

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Summerfield, Mark.
 Programming in Python 3 : a complete introduction to the Python language / Mark
Summerfield.
 p. cm.
 Includes index.
 ISBN 978-0-13-712929-4 (pbk. : alk. paper)
1. Python (Computer program language) 2. Object-oriented programming (Computer science)
 I. Title.

 QA76.73.P98S86 2009
 005.1’17—dc22

2008038340

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-712929-4

ISBN-10: 0-13-712929-7

Text printed in the United States on recycled paper at Donnelley in Crawfordsville, Indiana.

First printing, December 2008

Introduction

Python is probably the easiest-to-learn and nicest-to-use programming lan-
guage in widespread use. Python code is clear to read and write, and it is con-
cise without being cryptic. Python is a very expressive language, which means
that we can usually write far fewer lines of Python code than would be required
for an equivalent application written in, say, C++ or Java.

Python is a cross-platform language: In general, the same Python program can
be run on Windows and Unix-like systems such as Linux, BSD, and Mac OS X,
simply by copying the file or files that make up the program to the target
machine, with no “building” or compiling necessary. It is possible to create
Python programs that use platform-specific functionality, but this is rarely
necessary since almost all of Python’s standard library and most third-party
libraries are fully and transparently cross-platform.

One of Python’s great strengths is that it comes with a very complete standard
library—this allows us to do such things as download a file from the Internet,
unpack a compressed archive file, or create a web server, all with just one or a
few lines of code. And in addition to the standard library, thousands of third-
party libraries are available, some providing more powerful and sophisticat-
ed facilities than the standard library—for example, the Twisted networking
library and the NumPy numeric library—while others provide functionality
that is too specialized to be included in the standard library—for example, the
SimPy simulation package. Most of the third-party librariesare available from
the Python Package Index, pypi.python.org/pypi.

Python can be used to program in procedural, object-oriented, and to a lesser
extent, in functional style, although at heart Python is an object-oriented
language. This book shows how to write both procedural and object-oriented
programs, and also teaches Python’s functional programming features.

The purpose of this book is to show you how to write Python programs in good
idiomatic Python 3 style, and to be a useful reference for the Python 3 language
after the initial reading. Although Python 3 is an evolutionary rather than rev-
olutionary advance on Python 2, some older practices are no longer appropriate
or necessary in Python 3, and new practices have been introduced to take ad-
vantage of Python 3 features. Python 3 is a better language than Python 2—it
builds on the many years of experience with Python 2 and adds lots of new
features (and omits Python 2’s misfeatures), to make it even more of a pleasure
to use than Python 2, as well as more convenient, easier, and more consistent.

1

2 Introduction

The book’s aim is to teach the Python language, and although many of the
standard Python libraries are used, not all of them are. This is not a problem,
because once you have read the book, you will have enough Python knowledge
to be able to make use of any of the standard libraries, or any third-party
Python library, and be able to create library modules of your own.

The book is designed to be useful to several different audiences, including self-
taught and hobbyist programmers, students, scientists, engineers, and others
who need to program as part of their work, and of course, computing profes-
sionals and computer scientists. To be of use to such a wide range of people
without boring the knowledgeable or losing the less-experienced, the book as-
sumes at least some programming experience (in any language). In particu-
lar, it assumes a basic knowledge of data types (such as numbers and strings),
collection data types (such as sets and lists), control structures (such as if and
while statements), and functions. In addition, some examples and exercises
assume a basic knowledge of HTML markup, and some of the more specialized
chapters at the end assume a basic knowledge of their subject area; for exam-
ple, the databases chapter assumes a basic knowledge of SQL.

The book is structured in such a way as to make you as productive as possible
as quickly as possible. By the end of the first chapter you will be able to write
small but useful Python programs. Each successive chapter introduces new
topics, and often both broadens and deepens the coverage of topics introduced
in earlier chapters. This means that if you read the chapters in sequence,
you can stop at any point and you’ll be able to write complete programs with
what you have learned up to that point, and then, of course, resume reading
to learn more advanced and sophisticated techniques when you are ready. For
this reason, some topics are introduced in one chapter, and then are explored
further in one or more later chapters.

Two key problems arise when teaching a new programming language. The
first is that sometimes when it is necessary to teach one particular concept,
that concept depends on another concept,which in turn depends either directly
or indirectly on the first. The second is that, at the beginning, the reader may
know little or nothing of the language, so it is very difficult to present inter-
esting or useful examples and exercises. In this book, we seek to solve both
of these problems, first by assuming some prior programming experience, and
second by presenting Python’s “beautiful heart” in Chapter 1—eight key pieces
of Python that are sufficient on their own to write decent programs. One con-
sequence of this approach is that in the early chapters some of the examples
are a bit artificial in style, since they use only what has been taught up to the
point where they are presented; this effect diminishes chapter by chapter,until
by the end of Chapter 7, all the examples are written in completely natural and
idiomatic Python 3 style.

The book’s approach is wholly practical, and you are encouraged to try out
the examples and exercises for yourself to get hands-on experience. Wherev-

Introduction 3

er possible, small but complete programs are used as examples to provide re-
alistic use cases. The examples and excercise solutions are available online at
www.qtrac.eu/py3book.html—all of them have been tested with Python 3.0 on
Windows, Linux, and Mac OS X.

The Structure of the Book

Chapter 1 presents eight key pieces of Python that are sufficient for writing
complete programs. It also describes some of the Python programming
environments that are available and presents two tiny example programs,both
built using the eight key pieces of Python covered earlier in the chapter.

Chapters 2 through 5 introduce Python’s procedural programming features,
including its basic data types and collection data types, and many useful built-
in functions and control structures, as well as very simple text file handling.
Chapter 5 shows how to create custom modules and packages and provides an
overview of Python’s standard library, so that you will have a good idea of the
functionality that Python provides out of the box and can avoid reinventing
the wheel.

Chapter 6 provides a thorough introduction to object-oriented programming
with Python. All of the material on procedural programming that you learned
in earlier chapters is still applicable, since object-oriented programming is
built on procedural foundations—for example, making use of the same data
types, collection data types, and control structures.

Chapter 7 covers writing and reading files. For binary files, the coverage in-
cludes compression and random access, and for text files, the coverage includes
parsing manually and with regular expressions. This chapter also shows how
to write and read XML files, including using element trees, DOM (Document
Object Model), and SAX (Simple API for XML).

Chapter 8 revisits material covered in some earlier chapters, exploring many
of Python’s more advanced features in the areas of data types and collection
data types, control structures, functions, and object-oriented programming.
This chapter also introduces many new functions, classes, and advanced
techniques, including functional-style programming—the material it covers is
both challenging and rewarding.

The remaining chapters cover other advanced topics. Chapter 9 shows tech-
niques for spreading a program’s workload over multiple processes and over
multiple threads. Chapter 10 shows how to write client/server applications
using Python’s standard networking support. Chapter 11 covers database pro-
gramming (both simple key–value “DBM” files, and SQL databases). Chap-
ter 12 explains and illustrates Python’s regular expression mini-language and
covers the regular expressionsmodule,and Chapter 13 introducesGUI (Graph-
ical User Interface) programming.

www.qtrac.eu/py3book.html

4 Introduction

Most of the book’s chapters are quite long to keep all the related material
together in one place for ease of reference. However, the chapters are broken
down into sections, subsections, and sometimes subsubsections, so it is easy to
read at a pace that suits you; for example, by reading one section or subsection
at a time.

Obtaining and Installing Python 3

If you have a modern and up-to-date Mac or other Unix-like system you may
already have Python 3 installed. You can check by typing python -V (note the
capital V) in a console (Terminal.app on Mac OS X)—if the version is 3 you’ve
already got Python 3 and don’t have to install it yourself; otherwise, read on.

For Windows and Mac OS X, easy-to-use graphical installer packages are pro-
vided that take you step-by-step through the installation process. These are
available from www.python.org/download. Three separate installers are provided
for Windows—download the plain “Windows installer” unless you know for
sure that your machine has an AMD64 or Itanium processor, in which case
download the processor-specific version. Once you’ve got the installer, just run
it and follow the on-screen instructions.

For Linux, BSD, and other Unixes, the easiest way to install Python is to use
your operating system’s package management system. In most cases Python is
provided in several separate packages. For example, in Fedora, there is python
for Python and python-tools for IDLE (a simple development environment),
but note that these packages are Python 3-based only if you have an up-to-date
Fedora (version 10 or later). Similarly, for Debian-based distributions such as
Ubuntu, the packages are python3 and idle3.

If no Python 3 packages are available for your operating system you will
need to download the source from www.python.org/download and build Python
from scratch. Get either of the source tarballs and unpack it using tar xvfz
Python-3.0.tgz if you got the gzipped tarball or tar xvfj Python-3.0.tar.bz2 if
you got the bzip2 tarball. The configuration and building are standard. First,
change into the newly created Python-3.0 directory and run ./configure. (You
can use the --prefix option if you want to do a local install.) Next, run make.

It is possible that you may get some messages at the end saying that not all
modules could be built. This normally means that you don’t have the required
libraries or headers on your machine. For example, if the readline module
could not be built, use the package management system to install the corre-
sponding development library; for example, readline-devel on Fedora-based
systems and readline-dev on Debian-based systems. (Unfortunately, the rele-
vant package names are not always so obvious.) Once the missing packagesare
installed, run ./configure and make again.

www.python.org/download
www.python.org/download

Introduction 5

After successfully making, you could run make test to see that everything is
okay, although this is not necessary and can take many minutes to complete.

If you used --prefix to do a local installation, just run make install. You
will probably want to add a soft link to the python executable (e.g., ln
-s ~/local/python3/bin/python3.0 ~/bin/python3, assuming you used --pre-
fix=$HOME/local/python3 and you have a $HOME/bin directory that is in your
PATH). You might also find it convenient to add a soft link to IDLE (e.g., ln -s
~/local/python3/bin/idle ~/bin/idle3, on the same assumptions as before).

If you did not use --prefix and have root access, log in as root and do make
install.On sudo-based systems like Ubuntu,do sudo make install. If Python 2 is
on the system, /usr/bin/python won’t be changed and Python 3 will be available
as python3, and similarly Python 3’s IDLE as idle3.

Acknowledgments

My first acknowledgments are of the book’s technical reviewers, starting
with Jasmin Blanchette, a computer scientist, programmer, and writer with
whom I have cowritten two C++/Qt books. Jasmin’s involvement with chapter
planning and his suggestions and criticismsregarding all the examples,as well
as his careful reading, have immensely improved the quality of this book.

Georg Brandl is a leading Python developer and documentor responsible for
creating Python’s new documentation tool chain. Georg spotted many sub-
tle mistakes and very patiently and persistently explained them until they
were understood and corrected. He also made many improvements to the ex-
amples.

Phil Thompson is a Python expert and the creator of PyQt, probably the best
Python GUI library available. Phil’s sharp-eyed and sometimes challenging
feedback led to many clarifications and corrections.

Trenton Schulz is a senior software engineer at Nokia’s Qt Software (fomerly
Trolltech) who has been a valuable reviewer of all my previous books, and has
once again come to my aid. Trenton’s careful reading and the numerous sug-
gestions that he made helped clarify many issues and have led to considerable
improvements to the text.

In addition to the aforementioned reviewers, all of whom read the whole
book, David Boddie, a senior technical writer at Nokia’s Qt Software and an
experienced Python practitioner and open source developer,has read and given
valuable feedback on portions of it.

Thanks are also due to Guido van Rossum, creator of Python, as well as to the
wider Python community who have contributed so much to make Python, and
especially its libraries, so useful and enjoyable to use.

6 Introduction

As always, thanks to Jeff Kingston, creator of the Lout typesetting language
that I have used for more than a decade.

Special thanks to my editor, Debra Williams Cauley, for her support, and for
once again making the entire process as smooth as possible. Thanks also to
Anna Popick, who managed the production process so well, and to the proof-
reader, Audrey Doyle, who did such fine work once again.

Last but not least, I want to thank my wife, Andrea, both for putting up with
the 4 a.m. wake-ups when book ideas and code corrections often arrived and
insisted upon being noted or tested there and then, and for her love, loyalty,
and support.

Rapid Introduction to
Procedural Programming

||||

1 ● Creating and Running Python
Programs

● Python’s “Beautiful Heart”

This chapter provides enough information to get you started writing Python
programs. We strongly recommend that you install Python if you have not
already done so, so that you can get hands-on experience to reinforce what you
learn here. (The Introduction explains how to obtain and install Python on all
major platforms—see page 4.)

This chapter’s first section shows you how to create and execute Python pro-
grams. You can use your favorite plain text editor to write your Python code,
but the IDLE programming environment discussed in this section provides not
only a code editor, but also additional functionality, including facilities for ex-
perimenting with Python code, and for debugging Python programs.

The second section presents eight key pieces of Python that on their own are
sufficient to write useful programs. These pieces are all covered fully in later
chapters, and as the book progresses they are supplemented by all of the rest
of Python so that by the end of the book, you will have covered the whole
language and will be able to use all that it offers in your programs.

The chapter’s final section introduces two short programs which use the subset
of Python features introduced in the second section so that you can get an
immediate taste of Python programming.

Creating and Running Python Programs |||

Python code can be written using any plain text editor that can load and save
text using either the ASCII or the UTF-8 Unicode character Charac-

ter
encod-
ings

☞ 85

encoding. By de-
fault, Python files are assumed to use the UTF-8 character encoding, a super-
set of ASCII that can represent pretty well every character in every language.
Python files normally have an extension of .py, although on some Unix-like sys-

7

8 Chapter 1. Rapid Introduction to Procedural Programming

tems (e.g., Linux and Mac OS X) some Python applications have no extension,
and Python GUI (Graphical User Interface) programs usually have an exten-
sion of .pyw, particularly on Windows and Mac OS X.In this book we always use
an extension of .py for Python console programs and Python modules, and .pyw
for GUI programs. All the examples presented in this book run unchanged on
all platforms that have Python 3 available.

Just to make sure that everything is set up correctly, and to show the clas-
sical first example, create a file called hello.py in a plain text editor (Win-
dows Notepad is fine—we’ll use a better editor shortly), with the following
contents:

#!/usr/bin/env python3

print("Hello", "World!")

The first line is a comment. In Python,commentsbegin with a # and continue to
the end of the line. (We will explain the rather cryptic comment in a moment.)
The second line is blank—outside quoted strings, Python ignores blank lines,
but they are often useful to humans to break up large blocks of code to make
them easier to read. The third line is Python code. Here, the print() function
is called with two arguments, each of type str (string; i.e., a sequence of char-
acters).

Each statement encountered in a .py file is executed in turn, starting with
the first one and progressing line by line. This is different from some other
languages, for example, C++ and Java, which have a particular function or
method with a special name where they start from. The flow of control can of
course be diverted as we will see when we discuss Python’s control structures
in the next section.

We will assume that Windows users keep their Python code in the C:\py3eg
directory and that Unix (i.e., Unix, Linux, and Mac OS X) users keep their code
in the $HOME/py3eg directory. Save hello.py into the py3eg directory and close
the text editor.

Now that we have a program, we can run it. Python programs are executed
by the Python interpreter, and normally this is done inside a console window.
On Windows the console is called “Console”, or “DOS Prompt”, or “MS-DOS
Prompt”, or something similar, and is usually available from Start→All Pro-
grams→Accessories. On Mac OS X the console is provided by the Terminal.app pro-
gram (located in Applications/Utilities by default), available using Finder, and
on other Unixes, we can use an xterm or the console provided by the windowing
environment, for example, konsole or gnome-terminal.

Start up a console, and on Windows enter the following commands (which
assume that Python is installed in the default location)—the console’s output
is shown in bold; what you type is shown in lightface:

Creating and Running Python Programs 9

C:\>cd c:\py3eg
C:\py3eg\>C:\Python30\python.exe hello.py

Since the cd (change directory) command has an absolute path, it doesn’t
matter which directory you start out from.

Unix users enter this instead (assuming that Python 3 is in the PATH):★

$ cd $HOME/py3eg
$ python3 hello.py

In both cases the output should be the same:

Hello World!

Note that unless stated otherwise, Python’s behavior on Mac OS X is the
same as that on any other Unix system. In fact, whenever we refer to “Unix”
it can be taken to mean Linux, BSD, Mac OS X, and most other Unixes and
Unix-like systems.

Although the program has just one executable statement, by running it we can
infer some information about the print() function. For one thing, print() is a
built-in part of the Python language—we didn’t need to “import” or “include”
it from a library to make use of it. Also, it separates each item it prints with
a single space, and prints a print()

☞ 171

newline after the last item is printed. These are
default behaviors that can be changed, as we will see later. Another thing
worth noting about print() is that it can take as many or as few arguments as
we care to give it.

Typing such command lines to invoke our Python programs would quickly
become tedious. Fortunately, on both Windows and Unix we can use more
convenient approaches. Assuming we are in the py3eg directory, on Windows
we can simply type:

C:\py3eg\>hello.py

Windows uses its registry of file associations to automatically call the Python
interpreter when a filename with extension .py is entered in a console.

If the output on Windows is:

('Hello', 'World!')

then it means that Python 2 is on the system and is being invoked instead
of Python 3. One solution to this is to change the .py file association from
Python 2 to Python 3. The other (less convenient, but safer) solution is to put

★The Unix prompt may well be different from the $ shown here; it does not matter what it is.

10 Chapter 1. Rapid Introduction to Procedural Programming

the Python 3 interpreter in the path (assuming it is installed in the default
location), and execute it explicitly each time:

C:\py3eg\>path=c:\python30;%path%
C:\py3eg\>python hello.py

It might be more convenient to create a py3.bat file with the single line
path=c:\python30;%path% and to save this file in the C:\Windows directory. Then,
whenever you start a console for running Python 3 programs, begin by execut-
ing py3.bat. Or alternatively you can have py3.bat executed automatically. To
do this, change the console’s properties (find the console in the Start menu, then
right-click it to pop up its Properties dialog), and in the Shortcut tab’s Target
string, append the text “ /u /k c:\windows\py3.bat” (note the space before,
between, and after the “/u” and “/k” options, and be sure to add this at the end
after “cmd.exe”).

On Unix, we must first make the file executable, and then we can run it:

$ chmod +x hello.py
$./hello.py

We need to run the chmod command only once of course; after that we can
simply enter ./hello.py and the program will run.

On Unix, when a program is invoked in the console, the file’s first two bytes are
read.★ If these bytes are the ASCII characters #!, the shell assumes that the file
is to be executed by an interpreter and that the file’s first line specifies which
interpreter to use. This line is called the shebang (shell execute) line, and if
present must be the first line in the file.

The shebang line is commonly written in one of two forms, either:

#!/usr/bin/python3

or:

#!/usr/bin/env python3

If written using the first form, the specified interpreter is used. This form
may be necessary for Python programs that are to be run by a web server,
although the specific path may be different from the one shown. If written
using the second form, the first python3 interpreter found in the shell’s current
environment is used. The second form is more versatile because it allows for
the possibility that the Python 3 interpreter is not located in /usr/bin (e.g., it
could be in /usr/local/bin or installed under $HOME). The shebang line is not

★The interaction between the user and the console is handled by a “shell” program. The distinction
between the console and the shell does not concern us here, so we use the terms interchangeably.

Creating and Running Python Programs 11

needed (but is harmless) under Windows; all the examples in this book have a
shebang line of the second form, although we won’t show it.

Note that for Unix systems we assume that the name of Python 3’s executable
(or a soft link to it) in the PATH is python3. If this is not the case, you will need
to change the shebang line in the examples to use the correct name (or correct
name and path if you use the first form), or create a soft link from the Python 3
executable to the name python3 somewhere in the PATH.

Many powerful plain text editors, such as Vim and Emacs, come with built-in
support for editing Python programs. ThissupportOb-

taining
and in-
stalling
Python

4 ☞

typically involvesproviding
color syntax highlighting and correctly indenting or unindenting lines. An al-
ternative is to use the IDLE Python programming environment. On Windows
and Mac OS X, IDLE is installed by default; on Unixes it is often provided as a
separate package as described in the Introduction.

As the screenshot in Figure 1.1 shows, IDLE has a rather retro look that harks
back to the days of Motif on Unix and Windows 95. This is because it uses the
Tk-based Tkinter GUI library (covered in Chapter 13) rather than one of the
more powerful modern GUI libraries such as PyGtk, PyQt, or wxPython. The
reasons for the use of Tkinter are a mixture of history, liberal license condi-
tions, and the fact that Tkinter is much smaller than the other GUI libraries.
On the plus side, IDLE comes as standard with Python and is very simple to
learn and use.

Figure 1.1 IDLE’s Python Shell

IDLE provides three key facilities: the ability to enter Python expressions
and code and to see the results directly in the Python Shell; a code editor that
provides Python-specific color syntax highlighting and indentation support;
and a debugger that can be used to step through code to help identify and kill

Regular Expressions ||||

12 ● Python’s Regular Expression
Language

● The Regular Expression Module

A regular expression is a compact notation for representing a collection of
strings. What makes regular expressions so powerful is that a single regular
expression can represent an unlimited number of strings—providing they
meet the regular expression’s requirements. Regular expressions (which we
will mostly call “regexes” from now on) are defined using a mini-language
that is completely different from Python—but Python includes the re module
through which we can seamlessly create and use regexes.★

Regexes are used for four main purposes:

• Validation: checking whether a piece of text meets some criteria, for
example, contains a currency symbol followed by digits

• Searching: locating substrings that can have more than one form, for
example, finding any of “pet.png”, “pet.jpg”, “pet.jpeg”, or “pet.svg” while
avoiding “carpet.png” and similar

• Searching and replacing: replacing everywhere the regex matches with
a string, for example, finding “bicycle” or “human powered vehicle” and
replacing either with “bike”

• Splitting strings: splitting a string at each place the regex matches, for
example, splitting everywhere “: ” or “=” is encountered

At its simplest a regular expression is an expression (e.g., a literal character),
optionally followed by a quantifier. More complex regexes consist of any
number of quantified expressions and may include assertions and may be
influenced by flags.

★ A good book on regular expressions is Mastering Regular Expressions by Jeffrey E. F. Friedl,
ISBN 0596528124. It does not explicitly cover Python, but Python’s re module offers very similar
functionality to the Perl regular expression engine that the book covers in depth.

445

446 Chapter 12. Regular Expressions

This chapter’s first section introduces and explains all the key regular expres-
sion concepts and shows pure regular expression syntax—it makes minimal
reference to Python itself. Then the second section shows how to use regular
expressions in the context of Python programming,drawing on all the material
covered in the earlier sections. Readers familiar with regular expressions who
just want to learn how they work in Python could skip to the second section
(starting on page 455). The chapter covers the complete regex language offered
by the re module, including all the assertions and flags. We indicate regular
expressions in the text using bold, show where they match using underlining,
and show captures using shading.

Python’s Regular Expression Language |||

In this section we look at the regular expression language in four subsections.
The first subsection shows how to match individual characters or groups of
characters, for example, match a, or match b, or match either a or b. The second
subsection shows how to quantify matches, for example, match once, or match
at least once, or match as many times as possible. The third subsection shows
how to group subexpressions and how to capture matching text, and the final
subsection shows how to use the language’s assertions and flags to affect how
regular expressions work.

Characters and Character Classes ||

The simplest expressions are just literal characters, such as a or 5, and if
no quantifier is explicitly given it is taken to be “match one occurrence”. For
example, the regex tune consists of four expressions, each implicitly quantified
to match once, so it matches one t followed by one u followed by one n followed
by one e, and hence matches the strings tune and attuned.

Although most characters can be used as literals, some are “special charac-
ters”—these are symbols in the regex language and so must be escaped by pre-
ceding them with a backslash (\) to use them as literals. The special characters
are \.^$?+*{}[]()|. Most ofString

escapes

62 ☞

Python’s standard string escapes can also be used
within regexes, for example, \n for newline and \t for tab, as well as hexadeci-
mal escapes for characters using the \xHH, \uHHHH, and \UHHHHHHHH syntaxes.

In many cases, rather than matching one particular character we want to
match any one of a set of characters. This can be achieved by using a character
class—one or more characters enclosed in square brackets. (This has nothing
to do with a Python class, and is simply the regex term for “set of characters”.)
A character class is an expression, and like any other expression, if not explic-
itly quantified it matches exactly one character (which can be any of the char-
acters in the character class). For example, the regex r[ea]d matches both red

Python’s Regular Expression Language 447

and radar, but not read. Similarly, to match a single digit we can use the regex
[0123456789]. For convenience we can specify a range of characters using a hy-
phen, so the regex [0-9] also matches a digit. It is possible to negate the mean-
ing of a character class by following the opening bracket with a caret, so [^0-9]

matches any character that is not a digit.

Note that inside a character class, apart from \, the special characters lose
their special meaning, although in the case of ^ it acquires a new meaning
(negation) if it is the first character in the character class, and otherwise is
simply a literal caret. Also, - signifies a character range unless it is the first
character, in which case it is a literal hyphen.

Since some sets of characters are required so frequently, several have short-
hand forms—these are shown in Table 12.1.With one exception the shorthands
can be used inside character sets, so for example, the regex [\dA-Fa-f] matches
any hexadecimal digit. The exception is . which is a shorthand outside a char-
acter class but matches a literal . inside a character class.

Table 12.1 Character Class Shorthands

Symbol Meaning

. Matches any character except newline; or any character at all with
the re.DOTALL flag; or inside a character class matches a literal . Mean-

ing of
the flags

☞ 451

\d Matches a Unicode digit; or [0-9] with the re.ASCII flag

\D Matches a Unicode nondigit; or [^0-9] with the re.ASCII flag

\s Matches a Unicode whitespace; or [\t\n\r\f\v] with the re.ASCII
flag

\S Matches a Unicode nonwhitespace; or [^ \t\n\r\f\v] with the
re.ASCII flag

\w Matches a Unicode “word” character; or [a-zA-Z0-9_] with the
re.ASCII flag

\W Matches a Unicode non-“word” character; or [^a-zA-Z0-9_] with the
re.ASCII flag

Quantifiers ||

A quantifier has the form {m,n} where m and n are the minimum and maximum
times the expression the quantifier applies to must match. For example, both
e{1,1}e{1,1} and e{2,2} match feel, but neither matches felt.

Writing a quantifier after every expression would soon become tedious, and
is certainly difficult to read. Fortunately, the regex language supports several
convenient shorthands. If only one number is given in the quantifier it is taken
to be both the minimum and the maximum, so e{2} is the same as e{2,2}. And

448 Chapter 12. Regular Expressions

as we noted in the preceding section, if no quantifier is explicitly given, it is
assumed to be one (i.e., {1,1} or {1}); therefore, ee is the same as e{1,1}e{1,1}

and e{1}e{1}, so both e{2} and ee match feel but not felt.

Having a different minimum and maximum is often convenient. For example,
to match travelled and traveled (both legitimate spellings), we could use either
travel{1,2}ed or travell{0,1}ed. The {0,1} quantification is so often used that
it has its own shorthand form, ?, so another way of writing the regex (and the
one most likely to be used in practice) is travell?ed.

Two other quantification shorthands are provided:+ which stands for {1,n} (“at
least one”) and * which stands for {0,n} (“any number of”); in both cases n is the
maximum possible number allowed for a quantifier, usually at least 32767. All
the quantifiers are shown in Table 12.2.

The + quantifier is very useful. For example, to match integers we could use \d+

since this matches one or more digits. This regex could match in two places in
the string 4588.91, for example, 4588.91 and 4588.91. Sometimes typos are the
result of pressing a key too long. We could use the regex bevel+ed to match the
legitimate beveled and bevelled, and the incorrect bevellled. If we wanted to
standardize on the one l spelling, and match only occurrences that had two or
more ls, we could use bevell+ed to find them.

The * quantifier is less useful, simply because it can so often lead to unex-
pected results. For example, supposing that we want to find lines that con-
tain comments in Python files, we might try searching for #*. But this regex
will match any line whatsoever, including blank lines because the meaning
is “match any number of #s”—and that includes none. As a rule of thumb for
those new to regexes, avoid using * at all, and if you do use it (or if you use ?),
make sure there is at least one other expression in the regex that has a non-
zero quantifier—so at least one quantifier other than * or ? since both of these
can match their expression zero times.

It is often possible to convert * uses to + uses and vice versa. For example, we
could match “tasselled” with at least one l using tassell*ed or tassel+ed, and
match those with two or more ls using tasselll*ed or tassell+ed.

If we use the regex \d+ it will match 136. But why does it match all the digits,
rather than just the first one? By default, all quantifiers are greedy—they
match as many characters as they can. We can make any quantifier nongreedy
(also called minimal) by following it with a ? symbol. (The question mark has
two different meanings—on its own it is a shorthand for the {0,1} quantifier,
and when it follows a quantifier it tells the quantifier to be nongreedy.) For
example, \d+? can match the string 136 in three different places: 136, 136, and
136. Here is another example: \d?? matches zero or one digits, but prefers to
match none since it is nongreedy—on its own it suffers the same problem as *

in that it will match nothing, that is, any text at all.

Python’s Regular Expression Language 449

Table 12.2 Regular Expression Quantifiers

Syntax Meaning

e? or e{0,1} Greedily match zero or one occurrence of expression e

e?? or e{0,1}? Nongreedily match zero or one occurrence of expression e

e+ or e{1,} Greedily match one or more occurrences of expression e

e+? or e{1,}? Nongreedily match one or more occurrences of expression e

e* or e{0,} Greedily match zero or more occurrences of expression e

e*? or e{0,}? Nongreedily match zero or more occurrences of expression e

e{m} Match exactly m occurrences of expression e

e{m,} Greedily match at least m occurrences of expression e

e{m,}? Nongreedily match at least m occurrences of expression e

e{,n} Greedily match at most n occurrences of expression e

e{,n}? Nongreedily match at most n occurrences of expression e

e{m,n} Greedily match at least m and at most n occurrencesof expres-
sion e

e{m,n}? Nongreedily match at least m and at most n occurrences of
expression e

Nongreedy quantifiers can be useful for quick and dirty XML and HTML
parsing. For example, to match all the image tags, writing <img.*> (match one
“<”, then one “i”, then one “m”, then one “g”, then zero or more of any character
apart from newline, then one “>”) will not work because the .* part is greedy
and will match everything including the tag’s closing >, and will keep going
until it reaches the last > in the entire text.

Three solutions present themselves (apart from using a proper parser). One
is <img[^>]*> (match <img, then any number of non-> characters and then the
tag’s closing > character), another is <img.*?> (match <img, then any number of
characters, but nongreedily, so it will stop immediately before the tag’s closing
>, and then the >), and a third combines both, as in <img[^>]*?>. None of them
is correct, though, since they can all match , which is not valid. Since
we know that an image tag must have a src attribute, a more accurate regex
is <img\s+[^>]*?src=\w+[^>]*?>. This matches the literal characters <img, then
one or more whitespace characters, then nongreedily zero or more of anything
except > (to skip any other attributes such as alt), then the src attribute (the
literal characters src= then at least one “word” character), and then any other
non-> characters (including none) to account for any other attributes, and
finally the closing >.

450 Chapter 12. Regular Expressions

Grouping and Capturing ||

In practical applications we often need regexes that can match any one of two
or more alternatives, and we often need to capture the match or some part
of the match for further processing. Also, we sometimes want a quantifier to
apply to several expressions. All of these can be achieved by grouping with (),
and in the case of alternatives using alternation with |.

Alternation is especially useful when we want to match any one of several
quite different alternatives. For example, the regex aircraft|airplane|jet

will match any text that contains “aircraft” or “airplane” or “jet”. The
same thing can be achieved using the regex air(craft|plane)|jet. Here, the
parentheses are used to group expressions, so we have two outer expres-
sions, air(craft|plane) and jet. The first of these has an inner expression,
craft|plane, and because this is preceded by air the first outer expression can
match only “aircraft” or “airplane”.

Parentheses serve two different purposes—to group expressions and to capture
the text that matches an expression. We will use the term group to refer to a
grouped expression whether it captures or not, and capture and capture group
to refer to a captured group. If we used the regex (aircraft|airplane|jet) it
would not only match any of the three expressions, but would also capture
whichever one was matched for later reference. Compare this with the regex
(air(craft|plane)|jet) which has two captures if the first expression matches
(“aircraft” or “airplane” as the first capture and “craft” or “plane” as the second
capture), and one capture if the second expression matches (“jet”). We can
switch off the capturing effect by following an opening parenthesis with ?:, so
for example, (air(?:craft|plane)|jet) will have only one capture if it matches
(“aircraft” or “airplane” or “jet”).

A grouped expression is an expression and so can be quantified. Like any
other expression the quantity is assumed to be one unless explicitly given. For
example, if we have read a text file with lines of the form key=value, where
each key is alphanumeric, the regex (\w+)=(.+) will match every line that has a
nonempty key and a nonempty value. (Recall that . matches anything except
newlines.) And for every line that matches, two captures are made, the first
being the key and the second being the value.

For example, the key=value regular expression will match the entire line
topic= physical geography with the two captures shown shaded. Notice that
the second capture includes some whitespace, and that whitespace before the
= is not accepted. We could refine the regex to be more flexible in accepting
whitespace, and to strip off unwanted whitespace using a somewhat longer
version:

[\t]*(\w+)[\t]*=[\t]*(.+)

Python’s Regular Expression Language 451

This matches the same line as before and also lines that have whitespace
around the = sign, but with the first capture having no leading or trailing
whitespace, and the second capture having no leading whitespace. For exam-
ple: topic = physical geography.

We have been careful to keep the whitespace matching parts outside the cap-
turing parentheses, and to allow for lines that have no whitespace at all. We
did not use \s to match whitespace because that matches Regex

flags

☞ 460

newlines (\n) which
could lead to incorrect matches that span lines (e.g., if the re.MULTILINE flag
is used). And for the value we did not use \S to match nonwhitespace because
we want to allow for values that contain whitespace (e.g., English sentences).
To avoid the second capture having trailing whitespace we would need a more
sophisticated regex; we will see this in the next subsection.

Captures can be referred to using backreferences, that is, by referring back to
an earlier capture group.★ One syntax for backreferences inside regexes them-
selves is \i where i is the capture number. Captures are numbered starting
from one and increasing by one going from left to right as each new (capturing)
left parenthesis is encountered. For example, to simplistically match duplicat-
ed words we can use the regex (\w+)\s+\1 which matches a “word”, then at least
one whitespace, and then the same word as was captured. (Capture number
0 is created automatically without the need for parentheses; it holds the entire
match, that is, what we show underlined.) We will see a more sophisticated
way to match duplicate words later.

In long or complicated regexes it is often more convenient to use names
rather than numbers for captures. This can also make maintenance easier
since adding or removing capturing parentheses may change the numbers
but won’t affect names. To name a capture we follow the opening parenthesis
with ?P<name>. For example, (?P<key>\w+)=(?P<value>.+) has two captures called
"key" and "value". The syntax for backreferences to named captures inside a
regex is (?P=name). For example, (?P<word>\w+)\s+(?P=word) matches duplicate
words using a capture called "word".

Assertions and Flags ||

One problem that affects many of the regexes we have looked at so far is that
they can match more or different text than we intended. For example, the
regex aircraft|airplane|jet will match “waterjet” and “jetski” as well as “jet”.
This kind of problem can be solved by using assertions. An assertion does not
match any text, but instead says something about the text at the point where
the assertion occurs.

★Note that backreferences cannot be used inside character classes, that is, inside [].

452 Chapter 12. Regular Expressions

One assertion is \b (word boundary), which asserts that the character that pre-
cedes it must be a “word” (\w) and the character that follows it must be a non-
“word” (\W), or vice versa. For example, although the regex jet can match twice
in the text the jet and jetski are noisy, that is, the jet and jetski are noisy,
the regex \bjet\b will match only once, the jet and jetski are noisy. In the
context of the original regex, we could write it either as \baircraft\b|\bair-

plane\b|\bjet\b or more clearly as \b(?:aircraft|airplane|jet)\b, that is, word
boundary, noncapturing expression, word boundary.

Many other assertions are supported, as shown in Table 12.3. We could use
assertions to improve the clarity of a key=value regex, for example, by chang-
ing it to ^(\w+)=([^\n]+) and setting the re.MULTILINE flag to ensure that each
key=value is taken from a single line with no possibility of spanning lines. (The
flags are shown in Table 12.5 on page 460, and the syntaxes for using them are
described at the end of this subsection and are shown in the next section.) And
if we also want to strip leading and trailing whitespace and use named cap-
tures, the full regex becomes:

^[\t]*(?P<key>\w+)[\t]*=[\t]*(?P<value>[^\n]+)(?<![\t])

Even though this regex is designed for a fairly simple task, it looks quite com-
plicated. One way to make it more maintainable is to include comments in it.
This can be done by adding inline comments using the syntax (?#the comment),
but in practice comments Regex

flags

☞ 460

like this can easily make the regex even more diffi-
cult to read. A much nicer solution is to use the re.VERBOSE flag—this allows
us to freely use whitespace and normal Python comments in regexes, with the
one constraint that if we need to match whitespace we must either use \s or a
character class such as []. Here’s the key=value regex with comments:

^[\t]* # start of line and optional leading whitespace

(?P<key>\w+) # the key text

[\t]*=[\t]* # the equals with optional surrounding whitespace

(?P<value>[^\n]+) # the value text

(?<![\t]) # negative lookbehind to avoid trailing whitespace

In the context of a Python program we would normally write a regex likeRaw
strings

62 ☞

this
inside a raw triple quoted string—raw so that we don’t have to double up the
backslashes, and triple quoted so that we can spread it over multiple lines.

In addition to the assertions we have discussed so far, there are additional
assertions which look at the text in front of (or behind) the assertion to see
whether it matches (or does not match) an expression we specify. The expres-
sions that can be used in lookbehind assertions must be of fixed length (so the
quantifiers ?, +, and * cannot be used, and numeric quantifiers must be of a
fixed size, for example, {3}).

Python’s Regular Expression Language 453

Table 12.3 Regular Expression Assertions

Symbol Meaning

^ Matches at the start; also matches after each newline with Regex
flags

☞ 460

the
re.MULTILINE flag

$ Matches at the end; also matches before each newline with the
re.MULTILINE flag

\A Matches at the start

\b Matches at a “word” boundary; influenced by the re.ASCII
flag—inside a character class this is the escape for the backspace
character

\B Matches at a non-“word” boundary; influenced by the re.ASCII flag

\Z Matches at the end

(?=e) Matches if the expression e matches at this assertion but does not
advance over it—called lookahead or positive lookahead

(?!e) Matches if the expression e does not match at this assertion and
does not advance over it—called negative lookahead

(?<=e) Matches if the expression e matches immediately before this
assertion—called positive lookbehind

(?<!e) Matches if the expression e does not match immediately before this
assertion—called negative lookbehind

In the case of the key=value regex, the negative lookbehind assertion means
that at the point it occurs the preceding character must not be a space or a tab.
This has the effect of ensuring that the last character captured into the "value"
capture group is not a space or tab (yet without preventing spaces or tabs from
appearing inside the captured text).

Let’s consider another example. Suppose we are reading a multiline
text that contains the names “Helen Patricia Sharman”, “Jim Sharman”,
“Sharman Joshi”, “Helen Kelly”, and so on, and we want to match “Helen
Patricia”, but only when referring to “Helen Patricia Sharman”. The easi-
est way is to use the regex \b(Helen\s+Patricia)\s+Sharman\b. But we could
also achieve the same thing using a lookahead assertion, for example,
\b(Helen\s+Patricia)(?=\s+Sharman\b). This will match “Helen Patricia” only if
it is preceded by a word boundary and followed by whitespace and “Sharman”
ending at a word boundary.

To capture the particular variation of the forenames that is used (“Helen”,
“Helen P.”, or “Helen Patricia”), we could make the regex slightly more so-
phisticated, for example, \b(Helen(?:\s+(?:P\.|Patricia))?)\s+(?=Sharman\b).
This matches a word boundary followed by one of the forename forms—but

454 Chapter 12. Regular Expressions

only if this is followed by some whitespace and then “Sharman” and a word
boundary.

Note that only two syntaxes perform capturing, (e) and (?P<name>e). None
of the other parenthesized forms captures. This makes perfect sense for the
lookahead and lookbehind assertions since they only make a statement about
what follows or precedes them—they are not part of the match, but rather af-
fect whether a match is made. It also makes sense for the last two parenthe-
sized forms that we will now consider.

We saw earlier how we can backreference a capture inside a regex either
by number (e.g., \1) or by name (e.g., (?P=name)). It is also possible to match
conditionally depending on whether an earlier match occurred. The syntaxes
are (?(id)yes_exp) and (?(id)yes_exp|no_exp). The id is the name or number
of an earlier capture that we are referring to. If the capture succeeded the
yes_exp will be matched here. If the capture failed the no_exp will be matched
if it is given.

Let’s consider an example. Suppose we want to extract the filenames re-
ferred to by the src attribute in HTML img tags. We will begin just by try-
ing to match the src attribute, but unlike our earlier attempt we will account
for the three forms that the attribute’s value can take: single quoted, double
quoted, and unquoted. Here is an initial attempt: src=(["'])([^"'>]+)\1. The
([^"'>]+) part captures a greedy match of at least one character that isn’t
a quote or >. This regex works fine for quoted filenames, and thanks to the
\1 matches only when the opening and closing quotes are the same. But it
does not allow for unquoted filenames. To fix this we must make the open-
ing quote optional and therefore match only it if it is present. Here is the re-
vised regex: src=(["'])?([^"'>]+)(?(1)\1). We did not provide a no_exp since
there is nothing to match if no quote is given. Now we are ready to put the
regex in context—here is the complete img tag regex using named groups and
comments:

<img\s+ # start of the tag

[^>]*? # any attributes that precede the src

src= # start of the src attribute

(?P<quote>["'])? # optional opening quote

(?P<image>[^"'>]+) # image filename

(?(quote)(?P=quote)) # closing quote (matches opening quote if given)

[^>]*? # any attributes that follow the src

> # end of the tag

The filename capture is called "image" (which happens to be capture num-
ber 2).

Of course, there is a simpler but subtler alternative: src=(["']?)([^"'>]+)\1.
Here, if there is a starting quote character it is captured into capture group 1

Python’s Regular Expression Language 455

and matched after the nonquote characters. And if there is no starting quote
character, group 1 will still match—an empty string since it is completely
optional (its quantifier is zero or one), in which case the backreference will also
match an empty string.

The final piece of regex syntax that Python’s regular expression engine offers
is a means of setting the flags. Usually the flags are set by passing them as
additional parameters when calling the re.compile() function, but sometimes
it is more convenient to set them as part of the regex itself. The syntax is
simply (?flags) where Regex

flags

☞ 460

flags is one or more of a (the same as passing re.ASCII),
i (re.IGNORECASE), m (re.MULTILINE), s (re.DOTALL), and x (re.VERBOSE).★ If the
flags are set this way they should be put at the start of the regex; they match
nothing, so their effect on the regex is only to set the flags.

The Regular Expression Module |||

The re module provides two ways of working with regexes. One is to use
the functions listed in Table 12.4, where each function is given a regex as its
first argument. Each function converts the regex into an internal format—a
process called compiling—and then does its work. This is very convenient for
one-off uses, but if we need to use the same regex repeatedly we can avoid
the cost of compiling it at each use by compiling it once using the re.compile()
function. We can then call methods on the compiled regex object as many times
as we like. The compiled regex methods are listed in Table 12.6.

match = re.search(r"#[\dA-Fa-f]{6}\b", text)

This code snippet shows the use of an re module function. The regex matches
HTML-style colors (such as #C0C0AB). If a match is found the re.search() func-
tion returns a match object; otherwise, it returns None. The methods provided
by match objects are listed in Table 12.7

If we were going to use this regex repeatedly, we could compile it once and then
use the compiled regex whenever we needed it:

color_re = re.compile(r"#[\dA-Fa-f]{6}\b")
match = color_re.search(text)

As we noted earlier, we use raw strings to avoid having to escape backslashes.
Another way of writing this regex would be to use the character class [\dA-F]

and pass the re.IGNORECASE flag as the last argument to the re.compile() call, or
to use the regex (?i)#[\dA-F]{6}\b which starts with the ignore case flag.

★The letters used for the flags are the same as the ones used by Perl’s regex engine, which is why
s is used for re.DOTALL and x is used for re.VERBOSE.

456 Chapter 12. Regular Expressions

If more than one flag is required they can be combined using the OR operator (|),
for example, re.MULTILINE|re.DOTALL, or (?ms) if embedded in the regex itself.

We will round off this section by reviewing some examples, starting with some
of the regexes shown in earlier sections, so as to illustrate the most commonly
used functionality that the re module provides. Let’s start with a regex to spot
duplicate words:

double_word_re = re.compile(r"\b(?P<word>\w+)\s+(?P=word)(?!\w)",
re.IGNORECASE)

for match in double_word_re.finditer(text):
print("{0} is duplicated".format(match.group("word")))

The regex is slightly more sophisticated than the version we made earlier. It
starts at a word boundary (to ensure that each match starts at the beginning
of a word), then greedily matches one or more “word” characters, then one or
more whitespace characters, then the same word again—but only if the second
occurrence of the word is not followed by a word character.

If the input text was “win in vain”, without the first assertion there would
be one match and two captures: win in vain. The use of the word boundary
assertion ensures that the first word matched is a whole word, so we end up
with no match or capture since there is no duplicate word. Similarly, if the
input text was “one and and two let’s say”, without the last assertion there
would be two matches and two captures: one and and two let's say. The use of
the lookahead assertion means that the second word matched is a whole word,
so we end up with one match and one capture: one and and two let's say.

The for loop iterates over every match object returned by the finditer()
method and we use the match object’s group() method to retrieve the cap-
tured group’s text. We could just as easily (but less maintainably) have used
group(1)—in which case we need not have named the capture group at all and
just used the regex (\w+)\s+\1(?!\w). Another point to note is that we could
have used a word boundary \b at the end, instead of (?!\w).

Another example we presented earlier was a regex for finding the filenames
in HTML image tags. Here is how we would compile the regex, adding flags so
that it is not case-sensitive, and allowing us to include comments:

image_re = re.compile(r"""
<img\s+ # start of tag
[^>]*? # non-src attributes
src= # start of src attribute
(?P<quote>["'])? # optional opening quote
(?P<image>[^"'>]+) # image filename
(?(quote)(?P=quote)) # closing quote
[^>]*? # non-src attributes
> # end of the tag

The Regular Expression Module 457

""", re.IGNORECASE|re.VERBOSE)
image_files = []
for match in image_re.finditer(text):

image_files.append(match.group("image"))

Again we use the finditer() method to retrieve each match and the match
object’s group() function to retrieve the captured texts. Since the case insensi-
tivity applies only to img and src, we could drop the re.IGNORECASE flag and use
[Ii][Mm][Gg] and [Ss][Rr][Cc] instead. Although this would make the regex
less clear, it might make it faster since it would not require the text being
matched to be set to upper- (or lower-) case—but it is likely to make a difference
only if the regex was being used on a very large amount of text.

One common task is to take an HTML text and output just the plain text that
it contains. Naturally we could do this using one of Python’s parsers, but a
simple tool can be created using regexes. There are three tasks that need to be
done: delete any tags, replace entities with the characters they represent, and
insert blank lines to separate paragraphs. Here is a function (taken from the
html2text.py program) that does the job:

def html2text(html_text):
def char_from_entity(match):

code = html.entities.name2codepoint.get(match.group(1), 0xFFFD)
return chr(code)

text = re.sub(r"<!--(?:.|\n)*?-->", "", html_text) #1
text = re.sub(r"<[Pp][^>]*?(?!</)>", "\n\n", text) #2
text = re.sub(r"<[^>]*?>", "", text) #3
text = re.sub(r"&#(\d+);", lambda m: chr(int(m.group(1))), text)
text = re.sub(r"&([A-Za-z]+);", char_from_entity, text) #5
text = re.sub(r"\n(?:[\xA0\t]+\n)+", "\n", text) #6
return re.sub(r"\n\n+", "\n\n", text.strip()) #7

The first regex, <!--(?:.|\n)*?-->, matches HTML comments, including those
with other HTML tags nested inside them. The re.sub() function replaces
as many matches as it finds with the replacement—deleting the matches if
the replacement is an empty string, as it is here. (We can specify a maximum
number of matches by giving an additional integer argument at the end.)

We are careful to use nongreedy (minimal) matching to ensure that we delete
one comment for each match; if we did not do this we would delete from the
start of the first comment to the end of the last comment.

The re.sub() function does not accept any flags as arguments, so . means “any
character except newline”, so we must look for . or \n. And we must look for
these using alternation rather than a character class, since inside a character
class . has its literal meaning, that is, period. An alternative would be to begin
the regex with the flag embedded, for example, (?s)<!--.*?-->, or we could

458 Chapter 12. Regular Expressions

compile a regex object with the re.DOTALL flag, in which case the regex would
simply be <!--.*?-->.

The second regex, <[Pp][^>]*?(?!</)>, matches opening paragraph tags (such
as <P> or <p align=center>). It matches the opening <p (or <P), then any attributes
(using nongreedy matching), and finally the closing >, providing it is not pre-
ceded by / (using a negative lookbehind assertion), since that would indicate a
closing paragraph tag. The second call to the re.sub() function uses this regex
to replace opening paragraph tags with two newline characters (the standard
way to delimit a paragraph in a plain text file).

The third regex, <[^>]*?>, matches any tag and is used in the third re.sub() call
to delete all the remaining tags.

HTML entities are a way of specifying non-ASCII characters using ASCII
characters. They come in two forms: &name; where name is the name of the
character—for example, © for ©, and &#digits; where digits are decimal
digits identifying the Unicode code point—for example, ¥ for ¥. The fourth
call to re.sub() uses the regex &#(\d+);, which matches the digits form and
captures the digits into capture group 1. Instead of a literal replacement text
we have passed a lambda function. When a function is passed to re.sub() it
calls the function once for each time it matches, passing the match object as the
function’s sole argument. Inside the lambda function we retrieve the digits (as a
string), convert to an integer using the built-in int() function, and then use the
built-in chr() function to obtain the Unicode character for the given code point.
The function’s return value (or in the case of a lambda expression, the result of
the expression) is used as the replacement text.

The fifth re.sub() call uses the regex &([A-Za-z]+); to capture named entities.
The standard library’s html.entities module contains dictionaries of entities,
including name2codepoint whose keys are entity names and whose values are in-
teger code points. The re.sub() function calls the local char_from_entity() func-
tion every time it has a match. The char_from_entity() function uses dict.get()
with a default argument of 0xFFFD (the code point of the standard Unicode
replacement character—often depicted as ?). This ensures that a code point
is always retrieved and it is used with the chr() function to return a suitable
character to replace the named entity with—using the Unicode replacement
character if the entity name is invalid.

The sixth re.sub() call’s regex, \n(?:[\xA0\t]+\n)+, is used to delete lines that
contain only whitespace. The character class we have used contains a space,
a nonbreaking space (which entities are replaced with in the preceding
regex), and a tab. The regex matches a newline (the one at the end of a line
that precedes one or more whitespace-only lines), then at least one (and as
many as possible) lines that contain only whitespace. Since the match includes
the newline, from the line preceding the whitespace-only lines we must replace

The Regular Expression Module 459

the match with a single newline; otherwise, we would delete not just the
whitespace-only lines but also the newline of the line that preceded them.

The result of the seventh and last re.sub() call is returned to the caller. This
regex, \n\n+, is used to replace sequences of two or more newlines with exactly
two newlines, that is, to ensure that each paragraph is separated by just one
blank line.

In the HTML example none of the replacements were directly taken from the
match (although HTML entity names and numbers were used), but in some
situations the replacement might need to include all or some of the matching
text. For example, if we have a list of names, each of the form Forename Mid-
dlename1… MiddlenameN Surname, where there may be any number of mid-
dle names (including none), and we want to produce a new version of the list
with each item of the form Surname,ForenameMiddlename1…MiddlenameN,
we can easily do so using a regex:

new_names = []
for name in names:

name = re.sub(r"(\w+(?:\s+\w+)*)\s+(\w+)", r"\2, \1", name)
new_names.append(name)

The first part of the regex, (\w+(?:\s+\w+)*), matches the forename with the
first \w+ expression and zero or more middle names with the (?:\s+\w+)* ex-
pression. The middle name expression matches zero or more occurrences of
whitespace followed by a word. The second part of the regex, \s+(\w+), match-
es the whitespace that follows the forename (and middle names) and the sur-
name.

If the regex looks a bit too much like line noise, we can use named capture
groups to improve legibility and make it more maintainable:

name = re.sub(r"(?P<forenames>\w+(?:\s+\w+)*)"
r"\s+(?P<surname>\w+)",
r"\g<surname>, \g<forenames>", name)

Captured text can be referred to in a sub() or subn() function or method by
using the syntax \i or \g<id> where i is the number of the capture group and
id is the name or number of the capture group—so \1 is the same as \g<1>, and
in this example, the same as \g<forenames>. This syntax can also be used in the
string passed to a match object’s expand() method.

Why doesn’t the first part of the regex grab the entire name? After all, it is
using greedy matching. In fact it will, but then the match will fail because
although the middle names part can match zero or more times, the surname
part must match exactly once, but the greedy middle names part has grabbed
everything. Having failed, the regular expression engine will then backtrack,
giving up the last “middle name” and thus allowing the surname to match.

460 Chapter 12. Regular Expressions

Table 12.4 The Regular Expression Module’s Functions

Syntax Description

re.compile(
r, f)

Returns compiled regex r with its flags set to f if specified

re.escape(s) Returns string s with all nonalphanumeric characters
backslash-escaped—therefore, the returned string has no
special regex characters

re.findall(
r, s, f)

Returns all nonoverlapping matches of regex r in string s
(influenced by the flags f if given). If the regex has captures,
each match is returned as a tuple of captures.

re.finditer(
r, s, f)

Returns a match object for each nonoverlapping match of
regex r in string s (influenced by the flags f if given)

re.match(
r, s, f)

Returns a match object if the regex r matches at the start
of string s (influenced by the flags f if given); otherwise,
returns None

re.search(
r, s, f)

Returns a match object if the regex r matches anywhere
in string s (influenced by the flags f if given); otherwise,
returns None

re.split(
r, s, m)

Returns the list of strings that results from splitting string s
on every occurrence of regex r doing up to m splits (or as many
as possible if no m is given). If the regex has captures, these
are included in the list between the parts they split.

re.sub(
r, x,
s, m)

Returns a copy of string s with every (or up to m if given)
match of regex r replaced with x—this can be a string or a
function; see text

re.subn(
r, x,
s m)

The same as re.sub() except that it returns a 2-tuple of
the resultant string and the number of substitutions that
were made

Table 12.5 The Regular Expression Module’s Flags

Flag Meaning

re.A or re.ASCII Makes \b, \B, \s, \S, \w, and \W assume that strings are
ASCII; the default is for these character class short-
hands to depend on the Unicode specification

re.I or re.IGNORECASE Makes the regex match case-insensitively

re.M or re.MULTILINE Makes ^ match at the start and after each newline
and $ match before each newline and at the end

re.S or re.DOTALL Makes . match every character including newlines

re.X or re.VERBOSE Allows whitespace and comments to be included

The Regular Expression Module 461

Table 12.6 Regular Expression Object Methods

Syntax Description

rx.findall(s
start, end)

Returns all nonoverlapping matchesof the regex in string
s (or in the start:end slice of s). If the regex has captures,
each match is returned as a tuple of captures.

rx.finditer(s
start, end)

Returns a match object for each nonoverlapping match in
string s (or in the start:end slice of s)

rx.flags The flags that were set when the regex was compiled

rx.groupindex A dictionary whose keys are capture group names and
whose values are group numbers; empty if no names
are used

rx.match(s,
start, end)

Returns a match object if the regex matches at the start
of string s (or at the start of the start:end slice of s);
otherwise, returns None

rx.pattern The string from which the regex was compiled

rx.search(s,
start, end)

Returns a match object if the regex matches anywhere in
string s (or in the start:end slice of s); otherwise, returns
None

rx.split(s, m) Returns the list of strings that results from splitting
string s on every occurrence of the regex doing up to m

splits (or as many as possible if no m is given). If the regex
has captures, these are included in the list between the
parts they split.

rx.sub(x, s, m) Returns a copy of string s with every (or up to m if given)
match replaced with x—this can be a string or a function;
see text

rx.subn(x, s m) The same as re.sub() except that it returns a 2-tuple of
the resultant string and the number of substitutions that
were made

Although greedy matches match as much as possible, they stop if matching
more would make the match fail.

For example, if the name is “James W. Loewen”, the regex will first match the
entire name, that is, James W. Loewen. This satisfies the first part of the regex
but leaves nothing for the surname part to match, and since the surname is
mandatory (it has an implicit quantifier of 1), the regex has failed. Since the
middle names part is quantified by *, it can match zero or more times (current-
ly it is matching twice, “ W.” and “ Loewen”), so the regular expression engine
can make it give up some of its match without causing it to fail. Therefore,
the regex backtracks, giving up the last \s+\w+ (i.e., “ Loewen”), so the match

462 Chapter 12. Regular Expressions

becomes James W. Loewen with the match satisfying the whole regex and with
the two match groups containing the correct texts.

When we use alternation (|) with two or more alternatives capturing, we don’t
know which alternative matched, so we don’t know which capture group to
retrieve the captured text from. We can of course iterate over all the groups
to find the nonempty one, but quite often in this situation the match object’s
lastindex attribute can give us the number of the group we want. We will
look at one last example to illustrate this and to give us a little bit more regex
practice.

Suppose we want to find out what encoding an HTML, XML, or Python file is
using. We could open the file in binary mode, and read, say, the first 1000 bytes
into a bytes object. We could then close the file, look for an encoding in the
bytes, and reopen the file in text mode using the encoding we found or using
a fallback encoding (such as UTF-8). The regex engine expects regexes to be
supplied as strings, but the text the regex is applied to can be a str, bytes, or
bytearray object, and when bytes or bytearray objects are used, all the functions
and methods return bytes instead of strings, and the re.ASCII flag is implicitly
switched on.

For HTML files the encoding is normally specified in a <meta> tag (if speci-
fied at all), for example, <meta http-equiv='Content-Type' content='text/html;
charset=ISO-8859-1'/>. XML files are UTF-8 by default, but this can be overrid-
den, for example, <?xml version="1.0" encoding="Shift_JIS"?>. Python 3 files are
also UTF-8 by default,but again this can be overridden by including a line such
as # encoding: latin1 or # -*- coding: latin1 -*- immediately after the shebang
line.

Here is how we would find the encoding, assuming that the variable binary is a
bytes object containing the first 1000 bytes of an HTML, XML, or Python file:

match = re.search(r"""(?<![-\w]) #1
(?:(?:en)?coding|charset) #2
(?:=(["'])?([-\w]+)(?(1)\1) #3
|:\s*([-\w]+))""".encode("utf8"),

binary, re.IGNORECASE|re.VERBOSE)
encoding = match.group(match.lastindex) if match else b"utf8"

To search a bytes object we must specify a pattern that is also a bytes object.
In this case we want the convenience of using a raw string, so we use one and
convert it to a bytes object as the re.search() function’s first argument.

The first part of the regex itself is a lookbehind assertion that says that the
match cannot be preceded by a hypen or a word character. TheCon-

ditional
match-
ing

454 ☞

second part
matches “encoding”, “coding”, or “charset” and could have been written as
(?:encoding|coding|charset). We have made the third part span two lines to
emphasise the fact that it has two alternating parts, =(["'])?([-\w]+)(?(1)\1)

The Regular Expression Module 463

Table 12.7 Match Object Attributes and Methods

Syntax Description

m.end(g) Returns the end position of the match in the text for group
g if given (or for group 0, the whole match); returns -1 if the
group did not participate in the match

m.endpos The search’s end position (the end of the text or the end given
to match() or search())

m.expand(s) Returns string s with capture markers (\1, \2, \g<name>, and
similar) replaced by the corresponding captures

m.group(g,
...)

Returns the numbered or named capture group g; if more
than one is given a tuple of corresponding capture groups is
returned (the whole match is group 0)

m.groupdict(
default)

Returns a dictionary of all the named capture groups with
the names as keys and the captures as values; if a default is
given this is the value used for capture groups that did not
participate in the match

m.groups(
default)

Returns a tuple of all the capture groups starting from 1; if a
default is given this is the value used for capture groups that
did not participate in the match

m.lastgroup The name of the highest numbered capturing group that
matched or None if there isn’t one or if no names are used

m.lastindex The number of the highest capturing group that matched or
None if there isn’t one

m.pos The start position to look from (the start of the text or the
start given to match() or search())

m.re The regex object which produced this match object

m.span(g) Returns the start and end positions of the match in the text
for group g if given (or for group 0, the whole match); returns
(-1, -1) if the group did not participate in the match

m.start(g) Returns the start position of the match in the text for group
g if given (or for group 0, the whole match); returns -1 if the
group did not participate in the match

m.string The string that was passed to match() or search()

and :\s*([-\w]+), only one of which can match. The first of these matches an
equals sign followed by one or more word or hyphen characters (optionally en-
closed in matching quotes using a conditional match), and the second matches
a colon and then optional whitespace followed by one or more word or hyphen
characters. (Recall that a hyphen inside a character class is taken to be a literal
hyphen if it is the first character; otherwise, it means a range of characters, for
example, [0-9].)

464 Chapter 12. Regular Expressions

We have used the re.IGNORECASE flag to avoid having to write (?:(?:[Ee][Nn])?

[Cc][Oo][Dd][Ii][Nn][Gg]|[Cc][Hh][Aa][Rr][Ss][Ee][Tt]) and we have used the
re.VERBOSE flag so that we can lay out the regex neatly and include comments
(in this case just numbers to make the parts easy to refer to in this text).

There are three capturing match groups, all in the third part: (["'])? which
captures the optional opening quote, ([-\w]+) which captures an encoding
that follows an equals sign, and the second ([-\w]+) (on the following line)
that captures an encoding that follows a colon. We are only interested in the
encoding, so we want to retrieve either the second or third capture group, only
one of which can match since they are alternatives. The lastindex attribute
holds the index of the last matching capture group (either 2 or 3 when a match
occurs in this example), so we retrieve whichever matched, or use a default
encoding if no match was made.

We have now seen all of the most frequently used re module functionality in
action, so we will conclude this section by mentioning one last function. The
re.split() function (or the regex object’s split() method) can split strings
based on a regex. One common requirement is to split a text on whitespace
to get a list of words. This can be done using re.split(r"\s+", text) which re-
turns a list of words (or more precisely a list of strings, each of which match-
es \S+). Regular expressions are very powerful and useful, and once they are
learned, it is easy to see all text problems as requiring a regex solution. But
sometimes using string methods is both sufficient and more appropriate. For
example, we can just as easily split on whitespace by using text.split() since
the str.split() method’s default behavior (or with a first argument of None) is
to split on \s+.

Summary |||

Regular expressions offer a powerful way of searching texts for strings that
match a particular pattern, and for replacing such strings with other strings
which themselves can depend on what was matched.

In this chapter we saw that most characters are matched literally and
are implicitly quantified by {1}. We also learned how to specify character
classes—sets of characters to match—and how to negate such sets and include
ranges of characters in them without having to write each character individu-
ally.

We learned how to quantify expressions to match a specific number of times
or to match from a given minimum to a given maximum number of times, and
how to use greedy and nongreedy matching. We also learned how to group one
or more expressions together so that they can be quantified (and optionally
captured) as a unit.

Summary 465

The chapter also showed how what is matched can be affected by using various
assertions, such as positive and negative lookahead and lookbehind, and
by various flags, for example, to control the interpretation of the period and
whether to use case-insensitive matching.

The final section showed how to put regexes to use within the context of Python
programs. In this section we learned how to use the functions provided by the
re module, and the methods available from compiled regexes and from match
objects. We also learned how to replace matches with literal strings, with
literal strings that contain backreferences, and with the results of function
calls or lambda expressions, and how to make regexes more maintainable by
using named captures and comments.

Exercises |||

1. In many contexts (e.g., in some web forms), users must enter a phone
number, and some of these irritate users by accepting only a specific for-
mat. Write a program that reads U.S. phone numbers with the three-digit
area and seven-digit local codes accepted as ten digits, or separated into
blocks using hyphens or spaces, and with the area code optionally enclosed
in parentheses. For example, all of these are valid: 555-555-5555, (555)
5555555, (555) 555 5555, and 5555555555. Read the phone numbers from
sys.stdin and for each one echo the number in the form “(555) 555 5555”
or report an error for any that are invalid.

The regex to match these phone numbers is about eight lines long (in
verbose mode) and is quite straightforward. A solution is provided in
phone.py, which is about twenty-five lines long.

2. Write a small program that reads an XML or HTML file specified on the
command line and for each tag that has attributes, outputs the name of
the tag with its attributes shown underneath. For example, here is an ex-
tract from the program’s output when given one of the Python documenta-
tion’s index.html files:

html
 xmlns = http://www.w3.org/1999/xhtml
meta
 http-equiv = Content-Type
 content = text/html; charset=utf-8
li
 class = right
 style = margin-right: 10px

One approach is to use two regexes, one to capture tags with their at-
tributes and another to extract the name and value of each attribute. At-

466 Chapter 12. Regular Expressions

tribute values might be quoted using single or double quotes (in which case
they may contain whitespace and the quotes that are not used to enclose
them), or they may be unquoted (in which case they cannot contain white-
space or quotes).It is probably easiest to start by creating a regex to handle
quoted and unquoted values separately, and then merging the two regexes
into a single regex to cover both cases. It is best to use named groups to
make the regex more readable. This is not easy, especially since backref-
erences cannot be used inside character classes.

A solution is provided in extract_tags.py, which is less than 35 lines long.
The tag and attributes regex is just one line. The attribute name–value
regex is half a dozen lines and uses alternation, conditional matching
(twice, with one nested inside the other), and both greedy and nongreedy
quantifiers.

Index
All functions and methods are listed under their class or module, and in most
cases also as top-level terms in their own right. For modules that contain classes,
look under the class for its methods. Where a method or function name is close
enough to a concept, the concept is not usually listed. For example, there is no
entry for “splitting strings”,but there are entries for the str.split() method.

Symbols

!= (not equal operator), 231, 232,
249, 369

comment character, 8
% (modulus/remainder operator), 52,

243
%= (modulus augmented assignment

operator), 243
& (bitwise AND operator), 53, 114, 115,

121, 243
&= (bitwise AND augmented assign-

ment operator), 115, 243
() (tuple creation operator, func-

tion and method call operator,
expression operator), 331, 367,
373

* (multiplication operator, replica-
tion operator, sequence unpack-
er, from … import operator), 52,
70, 84, 100, 102, 105, 130, 187,
190–191, 243, 325, 369, 416

*= (multiplication augmented as-
signment operator, replication
augmented assignment opera-
tor), 70, 100, 105, 243

** (power/exponentiation operator,
mapping unpacker), 52, 169,
243, 294, 369

**= (power/exponentiation aug-
mented assignment operator),
243

+ (addition operator, concatenation
operator), 52, 100, 105, 130, 243

+= (addition augmented assignment
operator, append/extend opera-
tor), 100, 105, 106, 134, 243

- (subtraction operator, negation
operator), 52, 114, 115, 243

-= (subtraction augmented assign-
ment operator), 115, 243

/ (division operator), 28, 52, 243
/= (division augmented assignment

operator), 243
// (truncating division operator), 52,

243, 319
//= (truncating division augmented

assignment operator), 243
< (less than operator), 115, 135, 232,

249, 369
<< (int shift left operator), 53, 243
<<= (int shift left augmented assign-

ment operator), 243
<= (less than or equal to operator),

115, 232, 249, 369
= (name binding operator, object ref-

erence creation and assignment
operator), 14, 136

== (equal to operator), 231, 232, 244,
249, 369

> (greater than operator), 115, 232,
249, 369

>= (greater than or equal to opera-
tor), 115, 232, 249, 369

>> (int shift right operator), 53, 243

495

496 Index

>>= (int shift right augmented as-
signment operator), 243

@ (decorator operator), 236–238
[] (indexing operator, item access

operator, slicing operator), 65,
100, 102, 105, 107, 108, 252, 254,
263, 267, 268, 286

\n (newline character, statement
terminator), 61

^ (bitwise XOR operator), 53, 114, 115,
243

^= (bitwise XOR augmented assign-
ment operator), 115, 243

_ (underscore), 49
| (bitwise OR operator), 53, 114, 115,

243
|= (bitwise OR augmented assign-

ment operator), 115, 243
~ (bitwise NOT operator), 53, 243

A

abc module
ABCMeta type, 370, 374, 376
@abstractmethod(), 374, 376
abstractproperty(), 374, 376

__abs__(), 243
abs() (built-in), 51, 52, 89, 134, 144,

243
abspath() (os.path module), 212
abstract base class (ABC), 259,

370–377
see also collections and numbers

modules
Abstract.py (example), 376
@abstractmethod() (abc module), 374,

376
abstractproperty() (abc module),

374, 376
accelerator, keyboard, 472, 478, 490
access control, 228, 239, 259, 260
acos() (math module), 56
acosh() (math module), 56
__add__() (+), 52, 243

add() (set type), 115
aggregating data, 103
aggregation, 258
aifc module, 208
algorithm, for searching, 207, 261
algorithm, for sorting, 135, 271
algorithm, MD5, 404, 408
__all__ (attribute), 187, 190, 191
all() (built-in), 130, 174, 385, 386
alternation, regex, 450–451
__and__() (&), 53, 241, 243, 247
and (logical operator), 54
annotations, 350–353
__annotations__ (attribute), 350
anonymous functions; see lambda

statement
any() (built-in), 130, 194, 385, 386
append()

bytearray type, 288
list type, 106, 108, 109, 261

archive files, 208
arguments, command-line, 204
arguments, function, 369

default, 163, 164, 165
immutable, 165
keyword, 164–165, 168, 169, 178,

179, 352
mutable, 165
positional, 163–165, 168, 169,

179, 352
unpacking, 167–170

arguments, interpreter, 175, 188,
189

argv list (sys module), 38, 333
array module, 207
arraysize attribute (cursor object),

439
as_integer_ratio() (float type), 55
as (binding operator), 153, 186, 359
ascii() (built-in), 63, 78
ASCII encoding, 7, 63, 85–88, 209,

286, 458
see also character encodings

asin() (math module), 56
asinh() (math module), 56

Index 497

askopenfilename() (tkin-
ter.filedialog module), 484

asksaveasfilename() (tkin-
ter.filedialog module), 483

askyesno() (tkinter.messagebox mod-
ule), 486

askyesnocancel() (tkin-
ter.messagebox module), 482

assert (statement), 174–175, 194,
198, 237

AssertionError (exception), 174
assertions, regex, 451–455
asynchat module, 214
asyncore module, 214
atan() (math module), 56
atan2() (math module), 56
atanh() (math module), 56
attrgetter() (operator module), 359,

386
attribute

__all__, 187, 190, 191
__annotations__, 350
__call__, 260, 340, 381
__class__, 242, 354, 356
__dict__, 338, 353, 354
__doc__, 347
__file__, 397
__module__, 233
__name__, 195, 242, 347, 352, 366
private, 228, 239, 259, 260, 356
__slots__, 353, 363, 365, 383

attribute access methods, table of ,
355

AttributeError (exception), 230, 231,
264, 340, 354, 356

attributes, 187, 190, 191,
195, 236–238, 242, 260, 341,
353–357

attributes, mutable and immutable,
254

audio-related modules, 208
audioop module, 208
augmented assignment, 29–30, 51,

100, 105

B

-B option, interpreter, 189
backreferences, regex, 451
base64 module, 208, 209–210
basename() (os.path module), 212
Berkeley DB, 431
bigdigits.py (example), 36–39
BikeStock.py (example), 322–326
bin() (built-in), 52, 243
binary data, 209
binary files, 285–294, 313–326
binary numbers, 51
binary search, 261

see also bisect module
BinaryRecordFile.py (example),

314–322
bindings, event, 474
bindings, keyboard, 474
bisect module, 207, 261
bitwise operators, table of , 53
block structure, using indentation,

24
bookmarks-tk.pyw (example),

476–490
__bool__(), 240, 242, 248
bool() (built-in), 240
bool type, 53–54

bool() (built-in), 53, 240, 298
conversion, 53

Boolean expressions, 24, 50
branching; see if statement
branching, with dictionaries,

330–331
break (statement), 151, 152
built-in

abs(), 51, 52, 89, 134, 144, 243
all(), 130, 174, 385, 386
any(), 130, 194, 385, 386
ascii(), 63, 78
bin(), 52, 243
bool(), 53, 240, 298
chr(), 63, 84, 458
@classmethod(), 247, 267
compile(), 339

498 Index

built-in (cont.)
complex(), 58, 243
delattr(), 339
dict(), 118, 137
dir(), 48, 162, 339, 355
divmod(), 52, 243
enumerate(), 129–131, 387
eval(), 232, 233, 248, 256, 264,

334, 339, 368
exec(), 250, 335–336, 338, 339,

341
filter(), 385, 386
float(), 55, 143, 243
format(), 240, 244
frozenset(), 116
getattr(), 339, 340, 354, 358, 364,

381, 390
globals(), 335, 339
hasattr(), 260, 339, 340, 381
hash(), 231, 240, 244
help(), 55, 162
hex(), 52, 243
id(), 244
__import__(), 339, 340
input(), 31, 89
int(), 52, 55, 127, 243, 298
isinstance(), 160, 205, 232, 260,

371, 380, 381
issubclass(), 380
iter(), 128, 263, 270
len(), 67, 105, 113, 130, 255, 264
list(), 104, 137
locals(), 335, 339, 440
map(), 384, 386
max(), 130, 385, 386
min(), 130, 385, 386
next(), 128, 333
oct(), 52, 243
ord(), 63, 84, 354
pow(), 52
print(), 9, 170, 171, 203
@property(), 236–238, 366, 374,

383
range(), 108, 110, 130, 131, 355
repr(), 232, 240

built-in (cont.)
reversed(), 70, 130, 134, 255, 263
round(), 52, 55, 242, 243, 248
set(), 113, 137
setattr(), 339, 368, 390
sorted(), 109, 125, 130, 134–136,

260
@staticmethod(), 245
str(), 61, 126, 233, 240
sum(), 130, 385, 386
super(), 231, 234, 246, 266, 271,

370, 374
tuple(), 100
type(), 16, 338, 339
vars(), 339
zip(), 118, 130, 132–133, 134,

194, 378
builtins module, 354
Button type (tkinter module), 479,

489
byte-code, 188
byte order, 287
bytearray type, 286, 291, 373, 418

append(), 288
capitalize(), 288
center(), 288
count(), 288
decode(), 87, 288, 314, 325, 399
endswith(), 288
expandtabs(), 288
extend(), 288, 291, 418
find(), 288
fromhex(), 286, 288
index(), 288
insert(), 286, 288
isalnum(), 288
isalpha(), 288
isdigit(), 288
islower(), 288
isspace(), 288
istitle(), 289
isupper(), 289
join(), 289
ljust(), 289
lower(), 289

Index 499

bytearray type (cont.)
lstrip(), 289
methods, table of , 288, 289, 290
partition(), 289
pop(), 286, 289
remove(), 289
replace(), 286, 289
reverse(), 289
rfind(), 288
rindex(), 288
rjust(), 289
rpartition(), 289
rsplit(), 289
rstrip(), 289
split(), 289
splitlines(), 289
startswith(), 289
strip(), 289
swapcase(), 289
title(), 289
translate(), 289
upper(), 286, 290
zfill(), 290

bytes type, 86, 286, 287, 373
capitalize(), 288
center(), 288
count(), 288
decode(), 87, 215, 217, 288, 292,

314, 325, 399
endswith(), 288
expandtabs(), 288
find(), 288
fromhex(), 286, 288
index(), 288
isalnum(), 288
isalpha(), 288
isdigit(), 288
islower(), 288
isspace(), 288
istitle(), 289
isupper(), 289
join(), 289
literal, 86, 209
ljust(), 289
lower(), 289

bytes type (cont.)
lstrip(), 289
methods, table of , 288, 289, 290
partition(), 289
replace(), 286, 289
rfind(), 288
rindex(), 288
rjust(), 289
rpartition(), 289
rsplit(), 289
rstrip(), 289
split(), 289
splitlines(), 289
startswith(), 289
strip(), 289
swapcase(), 289
title(), 289
translate(), 289
upper(), 286, 290
zfill(), 290

.bz2 (extension), 208
bz2 module, 208

C

-c option, interpreter, 188
calcsize() (struct module), 287
calendar module, 205
__call__ (attribute), 260, 340, 381
__call__(), 357, 358
call() (subprocess module), 199
callable; see functions and methods
Callable ABC (collections module),

373, 381
callable objects, 260, 357
capitalize()

bytearray type, 288
bytes type, 288
str type, 68

captures, regex, 450–451, 459
car_registration_server.py (exam-

ple), 420–427
car_registration.py (example),

414–420

500 Index

case statement; see dictionary
branching

category() (unicodedata module),
351

ceil() (math module), 56
center()

bytearray type, 288
bytes type, 288
str type, 68

cgi module, 214
cgitb module, 214
changing dictionaries, 120
changing lists, 107
character class, regex, 446–447
character encodings, 7, 85–88, 304

see also ASCII, Latin 1, Unicode
CharGrid.py (example), 197–202
chdir() (os module), 212
checktags.py (example), 159
choice() (random module), 132
chr() (built-in), 63, 84, 458
class (statement), 228, 234, 367,

388
__class__ (attribute), 242, 354, 356
class, mixin, 422
class decorators, 367–370, 388–390
class methods, 247
class variables, 245, 421
classes, immutable, 246, 251
@classmethod(), 247, 267
clear()

dict type, 120
set type, 115

close()
connection object, 437
cursor object, 439
file object, 122, 157, 316

closed attribute (file object), 316
closures, 357, 359
cmath module, 59
code checker, PyLint, 49
code comments, 8
collation order (Unicode), 63–64
collections; see dict, list, set, and

tuple

collections, copying, 136–138
collections module, 207–208, 371

Callable ABC, 373, 381
classes, table of , 373
Container ABC, 373
defaultdict type, 126–127, 143,

173, 405
deque type, 207, 373
Hashable ABC, 373
Iterable ABC, 373
Iterator ABC, 373
Mapping ABC, 373
MutableMapping ABC, 259, 373
MutableSequence ABC, 259, 373
MutableSet ABC, 373
namedtuple type, 103–104, 224,

355
Sequence ABC, 373
Set ABC, 373
Sized ABC, 373

command-line arguments; see
sys.argv

comment character (#), 8
commit() (connection object), 437,

438
comparing files and directories, 212
comparing objects, 232
comparing strings, 63–64
comparisons; see <, <=, ==, !=, >, and

>= operators
compile()

built-in, 339
re module, 300, 455, 456, 457,

460
__complex__(), 243
complex() (built-in), 243
Complex ABC (numbers module), 371
complex type, 58–59, 371

complex() (built-in), 58, 243
conjugate(), 58
imag attribute, 58
real attribute, 58

composition, 258
comprehensions; see under dict,

list, and set

Index 501

compressing files, 208
concatenation

of lists, 105
of strings, 67
of tuples, 100

concepts, object-oriented, 225
conditional branching; see if state-

ment
conditional expression, 150, 166,

179
configparser module, 209
configuration files, 209
conjugate() (complex type), 58
connect() (sqlite3 module), 437
connection object

close(), 437
commit(), 437, 438
cursor(), 437, 438
methods, table of , 437
rollback(), 437
see also cursor object

constant set; see frozenset
constants, 139, 170, 354–355
Container ABC (collections module),

373
__contains__(), 255, 264
context managers, 359–362, 408,

420, 422
contextlib module, 360, 422
continue (statement), 151, 152
conversions, 53

date and time, 206
float to int, 55
int to character, 63
int to float, 55
to bool, 53
to complex, 58
to dict, 118
to float, 55, 143
to int, 13, 52
to list, 104, 128
to set, 113
to str, 13, 61
to tuple, 100, 128

convert-incidents.py (example),
279–313

Coordinated Universal Time (UTC),
206

__copy__(), 265
copy()

copy module, 137, 265, 271, 425
dict type, 120, 137
frozenset type, 115
set type, 115, 137

copy module, 235
copy(), 137, 265, 271, 425
deepcopy(), 138

copying collections, 136–138
copying objects, 235
copysign() (math module), 56
coroutines, 334
cos() (math module), 56
cosh() (math module), 56
count()

bytearray type, 288
bytes type, 288
list type, 106
str type, 68, 71
tuple type, 100

CREATE TABLE (SQL statement), 437
creation, of objects, 230
.csv (extension), 209
csv module, 209
csv2html.py (example), 90–95
csv2html2_opt.py (example), 204
ctypes module, 218
currying; see partial function appli-

cation
cursor() (connection object), 437,

438
cursor object

arraysize attribute, 439
close(), 439
description attribute, 439
execute(), 437, 438, 439, 440, 441,

442, 443
executemany(), 439
fetchall(), 439, 441
fetchmany(), 439

502 Index

cursor object (cont.)
fetchone(), 439, 440, 442
methods, table of , 439
rowcount attribute, 439
see also connection object

custom exceptions, 158–161, 198
custom functions; see functions
custom modules and packages,

185–192

D

daemon threads, 403, 406
data persistence, 209
data structures; see dict, list, set,

and tuple
data type conversion; see conver-

sions
database connection; see connection

object
database cursor; see cursor object
datetime.date type (datetime mod-

ule), 296
fromordinal(), 291, 294
today(), 177, 433
toordinal(), 291

datetime.datetime type (datetime
module)

now(), 206
strptime(), 298
utcnow(), 206

datetime module, 176, 205
date type, 291, 298
datetime type, 298

DB-API; see connection object and
cursor object

deadlock, 400
__debug__ constant, 350
debug (normal) mode; see PYTHONOP-

TIMIZE
decimal module, 59–61

Decimal(), 59
Decimal type, 59–61, 371

decode()
bytearray type, 87, 288, 314, 325,

399
bytes type, 87, 215, 217, 288, 292,

314, 325, 399
Decorate, Sort, Undecorate (DSU),

130, 134
decorating methods and functions,

346–350
decorator

class, 367–370, 388–390
@classmethod(), 247, 267
@functools.wraps(), 347
@property(), 236–238, 366, 374,

383
@staticmethod(), 245

dedent() (textwrap module), 297
deep copying; see copying collec-

tions
deepcopy() (copy module), 138
def (statement), 34, 163–166, 199,

228
default arguments, 163, 164, 165
defaultdict type (collections mod-

ule), 126–127, 143, 173, 405
degrees() (math module), 56
del (statement), 107, 108, 119, 240,

255, 263, 355
__del__(), 240
__delattr__(), 354, 355
delattr() (built-in), 339
delegation, 368
DELETE (SQL statement), 443
__delitem__() ([]), 255, 263, 268, 319,

324
deque type (collections module),

207, 373
description attribute (cursor object),

439
descriptors, 362–367, 388–390
development environment (IDLE),

11–12, 354
dialogs, modal, 482, 485, 490
__dict__ (attribute), 338, 353, 354

Index 503

dict type, 118–126, 373
changing, 120
clear(), 120
comparing, 117
comprehensions, 125–126
copy(), 120, 137
dict() (built-in), 118, 137
fromkeys(), 120
get(), 120, 121, 123, 254, 341, 364,

425
inverting, 125
items(), 119, 120
keys(), 119, 120, 266
methods, table of , 120
pop(), 119, 120, 255
popitem(), 120
setdefault(), 120, 124, 364
update(), 120, 178, 266, 284
updating, 120
values(), 119, 120
view, 120
see also collections.defaultdict,
SortedDict.py

dictionary, inverting, 125
dictionary branching, 330–331
dictionary comprehensions,

125–126, 267
dictionary keys, 126
difference_update() (set type), 115
difference()

frozenset type, 115
set type, 114, 115

difflib module, 202
digit_names.py (example), 170
__dir__(), 355
dir() (built-in), 48, 162, 339, 355
directories, comparing, 212
directories, temporary, 212
directory handling, 211–214
dirname() (os.path module), 212, 338
discard() (set type), 115, 116
__divmod__(), 243
divmod() (built-in), 52, 243
__doc__ (attribute), 347

docstrings, 166–167, 192, 193, 199,
200, 237

see also doctest module
doctest module, 195–196, 200, 217
documentation, 162
DOM (Document Object Model); see

xml.dom
DoubleVar type (tkinter module),

471
DSU (Decorate, Sort, Undecorate),

130, 134
duck typing; see dynamic typing
dump() (pickle module), 257, 283
dumps() (pickle module), 418
duplicates, eliminating, 113
dvds-dbm.py (example), 432–435
dvds-sql.py (example), 436–443
dynamic code execution, 250,

334–336
dynamic functions, 199
dynamic imports, 336–341
dynamic typing, 15, 227, 371

E

e (constant) (math module), 56
editor (IDLE), 11–12, 354
element trees; see xml.etree
elif (statement); see if statement
else (statement); see if statement,

for loop, and while loop
email module, 215
encode() (str type), 68, 86, 87, 286,

325, 397
encoding attribute (file object), 316
encoding errors, 157
encodings, 85–88
encodings, XML, 304
end() (match object), 463
END constant (tkinter module), 481,

484, 485, 486
endianness, 287
endpos attribute (match object), 463
endswith()

bytearray type, 288

504 Index

endswith() (cont.)
bytes type, 288
str type, 68, 71, 72

__enter__(), 359, 361, 362
entities, HTML, 458
Entry type (tkinter module), 489
enumerate() (built-in), 129–131, 387
enums; see namedtuple
environ mapping (os module), 212
environment variable

LANG, 81
PATH, 9, 11
PYTHONDONTWRITEBYTECODE, 189
PYTHONOPTIMIZE, 175, 189, 349,

352
PYTHONPATH, 187, 195

EnvironmentError (exception), 157
EOFError (exception), 93
epsilon; see sys.float_info.epsilon
__eq__() (==), 231, 232, 234, 242, 244,

249, 369
error handling; see exception han-

dling
error-handling policy, 198
escape()

re module, 460
xml.sax.saxutils module, 176,

216, 310
escapes, HTML and XML, 176, 305
escapes, string, 62, 63
escaping, newlines, 62
eval() (built-in), 232, 233, 248, 256,

264, 334, 339, 368
event bindings, 474
event loop, 469, 476, 487
example

Abstract.py, 376
bigdigits.py, 36–39
BikeStock.py, 322–326
BinaryRecordFile.py, 314–322
bookmarks-tk.pyw, 476–490
car_registration_server.py,

420–427
car_registration.py, 414–420
CharGrid.py, 197–202

example (cont.)
checktags.py, 159
convert-incidents.py, 279–313
csv2html.py, 90–95
csv2html2_opt.py, 204
digit_names.py, 170
dvds-dbm.py, 432–435
dvds-sql.py, 436–443
external_sites.py, 123
ExternalStorage.py, 364
finddup.py, 213
findduplicates-t.py, 404–409
FuzzyBool.py, 239–245
FuzzyBoolAlt.py, 246–251
generate_grid.py, 39–42
generate_test_names1.py, 131
generate_test_names2.py, 133
generate_usernames.py, 138–142
grepword-m.py, 404
grepword-p.py, 396–398
grepword.py, 129
grepword-t.py, 401–404
html2text.py, 457
Image.py, 251–258
IndentedList.py, 342–346
interest-tk.pyw, 470–476
magic-numbers.py, 336–341
make_html_skeleton.py, 175–181
noblanks.py, 156
print_unicode.py, 82–85
Property.py, 366
quadratic.py, 88–90
Shape.py, 228–235
ShapeAlt.py, 236–238
SortedDict.py, 265–272
SortedList.py, 259–265
SortKey.py, 358
statistics.py, 142–146
TextFilter.py, 374
TextUtil.py, 192–196
uniquewords1.py, 121
uniquewords2.py, 127
untar.py, 210
Valid.py, 388–390
XmlShadow.py, 363

Index 505

except (statement); see try state-
ment

exception
AssertionError, 174
AttributeError, 230, 231, 264,

340, 354, 356
custom, 158–161, 198
EnvironmentError, 157
EOFError, 93
Exception, 154, 155, 350
ImportError, 188, 210, 340
IndexError, 65, 201, 263
IOError, 157
KeyboardInterrupt, 180, 398
KeyError, 126, 154, 268
LookupError, 154
NameError, 107
NotImplementedError, 248, 370,

374
OSError, 157
StopIteration, 128, 268
SyntaxError, 50, 338
TypeError, 53, 125, 128, 136, 157,

163, 169, 187, 232, 248, 249, 263,
354, 370

UnicodeEncodeError, 86
ValueError, 53, 157, 262, 268
ZeroDivisionError, 155

Exception (exception), 154, 155, 350
exception handling, 153–161, 302

see also exceptions and the try
statement

exceptions, custom, 158–161, 198
exceptions, propagating, 360
exec() (built-in), 250, 335–336, 338,

339, 341
executable attribute (sys module),

397
execute() (cursor object), 437, 438,

439, 440, 441, 442, 443
executemany() (cursor object), 439
exists() (os.path module), 213, 315,

437
__exit__(), 359, 361, 362
exit() (sys module), 130, 205

exp() (math module), 56
expand() (match object), 463
expandtabs()

bytearray type, 288
bytes type, 288
str type, 68

expat XML parser, 305, 307, 308
expression, conditional, 150, 166,

179
expressions, Boolean, 50
extend()

bytearray type, 288, 291, 418
list type, 106, 108

extending lists, 105
extension

.bz2, 208

.csv, 209

.gz, 208, 217

.ini, 209

.py, 7, 185, 469

.pyc and .pyo, 189

.pyw, 7, 469

.tar, .tar.gz, .tar.bz2, 208, 210

.tgz, 208, 210

.wav, 208

.xpm, 258

.zip, 208
external_sites.py (example), 123
ExternalStorage.py (example), 364

F

fabs() (math module), 56, 144
factorial() (math module), 56
factory functions, 126
False (built-in constant); see bool

type
fetchall() (cursor object), 439, 441
fetchmany() (cursor object), 439
fetchone() (cursor object), 439, 440,

442
__file__ (attribute), 397
file extensions; see extensions
file globbing, 333

506 Index

file handling, 211–214
file object, 360

close(), 122, 157, 316
closed attribute, 316
encoding attribute, 316
fileno(), 316
flush(), 316, 317
isatty(), 316
methods, table of , 316, 317
mode attribute, 316
name attribute, 316
newlines attribute, 316
__next__(), 316
open(), 122, 130, 157, 164, 257,

315, 337, 359, 387, 399
peek(), 316
read(), 122, 284, 292, 316, 337,

399
readable(), 316
readinto(), 316
readline(), 316
readlines(), 122, 316
seek(), 284, 316, 317, 318
seekable(), 317
stderr (sys module), 174, 203
stdin (sys module), 203
stdout (sys module), 171, 203
tell(), 317, 318
truncate(), 317, 321
writable(), 317
write(), 122, 203, 291, 317
writelines(), 317

file system interaction, 211–214
File Transport Protocol (FTP), 215
filecmp module, 212
fileinput module, 204
fileno() (file object), 316
files; see file object and open()
files, archive, 208
files, binary, 285–294, 313–326
files, comparing, 212
files, compressing and uncompress-

ing, 208
files, format comparison, 278–279
files, random access; see binary files

files, temporary, 212
files, text, 295–302
files, XML, 302–313
filter() (built-in), 385, 386
filtering, 384
finally (statement); see try state-

ment
find()

bytearray type, 288
bytes type, 288
str type, 68, 70–71, 124

findall()
re module, 460
regex object, 461

finddup.py (example), 213
findduplicates-t.py (example),

404–409
finditer()

re module, 301, 460
regex object, 456, 457, 461

flags attribute (regex object), 461
__float__(), 242, 243
float_info.epsilon attribute (sys

module), 55, 89, 144, 333
float() (built-in), 243
float type, 55–58, 371

as_integer_ratio(), 55
float() (built-in), 55, 143, 243
fromhex(), 57
hex(), 57
is_integer(), 55

floor() (math module), 56
__floordiv__() (//), 52, 243
flush() (file object), 316, 317
fmod() (math module), 56
focus, keyboard, 472, 474, 475, 486,

490
for loop, 111, 128, 131, 132, 152–153
foreign functions, 218
__format__(), 240, 244
format()

built-in, 240, 244
str type, 68, 74–82, 142, 146, 176,

179, 239, 296

Index 507

format specifications, for strings,
78–82

formatting strings; see str.format()
Fraction type (fractions module),

371
Frame type (tkinter module), 471,

479, 489
frexp() (math module), 56
from (statement); see import state-

ment
fromhex()

bytearray type, 286, 288
bytes type, 286, 288
float type, 57

fromkeys() (dict type), 120
fromordinal() (datetime.date type),

291, 294
frozenset type, 116–117, 373

copy(), 115
difference(), 115
frozenset() (built-in), 116
intersection(), 115
isdisjoint(), 115
issubset(), 115
issuperset(), 115
methods, table of , 115
symmetric_difference(), 115

fsum() (math module), 56
FTP (File Transport Protocol), 215
ftplib module, 215
functions, 161–175

annotations, 350–353
anonymous; see lambda state-

ment
decorating, 236–238, 346–350
dynamic, 199
factory, 126
foreign, 218
lambda; see lambda statement
local, 285, 309, 341–346
module, 246
object reference to, 127, 260, 331
parameters; see arguments
recursive, 341–346
see also functors

functions, introspection-related, ta-
ble of , 339

functions, iterator, table of , 130
functions, nested; see local func-

tions
functions, table of (math module),

56, 57
functions, table of (re module), 460
functools module

partial(), 387
reduce(), 385, 386
@wraps(), 347

functors, 357–359, 374
FuzzyBool.py (example), 239–245
FuzzyBoolAlt.py (example), 246–251

G

garbage collection, 15, 107, 207, 474,
479, 490

__ge__() (>=), 232, 249, 369
generate_grid.py (example), 39–42
generate_test_names1.py (example),

131
generate_test_names2.py (example),

133
generate_usernames.py (example),

138–142
generator object

send(), 333
generators, 268, 332–334, 385, 386
__get__(), 364, 365, 367
get() (dict type), 120, 121, 123, 254,

341, 364, 425
__getattr__(), 355, 356
getattr() (built-in), 339, 340, 354,

358, 364, 381, 390
__getattribute__(), 355, 356
getcwd() (os module), 212
__getitem__() ([]), 254, 255, 263, 318,

324
getmtime() (os.path module), 213
getopt module; see optparse module
getrecursionlimit() (sys module),

342

508 Index

getsize() (os.path module), 125, 213,
214

gettempdir() (tempfile module), 350
GIL (Global Interpreter Lock), 404
glob module, 334
global (statement), 200
global functions; see functions
Global Interpreter Lock (GIL), 404
global variables, 170
globals() (built-in), 335, 339
globbing, 333
GMT; see Coordinated Universal

Time
greedy regexes, 448
grepword-m.py (example), 404
grepword-p.py (example), 396–398
grepword.py (example), 129
grepword-t.py (example), 401–404
grid layout, 471, 473, 489
group() (match object), 301, 456, 457,

462, 463
groupdict() (match object), 463
groupindex attribute (regex object),

461
groups() (match object), 463
groups, regex, 450–451, 459
__gt__() (>), 232, 249, 369
.gz (extension), 208, 217
gzip module, 208

open(), 217, 283
write(), 291

H

hasattr() (built-in), 260, 339, 340,
381

__hash__(), 240, 244
hash() (built-in), 231, 240, 244
Hashable ABC (collections module),

373
hashable objects, 112, 117, 123, 125,

231, 244
heapq module, 207, 207–208
help() (built-in), 55, 162

hex()
built-in, 52, 243
float type, 57

hexadecimal numbers, 51
html.entities module, 457, 458
HTML escapes, 176
html.parser module, 215
html2text.py (example), 457
http package, 214
hypot() (math module), 56

I

__iadd__() (+=), 243
__iand__() (&=), 241, 243, 247
id() (built-in), 244
identifiers, 47–50, 118
identity testing; see is operator
IDLE (programming environment),

11–12, 354
if (statement), 149–151
__ifloordiv__() (//=), 243
__ilshift__() (<<=), 243
Image.py (example), 251–258
IMAP4 (Internet Message Access

Protocol), 215
imaplib module, 215
immutable arguments, 165
immutable attributes, 254
immutable classes, 246, 251
immutable objects, 13, 14, 100, 104,

117
__imod__() (%=), 243
import (statement), 186–192, 338
__import__() (built-in), 339, 340
import order policy, 186
ImportError (exception), 188, 210,

340
imports, dynamic, 336–341
__imul__() (*=), 243
in (membership operator), 105, 109,

113, 130, 255, 264
indentation, for block structure, 24
IndentedList.py (example), 342–346

Index 509

__index__(), 243
index()

bytearray type, 288
bytes type, 288
list type, 106, 109
str type, 68, 70–71
tuple type, 100

IndexError (exception), 65, 201, 263
indexing operator ([]), 263
inheritance, 233–235
inheritance, multiple, 377–380, 422
.ini (extension), 209
__init__(), 231, 234, 239, 240, 260,

266
type type, 381

__init__.py package file, 189, 190
initialization, of objects, 230
input() (built-in), 31, 89
INSERT (SQL statement), 438, 439
insert()

bytearray type, 286, 288
list type, 106, 108, 261

inspect module, 352
installing Python, 4–5
instance variables, 231
__int__(), 242, 243, 248
int() (built-in), 243
int type, 51–53, 371

bitwise operators, table of , 53
conversions, table of , 52
int() (built-in), 52, 55, 127, 243,

298
Integral ABC (numbers module), 371
interest-tk.pyw (example), 470–476
internationalization, 81
Internet Message Access Protocol

(IMAP4), 215
interpreter options, 175, 188, 189
intersection_update() (set type),

115
intersection()

frozenset type, 115
set type, 114, 115

introspection, 340, 347, 350, 352
IntVar type (tkinter module), 471

__invert__() (~), 53, 240, 243, 247
inverting, a dictionary, 125
io module

StringIO type, 203, 217
see also file object and open()

IOError (exception), 157
__ior__() (|=), 243
IP address, 413, 414, 420
__ipow__() (**=), 243
__irshift__() (>>=), 243
is_integer() (float type), 55
is (identity operator), 19–20, 244
isalnum()

bytearray type, 288
bytes type, 288
str type, 68

isalpha()
bytearray type, 288
bytes type, 288
str type, 68

isatty() (file object), 316
isdecimal() (str type), 68
isdigit()

bytearray type, 288
bytes type, 288
str type, 68, 72

isdir() (os.path module), 213
isdisjoint()

frozenset type, 115
set type, 115

isfile() (os.path module), 125, 213,
334

isidentifier() (str type), 68, 338
isinf() (math module), 56
isinstance() (built-in), 160, 205, 232,

260, 371, 380, 381
islower()

bytearray type, 288
bytes type, 288
str type, 68

isnan() (math module), 56
isnumeric() (str type), 69
isprintable() (str type), 69
isspace()

bytearray type, 288

510 Index

isspace() (cont.)
bytes type, 288
str type, 69

issubclass() (built-in), 380
issubset()

frozenset type, 115
set type, 115

issuperset()
frozenset type, 115
set type, 115

istitle()
bytearray type, 289
bytes type, 289
str type, 69

__isub__() (-=), 243
isupper()

bytearray type, 289
bytes type, 289
str type, 69

item access operator ([]), 252, 254,
263, 267, 268, 286

itemgetter() (operator module), 386
items() (dict type), 119, 120
__iter__(), 255, 263, 270, 325
iter() (built-in), 128, 263, 270
iterable; see iterators
Iterable ABC (collections module),

373
Iterator ABC (collections module),

373
iterators, 128–136

functions and operators, table
of , 130

itertools module, 387
__ixor__() (̂ =), 243

J

join()
bytearray type, 289
bytes type, 289
os.path module, 212, 213, 214
str type, 67, 70, 179

json module, 215

K

key bindings, 474
keyboard accelerators, 472, 478,

490
keyboard focus, 472, 474, 475, 486,

490
keyboard shortcuts, 474, 478
KeyboardInterrupt (exception), 180,

398
KeyError (exception), 126, 154, 268
keys() (dict type), 119, 120, 266
keyword arguments, 164–165, 168,

169, 178, 179, 352
keywords, table of , 48

L

Label type (tkinter module), 472,
480, 481, 489

lambda (statement), 172–173, 368,
370, 377, 385, 423, 457

LANG (environment variable), 81
lastgroup attribute (match object),

463
lastindex attribute (match object),

462, 463
Latin 1 encoding, 86, 87
layouts, 471, 473, 489
lazy evaluation, 332
ldexp() (math module), 56
__le__() (<=), 232, 249, 369
__len__(), 255, 319
len() (built-in), 67, 105, 113, 130,

255, 264
library, standard, 202–218
LifoQueue type (queue module), 401
linear search, 261
list comprehensions, 110–112, 179,

200, 385, 386
list type, 104–112, 373

append(), 106, 108, 109, 261
changing, 107
comparing, 104, 105

Index 511

list type (cont.)
comprehensions, 110–112, 385,

386
count(), 106
extend(), 106, 108
index(), 106, 109
insert(), 106, 108, 261
list() (built-in), 104, 137
methods, table of , 106
pop(), 106, 108, 109
remove(), 106, 108, 109
replication (*, *=), 105, 109
reverse(), 106, 109
slicing, 105, 108–109
sort(), 106, 109, 172, 358, 387
updating, 107
see also SortedList.py

Listbox type (tkinter module), 480,
481, 484, 485, 486, 487

listdir() (os module), 125, 212, 213,
338

ljust()
bytearray type, 289
bytes type, 289
str type, 69

load() (pickle module), 257, 284
loads() (pickle module), 418
local functions, 285, 309, 341–346
local variables, 153
locale module, 81

setlocale(), 81
localization, 81
locals() (built-in), 335, 339, 440
localtime() (time module), 206
Lock type (threading module), 407,

408, 423
log() (math module), 56
log10() (math module), 56
log1p() (math module), 56
logging module, 218, 350
logic, short-circuit, 22, 54
logical operators; see and, or, and

not
LookupError (exception), 154

looping, see for loop and while loop,
151

lower()
bytearray type, 289
bytes type, 289
str type, 69, 72

__lshift__() (<<), 53, 243
lstrip()

bytearray type, 289
bytes type, 289
str type, 70, 72

__lt__() (<), 232, 242, 249, 369

M

magic number, 283
magic-numbers.py (example),

336–341
mailbox module, 215
make_html_skeleton.py (example),

175–181
makedirs() (os module), 212
maketrans() (str type), 69, 73–74
mandatory parameters, 164
map() (built-in), 384, 386
mapping, 384
Mapping ABC (collections module),

373
mapping types; see dict and collec-

tions.defaultdict
mapping unpacking (**), 169, 177,

294
match()

re module, 460
regex object, 461

match object
end(), 463
endpos attribute, 463
expand(), 463
group(), 301, 456, 457, 462, 463
groupdict(), 463
groups(), 463
lastgroup attribute, 463
lastindex attribute, 462, 463

512 Index

match object (cont.)
methods, table of , 463
pos attribute, 463
re attribute, 463
span(), 463
start(), 463
string attribute, 463
see also re module and regex ob-

ject
math module, 57–58

acos(), 56
acosh(), 56
asin(), 56
asinh(), 56
atan(), 56
atan2(), 56
atanh(), 56
ceil(), 56
copysign(), 56
cos(), 56
cosh(), 56
degrees(), 56
e (constant), 56
exp(), 56
fabs(), 56, 144
factorial(), 56
floor(), 56
fmod(), 56
frexp(), 56
fsum(), 56
functions, table of , 56, 57
hypot(), 56
isinf(), 56
isnan(), 56
ldexp(), 56
log(), 56
log10(), 56
log1p(), 56
modf(), 56
pi (constant), 57
pow(), 57
radians(), 57
sin(), 57
sinh(), 57
sqrt(), 57, 90

math module (cont.)
sum(), 57
tan(), 57
tanh(), 57
trunc(), 57

max() (built-in), 130, 385, 386
maxunicode attribute (sys module),

84, 86
MD5 (Message Digest algorithm),

404, 408
membership testing; see in opera-

tor
memoizing, 341
memory management; see garbage

collection
Menu type (tkinter module), 477, 478
Message Digest algorithm (MD5),

404, 408
metaclasses, 370, 374, 380–384
methods

attribute access, table of , 355
bytearray type, table of , 288, 289,

290
bytes type, table of , 288, 289,

290
class, 247
connection object, table of , 437
cursor object, table of , 439
decorating, 236–238, 346–350
dict type, table of , 120
file object, table of , 316, 317
frozenset type, table of , 115
list type, table of , 106
match object, table of , 463
object reference to, 367
regex object, table of , 461
set type, table of , 115
static, 247
str type, table of , 68, 69, 70
unimplementing, 248–251
see also special method

mimetypes module, 213
min() (built-in), 130, 385, 386
minimal regexes, 448, 457
missing dictionary keys, 126

Index 513

mixin class, 422
mkdir() (os module), 212
__mod__() (%), 52, 243
modal dialogs, 482, 485, 490
mode attribute (file object), 316
modf() (math module), 56
__module__ (attribute), 233
module functions, 246
modules, 185–192, 338
modules attribute (sys module), 338
__mul__() (*), 52, 243
multiple inheritance, 377–380, 422
multiprocessing module, 404, 409
mutable arguments, 165
mutable attributes, policy, 254
mutable objects; see immutable ob-

jects
MutableMapping ABC (collections

module), 259, 373
MutableSequence ABC (collections

module), 259, 373
MutableSet ABC (collections mod-

ule), 373

N

__name__ (attribute), 195, 242, 347,
352, 366

name() (unicodedata module), 84
name attribute (file object), 316
name conflicts, avoiding, 188, 190
name mangling, 356, 368
namedtuple type (collections mod-

ule), 103–104, 224, 355
NameError (exception), 107
names, qualified, 186
namespace, 226
naming policy, 166–167
__ne__() (!=), 231, 232, 249, 369
__neg__() (-), 52, 243
nested collections; see dict, list, set,

and tuple
nested functions; see local functions

Network News Transport Protocol
(NNTP), 215

__new__(), 240
object type, 246
type type, 381, 383

newline escaping, 62
newlines attribute (file object), 316
__next__(), 316, 333
next() (built-in), 128, 333
NNTP (Network News Transport

Protocol), 215
nntplib module, 215
noblanks.py (example), 156
None object, 20, 24, 163
nongreedy regexes, 448, 457
nonlocal (statement), 345, 368
normal (debug) mode; see PYTHONOP-

TIMIZE
normalize() (unicodedata module),

64
not (logical operator), 54
NotImplemented object, 232, 248, 249
NotImplementedError (exception),

248, 370, 374
now() (datetime.datetime type), 206
Number ABC (numbers module), 371
numbers module, 205, 371

classes, table of , 371
Complex ABC, 371
Integral ABC, 371
Number ABC, 371
Rational ABC, 371
Real ABC, 371

numeric operators and functions,
table of , 52

O

-O option, interpreter, 175, 189, 349,
352

object creation and initialization,
230

object-oriented concepts and termi-
nology, 225

514 Index

object references, 14–15, 17, 102,
107, 117, 127, 132, 136, 240,
244, 270, 330, 335, 346, 357, 367,
474

object type, 370
__new__(), 246
__repr__(), 256

objects, comparing, 232
obtaining Python, 4–5
oct() (built-in), 52, 243
octal numbers, 51
open()

file object, 122, 130, 157, 164, 257,
315, 337, 359, 387, 399

gzip module, 217, 283
shelve module, 432

operator module, 385
attrgetter(), 359, 386
itemgetter(), 386

operators, iterator, table of , 130
optimized mode; see PYTHONOPTIMIZE
optional parameters, 164
options, for interpreter, 175, 188,

189, 349, 352
optparse module, 204–205
__or__() (|), 53, 243
or (logical operator), 54
ord() (built-in), 63, 84, 354
ordered collections; see list and tu-

ple
os module, 212, 213–214

chdir(), 212
environ mapping, 212
getcwd(), 212
listdir(), 125, 212, 213, 338
makedirs(), 212
mkdir(), 212
remove(), 212, 321
removedirs(), 212
rename(), 212, 321
rmdir(), 212
sep attribute, 132
stat(), 212
system(), 399
walk(), 212, 214

os.path module, 187, 212, 213–214
abspath(), 212
basename(), 212
dirname(), 212, 338
exists(), 213, 315, 437
getmtime(), 213
getsize(), 125, 213, 214
isdir(), 213
isfile(), 125, 213, 334
join(), 212, 213, 214
split(), 212
splitext(), 212, 258, 338

OSError (exception), 157

P

pack() (struct module), 286, 287,
291, 325

package directories, 195
packages, 185–192
parameters; see arguments
parameters, unpacking, 167–170
parent–child relationships, 470,

474
partial() (functools module), 387
partial function application,

387–388
partition()

bytearray type, 289
bytes type, 289
str type, 69, 71

pass (statement), 24, 150, 370, 374
PATH (environment variable), 9, 11
path attribute (sys module), 187
paths, Unix-style, 132
pattern attribute (regex object), 461
peek() (file object), 316
PEP 249 (Python Database API

Specification v2.0), 436
PEP 3107 (Function Annotations),

353
PEP 3119 (Introducing Abstract

Base Classes), 370

Index 515

PEP 3131 (Supporting Non-ASCII
Identifiers), 48

persistence, of data, 209
PhotoImage type (tkinter module),

479
pi (constant) (math module), 57
pickle module, 282–284

dump(), 257, 283
dumps(), 418
load(), 257, 284
loads(), 418

pickles, 256, 282–284, 432
pipes; see subprocess module
placeholders, SQL, 438, 440
platform attribute (sys module), 150,

199, 334
pointers; see object references
policy, error handling, 198
policy, import order, 186
policy, mutable attributes, 254
policy, naming, 166–167
polymorphism, 233–235
pop()

bytearray type, 286, 289
dict type, 119, 120, 255
list type, 106, 108, 109
set type, 115

POP3 (Post Office Protocol), 215
Popen() (subprocess module), 397
popitem() (dict type), 120
poplib module, 215
__pos__() (+), 52, 243
pos attribute (match object), 463
positional arguments, 163–165, 168,

169, 179, 352
Post Office Protocol (POP3), 215
__pow__() (**), 52, 243
pow()

built-in, 52
math module, 57

pprint module, 218, 345
print_unicode.py (example), 82–85
print() (built-in), 9, 170, 171, 203
PriorityQueue type (queue module),

401, 405

private attributes, 228, 239, 259,
260, 356

processor endianness, 287
profile module, 350
propagating exceptions, 360
properties, 236–238
@property(), 236–238, 366, 374, 383
Property.py (example), 366
.py (extension), 7, 185, 469
.pyc and .pyo (extension), 189
PyGtk, 468, 491
PyLint code checker, 49
PyQt, 468, 491
PYTHONDONTWRITEBYTECODE (environ-

ment variable), 189
Python enhancement proposals; see

PEPs
Python Shell (IDLE or interpreter),

11
PYTHONOPTIMIZE (environment vari-

able), 175, 189, 349, 352
PYTHONPATH (environment variable),

187, 195
.pyw (extension), 7, 469

Q

quadratic.py (example), 88–90
qualified names, 186
quantifiers, regex, 447–449
queue module

LifoQueue type, 401
PriorityQueue type, 401, 405
Queue type, 401, 402, 405

Queue type (queue module), 401, 402,
405

quopri module, 208
quoteattr() (xml.sax.saxutils mod-

ule), 216, 310

R

__radd__() (+), 243
radians() (math module), 57

516 Index

raise (statement), 157, 201, 340,
350

see also try statement
__rand__() (&), 243
random access files; see binary files
random module

choice(), 132
sample(), 133

range() (built-in), 108, 110, 130, 131,
355

Rational ABC (numbers module), 371
raw binary data; see binary files
raw strings, 62, 193, 300, 455
__rdivmod__(), 243
re attribute (match object), 463
re module, 455–464

compile(), 300, 455, 456, 457, 460
escape(), 460
findall(), 460
finditer(), 301, 460
functions, table of , 460
match(), 460
search(), 455, 460, 462
split(), 460, 464
sub(), 457, 458, 459, 460
subn(), 460
see also match object and regex

object
read() (file object), 122, 284, 292,

316, 337, 399
readable() (file object), 316
readinto() (file object), 316
readline() (file object), 316
readlines() (file object), 122, 316
Real ABC (numbers module), 371
records; see struct
recursive functions, 341–346
recv() (socket module), 418, 419
reduce() (functools module), 385,

386
reducing, 384
references; see object references
regex

alternation, 450–451
assertions, 451–455

regex (cont.)
backreferences, 451
captures, 450–451, 459
character classes, 446–447
flags, 455, 456
greedy, 448, 457
groups, 450–451, 459
match; see match object
nongreedy, 448, 457
quantifiers, 447–449
special characters, 446

regex object
findall(), 461
finditer(), 456, 457, 461
flags attribute, 461
groupindex attribute, 461
match(), 461
methods, table of , 461
pattern attribute, 461
search(), 455, 461
split(), 461, 464
sub(), 461
subn(), 461
see also re module and match ob-

ject
relational integrity, 437
remove()

bytearray type, 289
list type, 106, 108, 109
os module, 212, 321
set type, 115

removedirs() (os module), 212
rename() (os module), 212, 321
replace()

bytearray type, 286, 289
bytes type, 286, 289
str type, 69, 72, 94

replication (*, *=)
of lists, 105, 109
of strings, 70, 84
of tuples, 100

__repr__(), 232, 234, 240, 242, 248,
270

object type, 256
repr() (built-in), 232, 240

Index 517

representational form, 77–78
resizable windows, 480–481, 489
return (statement), 151, 152, 163
reverse()

bytearray type, 289
list type, 106, 109

__reversed__(), 255, 263
reversed() (built-in), 70, 130, 134,

255
reversing strings, 67, 70
rfind()

bytearray type, 288
bytes type, 288
str type, 68, 71, 72

__rfloordiv__() (//), 243
rindex()

bytearray type, 288
bytes type, 288
str type, 68, 71

rjust()
bytearray type, 289
bytes type, 289
str type, 69

__rlshift__() (<<), 243
rmdir() (os module), 212
__rmod__() (%), 243
__rmul__() (*), 243
rollback() (connection object), 437
__ror__() (|), 243
__round__(), 243
round() (built-in), 52, 55, 242, 243,

248
rowcount attribute (cursor object),

439
rpartition()

bytearray type, 289
bytes type, 289
str type, 69, 72

__rpow__() (**), 243
__rrshift__() (>>), 243
__rshift__() (>>), 53, 243
rsplit()

bytearray type, 289
bytes type, 289
str type, 69

rstrip()
bytearray type, 289
bytes type, 289
str type, 70, 72

__rsub__() (-), 243
__rtruediv__() (/), 243
run() (Thread type), 401, 403
__rxor__() (̂), 243

S

sample() (random module), 133
SAX (Simple API for XML); see

xml.sax
Scale type (tkinter module), 472
Scrollbar type (tkinter module),

480
search()

re module, 455, 460, 462
regex object, 455, 461

searching, 261
seek() (file object), 284, 316, 317,

318
seekable() (file object), 317
SELECT (SQL statement), 440, 441,

442
self object, 229, 247, 424
send()

generator object, 333
socket module, 419

sendall() (socket module), 418, 419
sep attribute (os module), 132
Sequence ABC (collections module),

373
sequence types; see bytearray, bytes,

list, str, and tuple
sequence unpacking (*), 102,

105–107, 131, 152, 168, 325,
416

serialized data access, for threads,
401

serializing; see pickles
__set__(), 365, 367
Set ABC (collections module), 373
set comprehensions, 116

518 Index

set type, 112–116, 123, 373
add(), 115
clear(), 115
comprehensions, 116
copy(), 115, 137
difference_update(), 115
difference(), 114, 115
discard(), 115, 116
intersection_update(), 115
intersection(), 114, 115
isdisjoint(), 115
issubset(), 115
issuperset(), 115
methods, table of , 115
pop(), 115
remove(), 115
set() (built-in), 113, 137
symmetric_difference_update(),

115
symmetric_difference(), 114, 115
union(), 114, 115
update(), 115

set types; see frozenset and set
__setattr__(), 354, 355
setattr() (built-in), 339, 368, 390
setdefault() (dict type), 120, 124,

364
__setitem__() ([]), 255, 263, 267,

317
setlocale() (locale module), 81
setrecursionlimit() (sys module),

342
shallow copying; see copying collec-

tions
Shape.py (example), 228–235
ShapeAlt.py (example), 236–238
shebang (shell execute), 10
Shell, Python (IDLE or interpreter),

11
shell execute (#!), 10
shelve module, 209, 432

open(), 432
sync(), 433

short-circuit logic, 22, 54
shortcut, keyboard, 474, 478

showwarning() (tkinter.messagebox
module), 483, 484

shutil module, 211
Simple API for XML (SAX); see

xml.sax
Simple Mail Transport Protocol

(SMTP), 215
sin() (math module), 57
single shot timer, 480, 483
sinh() (math module), 57
site-packages directory, 195
Sized ABC (collections module),

373
slicing ([])

bytes, 286
lists, 105, 108–109
operator, 65, 102, 107, 263, 386
strings, 64–67, 141
tuples, 100

__slots__ (attribute), 353, 363, 365,
383

SMTP (Simple Mail Transport Pro-
tocol), 215

smtpd module, 215
smtplib module, 215
sndhdr module, 208
socket module, 214, 413

recv(), 418, 419
send(), 419
sendall(), 418, 419
socket(), 420

socketserver module, 214, 420, 422
sort() (list type), 106, 109, 172, 358,

387
sort algorithm, 135, 271
sorted() (built-in), 109, 125, 130,

134–136, 260
SortedDict.py (example), 265–272
SortedList.py (example), 259–265
SortKey.py (example), 358
sound-related modules, 208
span() (match object), 463
special characters, regex, 446
special method, 225, 229

__abs__(), 243

Index 519

special method (cont.)
__add__() (+), 52, 243
__and__() (&), 53, 241, 243, 247
bitwise and numeric methods,

table of , 243
__bool__(), 240, 242, 248
__call__(), 357, 358
collection methods, table of , 255
comparison methods, table of ,

232
__complex__(), 243
__contains__(), 255, 264
__copy__(), 265
__del__(), 240
__delattr__(), 354, 355
__delitem__() ([]), 255, 263, 268,

319, 324
__dir__(), 355
__divmod__(), 243
__enter__(), 359, 361, 362
__eq__() (==), 231, 232, 234, 242,

244, 249, 369
__exit__(), 359, 361, 362
__float__(), 242, 243
__floordiv__() (//), 52, 243
__format__(), 240, 244
fundamental methods, table of ,

240
__ge__() (>=), 232, 249, 369
__get__(), 364, 365, 367
__getattr__(), 355, 356
__getattribute__(), 355, 356
__getitem__() ([]), 254, 255, 263,

318, 324
__gt__() (>), 232, 249, 369
__hash__(), 240, 244
__iadd__() (+=), 243
__iand__() (&=), 241, 243, 247
__ifloordiv__() (//=), 243
__ilshift__() (<<=), 243
__imod__() (%=), 243
__imul__() (*=), 243
__index__(), 243
__init__(), 231, 234, 239, 240,

260, 266, 381

special method (cont.)
__int__(), 242, 243, 248
__invert__() (~), 53, 240, 243, 247
__ior__() (|=), 243
__ipow__() (**=), 243
__irshift__() (>>=), 243
__isub__() (-=), 243
__iter__(), 255, 263, 270, 325
__ixor__() (̂ =), 243
__le__() (<=), 232, 249, 369
__len__(), 255, 319
__lshift__() (<<), 53, 243
__lt__() (<), 232, 242, 249, 369
__mod__() (%), 52, 243
__mul__() (*), 52, 243
__ne__() (!=), 231, 232, 249, 369
__neg__() (-), 52, 243
__new__(), 240, 246, 381
__next__(), 316, 333
__or__() (|), 53, 243
__pos__() (+), 52, 243
__pow__() (**), 52, 243
__radd__() (+), 243
__rand__() (&), 243
__rdivmod__(), 243
__repr__(), 232, 234, 240, 242,

248, 270
__reversed__(), 255, 263
__rfloordiv__() (//), 243
__rlshift__() (<<), 243
__rmod__() (%), 243
__rmul__() (*), 243
__ror__() (|), 243
__round__(), 243
__rpow__() (**), 243
__rrshift__() (>>), 243
__rshift__() (>>), 53, 243
__rsub__() (-), 243
__rtruediv__() (/), 243
__rxor__() (̂), 243
__set__(), 365, 367
__setattr__(), 354, 355
__setitem__() ([]), 255, 263, 267,

317
__str__(), 233, 234, 240, 242

520 Index

special method (cont.)
__sub__() (-), 52, 243
__truediv__() (/), 28, 52, 243
__xor__() (̂), 53, 243

split()
bytearray type, 289
bytes type, 289
os.path module, 212
re module, 460, 464
regex object, 461, 464
str type, 69, 73, 464

splitext() (os.path module), 212,
258, 338

splitlines()
bytearray type, 289
bytes type, 289
str type, 69

SQL databases, 431, 436
SQL placeholders, 438, 440
SQL statement

CREATE TABLE, 437
DELETE, 443
INSERT, 438, 439
SELECT, 440, 441, 442
UPDATE, 440

sqlite3 module, 436, 437
connect(), 437

sqrt() (math module), 57, 90
ssl module, 214
standard library, 202–218
starred arguments, 106, 416
starred expressions; see sequence

unpacking
start()

match object, 463
Thread type, 401

startswith()
bytearray type, 289
bytes type, 289
str type, 69, 71, 72

stat() (os module), 212
statement

assert, 174–175, 194, 198, 237
break, 151, 152
class, 228, 234, 367, 388

statement (cont.)
continue, 151, 152
def, 34, 163–166, 199, 228
del, 107, 108, 119, 240, 255, 263,

355
global, 200
if, 149–151
import, 186–192, 338
lambda, 172–173, 368, 370, 377,

385, 423, 457
nonlocal, 345, 368
pass, 24, 150, 370, 374
raise, 157, 201, 340, 350
return, 151, 152, 163
try, 153–161, 350
with, 359–362, 378
yield, 268, 270, 332–334
see also for loop and while loop

statement terminator (\n), 61
static methods, 247
static variables, 245
@staticmethod(), 245
statistics.py (example), 142–146
stderr file object (sys module), 174,

203
stdin file object (sys module), 203
__stdout__ file object (sys module),

203
stdout file object (sys module), 171,

203
StopIteration (exception), 128, 268
__str__(), 233, 234, 240, 242
str type, 61–88, 373

capitalize(), 68
center(), 68
comparing, 63–64
count(), 68, 71
encode(), 68, 86, 87, 286, 325, 397
endswith(), 68, 71, 72
escapes, 62, 63
expandtabs(), 68
find(), 68, 70–71, 124
format(), 68, 74–82, 142, 146, 176,

179, 239, 296
format specifications, 78–82

Index 521

str type (cont.)
index(), 68, 70–71
isalnum(), 68
isalpha(), 68
isdecimal(), 68
isdigit(), 68, 72
isidentifier(), 68, 338
islower(), 68
isnumeric(), 69
isprintable(), 69
isspace(), 69
istitle(), 69
isupper(), 69
join(), 67, 69, 70, 179
literal concatenation, 74
ljust(), 69
lower(), 69, 72
lstrip(), 70, 72
maketrans(), 69, 73–74
methods, table of , 68, 69, 70
partition(), 69, 71
raw strings, 62, 193, 300, 455
replace(), 69, 72, 94
replication (*, *=), 70, 84
reversing, 67, 70
rfind(), 68, 71, 72
rindex(), 68, 71
rjust(), 69
rpartition(), 69, 72
rsplit(), 69
rstrip(), 70, 72
slicing, 64–67
slicing operator ([]), 65
split(), 69, 73, 464
splitlines(), 69
startswith(), 69, 71, 72
strip(), 70, 72
str() (built-in), 61, 126, 233, 240
swapcase(), 70
title(), 70, 84
translate(), 70, 73–74
triple quoted, 61, 146, 193
upper(), 70
zfill(), 70

striding; see slicing

string attribute (match object), 463
string form, 77–78
string handling, 202–203
string literal concatenation, 74
string module, 121, 202
StringIO type (io module), 203, 217
strings; see str type
StringVar type (tkinter module), 471,

488, 490
strip()

bytearray type, 289
bytes type, 289
str type, 70, 72

strong typing, 15
strptime() (datetime.datetime type),

298
struct module, 202, 285–290

calcsize(), 287
pack(), 286, 287, 291, 325
Struct type, 287, 292, 314, 325,

418
unpack(), 287, 292, 325

__sub__() (-), 52, 243
sub()

re module, 457, 458, 459, 460
regex object, 461

subn()
re module, 460
regex object, 461

subprocess module, 396–398
call(), 199
Popen(), 397

sum()
built-in, 130, 385, 386
math module, 57

super() (built-in), 231, 234, 246, 266,
271, 370, 374

swapcase()
bytearray type, 289
bytes type, 289
str type, 70

switch statement; see dictionary
branching

symmetric_difference_update() (set
type), 115

522 Index

symmetric_difference()
frozenset type, 115
set type, 114, 115

sync() (shelve module), 433
SyntaxError (exception), 50, 338
sys module

argv list, 38, 333
executable attribute, 397
exit(), 130, 205
float_info.epsilon attribute, 55,

89, 144, 333
getrecursionlimit(), 342
maxunicode attribute, 84, 86
modules attribute, 338
path attribute, 187
platform attribute, 150, 199, 334
setrecursionlimit(), 342
stderr file object, 174, 203
stdin file object, 203
__stdout__ file object, 203
stdout file object, 171, 203

system() (os module), 399

T

tan() (math module), 57
tanh() (math module), 57
tarfile module, 208, 210–211
.tar, .tar.gz, .tar.bz2 (extension),

208, 210
Tcl/Tk, 467
TCP (Transmission Control Proto-

col), 214, 413
tell() (file object), 317, 318
telnetlib module, 215
tempfile module, 212

gettempdir(), 350
temporary files and directories, 212
terminology, object-oriented, 225
testmod() (doctest module), 195
text files, 122, 295–302
TextFilter.py (example), 374
TextUtil.py (example), 192–196
textwrap module, 202

dedent(), 297

textwrap module (cont.)
TextWrapper type, 296
wrap(), 296, 310

.tgz (extension), 208, 210
this; see self
Thread type (threading module), 401,

403, 406, 407
run(), 401, 403
start(), 401

threading module, 401–409
Lock type, 407, 408, 423
Thread type, 401, 403, 406, 407

time module, 206
localtime(), 206
time(), 206

timer, single shot, 480, 483
title()

bytearray type, 289
bytes type, 289
str type, 70, 84

Tk type (tkinter module), 470, 476,
487

tkinter.filedialog module
askopenfilename(), 484
asksaveasfilename(), 483

tkinter.messagebox module
askyesno(), 486
askyesnocancel(), 482
showwarning(), 483, 484

tkinter module, 467
Button type, 479, 489
DoubleVar type, 471
END constant, 481, 484, 485, 486
Entry type, 489
Frame type, 471, 479, 489
IntVar type, 471
Label type, 472, 480, 481, 489
Listbox type, 480, 481, 484, 485,

486, 487
Menu type, 477, 478
PhotoImage type, 479
Scale type, 472
Scrollbar type, 480
StringVar type, 471, 488, 490
Tk type, 470, 476, 487

Index 523

tkinter module (cont.)
TopLevel type, 488

today() (datetime.date type), 177,
433

toordinal() (datetime.date type),
291

TopLevel type (tkinter module), 488
trace module, 350
translate()

bytearray type, 289
bytes type, 289
str type, 70, 73–74

Transmission Control Protocol
(TCP), 214, 413

triple quoted strings, 61, 146, 193
True (built-in constant); see bool

type
__truediv__() (/), 28, 52, 243
trunc() (math module), 57
truncate() (file object), 317, 321
truth values; see bool type
try (statement), 153–161, 350

see also exceptions and exception
handling

tuple type, 100–103, 373
comparing, 100
count(), 100
index(), 100
parentheses policy, 101
replication (*, *=), 100
slicing, 100
tuple() (built-in), 100

type() (built-in), 16
type checking, 351
type conversion; see conversions
type type, 381

__init__(), 381
__new__(), 381, 383
type() (built-in), 338, 339

TypeError (exception), 53, 125, 128,
136, 157, 163, 169, 187, 232, 248,
249, 263, 354, 370

typing; see dynamic typing

U

UCS-2/4 encoding (Unicode), 86
UDP (User Datagram Protocol),

214, 413
uncompressing files, 208
underscore (_), 49
unescape() (xml.sax.saxutils mod-

ule), 216
Unicode, 7, 85–88, 458

collation order, 63–64
identifiers, 49
strings; see str type, 61–88
UCS-2/4 encoding, 86
UTF-8/16 encoding, 86, 87, 217
see also character encodings

unicodedata module, 64
category(), 351
name(), 84
normalize(), 64

UnicodeEncodeError (exception), 86
unimplementing methods, 248–251
union() (set type), 114, 115
uniquewords1.py (example), 121
uniquewords2.py (example), 127
unittest module, 217
Unix-style paths, 132
unordered collections; see dict,

frozenset, and set
unpack() (struct module), 287, 292,

325
unpacking (* and **), 102, 105–107,

152, 167–170, 177, 257, 294,
325

untar.py (example), 210
UPDATE (SQL statement), 440
update()

dict type, 120, 178, 266, 284
set type, 115

updating dictionaries, 120
updating lists, 107
upper()

bytearray type, 286, 290
bytes type, 286, 290
str type, 70

524 Index

urllib package, 215
User Datagram Protocol (UDP),

214, 413
UTC (Coordinated Universal Time),

206
utcnow() (datetime.datetime type),

206
UTF-8/16 encoding (Unicode), 86,

87, 217
uu module, 208

V

Valid.py (example), 388–390
ValueError (exception), 53, 157, 262,

268
values() (dict type), 119, 120
variables; see object references
variables, callable; see functions and

methods
variables, class, 245, 421
variables, global, 170
variables, instance, 231
variables, local, 153
variables, names; see identifiers
variables, static, 245
vars() (built-in), 339
view (dict type), 120
virtual subclasses, 380

W

walk() (os module), 212, 214
.wav (extension), 208
wave module, 208
weak reference, 479
weakref module, 207
Web Server Gateway Interface

(WSGI), 214
webbrowser module, 487
while loop, 131, 151–152
wildcard expansion, 333
windows, resizable, 480–481, 489
with (statement), 359–362, 378

wrap() (textwrap module), 296, 310
@wraps() (functools module), 347
writable() (file object), 317
write()

file object, 122, 203, 291, 317
gzip module, 291

writelines() (file object), 317
WSGI (Web Server Gateway Inter-

face), 214
wsgiref package, 214
wxPython, 468, 491

X

xdrlib module, 208
xml.dom.minidom module, 216
xml.dom module, 216, 306–309
XML encoding, 304
XML escapes, 176, 305
xml.etree.ElementTree module, 216,

216–217
xml.etree package, 302–306
XML file format, 88
XML files, 302–313
XML parsers, expat, 305, 307, 308
xml.parsers.expat module, 216
xml.sax module, 216, 310–313
xml.sax.saxutils module, 176, 216

escape(), 176, 216, 310
quoteattr(), 216, 310
unescape(), 216

xmlrpc package, 215
XmlShadow.py (example), 363
__xor__() (̂), 53, 243
.xpm (extension), 258

Y

yield (statement), 268, 270,
332–334

Index 525

Z

ZeroDivisionError (exception), 155
zfill()

bytearray type, 290
bytes type, 290
str type, 70

.zip (extension), 208
zip() (built-in), 118, 130, 132–133,

134, 194, 378
zipfile module, 208

	Introduction
	Chapter 12. Regular Expressions
	Python’s Regular Expression Language
	Characters and Character Classes
	Quantifiers
	Grouping and Capturing
	Assertions and Flags

	The Regular Expression Module
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

