
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137081073
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137081073
https://plusone.google.com/share?url=http://www.informit.com/title/9780137081073
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137081073
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137081073/Free-Sample-Chapter


Praise for The Clean Coder
“‘Uncle Bob’ Martin definitely raises the bar with his latest book. He explains his 
expectation for a professional programmer on management interactions, time 
management, pressure, on collaboration, and on the choice of tools to use. Beyond 
TDD and ATDD, Martin explains what every programmer who considers him- or 
herself a professional not only needs to know, but also needs to follow in order to 
make the young profession of software development grow.”

—Markus Gärtner
Senior Software Developer

it-agile GmbH
www.it-agile.de

www.shino.de

“Some technical books inspire and teach; some delight and amuse. Rarely does a 
technical book do all four of these things. Robert Martin’s always have for me and 
The Clean Coder is no exception. Read, learn, and live the lessons in this book and 
you can accurately call yourself a software professional.”

—George Bullock
Senior Program Manager

Microsoft Corp.

“If a computer science degree had ‘required reading for after you graduate,’ this 
would be it. In the real world, your bad code doesn’t vanish when the semester’s 
over, you don’t get an A for marathon coding the night before an assignment’s due, 
and, worst of all, you have to deal with people. So, coding gurus are not necessarily 
professionals. The Clean Coder describes the journey to professionalism . . . and it 
does a remarkably entertaining job of it.”

—Jeff Overbey
 University of Illinois at Urbana-Champaign

“The Clean Coder is much more than a set of rules or guidelines. It contains hard-
earned wisdom and knowledge that is normally obtained through many years of 
trial and error or by working as an apprentice to a master craftsman. If you call 
yourself a software professional, you need this book.”

—R. L. Bogetti
Lead System Designer

Baxter Healthcare
www.RLBogetti.com

www.it-agile.de
www.shino.de
www.RLBogetti.com


This page intentionally left blank 



The Clean Coder



The Robert C. Martin Series is directed at software developers, team-
leaders, business analysts, and managers who want to increase their 

skills and proficiency to the level of a Master Craftsman. The series contains 
books that guide software professionals in the principles, patterns, and 
practices of programming, software project management, requirements 
gathering, design, analysis, testing and others.

Visit informit.com/martinseries for a complete list of available publications.

The Robert C. Martin Series



The Clean Coder
A CODE OF CONDUCT FOR 

PROFESSIONAL PROGRAMMERS

Robert C. Martin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark 
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or 
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed 
for incidental or consequential damages in connection with or arising out of the use of the information or 
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or 
special sales, which may include electronic versions and/or custom covers and content particular to your 
business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales 
 (800) 382-3419 
 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales 
 international@pearson.com

Visit us on the Web: www.informit.com/ph

Library of Congress Cataloging-in-Publication Data
Martin, Robert C.
 The clean coder : a code of conduct for professional programmers / Robert Martin.
  p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-708107-3 (pbk. : alk. paper)
1. Computer programming—Moral and ethical aspects. 2.  Computer 
programmers—Professional ethics.  I. Title.
 QA76.9.M65M367 2011
 005.1092—dc22 2011005962

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and 
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or 
likewise. For information regarding permissions, write to:

 Pearson Education, Inc. 
 Rights and Contracts Department 
 501 Boylston Street, Suite 900 
 Boston, MA 02116 
 Fax: (617) 671-3447

ISBN-13: 978-0-13-708107-3
ISBN-10:  0-13-708107-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2011

www.informit.com/ph


Between 1986 and 2000 I worked closely with Jim Newkirk, a colleague from 
Teradyne. He and I shared a passion for programming and for clean code.  
We would spend nights, evenings, and weekends together playing with different 
programming styles and design techniques. We were continually scheming 
about business ideas. Eventually we formed Object Mentor, Inc., together.  
I learned many things from Jim as we plied our schemes together. But one of 
the most important was his attitude of work ethic; it was something I strove to 
emulate. Jim is a professional. I am proud to have worked with him, and to call 
him my friend.



This page intentionally left blank 



ix

Foreword xiii
Preface xix
Acknowledgments xxiii
About the Author xxix
On the Cover xxxi

Pre-Requisite Introduction 1

Chapter 1 Professionalism 7
Be Careful What You Ask For 8

Taking Responsibility 8

First, Do No Harm 11

Work Ethic 16

Bibliography 22

Chapter 2 Saying No 23
Adversarial Roles 26

High Stakes 29

Being a “Team Player” 30

The Cost of Saying Yes 36

Code Impossible 41

CO NTE NT S



CONTENTS

x

Chapter 3 Saying Yes 45
A Language of Commitment 47

Learning How to Say “Yes” 52

Conclusion 56

Chapter 4 Coding 57
Preparedness 58

The Flow Zone 62

Writer’s Block 64

Debugging 66

Pacing Yourself 69

Being Late 71

Help 73

Bibliography 76

Chapter 5 Test Driven Development 77
The Jury Is In 79

The Three Laws of TDD 79

What TDD Is Not 83

Bibliography 84

Chapter 6 Practicing 85
Some Background on Practicing 86

The Coding Dojo 89

Broadening Your Experience 93

Conclusion 94

Bibliography 94

Chapter 7 Acceptance Testing 95
Communicating Requirements 95

Acceptance Tests 100

Conclusion 111

Chapter 8 Testing Strategies 113
QA Should Find Nothing 114



CONTENTS

xi

The Test Automation Pyramid 115

Conclusion 119

Bibliography 119

Chapter 9 Time Management 121
Meetings 122

Focus-Manna 127

Time Boxing and Tomatoes 130

Avoidance 131

Blind Alleys 131

Marshes, Bogs, Swamps, and Other Messes 132

Conclusion 133

Chapter 10 Estimation 135
What Is an Estimate? 138

PERT 141

Estimating Tasks 144

The Law of Large Numbers 147

Conclusion 147

Bibliography 148

Chapter 11 Pressure 149
Avoiding Pressure 151

Handling Pressure 153

Conclusion 155

Chapter 12 Collaboration 157
Programmers versus People 159

Cerebellums 164

Conclusion 166

Chapter 13 Teams and Projects 167
Does It Blend? 168

Conclusion 171

Bibliography 171



CONTENTS

xii

Chapter 14 Mentoring, Apprenticeship, and Craftsmanship 173
Degrees of Failure 174

Mentoring 174

Apprenticeship 180

Craftsmanship 184

Conclusion 185

Appendix A Tooling 187
Tools 189

Source Code Control 189

IDE/Editor 194

Issue Tracking 196

Continuous Build 197

Unit Testing Tools 198

Component Testing Tools 199

Integration Testing Tools 200

UML/MDA 201

Conclusion 204

Index 205



xiii

FO R E WO R D

You’ve picked up this book, so I assume you are a software professional. That’s 
good; so am I. And since I have your attention, let me tell you why I picked up 
this book.

It all starts a short time ago in a place not too far away. Cue the curtain, lights 
and camera, Charley ….

Several years ago I was working at a medium-sized corporation selling highly 
regulated products. You know the type; we sat in a cubicle farm in a three-story 
building, directors and up had private offices, and getting everyone you needed 
into the same room for a meeting took a week or so.

We were operating in a very competitive market when the government opened 
up a new product.

Suddenly we had an entirely new set of potential customers; all we had to do 
was to get them to buy our product. That meant we had to file by a certain 
deadline with the federal government, pass an assessment audit by another date, 
and go to market on a third date.



xiv

FOREWORD

Over and over again our management stressed to us the importance of those 
dates. A single slip and the government would keep us out of the market for a 
year, and if customers couldn’t sign up on day one, then they would all sign up 
with someone else and we’d be out of business.

It was the sort of environment in which some people complain, and others 
point out that “pressure makes diamonds.”

I was a technical project manager, promoted from development. My responsibility 
was to get the web site up on go-live day, so potential customers could download 
information and, most importantly, enrollment forms. My partner in the endeavor 
was the business-facing project manager, whom I’ll call Joe. Joe’s role was to work 
the other side, dealing with sales, marketing, and the non-technical requirements. 
He was also the guy fond of the “pressure makes diamonds” comment.

If you’ve done much work in corporate America, you’ve probably seen the 
finger-pointing, blamestorming, and work aversion that is completely natural. 
Our company had an interesting solution to that problem with Joe and me.

A little bit like Batman and Robin, it was our job to get things done. I met with 
the technical team every day in a corner; we’d rebuild the schedule every single 
day, figure out the critical path, then remove every possible obstacle from that 
critical path. If someone needed software; we’d go get it. If they would “love to” 
configure the firewall but “gosh, it’s time for my lunch break,” we would buy 
them lunch. If someone wanted to work on our configuration ticket but had 
other priorities, Joe and I would go talk to the supervisor.  

Then the manager.  

Then the director.

We got things done.  

It’s a bit of an exaggeration to say that we kicked over chairs, yelled, and 
screamed, but we did use every single technique in our bag to get things done, 
invented a few new ones along the way, and we did it in an ethical way that I am 
proud of to this day.



xv

I thought of myself as a member of the team, not above jumping in to write a 
SQL statement or doing a little pairing to get the code out the door. At the time, 
I thought of Joe the same way, as a member of the team, not above it.

Eventually I came to realize that Joe did not share that opinion. That was a very 
sad day for me.

It was Friday at 1:00 pm; the web site was set to go live very early the following 
Monday.

We were done. *DONE*. Every system was go; we were ready. I had the entire 
tech team assembled for the final scrum meeting and we were ready to flip the 
switch. More than “just” the technical team, we had the business folks from 
marketing, the product owners, with us.  

We were proud. It was a good moment.

Then Joe dropped by.

He said something like, “Bad news. Legal doesn’t have the enrollment forms 
ready, so we can’t go live yet.”

This was no big deal; we’d been held up by one thing or another for the length 
of the entire project and had the Batman/Robin routine down pat. I was ready, 
and my reply was essentially, “All right partner, let’s do this one more time. 
Legal is on the third floor, right?”

Then things got weird.

Instead of agreeing with me, Joe asked, “What are you talking about Matt?”

I said, “You know. Our usual song and dance. We’re talking about four PDF 
files, right? That are done; legal just has to approve them? Let’s go hang out in 
their cubicles, give them the evil eye, and get this thing done!”

Joe did not agree with my assessment, and answered, “We’ll just go live late next 
week. No big deal.”

FOREWORD



xvi

FOREWORD

You can probably guess the rest of the exchange; it sounded something like this:

Matt: “But why? They could do this in a couple hours.”

Joe: “It might take more than that.”

Matt: “But they’ve got all weekend. Plenty of time. Let’s do this!”

Joe: “Matt, these are professionals. We can’t just stare them down and 
insist they sacrifice their personal lives for our little project.”

Matt: (pause) “. . . Joe . . . what do you think we’ve been doing to the 
engineering team for the past four months?”

Joe: “Yes, but these are professionals.”

Pause.

Breathe.

What. Did. Joe. Just. Say?

At the time, I thought the technical staff were professionals, in the best sense of 
the word.

Thinking back over it again, though, I’m not so sure.

Let’s look at that Batman and Robin technique a second time, from a different 
perspective. I thought I was exhorting the team to its best performance, but I 
suspect Joe was playing a game, with the implicit assumption that the technical 
staff was his opponent. Think about it: Why was it necessary to run around, 
kicking over chairs and leaning on people?

Shouldn’t we have been able to ask the staff when they would be done, get a 
firm answer, believe the answer we were given, and not be burned by that belief?

Certainly, for professionals, we should . . . and, at the same time, we could not. 
Joe didn’t trust our answers, and felt comfortable micromanaging the tech 



xvii

FOREWORD

team—and at the same time, for some reason, he did trust the legal team and 
was not willing to micromanage them.

What’s that all about?

Somehow, the legal team had demonstrated professionalism in a way the 
technical team had not.

Somehow, another group had convinced Joe that they did not need a babysitter, 
that they were not playing games, and that they needed to be treated as peers 
who were respected.

No, I don’t think it had anything to do with fancy certificates hanging on walls 
or a few extra years of college, although those years of college might have 
included a fair bit of implicit social training on how to behave.

Ever since that day, those long years ago, I’ve wondered how the technical 
profession would have to change in order to be regarded as professionals.

Oh, I have a few ideas. I’ve blogged a bit, read a lot, managed to improve my 
own work life situation and help a few others. Yet I knew of no book that laid 
out a plan, that made the whole thing explicit.

Then one day, out of the blue, I got an offer to review an early draft of a book; 
the book that you are holding in your hands right now.

This book will tell step by step exactly how to present yourself and interact as a 
professional. Not with trite cliché, not with appeals to pieces of paper, but what 
you can do and how to do it.  

In some cases, the examples are word for word. 

Some of those examples have replies, counter-replies, clarifications, even advice 
for what to do if the other person tries to “just ignore you.”



xviii

FOREWORD

Hey, look at that, here comes Joe again, stage left this time:

Oh, here we are, back at BigCo, with Joe and me, once more on the big web site 
conversion project. 

Only this time, imagine it just a little bit differently.

Instead of shirking from commitments, the technical staff actually makes them. 
Instead of shirking from estimates or letting someone else do the planning 
(then complaining about it), the technical team actually self-organizes and 
makes real commitments.

Now imagine that the staff is actually working together. When the programmers 
are blocked by operations, they pick up the phone and the sysadmin actually 
gets started on the work.

When Joe comes by to light a fire to get ticket 14321 worked on, he doesn’t need 
to; he can see that the DBA is working diligently, not surfing the web. Likewise, 
the estimates he gets from staff seem downright consistent, and he doesn’t get 
the feeling that the project is in priority somewhere between lunch and 
checking email. All the tricks and attempts to manipulate the schedule are not 
met with, “We’ll try,” but instead, “That’s our commitment; if you want to make 
up your own goals, feel free.”

After a while, I suspect Joe would start to think of the technical team as, well, 
professionals. And he’d be right.

Those steps to transform your behavior from technician to professional? You’ll 
find them in the rest of the book.

Welcome to the next step in your career; I suspect you are going to like it.

—Matthew Heusser
 Software Process Naturalist



xix

PR E FAC E

At 11:39 am EST on January 28, 1986, just 73.124 seconds after launch and at an 
altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by 
the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts, 
including high school teacher Christa McAuliffe, were lost. The expression on 
the face of McAuliffe’s mother as she watched the demise of her daughter nine 
miles overhead haunts me to this day.

The Challenger broke up because hot exhaust gasses in the failing SRB leaked 
out from between the segments of its hull, splashing across the body of the 



xx

PREFACE

external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting 
the fuel and driving the tank forward to smash into the liquid oxygen tank 
above it. At the same time the SRB detached from its aft strut and rotated 
around its forward strut. Its nose punctured the liquid oxygen tank. These 
aberrant force vectors caused the entire craft, moving well above mach 1.5, to 
rotate against the airstream. Aerodynamic forces quickly tore everything to 
shreds.

Between the circular segments of the SRB there were two concentric synthetic 
rubber O-rings. When the segments were bolted together the O-rings were 
compressed, forming a tight seal that the exhaust gasses should not have been 
able to penetrate.

But on the evening before the launch, the temperature on the launch pad got 
down to 17°F, 23 degrees below the O-rings’ minimum specified temperature 
and 33 degrees lower than any previous launch. As a result, the O-rings grew 
too stiff to properly block the hot gasses. Upon ignition of the SRB there was a 
pressure pulse as the hot gasses rapidly accumulated. The segments of the 
booster ballooned outward and relaxed the compression on the O-rings. The 
stiffness of the O-rings prevented them from keeping the seal tight, so some 
of the hot gasses leaked through and vaporized the O-rings across 70 degrees 
of arc.

The engineers at Morton Thiokol who designed the SRB had known that there 
were problems with the O-rings, and they had reported those problems to 
managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings 
from previous launches had been damaged in similar ways, though not enough 
to be catastrophic. The coldest launch had experienced the most damage. The 
engineers had designed a repair for the problem, but implementation of that 
repair had been long delayed.

The engineers suspected that the O-rings stiffened when cold. They also knew 
that temperatures for the Challenger launch were colder than any previous 
launch and well below the red-line. In short, the engineers knew that the risk 
was too high. The engineers acted on that knowledge. They wrote memos 



xxi

PREFACE

raising giant red flags. They strongly urged Thiokol and NASA managers not to 
launch. In an eleventh-hour meeting held just hours before the launch, those 
engineers presented their best data. They raged, and cajoled, and protested. But 
in the end, the managers ignored them.

When the time for launch came, some of the engineers refused to watch the 
broadcast because they feared an explosion on the pad. But as the Challenger 
climbed gracefully into the sky they began to relax. Moments before the 
destruction, as they watched the vehicle pass through Mach 1, one of them said 
that they’d “dodged a bullet.”

Despite all the protest and memos, and urgings of the engineers, the managers 
believed they knew better. They thought the engineers were overreacting. They 
didn’t trust the engineers’ data or their conclusions. They launched because they 
were under immense financial and political pressure. They hoped everything 
would be just fine.

These managers were not merely foolish, they were criminal. The lives of seven 
good men and women, and the hopes of a generation looking toward space 
travel, were dashed on that cold morning because those managers set their own 
fears, hopes, and intuitions above the words of their own experts. They made a 
decision they had no right to make. They usurped the authority of the people 
who actually knew: the engineers.

But what about the engineers? Certainly the engineers did what they were 
supposed to do. They informed their managers and fought hard for their 
position. They went through the appropriate channels and invoked all the right 
protocols. They did what they could, within the system—and still the managers 
overrode them. So it would seem that the engineers can walk away without 
blame.

But sometimes I wonder whether any of those engineers lay awake at night, 
haunted by that image of Christa McAuliffe’s mother, and wishing they’d called 
Dan Rather.



ABO UT TH I S BO O K

This book is about software professionalism. It contains a lot of pragmatic 
advice in an attempt to answer questions, such as

 • What is a software professional?

 • How does a professional behave?

 • How does a professional deal with conflict, tight schedules, and unreasonable 
managers?

 • When, and how, should a professional say “no”?

 • How does a professional deal with pressure?

But hiding within the pragmatic advice in this book you will find an attitude 
struggling to break through. It is an attitude of honesty, of honor, of self-
respect, and of pride. It is a willingness to accept the dire responsibility of being 
a craftsman and an engineer. That responsibility includes working well and 
working clean. It includes communicating well and estimating faithfully. It 
includes managing your time and facing difficult risk-reward decisions.

But that responsibility includes one other thing—one frightening thing. As an 
engineer, you have a depth of knowledge about your systems and projects that 
no managers can possibly have. With that knowledge comes the responsibility 
to act.

BI B LI O G R A PH Y

[McConnell87]: Malcolm McConnell, Challenger ‘A Major Malfunction’, New 
York, NY: Simon & Schuster, 1987

[Wiki-Challenger]: “Space Shuttle Challenger disaster,”

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

PREFACE

xxii

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster


xxiii

AC K N OW LE DG M E NT S

My career has been a series of collaborations and schemes. Though I’ve had 
many private dreams and aspirations, I always seemed to find someone to share 
them with. In that sense I feel a bit like the Sith, “Always two there are.”

The first collaboration that I could consider professional was with John 
Marchese at the age of 13. He and I schemed about building computers 
together. I was the brains and he was the brawn. I showed him where to solder a 
wire and he soldered it. I showed him where to mount a relay and he mounted 
it. It was a load of fun, and we spent hundreds of hours at it. In fact, we built 
quite a few very impressive-looking objects with relays, buttons, lights, even 
Teletypes! Of course, none of them actually did anything, but they were very 
impressive and we worked very hard on them. To John: Thank you!

In my freshman year of high school I met Tim Conrad in my German class. 
Tim was smart. When we teamed up to build a computer, he was the brains and 
I was the brawn. He taught me electronics and gave me my first introduction to 
a PDP-8. He and I actually built a working electronic 18-bit binary calculator 
out of basic components. It could add, subtract, multiply, and divide. It took us 
a year of weekends and all of spring, summer, and Christmas breaks. We worked 
furiously on it. In the end, it worked very nicely. To Tim: Thank you!



xxiv

ACKNOWLEDGMENTS

Tim and I learned how to program computers. This wasn’t easy to do in 1968, 
but we managed. We got books on PDP-8 assembler, Fortran, Cobol, PL/1, 
among others. We devoured them. We wrote programs that we had no hope of 
executing because we did not have access to a computer. But we wrote them 
anyway for the sheer love of it.

Our high school started a computer science curriculum in our sophomore year. 
They hooked up an ASR-33 Teletype to a 110-baud, dial-up modem. They had 
an account on the Univac 1108 time-sharing system at the Illinois Institute of 
Technology. Tim and I immediately became the de facto operators of that 
machine. Nobody else could get near it.

The modem was connected by picking up the telephone and dialing the 
number. When you heard the answering modem squeal, you pushed the “orig” 
button on the Teletype causing the originating modem to emit its own squeal. 
Then you hung up the phone and the data connection was established.

The phone had a lock on the dial. Only the teachers had the key. But that didn’t 
matter, because we learned that you could dial a phone (any phone) by tapping 
out the phone number on the switch hook. I was a drummer, so I had pretty 
good timing and reflexes. I could dial that modem, with the lock in place, in less 
than 10 seconds.

We had two Teletypes in the computer lab. One was the online machine and the 
other was an offline machine. Both were used by students to write their 
programs. The students would type their programs on the Teletypes with the 
paper tape punch engaged. Every keystroke was punched on tape. The students 
wrote their programs in IITran, a remarkably powerful interpreted language. 
Students would leave their paper tapes in a basket near the Teletypes.

After school, Tim and I would dial up the computer (by tapping of course), 
load the tapes into the IITran batch system, and then hang up. At 10 characters 
per second, this was not a quick procedure. An hour or so later, we’d call back 
and get the printouts, again at 10 characters per second. The Teletype did not 
separate the students’ listings by ejecting pages. It just printed one after the next 



xxv

ACKNOWLEDGMENTS

after the next, so we cut them apart using scissors, paper-clipped their input 
paper tape to their listing, and put them in the output basket.

Tim and I were the masters and gods of that process. Even the teachers left us 
alone when we were in that room. We were doing their job, and they knew it. 
They never asked us to do it. They never told us we could. They never gave us 
the key to the phone. We just moved in, and they moved out—and they gave us 
a very long leash. To my Math teachers, Mr. McDermit, Mr. Fogel, and Mr. 
Robien: Thank you!

Then, after all the student homework was done, we would play. We wrote 
program after program to do any number of mad and weird things. We wrote 
programs that graphed circles and parabolas in ASCII on a Teletype. We wrote 
random walk programs and random word generators. We calculated 50 factorial 
to the last digit. We spent hours and hours inventing programs to write and 
then getting them to work.

Two years later, Tim, our compadre Richard Lloyd, and I were hired as 
programmers at ASC Tabulating in Lake Bluff, Illinois. Tim and I were 18 at the 
time. We had decided that college was a waste of time and that we should begin 
our careers immediately. It was here that we met Bill Hohri, Frank Ryder, Big 
Jim Carlin, and John Miller. They gave some youngsters the opportunity to 
learn what professional programming was all about. The experience was not all 
positive and not all negative. It was certainly educational. To all of them, and to 
Richard who catalyzed and drove much of that process: Thank you.

After quitting and melting down at the age of 20, I did a stint as a lawn mower 
repairman working for my brother-in-law. I was so bad at it that he had to fire 
me. Thanks, Wes!

A year or so later I wound up working at Outboard Marine Corporation. By 
this time I was married and had a baby on the way. They fired me too. Thanks, 
John, Ralph, and Tom!



xxvi

ACKNOWLEDGMENTS

Then I went to work at Teradyne where I met Russ Ashdown, Ken Finder, Bob 
Copithorne, Chuck Studee, and CK Srithran (now Kris Iyer). Ken was my boss. 
Chuck and CK were my buds. I learned so much from all of them. Thanks, guys!

Then there was Mike Carew. At Teradyne, he and I became the dynamic duo. 
We wrote several systems together. If you wanted to get something done, and 
done fast, you got Bob and Mike to do it. We had a load of fun together. 
Thanks, Mike!

Jerry Fitzpatrick also worked at Teradyne. We met while playing Dungeons & 
Dragons together, but quickly formed a collaboration. We wrote software on a 
Commodore 64 to support D&D users. We also started a new project at 
Teradyne called “The Electronic Receptionist.” We worked together for several 
years, and he became, and remains, a great friend. Thanks, Jerry!

I spent a year in England while working for Teradyne. There I teamed up with 
Mike Kergozou. He and I schemed together about all manner of things, though 
most of those schemes had to do with bicycles and pubs. But he was a dedicated 
programmer who was very focused on quality and discipline (though, perhaps 
he would disagree). Thanks, Mike!

Returning from England in 1987, I started scheming with Jim Newkirk. We 
both left Teradyne (months apart) and joined a start-up named Clear 
Communications. We spent several years together there toiling to make the 
millions that never came. But we continued our scheming. Thanks, Jim!

In the end we founded Object Mentor together. Jim is the most direct, 
disciplined, and focused person with whom I’ve ever had the privilege to work. 
He taught me so many things, I can’t enumerate them here. Instead, I have 
dedicated this book to him.

There are so many others I’ve schemed with, so many others I’ve collaborated 
with, so many others who have had an impact on my professional life: Lowell 
Lindstrom, Dave Thomas, Michael Feathers, Bob Koss, Brett Schuchert, Dean 
Wampler, Pascal Roy, Jeff Langr, James Grenning, Brian Button, Alan Francis, 



xxvii

ACKNOWLEDGMENTS

Mike Hill, Eric Meade, Ron Jeffries, Kent Beck, Martin Fowler, Grady Booch, 
and an endless list of others. Thank you, one and all.

Of course, the greatest collaborator of my life has been my lovely wife, Ann 
Marie. I married her when I was 20, three days after she turned 18. For 38 years 
she has been my steady companion, my rudder and sail, my love and my life. I 
look forward to another four decades with her.

And now, my collaborators and scheming partners are my children. I work 
closely with my eldest daughter Angela, my lovely mother hen and intrepid 
assistant. She keeps me on the straight and narrow and never lets me forget a 
date or commitment. I scheme business plans with my son Micah, the founder 
of 8thlight.com. His head for business is far better than mine ever was. Our 
latest venture, cleancoders.com, is very exciting!

My younger son Justin has just started working with Micah at 8th Light. My 
younger daughter Gina is a chemical engineer working for Honeywell. With 
those two, the serious scheming has just begun!

No one in your life will teach you more than your children will. Thanks, kids!



This page intentionally left blank 



xxix

ABO UT TH E AUTH O R

Robert C. Martin (“Uncle Bob”) has been a programmer since 1970. He is 
founder and president of Object Mentor, Inc., an international firm of highly 
experienced software developers and managers who specialize in helping 
companies get their projects done. Object Mentor offers process improvement 
consulting, object-oriented software design consulting, training, and skill 
development services to major corporations worldwide.

Martin has published dozens of articles in various trade journals and is a 
regular speaker at international conferences and trade shows.

He has authored and edited many books, including:

 • Designing Object Oriented C++ Applications Using the Booch Method

 • Patterns Languages of Program Design 3



xxx

 • More C++ Gems

 • Extreme Programming in Practice

 • Agile Software Development: Principles, Patterns, and Practices

 • UML for Java Programmers

 • Clean Code

A leader in the industry of software development, Martin served for three years 
as editor-in-chief of the C++ Report, and he served as the first chairman of the 
Agile Alliance.

Robert is also the founder of Uncle Bob Consulting, LLC, and cofounder with 
his son Micah Martin of The Clean Coders LLC.

ABOUT THE AUTHOR



xxxi

ON TH E COV E R

The stunning image on the cover, reminiscent of Sauron’s eye, is M1, the Crab 
Nebula. M1 is located in Taurus, about one degree to the right of Zeta Tauri, the 
star at the tip of the bull’s left horn. The crab nebula is the remnant of a super-
nova that blew its guts all over the sky on the rather auspicious date of July 4th, 
1054 ad. At a distance of 6500 light years, that explosion appeared to Chinese 



xxxii

observers as a new star, roughly as bright as Jupiter. Indeed, it was visible during 
the day! Over the next six months it slowly faded from naked-eye view.

The cover image is a composite of visible and x-ray light. The visible image was 
taken by the Hubble telescope and forms the outer envelope. The inner object 
that looks like a blue archery target was taken by the Chandra x-ray telescope.

The visible image depicts a rapidly expanding cloud of dust and gas laced with 
heavy elements left over from the supernova explosion. That cloud is now 11 
light-years in diameter, weighs in at 4.5 solar masses, and is expanding at the 
furious rate of 1500 kilometers per second. The kinetic energy of that old 
explosion is impressive to say the least.

At the very center of the target is a bright blue dot. That’s where the pulsar is. It 
was the formation of the pulsar that caused the star to blow up in the first place. 
Nearly a solar mass of material in the core of the doomed star imploded into a 
sphere of neutrons about 30 kilometers in diameter. The kinetic energy of that 
implosion, coupled with the incredible barrage of neutrinos created when all 
those neutrons formed, ripped the star open, and blew it to kingdom come.

The pulsar is spinning about 30 times per second; and it flashes as it spins. We 
can see it blinking in our telescopes. Those pulses of light are the reason we call 
it a pulsar, which is short for Pulsating Star.

ON THE COVER



1

PR E-REQU I S ITE 
INTRO D U CTI O N

(Don’t skip this, you’re going to need it.)

I presume you just picked up this book because you are a computer 
programmer and are intrigued by the notion of professionalism. You should be. 
Professionalism is something that our profession is in dire need of.

I’m a programmer too. I’ve been a programmer for 421 years; and in that time—
let me tell you—I’ve seen it all. I’ve been fired. I’ve been lauded. I’ve been a 
team leader, a manager, a grunt, and even a CEO. I’ve worked with brilliant 

1. Don’t Panic.



2

PRE-REQUISITE INTRODUCTION

programmers and I’ve worked with slugs.2 I’ve worked on high-tech cutting-
edge embedded software/hardware systems, and I’ve worked on corporate 
payroll systems. I’ve programmed in COBOL, FORTRAN, BAL, PDP-8, PDP-11, 
C, C++, Java, Ruby, Smalltalk, and a plethora of other languages and systems. 
I’ve worked with untrustworthy paycheck thieves, and I’ve worked with 
consummate professionals. It is that last classification that is the topic of this 
book.

In the pages of this book I will try to define what it means to be a professional 
programmer. I will describe the attitudes, disciplines, and actions that I consider 
to be essentially professional.

How do I know what these attitudes, disciplines, and actions are? Because I had 
to learn them the hard way. You see, when I got my first job as a programmer, 
professional was the last word you’d have used to describe me.

The year was 1969. I was 17. My father had badgered a local business named 
ASC into hiring me as a temporary part-time programmer. (Yes, my father 
could do things like that. I once watched him walk out in front of a speeding 
car with his hand out commanding it to “Stop!” The car stopped. Nobody said 
“no” to my Dad.) The company put me to work in the room where all the IBM 
computer manuals were kept. They had me put years and years of updates into 
the manuals. It was here that I first saw the phrase: “This page intentionally left 
blank.”

After a couple of days of updating manuals, my supervisor asked me to write a 
simple Easycoder3 program. I was thrilled to be asked. I’d never written a 
program for a real computer before. I had, however, inhaled the Autocoder 
books, and had a vague notion of how to begin.

The program was simply to read records from a tape, and replace the IDs of 
those records with new IDs. The new IDs started at 1 and were incremented by 

2. A technical term of unknown origins.

3. Easycoder was the assembler for the Honeywell H200 computer, which was similar to 

Autocoder for the IBM 1401 computer.



3

PRE-REQUISITE INTRODUCTION

1 for each new record. The records with the new IDs were to be written to a 
new tape.

My supervisor showed me a shelf that held many stacks of red and blue 
punched cards. Imagine that you bought 50 decks of playing cards, 25 red 
decks, and 25 blue decks. Then you stacked those decks one on top of the other. 
That’s what these stacks of cards looked like. They were striped red and blue, 
and the stripes were about 200 cards each. Each one of those stripes contained 
the source code for the subroutine library that the programmers typically used. 
Programmers would simply take the top deck off the stack, making sure that 
they took nothing but red or blue cards, and then put that at the end of their 
program deck.

I wrote my program on some coding forms. Coding forms were large 
rectangular sheets of paper divided into 25 lines and 80 columns. Each line 
represented one card. You wrote your program on the coding form using block 
capital letters and a #2 pencil. In the last 6 columns of each line you wrote a 
sequence number with that #2 pencil. Typically you incremented the sequence 
number by 10 so that you could insert cards later.

The coding form went to the key punchers. This company had several dozen 
women who took coding forms from a big in-basket, and then “typed” them 
into key-punch machines. These machines were a lot like typewriters, except 
that the characters were punched into cards instead of printed on paper.

The next day the keypunchers returned my program to me by inter-office mail. 
My small deck of punched cards was wrapped up by my coding forms and a 
rubber band. I looked over the cards for keypunch errors. There weren’t any. So 
then I put the subroutine library deck on the end of my program deck, and 
then took the deck upstairs to the computer operators.

The computers were behind locked doors in an environmentally controlled 
room with a raised floor (for all the cables). I knocked on the door and an 
operator austerely took my deck from me and put it into another in-basket 
inside the computer room. When they got around to it, they would run my 
deck.



4

PRE-REQUISITE INTRODUCTION

The next day I got my deck back. It was wrapped in a listing of the results of the 
run and kept together with a rubber band. (We used lots of rubber bands in 
those days!)

I opened the listing and saw that my compile had failed. The error messages in 
the listing were very difficult for me to understand, so I took it to my 
supervisor. He looked it over, mumbled under his breath, made some quick 
notes on the listing, grabbed my deck and then told me to follow him.

He took me up to the keypunch room and sat at a vacant keypunch machine. 
One by one he corrected the cards that were in error, and added one or two 
other cards. He quickly explained what he was doing, but it all went by like a 
flash.

He took the new deck up to the computer room and knocked at the door. He 
said some magic words to one of the operators, and then walked into the 
computer room behind him. He beckoned for me to follow. The operator set up 
the tape drives and loaded the deck while we watched. The tapes spun, the 
printer chattered, and then it was over. The program had worked.

The next day my supervisor thanked me for my help, and terminated my 
employment. Apparently ASC didn’t feel they had the time to nurture a  
17-year-old.

But my connection with ASC was hardly over. A few months later I got a full-
time second-shift job at ASC operating off-line printers. These printers printed 
junk mail from print images that were stored on tape. My job was to load the 
printers with paper, load the tapes into the tape drives, fix paper jams, and 
otherwise just watch the machines work.

The year was 1970. College was not an option for me, nor did it hold any 
particular enticements. The Viet Nam war was still raging, and the campuses 
were chaotic. I had continued to inhale books on COBOL, Fortran, PL/1,  
PDP-8, and IBM 360 Assembler. My intent was to bypass school and drive as 
hard as I could to get a job programming.



5

PRE-REQUISITE INTRODUCTION

Twelve months later I achieved that goal. I was promoted to a full-time 
programmer at ASC. I, and two of my good friends, Richard and Tim, also 19, 
worked with a team of three other programmers writing a real-time accounting 
system for a teamster’s union. The machine was a Varian 620i. It was a simple 
mini-computer similar in architecture to a PDP-8 except that it had a 16-bit 
word and two registers. The language was assembler.

We wrote every line of code in that system. And I mean every line. We wrote the 
operating system, the interrupt heads, the IO drivers, the file system for the 
disks, the overlay swapper, and even the relocatable linker. Not to mention all 
the application code. We wrote all this in 8 months working 70 and 80 hours a 
week to meet a hellish deadline. My salary was $7,200 per year.

We delivered that system. And then we quit.

We quit suddenly, and with malice. You see, after all that work, and after having 
delivered a successful system, the company gave us a 2% raise. We felt cheated 
and abused. Several of us got jobs elsewhere and simply resigned.

I, however, took a different, and very unfortunate, approach. I and a buddy 
stormed into the boss’ office and quit together rather loudly. This was 
emotionally very satisfying—for a day.

The next day it hit me that I did not have a job. I was 19, unemployed, with no 
degree. I interviewed for a few programming positions, but those interviews did 
not go well. So I worked in my brother-in-law’s lawnmower repair shop for four 
months. Unfortunately I was a lousy lawnmower repairman. He eventually had 
to let me go. I fell into a nasty funk.

I stayed up till 3 am every night eating pizza and watching old monster movies 
on my parents’ old black-and-white, rabbit-ear TV. Only some of the ghosts 
where characters in the movies. I stayed in bed till 1 pm because I didn’t want to 
face my dreary days. I took a calculus course at a local community college and 
failed it. I was a wreck.



6

PRE-REQUISITE INTRODUCTION

My mother took me aside and told me that my life was a mess, and that I had 
been an idiot for quitting without having a new job, and for quitting so 
emotionally, and for quitting together with my buddy. She told me that you 
never quit without having a new job, and you always quit calmly, coolly, and 
alone. She told me that I should call my old boss and beg for my old job back. 
She said, “You need to eat some humble pie.”

Nineteen-year-old boys are not known for their appetite for humble pie, and I 
was no exception. But the circumstances had taken their toll on my pride. In the 
end I called my boss and took a big bite of that humble pie. And it worked. He 
was happy to re-hire me for $6,800 per year, and I was happy to take it.

I spent another eighteen months working there, watching my Ps and Qs 
and trying to be as valuable an employee as I could. I was rewarded with 
promotions and raises, and a regular paycheck. Life was good. When I left that 
company, it was on good terms, and with an offer for a better job in my pocket.

You might think that I had learned my lesson; that I was now a professional. Far 
from it. That was just the first of many lessons I needed to learn. In the coming 
years I would be fired from one job for carelessly missing critical dates, and 
nearly fired from still another for inadvertently leaking confidential information 
to a customer. I would take the lead on a doomed project and ride it into the 
ground without calling for the help I knew I needed. I would aggressively 
defend my technical decisions even though they flew in the face of the 
customers’ needs. I would hire one wholly unqualified person, saddling my 
employer with a huge liability to deal with. And worst of all, I would get two 
other people fired because of my inability to lead.

So think of this book as a catalog of my own errors, a blotter of my own crimes, 
and a set of guidelines for you to avoid walking in my early shoes.



57

4CO D I N G

In a previous book1 I wrote a great deal about the structure and nature of Clean Code. 
This chapter discusses the act of coding, and the context that surrounds that act.

When I was 18 I could type reasonably well, but I had to look at the keys. 
I could not type blind. So one evening I spent a few long hours at an IBM 029 
keypunch refusing to look at my fingers as I typed a program that I had written 
on several coding forms. I examined each card after I typed it and discarded 
those that were typed wrong.

1. [Martin09]



CHAPTER 4 CODING

58

At first I typed quite a few in error. By the end of the evening I was typing them 
all with near perfection. I realized, during that long night, that typing blind is 
all about confidence. My fingers knew where the keys were, I just had to gain 
the confidence that I wasn’t making a mistake. One of the things that helped 
with that confidence is that I could feel when I was making an error. By the end 
of the evening, if I made a mistake, I knew it almost instantly and simply 
ejected the card without looking at it.

Being able to sense your errors is really important. Not just in typing, but in 
everything. Having error-sense means that you very rapidly close the feedback 
loop and learn from your errors all the more quickly. I’ve studied, and mastered, 
several disciplines since that day on the 029. I’ve found that in each case that the 
key to mastery is confidence and error-sense.

This chapter describes my personal set of rules and principles for coding. These rules 
and principles are not about my code itself; they are about my behavior, mood, and 
attitude while writing code. They describe my own mental, moral, and emotional 
context for writing code. These are the roots of my confidence and error-sense.

You will likely not agree with everything I say here. After all, this is deeply personal 
stuff. In fact, you may violently disagree with some of my attitudes and principles. 
That’s OK—they are not intended to be absolute truths for anyone other than me. 
What they are is one man’s approach to being a professional coder.

Perhaps, by studying and contemplating my own personal coding milieu you 
can learn to snatch the pebble from my hand.

PR E PA R E D N E S S

Coding is an intellectually challenging and exhausting activity. It requires a level 
of concentration and focus that few other disciplines require. The reason for 
this is that coding requires you to juggle many competing factors at once.

1. First, your code must work. You must understand what problem you are 
solving and understand how to solve that problem. You must ensure that the 
code you write is a faithful representation of that solution. You must manage 



PREPAREDNESS

59

every detail of that solution while remaining consistent within the language, 
platform, current architecture, and all the warts of the current system.

2. Your code must solve the problem set for you by the customer. Often the 
customer’s requirements do not actually solve the customer’s problems. It is 
up to you to see this and negotiate with the customer to ensure that the 
customer’s true needs are met.

3. Your code must fit well into the existing system. It should not increase the 
rigidity, fragility, or opacity of that system. The dependencies must be well-
managed. In short, your code needs to follow solid engineering principles.2

4. Your code must be readable by other programmers. This is not simply a 
matter of writing nice comments. Rather, it requires that you craft the code in 
such a way that it reveals your intent. This is hard to do. Indeed, this may be 
the most difficult thing a programmer can master.

Juggling all these concerns is hard. It is physiologically difficult to maintain the 
necessary concentration and focus for long periods of time. Add to this the 
problems and distractions of working in a team, in an organization, and the 
cares and concerns of everyday life. The bottom line is that the opportunity for 
distraction is high.

When you cannot concentrate and focus sufficiently, the code you write will be 
wrong. It will have bugs. It will have the wrong structure. It will be opaque and 
convoluted. It will not solve the customers’ real problems. In short, it will have 
to be reworked or redone. Working while distracted creates waste.

If you are tired or distracted, do not code. You’ll only wind up redoing what you 
did. Instead, find a way to eliminate the distractions and settle your mind.

3  A M CO D E

The worst code I ever wrote was at 3 am. The year was 1988, and I was working 
at a telecommunications start-up named Clear Communications. We were all 
putting in long hours in order to build “sweat equity.” We were, of course, all 
dreaming of being rich.

2. [Martin03]



CHAPTER 4 CODING

60

One very late evening—or rather, one very early morning, in order to solve a 
timing problem—I had my code send a message to itself through the event 
dispatch system (we called this “sending mail”). This was the wrong solution, 
but at 3 am it looked pretty damned good. Indeed, after 18 hours of solid coding 
(not to mention the 60–70 hour weeks) it was all I could think of.

I remember feeling so good about myself for the long hours I was working. 
I remember feeling dedicated. I remember thinking that working at 3 am is what 
serious professionals do. How wrong I was!

That code came back to bite us over and over again. It instituted a faulty design 
structure that everyone used but consistently had to work around. It caused all 
kinds of strange timing errors and odd feedback loops. We’d get into infinite 
mail loops as one message caused another to be sent, and then another, 
infinitely. We never had time to rewrite this wad (so we thought) but we always 
seemed to have time to add another wart or patch to work around it. The cruft 
grew and grew, surrounding that 3 am code with ever more baggage and side 
effects. Years later it had become a team joke. Whenever I was tired or frustrated 
they’d say, “Look out! Bob’s about to send mail to himself!”

The moral of this story is: Don’t write code when you are tired. Dedication and 
professionalism are more about discipline than hours. Make sure that your sleep, 
health, and lifestyle are tuned so that you can put in eight good hours per day.

WO R RY CO D E

Have you ever gotten into a big fight with your spouse or friend, and then tried 
to code? Did you notice that there was a background process running in your 
mind trying to resolve, or at least review the fight? Sometimes you can feel the 
stress of that background process in your chest, or in the pit of your stomach. 
It can make you feel anxious, like when you’ve had too much coffee or diet 
coke. It’s distracting.

When I am worried about an argument with my wife, or a customer crisis, or a 
sick child, I can’t maintain focus. My concentration wavers. I find myself with 
my eyes on the screen and my fingers on the keyboard, doing nothing. Catatonic. 



PREPAREDNESS

61

Paralyzed. A million miles away working through the problem in the 
background rather than actually solving the coding problem in front of me.

Sometimes I will force myself to think about the code. I might drive myself to 
write a line or two. I might push myself to get a test or two to pass. But I can’t 
keep it up. Inevitably I find myself descending into a stupefied insensibility, seeing 
nothing through my open eyes, inwardly churning on the background worry.

I have learned that this is no time to code. Any code I produce will be trash. So 
instead of coding, I need to resolve the worry.

Of course, there are many worries that simply cannot be resolved in an hour or 
two. Moreover, our employers are not likely to long tolerate our inability to 
work as we resolve our personal issues. The trick is to learn how to shut down 
the background process, or at least reduce its priority so that it’s not a 
continuous distraction.

I do this by partitioning my time. Rather than forcing myself to code while the 
background worry is nagging at me, I will spend a dedicated block of time, 
perhaps an hour, working on the issue that is creating the worry. If my child is 
sick, I will call home and check in. If I’ve had an argument with my wife, I’ll call 
her and talk through the issues. If I have money problems, I’ll spend time 
thinking about how I can deal with the financial issues. I know I’m not likely to 
solve the problems in this hour, but it is very likely that I can reduce the anxiety 
and quiet the background process.

Ideally the time spent wrestling with personal issues would be personal time. It 
would be a shame to spend an hour at the office this way. Professional developers 
allocate their personal time in order to ensure that the time spent at the office is 
as productive as possible. That means you should specifically set aside time at 
home to settle your anxieties so that you don’t bring them to the office.

On the other hand, if you find yourself at the office and the background 
anxieties are sapping your productivity, then it is better to spend an hour 
quieting them than to use brute force to write code that you’ll just have to 
throw away later (or worse, live with).



CHAPTER 4 CODING

62

TH E FLOW ZO N E

Much has been written about the hyper-productive state known as “flow.” 
Some programmers call it “the Zone.” Whatever it is called, you are probably 
familiar with it. It is the highly focused, tunnel-vision state of consciousness 
that programmers can get into while they write code. In this state they feel 
productive. In this state they feel infallible. And so they desire to attain that 
state, and often measure their self-worth by how much time they can  
spend there.

Here’s a little hint from someone whose been there and back: Avoid the Zone. 
This state of consciousness is not really hyper-productive and is certainly not 
infallible. It’s really just a mild meditative state in which certain rational 
faculties are diminished in favor of a sense of speed.

Let me be clear about this. You will write more code in the Zone. If you are 
practicing TDD, you will go around the red/green/refactor loop more quickly. 
And you will feel a mild euphoria or a sense of conquest. The problem is that 
you lose some of the big picture while you are in the Zone, so you will likely 
make decisions that you will later have to go back and reverse. Code written in 
the Zone may come out faster, but you’ll be going back to visit it more.

Nowadays when I feel myself slipping into the Zone, I walk away for a few minutes. 
I clear my head by answering a few emails or looking at some tweets. If it’s close 
enough to noon, I’ll break for lunch. If I’m working on a team, I’ll find a pair 
partner.

One of the big benefits of pair programming is that it is virtually impossible for 
a pair to enter the Zone. The Zone is an uncommunicative state, while pairing 
requires intense and constant communication. Indeed, one of the complaints I 
often hear about pairing is that it blocks entry into the Zone. Good! The Zone 
is not where you want to be.

Well, that’s not quite true. There are times when the Zone is exactly where you 
want to be. When you are practicing. But we’ll talk about that in another 
chapter.



THE FLOW ZONE

63

MU S I C

At Teradyne, in the late ’70s, I had a private office. I was the system administrator 
of our PDP 11/60, and so I was one of the few programmers allowed to have a 
private terminal. That terminal was a VT100 running at 9600 baud and connected 
to the PDP 11 with 80 feet of RS232 cable that I had strung over the ceiling tiles 
from my office to the computer room.

I had a stereo system in my office. It was an old turntable, amp, and floor 
speakers. I had a significant collection of vinyl, including Led Zeppelin, Pink 
Floyd, and … . Well, you get the picture.

I used to crank that stereo and then write code. I thought it helped my 
concentration. But I was wrong.

One day I went back into a module that I had been editing while listening to the 
opening sequence of The Wall. The comments in that code contained lyrics 
from the piece, and editorial notations about dive bombers and crying babies.

That’s when it hit me. As a reader of the code, I was learning more about the 
music collection of the author (me) than I was learning about the problem that 
the code was trying to solve.

I realized that I simply don’t code well while listening to music. The music does 
not help me focus. Indeed, the act of listening to music seems to consume some 
vital resource that my mind needs in order to write clean and well-designed code.

Maybe it doesn’t work that way for you. Maybe music helps you write code. I 
know lots of people who code while wearing earphones. I accept that the music 
may help them, but I am also suspicious that what’s really happening is that the 
music is helping them enter the Zone.

INTE R R U P TI O N S

Visualize yourself as you are coding at your workstation. How do you respond 
when someone asks you a question? Do you snap at them? Do you glare? Does your 
body-language tell them to go away because you are busy? In short, are you rude?



CHAPTER 4 CODING

64

Or, do you stop what you are doing and politely help someone who is stuck? Do 
you treat them as you would have them treat you if you were stuck?

The rude response often comes from the Zone. You may resent being dragged 
out of the Zone, or you may resent someone interfering with your attempt to 
enter the Zone. Either way, the rudeness often comes from your relationship to 
the Zone.

Sometimes, however, it’s not the Zone that’s at fault, it’s just that you are trying 
to understand something complicated that requires concentration. There are 
several solutions to this.

Pairing can be very helpful as a way to deal with interruptions. Your pair partner 
can hold the context of the problem at hand, while you deal with a phone call, 
or a question from a coworker. When you return to your pair partner, he quickly 
helps you reconstruct the mental context you had before the interruption.

TDD is another big help. If you have a failing test, that test holds the context of 
where you are. You can return to it after an interruption and continue to make 
that failing test pass.

In the end, of course, there will be interruptions that distract you and cause you 
to lose time. When they happen, remember that next time you may be the one 
who needs to interrupt someone else. So the professional attitude is a polite 
willingness to be helpful.

WR ITE R’S BLO C K

Sometimes the code just doesn’t come. I’ve had this happen to me and I’ve seen 
it happen to others. You sit at your workstation and nothing happens.

Often you will find other work to do. You’ll read email. You’ll read tweets. You’ll 
look through books, or schedules, or documents. You’ll call meetings. You’ll 
start up conversations with others. You’ll do anything so that you don’t have to 
face that workstation and watch as the code refuses to appear.



WRITER’S BLOCK

65

What causes such blockages? We’ve spoken about many of the factors already. 
For me, another major factor is sleep. If I’m not getting enough sleep, I simply 
can’t code. Others are worry, fear, and depression.

Oddly enough there is a very simple solution. It works almost every time. It’s easy 
to do, and it can provide you with the momentum to get lots of code written.

The solution: Find a pair partner.

It’s uncanny how well this works. As soon as you sit down next to someone else, 
the issues that were blocking you melt away. There is a physiological change that 
takes place when you work with someone. I don’t know what it is, but I can 
definitely feel it. There’s some kind of chemical change in my brain or body that 
breaks me through the blockage and gets me going again.

This is not a perfect solution. Sometimes the change lasts an hour or two, only 
to be followed by exhaustion so severe that I have to break away from my pair 
partner and find some hole to recover in. Sometimes, even when sitting with 
someone, I can’t do more than just agree with what that person is doing. But for 
me the typical reaction to pairing is a recovery of my momentum.

CR E ATI V E IN PUT

There are other things I do to prevent blockage. I learned a long time ago that 
creative output depends on creative input.

I read a lot, and I read all kinds of material. I read material on software, politics, 
biology, astronomy, physics, chemistry, mathematics, and much more. However, 
I find that the thing that best primes the pump of creative output is science 
fiction.

For you, it might be something else. Perhaps a good mystery novel, or poetry, or 
even a romance novel. I think the real issue is that creativity breeds creativity. 
There’s also an element of escapism. The hours I spend away from my usual 
problems, while being actively stimulated by challenging and creative ideas, 
results in an almost irresistible pressure to create something myself.



CHAPTER 4 CODING

66

Not all forms of creative input work for me. Watching TV does not usually help 
me create. Going to the movies is better, but only a bit. Listening to music does 
not help me create code, but does help me create presentations, talks, and 
videos. Of all the forms of creative input, nothing works better for me than 
good old space opera.

DE B U G G I N G

One of the worst debugging sessions in my career happened in 1972. The 
terminals connected to the Teamsters’ accounting system used to freeze once or 
twice a day. There was no way to force this to happen. The error did not prefer 
any particular terminals or any particular applications. It didn’t matter what the 
user had been doing before the freeze. One minute the terminal was working 
fine, and the next minute it was hopelessly frozen.

It took weeks to diagnose this problem. Meanwhile the Teamsters’ were getting 
more and more upset. Every time there was a freeze-up the person at that 
terminal would have to stop working and wait until they could coordinate all 
the other users to finish their tasks. Then they’d call us and we’d reboot. It was a 
nightmare.

We spent the first couple of weeks just gathering data by interviewing the 
people who experienced the lockups. We’d ask them what they were doing at 
the time, and what they had done previously. We asked other users if they 
noticed anything on their terminals at the time of the freeze-up. These 
interviews were all done over the phone because the terminals were located in 
downtown Chicago, while we worked 30 miles north in the cornfields.

We had no logs, no counters, no debuggers. Our only access to the internals of 
the system were lights and toggle switches on the front panel. We could stop the 
computer, and then peek around in memory one word at a time. But we 
couldn’t do this for more than five minutes because the Teamsters’ needed their 
system back up.

We spent a few days writing a simple real-time inspector that could be operated 
from the ASR-33 teletype that served as our console. With this we could peek 



DEBUGGING

67

and poke around in memory while the system was running. We added log 
messages that printed on the teletype at critical moments. We created in-memory 
counters that counted events and remembered state history that we could 
inspect with the inspector. And, of course, all this had to be written from 
scratch in assembler and tested in the evenings when the system was not in use.

The terminals were interrupt driven. The characters being sent to the terminals 
were held in circular buffers. Every time a serial port finished sending a character, 
an interrupt would fire and the next character in the circular buffer would be 
readied for sending.

We eventually found that when a terminal froze it was because the three variables 
that managed the circular buffer were out of sync. We had no idea why this was 
happening, but at least it was a clue. Somewhere in the 5 KSLOC of supervisory 
code there was a bug that mishandled one of those pointers.

This new knowledge also allowed us to un-freeze terminals manually! We could 
poke default values into those three variables using the inspector, and the 
terminals would magically start running again. Eventually we wrote a little hack 
that would look through all the counters to see if they were misaligned and 
repair them. At first we invoked that hack by hitting a special user-interrupt 
switch on the front panel whenever the Teamsters called to report a freeze-up. 
Later we simply ran the repair utility once every second.

A month or so later the freeze-up issue was dead, as far as the Teamsters were 
concerned. Occasionally one of their terminals would pause for a half second or 
so, but at a base rate of 30 characters per second, nobody seemed to notice.

But why were the counters getting misaligned? I was nineteen and determined 
to find out.

The supervisory code had been written by Richard, who had since gone off to 
college. None of the rest of us were familiar with that code because Richard had 
been quite possessive of it. That code was his, and we weren’t allowed to know 
it. But now Richard was gone, so I got out the inches-thick listing and started to 
go over it page by page.



CHAPTER 4 CODING

68

The circular queues in that system were just FIFO data structures, that is, 
queues. Application programs pushed characters in one end of the queue until 
the queue was full. The interrupt heads popped the characters off the other end 
of the queue when the printer is ready for them. When the queue was empty, 
the printer would stop. Our bug caused the applications to think that the queue 
was full, but caused the interrupt heads to think that the queue was empty.

Interrupt heads run in a different “thread” than all other code. So counters and 
variables that are manipulated by both interrupt heads and other code must be 
protected from concurrent update. In our case that meant turning the 
interrupts off around any code that manipulated those three variables. By the 
time I sat down with that code I knew I was looking for someplace in the code 
that touched the variables but did not disable the interrupts first.

Nowadays, of course, we’d use the plethora of powerful tools at our disposal to 
find all the places where the code touched those variables. Within seconds we’d 
know every line of code that touched them. Within minutes we’d know which 
did not disable the interrupts. But this was 1972, and I didn’t have any tools like 
that. What I had were my eyes.

I pored over every page of that code, looking for the variables. Unfortunately, 
the variables were used everywhere. Nearly every page touched them in one way 
or another. Many of those references did not disable the interrupts because they 
were read-only references and therefore harmless. The problem was, in that 
particular assembler there was no good way to know if a reference was read-
only without following the logic of the code. Any time a variable was read, it 
might later be updated and stored. And if that happened while the interrupts 
were enabled, the variables could get corrupted.

It took me days of intense study, but in the end I found it. There, in the middle 
of the code, was one place where one of the three variables was being updated 
while the interrupts were enabled.

I did the math. The vulnerability was about two microseconds long. There were 
a dozen terminals all running at 30 cps, so an interrupt every 3 ms or so. Given 
the size of the supervisor, and the clock rate of the CPU, we’d expect a freeze-up 
from this vulnerability one or two times a day. Bingo!



PACING YOURSELF

69

I fixed the problem, of course, but never had the courage to turn off the 
automatic hack that inspected and fixed the counters. To this day I’m not 
convinced there wasn’t another hole.

DE B U G G I N G TI M E

For some reason software developers don’t think of debugging time as coding 
time. They think of debugging time as a call of nature, something that just has 
to be done. But debugging time is just as expensive to the business as coding 
time is, and therefore anything we can do to avoid or diminish it is good.

Nowadays I spend much less time debugging than I did ten years ago. I haven’t 
measured the difference, but I believe it’s about a factor of ten. I achieved this 
truly radical reduction in debugging time by adopting the practice of Test 
Driven Development (TDD), which we’ll be discussing in another chapter.

Whether you adopt TDD or some other discipline of equal efficacy,3 it is 
incumbent upon you as a professional to reduce your debugging time as close 
to zero as you can get. Clearly zero is an asymptotic goal, but it is the goal 
nonetheless.

Doctors don’t like to reopen patients to fix something they did wrong. Lawyers 
don’t like to retry cases that they flubbed up. A doctor or lawyer who did that 
too often would not be considered professional. Likewise, a software developer 
who creates many bugs is acting unprofessionally.

PAC I N G YO U R S E L F

Software development is a marathon, not a sprint. You can’t win the race by 
trying to run as fast as you can from the outset. You win by conserving your 
resources and pacing yourself. A marathon runner takes care of her body both 
before and during the race. Professional programmers conserve their energy and 
creativity with the same care.

3. I don’t know of any discipline that is as effective as TDD, but perhaps you do.



CHAPTER 4 CODING

70

KN OW WH E N TO WA L K AWAY

Can’t go home till you solve this problem? Oh yes you can, and you probably 
should! Creativity and intelligence are fleeting states of mind. When you are 
tired, they go away. If you then pound your nonfunctioning brain for hour after 
late-night hour trying to solve a problem, you’ll simply make yourself more 
tired and reduce the chance that the shower, or the car, will help you solve the 
problem.

When you are stuck, when you are tired, disengage for awhile. Give your 
creative subconscious a crack at the problem. You will get more done in less 
time and with less effort if you are careful to husband your resources. Pace 
yourself, and your team. Learn your patterns of creativity and brilliance, and 
take advantage of them rather than work against them.

DR I V I N G HO M E

One place that I have solved a number of problems is my car on the way home 
from work. Driving requires a lot of noncreative mental resources. You must 
dedicate your eyes, hands, and portions of your mind to the task; therefore, you 
must disengage from the problems at work. There is something about 
disengagement that allows your mind to hunt for solutions in a different and 
more creative way.

TH E SH OW E R

I have solved an inordinate number of problems in the shower. Perhaps that 
spray of water early in the morning wakes me up and gets me to review all the 
solutions that my brain came up with while I was asleep.

When you are working on a problem, you sometimes get so close to it that you 
can’t see all the options. You miss elegant solutions because the creative part of 
your mind is suppressed by the intensity of your focus. Sometimes the best way 
to solve a problem is to go home, eat dinner, watch TV, go to bed, and then 
wake up the next morning and take a shower.



BEING LATE

71

BE I N G L ATE

You will be late. It happens to the best of us. It happens to the most dedicated of 
us. Sometimes we just blow our estimates and wind up late.

The trick to managing lateness is early detection and transparency. The worst 
case scenario occurs when you continue to tell everyone, up to the very end, 
that you will be on time—and then let them all down. Don’t do this. Instead, 
regularly measure your progress against your goal, and come up with three4 
fact-based end dates: best case, nominal case, and worst case. Be as honest as 
you can about all three dates. Do not incorporate hope into your estimates! 
Present all three numbers to your team and stakeholders. Update these 
numbers daily.

HO PE

What if these numbers show that you might miss a deadline? For example, let’s 
say that there’s a trade show in ten days, and we need to have our product there. 
But let’s also say that your three-number estimate for the feature you are 
working on is 8/12/20.

Do not hope that you can get it all done in ten days! Hope is the project killer. 
Hope destroys schedules and ruins reputations. Hope will get you into deep 
trouble. If the trade show is in ten days, and your nominal estimate is 12, you 
are not going to make it. Make sure that the team and the stakeholders 
understand the situation, and don’t let up until there is a fall-back plan. Don’t 
let anyone else have hope.

RU S H I N G

What if your manager sits you down and asks you to try to make the deadline? 
What if your manager insists that you “do what it takes”? Hold to your estimates! 
Your original estimates are more accurate than any changes you make while  
 

4. There’s much more about this in the Estimation chapter.



CHAPTER 4 CODING

72

your boss is confronting you. Tell your boss that you’ve already considered the 
options (because you have) and that the only way to improve the schedule is to 
reduce scope. Do not be tempted to rush.

Woe to the poor developer who buckles under pressure and agrees to try to 
make the deadline. That developer will start taking shortcuts and working extra 
hours in the vain hope of working a miracle. This is a recipe for disaster because 
it gives you, your team, and your stakeholders false hope. It allows everyone to 
avoid facing the issue and delays the necessary tough decisions.

There is no way to rush. You can’t make yourself code faster. You can’t make 
yourself solve problems faster. If you try, you’ll just slow yourself down and 
make a mess that slows everyone else down, too.

So you must answer your boss, your team, and your stakeholders by depriving 
them of hope.

OV E RTI M E

So your boss says, “What if you work an extra two hours a day? What if you work 
on Saturday? Come on, there’s just got to be a way to squeeze enough hours in 
to get the feature done on time.”

Overtime can work, and sometimes it is necessary. Sometimes you can make an 
otherwise impossible date by putting in some ten-hour days, and a Saturday or 
two. But this is very risky. You are not likely to get 20% more work done by 
working 20% more hours. What’s more, overtime will certainly fail if it goes on 
for more than two or three weeks.

Therefore you should not agree to work overtime unless (1) you can personally 
afford it, (2) it is short term, two weeks or less, and (3) your boss has a fall-back 
plan in case the overtime effort fails.

That last criterion is a deal breaker. If your boss cannot articulate to you what 
he’s going to do if the overtime effort fails, then you should not agree to work 
overtime.



HELP

73

FA L S E DE LI V E RY

Of all the unprofessional behaviors that a programmer can indulge in, perhaps 
the worst of all is saying you are done when you know you aren’t. Sometimes 
this is just an overt lie, and that’s bad enough. But the far more insidious case is 
when we manage to rationalize a new definition of “done.” We convince 
ourselves that we are done enough, and move on to the next task. We rationalize 
that any work that remains can be dealt with later when we have more time.

This is a contagious practice. If one programmer does it, others will see and 
follow suit. One of them will stretch the definition of “done” even more, and 
everyone else will adopt the new definition. I’ve seen this taken to horrible 
extremes. One of my clients actually defined “done” as “checked-in.” The code 
didn’t even have to compile. It’s very easy to be “done” if nothing has to work!

When a team falls into this trap, managers hear that everything is going fine. All 
status reports show that everyone is on time. It’s like blind men having a picnic 
on the railroad tracks: Nobody sees the freight train of unfinished work bearing 
down on them until it is too late.

DE F I N E “DO N E”

You avoid the problem of false delivery by creating an independent definition of 
“done.” The best way to do this is to have your business analysts and testers 
create automated acceptance tests5 that must pass before you can say that you 
are done. These tests should be written in a testing language such as FitNesse, 
Selenium, RobotFX, Cucumber, and so on. The tests should be understandable 
by the stakeholders and business people, and should be run frequently.

HE LP

Programming is hard. The younger you are the less you believe this. After all, it’s 
just a bunch of if and while statements. But as you gain experience you begin to 
realize that the way you combine those if and while statements is critically 

5. See Chapter 7, “Acceptance Testing.”



CHAPTER 4 CODING

74

important. You can’t just slather them together and hope for the best. Rather, 
you have to carefully partition the system into small understandable units that 
have as little to do with each other as possible—and that’s hard.

Programming is so hard, in fact, that it is beyond the capability of one person 
to do it well. No matter how skilled you are, you will certainly benefit from 
another programmer’s thoughts and ideas.

HE LPI N G OTH E R S

Because of this, it is the responsibility of programmers to be available to help 
each other. It is a violation of professional ethics to sequester yourself in a 
cubicle or office and refuse the queries of others. Your work is not so important 
that you cannot lend some of your time to help others. Indeed, as a professional 
you are honor bound to offer that help whenever it is needed.

This doesn’t mean that you don’t need some alone time. Of course you do. But 
you have to be fair and polite about it. For example, you can let it be known 
that between the hours of 10 am and noon you should not be bothered, but 
from 1 pm to 3 pm your door is open.

You should be conscious of the status of your teammates. If you see someone 
who appears to be in trouble, you should offer your help. You will likely be quite 
surprised at the profound effect your help can have. It’s not that you are so 
much smarter than the other person, it’s just that a fresh perspective can be a 
profound catalyst for solving problems.

When you help someone, sit down and write code together. Plan to spend the 
better part of an hour or more. It may take less than that, but you don’t want to 
appear to be rushed. Resign yourself to the task and give it a solid effort. You 
will likely come away having learned more than you gave.

BE I N G HE LPE D

When someone offers to help you, be gracious about it. Accept the help 
gratefully and give yourself to that help. Do not protect your turf. Do not push 



HELP

75

the help away because you are under the gun. Give it thirty minutes or so. If by 
that time the person is not really helping all that much, then politely excuse 
yourself and terminate the session with thanks. Remember, just as you are 
honor bound to offer help, you are honor bound to accept help.

Learn how to ask for help. When you are stuck, or befuddled, or just can’t wrap 
your mind around a problem, ask someone for help. If you are sitting in a team 
room, you can just sit back and say, “I need some help.” Otherwise, use yammer, 
or twitter, or email, or the phone on your desk. Call for help. Again, this is a 
matter of professional ethics. It is unprofessional to remain stuck when help is 
easily accessible.

By this time you may be expecting me to burst into a chorus of Kumbaya while 
fuzzy bunnies leap onto the backs of unicorns and we all happily fly over 
rainbows of hope and change. No, not quite. You see, programmers tend to be 
arrogant, self-absorbed introverts. We didn’t get into this business because we 
like people. Most of us got into programming because we prefer to deeply focus 
on sterile minutia, juggle lots of concepts simultaneously, and in general prove 
to ourselves that we have brains the size of a planet, all while not having to 
interact with the messy complexities of other people.

Yes, this is a stereotype. Yes, it is generalization with many exceptions. But the 
reality is that programmers do not tend to be collaborators.6 And yet collaboration 
is critical to effective programming. Therefore, since for many of us collaboration 
is not an instinct, we require disciplines that drive us to collaborate.

ME NTO R I N G

I have a whole chapter on this topic later in the book. For now let me simply say 
that the training of less experienced programmers is the responsibility of those 
who have more experience. Training courses don’t cut it. Books don’t cut it. 
Nothing can bring a young software developer to high performance quicker 

6. This is far more true of men than women. I had a wonderful conversation with @desi (Desi McAdam, 

founder of DevChix) about what motivates women programmers. I told her that when I got a program 

working, it was like slaying the great beast. She told me that for her and other women she had spoken to, 

the act of writing code was an act of nurturing creation.



CHAPTER 4 CODING

76

than his own drive, and effective mentoring by his seniors. Therefore, once 
again, it is a matter of professional ethics for senior programmers to spend time 
taking younger programmers under their wing and mentoring them. By the 
same token, those younger programmers have a professional duty to seek out 
such mentoring from their seniors.

BI B LI O G R A PH Y

[Martin09]: Robert C. Martin, Clean Code, Upper Saddle River, NJ: Prentice 
Hall, 2009.

[Martin03]: Robert C. Martin, Agile Software Development: Principles, Patterns, 
and Practices, Upper Saddle River, NJ: Prentice Hall, 2003.



205

IN D E X

A
Acceptance tests

automated, 97–99
communication and, 97
continuous integration and,  

104–105
definition of, 94
developer’s role in, 100–101
extra work and, 99
GUIs and, 103–105
negotiation and, 101–102
passive aggression and, 101–102
timing of, 99–100
unit tests and, 102–103
writers of, 99–100

Adversarial roles, 20–23
Affinity estimation, 140–141
Ambiguity, in requirements, 92–94
Apologies, 6
Apprentices, 183
Apprenticeship, 180–184
Arguments, in meetings, 120–121
Arrogance, 16

Automated acceptance testing, 97–99
Automated quality assurance, 8
Avoidance, 125

B
Blind alleys, 125–126
Bossavit, Laurent, 83
Bowling Game, 83
Branching, 191
Bug counts, 197
Business goals, 154

C
Caffeine, 122
Certainty, 74
Code

control, 189–194
owned, 157
3 AM, 53–54
worry, 54–55

Coding Dojo, 83–87
Collaboration, 14, 151–160
Collective ownership, 157–158



INDEX

206

Commitment(s), 41–46
control and, 44
discipline and, 47–50
estimation and, 132
expectations and, 45
identifying, 43–44
implied, 134–135
importance of, 132
lack of, 42–43
pressure and, 146

Communication
acceptance tests and, 97
pressure and, 148
of requirements, 89–94

Component tests
in testing strategy, 110–111
tools for, 199–200

Conflict, in meetings, 120–121
Continuous build, 197–198
Continuous integration, 104–105
Continuous learning, 13
Control, commitment and, 44
Courage, 75–76
Craftsmanship, 184
Creative input, 59–60, 123
Crisis discipline, 147
Cucumber, 200
Customer, identification with, 15
CVS, 191
Cycle time, in test-driven 

development, 72

D
Deadlines

false delivery and, 67
hoping and, 65
overtime and, 66
rushing and, 65–66

Debugging, 60–63
Defect injection rate, 75

Demo meetings, 120
Design, test-driven development and, 

76–77
Design patterns, 12
Design principles, 12
Details, 201–203
Development. see test driven 

development (TDD)
Disagreements, in meetings, 120–121
Discipline

commitment and, 47–50
crisis, 147

Disengagement, 64
Documentation, 76
Domain, knowledge of, 15
“Done,” defining, 67, 94–97
“Do no harm” approach, 5–10

to function, 5–8
to structure, 8–10

Driving, 64

E
Eclipse, 195–196
Emacs, 195
Employer(s)

identification with, 15
programmers vs., 153–156

Estimation
affinity, 140–141
anxiety, 92
commitment and, 132
definition of, 132–133
law of large numbers and, 141
nominal, 136
optimistic, 135–136
PERT and, 135–138
pessimistic, 136
probability and, 133
of tasks, 138–141
trivariate, 141



INDEX

207

Expectations, commitment and, 45
Experience, broadening, 87

F
Failure, degrees of, 174
False delivery, 67
FitNesse, 199–200
Flexibility, 9
Flow zone, 56–58
Flying fingers, 139
Focus, 121–123
Function, in “do no harm”  

approach, 5–8

G
Gaillot, Emmanuel, 83
Gelled team, 162–164
Git, 191–194
Goals, 20–23, 118
Graphical user interfaces (GUIs), 

103–105
Green Pepper, 200
Grenning, James, 139
GUIs, 103–105

H
Hard knocks, 179–180
Help, 67–70

giving, 68
mentoring and, 69–70
pressure and, 148–149
receiving, 68–69

“Hope,” 42
Hoping, deadlines and, 65
Humility, 16

I
IDE/editor, 194
Identification, with employer/

customer, 15
Implied commitments, 134–135

Input, creative, 59–60, 123
Integration, continuous, 104–105
Integration tests

in testing strategy, 111–112
tools for, 200–201

IntelliJ, 195–196
Interns, 183
Interruptions, 57–58
Issue tracking, 196–197
Iteration planning meetings, 119
Iteration retrospective meetings, 120

J
JBehave, 200
Journeymen, 182–183

K
Kata, 84–85
Knowledge

of domain, 15
minimal, 12
work ethic and, 11–13

L
Lateness, 65–67
Law of large numbers, 141
Learning, work ethic and, 13
“Let’s,” 42
Lindstrom, Lowell, 140
Locking, 190

M
Manual exploratory tests, in testing 

strategy, 112–113
Masters, 182
MDA, 201–203
Meetings

agenda in, 118
arguments and disagreements in, 

120–121
declining, 117



INDEX

208

Meetings (continued)
demo, 120
goals in, 118
iteration planning, 119
iteration retrospective, 120
leaving, 118
stand-up, 119
time management and, 116–121

Mentoring, 14–15, 69–70, 174–180
Merciless refactoring, 9
Messes, 126–127, 146
Methods, 12
Model Driven Architecture (MDA), 

201–203
Muscle focus, 123
Music, 57

N
“Need,” 42
Negotiation, acceptance tests and, 

101–102
Nominal estimate, 136
Nonprofessional, 2

O
Open source, 87
Optimistic estimate, 135–136
Optimistic locking, 190
Outcomes, best-possible, 20–23
Overtime, 66
Owned code, 157
Ownership, collective, 157–158

P
Pacing, 63–64
Pairing, 58, 148–149, 158
Panic, 147–148
Passion, 154
Passive aggression, 28–30, 101–102
People, programmers vs., 153–158
Personal issues, 54–55

PERT (Program Evaluation and 
Review Technique), 135–138

Pessimistic estimate, 136
Pessimistic locking, 190
Physical activity, 123
Planning Poker, 139–140
Practice

background on, 80–83
ethics, 87
experience and, 87
turnaround time and, 82–83
work ethic and, 13–14

Precision, premature, in 
requirements, 91–92

Preparedness, 52–55
Pressure

avoiding, 145–147
cleanliness and, 146
commitments and, 146
communication and, 148
handling, 147–149
help and, 148–149
messes and, 146
panic and, 147–148

Priority inversion, 125
Probability, 133
Professionalism, 2
Programmers

employers vs., 153–156
people vs., 153–158
programmers vs., 157

Proposal, project, 31–32

Q
Quality assurance (QA)

automated, 8
as bug catchers, 6
as characterizers, 108–109
ideal of, as finding no problems, 

108–109



INDEX

209

problems found by, 6–7
as specifiers, 108
as team member, 108

R
Randori, 86–87
Reading, as creative input, 59
Recharging, 122–123
Reputation, 5
Requirements

communication of, 89–94
estimation anxiety and, 92
late ambiguity in, 92–94
premature precision in, 91–92
uncertainty and, 91–92

Responsibility, 2–5
apologies and, 6
“do no harm” approach and, 5–10
function and, 5–8
structure and, 8–10
work ethic and, 10–16

RobotFX, 200
Roles, adversarial, 20–23
Rushing, 34–35, 65–66

S
Santana, Carlos, 83
“Should,” 42
Shower, 64
Simplicity, 34
Sleep, 122
Source code control, 189–194
Stakes, 23–24
Stand-up meetings, 119
Structure

in “do no harm” approach, 8–10
flexibility and, 9
importance of, 8

SVN, 191–194
System tests, in testing strategy, 112

T
Task estimation, 138–141
Teams and teamwork, 24–30

gelled, 162–164
management of, 164
passive aggression and, 28–30
preserving, 163
project-initiated, 163–164
project owner dilemma with,  

164–165
trying and, 26–28
velocity of, 164

Test driven development (TDD)
benefits of, 74–77
certainty and, 74
courage and, 75–76
cycle time in, 72
debut of, 71–72
defect injection rate and, 75
definition of, 7–8
design and, 76–77
documentation and, 76
interruptions and, 58
three laws of, 73–74
what it is not, 77–78

Testing
acceptance

automated, 97–99
communication and, 97
continuous integration and, 

104–105
definition of, 94
developer’s role in, 100–101
extra work and, 99
GUIs and, 103–105
negotiation and, 101–102
passive aggression and, 101–102
timing of, 99–100
unit tests and, 102–103
writers of, 99–100



INDEX

210

Testing (continued)
automation pyramid, 109–113
component

in testing strategy, 110–111
tools for, 199–200

importance of, 7–8
integration

in testing strategy, 111–112
tools for, 200–201

manual exploratory, 112–113
structure and, 9
system, 112
unit

acceptance tests and, 102–103
in testing strategy, 110
tools for, 198–199

TextMate, 196
Thomas, Dave, 84
3 AM code, 53–54
Time, debugging, 63
Time management

avoidance and, 125
blind alleys and, 125–126
examples of, 116
focus and, 121–123
meetings and, 116–121
messes and, 126–127
priority inversion and, 125
recharging and, 122–123
“tomatoes” technique for, 124

Tiredness, 53–54
“Tomatoes” time management 

technique, 124
Tools, 189

Trivariate estimates, 141
Turnaround time, practice  

and, 82–83

U
UML, 201
Uncertainty, requirements and, 91–92
Unconventional mentoring, 179.  

see also mentoring
Unit tests

acceptance tests and, 102–103
in testing strategy, 110
tools for, 198–199

V
Vi, 194

W
Walking away, 64
Wasa, 85–86
Wideband delphi, 138–141
“Wish,” 42
Work ethic, 10–16

collaboration and, 14
continuous learning and, 13
knowledge and, 11–13
mentoring and, 14–15
practice and, 13–14

Worry code, 54–55
Writer’s block, 58–60

Y
“Yes”

cost of, 30–34
learning how to say, 46–50


	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	On the Cover
	Pre-Requisite Introduction
	Chapter 4 Coding
	Preparedness
	The Flow Zone
	Writer’s Block
	Debugging
	Pacing Yourself
	Being Late
	Help
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y




