Contents

Preface xix
Acknowledgments xxii
About the Author xxiii

Introduction: Why Is Data Integration Important? 1

Part 1 Overview of Data Integration 5

Chapter 1 Types of Data Integration 7
Data Integration Architectural Patterns 7
 Enterprise Application Integration (EAI) 8
 Service-Oriented Architecture (SOA) 9
 Federation 12
 Extract, Transform, Load (ETL) 14
Common Data Integration Functionality 15
Summary 16
End-of-Chapter Questions 16

Chapter 2 An Architecture for Data Integration 19
What Is Reference Architecture? 19
Reference Architecture for Data Integration 20
 Objectives of the Data Integration Reference Architecture 21
 The Data Subject Area-Based Component Design Approach 22
A Scalable Architecture 24
 Purposes of the Data Integration Reference Architecture 26
The Layers of the Data Integration Architecture 26
Extract/Subscribe Processes 27
 Data Integration Guiding Principle: “Read Once, Write Many” 28
 Data Integration Guiding Principle: “Grab Everything” 28
Initial Staging Landing Zone 29
Chapter 4 Case Study: Customer Loan Data Warehouse Project

Case Study Overview
Step 1: Build a Conceptual Data Integration Model
Step 2: Build a High-Level Logical Model Data Integration Model
Step 3: Build the Logical Extract DI Models
 Confirm the Subject Area Focus from the Data Mapping Document
 Review Whether the Existing Data Integration Environment Can
 Fulfill the Requirements
 Determine the Business Extraction Rules
 Control File Check Processing
 Complete the Logical Extract Data Integration Models
 Final Thoughts on Designing a Logical Extract DI Model
Step 4: Define a Logical Data Quality DI Model
 Design a Logical Data Quality Data Integration Model
 Identify Technical and Business Data Quality Criteria
 Determine Absolute and Optional Data Quality Criteria
Step 5: Define the Logical Transform DI Model
Step 6: Define the Logical Load DI Model
Step 7: Determine the Physicalization Strategy
Step 8: Convert the Logical Extract Models into Physical Source System
 Extract DI Models
Step 9: Refine the Logical Load Models into Physical Source System Subject
 Area Load DI Models
Step 10: Package the Enterprise Business Rules into Common Component Models
Step 11: Sequence the Physical DI Models
Summary

Part 2 The Data Integration Systems Development Life Cycle

Chapter 5 Data Integration Analysis

Analyzing Data Integration Requirements
Building a Conceptual Data Integration Model
 Key Conceptual Data Integration Modeling Task Steps
 Why Is Source System Data Discovery So Difficult?
Performing Source System Data Profiling
 Overview of Data Profiling
 Key Source System Data Profiling Task Steps
Reviewing/Assessing Source Data Quality
 Validation Checks to Assess the Data
 Key Review/Assess Source Data Quality Task Steps
Chapter 9 Data Integration Physical Design 199

Creating Component-Based Physical Designs 200
 Reviewing the Rationale for a Component-Based Design 200
 Modularity Design Principles 200
 Key Component-Based Physical Designs Creation Task Steps 201
Preparing the DI Development Environment 201
 Key Data Integration Development Environment Preparation Task Steps 202
Creating Physical Data Integration Models 203
 Point-to-Point Application Development—The Evolution of Data Integration Development 203
 The High-Level Logical Data Integration Model in Physical Design 205
 Design Physical Common Components Data Integration Models 206
 Design Physical Source System Extract Data Integration Models 208
 Design Physical Subject Area Load Data Integration Models 209
Designing Parallelism into the Data Integration Models 210
 Types of Data Integration Parallel Processing 211
 Other Parallel Processing Design Considerations 214
 Parallel Processing Pitfalls 215
 Key Parallelism Design Task Steps 216
Designing Change Data Capture 216
 Append Change Data Capture Design Complexities 217
 Key Change Data Capture Design Task Steps 219
Finalizing the History Conversion Design 220
 From Hypothesis to Fact 220
 Finalize History Data Conversion Design Task Steps 220
Defining Data Integration Operational Requirements 221
 Determining a Job Schedule for the Data Integration Jobs 221
 Determining a Production Support Team 222
 Key Data Integration Operational Requirements Task Steps 224
Designing Data Integration Components for SOA 225
 Leveraging Traditional Data Integration Processes as SOA Services 225
 Appropriate Data Integration Job Types 227
 Key Data Integration Design for SOA Task Steps 227
Summary 228
End-of-Chapter Questions 228
Chapter 10 Data Integration Physical Design Case Study 229

Step 1: Create Physical Data Integration Models 229
Instantiating the Logical Data Integration Models into a Data Integration Package 229

Step 2: Find Opportunities to Tune through Parallel Processing 237

Step 3: Complete Wheeler History Conversion Design 238

Step 4: Define Data Integration Operational Requirements 239

Developing a Job Schedule for Wheeler 240
The Wheeler Monthly Job Schedule 240
The Wheeler Monthly Job Flow 240
Process Step 1: Preparation for the EDW Load Processing 241
Process Step 2: Source System to Subject Area File Processing 242
Process Step 3: Subject Area Files to EDW Load Processing 245
Process Step 4: EDW-to-Product Line Profitability Data Mart Load Processing 248
Production Support Staffing 248

Summary 249

Chapter 11 Data Integration Development Cycle 251

Performing General Data Integration Development Activities 253
Data Integration Development Standards 253
Error-Handling Requirements 255
Naming Standards 255
Key General Development Task Steps 256

Prototyping a Set of Data Integration Functionality 257
The Rationale for Prototyping 257
Benefits of Prototyping 257
Prototyping Example 258
Key Data Integration Prototyping Task Steps 261

Completing/Extending Data Integration Job Code 262
Complete/Extend Common Component Data Integration Jobs 263
Complete/Extend the Source System Extract Data Integration Jobs 264
Complete/Extend the Subject Area Load Data Integration Jobs 265

Performing Data Integration Testing 266
Data Warehousing Testing Overview 267
Types of Data Warehousing Testing 268
Perform Data Warehouse Unit Testing 269
Perform Data Warehouse Integration Testing 272
Perform Data Warehouse System and Performance Testing 273
Perform Data Warehouse User Acceptance Testing 274

The Role of Configuration Management in Data Integration 275
What Is Configuration Management? 276
Data Integration Version Control 277
Data Integration Software Promotion Life Cycle 277

Summary 277

End-of-Chapter Questions 278
Chapter 15 Data Quality 329

- The Data Quality Framework 330
 - Key Data Quality Elements 331
 - The Technical Data Quality Dimension 332
 - The Business-Process Data Quality Dimension 333
- Types of Data Quality Processes 334
- The Data Quality Life Cycle 334
- The Define Phase 336
 - Defining the Data Quality Scope 336
 - Identifying/Defining the Data Quality Elements 336
 - Developing Preventive Data Quality Processes 337
- The Audit Phase 345
 - Developing a Data Quality Measurement Process 346
 - Developing Data Quality Reports 348
 - Auditing Data Quality by LOB or Subject Area 350
- The Renovate Phase 351
 - Data Quality Assessment and Remediation Projects 352
 - Data Quality SWAT Renovation Projects 352
 - Data Quality Programs 353
- Final Thoughts on Data Quality 353
- Summary 353
- End-of-Chapter Questions 354

Appendix A Exercise Answers 355

Appendix B Data Integration Guiding Principles 369

- Write Once, Read Many 369
- Grab Everything 369
- Data Quality before Transforms 369
- Transformation Componentization 370
- Where to Perform Aggregations and Calculations 370
- Data Integration Environment Volumetric Sizing 370
- Subject Area Volumetric Sizing 370

Appendix C Glossary 371

Appendix D Case Study Models

Appendix D is an online-only appendix. Print-book readers can download the appendix at www.ibmpressbooks.com/title/9780137084937. For eBook editions, the appendix is included in the book.

Index 375
Preface

This text provides an overview on data integration and its application in business analytics and data warehousing. As the analysis of data becomes increasingly important and ever more tightly integrated into all aspects of Information Technology and business strategy, the process to combine data from different sources into meaningful information has become its own discipline. The scope of this text is to provide a look at this emerging discipline, its common “blueprint,” its techniques, and its consistent methods of defining, designing, and developing a mature data integration environment that will provide organizations the ability to move high-volume data in ever-decreasing time frames.

Intended Audience

This text serves many different audiences. It can be used by an experienced data management professional for confirming data integration fundamentals or for college students as a textbook in an upper-level data warehousing college curriculum. The intended audience includes the following:

- Data warehouse program and project managers
- Data warehouse architects
- Data integration architects
- Data integration designers and developers
- Data modeling and database practitioners
- Data management-focused college students
Scope of the Text

This book stresses the core concepts of how to define, design, and build data integration processes using a common data integration architecture and process modeling technique. With that goal in mind, *Data Integration Blueprint and Modeling*

- Reviews the types of data integration architectural patterns and their applications
- Provides a data integration architecture blueprint that has been proven in the industry
- Presents a graphical design technique for data integration based on process modeling, data integration modeling
- Covers the Systems Development Life Cycle of data integration
- Emphasizes the importance of data governance in data integration

Organization of the Text

The text is organized into three parts, including the following:

- **Part 1: Overview of Data Integration**

 The first part of this text provides an overview of data integration. Because of the operational and analytic nature of integrating data, the frequency and throughput of the data integration processes have developed into different types of data integration architectural patterns and technologies. Therefore, this part of the text begins with an investigation of the architectural types or patterns of data integration.

 Regardless of the type of architecture or supporting technology, there is a common blueprint or reference architecture for the integrating data. One of the core architectural principles in this text is that the blueprint must be able to deal with both operational and analytic data integration types. We will review the processes and approach to the data integration architecture.

 The final concept focuses on a graphical process modeling technique for data integration design, based on that reference architecture.

 To complete this section, we provide a case study of designing a set of data integration jobs for a banking data warehouse using the Data Integration Modeling Technique.

- **Part 2: The Data Integration Systems Development Life Cycle**

 The second part of the text covers the Systems Development Life Cycle (SDLC) of a data integration project in terms of the phases, activities, tasks, and deliverables. It explains how the data integration reference architecture is leveraged as its blueprint, and data integration modeling as the technique to develop the analysis, design, and development deliverables. This section begins the next of a multichapter case study on building an end-to-end data integration application with multiple data integration jobs for the Wheeler Automotive Company, which will require the reader to work through the entire data integration life cycle.
• **Part 3: Data Integration and Other Information Management Disciplines**

The third part of this text discusses data integration in the context of other Information Management disciplines, such as data governance, metadata, and data quality. This part investigates the definition of data governance and its related disciplines of metadata and data quality. It reviews how both the business and IT are responsible for managing data governance and its impact on the discipline of data integration.

For metadata, this part provides an overview of what metadata is, the types of metadata, and which types of metadata are relevant in data integration.

Finally, this part reviews concepts of data quality in terms of the types, approaches to prevent bad data quality, and how to “clean up” existing bad data quality.

• **End-of-Chapter Questions**

Each chapter provides a set of questions on the core concepts in the book to test the reader’s comprehension of the materials. Answers to the questions for each chapter can be found in Appendix A, “Chapter Exercise Answers.”

• **Appendices**

Much of the supporting materials to the text can be found in the appendices, which include the following:

• **Appendix A, “Chapter Exercise Answers”**—This appendix contains answers to the questions found at the end of each chapter.

• **Appendix B, “Data Integration Guiding Principles”**—This appendix contains the guiding principles of data integration that were referenced throughout the book.

• **Appendix C, “Glossary”**—This appendix contains the glossary of terms used in the book.

• **Appendix D, “Case Study Models”**—This appendix can be found in the eBook versions of this book, or it can be downloaded from the book’s companion Web site (www.ibmpressbooks.com/title/9780137084937). It contains the detailed data models, entity-attribute reports, subject area file layouts, data mappings, and other artifacts that were created and used throughout the book in the Wheeler case studies.
This page intentionally left blank
Introduction: Why Is Data Integration Important?

Today’s business organizations are spending tens to hundreds of millions of dollars to integrate data for transactional and business intelligence systems at a time when budgets are severely constrained and every dollar of cost counts like never before. There are organizations that have thousands of undocumented point-to-point data integration applications that require significant runtime, CPU, and disk space to maintain and sustain. Consider the cost of an average Information Technology worker at $100,000; the larger the environment, the more workers are needed to support all these processes. Worse, a majority of these processes are either redundant or no longer needed.

This unprecedented rate of increased cost in data integration is felt especially in those organizations that have grown rapidly through acquisition. It is also observed where there is an absence of corporate-level strategy and operational processes regarding the management and maintenance of corporate data assets. Businesses are relying more heavily on analytic environments to improve their efficiency, maintain market share, and mine data for opportunities to improve revenue and reduce cost.

One of the main reasons for excessive cost within the data integration domain is the absence of a clear, consistent, and effective approach to defining, designing, and building data integration components that lead to a more effective and cost-efficient data integration environment. Having a well-documented environment with fewer data integration processes will ensure that both cost and complexity will be reduced.

The intent of this book is to describe a common data integration approach that can substantially reduce the overall cost of the development and maintenance of an organization’s data integration environment and significantly improve data quality over time.
Data Integration...An Overlooked Discipline

You can go into any bookstore or surf www.Amazon.com on the Web and you will find volumes of books on Information Management disciplines. Some of these will be data modeling texts that cover all the different types of data modeling techniques from transactional, dimensional, logical, and physical types of models and their purposes in the process of data integration.

There are very few books that cover the architecture, design techniques, and methodology of the Information Management discipline of data integration. Why? Because data integration isn’t sexy. The front-end business intelligence applications provide the “cool,” colorful, executive dashboards with the multicolored pie and bar charts. Data modeling is a technology focal point for all data-related projects. But the processes or “pipes” that integrate, move, and populate the data have been largely ignored or misunderstood because it is simply hard, tedious, and highly disciplined work.

This emerging discipline has developed from the old programming technologies such as COBOL that moved data with traditional programming design patterns or from database technologies that move data with stored SQL procedures. It is a discipline that is in dire need of the same focus as data modeling, especially because data integration has consistently made up 70% of the costs and risks of all data warehousing and business intelligence projects over the past 15 years.

The cost of maintenance for these data integration environments can be staggering with documented cases of ongoing maintenance cost into the hundreds of millions of dollars. Most data integration environments are poorly documented, with no repeatable method of understanding or clear ability to view the data integration processes or jobs. This leads to unnecessary rework that results in massive redundancy in the number of data integration processes or jobs we see in many organizations. Every unnecessary or duplicative data integration process results in excessive data, increased maintenance, and staff cost, plus the dreaded word, bad when it comes to trust in and the measurement of data quality. Anytime an organization has competing data integration processes that perform the same task, it is inevitable that there will be different results, causing the user community to doubt the validity of the data.

As with any engineering discipline, when an organization uses an architecture-specific blueprint, with common processes and techniques to build out and sustain an environment, it reaps the benefits of adhering to that discipline. The benefits are improved quality, lower costs, and sustainability over the long term. Organizations that use a common data integration architecture or blueprint and build and maintain their data integration processes have reaped those benefits.

Data Integration Fundamentals

Data integration leverages both technical and business processes to combine data into useful information for transactional analytics and/or business intelligence purposes. In the current environment, the volume, velocity, and variety of data are growing at unprecedented levels. Yet most
organizations have not changed the approach to how they develop and maintain these data integration processes, which has resulted in expensive maintenance, poor data quality, and a limited ability to support the scope and ever-increasing complexity of transactional data in business intelligence environments.

Data integration is formally defined as the following:

Data integration is a set of procedures, techniques, and technologies used to design and build processes that extract, restructure, move, and load data in either operational or analytic data stores either in real time or in batch mode.

Challenges of Data Integration

Of all the Information Management disciplines, data integration is the most complex. This complexity is a result of having to combine similar data from multiple and distinct source systems into one consistent and common data store for use by the business and technology users. It is this integration of business and technical data that presents the challenge. Although the technical issues of data integration are complex, it is conforming (making the many into one) the business definitions or metadata that prove to be the most difficult. One of the key issues that leads to poor data quality is the inability to conform multiple business definitions into one enterprise or canonical definition, as shown in Figure I.1.

What Is Metadata?

Metadata is the “data” about the data; it is the business and technical definitions that provide the data meaning.

Data Element Name: Market Sizing Measures

Business Definition: A group of measures required to estimate the total amount of money a customer spends on financial services and products.

Technical Definition:
- Data Type: Real
- Length: 10.2
- Source or Calculated: Calculated
- Calculation: To be a derived value using combination of data from third-party sources.

Source System 1

Data Element Name: Client Identifier

Business Definition: A client purchases our wealth-development financial instruments.

Technical Definition:
- Data Type: Integer
- Length: 10

Source System 2

Data Element Name: Customer Number

Business Definition: A customer uses our financial instruments in the form of loans and deposits.

Technical Definition:
- Data Type: Real
- Length: 8

Target

Data Element Name: Customer Identifier

Business Definition: A customer or client that purchases any of our financial instruments in the form of loans, deposits, and wealth-creation instruments.

Technical Definition:
- Data Type: Real
- Length: 10.2

Figure I.1 Example of integrating data into information
Introduction: Why Is Data Integration Important?

A major function of data integration is to integrate disparate data into a single view of information. An example of a single view of information is the concept of a bank loan.

For a bank (or other financial institution) to have a single view of information, they need to integrate their different types of loans. Most U.S. banks leverage packaged applications from vendors such as AFS for commercial loans and ACLS for retail loans for their loan origination and processing. To provide these banks a holistic view of their loan portfolios, the AFS-formatted loan data and ACLS-formatted loan data need to be conformed into a common and standard format with a universal business definition.

Because the major focus of this text is integrating data for business intelligence environments, the target for this loan type example will be a data warehouse.

For this data warehouse, there is a logical data model complete with a set of entities and attributes, one of which is for the loan entity. One of the attributes, “Loan Type Code” is the unique identifier of the loan type entity. A loan type classifies the valid set of loans, such as commercial loan and retail loan.

Figure I.2 demonstrates the issues caused by the complexity of simply integrating the Loan Type attribute for commercial loans (AFS) and retail loans (ACLS), into a common Loan Type field in the data warehouse.

Figure I.2 Complexity issues with integrating data

In addition to discussing topics such as conforming technical and business definitions, this book covers core data integration concepts and introduces the reader to new approaches such as data integration modeling. This set of activities will help an institution organize its data integration environments into a set of common processes that will ultimately drive unnecessary cost out of their analytic environments and provide greater information capabilities.
This page intentionally left blank
This chapter focuses on a new design technique for the analysis and design of data integration processes. This technique uses a graphical process modeling view of data integration similar to the graphical view an entity-relationship diagram provides for data models.

The Business Case for a New Design Process

There is a hypothesis to the issue of massive duplication of data integration processes, which is as follows:

If you do not see a process, you will replicate that process.

One of the main reasons why there is massive replication of data integration processes in many organizations is the fact that there is no visual method of “seeing” what data integration processes currently exist and what is needed. This is similar to the problem that once plagued the data modeling discipline.

In the early 1980s, many organizations had massive duplication of customer and transactional data. These organizations could not see the “full picture” of their data environment and the massive duplication. Once organizations began to document and leverage entity-relationship diagrams (visual representations of a data model), they were able to see the massive duplication and the degree of reuse of existing tables increased as unnecessary duplication decreased.

The development of data integration processes is similar to those in database development. In developing a database, a blueprint, or model of the business requirements, is necessary to ensure that there is a clear understanding between parties of what is needed. In the case of data integration, the data integration designer and the data integration developer need that blueprint or project artifact to ensure that the business requirements in terms of sources, transformations, and
targets that are needed to move data have been clearly communicated via a common, consistent approach. The use of a process model specifically designed for data integration will accomplish that requirement.

Figure 3.1 depicts the types of data models needed in a project and how they are similar to those that could be developed for data integration.
The usual approach for analyzing, designing, and building ETL or data integration processes on most projects involves a data analyst documenting the requirements for source-to-target mapping in Microsoft® Excel® spreadsheets. These spreadsheets are given to an ETL developer for the design and development of maps, graphs, and/or source code.

Documenting integration requirements from source systems and targets manually into a tool like Excel and then mapping them again into an ETL or data integration package has been proven to be time-consuming and prone to error. For example:

- **Lost time**—It takes a considerable amount of time to copy source metadata from source systems into an Excel spreadsheet. The same source information must then be rekeyed into an ETL tool. This source and target metadata captured in Excel is largely non-reusable unless a highly manual review and maintenance process is instituted.

- **Nonvalue add analysis**—Capturing source-to-target mappings with transformation requirements contains valuable navigational metadata that can be used for data lineage analysis. Capturing this information in an Excel spreadsheet does not provide a clean automated method of capturing this valuable information.

- **Mapping errors**—Despite our best efforts, manual data entry often results in incorrect entries, for example, incorrectly documenting an INT data type as a VARCHAR in an Excel spreadsheet will require a data integration designer time to analyze and correct.

- **Lack of standardization: inconsistent levels of detail**—The data analysts who perform the source-to-target mappings have a tendency to capture source/transform/target requirements at different levels of completeness depending on the skill and experience of the analyst. When there are inconsistencies in the level of detail in the requirements and design of the data integration processes, there can be misinterpretations by the development staff in the source-to-target mapping documents (usually Excel), which often results in coding errors and lost time.

- **Lack of standardization: inconsistent file formats**—Most environments have multiple extracts in different file formats. The focus and direction must be toward the concept of *read once, write many*, with consistency in extract, data quality, transformation, and load formats. The lack of a standardized set of extracts is both a lack of technique and often a result of a lack of visualization of what is in the environment.

To improve the design and development efficiencies of data integration processes, in terms of time, consistency, quality, and reusability, a graphical process modeling design technique for data integration with the same rigor that is used in developing data models is needed.

Improving the Development Process

Process modeling is a tried and proven approach that works well with Information Technology applications such as data integration. By applying a process modeling technique to data integration, both the visualization and standardization issues will be addressed. First, let’s review the types of process modeling.
Leveraging Process Modeling for Data Integration

Process modeling is a means of representing the interrelated processes of a system at any level of detail, using specific types of diagrams that show the flow of data through a series of processes. Process modeling techniques are used to represent specific processes graphically for clearer understanding, communication, and refinement between the stakeholders that design and develop system processes.

Process modeling unlike data modeling has several different types of process models based on the different types of process interactions. These different model types include process dependency diagrams, structure hierarchy charts, and data flow diagrams. Data flow diagramming, which is one of the best known of these process model types, is further refined into several different types of data flow diagrams, such as context diagrams, Level 0 and Level 1 diagrams and “leaf-level” diagrams that represent different levels and types of process and data flow.

By leveraging the concepts of different levels and types of process modeling, we have developed a processing modeling approach for data integration processes, which is as follows:

Data integration modeling is a process modeling technique that is focused on engineering data integration processes into a common data integration architecture.

Overview of Data Integration Modeling

Data integration modeling is a technique that takes into account the types of models needed based on the types of architectural requirements for data integration and the types of models needed based on the Systems Development Life Cycle (SDLC).

Modeling to the Data Integration Architecture

The types of process models or data integration models are dependent on the types of processing needed in the data integration reference architecture. By using the reference architecture as a framework, we are able to create specific process model types for the discrete data integration processes and landing zones, as demonstrated in Figure 3.2.
Together, these discrete data integration layers become process model types that form a complete data integration process. The objective is to develop a technique that will lead the designer to model data integration processes based on a common set of process types.

Data Integration Models within the SDLC

Data integration models follow the same level of requirement and design abstraction refinement that occurs within data models during the SDLC. Just as there are conceptual, logical, and physical data models, there are conceptual, logical, and physical data integration requirements that need to be captured at different points in the SDLC, which could be represented in a process model.

The following are brief descriptions of each of the model types. A more thorough definition along with roles, steps, and model examples is reviewed later in the chapter.

- **Conceptual data integration model definition**—Produces an implementation-free representation of the data integration requirements for the proposed system that will serve as a basis for determining how they are to be satisfied.

- **Logical data integration model definition**—Produces a detailed representation of the data integration requirements at the data set (entity/table) level, which details the transformation rules and target logical data sets (entity/tables). These models are still considered to be technology-independent.

 The focus at the logical level is on the capture of actual source tables and proposed target stores.

- **Physical data integration model definition**—Produces a detailed representation of the data integration specifications at the component level. They should be represented in terms of the component-based approach and be able to represent how the data will optimally flow through the data integration environment in the selected development technology.
Structuring Models on the Reference Architecture

Structuring data models to a Systems Development Life Cycle is a relatively easy process. There is usually only one logical model for a conceptual data model and there is only one physical data model for a logical data model. Even though entities may be decomposed or normalized within a model, there is rarely a need to break a data model into separate models.

Process models have traditionally been decomposed further down into separate discrete functions. For example, in Figure 3.3, the data flow diagram’s top process is the context diagram, which is further decomposed into separate functional models.

![Figure 3.3](image)

Figure 3.3 A traditional process model: data flow diagram

Data integration models are decomposed into functional models as well, based on the data integration reference architecture and the phase of the Systems Development Life Cycle.

Figure 3.4 portrays how conceptual, logical, and physical data integration models are broken down.

![Figure 3.4](image)

Figure 3.4 Data integration models by the Systems Development Life Cycle
Conceptual Data Integration Models

A conceptual data integration model is an implementation-free representation of the data integration requirements for the proposed system that will serve as a basis for “scoping” how they are to be satisfied and for project planning purposes in terms of source systems analysis, tasks and duration, and resources.

At this stage, it is only necessary to identify the major conceptual processes to fully understand the users’ requirements for data integration and plan the next phase.

Figure 3.5 provides an example of a conceptual data integration model.

Logical Data Integration Models

A logical data integration model produces a set of detailed representations of the data integration requirements that captures the first-cut source mappings, business rules, and target data sets (table/file). These models portray the logical extract, data quality, transform, and load requirements for the intended data integration application. These models are still considered to be technology-independent. The following sections discuss the various logical data integration models.
High-Level Logical Data Integration Model

A high-level logical data integration model defines the scope and the boundaries for the project and the system, usually derived and augmented from the conceptual data integration model. A high-level data integration diagram provides the same guidelines as a context diagram does for a data flow diagram.

The high-level logical data integration model in Figure 3.6 provides the structure for what will be needed for the data integration system, as well as provides the outline for the logical models, such as extract, data quality, transform, and load components.

![Logical high-level data integration model example](image)

Logical Extraction Data Integration Models

The logical extraction data integration model determines what subject areas will need to be extracted from sources, such as what applications, databases, flat files, and unstructured sources.

Source file formats should be mapped to the attribute/column/field level. Once extracted, source data files should be loaded by default to the initial staging area.

Figure 3.7 depicts a logical extraction model.
Extract data integration models consist of two discrete sub processes or components:

- **Getting the data out of the source system**—Whether the data is actually extracted from the source system or captured from a message queue or flat file, the network connectivity to the source must be determined, the number of tables/files must be reviewed, and the files to extract and in what order to extract them in must be determined.

- **Formatting the data to a subject area file**—As discussed in Chapter 2, “An Architecture for Data Integration,” subject area files provide a layer of encapsulation from the source to the final target area. The second major component of an extract data integration model is to rationalize the data from the source format to a common subject area file format, for example mapping a set of Siebel Customer Relationship Management Software tables to a customer subject area file.

Logical Data Quality Data Integration Models

The logical data quality data integration model contains the business and technical data quality checkpoints for the intended data integration process, as demonstrated in Figure 3.8.

Regardless of the technical or business data quality requirements, each data quality data integration model should contain the ability to produce a clean file, reject file, and reject report that would be instantiated in a selected data integration technology.

Also the error handling for the entire data integration process should be designed as a reusable component.
As discussed in the data quality architectural process in Chapter 2, a clear data quality process will produce a clean file, reject file, and reject report. Based on an organization’s data governance procedures, the reject file can be leveraged for manual or automatic reprocessing.

Logical Transform Data Integration Models

The logical transform data integration model identifies at a logical level what transformations (in terms of calculations, splits, processing, and enrichment) are needed to be performed on the extracted data to meet the business intelligence requirements in terms of aggregation, calculation, and structure, which is demonstrated in Figure 3.9.

Transform types as defined in the transformation processes are determined on the business requirements for conforming, calculating, and aggregating data into enterprise information, as discussed in the transformation architectural process in Chapter 2.

![Logical data quality data integration model example](image)
Logical Load Data Integration Models

Logical load data integration models determine at a logical level what is needed to load the transformed and cleansed data into the target data repositories by subject area, which is portrayed in Figure 3.10.

Designing load processes by target and the subject areas within the defined target databases allows sub-processes to be defined, which further encapsulates changes in the target from source data, preventing significant maintenance. An example is when changes to the physical database schema occur, only the subject area load job needs to change, with little impact to the extract and transform processes.
Physical Data Integration Models

The purpose of a physical data integration model is to produce a detailed representation of the data integration specifications at the component level within the targeted data integration technology. A major concept in physical data integration modeling is determining how to best take the logical design and apply design techniques that will optimize performance.

Converting Logical Data Integration Models to Physical Data Integration Models

As in data modeling where there is a transition from logical to physical data models, the same transition occurs in data integration modeling. Logical data integration modeling determines what extracts, data quality, transformations, and loads. Physical data integration leverages a target-based design technique, which provides guidelines on how to design the “hows” in the physical data integration models to ensure that the various components will perform optimally in a data integration environment.

Target-Based Data Integration Design Technique Overview

The target-based data integration design technique is an approach that creates physical data integration components based on the subject area loads and the source systems that populate those subject areas. It groups logical functionality into reusable components based on the data movement patterns of local versus enterprise usage within each data integration model type.

For example, in most data integration processes, there are source system-level and enterprise-level data quality checks. The target-based technique places that functionality either close to the process that will use it (in this case, the extract process) or groups enterprise capabilities in common component models.

For example, for source system-specific data quality checks, the target-based technique simply moves that logic to the extract processes while local transformations are moved to load processes and while grouping enterprise-level data quality and transformations are grouped at the common component level. This is displayed in Figure 3.11.
The data from the source system files is extracted and verified with a control file. A control file is a data quality check that verifies the number of rows of data and a control total (such as loan amounts that are totaled for verification for a specific source extract as an example).

It is here where data quality rules that are source system-specific are applied. The rationale for applying source system-specific data quality rules at the particular source system rather than in one overall data quality job is to facilitate maintenance and performance. One giant data quality job becomes a maintenance nightmare. It also requires an unnecessary amount of system memory to load all data quality processes and variables that will slow the time for overall job processing.

Physical Source System Data Integration Models

A source system extract data integration model extracts the data from a source system, performs source system data quality checks, and then conforms that data into the specific subject area file formats, as shown in Figure 3.12.

The major difference in a logical extract model from a physical source system data integration model is a focus on the final design considerations needed to extract data from the specified source system.

Designing an Extract Verification Process

The data from the source system files is extracted and verified with a control file. A control file is a data quality check that verifies the number of rows of data and a control total (such as loan amounts that are totaled for verification for a specific source extract as an example).

It is here where data quality rules that are source system-specific are applied. The rationale for applying source system-specific data quality rules at the particular source system rather than in one overall data quality job is to facilitate maintenance and performance. One giant data quality job becomes a maintenance nightmare. It also requires an unnecessary amount of system memory to load all data quality processes and variables that will slow the time for overall job processing.
Cross-system dependencies should be processed in this model. For example, associative relationships for connecting agreements together should be processed here.

Physical Common Component Data Integration Models

The physical common component data integration model contains the enterprise-level business data quality rules and common transformations that will be leveraged by multiple data integration applications. This layer of the architecture is a critical focal point for reusability in the overall data integration process flow, with particular emphasis on leveraging existing transformation components. Any new components must meet the criteria for reusability.

Finally, in designing common component data integration models, the process flow is examined on where parallelism can be built in to the design based on expected data volumes and within the constraints of the current data integration technology.

Common Component Data Quality Data Integration Models

Common component data quality data integration models are generally very “thin” (less functionality) process models, with enterprise-level data quality rules. Generally, source system-specific data quality rules are technical in nature, whereas business data quality rules tend to be applied at the enterprise level.
For example, gender or postal codes are considered business rules that can be applied as data quality rules against all data being processed. Figure 3.13 illustrates an example of a common data quality data integration model.

Note that the source-specific data quality rules have been moved to the physical source system extract data integration model and a thinner data quality process is at the common component level. Less data ensures that the data flow is not unnecessarily constrained and overall processing performance will be improved.

![Figure 3.13](image)

Common Component Transformation Data Integration Models

Most common transforms are those that conform data to an enterprise data model. Transformations needed for specific aggregations and calculations are moved to the subject area loads, or where they are needed, which is in the subject areas that the data is being transformed.

In terms of enterprise-level aggregations and calculations, there are usually very few; most transformations are subject-area-specific. An example of a common component-transformation data integration subject area model is depicted in Figure 3.14.
Please note that the aggregations for the demand deposit layer have been removed from the common component model and have been moved to the subject area load in line with the concept of moving functionality to where it is needed.

Physical Subject Area Load Data Integration Models

A subject area load data integration model logically groups “target tables” together based on subject area (grouping of targets) dependencies and serves as a simplification for source system processing (layer of indirection).

A subject area load data integration model performs the following functions:

- **Loads data**
- **Refreshes** snapshot loads
- **Performs Change Data Capture**

It is in the subject area load data integration models where primary and foreign keys will be generated, referential integrity is confirmed, and Change Data Capture is processed.

In addition to the simplicity of grouping data by subject area for understandability and maintenance, grouping data by subject area logically limits the amount of data carried per process because it is important to carry as little data as possible through these processes to minimize performance issues. An example of a physical data integration subject area model is shown in Figure 3.15.

Figure 3.14 Common components—transform data integration model example
Logical Versus Physical Data Integration Models

One question that always arises in these efforts is, “Is there a need to have one set of logical data integration models and another set of physical data integration models?”

The answer for data integration models is the same as for data models, “It depends.” It depends on the maturity of the data management organization that will create, manage, and own the models in terms of their management of metadata, and it depends on other data management artifacts (such as logical and physical data models).

Tools for Developing Data Integration Models

One of the first questions about data integration modeling is, “What do you build them in?” Although diagramming tools such as Microsoft Visio® and even Microsoft PowerPoint® can be used (as displayed throughout the book), we advocate the use of one of the commercial data integration packages to design and build data integration models.

Diagramming tools such as Visio require manual creation and maintenance to ensure that they are kept in sync with source code and Excel spreadsheets. The overhead of the maintenance often outweighs the benefit of the manually created models. By using a data integration package, existing data integration designs (e.g., an extract data integration model) can be reviewed for potential reuse in other data integration models, and when leveraged, the maintenance to the actual data integration job is performed when the model is updated. Also by using a data integration...
Experience in using data integration packages for data integration modeling has shown that data integration projects and Centers of Excellence have seen the benefits of increased extract, transform and load code standardization, and quality. Key benefits from leveraging a data integration package include the following:

- **End-to-end communications**—Using a data integration package facilitates faster transfer of requirements from a data integration designer to a data integration developer by using the same common data integration metadata. Moving from a logical design to a physical design using the same metadata in the same package speeds up the transfer process and cuts down on transfer issues and errors. For example, source-to-target data definitions and mapping rules do not have to be transferred between technologies,

Figure 3.16 provides examples of high-level logical data integration models built in Ab Initio, IBM Data Stage, and Informatica.

![Ab Initio](image1.png)

![IBM Data Stage](image2.png)

![Informatica](image3.png)

Figure 3.16 Data integration models by technology

Experience in using data integration packages for data integration modeling has shown that data integration projects and Centers of Excellence have seen the benefits of increased extract, transform and load code standardization, and quality. Key benefits from leveraging a data integration package include the following:

- **End-to-end communications**—Using a data integration package facilitates faster transfer of requirements from a data integration designer to a data integration developer by using the same common data integration metadata. Moving from a logical design to a physical design using the same metadata in the same package speeds up the transfer process and cuts down on transfer issues and errors. For example, source-to-target data definitions and mapping rules do not have to be transferred between technologies,
thereby reducing mapping errors. This same benefit has been found in data modeling tools that transition from logical data models to physical data models.

- **Development of leveragable enterprise models**—Capturing data integration requirements as logical and physical data integration models provides an organization an opportunity to combine these data integration models into enterprise data integration models, which further matures the Information Management environment and increases overall reuse. It also provides the ability to reuse source extracts, target data loads, and common transformations that are in the data integration software package’s metadata engine. These physical data integration jobs are stored in the same metadata engine and can be linked to each other. They can also be linked to other existing metadata objects such as logical data models and business functions.

- **Capture of navigational metadata earlier in the process**—By storing logical and physical data integration model metadata in a data integration software package, an organization is provided with the ability to perform a more thorough impact analysis of a single source or target job. The capture of source-to-target mapping metadata with transformation requirements earlier in the process also increases the probability of catching mapping errors in unit and systems testing. In addition, because metadata capture is automated, it is more likely to be captured and managed.

Industry-Based Data Integration Models

To reduce risk and expedite design efforts in data warehousing projects, prebuilt data models for data warehousing have been developed by IBM, Oracle, Microsoft, and Teradata.

As the concept of data integration modeling has matured, prebuilt data integration models are being developed in support of those industry data warehouse data models.

Prebuilt data integration models use the industry data warehouse models as the targets and known commercial source systems for extracts. Having industry-based source systems and targets, it is easy to develop data integration models with prebuilt source-to-target mappings. For example, in banking, there are common source systems, such as the following:

- **Commercial and** retail loan systems
- **Demand** deposit systems
- **Enterprise** resource systems such as SAP and Oracle

These known applications can be premapped to the industry-based data warehouse data models. Based on actual project experience, the use of industry-based data integration models can significantly cut the time and cost of a data integration project. An example of an industry-based data integration model is illustrated in Figure 3.17.
In the preceding example, the industry data integration model provides the following:

- Prebuilt extract processes from the customer, retail loan, and commercial loan systems
- Prebuilt data quality processes based on known data quality requirements in the target data model
- Prebuilt load processes based on the target data model subject areas

Starting with existing designs based on a known data integration architecture, source systems, and target data models, provides a framework for accelerating the development of a data integration application.

Summary

Data modeling is a graphical design technique for data. In data integration, data integration modeling is a technique for designing data integration processes using a graphical process modeling technique against the data integration reference architecture.

This chapter detailed the types of data integration models—conceptual, logical, and physical—and the approach for subdividing the models based on the process layers of the data integration reference architecture. This chapter also provided examples of each of the different logical and physical data integration model types.

It covered the transition from logical data integration models to physical data integration models, which might be better stated as how to move from the “whats” to the “hows.”

Finally, the chapter discussed how this maturing technique can be used to create prebuilt, industry-based data integration models.

The next chapter is a case study for a bank that is building a set of data integration processes and uses data integration modeling to design the planned data integration jobs.
End-of-Chapter Questions

Question 1.
Data integration modeling is based on what other modeling paradigm?

Question 2.
List and describe the types of logical data integration models.

Question 3.
List and describe the types of physical data integration models.

Question 4.
Using the target-based design technique, document where the logical data quality logic is moved to and why in the physical data integration model layers.

Question 5.
Using the target-based design technique, document where the logical transformation logic is moved to and why in the physical data integration model layers.
This page intentionally left blank
Index

A
absolute data quality
checkpoints, data integration
modeling case study, 80
accurate dimension (data
quality), 332
administration of metadata
repositories, 324-325
aggregation transformations, 37
in data warehouses, 120-122
defined, 373
where to perform, 370
analysis. See data integration
analysis
analytic metadata, 318
analytics layer (data warehouses)
aggregations in, 121-122
unit testing, 271-272
Append Change Data Capture
approach in physical design
phase, 217-219
application development cycle,
data integration development
cycle versus, 251-252
architectural patterns
common functionality in,
15-16
EAI (Enterprise Application
Integration), 8-9
ETL (Extract, Transform,
Load), 14-15
federation, 12-13
layers of, 26-27
within overall architecture,
41-42
physical load architectures,
41
reference architecture
data integration modeling
to, 48-49
defined, 19-20
modularity of, 22-24
objectives of, 21-22
purposes of, 26
scalability of, 24-25
structuring models on, 50
SOA (Service-Oriented
Architecture), 9-12
assessing
data quality, 352
source data quality, 109-111,
130-134
audit phase (data quality life
cycle), 335, 345-351
data quality measurement
process, developing, 346-
348
data quality reports,
developing, 348-350
direct audits, 351
ongoing processing, 351

B
best practices for data
governance policies, 294
build phase. See development
cycle phase
building metadata management
repositories versus buying,
323-324
business, relationship with
Information Technology, 293
business analytics centers of
excellence, 302-303
business case for data integration
modeling, 45-47
business data quality
checkpoints, 32
data integration modeling
case study, 77-80
packaging into common
component model, 92-94
business extraction rules, 74
business intelligence
defined, 371
real-time analysis of, 12
business intelligence data integration, 8
business metadata, 315
business users of metadata, 320
business-driven poor data quality, 32
business-process data quality dimensions, 333-334
buying metadata management repositories versus building, 323-324

calculation transformations, 35-36
in data warehouses, 120-122
defined, 372
capturing metadata, 325-326
case studies
data integration analysis
categorization of metadata, 314-319
analytic metadata, 318
business metadata, 315
operational metadata, 319
structural metadata, 315-316
Change Data Capture (CDC), 38, 216-220
change management in data governance, 310-311
chief data officers, 300
clean staging landing zone, 34, 372
course-grained SOA objects, 227
cohesion, coupling versus, 200-201
column analysis, 107-108
column metrics, 346
commenting in data integration jobs, 254
common component data integration models, 58-60
completing code for, 263-264
data integration modeling case study, 92-94
complete dimension (data quality), 332
complexity
 of data integration, 3-4
 of EAI (Enterprise Application Integration), 8-9
 of ETL (Extract, Transform, Load), 14-15
 of federation, 13
 of SOA (Service-Oriented Architecture), 11
compliance in data governance, 309
component-based physical designs
 creating, 200-201
 point-to-point application development versus, 203-205
conceptual data integration modeling, 51
building model, 101-104
data integration analysis case study, 117-123
data integration modeling case study, 69
defined, 49, 374
configuration management, 275-277
 Software Promotion Life Cycle (SPLC), 277
 version control, 277
confirming subject areas, 73
conforming transformations, 35
consistency measures of data quality, 347
consistent dimension (data quality), 332
constraints, 342
control file check processing, 74
converting logical data integration models to physical data integration models, 56, 203-210, 229-236
Core Data Elements List, 106
cost of data integration1, 2, 22
coupling, cohesion versus, 200-201
cross-domain analysis, 108
current state inventory in metadata management, 322
data conversion in logical design phase, 163-166, 195-197
data discovery, source system data profiling, 104-108
difficulty of, 103-104
data governance, 291-294
 change management, 310-311
 compliance in, 309
 data stewardship processes, 304-305
 in data warehousing, 305-309
 defined, 292
 foundational processes, 294
 best practices, 294
 policy examples, 294
 sample mission statement, 294
 importance of, 294
 metadata management, importance of, 321
 organizational structure, 294-304
 business analytics centers of excellence, 302-303
 chief data officers, 300
 Data Governance Office (DGO), 300
data quality audit and renovation teams, 300-301
data stewardship community, 303-304
data-related programs and projects, 302
Executive Data Governance Committee, 300
relationship between business and Information Technology, 293
responsibilities for, 293
Data Governance Office (DGO), 300
data integration architectural patterns
 common functionality in, 15-16
 EAI (Enterprise Application Integration), 8-9
 ETL (Extract, Transform, Load), 14-15
 federation, 12-13
 layers of, 26-27
 within overall architecture, 41-42
 reference architecture, 19-26
 SOA (Service-Oriented Architecture), 9-12
benefits of, 2
complexity of, 3-4
cost of, 1, 2, 22
data governance and. See data governance data modeling versus, 2
data quality tasks in, 339-341
defined, 3
development cycle phase. See development cycle phase
 guiding principles
data quality, checking before transformations, 369
 “grab everything,” 369
 “write once, read many,” 369
landing zones
 clean staging landing zone, 34
initial staging landing zone, 29-31
load-ready publish landing zone, 39-40
logical design phase. See physical design phase metadata, role of, 314
physical design phase. See physical design phase process modeling, types of, 48
processes
data quality processes, 31-34
extract/subscribe processes, 27-29
load/publish processes, 40-41
transformations, 35-39
types of, 8
volumetric sizing, 370
data integration analysis case study
conceptual data integration model, building, 123
overview, 117-123
source data quality, assessing, 130-134
source system data profiling, 124-130
source/target data mappings, 135-144
conceptual data integration model, building, 101-104
data quality development in, 339
scope, defining, 100-101
source data quality, assessing, 109-111
source system data profiling, 104-108
source/target data mappings, 111-115
data integration applications, defined, 374
data integration architecture defined, 371
establishing in logical design phase, 151-154, 174-177
data integration jobs. See also development cycle phase completing code for, 262-266 defined, 374
job coding standards, 253-254
job scheduling for, 221-222, 240-248
data integration layer (data warehouses)
aggregations in, 121
unit testing, 270-271
data integration modeling business case for, 45-47
case study
common component data integration models, developing, 92-94
conceptual data integration model, building, 69
high-level logical data integration model, building, 70-72
logical data quality data integration models, defining, 76-80
logical extraction data integration models, building, 72-76
logical extraction data integration models, converting to physical models, 88-90
logical load data integration models, converting to physical models, 90-92
logical load data integration models, defining, 85-86
logical transform data integration models, defining, 81-85
overview, 67-69
physical data integration modeling, converting logical models to, 88-92
physical data integration modeling, determining strategy, 87
physical data integration modeling, sequencing, 94-95
conceptual data integration modeling, 51 defined, 374
development tools for, 61-63
industry-based data integration models, 63-64
logical data integration modeling, 51-55, 156-163, 180-197
physical data integration modeling, 56-61
to reference architecture, 48-49
in SDLC (Systems Development Life Cycle), 49
structuring, 50
data integration process management, oversight of, 307
data mappings, 111-115, 135-144
data modeling, data integration versus, 2
data profiling on source systems, 104-108, 124-130
data quality, 329-330, 353
causes of poor quality, 31-32
check points, 32
checking before transformations, 369
common component data quality data integration models, 58-59, 92-94
defined, 31
framework for, 330-334
business-process data quality dimensions, 333-334
key data quality elements, 331
process types, 334
technical data quality dimensions, 332-333
guiding principles
aggregation transformations, where to perform, 370
data integration environment volumetric sizing, 370
subject area volumetric sizing, 370
transformation componentization, 370
life cycle, 334-336
audit phase, 345-351
define phase, 336-345
renovate phase, 351-353
logical data quality data integration models, 53-54, 76-80
oversight of, 305-306
source data quality assessing, 109-111
data integration analysis case study, 130-134
where to check, 32-34
data quality assessment and remediation projects, 352
data quality audit and renovation teams, 300-301
data quality criteria defined, 371
identifying in logical design phase, 154-156, 177-180
data quality elements, identifying, 336-337
data quality measurement process, developing, 346-348
data quality processes, 31-34
defined, 372
developing preventive processes, 337-345
types of, 334
data quality programs, 353
data quality reports, developing, 348-350
data quality SWAT renovation projects, 352
data stewardship community, 303-304
data stewardship processes, 304-305
data type validation, 109
data validation checks, 109-110
data volumetrics, defined, 374
data warehouse database layer (data warehouses)
aggregations in, 121
unit testing, 271
data warehouses aggregations in, 120-122
calculations in, 120-122
capturing metadata, 325-326
data governance in, 305-309
development life cycle, 309
integration testing, 266-275
integration testing, 272-273
system and performance testing, 273-274
types of, 268-269
unit testing, 269-272, 283-287
user acceptance testing, 274-275
database development, data quality tasks in, 341-345
database queries (data warehouses), aggregations in, 122
data-related programs and projects, data governance role in, 302
date format checks, 109
date range validation, 110
define phase (data quality life cycle), 334, 336-345
data quality elements, identifying, 336-337
preventive data quality processes, developing, 337-345
scope, defining, 336
definitional dimension (data quality), 334
deleted transactions, handling, 218-219
delta processing, defined, 373
design modeling. See data integration modeling
design phases. See logical design phase; physical design phase
development cycle phase, 251-253
configuration management, 275-277
Software Promotion Life Cycle (SPLC), 277
version control, 277
data integration jobs, completing code for, 262-266
data quality development in, 339
data warehouse testing, 266-275
integration testing, 272-273
system and performance testing, 273-274
types of, 268-269
unit testing, 269-272, 283-287
user acceptance testing, 274-275
error-handling requirements, 255
job coding standards, 253-254
naming standards, 255-256
prototyping, 252, 257-262, 279-283
development environment preparation in physical design phase, 201-203
development life cycle of data warehouses, 309
development tools for data integration modeling, 61-63
DGO (Data Governance Office), 300
direct audits, 351
direct measures of data quality, 346
disaster recovery for load-ready publish landing zones, 40
disk space requirements for initial staging, 30-31
disk space sizing, 148-150
distribution measures of data quality, 347
documenting nonstandard code, 254
duplicate key/field checks, 110

duplicate key/field checks, 110

EAI (Enterprise Application Integration), 8-9
e encapsulation in reference architecture, 21-24
enrichment transformations, 36-38, 373
Enterprise Application Integration (EAI), 8-9
e entity metrics, 346
error threshold checks, 110-111
error-handling requirements in development cycle phase, 255
ETL (Extract, Transform, Load), 14-15
evaluating reuse, 74
Executive Data Governance Committee, 300
Extract, Transform, Load (ETL), 14-15
extract sizing, 148
extract verification processes, designing, 57-58
extraction data integration models, 52-53, 72-76, 88-90
extract/subscribe processes, 27-29, 372

f federation, 12-13
file-to-file matching, 218
filters, target filters, 38-39, 373
fine-grained SOA objects, 227
foreign key analysis, 108
foreign key constraints, 342
foundational processes for data governance, 294
 best practices, 294
 policy examples, 294
 sample mission statement, 294
FTP to target load architecture, 41, 373
functions, naming standards, 254

G
governance. See data governance
“grab everything,” 28-29, 369
guidelines, defined, 294

H
hard deletes, 218
high-level logical data integration model, 52
data integration modeling case study, 70-72
 in logical design phase, 157-158, 181-183
 in physical design phase, 205-206
history data conversion in logical design phase, 163-166, 195-197
 in physical design phase, finalizing, 220-221, 238-239
horizontal filtering, 38, 373

I
improve phase (data quality life cycle), 335
inaccurate data, 32
inconsistent data definitions, 32
incorrect data, 342
indirect measures of data quality, 346
industry-based data integration models, 63-64
Information Technology, relationship with business, 293
initial staging landing zone, 29-31, 372
integration testing, 268, 272-273
invalid data, 31, 342

J-K
job coding standards, 253-254
job log files, 254
job scheduling for data integration jobs, 221-222, 240-248
join transformations, 36-37, 373
Kernighan, Brian, 21
key data quality elements, 331

L
landing zones
 clean staging landing zone, 34
 initial staging landing zone, 29-31
 load-ready publish landing zone, 39-40
layers
 of architectural patterns, 26-27
 in reference architecture, 21
load/publish processes, 40-41
defined, 373
logical load data integration models, 55, 85-86, 90-92
load-ready publish landing zone, 39-40
load-ready staging area, defined, 373
log scrapers, 218
logical data integration modeling, 51-55
 converting to physical data integration models, 56, 203-210, 229-236
defined, 49, 374
high-level logical data integration model, 52
data integration modeling case study, 70-72
in physical design phase, 205-206
logical data quality data integration models, 53-54, 76-80
in logical design phase, 156-163, 180-197
logical extraction data integration models, 52-53, 72-76, 88-90
logical load data integration models, 55
data integration modeling case study, 85-86, 90-92
in logical design phase, 162-163, 191-192
logical metadata, 316
logical transform data integration models, 54
data integration modeling case study, 81-85
in logical design phase, 161-162, 190-191
lookup checks, 110
lookup transformations, 37, 373
management of metadata, 321-326
current state inventory, 322
importance in data governance, 321
life cycle, 324-326
planning, 322-324
oversight of, 306
in reference architecture, 319-320
role in data integration, 314
users of, 320-321
missing data, 32, 342
mission statements for data governance, 294
modeling. See data integration modeling
modularity
in physical design phase, 200-201
of reference architecture, 22-24
naming standards
for data integration components, 255-256
for variables and functions, 254
navigational metadata, 317-318
nonstandard code, documenting, 254
null checks, 110
numeric value range checks, 110
one-to-many data mapping, 113-114
one-to-one data mapping, 113
ongoing data quality processing, 351
operational metadata, 319
operational requirements
for data governance policies, 294
in physical design phase, defining, 221-224, 239-240
many-to-one data mapping, 114-115
master data management (MDM), oversight of, 306
measuring data quality, 346-348
message publishing load architecture, 41, 373
metadata
categories of, 314-319
analytic metadata, 318
business metadata, 315
navigational metadata, 317-318
operational metadata, 319
structural metadata, 315-316
defined, 313
M
management of metadata, 321-326
current state inventory, 322
importance in data governance, 321
life cycle, 324-326
planning, 322-324
oversight of, 306
in reference architecture, 319-320
role in data integration, 314
users of, 320-321
missing data, 32, 342
mission statements for data governance, 294
modeling. See data integration modeling
modularity
in physical design phase, 200-201
of reference architecture, 22-24
naming standards
for data integration components, 255-256
for variables and functions, 254
navigational metadata, 317-318
nonstandard code, documenting, 254
null checks, 110
numeric value range checks, 110
one-to-many data mapping, 113-114
one-to-one data mapping, 113
ongoing data quality processing, 351
operational metadata, 319
operational requirements
for data governance policies, 294
in physical design phase, defining, 221-224, 239-240
M
management of metadata, 321-326
current state inventory, 322
importance in data governance, 321
life cycle, 324-326
planning, 322-324
oversight of, 306
in reference architecture, 319-320
role in data integration, 314
users of, 320-321
missing data, 32, 342
mission statements for data governance, 294
modeling. See data integration modeling
modularity
in physical design phase, 200-201
of reference architecture, 22-24
naming standards
for data integration components, 255-256
for variables and functions, 254
navigational metadata, 317-318
nonstandard code, documenting, 254
null checks, 110
numeric value range checks, 110
one-to-many data mapping, 113-114
one-to-one data mapping, 113
ongoing data quality processing, 351
operational metadata, 319
operational requirements
for data governance policies, 294
in physical design phase, defining, 221-224, 239-240
O
one-to-many data mapping, 113-114
one-to-one data mapping, 113
ongoing data quality processing, 351
operational metadata, 319
operational requirements
for data governance policies, 294
in physical design phase, defining, 221-224, 239-240
operational users of metadata, 321
optional data quality checkpoints, data integration modeling case study, 80
organizational structure in data governance, 294-304
business analytics centers of excellence, 302-303
chief data officers, 300
data Governance Office (DGO), 300
data quality audit and renovation teams, 300-301
data stewardship community, 303-304
data-related programs and projects, 302
Executive Data Governance Committee, 300

P
parallel processing in physical design phase, 210-216, 237-238
patterns. See architectural patterns
percentage range checks, 110
performance testing, 269, 273-274
physical common component data integration models, 58-60
data integration modeling case study, 92-94
designing, 206-208, 230-232
physical data integration modeling, 56-61
converting logical data integration models to, 56, 203-210
data integration modeling case study, 88-92
data integration physical design case study, 229-236
defined, 49, 374
determining strategy for, data integration modeling case study, 87
logical data integration modeling versus, 61
physical common component data integration models, 58-60, 92-94
physical source system data integration models, 57-58
physical subject area load data integration models, 60-61
sequencing, data integration modeling case study, 94-95
target-based data integration design, 56-57
physical data mart data integration models, designing, case study, 236
physical design phase, 199-200
Change Data Capture (CDC), 216-220
component-based physical designs, creating, 200-201
data quality development in, 339
development environment preparation, 201-203
history data conversion, finalizing, 220-221, 238-239
operational requirements, defining, 221-224, 239-240
parallel processing, 210-216, 237-238
physical data integration models, creating, 203-210, 229-236
SOA-enabled framework, designing for, 225-228
physical load architectures, 41
physical source system data integration models, 57-58, 208-209, 232-234
physical subject area load data integration models, 60-61
data integration modeling case study, 90-92
designing, 209-210, 234-236
piped load architecture, 41, 373
planning metadata management, 322-324
point-to-point application development, 203-205
policies
data governance policy examples, 294
defined, 294
poor data quality, causes of, 31-32
prebuilt data integration models, 63-64
precise dimension (data quality), 332
preparing development environment in physical design phase, 201-203
preventive data quality processes, developing, 337-345
primary key constraints, 342
prioritizing data elements, 106
process modeling defined, 374
types of, 48
processes
data integration modeling.
See data integration modeling
data quality processes, 31-34
defined, 372
developing preventive processes, 337-345
types of, 334
extract/subscribe processes, 27-29
load/publish processes, 40-41
transformations, 35-39
calculations and splits, 35-36
conforming transformations, 35
defined, 35
processing and enrichment transformations, 36-38
target filters, 38-39
processing transformations, 36-38
production support team, determining, 222-224, 248
profiling, 104-108, 124-130
prototyping in development cycle phase, 252, 257-262, 279-283

Q-R
quality. See data quality; data quality processes
quality measures of data quality, 347
RDBMS utilities load architecture, 41, 373
“read once, write many,” 28
real-time analysis of business intelligence, 12
record-level lookup checks, 110
reference architecture
data integration modeling to, 48-49
defined, 19-20
metadata in, 319-320
modularity of, 22-24
objectives of, 21-22
purposes of, 26
scalability of, 24-25
structuring models on, 50
renovate phase (data quality life cycle), 351-353
data quality assessment and remediation projects, 352
data quality programs, 353
data quality SWAT renovation projects, 352
reports, developing data quality reports, 348-350
requirements
defined, 294
disk space requirements for initial staging, 30-31
for metadata user repository, 322-323
operational requirements for data governance policies, 294
in physical design phase, defining, 221-224, 239-240
reuse, evaluating, 74
Ritchie, Dennis, 21

S
Sarbanes-Oxley compliance, 309
scalability of reference architecture, 24-25
scheduling data integration jobs, 221-222, 240-248
scope, defining, 100-101
conceptual data integration model, building, 101-104
in data quality life cycle, 336
SDLC (Systems Development Life Cycle), data integration modeling in, 49
security testing, 273
Service-Oriented Architecture (SOA), 9-12
simplicity in reference architectural layers, 21
sizing for load-ready publish landing zones, 40
SOA (Service-Oriented Architecture), 9-12
SOA-enabled framework, designing for, 225-228
soft deletes, 218
Software Promotion Life Cycle (SPLC), 277
source data quality, assessing, 109-111, 130-134
source system data discovery data profiling, 104-108, 124-130
difficulty of, 103-104
source system extract data integration models, 57-58, 264-265
source system volumetrics, 147-151
case study, 169-174
disk space sizing, 148-150
extract sizing, 148
source/target data mappings, 111-115, 135-144
space requirements for initial staging, 30-31
SPLC (Software Promotion Life Cycle), 277
split transformations, 35-36, 372
SQL load architecture, 41, 373
staging areas. See landing zones standards
in data governance, 294
for data integration job coding, 253-254
defined, 294
structural metadata, 315-316
structuring data integration modeling, 50
subject area files in reference architecture, 22-24
subject area load data integration models, 60-61
completing code for, 265-266
data integration modeling case study, 90-92
subject area volumetric sizing, 370
subject areas, confirming, 73
SWAT renovation projects, 352
system and performance testing, 269, 273-274
Systems Development Life Cycle (SDLC), data integration modeling in, 49

T
target data models, designing for Change Data Capture transactions, 218
target database subject areas, confirming, 73
target filters, 38-39, 373
target-based data integration design, 56-57
target-based load design, 40-41
technical data quality checkpoints, 32, 77-80
technical data quality dimensions, 332-333
technical metadata, 316
technology users of metadata, 320
technology-driven poor data quality, 31-32
testing in data warehouses, 266-275
 integration testing, 272-273
 system and performance testing, 273-274
 types of, 268-269
unit testing, 269-272, 283-287
user acceptance testing, 274-275
timely dimension (data quality), 332
tools for data integration modeling, 61-63
transactional data integration, 8
 capturing new/changed transactions, 218
 defined, 371
EAI (Enterprise Application Integration), 8-9
real-time analysis of business intelligence, 12
SOA (Service-Oriented Architecture), 9-12
testing, data warehouse testing versus, 267-268
transformations, 35-39
 aggregation transformations, 35-36
 checking data quality before, 369
 common component transformation data integration models, 59-60, 92-94
 componentization, 370
 conforming transformations, 35
 defined, 35, 372-373
 logical transform data integration models, 54, 81-85
 processing and enrichment transformations, 36-38
 target filters, 38-39

U
 unique dimension (data quality), 332
 unique key constraints, 342
 unit testing, 268-272, 283-287
 user acceptance testing, 269, 274-275
 users of metadata, 320-323

V
 valid dimension (data quality), 332
 validation checks, 109-111, 130-134
 variables, naming standards, 254
 version control in configuration management, 277
 vertical filtering, 38, 373
 volumetric sizing
 for data integration environment, 370
 defined, 374
 in logical design phase, 147-151
 case study, 169-174
 disk space sizing, 148-150
 extract sizing, 148
 for subject areas, 370
 volumetrics formula, 30

W
 Wheeler Automotive Company case study. See data integration analysis, case study
 “write once, read many,” 369