
| e |
daydreamer [x] i did it for_ [x] jacoues [x]

’?’) EE
; B i
keittyhawk [x Mark Dixon [x Mingyi Ma [x] octav [x]

Figure 2.17 Viewing contacts under People

zembly encourages collaboration when creating and editing services and widgets.
Before you can request someone to collaborate with you on a project, you must add
them as a contact. You add them by viewing their profile page and selecting the Add
as Contact button. Alternatively, search for them from the People tab. Type a word in
the search box and hit Search. To add a person to your contacts, simply click the Add
to contacts link below the person’s name, as shown in Figure 2.18. If a person is
already a contact, you’'ll see a message saying so.

Things What's happening People
[_p_ra.l;cas...h] " Search
Chris We found 3 people matching "prakash’
code name: chris
Quick facxs: kittyhawk @ New User
3 already a contact E3 Add to contacts

Is a person (probably)
Likely owns some things
Has some contacts

Has been around lately
Joined on Dec 5, 2007

WinstonPrakash

E3 Add to contacts

Figure 2.18 Adding contacts

24 Chapter 2 zembly Basics

Once you add contacts, you can then read what they’ve recently done through the
news feed and add them as a contributor to one or more things that you own. To view
the News Feed, select the What’s happening tab as shown in Figure 2.19.

Things What's happening People

Your News Feed

Today
& Ryan removed New User from contacts & hours ago

Jirka published a new version of the trivialni widget,
"Mam tady hotovo™ & hours ago

Jirka published a new version of the trivialni widget,
"Hotove" B hours ago

Figure 2.19 Your News Feed reports what your contacts are doing

2.3 Your Keychain and Service Providers

Under your home page (click You at the top of any page) you'll find your Keychain
(click Manage your keychain on your home page, as shown in Figure 2.20). Your Key-
chain is a list of keys that are associated with select service providers. Service provid-
ers have adapters on the zembly site. Adapters are wrapper services deployed in the
zembly container that provide access to one or more of the Service Provider’s API
calls. Adapters make using your key a simple matter of specifying your Keychain—

zembly extracts the appropriate key for the specific adapter seamlessly behind the
scenes.

Your Keychain

Your keychain stores keys
for accessing other web
services.

Manage your keychain

Figure 2.20 Accessing your Keychain

%

When you access your Keychain, zembly lists all of the service providers that have
adapters. For each service provider that you want to use in a service, specify your key.
Note that you need to obtain the key on your own first. The process is slightly differ-
ent for each service provider, but is usually quick. Service providers typically email

Creating Your First Service: LoanPaymentService 25

you a confirmation. Once you have a key, you enter it into your Keychain using the
Add key link (as shown in Figure 2.21).

Your Keychain is a very important and necessary part of building the web. You want
to keep your keys handy, but you also want them private. zembly does this all for
you. When other people call your published services, zembly uses your key (from
your Keychain), but its value remains private.

You can see a list of adapters available by clicking the service’s Check out the services
offered by link. For example, you can see the services offered by Amazon AWS by
clicking the link, as shown (circled) in Figure 2.21.

Service Providers

Amazon Web Services give you direct access to Amazon's technology platform.
amazon Amazon provides both free services, such as the E-com rvice that
webservices™ exposes t talo s s that cost money, like the Amazon 53

(Simple Storage Servic as services that can make you money, like the

Amazon AWS E-commerce service. The service supported here is the E-Commerce Service

MNeed a key?
Register with Amazon AWS

Figure 2.21 Building your Keychain for service providers

When you follow this link, you'll see the service adapters currently deployed within
the zembly container, as shown in Figure 2.22.

You can further explore each service adapter by following its link to the detailed doc-
umentation page. Here, you'll find the service’s parameters, error codes, and other
pertinent information, which frequently includes external links to the provider’s
online documentation. “Putting It All Together —Using the WeatherBug API” on
page 45 steps you through the process of building a service using one of zembly’s
external service providers.

2.4 Creating Your First Service: LoanPaymentService

Using some of the posted samples as guidelines, let’s create a new service. You won't
call an external service here; instead, you’ll build one using JavaScript. A familiar
example is a service that calculates one’s monthly mortgage payment based on princi-
pal, interest rate, and length of loan (years).

26

@ Service amazon.ecs.ltemSearch (a

@ Service amazon.s3.GetObject (a

@ Service amazon.s3.PutObject (a

Chapter 2 zembly Basics

odified 1 week aga)
Amazon E-Commerce Service (ECS) lets you search Amazon's product catalogs and retrieve detailed product information,

including prices, images, customer reviews, and more. You must sign up for the Amazon Associates program to use it. This
service uses the ltemSearch operation of ECS. More at: http://docs.amazonwebservices.com/AWSECommerceService,/2...

@ Service amazon.s3.CreateBucket (lastm

Amazon 53 CreateBuckert service

modified 6 seconds ago)

Amazon 53 GetObject service

@ Service amazon.s3.ListBucket (last modified 6 seconds ago)

Amazon 53 ListBucket service

@ Service amazon.s3.ListBuckets (last modified 6 seconds ago)

Amazon 53 ListBuckets service

Amazon 53 PutObject service

Figure 2.22 Amazon services include Simple Storage Service and E-Commerce Service

(ECS)

Here’s a summary of the steps you'll follow.

N o ol L=

Create a new service. Give it a name and a description.
Add parameters to the service (optional).

Provide JavaScript code that returns data to the caller.
Add any error types (optional).

Test drive your service and modify as necessary.
Capture example return data (optional).

Publish your service.

Let’s start. To create a service, click | Gieatesometingl] at the top of the page and select
Service as shown in Figure 2.23. You'll see a new page that asks you to provide a
description of the service. The default service name is NewService, which you should
change to something meaningful. Many times, service names end in “Service,” but
this is not a requirement. Call the service LoanPaymentService.

Creating Your First Service: LoanPaymentService 27

M Signedinas Gail | SignOut | ™ Feedback

[l Facebook application

3 widget

docs samples

Figure 2.23 Creating a Service

This service requires three input parameters and returns a single numerical result.
Error handling for input validation is handled completely by zembly; we discuss this
further in the next section. Here’s the JavaScript that provides the service.

Listing 2.2 LoanPaymentService (JavaScript)

// LoanPaymentService
// Input parameters are all NUMBERs and all Required

var principal = Parameters.principal;
var interest = Parameters.interest;
var interest rate = interest / 1200;
var years = Parameters.years;

//Perform the calculation

var months = years * 12;

var x = Math.pow(1l + interest rate, months);

var payment = (principal * x * interest rate)/(x-1);

return payment.toFixed(2);

Specifying Parameters in a Service

When you create a web service, you tell the service interaction page about the param-
eters for your service. To add parameters, click Add a new parameter in the Call -
Parameters window. You specify a parameter’s characteristics in a dialog box.

When you add a new parameter you choose its type. By using the appropriate type,
you take advantage of zembly’s built-in parameter validation. Table 2.1 lists the types
supported.

28 Chapter 2 zembly Basics

TABLE 2.1 Parameter Types for Services

Type Additional Fields Examples

Binary - 1101

Boolean - true, false

Email - info@buildtheweb.org

JSON - {"firstName":"John",
"lastName":"Smith"}

Key Keyset Provider (Depends on provider)

Number Min Value, Max Value 55, 25.3

(integer, real, or

floating point)

String Max Length, Escape value any string <= Max Length

URI - http://www.asgteach.com

XML - <firstName>John</firstName>
<lastName>Smith</lastName>

For this service, specify three parameters (principal, interest, and years). Make them
all required and Type Number. With Number you also specify the minimum and
maximum values. For principal use minimum 10 and maximum 2 million (2,000,000).
For interest specify minimum 1 and maximum 20. Finally, for years use minimum 1
and maximum 99. Figure 2.24 shows the Parameter Editor for parameter years.

Parameter Editor LX)

Name: |years |

Description: How long your loan will endure (in]

[m

e this parameter in the call

Type:
Min Value:

Max Value:

Cancel

Figure 2.24 Creating and editing a web service parameter

Programming Tip

If your service expects numbers for input, be sure to specify Number for the parameter type.
The built-in parameter validation will verify the correct type and provide range checking as
well. Figure 2.27 on page 30 provides an example result for out of range input.

http://www.asgteach.com

Creating Your First Service: LoanPaymentService 29

Error code:
[100 |

Description:

|Inva|id input for one or more parameter:|

HTTP status code:
400 |

Figure 2.25 Creating and editing web service error codes

Note that if you make a parameter required, zembly flags an error if the caller doesn’t
provide a value. If you want the parameter to be optional, uncheck Must use this
parameter in the call.

Once you've specified the parameters, you can access them in JavaScript. For exam-
ple, you access the LoanPaymentService principal parameter with Parameters.prin-
cipal.

zembly Tip

It’s a good practice to provide a description for parameters as shown in Figure 2.24. The
description will then appear in your service’s documentation page. It will also appear when
you add code to call the service through zembly’s Find & Use feature (see “Calling LoanPay-
mentService in Your Widget” on page 39).

Error Handling

When you detect a problem in your service, error codes can communicate status to the
caller. You specify error codes in the service’s Error Codes section. To add an error
code, click Add a new error type. Figure 2.25 shows the dialog box that lets you spec-
ify a new error type. (You may also edit error codes that you have already defined.)

The error code, description, and HTTP status code all appear on your web service’s
documentation page. Note that you don’t need to define an error code for the Loan-
PaymentService, since all error handling is performed by the built-in parameter vali-
dation.

30 Chapter 2 zembly Basics

Testing LoanPaymentService

Once you've built a service, you'll want to test it. Use the Call tab located next to the
source editor window. You must provide values for any required parameters and click
Test drive now. This calls the service with the parameter values you've provided and
displays any results (or error codes) in the window. Figure 2.26 shows an example
with a successful test.

Find & Use

Find & Use

Parameters Test drive now E

Result ©

principal Edi 300000 |Ix
interest Edit| 5.5 |
years Edit | 15 |

) Add a new parameter

Figure 2.26 Testing a service

Figure 2.27 shows the built-in parameter validation when you provide a value outside
the range for parameter years.

© The parameter "years" requires the
value to be in the range [1,99], the
actual value was "100"

Figure 2.27 zembly’s parameter validation

Capturing Example Return Data

To help others use your service, you can capture the return data after testing your ser-
vice. Simply click the Capture example button (as shown in Figure 2.26). zembly cre-
ates a new heading on your service’s documentation page and displays the output.
This helps users, especially if the return data contains specific formatting (such as
XML or JSON data). Figure 2.28 shows an example for LoanPaymentService.

Creating Your First Service: LoanPaymentService 31

Example Output

This is a sample of the plain text returned by this service.

2451 .25

Figure 2.28 You can display sample output on your service’s documentation page

Saving Drafts

Each time you edit your code and test drive the service, your current code is automat-
ically saved in a draft for you. zembly displays a small bar to indicate the current
draft (the bars are displayed on the right with the most recent modification saved on
top of the stack).

You can force a saved draft by clicking the Save Code icon at the bottom of the editor
(or typing Ctrl+Alt+S). You can return to any previously saved draft or published ver-
sion simply by clicking the bar. Also, you can see the timestamp and draft or version
number by holding the cursor over the bar. See “Drafts, Versions, and Timelines” on
page 42 for a more detailed discussion.

Using the JavaScript Editor

The JavaScript editor color codes key words, comments, and objects. The editor
includes icon commands in the lower right window (as shown in Figure 2.29) to save
your draft (Ctrl+Alt+S), toggle full screen editing (Ctrl+1), format code (Ctrl+Alt+F),
undo editing (Ctrl+Z), redo editing (Ctrl+Y), or create a code snippet (Ctrl+Shift+N).
You can also invoke code completion with Ctrl+Space.

32 Chapter 2 zembly Basics

10|var months = years * 12;
lljlvar x = Math.pow(l + interest rate, months);
12|var payment = (prinecipal * x * interest rate)/(x-1):

14| return payment.toFixed(2);

14:27 Code completion; Cirl + Space

Figure 2.29 JavaScript editor command icons

Publishing LoanPaymentService

Click the G0ZZE#® button to publish your service. This is the magic step that zem-
bly provides to make services and widgets available to others. When you publish
your service, zembly creates a deployable web service and deploys it in its own man-
aged container. As you modify your service, zembly keeps track of drafts (unpub-
lished edits) and versions (published edits). With each version you are encouraged to
specify how the new version has improved (why it is cool).

Calling LoanPaymentService

Once you've tested and published your service, you'll want to call it from another ser-
vice or widget. The page provides the code you need to call the service from another
service, from a widget, or through the browser. However, the easiest way to call your
service is to use zembly’s Find & Use feature which automatically adds the code as a
template in the editor. The Find & Use feature is context sensitive, so it will import the
correct code depending on whether you're currently developing a widget or service.
In addition, with Find & Use you'll see documentation about the service and its
parameters.

Use the following (JavaScript) code to call your service from another service. zembly
generates the comments for each parameter from the documentation you provide.

zembly Tip

Note that this example calls the service using code name ganderson. When you create your
own service, zembly uses your code name, which is unique to you.

var result = Things.ganderson.LoanPaymentService({
principal: 0, // The principal of the loan (in dollars)
interest: 0, // The interest rate (per cent) (e.g., 6.5)

Creating Your First Service: LoanPaymentService 33

years: 0 // How long your loan will endure (in years)

1)

Use the following template (JavaScript) code to call your service from a widget.

Things.callService("ganderson.LoanPaymentService",

{
principal: 0, // The principal of the loan (in dollars)
interest: 0, // The interest rate (per cent) (e.g., 6.5)
years: 0 // How long your loan will endure (in years)
I
{
onSuccess: function(data) {
Log.write(data);
I
onFailure: function(error) {
Log.write("Error: " + error.code + " : " + error.message);
}
3

Programming Tip

The statement Log.write(data) writes messages to the JavaScript debugger Firebug if it’s
installed. If not, zembly loads Firebug lite to get you started (use F12 to bring it up). Logging
is enabled by default when you preview drafts and disabled for published versions. You can
keep your Log.write() statements in the code. They will go to null (unless you enable debug-
ging of published versions with the debug query parameter).

A third way to call a service is to cut and paste the URL provided on the service page
into the address line of your browser. Pasting the URL in your browser address line
calls the service from HTTP. You must specify the parameter values in place of each
[value] marker. Here is the LoanPaymentService URL with values replacing [value]
in the URL.

http://zembly.com/things/2ef3f34205c84fca9b0d91c538fcba5b;exec
?principal=232000&interest=4.5&years=15

zembly Tip

Note that you must delete the brackets when you specify the actual value for each parameter.
Howewver, if you accidentally leave in the brackets (in this example), the built-in parameter val-
idation returns an error.

Figure 2.30 shows the browser window after calling the LoanPaymentService.

http://zembly.com/things/2ef3f34205c84fca9b0d91c538fc6a5b;exec?principal=232000&interest=4.5&years=15
http://zembly.com/things/2ef3f34205c84fca9b0d91c538fc6a5b;exec?principal=232000&interest=4.5&years=15

34 Chapter 2 zembly Basics

£ Mozilla Firefox
File Edit Wew History Bookmarks Yashoo! Tools Help

Qﬁ - - @‘J ’Iij“ @ !L|_| htb:l:ffzembly.comfﬁingszef3f34205c8i ‘i [9] ': 200 |~<|

L| http:/ fzembly.c..t=5.5&years=15 G | IJ zembly blog | -

2451 .25

Figure 2.30 Calling a service with HTTP using its URL in the browser

2.5 Creating Your First Widget: LoanPaymentWidget

Now it’s time to build a widget that uses the previously built LoanPaymentService.
Here’s a summary of the steps you'll follow to build a widget.

Create a new widget. Give it a name and a description.
Upload any resources, such as images (optional).

Include any libraries your widget uses.

Provide the HTML, CSS, and JavaScript code.

Use Find & Use to call zembly services from your widget.

Preview and publish.

NS o L=

Embed in a web page.

At the top of the page, select | Creaiesemeting. | and then select Widget. zembly pops
up a secondary dialog that lets you either select a template for your widget or simply
create a blank widget. Select Create a blank widget as shown in Figure 2.31.

Creating Your First Widget: LoanPaymentWidget 35

Create a widget

Categories Templates
Utilities) £ "' RalyPaolly

“n | Use this template to create a si.
News Feeds . =
Common Layouts -, GoogleMapMarkers

iz You can type in ten addresses ar
Business and Finance

= | Translator

Py A N
Pictures and Slideshows 25
i Online translator based on Goog

Video Sharing

e Select a template

‘reate a blan

Figure 2.31 Creating a blank widget

zembly Tip

Widget templates are a recent addition to zembly. Templates let you choose a configurable
starting point for building widgets. You navigate and find the template widget that’s closest to
what you want to build and click Choose this template. At this point the widget’s code is
visible but not editable. Use the form in the Configure tab to change the widget’s look or behav-
ior. If the customizations available do not cover your needs, you can edit the code by selecting
button Switch to edit mode. Then, you can change anything you want in the CSS, Java-
Script, and HTML source code, as well as libraries, resources, and so on. We encourage you to
experiment with the various template categories before building a widget from scratch. For this
example, however, you will start with a “blank” widget.

When you create a widget, you have the opportunity to supply three different files.
You can also add images (which you’ll do in this example) and include libraries in a
separate step. You'll use (X)HTML for page markup, CSS for style specifications, and
JavaScript for program logic. Figure 2.32 shows LoanPaymentWidget, the target wid-
get that you'll build, running in a browser.

This widget includes an image, three input text fields with labels arranged in a table, a
Calculate Payment button, and an output field that displays the result returned from
the service.

36 Chapter 2 zembly Basics

Loan Payment Calculator
Principal: ;ﬁﬂﬂ |

Interest: 5.5

Term (years): |:|_5

| :Calculate Payment:

$2451.25

Figure 2.32 LoanPaymentWidget running in a browser

Uploading an Image

To include an image with your widget, you upload it to zembly’s servers. To upload
the image, click Browse in the Resources dialog. Navigate and select an image from
your file system. After you click Upload, the image appears in the Resources window,
as shown in Figure 2.33. Now click on the image to add it to your widget as an
tag.

zembly Tip

The easiest way to do this is to preview the already-built LoanPaymentWidget. First, specify
LoanPaymentWidget in the zembly Search window and click on LoanPaymentWidget in the
results list. While the widget is running in the preview area, right-click the image and save it
to your local machine. You can then upload the image as described above.

Creating Your First Widget: LoanPaymentWidget 37

Preview Find & Use Resources
* Resources

Click on an icon to use resource in the
code.

m house.jpg

Browse for an image or other file (up to
1me) and click "Upload” to include it in
the widget.

| |[Browse...]

[This file is a screenshot

Upload

Figure 2.33 Uploading images to add to your widget

After selecting the image, the HTML code includes an tag as follows. (Select the
(X)HTML tab.)

You'll move the tag inside the outermost <div>, as shown in Listing 2.3.

Including Library Prototype JS

From the Resources tab, select Libraries at the bottom. Select Prototype from the list
of libraries, as shown in Figure 2.34. Prototype is a general-purpose JavaScript library
that includes functions (such as enhanced array iteration) and syntax shortcuts for
DOM elements.

Preview . Find & Use Resources

Select libraries this widget uses:

[] Google JS APIs

[jQuery (v1.2.3)
vl (v0.13)

Figure 2.34 Including the Prototype JavaScript library in your widget

38 Chapter 2 zembly Basics

Building LoanPaymentWidget

Listing 2.3 shows the HTML code for this widget. The input elements are organized
within a table element to create symmetrical spacing. The <div> tag with id="result-
Div" holds the results returned from the LoanPaymentService; the <div> tag with
id="errorDiv" holds any returned error messages.

Listing 2.3 LoanPaymentWidget (HTML)

<div id="loanDiv" class="widget">

<div id="headingDiv" class="heading">
Loan Payment Calculator

</div>
<table>
<tr><td>Principal:</td>
<td>
<input id="principal" type="text" size="20" value="300000">
</td></tr>
<tr><td>Interest:</td>
<td>
<input id="interest" type="text" size="20" value="6.0">
</td></tr>
<tr><td>Term (years):</td>
<td>
<input id="years" type="text" size="20" value="30">
</td></tr>

<tr><td colspan="2">
<div id="calcdiv" class="calc">
<button id="calcButton">Calculate Payment</button>
</div>
</td></tr>
<tr><td colspan="2">
<div id="resultDiv" class="results">

</div>
<div id="errorDiv" class="errorResults">
</div>
</td></tr>
</table>
</div>
Using CSS for Styling

The widget’s CSS file provides style sheets for the widget. Note that there is a separate
style for results and errorResults. Here is the CSS code.

Creating Your First Widget

Listing 2.4 LoanPaymentWidget (CSS)

: LoanPaymentWidget

39

div.widget {
background-color: #e6e6ff;
border: 1px solid #aaaaff;
padding: 5px 5px 5px 5px;
font-size: 0.8em;

}

div.heading {
font-size: 1.3em;
font-weight: bold;
text-align: center;

}
div.calc {
margin: 5px;
text-align: center;
}

div.results {
margin: 5px 2px 2px 2pX;
padding: 1lpx 2px 2px 2pX;
font-weight: bold;
text-align: center;

}

div.errorResults {
margin: 5px 2px 2px 2pX;
padding: 1lpx 2px 2px 2pX;
font-weight: bold;
color: #C61C1C;
text-align: center;

Calling LoanPaymentService in Your Widget

zembly makes it easy for you to add code to call services in your widget (this works

when building services, too). Open the JavaScript editor for your widget (click the

JavaScript tab in the editor zone). Then select the Find & Use tab in the window to the
right of the editor zone. You'll see a Search window. Type in LoanPaymentService and

click Search.

40 Chapter 2 zembly Basics

Find & Use Resources

Preview

w Search for Services

iLoanPaymentSer\ficeE " 'Search

zembly Services (7) | Partner Services (0)
-
7 services matching
‘LoanPaymentService’

@ TestLoanPaymentService
E2 Add to editor Click to open Service’s page

.}.’ LoanPaymentService - in 2 new window

Calculates a fixed rate loan's monthly
payment amount bas...

Click to add code to call Service
in your widget

E3 Add to editor

15 | LoanPaymentService

E2 Add to editor 3
» Your Service Bookmarks
b Your Snippets ©

Figure 2.35 Find & Use Search for Services lets you easily add code to your widget

Figure 2.35 shows the results (quite a few, as it turns out). Using the avatars as a clue,
find the LoanPaymentService near the start of the list. If you click its description,
zembly opens the LoanPaymentService page in a new window. You can then study its
documentation (or code). To add code to call the service to your widget, simply click
Add to editor in the search results window. This will give you the correct calling tem-
plate as a starting point. You can then edit the JavaScript to specify the parameter val-
ues and add the coding logic for your widget.

Listing 2.5 shows the JavaScript that calls LoanPaymentService using the three input
values. Prototype’s Event . observe function connects the calcButton click event to the
handler.

After obtaining the principal, interest, and years input from the user, you pass these
parameters to the LoanPaymentService. The return value is in data, which you
prepend with a dollar sign ($) (for a successful payment result) or error , which
returns an error code (error.code) and message (error.message). You insert the pay-
ment or the error information into the page’s HTML markup.

$("resultDiv").innerHTML = [insert payment html here];
$("errorDiv").innerHTML = [insert error html here];

Creating Your First Widget: LoanPaymentWidget 41

Because style errorDiv defines its text color as red as shown below (and in Listing 2.4
on page 39), error messages appear in red and normal return results are in black.

div.errorResults {
margin: 5px 2px 2px 2px;
padding: 1lpx 2px 2px 2px;
font-weight: bold;
color: #C61C1C;
text-align: center;

}

The Prototype shortcut notation uses $("element_id") instead of the more verbose
document.getElementById("element id").

Listing 2.5 LoanPaymentWidget (JavaScript)

Event.observe($("calcButton"), ’'click’, function() {
var principal = $("principal").value;
var interest = $("interest").value;
var years = $("years").value;

Things.callService("ganderson.LoanPaymentService",

{
"principal": principal, // The principal of the loan (in dollars)
"interest": interest, // The interest rate (per cent) (e.g., 6.5)
"years": years // How long your loan will endure (in years)

}I

{ onSuccess: function(data) {

var resultsHtml = "$" + data;
$("resultDiv").innerHTML = resultsHtml;
$("errorDiv").innerHTML = "";

}I
onFailure: function(error) {
$("errorDiv").innerHTML = error.code +
+ ”.
";
$("resultDiv").innerHTML = "";

+ error.message

Previewing and Publishing

Test your widget using the Preview tab or the Preview widget box. When you're satis-

fied that the widget is working, publish your widget by selecting the EREEEM but-
ton. After you publish a widget, you can embed it in any web page.

42 Chapter 2 zembly Basics

Embedding LoanPaymentWidget

This widget is embedded in a web page with the following HTML source.

<iframe width=400 height=280
src="http://94f52847744e493b944aed46cf255e63.zembly.com/things/
94152847744e493b944aed46cf255e63;iframe" frameborder="0">
</iframe>

You copy/paste the source from the widget’s documentation page (under Share This
Widget). Here, we’ve supplied height and width attributes to adjust the size of the
iframe tag area.

zembly Tip

You can add width and height attributes to the iframe tag as shown above to make the widget
larger than the default iframe size.

2.6 Drafts, Versions, and Timelines

When editing a service or widget, zembly records the changes you make as interme-
diate drafts. zembly automatically saves a new draft every time you make a change,
such as adding a parameter or editing the code. A draft is a clone of the entire state of
your service or widget. A draft comes to an end when you publish a service or widget.
You can see which version you are looking at or editing below your object’s title, as
shown in Figure 2.36.

LoanPavmentWidget Rename

You are looking at draft 1 based on version 15

(KIHTML i 5 JavaScript Configure

Figure 2.36 Draft and version number of object’s current edit session

Edit History

A stack on the right side of the edit zone (small boxes) shows the history of your pub-
lished versions and drafts, as shown in Figure 2.37. The oldest versions are on the bot-
tom of the stack and, if you hover the mouse over a box, you can see when zembly
saved the draft (light box) or the published version (dark box).

Drafts, Versions, and Timelines 43

Editing Editing
History \ History

[Feb2a 1

¥

116 PM Version #14: Account for equal endpoints.

LT
ST

Figure 2.37 Edit history is a stack of published versions and drafts

If you look quickly when you make a change to the service or widget, or when you
click around on the page after making a change, you'll see a new box being added to
the top of the stack, as shown in Figure 2.38.

Find & Use Resources

Figure 2.38 Saving a new draft

When you click on one of the boxes, the current changes are saved (as a new draft)
and the old draft or version you clicked on is loaded. This lets you move back and
forth within your edit history seamlessly. Once you begin editing by changing some-
thing, zembly creates a new draft based on the draft you changed.

Any changes you make are related to your current draft, which is the thing you're
working on before you’ve published. You can keep multiple drafts for any length of
time. You only create a new version of a service or widget when you publish. Then
your edit history for the draft is wiped out (along with the current draft, which con-
verts to a published version). At this point, you start over and any changes are saved
as new drafts based on the latest published version.

You can also remove all current drafts of a service or widget if you don’t want to keep
any of the changes saved for your code. Select Erase and start over, as shown in
Figure 2.39. zembly confirms the action before removing the drafts.

44 Chapter 2 zembly Basics

Actions

@ Add to favorites
&% Watch this widget

Confirm Delete Q

Are you sure you want to erase all changes you've made to this item
since it was last published?

& Erase and start over
@ Report this widget

If you do, all your draft changes will be erased and you will begin

ﬁ Delete this widget editing a new draft based on the last published version.

This cannot be undone!

L

Figure 2.39 Erase and start over removes all saved drafts

Viewing Versions

The timeline lets you look at older versions of widgets or services as shown in
Figure 2.40.

Your Recent Activity

This timeline s ick on an event to see more dete
events as a list [T ERERT

see Home

Figure 2.40 Finding a previous version of a published object

When you click on one of the points on the timeline, zembly reloads the page with
that version.

Online/Offline Status

You can bring a published service or widget offline by toggling its online/offline sta-
tus indicator as shown in Figure 2.41. Currently, this affects all published versions of

Putting It All Together—Using the WeatherBug API 45

the item. In the future, you will be able to specify individual versions for offline pub-
lishing.

o Service LoanPaymentService--.-.az;_.-.i 1 month ago
This service calculates a fixed rate loan's monthly payment amount based
percent), and term in years. Th.__

o Widget LoanPaymentWicfge: eated 1

Figure 2.41 Online/offline toggle for a service or widget

2.7 Putting It All Together—Using the WeatherBug API

You'll now build a service and widget that uses the WeatherBug API. (Note that zem-
bly already provides a sample service and widget for the WeatherBug API. However,
in this section you'll build your own.) Here’s a summary of the steps you'll follow to
build this service and widget.

zembly Tip

As with all the examples throughout the book, you are encouraged to clone the examples (find
them using the zembly search mechanism). We provide the steps here so that you can easily
build services and widgets on your own.

Steps to create the WeatherBugService

1. Obtain a WeatherBug API key (from WeatherBug) and add it to your zembly Key-
chain.

Create a new service to access the WeatherBug APIL
Add a parameter to the service.
Using Find & Use, add the JavaScript code to call the WeatherBug API.

Format the return data.

SRR N

Test and publish the service.

Steps to create the WeatherBugWidget

1. Create a new blank widget.

2. Provide HTML for formatting.

46 Chapter 2 zembly Basics

Using Find & Use, add the call your WeatherBug service.
Include the Prototype library.

Add JavaScript code.

Preview and publish the widget.

N o ok W

Embed it in a web page.

Let’s begin. The WeatherBug APl is included in the list of services you can access from
zembly. These services have been wrapped as adapters by the zembly structure, giv-
ing you easy access to WeatherBug’s APIL.

Using Your Keychain

To start, access your Keychain (click Manage your Keychain from your home page).
This displays the service providers currently supported on zembly. Scroll down to
the WeatherBug's listing, as shown in Figure 2.42.

(T)WeatherBug 1 1anages and operates a weather network that provides live local

WeatherBug

MNeed a key?
Register with WeatherBug

Gail Ande... X Add key

Figure 2.42 Accessing WeatherBug’s registration page

The first step is to register with the WeatherBug service to obtain a key. You do this
directly with WeatherBug. (Click Register with WeatherBug to get started.) After sev-
eral email confirmations, WeatherBug will send you a key. When you add the Weath-
erBug API key to your keychain, zembly prompts for your name. (Each API site has
its own requirements for what constitutes a legal API key.) Your name is stored with
the key in your private keychain data.

zembly knows this key is associated with the WeatherBug API. When you access the

WeatherBug API using Owner. keychain, the WeatherBug key is used in exactly the cor-
rect format required by WeatherBug. Also, when other people use a service you build,
they access the service using your key. Your key is protected since it is wrapped in the
Keychain mechanism.

Putting It All Together—Using the WeatherBug API 47

Building WeatherBugService

Now that you have a WeatherBug key, you can build a service. From your Keychain
page, scroll down to the WeatherBug listing and click Check out the services offered
by WeatherBug. This directs you to the list of services; currently LiveWeatherRSS is
the only one. Now click on WeatherBug.LiveWeatherRSS and zembly directs you to
the LiveWeatherRSS page, as shown in Figure 2.43.

The WeatherBug.LiveWeatherRSS information page describes how to call the adapter
and use its data. Besides the description, the page provides information on the param-
eters and error codes and a text box tells you how to call the adapter from a service.

Check out the services offered by WeatherBug.

@ Service WeatherBug.LiveWeatherRS5 (last modified 3 months ago)
The LiveWeatherR55 method retrieves weather for a specific U.5. zipcode

inches)) or met...

http://zembly.com/things/2b63038e48144bb5a8519fd225fech87

Figure 2.43 Drilling down to check out the services offered by WeatherBug

Here’s the code template to access the LiveWeatherRSS adapter.

var result = Things.WeatherBug.LiveWeatherRSS({
zipcode: "", // 5-digit ZipCode, U.S. cities only
// unittype: "", // Optional. Default value is 1. Values are 0
// (US customary units) or 1 (metric units - kms, degrees Celsius, etc).
keys: Owner.keychain

1)

What Are Things?

zembly provides the Things object in the environment. It represents all artifacts (services,
widgets, and applications) that are potentially accessible. Group WeatherBug specifies the pub-
lishing owner. Currently LiveWeatherRSS is the only service available under this group.

http://zembly.com/things/2b63038e48144bb5a8519fd225fecb87

48 Chapter 2 zembly Basics

The LiveWeatherRSS API call takes three parameters: the target zip code, the unit type
(this is optional, but it defaults to ‘1" which means metric units), and keys. When you
build this service, you'll supply values for unit type and keys and allow the user to
supply the target zip code.

Now, let’s build the service. Click [Cieaie somethingl] at the top of the page and choose
Service from the drop down menu. For this service, you'll have a single parameter
(the target zip code). The unit type defaults to “1” (metric units) but you'll specify U.S.
units (such as Fahrenheit and inches) which is “0”. For the keys data use Owner . key-
chain, which pulls your WeatherBug-specific API key. You write this service using
JavaScript. The LiveWeatherRSS service returns XML. You'll extract just the data you
want and return the results to the caller in JSON.

Using E4X and JavaScript

zembly returns XML data as a DOM document object. This means that you can access
the object directly in your JavaScript using E4X notation.

zembly Tip

Although E4X support is not standard in all browsers, it is supported in the zembly environ-
ment. Therefore, you can use E4X without sacrificing portability in the services you build.
However, for maximum portability, avoid using E4X in widgets. (This is why this service
returns results in J[SON.)

Listing 2.6 shows a sample of the XML response from WeatherBug. Let’s show you
how to access the various nodes using JavaScript and E4X.

Listing 2.6 Sample XML Response from WeatherBug

<rss version="2.0">
<channel>
<title>0Observations from Encinitas, CA - USA</title>
<link>...</link>
<description> . . . (contains HTML code) . . . </description>
. omitted data .
</channel>
</rss>

Because the data is already returned as a DOM document object, you access node
title using (for example),

data.channel.title

Putting It All Together—Using the WeatherBug API 49

As discussed earlier, you provide a single parameter (“zipcode”), which is a String, it’s
required, and is escaped, as shown in Figure 2.44.

zembly Tip

Only a limited subset of characters are allowed in URLs. Escaping means that any special
characters such as space, quotation marks, or the ampersand sign are encoded and then unen-
coded within the service. Typically characters must be encoded because they have a special
meaning within a URL (such as ; ? or =) or there is a possibility of misinterpretation (such as
space or #).

Parameter Editor o

Name: Izipcode |

Description: [5-digitZipCode, U.S. cities only |

Must use this parameter in the call

Max Length: I:l

Escape value

EXE E -

Figure 2.44 Editing a parameter

To add the code you need to call the adapter to the editor, select the Find & Use tab in
the box to the right of the editor. Specify LiveWeatherRSS and click Search. zembly
returns the matching services. Click Add to editor and zembly adds the code you
need to the editor, as shown in Figure 2.45.

Call Find & Use

w Search for Services

[LiveWeatherRSS | =

zembly Services (1) | Partner Services (0)
A
1 service matching
"LiveWeatherRSss’

#=== WeatherBug.LiveWeatherR55
The LiveWeatherRS5 method retrieves
weather for a specifi...

E3 Add to editor

Figure 2.45 Find & Use lets you search for services and add code to the editor

50 Chapter 2 zembly Basics

Listing 2.7 shows the JavaScript source for WeatherBugService. Function Log.write
allows you to write information to a log file that you can view in the Call window to
the right of the editor. Select Log at the bottom of the Call window to view. Here, func-
tion Log.write(typeof data) writes “xml” to the log file.

Using the E4X notation, the WeatherBugService extracts the data for the title, descrip-
tion, and link to pass to the caller. This is the data you’ll work with when you create a
widget that uses this service.

Listing 2.7 WeatherBugService (JavaScript)

var data = Things.WeatherBug.LiveWeatherRSS({

"zipcode": Parameters.zipcode, // 5-digit ZipCode, U.S. cities only
"unittype": "0",

"keys": Owner.keychain

3

//log type of the result object (XML object)
Log.write(typeof data); // writes "xml"

//You can use E4X notation to access the elements and attributes
//inside this object directly

var result = new Object();
result.title = ""+data.channel.item.title;
result.description = ""+data.channel.item.description;
result.link = ""+data.channel.link;

// Returns JSON
return result;

As you build the service, you can test drive it and look at the results that are returned.

Calling WeatherBugService

The next step is to build a widget that uses this service. The point of building a widget
is to create a user-friendly snippet of code that others can paste directly into a web
page. This widget should provide nice formatting of the data returned by Weather-
BugService. Before leaving the WeatherBugService page, you'll see that it tells you
how to call this service from a widget. Here is the template code zembly provides.

Things.callService("ganderson.WeatherBugService",

{

}’
{

zipcode: "" // 5-digit ZipCode, U.S. cities only

Putting It All Together—Using the WeatherBug API 51

onSuccess: function(data) {
Log.write(data);

}I
onFailure: function(error) {
Log.write("Error: " + error.code +

+ error.message);
}
)

When you build your widget, you'll use this code to call the service. Let’s take a brief
look at the response you get when you make a successful call to a service (the onSuc-
cess handler). The code within Things.callService examines the response and gives
you a pointer to the data object directly (as the first argument).

® If the service returns an object (if the response content type is application/json), then
data is a JavaScript object. The WeatherBugService returns JSON data to the calling
widget.

® If the service returns an XML document (if the response content type is application/
xml), then data is a DOM object.

® If the service returns a plain string, number, boolean or date, then the data object
will have its string representation. The LoanPaymentService returns a number,
which will have its string representation in the calling widget.

Note that the onFailure handler accesses the error object.

Building WeatherBugWidget

From the top of the page, click | Ciesiesomeiing! | and select Widget from the drop
down menu. Choose Create a blank widget. The widget page lets you rename the
widget, provide a description, and specify HTML, CSS, and JavaScript code. The
HTML code should provide an input field for the zip code and a button to click and
grab the weather data. You'll also need a named <div> tag to display the results. (This
is id="weatherBugResults" in Listing 2.8 below.)

Here is the HTML code for the WeatherBugWidget.

Listing 2.8 WeatherBugWidget (HTML)

<div id="weatherBugWidget">
Please enter a ZipCode to search WeatherBug service:

<input id="zipcode" type="text" value="92024" />

<button id="weatherButton">Get Weather</button>

<hr/>

<div id="weatherBugResults"></div>
</div>

52 Chapter 2 zembly Basics

Sample JSON Output

Before you look at the JavaScript code for this widget, let’s look at the data that the ser-
vice returns. Listing 2.9 shows sample JSON output (property description has been
shortened). The result object is embedded in curly braces { } and each property is iden-
tified in quotation marks followed by a colon and its value. Properties are separated
with commas.

Because the data arrives to the caller as a JavaScript object, you do not need to perform
any parsing. For example, the title property is accessed using (for example)

data.title

Listing 2.9 Sample JSON Output

{
"title": "Live Conditions from Encinitas, CA - USA",
"description":
"<img src=\"http://deskwx.weatherbug.com/images/Forecast/icons/cond026.gif\"
border=\"0\" alt=\"Current Conditions\"/>

(. . . data omitted . . .)

",
"link":
"http://weather.weatherbug.com/CA/Encinitas
weather.html?ZCode=25546&Units=0&stat=ENCNT"
}

WeatherBugWidget JavaScript

This widget doesn’t specify any CSS. Listing 2.10 shows the JavaScript code for this
widget. Note that each property in the returned data object (data) is accessed directly
using JavaScript notation. Since the data in property description is straight HTML,
you can use that directly in the HTML markup.

zembly Tip

The JavaScript code in Listing 2.10 relies on the Prototype Library. Be sure to select Prototype
from the list of libraries under the Resources/Libraries tab.

Listing 2.10 WeatherBugWidget (JavaScript)

// WeatherBugWidget (WBW)
// Register a listener for the "weatherButton" with Prototype Event.observe

Putting It All Together—Using the WeatherBug API 53

Event.observe($("weatherButton"), 'click’, function() {
var zipcode = $("zipcode").value;
// call service and pass zipcode
Things.callService("ganderson.WeatherBugService", {
zipcode: zipcode},
{
onSuccess: function(data) {
// format the return data and inject into page markup
var resultsHtml = "" + data.title + "
" +
data.description + "
<a href=" + data.link +
">weather details
 " ;
$("weatherBugResults").innerHTML = resultsHtml;
}
onFailure: function(error) {alert(error.code);}
1)
3

Each time you edit the widget, you can test it directly on the widget page. Once you're
finished editing, publish it. zembly provides the code you use to run the widget in a
browser. You can configure the iframe by specifying height and width attributes. Here
is the HTML source.

Listing 2.1 1 Sample HTML source to call the WeatherBugWidget

<iframe width=500 height="350"

src="http://0eb6e21170b8405ca2658cec54fc5005.zembly.com/things/
0eb6e21170b8405ca2658cec54fc5005;iframe" frameborder="0">
</iframe>

Figure 2.46 shows sample output from running the above HTML.

zembly Tip

See “LiveWeatherBugWidget” on page 274 and “LiveWeatherMapWidget” on page 284 for
enhancements to this widget.

54 Chapter 2 zembly Basics

Please enter a ZipCode to search WeatherBug service:
92024

Observations from Encinitas, CA - USA

Sunny

Temperature: 60.5 °F
Humidity: 41 % Wind Speed: 3 mph NE Pressure: 30.02"
Dew Point: 377 °F Gusts: mph ENE Rain Today: 0.00 "

weather details

Figure 2.46 WeatherBugWidget running in a browser

Index

Symbols

$("element_id") Prototype notation 41

A

About Page, Facebook 125
acquire Facebook session, zembly testing 155
actions, zembly 16
{*actor*} token 183
adapters, zembly 24
Add to editor, Find & Use Tab 40
Add to Home Screen, iPhone icons 317
Add to Info button, Facebook 114, 212
Add to Profile button, Facebook 141, 144, 176
with HTML 166
addOverlay function, Google Maps 97
admin tool, Facebook data store model 193
Ajax.FBML, FBJS (responseType) 143, 150
Ajax.JSON, FBJS (responseType) 217
allow access, Facebook applications 111, 136
Amazon AWS services 25
AmazonProductSearch sample service 13
AmazonProductSearchWidget 17-20
animation library, Facebook 151
API calls, ZembK/ 24
API key, Facebook 118
Apple iPhone Developer 356
application context, Facebook 134
Application Directory, Facebook 130
Application Info section, Facebook 212, 219
Application object, zembly 134
Application Tabs, Facebook 110, 223
applications
See also Facebook applications
create Facebook 114-120
favorites 16
score 15
Applications menu bar, Facebook 106
arrays with FBJS 158
associations, Facebook data store model 192
attributes, XML node 277

B

Binary parameter type for services 28
bookmark, Facebook applications 107, 108
Boolean parameter type for services 28
Boxes tab, Facebook 108

BuddyMugs Facebook application, HTML 160
BuddyPics Facebook application 137-158
Home Widget (JavaScript) 148
service GetFriendInfo 153
service UpdateProfileBox 157

C

call service, zembly 32

Call tab, zembly 30

canvas page URL, Facebook 117
canvas page, Facebook 104

Capital Punishment Facebook application 163—

countrydata.js file 165

data store model 193

DeleteScore service 204

detecting users who have authorized 172

FBMLGetFriendScores service 201

FBMLGetMyScores service 201

feed stories 182-186

getSessionKey service 348

Home Widget (JavaScript) 170

iPhoneHome widget 337-348

PublishChallenge service 190

PublishScore service 186

SeeScores widget 205

SendInvitation widget 187
capture example, zembly 30
clearInterval JavaScript function 63
Clearspring widget sharing 18, 66
clearTimeout JavaScript function

with FBJS 147
clone, zembly 15

Facebook applications 142
code name, zembly 22
code testing tools, Facebook 133
collaboration requests, zembly 21
comma formatted numbers, JavaScript 90
contacts, zembly 21, 22-24

search 23
context data, Facebook applications (table) 135
cookie helper functions, JavaScript 330
count-down timer, JavaScript 170
CreateDataStore service, Facebook data store

model 196

CSS styles 35, 59

hover events 60

opacity 62

190

363

364 Index

D

Dapp 238
create 240-243
feed reader 266
flickrPhotoSearch 240-243
GambitsfromGailFeed 267
LondonTubeJourneyPlanner 250-252
mlbupdate 259-262
Dapper 239
lickrPhotoSearch service 243
flickrPhotoSearchWidget 244-248
GambitsfromGailFeed service 268
GambitsSummaryWidget 268271
LondonTubeJourneyPlanner service 252-253
LondonTubeMapWidget 289-298
LondonTubeWigget 254-258
mlbscores service 262
mlbScoresWidget 263-265
dapper.net 238
data extraction 239
data store model, Facebook 192
Developer, Facebook application 116
Dialog FBJS object 159
directional controls, Google Maps 94
drafts, zembly 31, 42-45
Erase and start over 43
saving new 43

E

E4X notation 48, 84, 276
namespace 277

each Prototype function 63

ECMAScript for XML 84

EDGE network, iPhone 310

editor commands, zembly 31

Email parameter type for services 28

email, Facebook 112

embed a widget 14

enumeration with Prototype 63

Erase and start over (all drafts) 43

Error Codes, services 29

Escape value 49

Event.observe Prototype function 64

examples
BuddyPics Facebook application 137-158
Capital Punishment Facebook application 163—

190

Chapter Building Flickr Widgets 56
Chapter Building for the iPhone 310
Chapter Building Zillow Widgets 80
Chapter Facebook Basics 102
Chapter Facebook Integration 162
Chapter Widget Gallery 274
Chapter Worﬁing with Dapper 238
Chapter zembly Basics 12
FlickrPeopleService 68-71
flickrPhotoSearch Dapp 240-243
flickrPhotoSearch service 243
flickrPhotoSearchWidget 244-248
FlickrSlideShow 57-67
GambitsfromGailFeed Dapp 267
GambitsfromGailFeed service 268
GambitsSummaryWidget 268-271

iButtons widget 359-361

iCapital Punishment widget 331-337

iLeaves widget 356-359

iLiveWeather widget 322-330

iLoanPayment widget 314-322

iLondonTube widget 348-356

iPhoneHome widget 337-348

LiveWeatherBugService 276-279

LiveWeatherBugWidget 279-283

LiveWeatherMapWidget 284-289

Loan Calculator Facebook application 121-125

LoanPaymentService 25-34

LoanPaymentWidget 34—42

LondonTubeJourneyPlanner Dapp 250-252

LondonTubeJourneyPlanner service 252-253

LondonTubeMapWidget 289-298

LondonTubeWigget 254-258

mlbscores service 262

mlbScoresWidget 263-265

mlbupdate Dapp 259262

Mood Pix Facebook application 208-231

MyFlickrRandomSlideshow 71-77

RecentSalesMashup 92-99

RecentSalesService 82—-88

RecentSalesWidget 88-92

WeatherBugService 45-51

WeatherBugWidget 51-54

zemblyblog pipe 299-304

zemblyConnectDemo Facebook application 232—
235

zemblyrumblings widget 304-307

F

Facebook
background 103-114
acquire session 155
Add to Info button 114, 212
Add to Profile button 141, 166, 176
allow access dialog 111
animation library 151
API131
APl key 118
API test console 133
application context 134
Application Directory 130
Application Tabs 110
Applications menu bar 106
Boxes tab 108
canvas page 104
canvas page URL 117
code testing tools 133
Connect facility 231-235
create applications 114-120
Data Store API 191-208
data store model 192
detecting users who have authorized 172
Developer application 116
email 112
fb sig added 134, 216
fb_sig canvas user 134,217
fb_sig friends 134,147
fb sig user 134,217
FBJS 120
FBML 120

Index 365

overview 138 UpdateProfileBox service 126, 181
i ways to enhance 127-129
dynamic content 142-143 zen}iblyConnectDemo 232-235
test console 133 Facebook Connect 231-235
fbSessionKey 134 zemblyConnectDemo application 232-235
fbUserID 134,177 Facebook data store admin tool 193
features and integration points (table) 104 Facebook Data Store API 191-208
feed forms 211 Facebook data store model 192
feed preview console 133 associations 192
feed story types 183 CreateDataStore service 196
feed. pub{llshUse rAction 186 delete object 204
FQL 199 FQL 199
friend 105 object types 193
Home link 113 properties 192
Info section 212 SaveScore service 198
Info tab 114 Facebook Developer application 116
invite friends widget 187 Facebook Developers Wiki 133
iPhoneHome widget 337-348 Facebook JavaScript, See FBJS
JavaScript Client Library 233 Facebook Markup Language, See FBML
left-hand column 109 Facebook Query Language, See FQL
locked services and widgets 120 Facebook services
news feed 112 acquire Facebook session 155
notices 112 testing 155
preview widget 124 UpdateProfileBox 157
profile 105 favorites, zembly 16
profile boxes 108, 180 fb:action FBML tag 187
profile publisher 113 fb:add-section-button FBML tag 144, 214
profile.getInfo adapter 221 fb:board FBML tag 139
profile.setInfo adapter 221 fb:dashboard FBML tag 144
publishing feed stories 182-186 fb:else FBML tag 139
Registered Template Bundles Console 182 fb:friend-selector FBML tag 139, 227
registered templates console 133 fb:help FBML tag 187
secret key 118 fb:if FBML tag 139
session authorization 136, 339 fb:if-is-app-user FBML tag 138
template bundles 182 fb:multi-friend-selector FBML tag 187
tokens, feed templates 183 fb:name FBML tag 138
user 105 fb:profile-pic FBML tag 138
XFBML 233 fb:pronoun FBML tag 138
Facebook applications fb:request-form FBML tag 187
About Page 125 fb:rock-the-vote FBML tag 139, 144
Add to Profile button 144 fb:user FBML tag 138
allow access and login techniques 136 fb_sig_added, Facebook 134, 216
bookmark 107, 108 fb sig canvas_user, Facebook 134, 217
BuddyPics 137-158 fb_sig_friends, Facebook 134, 147
Capital Punishment 163-190 fb_sig user, Facebook 134, 217
clone 142 FBJS 120
context data (table) 135 differences with JavaScript 158
developer mode 129 arrays 158
FriendChooser 191 clearTimeout function 147
Help widget 126 Dialog object 159
Home widget 124 setInnerFBML function 143
HTML widgets 121 setTimeout function 147
icon 128 vs JavaScript 120
Loan Calculator 121-125 FBML 120
logo 129 overview 138
Make it public button 129 dynamic content 142-143
Mood Pix 208-231 fb:action 187
permissions 108 fb:add-section-button 214
private installation 129 fb:board 139
PublishScore service 186 fb:dashboard 144
registered template bundles 189 fb:else 139
RegisterTemplates service 184 fb:friend-selector 139, 227
requireLogin, FBJS 137, 206 fb:help 187
responseType, FBJS 143, 150 fb:if 139
template widgets and services 126 fb:if-is-app-user138

Terms of Service widget 126 fb:multi-friend-selector 187

366 Index

fb:name 138
fb:profile-pic 138
fb:pronoun 138
fb:request-form187
fb:rock-the-vote 139, 144
fb:user 138
feed forms 215
test console 133
vs HTML 120
FBML widgets 144
FBMLGetFriendScores service, Facebook 201
FBMLGetMyScores service, Facebook 201
fbSessionKey, Facebook 134
fbUserID, Facebook 134, 177
feed forms, Facebook 211, 215
FeedHandlerService 218
feed reader Dapp 266
feed stories, Facebook 182-186
feed.publishUserAction Facebook adapter
186

www . feedburner.com267
FeedHandlerService, Facebook feed forms 218
Fetch Feed object, Yahoo! Pipes 300
fieldset tag, iUI Library 319
Filter operator, Yahoo! Pipes 302
Find & Use tab, zembly 39, 49, 69

search Facebook adapters 131

Yahoo! Pipes 304
Firebug debugger 33
Flickr

FlickrPeopleService 68-71

flickrPhotoSearchWidget 244-248

FlickrSlideShow widget 57-67

MyFlickrRandomSlideshow widget 71-77
Flickr API

key 68

photo source URL 64

sample JSON data 65
flickr.interestingness.getList adapter 56
flickr.people.findByUsername adapter 56, 68
flickr.people.getInfo adapter 56
flickr.people.getPublicPhotos adapter 56, 68
flickr.photos.addTags adapter 57
flickr.photos.comments.addComment adapter 57
flickr.photos.geo.getLocation adapter 57
flickr.photos.search adapter 57
flickr.photosets.getList adapter 57
flickr.photosets.getPhotos adapter 57
FlickrPeopleService 68-71
flickrPhotoSearch Dapp 240-243
flickrPhotoSearch service 243
FlickrPhotoSearchService sample service 13
flickrPhotoSearchWidget (Dapp-based) 244-248
FlickrSlideShow widget 57-67

(JavaScript) 62
FQL 191-208
fql.query Facebook adapter 154, 202
friend, Facebook 105
FriendChooser Facebook application 191
full story type, Facebook 112, 183

G

GambitsfromGailFeed Dapp 267
GambitsfromGailFeed service 268

GambitsSummaryWidget 268-271
geocodes 92

conversion from degrees 171

tube station data 292
gesture events, iPhone 311
(g]etSessionKey service, Facebook integration 348

Map2 Google Maps function 93, 288

Google, iGoogle Home page widgets 19-20
Google Maps

addOverlay function 97

API key 93

Capital Punishment Home widget 171

directional controls 94

eocodes 92
Map2 function 93, 288

GPolyline function 294

information window 288

iPhone 323, 348

latitude 92

LiveWeatherMapWidget 284-289

load JavaScript client script file 93

LondonTubeMapWidget 289-298

longitude 92

map type control 94

markers 97, 288

obtaining API key 95

panDirection function 354

polylines 294

RecentSalesMashup, Zillow 92-99

setCenter function 94

zoom control 94

zoomIn function 354

zoomOut function 354
GoogleGeocodeSampleService sample service 13

H

HelloWorld sample service 13
HelloWorldWidget sample widget 14
Help widget, Facebook application 126
Hewitt, Joe 313
Home link, Facebook 113
home page, zembly 20
Home widget, Facebook 124
configure 124
hover events
and CSS styles 60
HTML
Facebook friend invite widget 191
Facebook widgets 121
page markup 35
radio buttons 167
select tag options array 294
vs FBML 120
HTTP, call service 33

I

iButtons widget 359-361

iCapital Punishment widget 331-337
icon, Facebook applications 128
iframe 14

iGoogle Home page 19-20

iLeaves widget 356-359

www.feedburner.com

iLiveWeather widget 322-330
iLoanPayment widget 314-322
iLondonTube widget 348-356
image, upload an 36
img tag 36
src attribute 77
Inbox tab, zembly 21
Info section, Facebook 212
Info tab, Facebook 114
information window, Google Maps 288
innerHTML 40
instant publishing, Facebook 113
invite friends, Facebook widget 187
iPhone
overview 310-314
EDGE network 310
Facebook integration 337-348
Facebook session authorization 339
getSessionKey service 348
Google Maps 323
iButtons widget 359-361
iCapital Punishment widget 331-337
icons to Home Screen 317
iLeaves widget 356-359
iLiveWeather widget 322-330
iLoanPayment widget 314-322
iLondonTube widget 348-356
iPhoneHome widget 337-348
iUl Library 313
multi-touch screen 311
numeric key pad 324
orientation changes 313
run widgets 315
screen 313
simulator 317
URL for Facebook application widget 339
URLs 316
virtual key pad 312
web applications 311
iPhoneHome widget 337-348
iPod Touch 311
iUI Library, iPhone 313
fieldset tag 319

J

JavaScript 35
differences with FBJS 158
arrays with FBJS 158
cookie helper functions 330
Facebook Client Library 233
formatting numbers 90
Number function 98
regular expressions 150
vs FBJS 120
JavaScript Editor
code completion 131
Facebook API 131
JavaScript Editor, zembly 31
joehewitt.com313
JSON notation 52, 281
and portability 87, 276
Facegook adapters 156
Flickr API data 64
sample response from Yahoo! Pipes 305

Index

JSON parameter type for services 28

K

Key parameter type for services 28
keychain

Flickr API 68
keychain, zembly 24-25, 46

L

latitude, Google Maps 92
left-hand column, Facebook 109
Libraries

Prototype JS 37

Resources tab 37
LiveWeatherBugService 276-279

add geocode data 285

sample JSON data 281
LiveWeatherBugWidget 279-283
LiveWeatherMapWidget 284-289
LiveWeatherRSS adapter 47-50, 277

Loan Calculator Facebook application 121-125

LoanPaymentService 25-34
(JavaScript) 27

LoanPaymentWidget 34—42
(JavaScript) 38

lock badge, Facebook services and widgets 120

Log.write 33
logo, Facebook applications 129
LondonTubeJourneyPlanner Dapp 250-252
LondonTubeJourneyPlanner service 252-253
LondonTubeMapWidget 289-298

stations data.js file 293
LondonTubeWidget 254-258
longitude, Google Maps 92

M

main profile page, Facebook 109
Manage your Keychain, zembly 46
map type control, Google Maps 94
markers, Google Maps 97
mashups
Capital Punishment Home widget 171
LiveWeatherMapWidget 284-289
LondonTubeMapWidget 289-298
RecentSalesMaslI?lup 92-99
Math. random JavaScript function 75
max -width style attribute 60
Mcllroy, Doug 298
messages, zembly contacts 21
mlbscores service 262
mlbScoresWidget 263-265
mlbupdate Dapp 259-262
Mood Pix Face%ook application 208231
application Info section 219
application tabs 223
Info section 213
profile publisher 224
PublisherFriend service 227
PublisherSelf service 226
SeeMessages widget 231

367

368 Index

SendMoodPix widget 227
SetInfoOptions service 222
Mood Pix Home Widget, (JavaScript) 217
multi-touch screen, iPhone 311
MyFlickrRandomSlideshow 71-77
(JavaScript) 75

N

namespace, XML notation 277

news feed story types, Facebook 112, 183
news feed, Facebook 112

notices, Facebook 112

Number JavaScript function 98

Number parameter type for services 28
numeric key pad, iPhone input 324

(@)

object types, Facebook data store model 193
one-line story type, Facebook 112, 183

onFailure service call condition 66

online/offline status, zembly 44

onMouseout JavaScript event 65

onMouseover JavaScript event 65

opacity style attribute 62

openInfoWindowHtml Google Maps function 288
orientation changes, iPhone 313
Owner.keychain, zembly 46

P

panDirection Google Maps function 354
Parameter Editor, zembly 28, 70
parameters

add anew 70

escape value 49

extracting in a widget 75

in widgets 72

required 29

services 27

types for services (table) 28

validation 30
People tab, zembly 21, 23
permissions, Facebook applications 108
Pipes, See Yahoo! Pipes
PNG image file, iPhone 318
polyline, Google Maps feature 294
Preview tab, zembly 41
preview widget, Facebook 124
preview widgets, zembly 17
profile boxes 180

main 109, 180
profile boxes, Facebook 108
profile parameter, setFBML adapter 157
profile puglisher, Facebook 113, 224
profile, Facebook 105
profile, zembly 21-22
profile.getInfo Facebook adapter 221
profile.setFBML Facebook adapter 157
profile.setInfo Facebook adapter 221
profile_main parameter, setFBML adapter 157
properties, Facebook data store model 192

Prototype]S library 37

$("element id") 41

each function 63

enumeration 63

Event.observe function 64
Publish action, Yahoo! Pipes 304
publish, zembly 32, 41
PublishChallenge service, Facebook application

190

PublisherFriend service, Facebook 227
PublisherSelf service, Facebook 226
PublishScore service, Facebook 186

R

radio buttons, HTML 167
JavaScript event handlers 173
random number, generate in JavaScript 75
real estate service, Zillow 80
RecentSalesMashup 92-99
(JavaScript) 97
RecentSalesService 82-88
(JavaScript) 86
RecentSalesWidget 88-92
(JavaScript) 90
registered template bundle, Facebook application
189

Registered Template Bundles Console, Facebook
182

registered templates, Facebook 133
RegisterTemplates service, Facebook application
184

regular expressions, JavaScript 150
required parameters, zembly 29
requirelLogin, FBJS 137, 206
Resources tab, zembly 36

Libraries 37
responseType: Ajax.FBML, FBJS 143, 150
responseType: Ajax.JSON, FBJS 217
RSS feed 267

S

Safari, webkit 356
sample data from LiveWeatherBugService 281
samples, on zembly 13
Save action, Yahoo! Pipes 304
save current draft, zembly 31
SaveScore service, Facebook data store model 198
scores, zembly Things 15
screen name, zembly 22
screen, iPhone 313
search for contacts, zembly 23
secret key, Facebook 118
SeeScores widget, Facebook 205
select tag options array, JavaScript 294
SendInvitation widget, Facebook 187
SendMoodPix widget, Facebook 227
service providers, zembly 24
services

call 32

Call tab 30

capture example 30

creating 25

drafts 42-45
E4X notation 276
Erase and start over (all drafts) 43
Error Codes 29
favorites 16
Find & Use tab 49, 69
FlickrPeopleService 68-71
flickrPhotoSearch (Dapp-based) 243
GambitsfromGailFeed 268
getSessionKey, iPhone/Facebook integration 348
LiveWeatherBugService 276-279
LoanPaymentService 25-34
LondonTubeJourneyPlanner 252-253
mlbscores 262
online/offline status 44
parameter types (table) 28
parameter validation 30
parameters 27
publish 32
published versions 42
RecentSalesService 82-88
score 15
search for using Find & Use tab 39
test drive now 30
timeline 44
viewing versions 44
watch action 16
WeatherBugService 45-51
Yahoo! Pipes 306
session authorization, Facebook 136
setCenter Google Maps function 94
SetInfoOptions service, Facebook 222
setInnerFBML FBJS function 143
setInterval JavaScript function 62
setStyle FBJS function 144
setTimeout JavaScript function
with FBJS 147
short story type, Facebook 112, 183
slide show widget 57-67
BuddyPics Facebook application 137-158
Sort operator, Yahoo! Pipes 303
src attribute, img tag 77
stations_data. js file, LondonTubeMapWid-
get 293
story types, Facebook news feed 112
String parameter type for services 28

T

tags, Flickr IPhOtO search 63

tags, zembly 16

{*target*} token, Facebook feed story 183

template bundles, Facebook 182

template services and widgets, Facebook applica-
tions 126

templates, widgets 35

Terms of Service widget, Facebook application 126

test services, zembly 30

www. testiPhone. com simulator 317

Things tab, zembly 20

Thompson, Ken 298

timeline, zembly 44

timer code, JavaScript 170

tokens, Facebook feed story 183

touch events, iPhone 311

Index 369

U

Union operator, Yahoo! Pipes 301
Unix pipe mechanism 298
UpdateProfileBox service, Facebook applications

UpdateProfileBox, Facebook applications 126
upload an image, zembly 36

URI parameter type for services 28

URL

Facebook canvas page 117
Flickr photo source 64
iPhone widgets 316

user, Facebook 105

V

versions, zembly
published widgets and services 42
timeline 44

virtual key pad, iPhone 312

W

watch a service or widget, zembly 16
WeatherBug API 45
sample XML data 276
WeatherBugService 45-51
(JavaScript) 50
WeatherBugWidget 51-54
(JavaScript) 52
WeatherTodayService sample service 13
web applications, iPhone 311
webkit, Safari display engine 356
What's happening tab, zembly 21, 24
widgets
actions 16
adding to iGoogle Home page 19-20
clone 15
create 35
drafts 42-45
embed 14
Erase and start over (all drafts) 43
execute on iPhone 315
favorites 16
flickrPhotoSearchWidget 244-248
FlickrSlideShow 57-67
GambitsSummaryWidget 268271
HTML and Facebook 121
iButtons 359-361
iCapital Punishment 331-337
iLeaves 356-359
iLiveWeather 322-330
iLoanPayment 314-322
iLondonTube 348-356
iPhone simulator 317
iPhoneHome 337-348
Libraries 37
LiveWeatherBugWidget 279-283
LiveWeatherMapWidget 284-289
LoanPaymentWidget 34—42
LondonTubeMapWidget 289-298
LondonTubeWidget 254-258
mlbScoresWidget 263-265

www.testiPhone.com

370 Index

MyFlickrRandomSlideshow 71-77
online/offline status 44
parameters 72

preview 17

Preview tab 41

publish 41

published versions 42
RecentSalesMashup 92-99
RecentSalesWidget 88-92
Resources tab 37

score 15

sharing with Clearspring 18, 66
templates 35

timeline 44

viewing versions 44

watch action 16
WeatherBugWidget 51-54
zemblyrumblings 304-307

X

XFBML, Facebook 233
server tags 234
(X)HTML, page markup 35
XML data 48, 84, 276
namespace 277
node attributes 277
XML parameter type for services 28

Y

Yahoo! Pipes 298

Fetch Feed object 300

Filter operator 302

format of service call 306

JSON notation response 305

Publish action 304

Save action 304

Sort operator 303

Union operator 301

zemblyblog pipe 299-304

zemblyrumblings widget 304-307
YahooTripSearchService sample service 13
You tab, zembly 20
YouTubeSampleService sample service 13

Z

zembly
actions 16
adapters 24
Add to editor 40
API calls 24
Application object 134
Call tab 30
capture example 30
clone 15
code name 22
collaboration requests 21
contacts 22-24
create a service 25
create a widget 35
create Facebook applications 114-120

drafts for services and widgets 42-45

editor commands 31

Erase and start over action 43

favorites 16

Find & Use tab 39, 49

home page 20

Inbox tab 21

keychain 24-25, 46

Manage your Keychain 46

messages 21

online/offline status 44

Owner.keychain 46

Parameter Editor 28

parameter validation 30

People tab 21, 23

Preview tab 41

preview widgets 17

profile 21-22

publish 32, 41

Resources tab 36, 37

save current draft 31

scores 15

screen name 22

search for contacts 23

service providers 24

tags 16

test services 30

Things tab 20

timeline 44

upload resources 36

watch a service or widget 16

What's happening tab 21, 24

You tab 20
zemblyblog pipe 299-304
zemblyConnectDemo Facebook application 232—

235

zemblyrumblings widget 304-307
Zillow

RecentSalesMashup 92-99

RecentSalesService 82-88

RecentSalesWidget 88-92

sample XML data 84

zpid 82
Zillow real estate service 80
zillow.homevaluation.GetChart adapter 80
zillow.homevaluation.GetComps adapter 80
zillow.homevaluation.GetDemographics adapter

zillow.homevaluation.GetRegionChart adapter 81

zillow.homevaluation.GetRegionChildren adapter
81

zillow.homevaluation.GetSearchResults adapter
81,83

zillow.homevaluation.GetZestimate adapter 81

zillow.propertydetails.GetDeepComps adapter 81,
85

zillow.propertydetails.GetDeepSearchResults
adapter 81

ZillowSampleService sample service 13

zoom control, Google Maps 94

zoomIn Google Maps function 354

zoomOut Google Maps function 354

zpid, Zillow property ID 82

zventsSearchService sample service 14

	Preface
	Chapter 2 zembly Basics
	What You Will Learn
	Examples in This Chapter
	2.1 Exploring the Samples
	Using Clone
	Widget Actions
	Tags on zembly
	AmazonProductSearchWidget—Widget Preview
	Embedding AmazonProductSearchWidget
	Sharing Your Widgets with Clearspring

	2.2 About You—Your Home Page
	Your Profile
	People—Adding Contacts

	2.3 Your Keychain and Service Providers
	2.4 Creating Your First Service: LoanPaymentService
	Specifying Parameters in a Service
	Error Handling
	Testing LoanPaymentService
	Capturing Example Return Data
	Saving Drafts
	Using the JavaScript Editor
	Publishing LoanPaymentService
	Calling LoanPaymentService

	2.5 Creating Your First Widget: LoanPaymentWidget
	Uploading an Image
	Including Library Prototype JS
	Building LoanPaymentWidget
	Using CSS for Styling
	Calling LoanPaymentService in Your Widget
	Previewing and Publishing
	Embedding LoanPaymentWidget

	2.6 Drafts, Versions, and Timelines
	Edit History
	Viewing Versions
	Online/Offline Status

	2.7 Putting It All Together—Using the WeatherBug API
	Using Your Keychain
	Building WeatherBugService
	Using E4X and JavaScript
	Calling WeatherBugService
	Building WeatherBugWidget

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

