

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

 Library of Congress Cataloging-in-Publication Data

Hogbin, Emma Jane.

 Front end Drupal : designing, theming, scripting / Emma Jane Hogbin and Konstantin
Käfer.

 p. cm.

 Includes index.

 ISBN 978-0-13-713669-8 (pbk. : alk. paper) 1. Drupal (Computer file) 2. Web sites-
Design-Computer programs. 3. Web site development. I. Käfer, Konstantin. II. Title.

 TK5105.8885.D78H65 2009

 006.7’6—dc22

 2009002636

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-713669-8
ISBN-10: 0-13-713669-2
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, IN.
Second printing, June 2009

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Jill Hobbs

Indexer
Michael Loo

Proofreader
Linda Begley

Technical Reviewers
Károly Négyesi
Bernie Monette
Lynda Chiotti
Caroline Hill
R.G. Daniel

Cover Designer
Chuti Prasertsith

Composition
Gloria Schurick

Graphics
Tammy Graham
Laura Robbins

xvii

Foreword

At DrupalCon Barcelona in 2007, while giving my regular “State of Drupal” presenta-
tion, I remarked that during my hour-long session, four new Drupal sites would be
launched. I went on to suggest that three of those four sites would be ugly. A year later,
at DrupalCon Szeged in Hungary, those four new sites per hour had grown to seven
and Drupal 6 had been released, making it easier to create great-looking Web sites.
Still, even now, Drupal faces a common problem on the Web—the relative lack of new,
high quality themes.

Front End Drupal tackles that problem directly and is designed to help both ex-
perienced designers and rank novices get an understanding of how Drupal theming
works. From using contributed “starter themes,” to customizing templates to modify
the markup used in Drupal’s output, to using jQuery and JavaScript to enhance the
user experience, Front End Drupal clearly charts a path to theming mastery. In fact, I’ll
be the fi rst to admit that I learned a lot from this book.

The Drupal community has created a remarkable platform that powers sites of all
sizes and descriptions, all around the world. Together, we’ve crafted a robust, extensible
content-management system that illustrates some of the key values in our community:
fl exibility and utility, innovation and openness. But Drupal has always been a develop-
er’s platform, even with the many designers in our ranks. It’s about time those designers
had a great book. In fact, this book is valuable not just to the designers we have, but to
the designers we want—the thousands who have never worked with Drupal.

The thing is that creating a Drupal theme isn’t always easy. It’s a crosscutting
experi ence that requires a lot of diverse skills and utilizes expertise in XHTML, CSS,
JavaScript, and PHP, all within the context of Drupal. Doing a Drupal theme right
can be challenging, but it is also exciting and incredibly rewarding. A survey I con-
ducted in 2008 listed “Finding skilled Drupal designers” as the number one entry on

the list of the “Top fi ve most diffi cult things,” as reported by both expert and novice
users. We need to do more to fi nd new themers, as well as encourage and support the
ones we already have.

I’m excited that Emma Jane and Konstantin recognized that and authored this
book. It fi lls an important need in the Drupal ecosystem and will bring a new atten-
tion to design in Drupal. Since I’ve mostly focused on the “back end,” it’s nice to see
the “front end” get more and more attention. For Drupal to succeed, we need books
like this. We need the skills it teaches and we need the people it attracts. We need the
new themes those people will create and the new suggestions and improvements they
bring to our project.

Dries Buytaert
Drupal founder and project lead

xviii Foreword

xix

Preface

Drupal is an open-source content management system software package that is free to
download, modify, and use. It has been implemented by thousands of people around
the world and is used by millions of people daily as the basis for discussion Web sites,
community portals, corporate intranets, e-commerce Web sites, vanity Web sites,
resource directories, image galleries, podcasts, and more! By choosing to use Dru-
pal, you are accessing not only an award-winning Web platform, but also its vibrant
community.

This book will teach you how to customize how Drupal looks. Applying new de-
signs is very easy—the code that controls how Drupal works is separated from the
code that controls how Drupal looks. The design part of Drupal is referred to as the
theme layer—and that’s what this book is all about. Individual designs are referred to as
“themes” and the people who create and implement them are referred to as “themers.”
By the time you reach the end of this book, you will have the tools to customize the
experience for your content managers, Web site visitors, and Drupal administrators.

The book assumes you are familiar with how Drupal works and that you have been
an administrator of a Drupal Web site. It would help if you are comfortable with Web
site design and development, but these concepts will be explained for those who have
only a limited experience with them. More specifi cally, this book will use code snippets
written in HTML, CSS, PHP, and JavaScript.

Chapter 1

This chapter covers the basics of Web page design. It will help you to prepare your
information so that it will slide easily into a Drupal Web site. You will learn how to de-
scribe content and its organization; structure page layouts so that all of your interface
components fi t sanely onto your Web pages; and implement a work fl ow that works
for your Drupal team.

Chapter 2

With the basics of Web design under your belt, it is time to prepare your workstation
for Drupal theming. In this chapter, you will learn about Drupal terminology and
theming strategies as well as must-have modules and browser tools. Chapter 2 also in-
cludes language references for each of the machine languages used in creating a Drupal
theme.

Chapter 3

You will now move on to learning the basic anatomy of a Drupal theme. In Chapter
3, you will learn how to fi nd and install a premade Drupal theme. You will also learn
the anatomy of a Drupal theme and discover how to use Starter Themes to reduce
your development time. Tips are included on how to convert themes from WordPress,
Joomla!, and Drupal 5.x.

Chapter 4

The overall structure of pages in Drupal is defi ned by the page template. In this chap-
ter, you will learn how to customize every part of this template—from using sitewide
page variables and menus, to changing page templates based on the section you are cur-
rently in. Information on print-friendly templates and mobile devices is also included
in this chapter.

Chapter 5

It’s time to get to the guts of your Web site—so in Chapter 5, you will learn how to cus-
tomize your Web site content, including individual nodes and teaser summaries. This
chapter also describes the most appropriate image module to use for your Web site. Ex-
amples of output are provided to help you make the best decision for your content.

Chapter 6

The most commonly overlooked area in Drupal theme design is content editing forms.
In this chapter, you will learn simple tips and tricks to make your forms more usable
and will get a gentle introduction to altering forms with the Form API. Techniques
described in this chapter will help you to enhance the usability of your content editing
forms.

xx Preface

Chapter 7

If you are running a community site, this chapter is a must—it includes information
on how to theme user profi les, community comments, and user-generated content.
Additional information is provided on creating private, member-only sections to your
Web site.

Chapter 8

In this chapter, which covers administrative interfaces, you will learn how to make the
administration of Drupal a little bit easier. Techniques include creating custom admin-
istrative interfaces, adding task-based navigation, creating administrative menus, and
customizing your Web site’s error messages.

Chapter 9

In this chapter, you will acquire the JavaScript skills required for writing truly stun-
ning, portable, and fl exible components for your theme. Basic concepts or advanced
object orientation—there’s certainly something you’ll learn in this chapter.

Chapter 10

An introduction to jQuery, the JavaScript library that ships with Drupal, will bring
you up to speed with today’s most prevalent JavaScript library. You’ll also learn how
jQuery is used in Drupal, how you can create stunning animations, and how you can
implement AJAX callbacks to the server.

Chapter 11

In this chapter, you will learn how to apply your newfound JavaScript and jQuery
knowledge to a Drupal Web site. By creating a horizontal scroller component, you’ll
learn step by step how to architect a highly fl exible and reusable JavaScript widget. Ad-
ditional information in this chapter includes server-side JavaScript integration and an
excursion into the vast supply of ready-made jQuery plugins.

Appendices

Information on how to install Drupal and contributed modules is included in Ap-
pendix A. Appendix B contains the code samples that are referenced in the JavaScript
chapters. These code samples can also be downloaded from the book’s Web site.

Preface xxi

107

The Drupal Page

4

Get out your crayons and your coloring book! In this chapter you will learn
how to connect the dots and build context-sensitive page templates. The

adventures in this chapter begin by dissecting how Drupal builds the pages that are
delivered to your Web browser. You will then learn about sitewide variables so you
can split your page templates into a clean HTML framework with Drupal-served
data being injected into the right spots at the right times. Next, you will learn to
draw “outside the lines” with custom page variables and page templates based on
categories, page aliases, and content types. And for those who don’t like to color at
all, the chapter wraps up with information on creating print-friendly templates and
building a mobile-friendly clone of your Web site. In this chapter you dive into the
guts of a Drupal theme. Note that the code snippets included here require a basic
understanding of PHP, CSS, and XHTML.

Elements of a Page

When you understand how Drupal builds its themes, it becomes very easy to
achieve complicated tasks. A common question is, “I need to inject a block into the
content of the front page—how do I do that?” This is not how Drupal thinks about

108 Chapter 4 The Drupal Page

this problem, so the answer seems very diffi cult. Instead of thinking about the page as
it appears in the Web browser, you must think about each of the elements separately.
Figure 4.1 illustrates how Drupal customizes a page with each of its template fi les.

The whole page is controlled by the template page.tpl.php. Within the whole
page, several more template fi les are injected to customize each of the different compo-
nents. These templates theme the output from various modules within Drupal. Block
and node templates are shown in Figure 4.1. Each module that outputs content to the
page will have its own templates, which you can in turn customize.

Dissecting a Theme

Most themes include a customization of the page, block, and node templates, which
are the main building blocks that are used to construct the layout of a page. If you are
working with a downloaded theme, look in your theme’s directory for the following
fi les:

 • page.tpl.php

 • block.tpl.php

 • node.tpl.php

These three fi les are the building blocks that defi ne the markup of your site. In-depth
information on customizing page.tpl.php appears later in this chapter, and addi-
tional information on customizing node.tpl.php can be found in Chapter 5.

FIGURE 4.1 The Drupal page is customized by using many different templates.

Here is another analogy for thinking about the Drupal page template: It is a little
bit like a large parking garage with numbered spaces. The garage itself does not care
which kind of car or truck or motorcycle is parked in each space; it merely houses the
lines that show each of the areas where a vehicle might fi t. The garage might have dif-
ferent colors for each of the levels to make it easier for people to remember which level
they are parked on. The people who operate the garage may have rules about which
space each person may park his or her vehicle. It is impossible to park your vehicle in
two places at the same time in the parking garage.

In Drupal terminology, the page template defi nes regions (levels in the parking
garage) where blocks may appear (assigned spaces for parked vehicles). A single block
may not appear more than once in a page (cars may be parked in only one space at a
time); however, this region can change location within the page template depending
on the context (parking garages may have different colors for each level in the garage).
Later in this chapter you will learn how to assign new blueprints to your “parking
garage.”

This analogy is not a perfect one, of course: In real life, a vehicle can park some-
where other than its assigned place. In contrast, blocks in Drupal may be assigned only
one spot throughout the Web site. Nevertheless, the parking garage analogy is a help-
ful way to think about how the page template keeps order without being aware of the
displayed content of a page.

In Chapter 3, you created with a basic page template that contained only Drupal
output and a skeleton HTML framework. You will now start to build on these basics
to create a more sophisticated page template.

Sitewide Page Variables

The variables available in the template fi le page.tpl.php are classifi ed into several
categories:

 • General utility variables are used to build context-sensitive templates with
directory names relevant to the path of the theme’s location on the server.

 • Page metadata includes page language, style and script tags relevant to the
page, and body classes.

 • Site identity takes the form of the site name, site slogan, site mission, and
logo.

Sitewide Page Variables 109

110 Chapter 4 The Drupal Page

 • Navigation includes items related to primary and secondary navigation, as
well as search boxes.

 • Page content includes the page title, dynamic help text and Drupal system
messages, and tabs.

 • Footer and closing data includes RSS feed icons, footer messages, and final
markup from any modules (“closure”).

Commonly used variables are identifi ed in Figure 4.2, which depicts a fresh instal-
lation of Drupal, using the theme Garland.

FIGURE 4.2 Common variables displayed in the Garland theme.

A complete list of page template variables is available from the Drupal directory
modules/system, in the fi le page.tpl.php, which is also available online at http://
api.drupal.org/api/file/modules/system/page.tpl.php.

General Utility Variables

The general utility variables represent a very basic toolkit with which you can custom-
ize your site’s template based on the characteristics of the visitor. They include the
following variables:

 • Variables useful in linking to images and files within your site, such as $base_
path (the base URL for the Drupal installation) and $directory (the base
directory for this theme)

 • $is_front, which reports if the current page is the front page of the site

 • User status checks, including the test of whether the visitor is logged into the
site ($logged_in) and whether the user has access to administration pages
($is_admin)

Page Metadata

The page metadata variables are used in the <head> tag of the page template. This set
includes the following variables:

 • An object containing the language the site is being displayed in. To print the
text representation of the language to your template, use the following variable:
$language->language.

 • $head_title: A modified version of the page title containing the site name,
for use in the <title> tag.

 • $head: Metadata for metatags, keyword tags to be inserted into the <head>
section.

 • $styles: Style tags used to link all CSS files for the page.

 • $scripts: Script tags used to load the JavaScript files and settings for the page.

In addition to this metadata, there is a wonderful variable that contains a set of
conditions to help you style each page: $body_classes. The $body_classes vari-
able includes the following information: the current layout (multiple columns, single
column); whether the current visitor is an authenticated user; and the type of the

Sitewide Page Variables 111

http://api.drupal.org/api/file/modules/system/page.tpl.php
http://api.drupal.org/api/file/modules/system/page.tpl.php

112 Chapter 4 The Drupal Page

node being displayed (for example, node-type-book). This variable includes only the
names of the classes to be used by your style sheets. To use it in your theme, you must
include the following PHP snippet:

<body class="<?php print $body_classes ?>">

Site Identity

The site identity information comprises a set of variables that outputs information
about your site. You can alter the contents of and/or disable each of these variables
in Drupal’s administration area by navigating to Administer, Site confi guration, Site
information.

 • $front_page: The URL of the front page. Use this variable instead of $base_
path when linking to the front page. It includes the language domain or
prefix.

 • $logo: The path to the logo image, as defined in the theme.

 • $site_name: The name of your Web site.

Two other variables can be set within the site identity section of the Drupal admin-
istration area:

 • $site_slogan: The slogan of the site.

 • $mission: The text of the site mission.

There is no rule that says you must use these last two variables for their intended
purpose; in fact, you can use them to store any information you would like to display
within your page template.

Page Content, Drupal Messages, and Help Text

Content is the most important part of your Web site. You must tell Drupal where to
insert content into the page template! This is done with a simple variable, $content.
You may place this variable anywhere in the template file page.tpl.php. From this
simple variable, Drupal may present a single node, or a list of nodes, or whatever else
Drupal may prepare as the “content” for any given page.

You must also print the title for this content using the variable $title. It is differ-
ent than the variable $head_title, which includes the name of the Web site and is
typically printed in the <title> tag for a page.

There are two modes for each node: view and edit. These modes can be accessed
through the tabs that are displayed on each node. Within your page template, the
variables $tabs (primary level of tabs) and $tabs2 (subnavigation available present in
several administrative pages) are used to place links that access the “view” and “edit”
modes for each node. The tab variables are typically printed between the $title and
$content variables.

Breadcrumbs
Although there is a variable containing the breadcrumb path for each page, the
breadcrumb trail is often incomplete. Many themes choose to display this vari-

able only in the administrative section of the Web page.

Drupal communicates system messages to the user through the variable $mes-
sages. This variable may contain useful information that describes the successful sub-
mission of new content or content modifi cations, errors relating to a form submission,
or messages within the administration system. Messages come in three fl avors: status,
warning, and error. Through your style sheet you can make these messages visually
unique. Typical colors used for these messages are green for status messages, yellow
for warning messages, and red for error messages. The messages are available as CSS
classes and carry the corresponding name (for example, warning messages use the CSS
selector .warning).

In addition to these system messages, Drupal will occasionally provide “help” text,
which is made available through the variable $help. Both the help text and messages
must be specifi ed in your page template to ensure that the appropriate system messages
are delivered to your Web site users.

Creating New Page Variables

In addition to using the variables that are provided by Drupal, you can create your
own. Each time Drupal builds a page, it gathers the information it needs to display
that page and makes sure the information is safe to display. This “preprocessing” is
completed before the page is built using the template fi les. To keep your template fi les
focused only on HTML output, you can insert any custom programming you need
into the relevant preprocess function. Its output will be returned as a variable to the
relevant tpl.php template fi le. Variables created in the preprocess functions are avail-
able only in the relevant template fi les (tpl.php).

Sitewide Page Variables 113

114 Chapter 4 The Drupal Page

Preprocess functions are named according to the template you want to “hook” your
new variables to. Any module that has a template fi le can use the preprocess function.
For example, the page, node, comment, and block types all have associated .tpl.php
fi les; as a consequence, they can all be tied to a preprocess function. A full list of pre-
process functions is available from the API documentation at http://api.drupal.
org/api/search/6/preprocess. More information on creating additional template
fi les is provided later in this chapter.

In the following example, you will add a new variable that can be used in the tem-
plate page.tpl.php. Your imagination is the only limit on what these variables can
contain! The Zen theme inserts additional, sophisticated body classes that allow you
to create very specialized page customizations through CSS. The Garland theme uses
a preprocess page function to hook into the color module. Later in this chapter, you
will learn how to add new image banners based on which section of the Web site you
are viewing.

In this example, we will add a new graphic to the page if the visitor is logged into
the site but is not currently viewing the front page.

function bolg_preprocess_page (&$variables) {

 // Add a "go home" button to page.tpl.php

 if ($variables['logged_in'] == TRUE && $variables['is_front'] == FALSE) {

 $image_path = $variables['directory'] . "/images/go_home.jpg";

 $image_text = t("Go home!");

 $image = theme('image', $image_path, $image_text, $image_text);

 $variables['go_home'] = l($image, "<front>", array('html'=> TRUE));

 }

} // End of the preprocess_page function

In the fi le page.tpl.php, you can now place the new variable $go_home anywhere
you would like the button to appear. Although the snippet could be simplifi ed by

Placing PHP snippets into templates
Throughout the rest of this chapter, you will be working with preprocess functions
and creating new theme variables. The preprocess functions are always placed in

 your theme’s template.php fi le. Theme variables are always placed in the relevant
template fi le (for example, page.tpl.php).

http://api.drupal.org/api/search/6/preprocess
http://api.drupal.org/api/search/6/preprocess

hard-coding the HTML for the image, this method can be easily reused in many dif-
ferent themes and allows the text string to be translated for multilingual Web sites.

Modifying Page Variables

You may also choose to modify variables that have already been set by Drupal. The
Zen theme uses this technique to remove the markup for an empty help message. The
Newswire theme customizes page variables to modify the HTML for the content title
depending on which page is being viewed; Newswire also customizes the logo that is
displayed on the front page and the inner pages of the site. The Acquia Marina theme
removes the markup for sidebars when they are not in use to create a clean, collapsible
template layout. You can implement your own customizations as well.

To reset a variable, simply use the same variable name as an existing page variable.
Do not unset unused variables, as this action may cause an ugly PHP error if the page.
tpl.php fi le tries to print a variable that no longer exists. Instead, set the unused vari-
able to a blank string:

function bolg_preprocess_page (&$variables) {

 // From the Zen theme

 // Don't display empty help from node_help().

 if ($variables['help'] == "<div class=\"help\"><p></p>\n</div>") {

 $variables['help'] = '';

 }

}

In addition to the techniques you will encounter later in this chapter, much can
be gleaned from other themes. Download and examine a variety of themes to see how
other people have customized their page templates by adding, and modifying, their
template variables.

Navigation and Menus

Your page template includes two variables containing navigation menus that you can
place anywhere you like in your Web page: $primary_links and $secondary_
links. These variables contain items from the two Drupal menus of the same name—
primary and secondary links. Drupal menus are collections of links to both on-site and
off-site URLs.

Navigation and Menus 115

116 Chapter 4 The Drupal Page

To add new items to the menus, you can use one of two methods:

 • To add a link to an existing node, navigate to the editing screen for the node
and adjust its menu settings as in Figure 4.3.

 • You may also use the menu administration system to add a page to the menu
as shown in Figure 4.4 by navigating to Administer, Site building, Menus, Add
item. This method allows you to add links to off-site URLs.

To add subsection menu items, you use the same technique described above, but
change the “Parent item” to the menu item in which your new subsection ought to be
included. For example, suppose you have a set of primary links containing “Mammal,”
“Amphibian,” and “Reptile.” To place “Kitten” as a subsection of “Mammal,” you
would set the “Parent item” to be “Mammal” when adding the menu information for
the “Kitten” node.

More menus into your page template
The menu module provides a block for every menu, and blocks can be placed into
any region on the site. To display a menu in a block, navigate to Administer, Site

building, Blocks. Complete the on-screen instructions to add the menu to a Web
site region. More information about creating custom, task-based menus appears in
Chapter 8.

FIGURE 4.3 Adding a node to a menu from the node editing screen.

FIGURE 4.4 Adding a path to Primary links from the menu administration area.

Within the menu administration area, you can specify which menu is used for
$primary_links and which menu is used for $secondary_links. By default, the
variable $primary_links contains menu items from the menu “Primary links” and
the variable $secondary_links contains items from the menu “Secondary links.” To
alter the menus that are used for these two navigation variables, navigate to Administer,
Site building, Menus, Settings and adjust the settings as appropriate.

The variable $secondary_links can be confi gured in one of two ways: Either this
menu can contain a second set of sitewide links for your site with “secondary” content
(for example, legal notice, contact information), or you can confi gure $secondary_
links to contain the relevant subsection navigation for your primary links. Use the
following steps to change the default behavior:

Navigation and Menus 117

118 Chapter 4 The Drupal Page

 1. Navigate to Administer, Site building, Menus.

 2. Choose the Settings tab.

 3. Change the “Source for the secondary links” so that it matches the menu that
is set in the “Source for the primary links.”

 4. Scroll to the bottom of the Web page and click “Save configuration.”

The page template variable $secondary_links now contains the subsection links
that have been defi ned for each of the items in $primary_links. Referring to the pre-
vious example, “Kitten” will now be displayed in the output of $secondary_links
when you select “Mammal” from the list of menu options provided by the variable
$primary_links.

Theming Menus

A menu is built from three nested parts: the menu tree, the menu items (the “leaves”
on the menu tree), and the menu item links. It is possible to alter the HTML for each
of these components, although in most cases customizing the CSS for the default
XHTML markup will be enough to make your menus look great. In addition to their
basic structure, menus contain information about the menu leaves. For example, Fig-
ure 4.5 shows the active trail of the current page, Modules, and includes a menu of
items that are collapsed, and expanded.

Depending on the type of menu items you want to alter, there are two relevant
strategies:

 • To alter the contents of the variables $primary_links and $secondary_
links, use the page’s preprocess function.

 • To alter the markup for all menus, use theme functions.

Drop-down menus
The variables $primary_links and $secondary_links contain only the top-level
menu items for their respective menus. If you would like to use a tree-like structure

(useful for drop-down or fl y-out menus) for your primary or secondary links, you
must use the block version of your menu instead of the theme variables. The mod-
ules MenuTree and Nice Menus both create drop-down menus from your navigation
variables. The project pages for these two modules can be found at http://drupal.
org/project/menutree and http://drupal.org/project/nice_menus, respectively.
Compare their features and choose the most appropriate module for your needs.

http://drupal.org/project/menutree
http://drupal.org/project/menutree
http://drupal.org/project/nice_menus

Menu (block)

Create content

Administer

Content management

Site building

Blocks

Menus

Modules

Themes

Site configuration

User management

Reports

Help

Log out

My account

Modules

Menu item (block)

Menu item link (inline)

Active menu item link

(Menu item is a leaf)

(Menu item is collapsed
 but contains children)

(Menu item is expanded
and contains children)

My account

Menu item in trail (block)

The primary and secondary links are registered theme variables. You may alter their
contents by using the page’s preprocess function. The variables themselves consist of an
array of links and attributes. To make changes, you must loop through the list of links
and alter each one individually. For example, if you decide to add a new class to each
menu item that is related to its position in the menu, you could use the code snippet
below. This technique would be useful if you wanted to add an icon to each menu
item, because it relies on the exact order of the menu items. Once this order is set, you
may not alter the order of the menu items without also updating the corresponding
CSS styles.

function bolg_preprocess_page(&$variables) {

// Make a shortcut for the primary links variables

$primary_links = $variables['primary_links'];

// Loop through the menu, adding a new class for CSS selections

$i = 1;

foreach ($primary_links as $link => $attributes) {

 // Append the new class to existing classes for each menu item

Navigation and Menus 119

FIGURE 4.5 Menus are built of a menu tree, the menu items, and menu item links.

120 Chapter 4 The Drupal Page

 $class = $attributes['attributes']['class'] . " item-$i";

 // Add revised classes back to the primary links temp variable

 $primary_links[$link]['attributes']['class'] = $class;

 $i++;

}

 // End of the foreach loop

// reset the variable to contain the new markup

$variables['primary_links'] = $primary_links;

} // End of the preprocess function

Using the appropriate unique identifi er for the primary links, add the new classes
to your style sheet:

#primary_links .item-1 { /* styles for the first menu item */ }

This technique works well if you want to add styles based on the order of options in a
menu. Menus are stored in an associative array and have a unique key assigned to each
item. To create a unique menu item identifi er, replace the variable $i with the variable
$link in the snippet given earlier. Your menu items will now be assigned a unique
identifi er that does not change even when the order of the menu items is altered.

For more information about how menus are constructed and themed, read the API
documentation at http://api.drupal.org/api/function/theme_links/6 and
http://api.drupal.org/api/group/menu/6 (scroll to the list of theme functions).

Grid Work

In Chapter 1 of this book, you read about Web page design and were introduced to
“regions” within a page template. Now you are ready to defi ne the regions within your
own page template and to then insert information into these defi ned spaces. There is
no limit on how large or small a region can be within your page template. You may
choose to stack many blocks into a region, or you may prefer to have only one block
contained in a region. Figure 4.6 shows fi ve of the regions available in the Zen theme

http://api.drupal.org/api/function/theme_links/6
http://api.drupal.org/api/group/menu/6

as black bars. As you can see, the sizes of these regions differ depending on their loca-
tion in the page.

Regions

Regions are used to place Drupal “blocks” into a Web site. These blocks may include
site navigation menus, custom views, module tools, or custom PHP snippets. To see a
list of the blocks that are currently available for your site, navigate to Administer, Site
building, Blocks. Figure 4.7 shows the blocks that are available for the Hear the North
site. This Web site has only a few modules installed, including a newsletter manage-
ment tool Simplenews.

You can adjust the placement of these blocks by dragging and dropping the crosshair
icon to a new region. To enable disabled blocks, drag them to a new region. To dis-
able blocks, drag them back to the “Disabled” section. After updating the placement
of blocks, you must click the button “Save blocks” to commit your changes to the

Grid Work 121

FIGURE 4.6 Five regions in the Zen theme, each with a different position and size.

122 Chapter 4 The Drupal Page

database. You may also change the order of several blocks within a region using the
same technique.

Adding a new region to your template is a multistep process:

 1. Edit your theme’s info file and add the regions as follows:

regions[new_region_name] = Human-readable region name

regions[second_region_name] = Another region name

FIGURE 4.7 Blocks available on the Hear the North Web site.

 2. Edit the file page.tpl.php and print your new regions to the structure of
your page. Use the variable names you established in your theme’s info file.

 <?php print $new_region_name ?>

 3. Clear the cache to reset the theme registry and enable the new regions. Navi-
gate to Administer, Site configuration, Performance. Scroll to the bottom of
the Web page and click “Clear cached data.”

 4. You should now be able to place blocks into your new regions by navigating to
Administer, Site building, Blocks.

Here is the basic page template repeated from Chapter 3. A few changes have been
made including the inclusion of new HTML divisions and one new region (marked
in bold) that can be positioned with CSS. Putting these regions after the main content
of the site will make the content appear more important to search engines, thereby
increasing its rank in search engine results.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 lang="<?php print $language->language ?>"

 xml:lang="<?php print $language->language ?>">

<head>

 <title><?php print $head_title; ?></title>

 <?php print $head; ?>

 <?php print $styles; ?>

 <?php print $scripts; ?>

</head>

<body class="<?php print $body_classes ?>">

<div id="main">

 <div id="page_title"><?php print $title; ?></div>

 <div id="utils-help"><?php print $help; ?></div>

 <div id="utils-messages"><?php print $messages; ?></div>

 <div id="utils-tab"><?php print $tabs; ?></div>

 <div id="main_content"><?php print $content; ?></div>

 <div id="utils-rss"><?php print $feed_icons; ?></div>

Grid Work 123

124 Chapter 4 The Drupal Page

<div id="new-region-name"><?php print $new-region-name; ?></div>

</div>

<div id="sidebar-left"><?php print $left; ?></div>

<div id="sidebar-right"><?php print $right; ?></div>

<div id="footer"><?php print $region_footer; ?></div>

<?php print $closure; ?>

</body>

</html>

Blocks

With your regions established, you can now fi ll them with blocks. Blocks may be
generated by Drupal core modules, contributed modules, or custom PHP snippets,
including lists of content created by the Views module. For more information on creat-
ing a custom view, refer to Chapter 2.

Commonly used blocks include the following:

 • Navigation menus (created in Administer, Site building, Menus)

 • Lists of content (Views module; see Chapter 2)

 • Login forms (Drupal core; turned on by default)

 • Site categories (Drupal’s Taxonomy module)

 • Recent comments (Drupal’s Comment module)

 • Search (Drupal’s search module)

 • Author information (Drupal’s profile module)

 • Five-star ratings (http://drupal.org/project/fivestar)

 • Facebook, Digg, and social bookmarking links (http://drupal.org/
project/service_links)

 • Similar entries (http://drupal.org/project/similar)

You can also create custom blocks with text, images, and even your own snippets of
PHP code. Sample PHP snippets are available from the Drupal Web site at http://
drupal.org/node/21867. To create a custom block, follow these steps:

http://drupal.org/node/21867
http://drupal.org/node/21867
http://drupal.org/project/fivestar
http://drupal.org/project/service_links
http://drupal.org/project/service_links
http://drupal.org/project/similar

 1. Navigate to Administer, Site Building, Modules and enable the PHP Filter
module. You may also need to adjust the permissions for this input format by
navigating to Administer, Site configuration, Input formats and clicking on the
“configure” link next to PHP filter.

 2. Navigate to Administer, Site building, Blocks.

 3. Select the tab “Add block.”

 4. Add a “Block description.” This description specifies how the block will be
identified in the administration area and is a required field.

 5. Add a “Block title” if you would like a title to appear at the top of the dis-
played block. This field is optional.

 6. Put your text, images, and PHP snippet into the “Block body.” You could also
use plain text or HTML markup here if it was appropriate for your block.

 7. Update the “Input format” to PHP.

 8. Adjust the visibility settings for the “User,” “Role,” and “Page” roles.

 9. Scroll to the bottom of the Web page and click “Save.”

PHP snippets in blocks
Blocks with custom PHP snippets could break the display of your site if they
contain errors. Be sure to carefully test your snippets before placing them into a

block. Place your PHP snippet into the body of a private page to confi rm that it will
not break your site before deploying the snippet as a block.

Sites will sometimes have more screen real estate dedicated to blocks than to the
main content on each page, especially when the blocks provide additional informa-
tion for the node that is displayed on the page, such as author profi le information
or related content. Don’t be shy! Enable the most appropriate blocks for each part of
your Web site. Blocks are included in Drupal’s caching system and will not harm the
overall performance of your site. To enable caching for blocks, navigate to Administer,
Site confi guration, Performance. Under the section “Block cache,” choose “Enabled.”
Scroll to the bottom of the Web page and click “Save confi guration.”

Customizing the Markup of Blocks

You may change the markup of the blocks displayed in your page template by creating
a new template fi le, block.tpl.php. Drupal’s default for this template contains only
a few wrapper HTML elements:

Grid Work 125

126 Chapter 4 The Drupal Page

<div id="block-<?php print $block->module .'-'. $block->delta; ?>"

 class="block block-<?php print $block->module ?>">

<?php if ($block->subject) { ?>

 <h2><?php print $block->subject; ?></h2>

<?php } ?>

 <div class="content">

 <?php print $block->content ?>

 </div>

</div>

For blocks provided by Drupal core, the variable $block->delta represents the
order in which this block was created. For example, the fi rst block has a delta value of
1, the second has a delta value of 2, and so on. In rendered HTML, the fi rst line would
look like this:

<div id="block-user-1" class="block block-user">

As you can see, the output is not nearly as complicated as the variables would suggest!
Check the output to see what your module is using for its delta value. Some modules
provide a text delta instead of a numeric delta.

A full list of block template variables is available from the default block template.
This fi le can be found in your Drupal system fi les: modules/system/block.tpl.
php. A full list of the variables is also available online at http://api.drupal.org/
api/file/modules/system/block.tpl.php.

Search

The default Drupal core engine comes with a module that allows you to search the
contents of your site. There are four steps to enabling search on your site: enable the
search module; update the permissions for users to search content; index the content
on a regular basis through the use of a “cron job”; and display the search form to site
visitors.

 1. The Search module is not enabled by default. To enable this module, navigate
to Administer, Site Building, Modules; enable the module by placing a check
mark next to it, scrolling to the bottom of the Web page, and clicking “Save.”

http://api.drupal.org/api/file/modules/system/block.tpl.php
http://api.drupal.org/api/file/modules/system/block.tpl.php

 2. Next you must enable the permissions for the appropriate roles in your site.
Navigate to Administer, User Management, Permissions. To enable searching
for all users, make sure “search content” and “advanced search” are enabled for
“anonymous user.”

 3. Drupal’s search module does not search the content of the database directly
because this operation would be too time-consuming. Instead, it searches an
index of your content (similar to an index at the back of a book). To initiate
this process of creating or updating the index, navigate to Administer, Reports,
Status report. Click on the link “run cron manually.” The page will automati-
cally refresh, showing you the cron maintenance task that was last run “less
than a few seconds ago.” For more information on configuring cron jobs for
Drupal, refer to Chapter 2.

 4. Two styles of search tools are available for Drupal themes; Figure 4.8 compares
these two search forms. On the left side of the screen, the top option is the
theme’s search box (which has no heading); the second option is the Search
form block (which has a heading). If you like, you can customize the Search

Search 127

FIGURE 4.8 There are two ways to enable a search box in a Drupal theme. On the left side of the screen,
the top option is the theme’s search form; the bottom option is the Search form block.

128 Chapter 4 The Drupal Page

form block to remove the heading. Although these two search forms have a
very similar appearance, they are actually applied in quite different ways. The
Search form block may be placed only into an existing region; in contrast, the
theme’s search box may be placed anywhere within the page template.

To enable the theme’s search box, add the following PHP snippet to your theme’s
page.tpl.php fi le at the appropriate location:

<?php print $search_box ?>

To enable the search block, use these steps:

 1. Navigate to Administer, Site Building, Blocks.

 2. Scroll down to the “Disabled” section.

 3. Select a region for the search form from the select menu.

 4. Scroll to the bottom of the Web page and click “Save blocks.”

Your search box should now appear as a block within your Web site. To further cus-
tomize the options for the search block, you can navigate to Administer, Site building,
Blocks and click on the “confi gure” link next to the Search form.

Changing Templates

In this chapter you have learned how to create a template for your page and how to cus-
tomize the page elements. In this section you will see how to change the page templates
that are used for different sections of your Web site. You may want to use different
templates for each of the following tasks and types of pages:

 • Editing content

 • Displaying a content type

 • User login

 • Front page

 • Categories

 • Offline or maintenance page

Some of these templates are provided by default; others you will need to build from
scratch. The online documentation has a complete list of all default templates provided
by Drupal at http://drupal.org/node/190815. This section describes several of
the page-specifi c template options.

http://drupal.org/node/190815

Assigning themes to different parts of your site
This section describes how to change the template that is used within a single
theme. If you need to assign whole themes to different parts of your Web site, you

will need a more powerful toolkit. The contributed module known as sections will
allow you to do exactly this. For more information about this project, visit http://
drupal.org/project/sections.

If you need to provide even more customization on a per-section basis, you may
need The Organic Groups module. This module enables authorized users to create
and manage their own “groups.” Each group gets its own theme, language, and tax-
onomy. The techniques described in this book could be applied to each theme for
each group on the Web site. For more information about this project, visit http://
drupal.org/project/og.

Changing Templates 129

Custom Front Page

What if you need a front page that has more—or fewer—regions than are provided by
a certain template? What if the front page needs to have a bigger banner and a smaller
content area? What if you need to make so many changes that it feels like the front
page needs a theme all of its own? Fortunately, it is very easy to create a custom front
page template for your Drupal site—so easy, in fact, that it is diffi cult to fi ll up a whole
section of this chapter with information about making a new front page template!

To make a custom front page template, follow these steps:

 1. Create a new page template file with the name page-front.tpl.php. This is
a special file name recognized by Drupal as being a unique template to be used
on only the front page of the Web site.

 2. Clear the theme registry by navigating to Administer, Site configuration, Per-
formance; scroll to the bottom of the Web page and click “clear cached data.”

 3. Navigate to the front page of your Web site and marvel!

All pages other than the front page will still use the template fi le page.tpl.php (unless
additional page-specifi c templates are used elsewhere in the site).

Using a view on the front page
If you are using the Views module, you can use the page view to create a custom
front page. Once you have created the view and assigned an alias to it, navigate

to Administer, Site confi guration, Site information. Scroll to the bottom of the Web
page and adjust the setting for the “Default front page” so that it uses the new view
page alias for the default front page.

http://drupal.org/project/sections
http://drupal.org/project/sections
http://drupal.org/project/og
http://drupal.org/project/og

130 Chapter 4 The Drupal Page

Custom Offline Page

Unfortunately, bad things sometimes happen to good Web sites, and the Web sites
have to go offl ine. Drupal provides a default template when a connection cannot be
made to the database. In addition, the site can be directed to enter “maintenance”
mode so that you can perform some upgrades or other feature enhancements. Figure
4.9 and Figure 4.10 show the default templates for these two offl ine pages.

The offl ine message template will appear only to visitors who are not authenticated;
administrators will still have access to the Web site as they perform their upgrades
when a site is “under maintenance.” To customize these pages, complete the following
steps:

 1. Copy the default maintenance page from the Drupal core directory modules/
system/maintenance-page.tpl.php to your theme’s directory.

 2. Make a second copy of the file for the offline template and name it
maintenance-page-offline.tpl.php.

 3. You should now have two new files in your theme’s directory:

 • maintenance-page.tpl.php: “maintenance” mode

 • maintenance-page-offline.tpl.php: “database is offline”

 4. Adjust these two new templates to suit your needs.

 5. Open your site’s configuration file in a text editor. (This file is found in
sites/yourdomainname.com/settings.php. It is not a theme file, and it is
probably write-protected.)

 6. Remove the # symbol from the following lines:

 • Line 173: # $conf = array(

 • Line 175: # 'theme_default' => 'your_theme_name'

 • Line 187: # 'maintenance_theme' => 'your_theme_name'

 • Line 214: #);

 7. Save the changes and make the file read-only again.

The next time you put your Web site into maintenance mode (or if your database
server ever goes offl ine), you will be able to show your customized apology to the world
instead of the default Drupal “maintenance” message.

Changing Templates 131

FIGURE 4.9 Offl ine message for site “under maintenance.”

FIGURE 4.10 Offl ine message when the database connection fails.

132 Chapter 4 The Drupal Page

In the section “Custom Front Page,” you learned how to create a custom front page
template. The template was activated when the current page was the front page of the
Web site. You may take advantage of this technique to target other types of pages as
well. Page templates are activated according to Drupal’s internal path for the current
page.

Internal path and URL alias
This technique works only with the internal path for a page. You cannot use
URL aliases. You will learn how to work with aliases in the next section. For now,

you may only use paths that are related to Drupal core terminology. For example,
node/5 and node/5/edit are both internal paths that can be tied to a specifi c page
template, whereas books/fiction/story-about-ping is a URL alias. Use the Devel
module to obtain a list of suggested template fi les for each page. If none of the sug-
gested templates matches your needs, consider skipping ahead to the next section
to discover alternative ways to create template fi les.

Drupal looks through a list of suggested templates from most specifi c to least spe-
cifi c and checks your theme’s directory for a matching template fi le. Once it fi nds a
template that matches the criteria, it applies that template to the page. The following
list gives examples of the templates that would match for each of the pages:

 • http://www.example.com/node/5

 • page-node-5.tpl.php

 • page-node.tpl.php

 • page.tpl.php

 • http://www.example.com/node/5/edit

 • page-node-edit.tpl.php

 • page-node-5.tpl.php

 • page-node.tpl.php

 • page.tpl.php

 • http://www.example.com/admin/build/block

 • page-admin-build-block.tpl.php

 • page-admin-build.tpl.php

 • page-admin.tpl.php

 • page.tpl.php

 • http://www.example.com/books/fiction/story-about-ping

 • page-node-2665.tpl.php

 • page-node.tpl.php

 • page.tpl.php

The last item in the list is using a URL alias. There is not a single template that can
be used by default to match any of the words in the URL to assign a template. Instead,
you must know the exact node ID for the page to fi nd a node-specifi c template match.
These template suggestions exist automatically, so use them whenever you need to cre-
ate a new template with the same fi le name and then theme it according to your needs.
You may also need to clear the theme registry to see your new template in action.

Alias: Page

Do you remember the TV show Alias? It was full of wigs and disguises and trickery
and deception and intrigue! URL aliases are a bit like throwing a wig onto a system
path—they change the way the path looks, but keep the content the same. If you want
your site to use URLs that are more closely tied to page content than node/2868, you
will need to use the module Path to create URL aliases. The bad news is that Drupal’s
theming system cannot recognize the URL aliases that you have created with the wigs
and the dark sunglasses. Instead, you must explicitly show Drupal how you want to
convert these URLs into a template suggestion. In the next section, you will learn how
to further customize this process to create template suggestions for each category.

Alias: Page 133

Template overload
Do you really need a whole new page template? Think carefully before implement-
ing the ideas presented in this section. For each new page template you create,

you will need to maintain the markup for an entirely new page. The more you add,
the more you have to maintain. There may be other, less time-intensive ways to sim-
plify a layout—for example, displaying blocks only on certain pages.

The fi rst step in this process is to grab the URL and examine its components before
the page template is processed. Using the URL alias, you will compile a new list of
suggested page templates. Being careful to match the alias for the page you want to

134 Chapter 4 The Drupal Page

redesign, you then add a new template fi le to your theme. Now when Drupal looks for
the best match for its page template, it will use your new list of suggested fi le names
and fi nd the new page template.

New Templates from Aliased URLs

The work of compiling the new list of suggested templates happens in the page pre-
process function in your theme’s template.php fi le. If you have already created a
preprocess_page function in your theme’s template.php fi le, you may add this
snippet to either the beginning or the end of the function. If you do not already have
this function, you will need to include the very fi rst (and very last) lines of this snippet
in your theme’s template.php fi le.

It takes several steps to compile a new list of suggested templates for the URL alias
of your page:

 1. Confirm that the module path is enabled. Without this module, your site will
not have URL aliases and this function will be irrelevant.

 2. By default, Drupal allows you to access the system path, but not the URL alias.
You need to use a special decoder ring, drupal_get_path_alias, to convert
the system path back to its URL alias.

 3. Break the URL alias into its components using PHP function explode. You
will use these components to build the new page template file name.

 4. Make sure your Web page is not an editing page. If it is, Drupal’s templates
can be used and this function becomes irrelevant.

 5. Create a variable to hold the new template suggestions, and establish the base
word for the new template’s file names. You could use any word here, but
using the base word “page” allows you to keep all page templates together. For
example, page-your-custom-url.tpl.php would be alphabetically close to
page-front.tpl.php.

 6. Loop through each part of the URL and build new template suggestions. This
mimics the way Drupal offers its templates. For example, if your URL alias is
books/fiction/story-about-ping, you will now be able to create three
new page templates: page-books.tpl.php, page-books-fiction.tpl.
php, and page-books-fiction-story-about-ping.tpl.php.

 7. Add the new template suggestion to a list that will be handed back to Drupal.

 8. Finally, return the list of suggested template names back to Drupal.

In your fi le template.php, the PHP snippet for these eight steps is as follows:

function bolg_preprocess_page(&$variables) {

// Step 1:

if (module_exists('path')) {

// Step 2:

$path_alias = drupal_get_path_alias($_GET['q']);

// Step 3:

$alias_parts = explode('/', $path_alias);

// Step 4:

$last = array_reverse($alias_parts);

$last_part = $last[0];

if ($last_part != "edit") {

// Step 5:

 $templates = array();

 $template_name = "page";

// Step 6:

 foreach ($alias_parts as $part) {

 $template_name = $template_name . '-' . $part;

// Step 7:

 $templates[] = $template_name;

 }

// Step 8:

 $variables['template_files'] = $templates;

} // End of the edit check

} // End of the check for the path module

} // End of the preprocess_page function

Alias: Page 135

136 Chapter 4 The Drupal Page

After you place this snippet in your theme’s template.php fi le, you may use any
part of the URL alias as a page template name. Note, however, that you must refresh
the theme registry before Drupal sees your new template suggestions.

Page Templates for Views

The Views module is very clever. When you provide a URL alias for your page view,
it automatically performs its version of the function that was described in the previous
section. For example, if you have a view with the URL alias recent/screencasts,
the Views module will automatically generate the following page template suggestions:
page-recent.tpl.php and page-recent-screencasts.tpl.php. The default
page template, page.tpl.php, will be used there if none of these fi les exist within the
theme’s directory.

Adding CSS Classes

The Zen theme allows designers to adapt their layout based on the classes that are
applied to the body. You can add this level of customization to your theme as well.
To add classes to your page, you will need to alter the contents of the page variable
$body_classes. This variable contains a list of classes all separated by a space. To add
new classes to this variable, you can use the same function that was described previ-
ously in this chapter. In the code outlined in the section “New Templates from Aliased
URLs,” replace step 8 with the following lines (the fi rst line is a comment, not part of
the functioning code):

// Step 8:

$classes = implode(' page-', $templates);

$variables['body_classes'] = $variables['body_classes'] . ' $classes';

This will add your new body classes to the end of the list of default classes.

Additional body classes are available
If you want to have even more classes available for theming, you may fi nd the
Themer module useful. This tiny module creates a suite of CSS classes that can be

applied throughout your theme. Additional information is available on the project
page at http://drupal.org/project/themer.

http://drupal.org/project/themer

Page Templates for Content Types

If necessary, you can change the way a node is displayed within a page with Drupal’s
node templates. If you knew that one of your content types needed a different page lay-
out, however, you could assign a new page template to that content type. This process
is almost the same as that followed in the previous examples.

To make a content type-specifi c page template, you will need to know which type
of content you are looking at. The only time you can know this with certainty is when
you are looking at a page that contains only one node. This page would normally use
the page template page-node.tpl.php.

To create a template suggestion based on content type, you will need to replace steps
6, 7, and 8 of the preprocess function described in the section “New Templates from
Aliased URLs” with the following snippet. Notice the use of arg() in this example;
arg() is a special variable that grabs individual parameters from the system path for
the displayed page. For example, the value of arg(0) for node/2868 is “node” and the
value of arg(1) is 2868.

if (arg(0) == "node" && is_numeric(arg(1))) {

 $node_type = $variables['node']->type;

 $variables['template_files'] = "$template_name-node-$node_type.tpl.php";

}

If you want to make templates for both URL aliases and content types, you can add
this snippet after step 8 in the code snippet described in “New Templates from Aliased
URLs:”

if (arg(0) == "node" && is_numeric(arg(1))) {

 $node_type = $variables['node']->type;

 array_push($variables['template_files'], "$template_name-node-$node_type.tpl.
php");

}

The examples in this section should give you a solid toolkit for creating unique page
templates. You may think of even more ways to customize your templates, too!

Alias: Page 137

138 Chapter 4 The Drupal Page

Taxonomy Templates

The previous section described how to build new templates based on URL aliases and
content type. When you are designing a site to have category-specifi c enhancements,
it is very likely that you want to change the colors or graphical elements of the page
template. This section explores ways to create a new page template so as to add color-
specifi c sections and new variables. To accomplish this feat, you will use the same tech-
niques you learned in the previous section.

Unfortunately, categories are easily edited and are not associated with permanent
machine names. You may fi nd it helpful to print the taxonomy variable to the page
to see how categories are stored and accessed. You can also obtain this information by
using the developer module Themer Info tool in the Devel module. Refer to Chap-
ter 2 for more information on using this module.

Here are the contents of one taxonomy variable:

[taxonomy] => Array

 (

 [3] => stdClass Object

 (

 [tid] => 3

 [vid] => 1

 [name] => Available for retail and wholesale.

 [description] =>

 [weight] => 0

)

 [11] => stdClass Object

 (

 [tid] => 11

 [vid] => 2

 [name] => Books Published by The Ginger Press

 [description] =>

 [weight] => 0

)

)

In this example, the category being used to change the template variable is the fi rst
category contained in the array of data in the taxonomy variable. The fi rst four steps
of the preprocess_page function described in “New Templates from Aliased URLs”
section are repeated. At this point, you should adjust the variable $target_tax so that
it matches the position of the category you want to use to distinguish between sections
on your site. This function assumes that you are working within one vocabulary and
that each term is a different template. You will need to adjust the scripting if your site
differs from this model.

The explanations of steps 1 through 4 can be found in the section “New Templates
from Aliased URLs.” The new steps perform the following actions:

 5. Check whether this page has a system path of node/nid. This snippet will
work only if you are displaying a single node of any content type.

 6. Check whether this page has been assigned a category. Retrieve the whole array
of categories if it does.

 7. Retrieve the name of the category.

 8. Convert the category name to a plain text string of characters suitable for a file
name. This operation includes replacing spaces with a dash and converting all
characters to lowercase.

 9. Add the new template suggestion to the list of page template suggestions; add
the category name to the list of existing body classes.

function bolg_preprocess_page(&$variables) {

// Step 1:

if (module_exists('path')) {

// Step 2:

$url_alias = drupal_get_path_alias($_GET['q']);

// Step 3:

$alias_parts = explode('/', $url_alias);

// Step 4:

$last = array_reverse($alias_parts);

$last_part = $last[0];

if ($last_part != "edit") {

Taxonomy Templates 139

140 Chapter 4 The Drupal Page

// Step 5:

if (arg(0) == "node" && is_numeric(arg(1))) {

// Step 6:

if (isset($variables['node']->taxonomy)) {

 $target_tax = 0;

 $node_tax = $variables['node']->taxonomy;

// Step 7:

 $tid = array_keys($node_tax);

 $name = $node_tax[$tid[$target_tax]]->name;

// Step 8:

 $clean_name = check_plain($name);

 $dash_name = str_replace(" ", "-", $clean_name);

 $lc_name = strtolower($dash_name);

// Step 9:

array_push($variables['template_files'], "page-tax-$lc_name.tpl.php");

$variables['body_classes'] .= $variables['body_classes'] . " tax-$lc_name";

} // End of the taxonomy check

} // End of the node/nid check

} // End of the edit check

} // End of the check for the path module

} // End of the preprocess_page function

Graphical Headers

The last function introduced in this chapter allows you to change the template or add
a new CSS class to a page based on the category assigned to a page. Wouldn’t it be neat
if you could change the graphical header for that page as well? With the snippet of code
provided here, you will be able to place images into a folder in your theme directory
and have them be automatically displayed for unique categories within your Web site.

This snippet can be used as a replacement for step 9 in the preceding section, or it
can be used as a further enhancement. It assumes that all of the images reside in a sub-
directory of your theme named tax and that all image fi les are named with the lower-
case extension jpg. You may change these settings, if necessary. The image fi les should
all be named according to the following convention: Using the term name, replace all
spaces with a dash and convert all letters to lowercase. A default image should also be
available if a matching taxonomy-specifi c image cannot be found.

$image_dir = "tax";

$ext = "jpg";

$default_image_file = "FILENAME.jpg";

$image_dir = drupal_get_path('theme', 'bolg') . "/$image_dir");

$default_image = "$image_dir/$default_image_file";

$image = "$image_dir/$lc_name.$ext";

if (file_exists($image){

 $variables['tax_header'] = theme('image', $image, $clean_name, $clean_name);

} elseif (file_exists($default_image){

 $variables['tax_header'] = theme('image', $default_image, $clean_name, $clean_
name);

} else {

 $variables['tax_header'] = "";

}

Remember to put the default header graphic into the appropriate image folder in
your theme!

Delivering Plain Content

Sometimes a stripped-down version of your site is more appropriate than one cluttered
with bells and whistles. For example, “simpler is better” when you are aiming to pro-
vide a print-friendly version of a page or a mobile-friendly version of your Web site.

Delivering Plain Content 141

142 Chapter 4 The Drupal Page

Print-Friendly Pages

There are two ways to prepare pages for printing. The fi rst is to prepare a unique style
sheet for printers. The browser will automatically detect style sheets that have been
marked with a media type of “print” and format the page according to the print rules
that have been specifi ed. The second method uses a contributed module, Print, to
enable links that direct the site visitor to new pages that use a print-friendly template.

CSS Print-Friendly Pages

Cascading Style Sheets (CSS) specify the media type they are targeting. When a page
is displayed in a Web browser, you are viewing the styles that have been assigned to
the page by the media types “all” and “screen.” Eight other media types are available,
including “print,” “braille,” “handheld,” and “tv.” A full list of media types is available
from http://www.w3.org/TR/CSS2/media.html#media-types.

The “print” media type specifi es how a page should be formatted when it is printed.
Figure 4.11 shows a Web page formatted by a “screen” style sheet; Figure 4.12 shows
the “print preview” for the same page. Parts of the page that are not relevant to the
content being displayed have been eliminated. The elements that have been removed
include the header, navigation elements, and quotes in the footer.

Most of the work in creating a print-friendly style sheet focuses on fi nding regions
that can be “hidden” from view. To remove these variables from the print-friendly ver-
sion of the page, the CSS property and attribute display: none; are used. The site
name (HICK Tech) is also pulled into the display by using the property and attribute
display: block;. To add a print-friendly style sheet to your site, you must register
the new fi le in your theme’s .info fi le and clear the theme registry by navigating to
Administer, Site confi guration, Performance; scrolling to the bottom of the Web page;
and clicking “clear cached data.” A print-specifi c CSS fi le is typically named print.
css; however, there is no absolute requirement to use this fi le name. Set the print style
sheet with the following snippet in your theme’s .info fi le:

stylesheets[print][] = printstylesheet.css

The print style sheet for the HICK Tech Web site contains only the following
styles:

/* Hide all information that is not unique content for this page */

#header-wrapper, #primary-links, #banner-image, .sidebar-right .sidebar-right,

http://www.w3.org/TR/CSS2/media.html#media-types

.breadcrumb, ul.primary, div.links, #bottomboxes, #footer {

 display: none;

}

/* The site name is set to "display: none"

 in the main style sheet, display it now*/

#print-sitename { display: block; }

/* Use print-friendly fonts */

body {

Delivering Plain Content 143

FIGURE 4.11 HICK Tech Web site as it is displayed in a Web browser.

144 Chapter 4 The Drupal Page

 font-family: Serif;

 color: #000;

 font-size: 1em;

 text-align: left;

}

/* Make sure the page is white, with no border, and properly aligned */

#wrapper {

 background: #fff;

 border: none;

 margin: 0;

 width: 100%;

}

FIGURE 4.12 HICK Tech Web site seen in “print preview” mode using the print style sheet.

To add your logo to the site name, you could place a background image on the site
with the following CSS snippet:

#print-sitename {

 display: block;

 background-image: url(/path/to/the/image.gif);

}

If you are concerned about exact color matching (saving your visitor’s valuable color
ink cartridges), consider using a black-and-white logo here instead of your colored
logo.

Several Drupal themes provide print-friendly CSS, including the default theme,
Garland. Review the following themes for additional examples on how to create a
print-friendly style sheet for your theme:

 • AD Redoable (http://drupal.org/project/ad_redoable)

 • NoProb (http://drupal.org/project/noprob)

 • Pluralism (http://drupal.org/project/pluralism)

 • Zen (http://drupal.org/project/zen)

The A List Apart article titled “Going to Print” by Eric Meyer provides excellent
information and strategies for creating print-friendly pages using only CSS. This article
can be found at http://alistapart.com/articles/goingtoprint/.

Print-Friendly Templates

Sometimes your Web site visitors will simply not believe that a print-friendly page is
waiting to greet them in the printer. They may have had too many bad experiences
with Web sites that do not provide a print-friendly CSS, and they may not understand
the mechanics of Web site construction well enough to know such a thing is even pos-
sible. The CrochetMe Web site shown in Figure 4.13 shows a link to a print-friendly
page (displayed in Figure 4.14) with all cruft removed. To create custom templates for
your content, you must generate new links to the end of each node, create new tem-
plates with stripped-down markup, and notify the theme about these new (nonstan-
dard) template fi les. Sounds like a lot of work, eh?

Print module to the rescue! With this nifty little module, you can easily enable print-
friendly, email-this-page, and PDF links to all of your pages. For more information

Delivering Plain Content 145

http://alistapart.com/articles/goingtoprint/
http://drupal.org/project/ad_redoable
http://drupal.org/project/noprob
http://drupal.org/project/pluralism
http://drupal.org/project/zen

146 Chapter 4 The Drupal Page

about this module, and to download and install it, visit the module’s project page at
http://drupal.org/project/print.

Although this module does have the ability to create PDFs of pages, it requires a
helper module. The recommended helper module, which is named dompdf, provides
full CSS support and allows for excellent reproduction of the Web page. It does not,
however, support Unicode character encoding or PDF headers. To install the dompdf
module, you must install font support on your Web server. If you are not comfort-
able with system administration, or if you are using a shared hosting service, this func-
tionality will be a little tricky to implement. For more information, visit the dompdf
Web site at http://www.digitaljunkies.ca/dompdf.

FIGURE 4.13 The CrochetMe Web site uses the Print module for its content. The links appears to the
right of the content, below the author information.

http://drupal.org/project/print
http://www.digitaljunkies.ca/dompdf

FIGURE 4.14 Output of the Print module—a “print-friendly” page.

Mobile Devices

Handheld devices are becoming more common, to the point that having a site that can
be navigated while “on the go” is a must for service-oriented businesses such as restau-
rants, shops, and social networking sites. If you do not have the resources to develop a
mobile application, that does not mean you cannot provide a mobile-friendly version
of your Web site. To provide this trimmed-down version of your site template, you
may use the Mobile theme. This theme is intended to return only clean HTML with

Delivering Plain Content 147

148 Chapter 4 The Drupal Page

no styling (although images embedded in your content are maintained). The links and
sidebars are placed so that mobile or handheld devices can display the content fi rst.
For more information about this module, and to download and install it, visit the
module’s project page at http://drupal.org/project/mobile.

Once the Mobile theme is installed, you will still need to provide a URL for the
mobile version of your Web site. To do so, complete the following steps:

 1. Create a subdomain for the mobile version of your Web site. It is common
practice to replace the “www” in your site’s domain name with the letter “m.”

 2. Using the domain name you created in step 1, create a duplicate folder of
your current site in Drupal’s folder sites. For example, if you were adding a
mobile version to the site example.com, the folder sites would include the
following folders:

 • example.com

 • m.example.com

 These two folders contain identical information at this stage.

 3. In the new mobile site folder, add the mobile theme to the folder themes. You
may also delete any graphical themes that are not required by the mobile ver-
sion of your site.

 4. In the mobile site folder, edit the file settings.php and look for the sec-
tion labeled “Variable overrides.” Update the default theme to “mobile” and
uncomment the relevant lines. Before editing, the code will appear as follows:

$conf = array(

'site_name' => 'My Drupal site',

'theme_default' => 'minnelli',

'anonymous' => 'Visitor',

... approximately 50 lines

);

 After editing, it will appear as follows (note the bold lines have changed):

http://drupal.org/project/mobile

$conf = array(

 # 'site_name' => 'My Drupal site',

'theme_default' => 'mobile',

 # 'anonymous' => 'Visitor',

... approximately 50 lines

);

Your new mobile site is now ready for use! It uses the same database as the main
site and, therefore, will always be exactly in sync with the main site. No extra work is
required on your part!

Summary

This chapter addressed ways to modify the preprocess function so that you can prepare
and alter page template variables, and alert Drupal of new page templates. More spe-
cifi cally, you learned how to perform the follow tasks:

 • Dissect a theme into its component template files

 • Use sitewide variables in page templates

 • Create new sitewide variables with preprocess functions

 • Establish a grid for a page template through custom regions

 • Configure a sitewide search block

 • Change page templates based on taxonomy, page alias, and content type

 • Create and implement print-friendly pages using CSS and the Print module

 • Create a low-bandwidth site for mobile devices

In the next chapter you will learn how to fi ll up the “content” region of your page
with nodes that are themed exactly as you want them to be.

Summary 149

Index

419

A
Access control, 227

 creating roles, 227
 granting and revoking permissions, 228–229
 at theme level, 229–231

Access Forbidden message, 280
Acquia Marina theme, 115
.addClass method, 327
Adjacent sibling selector, 192
Admin Links module, 213
Admin Menu module, 261–263
Admin role module, 231
Administration area, 388

 making changes from, 31–32
 sections of, 388–389

Administrative interface
 control panels, 266–268
 creating, 252–256
 creating menus for, 257–259
 custom screens for, 270–279
 deploying menus for, 259–260
 modules for, 262–269
 RootCandy, 253–256
 task-based navigation for, 256–257
 theme for, 252–253

Administrative templates, 15
Advertising, on Web pages, 15
.after method, 331
AHAH, 358
AJAX, 285, 313, 337, 338, 349
$.ajax function, 341–342
Akismet, 243
Alphabetical organization, 12
Amadou theme, 75
.animate function, 334–335
Animation, using jQuery, 335–337
Anonymous functions, 303–305
Anonymous users, 36–37
Apache, 382–383
.append method, 331

.appendTo method, 332
apply, 307, 308
archive list, 177
Argument, defined, 270
Array data type, 290
ATCK starter kit, 94
.attr method, 327
Attributes methods, 320, 327–329
Attributions setting, 52
Authenticated users, 37

B
Background images, on forms, 188–191
Banners, customizing, 97–99
$base_path variable, 111
Basic starter kit, 94
Bazaar, 35, 71
.before method, 333
Beginning starter kit, 94
block.tpl.php, 108
Blocks

 creating, 124
 customizing markup of, 125–126
 dynamic and static, 38
 editing, 213–216
 and menus, 40
 types of, 124

Blog, defined, 9
Blog content type, 6
Blog module, 235–236
Blueprint CSS, 68
Blueprint starter kit, 94
Body:, 158
$body_classes variable, 101, 111–112, 136

 altering, 136
Bolg theme, 88
Book content type, 6
Boolean data type, 290
Boolean operators, 291
Breadcrumbs, 113

420 Index

Browser Cam, 62
Browser testing tools, 60–65
Browsershots, 63–65
Buttons

 enabling, 370–372
 updating, 372–374

C
call, 308
Camel case, 289
CAPTCHA, 241–242
CAPTCHA pack, 241
CAPTCHA Riddler module, 242
Categories, 38
CCK (Content Construction Kit) module, 36, 42

 installation of, 43–44
 and page appearance, 173
 using, 44–45

Chaffer, Jonathan, 342
Chaining, in jQuery, 326
check_markup, 160
check_plain, 160, 226
Chronological organization, 9–10
Classes, 298
Clean starter kit, 94
.click method, 323
Closures, 306
Color, on forms, 186–187
Color module, 77
Commas, in JavaScript, 297
$comment variable, 153
Comment closer module, 242–243
Comment content type, 6
comment.tpl.php, 231
$comment_count variable, 153
comment-folded.tpl.php, 232
comment-wrapper.tpl.php, 232
Comments

 adding user identity to, 234–235
 displaying, 231–232
 information about, 153
 in JavaScript, 294–295

comments_recent list, 177
Component, JavaScript

 compatibility of, 353
 data-source agnosticity of, 374–376
 encapsulation of, 354–355
 example of, 355–374
 fl exibility of, 354
 reusability of, 354
 speed of, 355
 using plugins to create, 377–380

console.log(), 291
ConTemplate, 35

Content
 accessing, 158–160
 delivery of, 141–149
 describing, 2, 4
 displaying, 3, 5
 information about, 152
 organization of, 8–13
 status of, 153
 storage of, 5–7
 user-generated, 235–239

$content variable, 110, 112, 152
 data in, 160
 going beyond, 155–156

Content fields, 5, 8
 private, 247–248

Content Management, 389
Content module, 44
Content Permissions module, 53, 207
Content types, 5, 7, 36, 42

 adding fi elds to, 46–48
 changing, 6
 custom, 44–45
 extending, 46
 metadata in, 45
 page templates for, 137–138
 settings of, 52–53

Control Panel module, 266–269
Control panels, 266–268

 adding images to, 269
 theming, 268–269

Control structures, in JavaScript, 292–293
$created variable, 151
Creative Commons, 18, 74
CrochetMe, 12

 example pages from, 12, 17, 18, 146, 147
Cron, 70–71
CSS (Cascading Style Sheets), 19, 24

 media types of, 142
 print-friendly pages in, 142–146
 using, 66
 using on front page, 91–92

.css method, 328
CSS descriptors, 24
CSS methods, 320, 328–329
CSS selectors, 189–190

 advanced, 191–192
CSS Zen Garden, 19
Custom Error module, 281–283
CVS (Concurrent Version System), 35, 71

D
Data types, 289–290
Database, creating, 385
$date variable, 152

Index 421

Date module, 44
Debugging

 displaying result of, 291
 in Internet Explorer, 371

demo.info, 399–400
demo.module module, 397–399
demo-module folder, 397

 fi les in, 397–400
Description, of site, 2–3
Devel generate module, 58
Devel module, 43, 57

 components of, 57–58
Devel node access module, 58
Development server, 381–383

 under Linux, 382–383
 under Mac OS X, 382–383
 under Windows, 382

Digg, 12
$directory variable, 111
Display calendar, 9–10
Disqus, 234–235
Document root, configuring, 383–384
Dollar function, 316–318

 calling, 318–319
Dollar sign, use of, 288, 343–344
DOM (document object model), 286, 311
Dot notation, 322
Drop-down menus, 118
Drupal

 admin area of, 388–389
 best practices in, 34
 browser tools working with, 60–65
 confi guring, 386–389
 converting HTML to, 104
 converting Joomla! to, 103–104
 converting WordPress to, 101–103
 described, xix
 directory structure of, 33
 downloading, 385
 function of, 32
 hurdles in installing, 385, 386
 installing, 385–388
 installing modules for, 390
 integration of JavaScript with, 287, 345–377
 path of, 33
 setup of, 381–384
 site setup for, 386

Drupal 5.x, upgrading to 6.x, 99–100
Drupal 6.x

 creating theme in, 100–101
 migration to, 100

Drupal API, 69
Drupal page

 content of, 112–113
 creating variables for, 113–115

 elements of, 107–109
 general utility variables in, 109, 111
 menus in, 116–120
 modifying variables in, 115
 navigation of, 115–120
 page metadata in, 109, 111
 site identity of, 109, 112
 sitewide variables of, 109–110

drupal_add_js, 346–349
drupal.attachBehaviors, 358
drupal_json function, 351
Drupal.org, 18

 registering on, 74
 theme directory of, 75

Dynamic blocks, 38

E
Easing, 335
Editing

 blocks, 213–214, 215–216
 screens, 212

Effects methods, 321
Element inspector, 61
Error messages, 113, 279–281

 custom, 281–283
Escape character, 290
Events methods, 320, 321–327
Exclamation point, use of, 169

F
FAPI, 201–210
favicon.ico, 84
FCKEditor, 195
$feed_icons variable, 110
Field display, 49–50
Field order, 49
Field types, 42
field_extratext, 158
FieldGroup module, 50–51
Fields

 adding, 46–48
 content, 5, 8

FileField module, 44
Files, adding, 346–348
.filter method, 330
.find method, 330
.findTarget method, 367–370
Firebug, 60–61, 186, 189, 287, 298
First pseudo-element, 192
Fixed design, of page, 16
Flexible 2 starter kit, 94
flexifilter module, 238
Flickr, 170, 172–175, 195

422 Index

Fluid design, of page, 16
$footer variable, 92
$footer_message variable, 92
Footers, 92–93
for loop, 292
foreach statement, 292
Form API (FAPI), 201–210
form_id, 205
Forms

 altering fl ow of, 211–212
 background images on, 188–191
 changing display text in, 206–207
 changing sitewide, 201–204
 changing specifi c forms, 205–206
 changing widgets in, 209–210
 color in, 186–187
 creating, 184
 enhancing, 193–195
 facilitating input on, 187–188
 multiple-page, 210–211
 processing of, 184–185
 removing fi elds from, 207–209
 Rich Text editing of, 195–197
 style sheets for, 185–186

Forms API, 192
Forum content type, 6
Forum module, 236–237
Foundation starter kit, 94
Framework, defined, 31
Framework starter kit, 94
Free tagging, 10
freelinking module, 238
$front_page variable, 112
Front page

 adjusting defaults for, 165–166
 content teasers on, 86–87
 customizing, 85–88, 130
 multiple-node, 87–88
 single “welcome” node, 85–86
 views on, 130

frontpage list, 177
Function data type, 290
Functions, JavaScript, 295, 302

 anonymous, 303–305
 calling, 307–309
 scope of, 305–306

G
Gallery module, 175–176
Garland theme, 94
General Public License (GPL), 18
General utility variables, 109, 111
Genesis starter kit, 94

Ginger Press example page, 11
Global settings, 83–84
Global variables, 289
glossary list, 177
Gordon, Charlie, 239
Graphical headers, changing, 140–141
Grids, 67

 using, 120–123
Guided tasks, 22

H
Handheld devices, designing for, 147–149
Haughey, Matt, 183
$head variable, 111
$head_title variable, 111
Hear the North example page, 122
$help variable, 113, 279
Help section, 389
HICK Tech example, 142–144
Hierarchies, of taxonomies, 39
Hooks, 41–42, 350
Horizontal Scroller example component, 355–356

 bootstrapping, 364–365
 buttons in, 370–374
 compatibility of, 374–375
 functionality of, 361–364
 integration with Drupal, 377
 markup of, 357–360
 skeleton of, 356–357
 slider in, 358–370

horizscroll folder, 404
 fi les in, 404–415

horizscroll.css, 412–415
horizscroll.html, 410–412
horizscroll.js, 404–410
horizscroll-datasource folder, 404

 fi les in, 404–415
.htaccess, 385
.html method, 329
HTML pages, 90

 converting to Drupal, 104
 structure of, 311–312

html.js, 373
httpd.conf, 383
Hunchbaque starter kit, 94

I
$id variable, 152
if statement, 292
Image Assist module, 174, 199–200

 use with TinyMCE, 200–201
Image Cache module, 172, 177

Index 423

Image module, 171, 173–175
 use with TinyMCE, 200–201

ImageAPI module, 176
ImageField module, 44, 48, 57, 171, 176–177
Images

 adding to Web page, 170
 background, 188–191
 choosing, 171
 galleries of, 175–176
 offsite hosting of, 172–173

IMCE module, 201
in_array, 230
index.html, 391–396
index-input.html, 396–397
Insert methods, in jQuery, 330–333
.insertAfter method, 332, 333
.insertBefore method, 332
Interaction, 20–21

 guided tasks, 22
 user satisfaction, 21–22

Interface components, 14–16
 choosing, 76–77

Internet Explorer
 debugging in, 371
 developer tools of, 62

$is_admin variable, 111, 153, 208
$is_front variable, 111, 154

J
JavaScript

 adding to Drupal page, 346–349
 control structures in, 292–293
 data types in, 290
 and DOM, 286, 311. See also jQuery.
 functions in, 303–309
 inline, 349
 interacting with, 24–25
 libraries for, 343–344
 object orientation in, 293–303
 operators in, 291–293, 302
 running code in, 287–288
 server-side integration with Drupal, 345–377
 syntax characteristics of, 287
 using, 69
 using with Drupal, 285
 using on front page, 91–92
 variable declaration in, 288–289

Joomla!, 103–104
jQuery, 69

 animation using, 334–335
 chaining in, 326
 and DOM, 318–319
 Drupal modules in, 379–380
 to execute code on page load, 314–318

 functions of, 286
 helper functions of, 336–337
 plugins for, 342–343, 377
 purposes of, 312–313
 selector support in, 319
 setting up, 313–314
 using, 320–334

jQuery UI, 343, 379–380
jQuery Update module, 379
jQuery.each, 337
jQuery.extend, 336–337
jQuery.getJSON method, 340–341
JSON (JavaScript Object Notation), 337–338

 creating object, 351–353

L
l() function, 226
La, Nick, 69
LAMP, 382
$language variable, 101, 111
Layout, 14–15
$layout variable, 101
$left variable, 110
Lexical scope, 305
Linear organization, 10
Links, 158

 creating, 226
$links variable, 151, 163
A List Apart, 66
.load function, 339–340
Local variables, 289
.log function, 343
$logged_in variable, 111, 152, 207–208
$logo variable, 112

M
Macro module, 58
Maintenance, system, 70–71
Manipulation methods, 321, 330–333
Member-only sites, 244–246
Memory Garden Retreats theme, 96
Menu callback handlers, 349–351
Menus, 40–41

 adding items to, 116
 components of, 118
 drop-down, 119
 theming, 118–119

Messages, types of, 113
$messages variable, 113, 279
Microsoft Visual Web Developer, 371
$mission variable, 112
Mobile theme, 147–149
module_exists, 230

424 Index

Mollom, 243
Monty Python, 240
.mouseover method, 322
Multiple-page forms, 210–211
MySQL, 382, 383

N
Naming

 conventions, 41–42
 of theme, 88–89

Navigate module, 264–266
Navigation, 110, 115

 and menus, 115–119
New content, viewing, 271–274
Newswire theme, 115
960 Grid, 67, 68
Node

 components of, 41
 customizing entry points to, 177–181
 defi ned, 5, 36
 required fi elds in, 186

$node variable, 152
 accessing content in, 158–160
 data in, 159
 understanding, 154–158

$node_url variable, 151
Node Form module, 193–194
Node template, 150

 changing defaults in, 163
 creating, 151
 creating variables in, 161–163
 replacing content in, 163–164
 using, 151–160

Node types. See Content types.
node_revisions table, 35
node.tpl.php, 108, 109, 150, 153–154
Nodeaccess module, 246–247
nodecontenttypename.tpl.php, 150
Number data type, 290
Numbers, in JavaScript, 294

O
Object data type, 290
Objects, JavaScript, 293–295

 adding keys to, 297–298
 defi ning, 296–298
 extending, 301–302
 inspecting contents of, 298
 using prototypes to create, 299–300

Offline page, custom, 130–132
.offset function, 366, 367

.one method, 323
Open Source Web Design (OSWD), 20
Opera Web Standards Curriculum, 23, 66
Operators, in JavaScript, 291
Option Widgets module, 44
Orphan images, viewing, 274–279

P
$page, 169
Page content, 110, 112–113
Page content type, 6, 36
Page design, 14–15, 28

 fi xed vs. fl uid, 16
 impact of small changes on, 28

Page metadata, 109, 111
Page Not Found message, 282
Page template, 89–91

 activating, 132–133
 changing, 128–132
 for content types, 137
 for views, 136

page.tpl.php, 108
Pageroute module, 211–212
Pagers, 41
Palantir, 34–35
Parameters, defined, 270
Parent items, 40
Permissions, 36–37, 228–229

 setting, 53
Permissions cache, rebuilding, 245–246
Personal themes, 81–82
Photos, sources for, 20
PHP, 24

 converting to JSON, 338
 inside blocks, 125
 inside HTML, 93
 inside templates, 114
 using, 68

phptemplate, 89
phptemplate_callback(), 100
$picture variable, 152
Plus sign, in JavaScript, 302
Poll content type, 6
Popularity-based organization, 12–13
Post settings, 52
PostgreSQL, 383
<pre> tags, 156
.prepend method, 331
.prependTo method, 332
Preprocess functions, 214–215
preprocess_block, 215

Index 425

Preprocessing, 113–114
$primary_links variable, 110, 115
Print-friendly pages, 141–142

 CSS, 142–145
 templates for, 145–147

print_r, 156
Private

 content fi elds, 247–248
 member-only sites, 244–245
 Web site areas, 244

Profile
 adding information to, 225–226
 creating, 220–222
 theming, 222–224

promoted to front page option, 87–88
Profile module, 220–221
$promote variable, 154
Prototype/Scriptaculous, 343–344
Prototypes, 298–299

 objects created by, 299–300

R
$readmore variable, 152
Rebuilding permissions cache, 245–246
reCAPTCHA module, 241
Recipe module, 239
Regions, 37

 adding, 121–123
 defi ning, 92
 using, 120–121

Release forms, 20
.remove method, 333
.removeClass method, 328
Rendered page, 90
.replace method, 333
Reports item, 389
Reuse, of styles, 23
Reverse chronological order, 9
Revision control, 70–71
Rich Text editing, 195–201
$right variable, 110
Roles, 227–228
RootCandy theme, 253–256

S
Scope, of function, 305–307
Screenshots, 63, 93
script.js, 92
Scripting languages. See JavaScript; PHP.
$scripts variable, 111
scrollToItem function, 365–367
Search module, 126–128

$secondary_links variable, 115, 117
Semicolons, in JavaScript, 296
Settings storage, 347–349
Shortcut icon, 84
Site building, 386
Site configuration, 387–388
Site identity, 109, 112
$site_name variable, 110, 112
$site_slogan variable, 112
skeleton.css, 403–404
skeleton.html, 402–403
skeleton.js, 400–402
Slider, creating, 358–361
Spam, 240

 fi ltering of, 243–244
 minimizing, 241–243

sparkline folder, 415
 fi les in, 415–417

sparkline.html, 415–417
sparkline.js, 417
Sparklines plugin, 377–379
Starter kits, 94–95
Starter themes, 94
Static blocks, 38
Static scope, 305
$status variable, 154
Status messages, 113
$sticky variable, 154
.stop method, 335
Story content type, 6, 36
String data type, 290
Style sheets, 91–92, 185–186

 degradation of, 373
style.css, 92
$styled summary variable, 169
$styles variable, 111
.submit method, 326
$submitted variable, 152
Subversion, 35, 71
Summary, creating, 166–168
switch statement, 292
System maintenance, 69–70

 revision control, 70–71
 task scheduling, 70

T
t() function, 227, 232
$tabs variable, 113, 154
$tabs2 variable, 113
Task scheduling, 70
Task-based organization, 13
Taxonomies, 38

 hierarchies of, 39

426 Index

Taxonomy Access Control Lite module, 244
 installing, 245

Taxonomy templates, 138–140
taxonomy_term list, 177
$teaser variable, 152, 153, 168
Teasers, 86–87

 adjusting settings for, 165–166
 distinguished from summaries, 166–167
 templates for, 168–169

Teleport module, 263–264
template folder, 391

 fi les in, 391–397
template.php file, 34

 streamlining, 202
template-skeleton folder, 400

 fi les in, 400–404
Templates

 changing, 129–134
 customizing, 18
 design resources for, 17–19
 interface components in, 15–16
 space allocation in, 16
 Web resources for, 19–20

Tendu starter kit, 94
Terms, 39
$terms variable, 152
Ternary operator, in JavaScript, 293
Testing tools for browser, 60–65
.text method, 329
Text files, working with, 35
Text module, 44
Textimage module, 172
Theme developer module, 58
theme function, 226
Theme Garden, 18, 74–75
Theme layer, xix
Theme registry, caching system of, 35
theme-settings.php, 96–98
Theme-specific settings, 84–85
themeName.info, 100
Themer info widget, 58–59
Themes

 adding JavaScript to, 347
 administration of, 82–88
 assigning, 129
 banners for, 99
 components of, 79
 custom settings for, 97–98
 customization of, 108–109
 default, 79
 defi ned, 32
 distribution of, 93
 enabling of, 79–80

 global settings for, 83–84
 initializing, 89
 installation of, 78–79
 libraries of, 77
 naming of, 88–89
 page template for, 89–91
 personal, 81–82
 regions in, 92–93
 starter, 94
 strategies for, 33–34
 templates for, 74
 upgrading Drupal version of, 100–101

Thumbnails, 93
TinyMCE, 195–196

 appearance of, 199
 buttons and plugins for, 198–199
 cleanup and output for, 199
 confi guring, 196–199
 CSS settings for, 199
 extending, 201
 images in, 199–201
 installing, 195–196
 versions of, 200
 visibility settings, 197

$title variable, 110, 112, 152
.toggleClass method, 328
Toilet Birthdays example page, 4, 172
Token module, 44
Topical organization, 11–12
tpl.php files, 34, 101
tracker list, 177
Traversing methods, 321, 330
Trillium Healing Arts Centre example page, 2

 components of, 3
Tufte, Edward, 377
$type variable, 152

U
$uid variable, 152
.unbind method, 323–324
Unpublished content, viewing, 279–279
URL alias, 133–134

 and Drupal, 134–136
User management, 389
User satisfaction with Web page, 21–22
user/1 account, 37
user-picture.tpl.php, 223
user-profile.tpl.php, 224
user-profile-category.tpl.php, 224
user-profile-item.tpl.php, 224
user_access, 230
user_is_logged_in(), 230

Index 427

Users
 access control, 228–232, 244–248
 administrator privileges for, 231–232
 anonymous, 36–37, 219
 authenticated, 37
 content generated by, 235–239
 information about, 153
 profi les of, 220–222
 role in creating Web site, 28

V
VanDyk, John, 398
Variables

 creating, 113–115
 in JavaScript, 288–289
 modifying, 115
 prefi x for, 288
 resetting, 115
 scope of, 289
 unused, 115

Version control, 70–71
Vertical Tabs module, 192–193
Videos, adding to form, 195
View

 creating, 57
 page template for, 136

View mode, 113
Views exporter, 53
Views module, 43, 53

 administrative use of, 271–272
 components of, 54–55
 templates in, 178–181
 using, 54–57, 177–181

ViewsUI, 53
 use and disabling of, 54

Virtual hosts, 383–385
Vocabularies, 39

W
W3C Markup Validation Service, 66
Warning messages, 113
Way Back Machine, 28
Web Developer’s Toolbar, 62
Web page(s)

 coding of, 22–26
 components of, 3
 content of, 2
 Drupal. See Drupal page.
 guided tasks on, 22
 images on, 170–173

 interaction with, 20–22
 internal path for, 132
 layout of, 15–17
 private, 244–248
 regions of, 16–17

Web site
 client role in, 27–28
 designer’s role in, 26–27
 identifying mark for, 15
 planning of, 25–30
 programmer’s role in, 27
 searching, 126–128
 users of, 28, 36–37

Webform module, 211
Weight, 40
Welcome page, 85
while statement, 292
Wikis, creating, 237–239
wikitools module, 238
WordPress, 101–103
.wrap method, 333

X
XAMPP, 382
XHTML, 23

 structure of, 311–312
 using, 66, 89

XmlHttpRequest, 337

Y
Yahoo! User Interface (YUI), 68
YAML CSS Framework, 68
YUI Grids CSS, 68

Z
$zebra variable, 153
Zen starter kit, 94

 described, 95
 using, 96–97

Zen theme, 17, 61, 84, 96, 98, 114, 115, 121, 136,
212–217, 232, 237

Zotero, 77

	Foreword
	Preface
	Chapter 4: The Drupal Page
	Elements of a Page
	Dissecting a Theme

	Sitewide Page Variables
	General Utility Variables
	Page Metadata
	Site Identity
	Page Content, Drupal Messages, and Help Text
	Creating New Page Variables
	Modifying Page Variables

	Navigation and Menus
	Theming Menus

	Grid Work
	Regions
	Blocks
	Customizing the Markup of Blocks

	Search
	Changing Templates
	Custom Front Page
	Custom Offline Page

	Alias: Page
	New Templates from Aliased URLs
	Page Templates for Views
	Adding CSS Classes
	Page Templates for Content Types

	Taxonomy Templates
	Graphical Headers

	Delivering Plain Content
	Print-Friendly Pages
	Mobile Devices

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

