
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137063383
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137063383
https://plusone.google.com/share?url=http://www.informit.com/title/9780137063383
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137063383
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137063383/Free-Sample-Chapter

Patterns in Network
Architecture

This page intentionally left blank

Patterns in Network
Architecture

A Return to Fundamentals

JOHN DAY

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liabil-
ity is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data:

Day, John D., 1947-

Patterns in network architecture : a return to fundamentals / John Day.

p. cm.

ISBN 0-13-225242-2 (hbk. : alk. paper) 1. Computer network architectures. 2. Computer net-
works—Design. 3. Computer networks—Philosophy. 4. Internet—History. I. Title.

TK5105.52.D39 2007

004.6—dc22

2007040174

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-132-25242-3
ISBN-10: 0-132-25242-2
Text printed in the United States on recycled paper at Courier Westford, Massachusetts.
Second printing December 2008

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Chuck Toporek

Managing Editor
Gina Kanouse

Senior Project
Editor
Kristy Hart

Copy Editor
Keith Cline

Indexer
Erika Millen

Editorial Assistant
Romny French

Cover Designer
Chuti Prasertsith

Composition
Gloria Schurick

Proofreader
San Dee Phillips

To Heinz von Forester,
who taught me how to think

and
To Dite, Kathleen, and Kinmundy,

who gave me a foundation for life

This page intentionally left blank

vii

Contents

Preface The Seven Unanswered Questions . xiii

Chapter 1 Foundations for Network Architecture . 1

Introduction . 1
Beginning at the Beginning . 4
Levels of Abstraction . 7

Model . 10
Service . 11
Protocol and Interface . 14
Implementation . 15

Specifying Protocols . 15
Informal Specifications. 15
Formal Description Techniques . 16

Where to from Here . 19

Chapter 2 Protocol Elements . 23

Introduction . 23
Protocol Architecture . 23

Elements of a Protocol . 24
Data Units . 31

Constructing Protocol . 36
The Size of PDUs . 38
Mechanism and Policy . 39
QoS Versus NoS. 43

A Short Catalog of Data Transfer Mechanisms 44
Delimiting . 45
Initial State Synchronization . 45
Policy Selection . 46
Addressing . 47
Flow or Connection Identifier . 47
Relaying. 47
Multiplexing . 48

Ordering . 48
Fragmentation/Reassembly . 48
Combining/Separation . 48
Data Corruption . 49
Lost and Duplicate Detection. 50
Flow Control . 50
Retransmission Control or Acknowledgment. 50
Compression . 51
Authentication . 51
Access Control . 52
Integrity . 52
Confidentiality . 52
Nonrepudiation . 52
Activity . 52

Phases of Operation . 53
The Enrollment Phase . 53
The Establishment or Synchronization Phase 55
The Data Transfer Phase . 55

Conclusions . 56

Chapter 3 Patterns in Protocols . 57

Introduction . 57
The Two Major Architecture Paradigms. 60

The Layered Model . 60
The Beads-on-a-String Model. 62

The Connectionless/Connection Debate . 66
Background . 66
Finding for a Synthesis: The Easy Part . 72

The Types of Mechanisms . 75
How Many PDUs in a Protocol? . 76
The Types of Protocols . 78
The Architecture of Data Transfer PMs . 82
Finding a Synthesis: The Hard Part . 85
Conclusions . 94

PATTERNS IN NETWORK ARCHITECTUREviii

CONTENTS ix

Chapter 4 Stalking the Upper-Layer Architecture. 97

Introduction . 97
A Bit of History . 99

The Upper Layer(s) of the ARPANET . 99
The OSI Attempt or “Green Side Up” . 110
Network Management . 123
HTTP and the Web . 129
Directory- or Name-Resolution Protocols 132

What Distinguishes the Upper Layers. 136
Semantic Significance . 137
Location Independence . 138

Conclusions . 140

Chapter 5 Naming and Addressing . 141

Introduction . 141
Why Do We Need Naming and Addressing? 142
How the Problem Arose . 143
Background on Naming and Addressing . 146

Foundations of Mathematics and Naming 146
Naming and Addressing in Telephony . 151
Naming in Operating Systems . 152
X.25 and the ITU. 154
The Evolution of Addressing in the Internet: Early IP 154
OSI and NSAPs . 161
Addressing in IPv6 . 168
Looking Back over IPv6. 174
“Upper-Layer” or Application Addressing in OSI 178
URI, URL, URN, and So On: Upper-Layer Addressing in
the Internet . 182

Conclusions . 183

Chapter 6 Divining Layers . 185

Introduction . 185
Putting Protocols Together . 186

What We Have Seen. 186

Listening to the Problem . 192
Introduction. 192
Communications Within a Single System 194
Communications Between Two Systems. 199
Invalidated Assumptions . 203
New Elements Required. 204
Simultaneous Communications Between Two Systems. 205
Communications with N Systems. 210
Communication with N Systems on the Cheap 214
Initial Conclusions . 219

Taking Stock . 223
The Network IPC Architecture (NIPCA) . 225
Organizing Layers . 228
Conclusions . 232

Chapter 7 The Network IPC Model. 235

Introduction . 235
Basic Structure . 237

Definitions . 237
Description of the Basic System . 239

Naming Concepts for (N)-DIFs and Applications. 245
Definitions . 245

The (N)-Distributed IPC Facility . 248
Definitions . 248
The (N)-IPC-Process . 250
The (N)-IPC-APM . 251
The IPC Management Task . 257
Network Management Protocol and Management
Architecture . 263

The Nature of Layers . 264
Operation of the DIF . 266

Adding a New Member to an (N)-DIF 266
Creating a New DIF. 268
Data Transfer. 269

Identifiers in an (N)-DIF. 271
The (N)-Port-ID. 272
Application Process Names . 273
(N)-Addresses . 273

PATTERNS IN NETWORK ARCHITECTUREx

IPC Facilities . 277
IPC Structures . 277
Multiple (N)-DIFs of the Same Rank . 278
Implications for Security . 279

Conclusions . 281

Chapter 8 Making Addresses Topological . 283

Introduction . 283
General Properties of Addressing . 286

Names and Addresses . 286
Introducing Topology to Addressing . 289

Definitions . 289
Topologies for Addressing . 293
The Role of Hierarchy in Addressing . 297

The Hierarchy of Layers . 298
The Hierarchical Topology of Address Spaces 299
The Hierarchy of Networks . 301
Melding Address Spaces and the Hierarchy of Layers 304

Hierarchical Addressing Architecture . 307
Single-Layer Address Topology . 308
Single-Layer Hierarchical Address Topology 308
Address Topology for a Hierarchy of Layers 310
Addressing Topologies for Multiple Hierarchies of Layers 313
Modeling the Public Internet . 314

Conclusions . 316

Chapter 9 Multihoming, Multicast, and Mobility 317

Introduction . 317
Multihoming . 318
Multicast Architecture . 323

Introduction to the Multicast Problem. 323
The Multicast Model . 326
Multicast “Addressing” . 327
Multicast Distribution . 329
Sentential Naming Operations and Their Resolution 330
Multicast Distribution in a Recursive Architecture. 331
Multiplexing Multicast Groups . 333
Reliable Multicast . 334

CONTENTS xi

Mobility . 338
Mobility in IP and Cellular Networks . 339
Mobility in NIPCA . 342
Ad Hoc Mobile Networking . 346
Mobile Application Processes. 347

Conclusions . 349

Chapter 10 Backing Out of a Blind Alley. 351

Introduction . 351
Consolidation and the Next Generation. 352
How Did This Happen? . 362
The Importance of Theory . 368
Finding a New Path . 373
The High Points . 375

Appendix A Outline for Gedanken Experiment on Separating
Mechanism and Policy . 385

Part I Service Definitions . 385
Part II Protocol Specifications . 386
Part III Mechanism Specifications . 387

Bibliography . 389

Index . 399

PATTERNS IN NETWORK ARCHITECTURExii

xiii

Preface

There is something fascinating about science. One gets such wholesale
returns on conjecture out of such a trifling investment of fact.

—Mark Twain, Life on the Mississippi

The Seven Unanswered Questions

This didn’t start out to be a book.
It started out simply as an attempt to distill what we know about networks

after 35 years of beating on the problem. What principles, rules of thumb,
guidelines, and so on could be distilled from what we had seen independent of
politics, and religion, and even the constraints of technology. What could be
said with as little qualification as possible? Were there a few constraints that
could be introduced that would allow us to do a great deal more? What did we
really know that didn’t change? What some might call science.

Over the years, I saw ideas go by that had not been pursued, directions taken
that didn’t seem quite right; sometimes little things, sometimes not so little (but
always affected by politics, market interests, group think, and sometimes just
the imperfect state of our understanding). But the ideas were points that had the
potential to be those subtle inflections on which much bigger things hinged.
Usually they were sloughed off with a fatalistic “Awww! Simplifying here would
only increase complexity elsewhere.” But would it?

As I pursued this seemingly quixotic quest, patterns began to assemble them-
selves that I had not seen before. Patterns that lead to a major collapse in complex-
ity. The structure of networks turns out to be much simpler than we imagined.
There are far fewer protocols. And capabilities such as multihoming, mobility, and
scaling turn out to be a consequence of the resulting structure, not complexities to
be added. No cumbersome mechanisms are required. The increased orthogonality
and regularity of the structure makes the solutions to other problems easier and
straightforward. On the surface, what emerged appears not that different from
what we had been doing. And upon first reflection, some are likely to think, “Sure,
we all knew that.” But deeper, it is very different and requires a cognitive shift that
isn’t always easy to make. And this shift is made more difficult because not all the
concepts key to making the transition are common knowledge.

PATTERNS IN NETWORK ARCHITECTURExiv

In addition to just codifying principles and rules of thumb, there were a few
key unsolved problems that were at the crux of a better understanding, prob-
lems that needed the kind of unfettered thought impossible in the heat of prod-
uct development or standards deliberation.

I have often said, only half jokingly, that “the biggest problem with the
ARPANET was we got too much right to begin with.” Meaning that for a proj-
ect for which there had been no prior experience, for which there was consider-
able doubt it would even work, there was some brilliant work and some
brilliant insights to the point that it was “good enough,” and there was no over-
whelming need to address the problems it did uncover (which really just says we
weren’t pushing hard enough on the edges). One of the most striking phenom-
ena in the early ARPANET was the number of times that when presented with
what appeared to be a dichotomy, an “oil and water” problem, they found an
elegant simple synthesis that wasn’t either extreme but in which the extremes
were “merely” degenerate cases (and that at the same time told us something we
hadn’t previously understood).1

As one would expect with any first attempt, some were mistakes, some things
were unforeseen, some shortcuts were taken, some areas went unexplored, and
so forth. But even so, the network worked much better than anyone had any
reason to expect. Almost immediately, the ARPANET went from a subject of
research to a necessary and useful resource.2

During its development, a constant guiding metaphor was operating systems.
We always looked to operating systems to provide insight to the solution of
problems and for what should be built. (Many involved in that early work have
attributed the success of the ARPANET in great part to the fact that it was built
by people with operating system, not communications, backgrounds and have
lamented that it is no longer the case.) By 1974, with the network essentially
operational, there was great excitement about what could be done with the
Net.3 (It was really a small version of the excitement we saw in the early 1990s

1 I say “they” because I was just a “junior” grad student at the time, and while I was there, I
can take no credit for these insights but could only hope that I learned from watching them
emerge.

2 This book isn’t yet another history of the Net (although there is a lot of that here). I have
found that one cannot give an honest explanation of why things are the way they are based
solely on technical arguments.

3 Contrary to recent characterizations that we saw the use of the Net as “conversational,” noth-
ing could be further from the truth. We saw it as a heterogeneous resource-sharing facility, and
that was the impetus for experiments and production distributed systems such as Englebart’s
NLS, National Software Works, CCA’s Datacomputer, the NARIS land-use management sys-
tem that utilized a distributed database spread of over the United States invisible to its users,
processing ERTS satellite images across multiple systems, heavy use of Rutherford High
Energy Lab and the UCLA 360/91 by U.S. particle physicists, and so on, all prior to 1976.

when everyone else discovered the Net.) However, there were some outstanding
problems that we knew about; some expediencies we had taken (as one must
always do in any real project) that needed to be fixed. They were as follows:

• Replacing NCP. Probably foremost in our minds coming out of the
ARPANET was the realization that the Host-Host Protocol would not
scale to a large network, where large was a few thousand hosts. The sepa-
rate control channel shared by all hosts was a bottleneck. The protocol
was overly complex and tied a little too closely to the nature of the IMP
subnet. What sort of protocol should replace it?

• Cleaning up the structure. Given that operating systems loomed large in
the early thinking and Dijkstra’s THE paper (1968) was only few years old,
it was natural that layering was used to organize the functionality. How-
ever, it is difficult to say that the initial implementation of the ARPANET
was layered very cleanly. There was still a lot of beads-on-a-string in the
design.4 The interactions of the Host-Host Protocol and the IMP subnet
were less than clean. But by 1974, the idea of physical, data link, network,
and transport layers—probably best reflected in the implementation of
CYCLADES with its clean separation of CIGALE and TS—was becoming
well accepted. Beyond that, there was less certainty. And later, we would
find that the lower four layers weren’t quite “right” either but were a bit
more complicated. But we couldn’t say we had a good understanding of
what layers were.5 What was the right architecture for heterogeneous
resource-sharing networks?

• The upper layers. We had just scratched the surface of what applications
could be developed. We had three basic applications, once again using
operating systems as our guide. We simply replicated the services of an
operating system in a network. One we nailed (Telnet); one needed more
work (FTP); and one we blew (RJE). Not a bad record. There was a gen-
eral sense that there was more “structure” in the upper layers we had not
yet been able to tease out. Even though some thought that Telnet and FTP
were all you needed,6 some people had all sorts of ideas for other applica-
tions. We needed a better understanding of what applications would be

PREFACE xv

4 This is not an uncommon state of affairs in science that the first step in the transition from
one paradigm to another still has a foot in both. “Beads-on-a-string” refers to the phone
company model of networking, as exemplified by X.25, ISDN, ATM, and MPLS, that existed
prior to 1970 and still exists today.

5 Actually we still don’t, as textbook authors like to point out (and if the ongoing architecture
discussions are any indication).

6 Mail was two commands in FTP.

useful, how the upper layers were structured, and how they worked with
the rest of the system. And as it would turn out, this is a place where our
operating system model failed us. These first three applications are all
examples of a special case. Oddly enough, this might have been a critical
juncture in the development of the Net…or lack thereof. What did the
upper layers look like?

• Application names and directory. Early in the development, the model of
operating systems told us that we should have application names and net-
work addresses. As with operating systems, application names would be
location independent, whereas addresses would be location dependent. In
fact, I remember my mild disappointment when it was announced that
well-known sockets would be used as a stopgap measure, rather than
defining application names and a directory. It was understandable. Com-
ing up with a naming scheme and building a directory would have taken
considerable time. We had only three applications and only one instance of
each of them in each host. Application names and a directory weren’t
really needed immediately. Eventually, we would have to go back and do it
right before there were too many applications. What did naming and
addressing look like in networks?

• Multihoming. In 1972, Tinker Air Force Base joined the Net and took us
at our word that the Net was supposed to be robust. They wanted redun-
dant network connections. Upon hearing this news, I distinctly remember
thinking, “Ah, great idea!” and a second later, thinking, “O, *#@*, that
isn’t going to work!” By making host addresses IMP port numbers (i.e.,
naming the interface not the node), the routing algorithm couldn’t tell that
these two addresses went to the same place: our first really fundamental
mistake.7 But the solution was immediately obvious! Using the operating
system model, it was clear that we needed a logical address space over the
physical address space. We needed separate address spaces for nodes and
for interfaces. The only trouble was it wasn’t clear what these address
spaces should look like. It was well understood from operating systems
that naming and addressing was a hard problem fraught with pitfalls. Get
it right and many things are easy; get it wrong and things are hard, ineffi-
cient, and maybe impossible. And we knew the difference between getting
it right and getting it wrong could be subtle. We needed to proceed care-
fully. What was the nature of this “logical” addressing?

PATTERNS IN NETWORK ARCHITECTURExvi

7 Well, not really. It would be a mistake if supporting redundant connections had been
intended, but it hadn’t. It was hard enough just building a network that moved data. But this
is an indication of how quickly the Net began to be considered “production.”

• Location-dependent addresses. And furthermore, it wasn’t at all clear what
location dependent meant for network addresses. It was a simple problem
in operating systems. Location dependence of memory addresses was easy
and well understood. It was also well understood for cities built on grids.
But data networks were seldom regular grids. What location dependent
meant in a general mesh network without being route dependent was far
from clear. It couldn’t be tied to the graph of the network because that
changed too often. It needed to be some sort of abstraction of the graph
that indicated where without indicating how to get there. But how to
abstract an arbitrary graph was less than obvious. What does location
dependent mean in a network?

• Adopting connectionless. The ARPANET was primarily a connection-
oriented network. The ARPANET IMP subnet had more in common with
X.25 than with IP. This was a reasonable conservative choice for a first
attempt, when we had no idea how it would actually work or how a net-
work was supposed to be built and a somewhat built-in assumption that
the network had to be as reliable as possible. Experience with reassembly,
flow control, and such showed that a tightly controlled deterministic net-
work had major problems. The insight that less control (less reliable)
would be more effective came as an intriguing surprise, but an insight that
made a lot of sense. The experience of CYCLADES with the use of connec-
tionless datagrams in a network that essentially created reliable communi-
cations with unreliable mechanisms was elegant, simple, and convincing.8

However, a better understanding was needed of how the connectionless
model behaved. Because it had been used only at low bandwidth in rela-
tively small networks, a better understanding was needed of how it would
work as it was scaled up. After all, it is seldom the case that the pure form
of anything works well in the real world. The simplicity and elegance of
the new paradigm of connectionless looked promising. It also provided
concepts for a replacement for the Host-Host Protocol. We also needed a
deeper understanding of the difference between the connection model and
the connectionless model. Even with our excitement for connectionless, we
had to admit that there did appear to be times when connections made
sense. However, I must admit it took some of us a long time to admit that
(me included). What were the properties of the connectionless model and
its relation to connections and how would it scale in a production system?
Was there a single model that would encompass both as degenerate cases?

xviiPREFACE

8 The connection-oriented packet-switching model is a straightforward, even obvious, approach
to the problem, whereas the connectionless model is an inspired shift in thinking.

These were the major issues facing networking as we transitioned from the
ARPANET to the Internet. What happened next? Let’s consider how the Inter-
net rose to the challenge of these problems.

Converging on TCP

There were basically four contenders for replacing NCP:

(1) XNS - Sequence Packet, which was similar to the (2) CYCLADES TS
protocol. A packet-sequenced, dynamic window transport protocol with
multiple PDU types, establishment, release, ack, and flow control. Both
XNS SeqPkt and CYCLADES separated the transport and network func-
tions, analogous to TCP and IP.

(3) Delta-t, developed at Lawrence Livermore Lab, was a radically new
idea in protocols with a more robust timer-based synchronization mecha-
nism that essentially eliminated connection establishment and used sepa-
rate PDU types for ack and flow control. Delta-t also separated the
transport and network functions. And, of course…

(4) TCP, a byte-sequenced, dynamic window transport protocol with a
single PDU format and control bits to distinguish various state changes. It
also allowed the two simplex channels to be released separately. In its ini-
tial version, TCP did not separate the transport and network functions.

A few unique features of TCP stirred some discussion:

• The single PDU format was supposed to streamline processing rather than
require the additional code to parse several different PDU types. It was
expected that this would save both per-packet processing and code space.
Given the low speeds of processors, this was a very real concern. At the
time, this looked like a move toward simplicity, but with more understand-
ing of protocols it turns out it isn’t.9 In addition, treating the control bits as
control bits in the implementation creates more code complexity. The rec-
ommendation for current implementations is to treat them as if they were
an opcode. In fact, looking at traffic statistics in the Net today, it is clear
that syns, fins, and acks are treated as different PDU types (i.e., the number
of 40-byte packets).

• The single PDU format also had the advantage of piggybacking acks. Cal-
culations at the time showed that piggybacking reduced overhead by 35%

PATTERNS IN NETWORK ARCHITECTURExviii

9 It is hard to believe, but in 1974, there had been very few data protocols designed, and they all
looked very different. More so than they do today.

to 40%. This savings occurred because at the time the vast majority of
traffic on the Net was character-at-a-time echoing of Telnet traffic by BBN
Tenexes (the then-dominant system on the Net). However, because there
aren’t many Tenexes on the Net today, the savings today is negligible, well
under 10%.10

• For a 1974 environment where one size fit all, TCP had marginal advan-
tages in some areas, for others it posed significant burden; for example,
bandwidth constraints were still common, making the header size prob-
lematic for some environments. Today its advantages have disappeared. Its
inability to adapt easily to a wider range of operations are an obstruction
to meeting the requirements of a modern network. Delta-t or TS would
probably have been a better choice. They were not only well-suited for the
environment at the time (delta-t was used for years within the DoE), but
both could also have been easily adapted to modern demands without sig-
nificantly changing their structure.

As shown in Chapter 3, “Patterns in Protocols,” the general structure of this
class of protocols naturally cleaves into a pipelined data transfer part, loosely
coupled with a more general-purpose computational half that requires synchro-
nization for the bookkeeping associated with error and flow control. The single
PDU format complicates taking advantage of this structure and complicates
making the protocol adaptable to the requirements of different applications,
leading to an unnecessary proliferation of protocols. The single PDU format
makes less sense. TCP was very much optimized for the characteristics of the
mid-1970s.

Why was TCP chosen? There are many reasons. At the time, with the excep-
tion of the delta-t synchronization mechanism, the differences among the four
protocols were not that great. And overwhelming arguments could not be made
for any of these protocols; that is, none was the overwhelming choice. None of
the arguments mentioned above was understood then. And, it was expected
whatever the choice, it would be used for a few years in this research network
and replaced. After all, NCP was a first attempt in building a network. TCP was
our first attempt in this new direction. No one expected that we would get it
right the first time. At least, one more attempt would probably be needed to
“get it right.” However, probably the foremost factor in the choice was that the
Internet was a DoD project and TCP was paid for by the DoD. This reflects
nothing more than the usual realities of interagency rivalries in large bureaucra-
cies and that the majority of reviewers were DARPA contractors.

xixPREFACE

10 Do the math. Twenty-character input and 40 characters on output were accepted averages for
terminal traffic at the time.

Splitting out IP (nothing new for addressing). Splitting IP from TCP seemed
a necessity. The transport protocol and IP do very different functions (as will
become clear in Chapter 6, “Divining Layers”). The only unfortunate aspect in
the creation of IP was that nothing was done about the multihoming problem.
IP continued to name the interface. But this was understandable. IP was split
out in 1975, soon after the problem was recognized. Although we understood
what the multihoming problem was and theoretically what its solution was,
there was still much about addressing that was unclear. More theoretical and
practical work was necessary. However, it did put us in the uncomfortable posi-
tion of an Internet address naming a subnetwork point of attachment.

NCP is phased out. Finally, after eight years of development, TCP was
deployed in 1982. The Internet did its first (and nearly last) flag day switch from
NCP to TCP. In the same time frame (late 1970s, early 1980s), the (in)famous
BBN 1822 Host–IMP hardware interface was being phased out in favor of a
standard interface. For hosts connecting to a packet switch, the choice was, in
most cases, IP over X.25; for others, it was the new-fangled Ethernet. NCP had
served well for more than a decade, much longer than anyone expected.

Saltzer on addressing. In 1982, Jerry Saltzer at MIT published one of the
most cited papers on naming and addressing in computer networks. Saltzer
(1982) outlined how a network must have application names, which map to
node addresses, which map to point of attachment addresses, which map to
routes. These are all of the necessary elements of a complete addressing archi-
tecture.11 The only missing piece then is figuring out what location-dependent
means in a graph. While everyone cites this paper and agrees that it is the right
answer, there have been no proposals to implement it. But in all fairness, Saltzer
doesn’t provide much help with how his abstractions might be applied to the
existing Internet or what location dependent means in a graph.

Host table gets unwieldy—DNS but no application names or directory. From
the beginning of the ARPANET, the Network Information Center (NIC) had
maintained a text file of the current list of hosts and their corresponding IMP
addresses. Every few weeks, the latest version of the file was downloaded. Then
weeks became every week, became every other day, and by 1980 or so it was
becoming hard to manage manually as a simple text file. This was bound to
happen with the Internet continuing to grow. So now was a good time to take
the first step to resolving some of the addressing problems, by putting a scheme
of application names and a directory in place. But there were still only three
applications in the Net, and each host had only one of each. There was still no

PATTERNS IN NETWORK ARCHITECTURExx

11 There is only one refinement we will need (and will turn out to be crucial, see Chapter 5) that
did not exist or was very rare when Saltzer wrote, so it is not surprising that he did not con-
sider it.

real need for all the trouble of a directory. And everyone was quite comfortable
with the way it had been done for the past 15 years.12 So, DNS was created
essentially as a hierarchy of distributed databases to resolve synonyms for IP
addresses, replacing the old host table. This approach was partly due to the
strong attachment to the idea of naming hosts that was begun with the
ARPANET (even though a careful analysis of naming in networks shows that
naming hosts is not relevant to the addressing necessary for communications).
As long as there were well-known sockets and only one occurrence of an appli-
cation in each host, DNS was all the “directory” that was needed: a means to
maintain a user-friendly form of the IP address. Even though there had been dis-
cussions of a directory since the early 1970s, an opportunity to show some
vision was lost. Already the attitude of introducing no more change than neces-
sary to address the current problem had set in. Was this prudent engineering,
shortsightedness, protecting the status quo, or a bit of all three?

Congestion collapse. In 1986, the Internet encountered its most severe crisis.
The network was suffering from congestion collapse. The classic congestion
curve of increasing throughput followed by a nosedive became a daily occur-
rence. Long delays caused by congestion led to timeouts, which caused retrans-
missions that made the problem worse. Although the connectionless model had
become the cause célèbre early in the 1970s, the ARPANET was fundamentally
a connection-oriented network (unless Type 3 messages were explicitly used).
Even after the move to IP, many host attachments to packet switches and
routers were made with BBN 1822 or X.25, both of which flow controlled the
host. As more and more hosts were attached by connectionless LANs with no
flow control, and as 1822 and X.25 were phased out, there was less and less
flow control in the network. The only flow control that existed was in TCP. But
TCP flow control was intended to prevent the sending application from over-
running the destination application, not with preventing congestion somewhere
in the network. Congestion collapse was inevitable. No one had ever experi-
mented with the properties of connectionless networks as they scaled up.13

Now it had to done on-the-fly.
This was a major crisis. Something had to be done and done quickly. The

Internet was basically unusable. But the crisis was much deeper than simply
keeping an operational network up and running. Control theory going back to
Weiner said that feedback should be located with the resource being controlled.

xxiPREFACE

12 No wonder there were people who thought it was supposed to be done this way. Fifteen years
ago in computing is nearly ten generations—ancient history!

13 There had been calls for experimental networks, and some small ones had been built, but not
large enough to investigate these problems. They were too expensive. No one was willing to
fund simulations of large networks. Not to mention that there were detractors who questioned
whether such simulations would be meaningful.

But congestion could happen at any switch in the network. To include congestion
control would essentially mean going to a connection model, not a connection-
less model. First, it was known that connection-oriented designs did not work
that well and had bad survivability properties. Second, for the past 15 years, the
networking community had been fighting off the phone company giants in
debates over connectionless and connections (see Chapter 3). We couldn’t admit
defeat, and we didn’t think we were wrong.14 Many believed there was a middle
ground, a synthesis, but so far no one had been able to find it. All proposals
seemed to fall into one extreme or the other. In any case, there certainly wasn’t
time for new theoretical insights. Something had to be done quickly.

Van Jacobson proposed a congestion-avoidance scheme to be inserted into
TCP. It consisted of the now well-known slow-start, doubling the congestion
window with every round-trip until congestion is detected (and then exponen-
tial backoff). Essentially, congestion avoidance creates congestion and then
backs off. This solution maintained the connectionless model and provided a
quick fix to the congestion problem, while researchers tried to understand how
to do congestion control and maintain the seminal properties of a connection-
less network. Furthermore at this point, it was much easier to change the TCP
implementations than to redesign all the switches. Perhaps as important, this
juncture also signals a qualitative shift in networking from flow control being
discrete counting of buffers to continuous control theory mechanisms. How-
ever, after the crisis was past, there was such relief that no one went back to try
to understand what a full solution might look like. And with an all-too-human
trait, rationales appeared to justify why this was the “right” solution. There
were without doubt several reasons: the “it works don’t change it” attitude;15

the strong adherence to the end-to-end principle; pressure from the outside to
adopt connection-oriented solutions; and so on. But congestion collapse had
been put behind us so that today there is a consensus that congestion control
belongs in TCP. But wasn’t it a stopgap? Could the conditions that led to con-
gestion collapse occur again? What would it take? Perhaps, a killer app that
generated large amounts of traffic, but didn’t use TCP? What if the bulk of traf-
fic on the Net were not using TCP? Like with, say, video?

SNMP. The ARPANET had always had good network management,16 but it
was a function internal to BBN that was running the Net. In the early 1980s, as

PATTERNS IN NETWORK ARCHITECTURExxii

14 And we weren’t.

15 At the time, few of the networking people involved had a strong background in control theory,
very few were comfortable with the issues, and so there was greater reticence to start changing
something so large that was working.

16 The stories are legend: BBN calling Pacific Bell to tell them their T1 line from Santa Barbara
to Menlo Park was having trouble and Pacific Bell not believing that they weren’t calling from
either Santa Barbara or Menlo Park, but from Boston.

more corporate networks were created, network management had become a
topic of concern. By the mid-1980s, experience with the IEEE 802.1 manage-
ment protocol had shown that the elemental “Turing machine” approach,17

although simple and straightforward, was inadequate. It was also clear by this
time that the key to network management was less the protocol and more the
object models of the systems to be managed. The Internet community pursued
two approaches: a simple Turing machine-like, polling18 protocol, SNMP with-
out object-oriented characteristics; and a more sophisticated extensible object-
oriented, event-driven protocol, HEMS. It is probably significant that unlike the
ARPANET, which came up with innovative solutions to problems, the Internet
of the late 1980s took a step away from innovation by adopting SNMP. There
was strong emphasis at the time on the apparent simplicity, supposedly leading
to smaller code size and shunning concepts that were seen as too esoteric.19 As
it turned out, SNMP implementations are larger than either HEMS or CMIP.20

Its rudimentary structure and lack of object-oriented support, along with a
red herring that we will look at in Chapter 4, “Stalking the Upper-Layer Archi-
tecture,” has proven to be a major obstacle to the development management in
the Internet.

The Web. In the early 1990s, the Web began to take off. The Web had been
around for a while, but was basically just another version of Gopher. Until
NCSA at the University of Illinois extended it with a browser. One of the major
efforts of the supercomputer center was investigating how to present data more
effectively. As part of that, one of their programmers hit upon the idea of putting
a GUI on the Web that made any object on the page “clickable.” The Web took
off and put new requirements on the Net.

The Web becomes the first major new application on the network in 20
years, and as one would expect it created a number of new problems. First of
all, this is the first application that did not come from the operating system
metaphor. For the Web, the protocol and the application are not one and the
same. There may be more than one application using the Web protocol and
more than one instance of the same application at the same time on the same
host. With no application naming structure in place, the Web had to develop its

xxiiiPREFACE

17 Everything is done with Set and Get on attributes.

18 The use of polling in SNMP has always been perplexing. In the ARPANET, polling was seen
as a brute-force approach that didn’t scale and represented mainframe think. It was an anath-
ema. It would never have been considered, and anyone proposing polling in those days would
have been laughed out of the room.

19 Push-down automata, object-oriented, and so on. There was a strong anti-intellectual attitude
then (and still is to some extent) that real programmers “don’t need no book learning.” They
innately know how to design and write code.

20 The OSI management protocol, which was event-driven and was object-oriented.

own naming scheme, the now ubiquitous URL. However, once again, this did
not lead to consideration of the deeper structure of what this was saying about
the requirements for naming. Instead, there was considerable interest in extend-
ing the existing scheme with the work on Universal Resource Names.

With network management, we again see the focus on the short term and
how to fix a specific problem, but little focus on what this is telling us about the
general problem.

IPng. In the early 1990s, the Internet was growing by leaps and bounds. At
the rate things were going, there was going to be a shortage of IP addresses,
although of greater concern was the growing router table size. The IAB
embarked on a program to determine a course of action. After a thorough
process considering the pros and cons of a new protocol effort or adopting an
existing protocol, they recommended a two-pronged approach of conservation
and replacing IP with the OSI version called CLNP. Conservation consisted of
IANA tightening the number of addresses handed out, the use of private
addresses, instituting CIDR to facilitate aggregation of routes, and forcing most
requests for addresses through the major providers to reinforce the move to
CIDR.

The years of isolation between the Internet and OSI had done their job. The
proposal to adopt an OSI protocol precipitated a huge uproar, which led to the
IAB reversing itself, and the IPng process was begun to select a new protocol.
The requirements for an acceptable IPng were drafted, which among other
things required that the address continue to name the interface, not the node
(even though it had been known since 1972 that a network address, let alone an
internetwork address, should not name a subnet point of attachment). Basically,
the only problem the resulting IPv6 solves is lengthening the address. In partic-
ular, it did nothing to arrest the growth of router tables and nothing to solve
20-year-old deficiencies in the addressing architecture.21 And what it does do, it
makes it worse. Furthermore, the transition plan to IPv6 called for network
address translation (NAT). As it turned out, owners of networks liked NATs for
other reasons. Once one had a NAT and private address space, there was little
reason to adopt IPv6. Had the IPv6 group chosen to fix the addressing problem
and come to grips with the fact that IPv4 was not an Internet protocol, they
could have fixed the problem and avoided the use of NATs.

Why did the IETF not fix a problem that had been known for 20 years? Sev-
eral reasons:

PATTERNS IN NETWORK ARCHITECTURExxiv

21 It pains me to watch the IETF resorting to spin for IPv6 to cover up its inadequacies. It used to
know how to call a lemon, a lemon.

1. CLNP did fix it, and there was a strong attitude that if OSI did it, the Inter-
net wouldn’t.22

2. Very few people in the IETF (maybe a dozen or so out of about 1,000)
understood the problem.23 What should be named in a network architec-
ture was not taught in universities. In fact, even today one will be hard
pressed to find a networking textbook that covers this topic.

3. There was a belief that any multihoming would be to different providers,24

which would either have no peering point or they would be so distant that
it would unnecessarily complicate the routing, if not be impossible. There
were also excuses about addresses being provider-based, but this is an arti-
fact of naming the interface and misses the point of Saltzer’s paper that
point of attachment addresses are “physical addresses” but node addresses
are “logical addresses.”

Internet traffic is self-similar. In 1994, a paper was published by a group at
Bellcore showing that measurements of Internet traffic on various Ethernets
exhibited self-similarity. Some found this a revelation—that this was the first
inkling that traffic was not Poisson—when, in fact, this fact had been known
since the mid-1970s.25 This observation created huge interest, and a lot of
researchers jumped on the bandwagon. There was more than a little infatuation
with the idea that the Internet was described by the hot new idea of fractals,
chaos, the butterfly effect, etc. Although not reported in that paper, there were
immediately deep suspicions that it wasn’t Internet traffic per se or Ethernet
traffic that was self-similar, but that the self-similarity was an artifact of TCP
congestion control. This was later verified. TCP traffic is more strongly self-sim-
ilar than UDP traffic, and Web traffic is somewhat less self-similar than TCP
traffic. The lower self-similarity of Web traffic is most likely a consequence of
the “elephants and mice” phenomenon. But interestingly enough, the result that
TCP congestion control was causing chaotic behavior did not precipitate a
review of how congestion control was done. The general view of the community
seemed to be that this was simply a fact of life. This is in part due to the ideas
being currently in vogue and the argument being made by some that large sys-
tems all exhibit self-similar behavior, so there is nothing to do.

xxvPREFACE

22 Of course, there were very logical rationales for not changing it that sounded good if one did-
n’t look too closely, but it doesn’t change the underlying reaction.

23 This argument plays out on an IETF list every few months. Some still arguing that they should
be able to take their address wherever they go. Nothing has been learned in the past 15 years.

24 Which is only sometimes the case in the real world.

25 The problem was that bursty traffic required a new approach to modeling. No one had come
up with one (and still haven’t).

That brings us to roughly the early 1990s, to the time frame when I started
this exercise, just as the IPng was heating up.26 The seven unanswered questions
we started with were still unanswered and in the back of my mind (as they
always had been). It was not my intention to try to solve them. It is a daunting
list. But as each pattern emerged, it was measured against whether they con-
tributed to solving them. I was looking for a clear understanding of where we
were. However, three issues had to be looked at. Two of the issues experience
had shown could wreck an architecture if not confronted and solved. We have
already touched on them: finding a meaningful synthesis of connection and con-
nectionless, and working out naming and addressing (and in particular what
location dependent means). The religious war over connections and connection-
less had been at the root of too many disasters. A true synthesis was desperately
needed. And, of course, just looking at the seven unanswered questions, you can
see that a number of issues all revolve around a clear understanding of naming
and addressing. The third arose from my experience with hundreds of protocol
designs over more than 30 years, seeing the same things over and over. I wanted
to separate mechanism and policy as we had in operating systems—just to see
what would happen.27

Keep in mind that this wasn’t my job, my thesis, or my research grant. This
was just something I did in my spare time. The initial foray was very productive.
Separating mechanism and policy revealed patterns I hadn’t seen before and
renewed interest in patterns I had seen 15 years earlier (but at the time did not
seem to go anywhere). By 1994, the outlines of the model presented here were
clear. There weren’t seven layers or five layers, but a single layer of two proto-
cols along with optional information that recursed. The limitations of technol-
ogy and our focus on differences had hidden the patterns from us. This collapse
in complexity immediately solves a long list of problems.

Although there were some key problems to solve, it was never a case of find-
ing just anything that solved them. They were threads to pull on in untangling
the knot confronting us. Merely finding something that would work was not
enough. The solution had to fit into a larger “theory.” If it didn’t, either the
solution or the theory needed to change. I quickly learned (and was often

PATTERNS IN NETWORK ARCHITECTURExxvi

26 I remember being at IETF meetings where IPng was under heavy discussion and having just
had these fundamental insights, but having not as yet completely worked it through.

27 Along the way, I picked up a fourth coming out of my frustration with the fact that although
we revel in the idea that network traffic is bursty, we then do everything we can to get rid of
the burstiness and what I saw as a missing piece: We have a body of literature on ack and
flow-control strategies but not on multiplexing (except as a physical layer phenomenon).
Although I have made significant progress on this topic, it isn’t covered in this book because it
just isn’t an “architecture” problem.

reminded) that it was more important to go where the problem told me, rather
than to do what I thought was best. (Some readers will think I have completely
lost it; others who have had the experience will know precisely what I mean.)

In the mid-1990s, however, no one believed there was any reason to look at
“new architectures.” And in any case, I wasn’t done yet, so I just kept mulling
over the patterns. Sometimes I put the work down for a year or more. Then
some new insight would reveal itself and I would dive into it for a while. Some-
times I would see the pattern the problem was showing me, but it was so at odds
with conventional directions that I wouldn’t fully embrace it. But there would
be continuing hints that doing what the problem was saying would be better.
Finally, my resistance would collapse and further simplifications and insights
resulted.28

What emerged was a much simpler model of networking. A complexity col-
lapse. We knew the outlines of what addressing had to be fairly early. Jerry
Saltzer gave us the basics in 1982. But a slight extension to Saltzer to accommo-
date a case that didn’t yet exist yielded a result that dovetailed neatly with the
emerging structure of protocols (i.e., it repeated). The results were reinforcing
each other. This was getting interesting. This would happen more and more.
Someone would remark about something that was hard to do, and it turned out
to be straightforward in this model. When capabilities that were not specifically
designed in turn out to be supported, it is usually an indication you are on the
right track.

The problem of location dependence was much harder. It had always been
clear that addresses had to be location dependent, but route independent. It
took years of reading and thinking. But slowly I came to the conclusion that for
addresses to be location dependent in a meaningful way, they had to be defined
in terms of an abstraction of the graph of the network. Looking for mathemati-
cal tools for abstracting graphs led to topology and the conclusion that an
address space has a topological structure. Throughout the 1990s, I talked to
people about this, and by the late 1990s, I had a way to go and an example.

Later, an off-handed teaching question about a detail of protocol design led
to revisiting fundamentals that we all knew, and this turned out to shed new
light on the structure and further simplification.

So, does this book solve all of our problems? Hardly. But it does lay out the
fundamental structure on which a general theory of networking can be built. It
does give us a place to stand outside the current box we find ourselves in and see
what we have been missing. It turns out that it wasn’t so much that what was
missing was huge, but it was key to a simple solution. I have tried to strike a bal-
ance between readability and formality. But one of my goals here has been to try

PREFACE xxvii

28 This was the case with the structure of error- and flow-control protocols.

to find the minimal set of concepts necessary to represent the problem. This
model is very close to being that. This is a fundamental model. Much of what
we have done over the past 30 years is still quite applicable. But this model gives
us a much better basis for reasoning about networks independent of any partic-
ular network or technology. My hope is that this will spark insights and ideas by
others, and I look forward to them.

As noted earlier, several concepts that are key to understanding this model
are not generally known. We will rely heavily on what Seymour Papert29 calls
the only concepts that make computer science worth learning: problem decom-
position, abstraction, and recursion. Abstraction has fallen into disuse for the
past couple of decades, but we will put it to good use here. Furthermore, the
architecture we are led to requires a considerable cognitive shift. Therefore, this
book is organized to take the reader from what we know to a new way of look-
ing at things. To bridge the gap, so to speak. Even so, this will not be easy for
the reader; there is some hard thinking ahead.

We first start with a return to fundamentals, to remind us of the minimum
assumptions required for communication and for the tools for working with
abstractions. In Chapters 2 and 3, we look at the familiar world of protocols
and separating mechanism and policy. Here, new patterns emerge that indicate
there are probably only three kinds of protocols, and then later we find that one
of them is more a “common header” than a protocol. We are also able to make
considerable progress in resolving the conflict between connections and connec-
tionless.30

In Chapter 4, we review our experience with “upper layers” and learn some
things that we did right and some things to avoid. As strange as it might sound,
we find some key concepts here that will be useful in constructing our funda-
mental model, while at the same time concluding that there is no “upper-layer
architecture.” Then in Chapter 5, we take a hard look at that ever-difficult and
subtle topic, “Naming and Addressing.” We give special emphasis to Saltzer’s
1982 paper expanding on it slightly, noting how the current infatuation with the
“loc/id split” problem is a dead end. By the time we reach Chapter 6, we have a
pretty reasonable picture of the problem and the elements we will need and can
consider the problem of assembling them into layers. Here we embark on a sim-
ple exercise that any of us could have done at any time over the past 30 years
only to find it yields the structure we have been looking for. (What a revolting
department!) This chapter is key to everything.

PATTERNS IN NETWORK ARCHITECTURExxviii

29 I wish I could cite a reference for this. Seymour assures me he said it, but he can’t remember
where, and I can’t find it!

30 We don’t address the problem of connectionless scaling because this isn’t strictly an architec-
tural problem, although the structure presented here facilitates a solution.

In Chapter 7, “The Network IPC Model,” we do the unpleasant task of
assembling all the pieces we have uncovered in the previous six chapters into the
elements of the new model and consider its operation. This entails emulating
Johnson’s harmless drudge as we define all the concepts required. Messy work,
but it has to be done. We consider how new nodes join a network and how com-
munication is initiated. Chapter 8, “Making Address Topological,” returns us
to naming and addressing to consider the problem of what location dependent
means and how to make useful sense of the concept. In Chapter 9, we look at
how “Multihoming, Multicast, and Mobility,”are represented in this model and
some new results that are a consequence of this model. In Chapter 10, “Backing
Out of a Blind Alley,” we take stock, consider the process that led to seven fun-
damental issues going unsolved for more than a quarter century, and look to the
future.

xxixPREFACE

xxx

Acknowledgments

This Preface can’t end without expressing my immense appreciation to the long
list of people who have contributed their time and effort to this book and to my
thinking, all of the people whose ear I have bent over the years working through
these ideas. The list in its entirety is far too long, but let me hit the high points:
Sue Hares, Lyman Chapin, Margaret Loper, Charles Wade, Glenn Kowack,
Geneva Belford, Fred Goldstein, George Schimmel, William Zimmer, Sue Rudd,
Chris Williams, Fernando Gont, Sharon Day, and a special thanks to Lynn
DeNoia for asking the important questions. The reviewers and friends who had
to endure so much: Jonathan Smith, Michael O’Dell, Pekka Nikkander, Ibrahim
Matta, Tony Jeffree, and Joel Halpern. Catherine Nolan, Mark Taub, Keith
Cline, and Chuck Toporek at Prentice Hall for tackling a different kind of book.

And of course, my wife, Meg, whose love and support sustained me through-
out this project (although, I think she was never quite sure it would ever end).

—John Day, Lake Massapoag, 2007

About the Author

John Day has been involved in research and development of computer networks
since 1970, when they were 12th node on the “Net.” Mr. Day has developed and
designed protocols for everything from the data link layer to the application
layer.

Also making fundamental contributions to research on distributed databases,
he developed one of two fundamental algorithms in the updating of multiple
copies. He also did work on the early development of supercomputers and was
a member of a development team on three operating systems. Mr. Day was an
early advocate of the use of Formal Description Techniques (FDTs) for proto-
cols and shepherded the development of the three international standard FDTs:
Estelle, LOTOS, and extending SDL. Mr. Day managed the development of the
OSI reference model, naming and addressing, and a major contributor to the
upper-layer architecture; he also chaired the US ANSI committee for OSI Archi-
tecture and was a member of the Internet Research Task Force’s Name Space
Research Group. He has been a major contributor to the development of net-
work management architecture, working in the area since 1984 defining the
fundamental architecture currently prevalent and designing high-performance
implementations; and in the mid-1980s, he was involved in fielding a network
management system, 10 years ahead of comparable systems. Recently, Mr. Day
has turned his attention to the fundamentals of network architectures and their
implications (as discussed in this book).

Mr. Day is also a recognized scholar in the history of cartography, on
Neolithic Korea, and on Jesuits in 17th-century China. Most recently, Mr. Day
has also contributed to exhibits at the Smithsonian and a forthcoming chapter
in Matteo Ricci Cartographia.

xxxi

This page intentionally left blank

Chapter 5

Naming and Addressing

Did I ever tell you that Mrs. McCave
Had twenty-three sons and she named them all Dave?
Well, she did. And that wasn’t a smart thing to do.
You see, when she wants one and calls out, “Yoo-hoo!
Come into the house, Dave!” she doesn’t get one.
All twenty-three Daves of hers come on the run!

This makes things quite difficult at the McCaves’
As you can imagine, with so many Daves.
And often she wishes that, when they were born,
She had named….

[There follows a wonderful list of Dr. Seuss names she wishes she’d named
them, and then concludes with this excellent advice.]

But she didn’t do it and now it is too late.

—Dr. Seuss, Too Many Daves

Introduction

Many years ago when I started to work on the addressing problem, I remem-
bered the opening lines to a Dr. Seuss story that I had read to my children far
too many times. I thought it would make a good introductory quote for naming
and addressing. So I dug into my kids’ books to find it. Of course, I couldn’t do
that without reading the whole story through to the end for the great list of
names she wished she had called them. But I had forgotten how it ended. I hit
that last line and wondered whether Dr. Seuss had been sitting in all those
addressing discussions and I just never noticed him! There was never more
appropriate advice on naming and addressing than that last line.

141

The problem of addressing has confounded networking from the beginning.
No other problem is so crucial to the success of a network; is so important to
get right early and at the same time is so subtle, so philosophical, and so eso-
teric. No matter how you approach it. Once defined, it is difficult to change,
and you may find yourself in the same situation as Mrs. McCave. If it is wrong
and must be changed, the longer it takes to realize it, the more painful (and
costly) it will be to change. If it is really wrong, the use of the network becomes
cumbersome and arcane and eventually useless. Trying to fix it piecemeal as
problems arise, only prolongs the agony, increases the cost, and increases the
pain when the inevitable finally comes. But if it is right, many things become
easier, and you scarcely realize it is there.

Why Do We Need Naming and Addressing?

The short answer is: to know where to send data. However, the more considered
answer is a little longer (but amounts to the same thing). One of the major effi-
ciencies of networks is that every source does not have to be directly connected
to every destination. If they were, only the simplest networks would be feasible,
and addresses would always be a local matter. But by allowing nodes in the net-
work to act as intermediates to relay messages from sources to destinations, we
must at least distinguish them with names, and as the network grows we can
greatly decrease the cost of the network at the “mere” expense of adding
addresses to the protocols and routing to the network.1 We need to distinguish
messages from each other. For simple networks, the mechanisms are deceptively
simple, and simply enumerating the nodes is sufficient. But as the size and com-
plexity of the network grows, naming and addressing begins to show itself as a
subtle maze with all sorts of traps, quagmires, and dead ends. The protocol
designer begins to wonder whether he has unwittingly signed a pact with the
devil. But it is too late to turn back. And one is left wondering how engineering
suddenly became so philosophical.

There are basically two separate problems that we must consider: 1) What
objects need to be named to effect communications, and 2) the nature of the
names and addresses used to label these objects. But before diving into the the-
ory of addressing, let’s consider how we got here so that we have a better under-
standing of why the theory is being asked to answer certain questions.

CHAPTER 5 NAMING AND ADDRESSING142

1 The “multidrop” technologies accomplish a similar reduction in cost for “star” topologies and
also require addressing mechanisms.

How the Problem Arose

Naming and addressing had never been a major concern in data communica-
tions. The networks were sufficiently simple and of sufficiently limited scope
that it wasn’t a problem. Most early networks were point-to-point or multidrop
lines, for which addressing can be done by simple enumeration. Even for large
SNA networks, it was not really an issue. Because SNA is hierarchical with only
a single path from the leaves (terminals) to the root (mainframe), enumerating
the leaves of the hierarchy (tree) again suffices.2 In fact, addressing in a decen-
tralized network with multiple paths, like the early ARPANET or even the early
Internet, can be accommodated by enumeration and was. But everyone knew
the addressing problem was lurking out there and eventually it would have to be
dealt with.

The ARPANET was a research project that wasn’t expected by many to suc-
ceed. No one expected the ARPANET to ever be large enough for addressing to
be a major problem, so why worry about an esoteric problem for which at the
time we had no answers. As it was, there were an overwhelming number of
major technical problems to solve which were a lot more crucial. Just being able
to route packets, let alone do useful work with it, would be a major achievement.
After all, it was research. It was more important to be focused on the few specific
problems that were central to making the project work. Addressing was dis-
tinctly a lesser issue. Of course, to everyone’s surprise the ARPANET was almost
immediately useful.

Because the initial design called for no more than a few tens of switches con-
necting a few hosts each, addressing could be kept simple. Consequently, there
were only 8 bits of address on the Interface Message Processors (IMP). Host
addresses were the IMP number (6 bits) and the IMP port numbers (2 bits).
Each IMP could have a maximum of 4 hosts attached (and four 56K trunks).
IMP numbers were assigned sequentially as they were deployed.

Although a maximum of 64 IMPs might seem a severe limitation, it seemed
like more than enough for a research network. There was not much reason for
concern about addressing. Once the success of the ARPANET was accepted, the
address size of NCP was expanded in the late 1970s to 16 bits to accommodate
the growth of the network. (Network Control Program implemented the Host-
to-Host Protocol, the early ARPANET equivalent of TCP/IP.)

HOW THE PROBLEM AROSE 143

2 SNA could even enumerate the routes, because the hierarchy kept the number from growing
too fast. But if you don’t understand why, it can lead to problems. There was a network com-
pany that many years ago tried to use the SNA approach for nonhierarchical networks (after
all if it was used by IBM, it must be right!) and couldn’t figure out why the number of routes
exploded on them.

It was clear that the one aspect of naming and addressing that would be
needed was some sort of directory. ARPA was under a lot of pressure to demon-
strate that the network could do useful work; there certainly was not time to fig-
ure out what a directory was and design, and implement such a thing. And for
the time being, a directory really wasn’t necessary. There were only three appli-
cations (Telnet, FTP, and RJE), and only one each per host. Just kludge some-
thing for the short term. A simple expedient was taken of simply declaring that
everyone use the same socket for each application: Telnet on socket 1, FTP on 3,
and RJE on 5.3 Every host would have the same application on the same
address. This would do until there was an opportunity to design and build a
cleaner, more general solution. Hence, well-known sockets were born.
(Strangely enough, while many of us saw this as a kludge, discussions among
the people involved revealed that others never saw it that way. An unscientific
survey indicates that it may depend on those who had early imprinting with
operating systems and those that didn’t.)

If there was any interest in naming and addressing during that period, it was
more concerned with locating resources in a distributed network. How does a
user find an application in the network? By the mid-1970s, several efforts were
underway to build sophisticated resource sharing systems on top of the
ARPANET (the original justification) or on smaller networks attached to the
ARPANET. David Farber was experimenting with a system at UC Irvine that
allowed applications to migrate from host to host (Farber and Larson, 1972);
and another ARPA project, the National Software Works, was trying to build an
elaborate distributed collaboration system on top of the ARPANET (Millstein,
1977). These projects raised questions about what should be named at the
application layer and how it related to network addresses, but outstripped the
capability of systems of the day.

The problem of naming and addressing had been a factor in the development
of operating systems. The complexity of process structure in some operating
systems provided a good basis for considering the problem (Saltzer, 1977).
Operating system theory at the time drew a distinction between location-
independent names and the logical and physical levels of addresses. This distinc-
tion was carried into networking and generalized as two levels of names: 1)
location-independent names for applications and 2) location-dependent
addresses for hosts.

CHAPTER 5 NAMING AND ADDRESSING144

3 When “new Telnet” was defined, socket 23 was assigned for debugging and experimenting
with the new design until the old Telnet could be taken out of service and new Telnet moved
to socket 1. Telnet is still on socket 23.

Figure 5-1 Because ARPANET host addresses were the port numbers of the IMPs
(routers), a host with redundant network connections appears to the network as two
separate hosts. Routing can’t tell the two lines go to the same place.

The general concept was that the network should seem like an extension of
the user’s interface. The user should not have to know where a facility was to
use it. Also, because some applications might migrate from host to host, their
names should not change just because they moved. Thus, applications must
have names that are location independent or as commonly called today,
portable. The binding of application names to processes would change infre-
quently. These applications would map to location-dependent addresses, a map-
ping that might change from time to time. Network addresses would map to
routes that could change fairly frequently with changing conditions of the net-
work. That was the general understanding.

Using switch port numbers for addresses was not uncommon. After all, this is
basically what the telephone system did (as did nearly all communication equip-
ment at that time). However, although this might have been acceptable for a tele-
phone system, it causes problems in a computer network. It didn’t take long to
realize that perhaps more investigation might be necessary. Very quickly, the
ARPANET became a utility to be relied on as much or more than an object of
research. This not only impairs the kind of research that can be done, it also pre-
vents changes from being made. (On the other hand, there is a distinct advan-
tage to having a network with real users as an object of study.) But it also led to
requirements that hadn’t really been considered so early in the development.
When Tinker Air Force Base in Oklahoma joined the Net, they very reasonably
wanted two connections to different IMPs for reliability. (A major claim
[although not why it was built] for the ARPANET in those days of the Cold War
was reliability and survivability.) But it doesn’t work quite so easily. For the
ARPANET, two lines running to the same host from two different IMPs, have
two different addresses and appear as two different hosts. (See Figure 5-1.) The
routing algorithm in the network has no way of knowing they go to the same
place. Clearly, the addressing model needed to be reconsidered. (Because not
many hosts had this requirement, it was never fixed, and various workarounds

HOW THE PROBLEM AROSE 145

Host

14, 1 20, 3

IMP
20

IMP
14

were found for specific situations.) Mostly, the old guard argued that it didn’t
really happen often enough to be worth solving. But we were operating system
guys; we had seen this problem before. We needed a logical address space over
the physical address space! The answer was obvious; although it would be
another ten years before anyone wrote it down and published it. But military
bases were rare on the Net, so it was not seen as a high-priority problem. Also,
we all knew that this was a hard subtle problem, and we needed to understand it
better before we tried to solve it. Getting it wrong could be very bad.

Background on Naming and Addressing

The problems of naming and addressing remained an interesting side issue for
the Net, not a problem crucial to survival for many years. There weren’t too
many places to learn about naming and addressing. In the early days of com-
puter science, there was considerable emphasis on mathematical logic, the pred-
icate calculus and related subjects. Some aspects of naming are taken up there in
some detail. As previously mentioned, there had been some work done in the
context of operating systems. The postal system and the telephone system
solved this problem on a global scale; and although both are large systems, they
are also simpler in significant ways. Most of the network is hierarchical, and the
part that isn’t was strongly geographical with a single provider. They didn’t
have to consider multicast, migrating applications, multihoming, or until
recently, mobility.

Foundations of Mathematics and Naming

As we have said, the problems of naming and addressing have a tendency to get
philosophical. What to name, the relation among various names and the objects
they refer to, and the structure that such names should have and what
constructs they can support are all issues to be considered. It doesn’t take long
before it can begin to sound like counting angels on the head of a pin. However,
experience has shown that subtle distinctions can often make the difference
between a simple but rich and efficient naming scheme and a scheme that
becomes complex and cumbersome and may not even work. So, perhaps we
should consider those aspects before we go too much further. Because we are
concerned with naming and addressing in computers and networks of com-
puters, we will not discuss the full scope of naming issues that have been taken
up by philosophy. We will only provide a taste of these issues and limit ourselves
to those aspects of the mathematics that apply most directly to our problem.

CHAPTER 5 NAMING AND ADDRESSING146

Modern considerations of naming derive from the work on the foundations
of mathematics and symbolic logic. This work got significant attention in the
late 19th century with the interest in the foundations of mathematics and the
work of Gottlieb Frege, with major contributions coming from the work of
Bertrand Russell and Alfred North Whitehead, Ludwig Wittgenstein, Rudolf
Carnap, and others who became known as the Vienna Circle. Primarily, they
were concerned with two problems: 1) creating a strictly axiomatic basis for all
of mathematics and 2) the means to create purely logical language to describe
the world. Both projects failed. The first because Kurt Gödel proved the
“incompleteness theorem,” or in essence “no matter where you start, there is
some place you can’t get to from here.” And the second by Wittgenstein, who in
his Tractatus Logico-Philosophicus made it clear that most of what philosophy
had been talking about for the past 2,000 years could not be stated with suffi-
cient precision to prove any conclusions. And all those things that could were
tautologies, which say nothing. However, in the process of getting to these con-
clusions, considerable insights were made into the nature of language, the foun-
dations of mathematics, symbolic logic, and so on.

Much of this work related to constructing a precise logical language. Conse-
quently, one of the major considerations was precisely determining the relation
of names to their meanings and how these meanings came about. Frege, in his
essay “On Sense and Meaning” (1892) defined a name as follows:

A proper name (word, sign, sign combination, expression) expresses its sense, means
or designates its meaning. By employing a sign we express its sense and designate its
meaning.

Here and in the Basic Laws of Arithmetic (1884), Frege goes on to develop the
concept of a name to correspond closely to what one intuitively thinks of as a
noun clause. As alluded in the definition, a name can be an expression. Frege also
introduced variables into these expressions and the concept of bound and
unbound variables, although the use of these terms did not come until later. Frege
distinguishes simple and complex complete names. Simple names are what we
would term constants; complex names are expressions. A complete name has all
of its variables bound to constants. For Frege, an incomplete name (i.e., one with
unbound terms) is a function. Frege uses these concepts and a unique notation in
an attempt to derive the fundamental rules of arithmetic. However, he only came
close. As his book went to press, Frege received what is now a famous letter from
Russell advising him of a problem Russell had encountered in his own attempt
with Whitehead to put mathematics on a completely logical footing (the set of all
sets that do not contain themselves, leading to the Russell paradox). Frege had
missed the paradox that stumped Russell for quite awhile and whose solution is
still debated by mathematicians. Although the damage was not irreparable, Frege
never revised his book to fix the problem.

BACKGROUND ON NAMING AND ADDRESSING 147

Twenty some years later, the young Ludwig Wittgenstein took issue with
Frege and to some extent Russell in his work that revolutionized mathematics
and philosophy, the Tractatus Logico-Philosophicus (1922). We have already
touched on the Tractatus in Chapter 1, “Foundations for Network Architec-
ture,” but here let’s look more closely at what it says about names. Right off the
bat, Wittgenstein takes issue with Frege:

3.142 Only facts can express a sense, a set of names cannot.

3.143 Although a propositional sign is a fact, this is obscured by the
usual form of expression in writing or print. For in a printed propo-
sition, for example, no essential difference is apparent between a
propositional sign and a word. (This is what made it possible for
Frege to call a proposition a composite name.)

3.144 Situations can be described but not given names.

An early 20th-century flame, W goes on to give a much restricted definition
of a name, which corresponds to what we will call here a primitive name:

3.202 The simple signs employed in propositions are called names.

3.203 A name means an object. The object is its meaning. (‘A’ is the
same sign as A.)

3.22 In a proposition a name is the representative of an object.

3.26 A name cannot be dissected any further by means of a defini-
tion: it is a primitive sign.

3.261 Every sign that has a definition signifies via the signs that serve
to define it; and the definitions point the way.

Two signs cannot signify in the same manner if one is primitive and
the other is defined by means of primitive signs. Names cannot be
anatomized by means of definitions. (This cannot be done to any sign
that has a meaning independently and on its own.)

W is nailing things down pretty tight, defining a name as essentially a label
for an object. This is a denotative approach to naming. He goes on to point out
that names by themselves say very little:

3.3 Only propositions have sense; only in the nexus of a proposition
does a name have meaning.

CHAPTER 5 NAMING AND ADDRESSING148

3.314 An expression has meaning only in a proposition. All vari-
ables can be construed as propositional variables. (Even variable
names.)

3.3411 So one could say that the real name of an object was what all
symbols that signified it had in common. Thus, one by one, all kinds
of composition would prove to be unessential to a name.

4.0311 One name stands for one thing, another for another thing,
and they are combined with one another. In this way the whole
group—like a tableau vivant—presents a state of affairs.

4.23 It is only in the nexus of an elementary proposition that a name
occurs in a proposition.

So, W comes full circle or would seem to. The meaning of a name can only be
determined when it occurs in a proposition (i.e., in context). Further, all expres-
sions must reduce to a primitive name, and these expressions do not affect the
name. Where is W headed with all of this? Right here:

5.526 We can describe the world completely by means of fully gen-
eralized propositions, i.e., without first correlating any name with a
particular object.

6.124 The propositions of logic describe the scaffolding of the
world, or rather they represent it. They have no ‘subject-matter’.
They presupposed that names have meaning and elementary propo-
sitions sense; and that is their connection with the world. It is clear
that something about the world must be indicated by the fact that
certain combinations of symbols-whose essence involves the posses-
sion of a determinate character-are tautologies. This contains the
decisive point. We have said that some things are arbitrary in the
symbols that we use and that some things are not. In logic it is only
the latter that express: but that means that logic is not a field in
which we express what we wish with the help of signs, but rather
one in which the nature of the natural and inevitable signs speaks
for itself. If we know the logical syntax of any sign-language, then
we have already been given all the propositions of logic.

The hope had always been that logic could resolve important questions in
philosophy. What W has done here and will wrap up between here and the
famous statement 7 says that names are arbitrary labels and all statements in
logic are tautologies. They say nothing about the real world.

BACKGROUND ON NAMING AND ADDRESSING 149

CHAPTER 5 NAMING AND ADDRESSING150

What Happened Next? A More Organic View
For those who are curious, W did not rest with the Tractatus. He was still troubled by its implica-
tions. Twenty years later he published his thoughts again, and this time changed his view consid-
erably, taking a more connotative model of language that is closer to how organisms seem to
actually acquire language. Oddly enough, his point of departure was St. Augustine:

1. “When they (my elders) named some object, and accordingly moved towards something, I saw
this and I grasped that the thing was called by the sound they uttered when they meant to point it
out. Their intention was shown by their bodily movements, as it were the natural language of all
peoples: the expression of the face, the play of the eyes, the movement of other parts of the body,
and the tone of voice which expresses our state of mind in seeking, having, rejecting, or avoiding
something. Thus, as I heard words repeatedly used in their proper places in various sentences, I
gradually learnt to understand what objects they signified; and after I trained my mouth to form
these signs, I used them to express my own desires.” (Augustine, Confessions, I. 8)

These words, it seems to me, give us a particular picture of the essence of human language. It is
this: The individual words in language name objects-sentences are combinations of such names.
In this picture of language, we find the roots of the following idea: Every word has a meaning.
This meaning is correlated with the word. It is the object for which the word stands.

38. Naming appears as a queer connection of a word with an object. And you really get such a
queer connection when the philosopher tries to bring out the relation between name and thing by
starting at an object in front of him and repeating a name or even the word “this” innumerable
times. For philosophical problems arise when language goes on holiday. And here we may
indeed fancy naming to be some remarkable act of mind, as it were a baptism of an object. And
we can also say the word “this” to the object, as it were address the object as “this”-a queer use
of this word, which doubtless only occurs in doing philosophy.

43. For a large class of cases-though not for all-in which we employ the word “meaning” it can
be defined thus: the meaning of a word is its use in the language. And the meaning of a name is
sometimes explained by pointing to its bearer.

275. Look at the blue of the sky and say to yourself “How blue the sky is!”—When you do it
spontaneously-without philosophical intentions—the idea never crosses your mind that this
impression of color belongs only to you. And you have no hesitation in exclaiming that to some-
one else. And if you point at anything as you say the words you point at the sky. I am saying: you
have not the feeling of pointing-into-yourself, which often accompanies “naming the sensation”
when one is thinking about “private-language.” Nor do you think that really you ought not to point
to the color with your hand, but with your attention.

293. If I say of myself that it is only from my own case that I know what the word “pain” means—
must I not say the same of other people too? And how can I generalize the one case so irre-
sponsibly? …

Not only has his thinking changed to such an extent that he now considered that names are con-
ventions among people, not arbitrary labels that can be applied willy-nilly, but he is also consid-
ering that the senses that one applies a name to may be different for different individuals
(something borne out by cognitive psychology and neurophysiology). The world is far less deter-
ministic that even the Tractatus allowed.

Although there had been suspicions to the contrary before this point, mathe-
matics had always been considered a science. There was a belief that it was a uni-
versal language with which the world could be completely and precisely
described, which would in turn lead to answering many long-standing questions,
including some outside the traditional realm of science and mathematics. After
all, much of its use was in the service of science, and science made many state-
ments and solved many problems about the real world with mathematics. W has
now slammed the door on this view. Logic and, by the constructions of Frege and
Russell, mathematics say nothing about the real world and can’t. Mathematics is
not a science. Mathematicians were operating in the world of Platonic ideals,
believing that these truths that they derived were independent of human thought.
Although refined by other logicians and mathematicians in the intervening 80
years, the structure and limitations erected by W have remained, circumscribing
how far mathematics can go in answering questions that affect people.

But although this was a failure on one level, it was precisely what was
required 30 years later when it became possible to build logic machines and get
the fledging field of computer science off the ground. The concepts of primitive
name, simple and complex, complete and incomplete names were precisely the
foundations necessary for constructing the logical languages required for com-
puters, where now these languages could be used in propositions that said
something real about a virtual world. It also provides the basis for a
theory of naming for networks and distributed system, but provides little help
with any fundamentals for addressing. We need a mathematical characteriza-
tion of “locating” objects.

Naming and Addressing in Telephony

Addressing in the telephone system developed from the bottom up. Initially,
telephone systems were isolated islands. Telephone numbers corresponded to
numbers on the switchboard, which corresponded to the wires that ran to the
phones.4 Enumeration worked again. The scope of the address space was lim-
ited to the island or central office called an exchange; that is, telephones in dif-
ferent exchanges might have the same number. When a phone system outgrew
what could be handled by a single central office, trunks were used to link central
offices. Each exchange was given a unique identifier, and this number was
tacked on the beginning of the number for the telephone: the beginning of hier-
archical addressing. Connections between islands required an operator.5 With
the advent of automatic dialing and long distance, it was necessary to add

BACKGROUND ON NAMING AND ADDRESSING 151

4 My first phone number was 61.

5 Remember those old movies, Operator, get me New York, Pennsylvania 6-5000.

another level to the hierarchy, and area codes were created. But the fundamen-
tal semantics of the phone number never changed: It was the number of the wire
that ran to the phone. There was really no attempt at structuring the assignment
of numbers within an exchange, there might be some similarity in the exchanges
used for a single city, but overall the structure of the address space was roughly
geographical. This had more to do with conserving the amount of relay equip-
ment than attempting to logically structure the phone numbers.

Over time, as telephone engineers found ways to hack the system to provide
specialized services, the semantics of the telephone number got confused. There
are strong indications that the phone companies didn’t quite understand what
they were getting in to. Although normal phone numbers were physical layer
addresses, the label of a wire, the definition began to get confused: 800 num-
bers are application addresses being location independent, whereas 411 and 911
are simply well-known names for specific applications. (Most in phone com-
pany circles did not realized this, of course; they were still just phone numbers.)
Initially, cellular phone numbers were network addresses, a good unique identi-
fier as the phone was handed off from cell tower to cell tower. But as soon as
roaming was provided, they became application addresses (because they were
now location independent). Customers had become familiar that when they
moved within a city their phone number did not need to change. Although
exchanges had begun as exclusively geographical, this began to break down
over time with improvements in switches and customer demand. Roaming just
served to convince customers that they could move anywhere in the country and
not change phone numbers. Because 800 numbers and initially cell phones were
such a small population, the mapping from the application address to a network
or physical layer address could be a special case. As Signaling System 7 was
deployed in the 1980s, it enabled these changes during the 1990s, and the tele-
phone system moved to rationalize its addressing architecture.

Naming in Operating Systems

Much more theoretical work has been done on naming than on addressing. As
luck would have it, we are much more interested in addressing than naming.
Almost everything in computer science is addressing of one form or another, not
naming. There has been very little theoretical work done exploring the proper-
ties of addresses, no systematic exploration of addressing. Much of this was
because computing systems were so resource constrained. Most of the work has
been very pragmatic in the context of solving a specific problem. So, we have
some idea of what works or under what conditions it works or what doesn’t,
but we have very little idea if this is the best we can do.

CHAPTER 5 NAMING AND ADDRESSING152

One of the few theoretical treatments of this subject tempered by implemen-
tation of a production system (i.e., it satisfies our philosophical triangulation) is
the work of J. H. Saltzer on Name Binding in Computer Systems (1977).6 This
is what university-level computer science should be and isn’t much of the time.
This work develops the theory of naming and addressing in operating systems
and programming languages in a general and implementation-independent
manner. It is does the “algebra” first. Although space does not allow a detailed
review of the paper, we do see that roughly three levels of naming are required
in operating systems. Saltzer provides a framework for the sharing of data and
programs in a computing environment. Although Saltzer does not consider the
problems of naming and addressing in computer networks, many of the con-
cepts that will be needed are discussed. These might be characterized as follows:

1. A name space that allows sharing among independently running programs

2. A name space that allows programs to logically refer to their variables
regardless of where they are in memory

3. A name space that represents the program in memory

4. A path from the processor to the memory

The first has a “universal” scope of the whole computer system and encom-
passes all files (program or data) that are executing or may be executed on that
system. This name space allows one to unambiguously refer to any programs and
data files on the computer and in some systems, such as Multics, objects within
these. The second provides a name space that allows the programmer to logically
construct programs independent of memory size and location. This space creates
a virtual environment that may assume resources that exceed those of the under-
lying real computer. This logical environment is then mapped to a real computer
where the operating system provides the facilities that create the illusion of the
virtual environment. (For example, virtual memory provides location independ-
ence and the illusion of greater memory than actually exists, and processor
scheduling gives the illusion of a multiprocessor system.) The hardware then pro-
vides a path from the processor to the appropriate memory location.

For the naming of files and programs, a hierarchical approach was adopted
rather quickly, consisting of a root directory, subdirectories, and finally primi-
tive names. This was called a pathname because it defined a path through the
directory structure. If a file was moved in this structure, its primitive name
remained the same, but its pathname changed.

BACKGROUND ON NAMING AND ADDRESSING 153

6 This might seem like ancient history here, but I highly recommend that you dig out this
reference.)

CHAPTER 5 NAMING AND ADDRESSING154

X.25 and the ITU

In the mid-1970s, the PTTs rushed to get in the packet-switching business.
Mostly to defend their turf because organizations that weren’t telephone com-
panies were building networks than because they thought it was a good business
opportunity. After all, data traffic would never come close to the kind of vol-
umes as voice traffic! The PTTs proposed a network design along the lines of the
ARPANET or NPLnet using a new protocol, X.25, as their answer to the
research networks. X.25 addresses have the same semantics as a telephone (no
surprise). The structure of an X.25 address is similar to that for telephones, con-
sisting of a country code, followed by a network number and DTE (host) num-
ber. But the allowances for growth were very small, allowing only ten networks
per country. A distinct “group-id” field in the X.25 header identifies particular
connections from this DCE. The address is the name of the interface over which
all connections with that DTE pass.

The “East Coast elite” screwed up the ARPANET addressing because they
were from Boston. In Boston, there is only one way to get anywhere, and
so it is easy to confuse that a route and an address are the same thing. If
they had been from the Midwest where everything is on a grid and there
are many paths between two points, they would have known that a route
and an address are two entirely different things.

It isn’t true, but it makes a good story!

The Evolution of Addressing in the Internet: Early IP

As previously discussed, the origin of the Internet’s convention
that addresses name interfaces derives from the implementation
of the original IMPs. Although this was common practice for the
small data networks of the time, it is basically the same as the
telephone company. Using the telephone example was a reason-
able first approximation, and it wasn’t at all obvious how the
street address example contributed anything to the solution
(although there was a nagging sense that it should). Unlike tele-
phone addresses, ARPANET addresses were only route depend-
ent for the last hop. (In the phone system, there were multiple
routes above the exchanges, although automatic rerouting is rela-
tively recent.) It was clear that computers would have different
requirements than telephones. We have already seen the problem
of dual homing. But it was realized the problems of naming appli-
cations that were seen in operating systems would be more com-
plex in networks.

Or Is it?
In New England, the way
to get some place is to
take out the map, find the
destination, and trace a
route back to where you
are. Follow the path. Not
unlike Internet routing.

In the Midwest, the
address gives you a good
idea where the destination
is relative to where you
are.You start in that direc-
tion, using addresses
along the way to indicate
whether you are closer or
farther from the destina-
tion. Interesting. Forward-
ing without routing.

The development of TCP and IP began in the mid-1970s to fix problems with
the original Host-to-Host Protocol. As far as addressing was concerned, the
only immediate problem that had to be dealt with was that there weren’t
enough of them. So, the IP specification expanded the address to 32 bits and
slightly generalized the semantics of the address so that it named the “interface”
rather than an IMP port.

The problem continued to be discussed. John Shoch published an important
paper (Shoch, 1978). (Shoch’s paper had been circulating within the ARPANET
community for over a year before it appeared in print.) Shoch recognized (as so
often scoffed at) that

Taxonomies and terminologies will not by themselves, solve some of the difficult
problems associated with the interconnection of computer networks; but carefully
choosing our words can help us to avoid misunderstanding and refine our perceptions
of the task.

Shoch posited that three distinct concepts were involved: names (of applica-
tions that were location independent), which were “what we seek”; addresses
(that were location dependent), which indicated “where it was”; and routes
(which were clearly route dependent), which were “how to get there.” Shoch
made clear what many had been thinking but didn’t know quite how to say. At
the time, Schoch was working at Xerox PARC with Robert Metcalfe on the
development of Ethernet and related projects. Shoch points out in his paper
how the naming in networks parallels what is found in computing systems:
Namely, that applications had names that were independent of memory loca-
tion and made sense to human users, whereas programs used virtual memory
addresses that allowed their code to be placed anywhere in memory and were
mapped to the actual physical memory location (routing) by the hardware. It
seemed to make a lot of sense.

A few years later (1982), the other most often cited paper on network address-
ing appeared, Jerry Saltzer’s (RFC 1493) “On the Naming and Binding of Net-
work Destinations.” This is a most curious paper. Saltzer sets out to apply to
networks the same principles he applied to operating systems and makes a major
contribution to the problem. Saltzer notes that there are four things, not three, in
networks that need to be named (just as there were in operating systems): serv-
ices and users, nodes, network attachment, and paths. Saltzer carefully lays out
the theoretical framework, defining what he means by each of these. After noting
some of the issues pertinent to the syntax of names, Saltzer observes:

The second observation about the four types of network objects listed earlier is that
most of the naming requirements in a network can simply and concisely be described in
terms of bindings and changes of bindings among the four types of objects. To wit:

155BACKGROUND ON NAMING AND ADDRESSING

CHAPTER 5 NAMING AND ADDRESSING156

1. A given service may run at one or more nodes, and may need
to move from one node to another without losing its identity as a
service.

2. A given node may be connected to one or more network attach-
ment points, and may need to move from one attachment point to
another without losing its identity as a node.

3. A given pair of attachment points may be connected by one or
more paths, and those paths may need to change with time without
affecting the identity of the attachment points.”

It would appear that Saltzer is suggesting that we name the objects and track
the mappings (i.e., the bindings) between them. Notice the parallel between this
list and Saltzer’s list for operating systems earlier in this chapter.

Each of these three requirements includes the idea of preserving identity, whether of
service, node or attachment point. To preserve an identity, one must arrange that the
name used for identification not change during moves of the kind required. If the
associations among services, nodes, attachment points and routes are maintained as lists
of bindings this goal can easily be met.

Again Saltzer is pointing out a very important property (i.e., that the names
given to objects must be invariant with respect to some property across the appro-
priate scope). In particular, service or application names do not change with loca-
tion, node names do not change for attachment points within the scope of their
location, and attachment points do not change as the ends of their routes.

This expands a bit on Saltzer’s words, but it seems reasonable to assume that
Saltzer recognized that names would not be assigned once and for all. And if
they could change, there must be rules for when and how they could change. In
fact, he states quite rightly that even if a name is made permanent, this “should
not be allowed to confuse the question of what names and bindings are in prin-
ciple present.” He then reviews that “to send a data packet to a service one must
discover three bindings” [given the name of a service]:

1. Find a node on which the required service operates

2. Find a network attachment point to which that node is connected

3. Find a path from this attachment point to that attachment point

From Saltzer’s description, there is a name for each of these four and tables
that maintain the bindings between the names:

157

1. Service name resolution, to identify the nodes that run the service

2. Node name location, to identify attachment points that reach the nodes
found in 1

3. Route service, to identify the paths that lead from the requestor’s attach-
ment point to the ones found in 2

Saltzer then illustrates his points with a couple of examples that for Saltzer
present problems in applying his model. He then concludes that regardless of
what one may think of his analysis, “it seems clear that there are more than
three concepts involved, so more than three labels are needed….” And finally, in
his summary, he points out there is a strong analog between what he has
described and the concepts found in operating systems.

This seems to answer our first question of what has to be named: Applications
require location-independent names. This is Schoch’s what. This allows the
application to be moved without changing its name. That name maps to a node
address that indicates where the node is and the application can be found, with
each router maintaining a forwarding table that maps an address to a “next hop”
(i.e., next node address). But then Saltzer lumps the next step in with routing. He
clearly knows that a point of attachment address is needed, but he doesn’t clearly
distinguish how it differs from a node address. As noted previously, it was obvi-
ous that the solution to the multihoming problem was that a logical address
space was needed over the physical address space. But then Saltzer follows the
operating system model too closely and notes that there is a mapping of applica-
tions to nodes, a mapping of nodes to points of attachment, and then a mapping
to routes as a sequence of points of attachments and nodes.

Saltzer misses a case that is unique to networks and key to understanding: In
networks, there can be multiple paths (links) between adjacent nodes. Saltzer
can’t be faulted for missing this. Multiple paths to the next hop were rare or
nonexistent when he was writing. Let’s supply the answer.

After selecting the next hop, the router must know all the node address to
point of attachment address mappings of its nearest neighbors so that it can
select the appropriate path to send PDUs to the next hop.

Routes are sequences of node addresses from which the next hop is selected.
Then the router must know the mapping of node address to point of attachment
address for all of its nearest neighbors (the line in Figure 5-2) so that it can select
the path to the next hop.

BACKGROUND ON NAMING AND ADDRESSING

CHAPTER 5 NAMING AND ADDRESSING158

Figure 5-2 Addressing for a network requires at least an application name, a node
address, and a point of attachment address. Directory maps application names to node
addresses, routes are sequences of node addresses, and multiple paths between adjacent
nodes require mappings between node addresses and point of attachment addresses.

“Routing” is a two-step process. A route is a sequence of node addresses.
The next hop is chosen to the next node address. Then the mapping of local
point of attachment addresses to the point of attachments of nearest neighbors
for the next hop is needed to select which path to the next hop is selected. Look-
ing at the figure, we see these bindings:

1. Directory, mapping of application names to node addresses to find where
the application is. This is an example of the name-resolution or directory
protocols discussed in Chapter 4, “Stalking the Upper-Layer Architecture.”

2. Routes, as a sequence of node addresses calculated by the routing algo-
rithms to generate the next hop

3. Paths, selected from the mapping node address to point of attachment
address of the nearest neighbors (i.e., next hops)

Interesting! 1 and 3 are the same mapping! The path is also an example of a
name-resolution service, just like the directory. The path database is smaller
than the directory database, and the syntax of the names are a bit different, but
the same mapping nonetheless. They both track name mappings that are “one
hop” from each other (relative to their layer).

It was clear that a network address (i.e., node address) needed to be location
dependent and application names should be able to be location independent.
What about point-of-attachment (PoA) addresses? Traditionally, the PoA corre-
sponds to the data link layer address. From the point of the view of the nodes, it
doesn’t matter. All the nodes (routers) require is that PoA addresses of nearest

Application
Name

Node
Address

Point of Attachment
Address

Directory

Route

Path

159

neighbors are unambiguous. All PoA addresses don’t have to come from the
same address space and probably won’t. Different protocols in different layers
of less scope are possible and allowable. Any two connected nearest neighbors
will have addresses from the same address space. (They have to because both
ends of the communication use the same protocol, by definition.) But not all
PoAs on the same router or host must be from the same address space. Whether
a PoA address space will be flat or location dependent will depend on the proto-
cols and scope of the PoA layers. Location dependence is a property that facili-
tates scaling within a layer by reducing the complexity and combinatorial
properties of routing.

But what is curious about this paper is that Saltzer lays out the answer very
clearly. When addressing is discussed in networking meetings, this paper is cited
by almost everyone. The paper is almost revered. But the Internet architecture
has no application names and no node addresses (a well-known socket is at best
a suffix for a network address, and URLs show signs of backing into being a
form of application name within http). The Internet has only PoA names, and
routes. Saltzer says clearly that PoAs and routes are not enough. It is clear that
the fundamental problem with Internet addressing is that it is missing half the
necessary addressing architecture. Why then has the Internet not taken Saltzer’s
advice, especially given how Saltzer lays out the principles so clearly?

The XNS architecture developed at Xerox PARC for networks of LANs, and
later used by IPX for Novell’s NetWare product, had a network address that
named the system, not the interface. This was the first commercial architecture
to fix the addressing problem created by the IMPs. But, Xerox’s decision to keep
the specifications proprietary limited its early influence. At the same time, the
decreasing cost and increasing power of hardware reduced the need to fix the
problem in IP.7 Later this same solution would be picked up and used by OSI.

The deployment of IP overcame the address space problems of NCP. Thirty-
two bits of address space was more than enough. However, IP retained the
semantics of the IMP port address and named the interface (see Figure 5-3). The
primary reason for this is unclear. IP was first proposed in about 1975 and
changed very little after that first draft. The only known problem at that time
was with the semantics of the address, as exemplified by the dual-homing prob-
lem described earlier. The Saltzer analysis shows that multihoming isn’t sup-
ported for routers, let alone hosts. But because the Net was small enough

BACKGROUND ON NAMING AND ADDRESSING

7 Once again, Moore’s law perhaps causes more trouble than it helps by allowing us to ignore
the scaling problems of the address space for so long that the network grew so large that solu-
tions became more daunting. It is curious, given the DoD sponsorship of the early Internet,
that there was not more pressure to fix such a fundamental capability. Worse, users had come
to believe that addresses could be used as names. “Experts” demanded that IP addresses not
change no matter where they were attached to the network: a fine property of names, but not
of addresses.

CHAPTER 5 NAMING AND ADDRESSING160

Application

IP
Address

MAC
Address

Application
Name

Node
Address

Point of
Attachment

Address

Socket
(local)

without multiple paths between adjacent nodes, it wasn’t a problem that
Moore’s law couldn’t solve. (And when multiple paths did arise, it caused prob-
lems but band-aids were found for them.) The problems of multicast and mobil-
ity were many years off. It was understood that a change would be necessary, as
was our repeated caution about the importance of getting addressing right. No
one felt they really understood addressing well enough. It seemed prudent that a
more complete understanding was necessary before making the change. We still
didn’t understand what location dependence meant in a network. It seemed pru-
dent not to do anything until there was a better understanding of what to do.
Even in the early 1980s, when NCP was removed and IP became the only net-
work layer protocol, the Internet was still for the most part a network of univer-
sities and R&D organizations, so such a major change was still something that
could be contemplated.

Figure 5-3 Mapping Saltzer’s concepts to the Internet shows that half the required iden-
tifiers are missing (application names and node addresses) and one is named twice
(point of attachment).

When IP was defined, some structure was imposed on IP addresses by divid-
ing the address space into blocks of Class A, B, and C (Figure 5-4). (As other
authors do, we will ignore the existence of Class D and E addresses for now.)
The classes of IP addresses are intended to be assigned to networks with differ-
ent numbers of hosts: Class A for the really big ones, Class B for the middle-size
ones, and Class C for the really small ones. And of course, within a Class A net-
work, Classes B and C can be used to provide a rudimentary form of location
dependence.

161BACKGROUND ON NAMING AND ADDRESSING

Figure 5-4 IP address format.

But these were allocations of size, and although they might be used to impose
location dependence within a given network, no consideration was given to
doing it across networks. Blocks of IP addresses were for the most part handed
out in the order requested. 128.89 might be on the East Coast of the United
States, and 128.90 might be in Hong Kong. So in fact, IP addresses were more
like names than addresses. There was no structure or plan to assigning the net-
work part of an IP address. It was assumed that addresses would be assigned in
a location-dependent manner within the networks (an assumption made unnec-
essary by Moore’s law) and that the number of networks would remain rela-
tively small. There was no planning for tens of thousands of networks organized
into tiers of providers.

As the problems of configuring networks for large organizations grew, sub-
netting was introduced. Subnetting takes part of the host-id portion of the
address and uses it to represent subnets within the Class A or B address (or
Class C, but they are pretty small for subnetting). This provides topological-
dependent addresses within an organization; outside the organization, however,
it is of no help.

OSI and NSAPs

Using the experience from the ARPANET and early Internet, OSI made some
major strides in working out the theory of naming and addressing. It also made
some major mistakes. (Although there are several interesting aspects to the OSI
addressing concepts.) The amount written on it is fairly voluminous and impen-
etrable. We will consider the basics as briefly as we can and only elaborate on
concepts or lessons that we need to carry forward. First, let’s dispense with what
OSI got wrong: The Europeans were intent on making X.25 the OSI answer to
the network layer and not using any experience from the United States, even if it

0

0 7|8 15|16 23|24 31|

Class A
Network

Host number

10
Class B
Network

Host number

110
Class C
Network

Host number

CHAPTER 5 NAMING AND ADDRESSING162

was improving on the lessons learned in the Internet. Consequently, they forced
into the OSI architecture fundamental constructs to reflect X.25. As an exam-
ple, in OSI an (N)-connection is defined to be shared state among (N+1)-enti-
ties, not the shared state among (N)-entities. But in spite of such fundamental
problems, it was possible to resurrect the beginnings of a fairly reasonable
addressing architecture, even if the errors did cause the definitions to get a bit
convoluted at times.

OSI spent considerable time developing a theoretical framework for the
architecture. This was not the “seven-layer model.” But an earlier section of the
reference model that defined the common elements that all layers would have.
The understanding was that there were common elements but different func-
tions in each layer, in line with the Dijkstra concept of a layer. This effort was
beneficial because it was an attempt at an “algebra” that clarified the nature of

the problem provided insight into the solutions. It is unfortunate
that politics could not be kept out of it. However, it seldom
helped those who tried to use the standards because the standards
seldom reflected the insights that had been gained. (The U.K. del-
egation insisted that any “tutorial material” should not be
included. It seemed that they were intent on making the docu-
ments as difficult to use as possible.) There are two aspects of this
theory: the general architecture as it relates to addressing and the
specifics of addressing in the network layer.

The general OSI architecture consists of (N)-layers. (Of course,
in the specific architecture constructed from this theory, the max-
imum value of N was 7.) Each system in the network contains ele-
ments of these (N)-layers, from 1 to 7. The intersection of an

(N)-layer with a system is called an (N)-subsystem. Within each (N)-subsystem,
there is one or more (N)-entities (Figure 5-5). An (N)-entity is the protocol
machine for that layer. A (N)-subsystem could contain more than one (N)-entity
(e.g., different groups of users) or (N)-entities of more than one kind (i.e., differ-
ent protocols). In other words, an (N)-subsystem is all the modules in a system
relating to a particular layer, protocol machines, management, buffer manage-
ment, and so on. Having a term for everything in a system associated with a
given layer proves to be quite useful.

Terms, Terms, Terms
Entity might seem like a
pretty innocuous term. It
was supposed to be. There
was great fear that the
model not specify imple-
mentation. Therefore, any
term such as process, pro-
gram, task, procedure, and
so on that might be con-
strued as specifying how it
must be implemented was
unacceptable. I have
noticed recently that oth-
ers have been driven to
the same term.

163

Figure 5-5 Entities, service access points, and identifiers.

As mentioned, an (N)-connection was defined to be “an association
requested by an (N+1)-entity for the transfer of data between two or more
(N+1)-entities.” In other words, an (N)-connection went from one (N+1)-entity
(in an (N+1)-layer) down to an (N)-entity across to an (N)-entity in another sys-
tem and up to the (N+1)-entity in the remote system. (Pushing this definition
were the Europeans attempting to legislate the X.25 view.) This tightly binds the
shared state in the (N)-entities to the shared state in the (N–1)-entities. But it is
important that it be possible to decouple the two, so that the shared state at
(N–1) can be lost without affecting the shared state at layer N. This definition
makes that difficult.

Later realizing that they needed a name for the relation between the
(N)-entities (what the definition of a connection should have been), they defined
an (N)-association as “a cooperative relationship among (N)-entity-invoca-
tions.”8 Yes! In OSI, associations were connections, and connections were what
association should be. But then I have never known a standards organization
yet whose arrogance didn’t get it into this sort of doublespeak.

The (N)-connection crossed the boundary between an (N+1)-layer and an
(N)-layer at an (N)-service access point or (N)-SAP. (N)-SAP-address identifies
an (N)-SAP. (This is why one encounters the term SAP in other standards.

BACKGROUND ON NAMING AND ADDRESSING

8 Quite correctly, OSI tried to distinguish between type and instance. A protocol in a subsystem
was the type, whereas a specific flow or connection using that protocol would be an instance
or instantiation of the protocol. One connects to TCP (type), but each state machine along
with its TCB represents an instance of TCP. So when the dust settled, the (N)-entity was the
type, and the (N)-entity-invocations were the instances.

[N]-address

[N]-connection-
end point-identifier

[N]-entity-title

[N]-service-
access-point

[N+1]-entity

[N]-entity
[N]-entity

CHAPTER 5 NAMING AND ADDRESSING164

Notice how a SAP tries to be a port or interface.) An (N)-SAP was bound to one
and only one (N)-entity at a time. If an (N)-entity needed to have an identifier, it
was called an (N)-entity-title. (The pedants said it couldn’t be called a “name”
because addresses were also names.) An address was a location-dependent
name. So, the term title was used for location-independent names. Associated
with an (N)-SAP-address were one or more (N)-connection-endpoint-identifiers
whose scope was the (N)-subsystem. An (N)-CEP corresponded to a single con-
nection to an (N)-entity. The (N)-SAP-address was supposed to be an X.25 DTE
address. The (N)-CEP-identifier corresponds to what many protocols or IPC
facilities call port-ids, whereas for the PTTs it was the X.25 group-id. (Group-
ids are similar to ATM virtual path-ids or MPLS tags. All three of these derive
from the same telephony lineage). So, an (N)-SAP was really a port, an
interface.

This constraint along with the definition of connection caused a number of
problems. It implied that all the bindings between (N)-entities in a system had to
be preallocated before a connection request was made. This, of course, makes
dynamic assignment and resource allocation essentially impossible. By 1983, it
was already believed that the reference model was too far along to be changed.
So rather than simply fix the definition of connection and make the structure
simpler, a level of indirection was created9: An (N)-address was defined as a set
of (N)-SAP-addresses. But worse, the OSI “address” also identifies the interface.
The one thing that most were trying to avoid. (In a committee, consensus never
means that issues are resolved, only that progress can continue until someone
finds a reason to raise the issue again.)

Another problem was discovered in how we thought we would build
addresses. Initially, it was assumed that an (N)-address would be formed from
an (N–1)-address and (N)-suffix, allowing addresses from a higher layer to infer
addresses at lower layers. This was a fairly common approach found in operat-
ing systems. It can be found in early versions of the OSI reference model see, for
example, ISO TC97/SC16/N117 (1978) or N227 (1979) and in the Internet
today. It is a bad idea in networks. And why it is a bad idea is clear from its use
in operating systems. Constructing names in this manner in operating systems
has a name. They are called pathnames, and therein lies the problem. It defines
a path. It defines a single static path within the system and then to the applica-
tion when, in fact, there may be multiple paths that it should be possible to
choose dynamically. It can be done, but essentially one must ignore that it has
been done. Recognizing that it is a lot of redundancy for very little gain and may
compromise security. It works in an operating system because there is only one

9 Yes, there is nothing in computer science that can’t be fixed with a level of indirection. (sigh)

path within the operating system from one application to another. This is
exactly what we wanted to avoid from our analysis of Saltzer. Hence, any
addressing scheme that, for instance, creates a network address by embedding a
MAC address in it has thwarted the purpose of the addressing architecture.
There can be a relation, but the relation cannot be tied to the path. This is still
considered a quite normal approach to take to forming addresses.

However, all was not lost. Or more to the point, the problems in the network
layer were much more complicated. The U.S. delegation was insistent that there
would be a connectionless network protocol that built on the experience of IP,
and the Europeans were intent that the future of networking would be a connec-
tion-mode protocol (i.e., X.25) and that connectionless would as limited as pos-
sible. They attempted to work out an architecture of the network layer that
could accommodate both. The resulting standard, called the Internal Organiza-
tion of the Network Layer (IONL), shed considerable light on what the two
warring factions were wanting and provided technical insights (ISO 8648,
1987). Although the language of the document can be quite impenetrable to the
uninitiated, every configuration described in it has since turned up in one form
or another. The IONL was a very useful exercise in working out how real-world
situations would be handled within an architecture. The Europeans had to
admit that X.25 was only an interface to the network (after all, it was the title
of the Recommendation) and as such only provided access to a subnetwork. It
was finally worked out that the primary function of the network layer was to
make the transition between the subnetwork-dependent protocols and provide a
service that was independent of the subnetwork technology. To do this could
require up to three sublayers depending on the configuration and the underlying
media:

• A Subnetwork Access Protocol (SNACP) is a protocol that operates under
constraints of a specific subnetwork. The service it provides may not coin-
cide with the network layer service.

• A Subnetwork Dependent Convergence Protocol (SNDCP) operates over a
SubNetwork Access protocol and provides the capabilities assumed by the
SNICP or the network layer service.

• A Subnetwork Independent Protocol (SNICP) operates to construct the
OSI network layer service and need not be based on the characteristics of
any particular subnetwork service.

Although a lot of this structure may seem (and was) politically motivated,
there were several major technical insights. For our purposes, the most impor-
tant of which was that there was a “subnetwork PoA” (an SNPA or “the wire”)

165BACKGROUND ON NAMING AND ADDRESSING

CHAPTER 5 NAMING AND ADDRESSING166

that had an address with a scope that had to span only the particular subnet. A
system might have several SNPAs that mapped to an NSAP address. The NSAP
address as constructed by the IONL was, in fact, the (N)-entity-title. The (N)-
directory, or in the this case the N-directory (N for network) (i.e., the routing
information) maintained a mapping between the SNPA-addresses and the
NSAP-address. This mapping provides a level of indirection between the physi-
cal addressing of the wire and the logical addressing of the network. This level
of indirection provides the flexibility required for addressing to accommodate
all the configurations and services necessary. This is repeated later, but it is
worth observing now:

A network address architecture must have at least one level of indirection.

Like operating systems, there needs to be a transition between logical and
physical addressing. As we have seen earlier from our interpretation of Saltzer
in a network, two transitions are required: one in the network layer between
SNPAs and NSAPs, between route dependence and route independence but both
location dependent; and again between NSAPs and application entity titles,
between location dependent and location independent.

The NSAP addressing structure attempted to solve two problems: accommo-
date a wide variety of existing address formats and set out a location-dependent
address space. The address format of an NSAP is shown in Figure 5-6.

AFI IDI DFI Org Reserved Rowing
Domain

Area System Sel

1 1 12 2 2 2 63

Figure 5-6 OSI NSAP format for the United States

The address space is organized by countries. The country codes are assigned
by an ISO standard. Each country is then allowed to organize its own space. In
the United States, a rather elegant solution was found that avoids a requirement
for an active centralized authority. There is an existing ANSI standard of organ-
ization identifiers. These are used after the country code. To get an assignment
of NSAP addresses, one merely has to get an organization-id (which many com-
panies would already have for other purposes), the organization-id goes after
the country code the rest of address space can be used by the organization. This
creates a provider independent address.

The AFI specifies the format of the IDI and the addressing authority respon-
sible for the IDI. The AFI could select X.121, ISO DCC, F.69 (telex), E.163
(PSTN), E.164 (ISDN), ISO 6523-ICD, or Local. The DFI contains the country
code; Org is the ANSI organization identifier. Routing Domain and Area are the

167

topological routing information. The Reserved field was to allow for another
level of the routing hierarchy if it was required. The System field is six octets so
that an Ethernet address can be used. If this is interpreted too literally it will
force the NSAP to name the interface, not the network entity as intended.
(Groan. In a committee, it is sometimes difficult to keep people from wanting to
do it wrong.) Although this format incorporates location-dependent elements, it
does not indicate where in the topological structure of the network the address
is. It doesn’t help determine “which way” to send a PDU or if two destinations
are “near” each other. This address is location dependent more in the sense of
Boston than Chicago!

This address space reflects the growing understanding of addressing. The IP
address space was mostly concerned about identifying networks and hosts with-
out much concern for their relative position in a topology. At this point,
although it was understood that something analogous to a “Chicago address”
would be useful, no one had any idea how to do such a solution. It really wasn’t
understood that addresses needed to be topological (in the mathematical sense).
With the NSAP address space, there is more concern that a topology is reflected
in the address space by including the DFI or country identifier and organization
identifier. However, this topology is not completely satisfactory either. This
scheme assumes that the routing domains are below the level of organizations.
This would be the case for large companies but hardly for smaller ones. Simi-
larly, there are cases where being able to group several small countries under a
single regional domain would be useful and conversely, breaking up larger
countries into multiple domains would also be useful. Or was the address for-
mat the result of a compromise between the “X.25 faction” and the “IP
faction”? This raises the question of what is the relation between provider-
based addresses and provider-independent addresses. Clearly, provider-based
addresses reflect the topology of the provider’s network. What does a provider-
independent address space reflect? The usual reaction is to immediately leap to
a geographic approach. But is this the only one? Are there others that are not
totally geographic in nature?

There were other minor problems: The format assumes that organizations
are a proper subset of countries. (Although one could assume that a company’s
presence in another country has a different value for these fields.) The only
other problem with the address format is the selector field, which supposedly
identifies the protocol in the layer above. The OSI Architecture group had taken
the position that it was counter to the architecture for an (N)-protocol to iden-
tify an (N+1)-protocol. A horrid layer violation. At the time, this was seen as
relating to addressing. So rather than a field in the PCI, the Network Layer
group made it a field in the address. Neither solution actually can be used to

BACKGROUND ON NAMING AND ADDRESSING

CHAPTER 5 NAMING AND ADDRESSING168

identify the upper-layer protocol, regardless of whether it is a layer violation.
Such a field can only identify one occurrence of a protocol in the layer above
bound to that address. (Admittedly, this does not happen often, but as with
many other “rare” events, when it does it can make things cumbersome if the
addressing has not been done right.) There are configurations where more than
one instance of the same type of protocol bound to the same network address is
necessary. As we saw in Chapter 3, “Patterns in Protocols,” one could argue
that we weren’t seeing the problem correctly, that the field identifies the syntax
of the protocol. However, we will find later that both interpretations are incor-
rect and such a field is unnecessary.

But all in all, OSI progressed the state of the art and tried to take Saltzer’s
advice, even if the ill informed stuck a MAC address in the NSAP. It recognizes
PoA addresses, node addresses, and as we shall see later, application names
extending Saltzer’s scheme in an important way.

Communism is the longest most torturous path from capitalism to
capitalism.

—Joke that circulated in Eastern Europe at the end of the 1980s

Addressing in IPv6

So let’s consider the addressing architecture for this new IP in some detail. The
IPv6 addressing specification is very emphatic: “IPv6 addresses of all types are
assigned to interfaces, not nodes.” However, it then observes that since any
interface belongs to a single node, a “unicast address may be used as an identi-
fier for the node”—a painful example of having heard the words but not under-
standing their implication. We will assume that a node is synonymous with a
system and assume an interface is generalized from the IMP port from which it
originated; that is, an interface is the path from the bottom of the IP layer
through any lower-layer protocols to the physical media connecting to another
system.

One exception to this model is granted to allow multiple physical interfaces
to be assigned the same address as long as the implementation treats these as a
single interface when presenting it to the IP layer. In other words, parallel inter-
faces or spares can be treated as a single interface. This would seem to indicate
that this is a degenerate form of anycast address—and another kludge to make
up for not having node and PoA addresses.

The Various Address Types
Although IPv6 supports a number of address formats, the format we are most
interested in will be the Aggregatable Global Unicast Address. This is what most
people will think of as an IPv6 address. But before we do that, let’s dispense
with anycast and multicast addresses and a couple of other address types that
are unique to IPv6, the link-local and site-local addresses.
There are three types of IPv6 addresses (RFC 2373, 1998):

• Unicast. An identifier for a single interface. A packet sent to a unicast
address is delivered to the identified by that address.

• Anycast. An identifier for a set of interfaces (typically belonging to differ-
ent nodes). A packet sent to an anycast address is delivered to one of the
interfaces identified by that address.

• Multicast. An identifier for a set of interfaces (typically belonging to differ-
ent nodes). A packet sent to a multicast address is delivered to all interfaces
by that address.

Anycast addresses. Anycast addresses are syntactically indistinguishable from
unicast addresses. According to RFC 2373, a unicast address is turned into an
anycast address by having multiple interfaces assigned to it. This is not quite the
case. The nodes to which the interfaces belong must be explicitly configured to
be aware of this. So, in fact, it is not multiple assignment that makes it an any-
cast address, but configuring the nodes to know that it is multiply assigned (an
enrollment phase function). The RFC imposes two constraints on the use of
anycast addresses: They cannot appear as the source address in any IP packet
(reasonable); and they cannot be assigned to hosts, only to routers (less so). This
latter constraint is perhaps the most odd because considerable use could be
made of anycast addresses in applications. The subnet prefix of an anycast
address is the longest prefix that identifies the smallest topological region of the
network to which all interfaces in the set belong.

How this is supposed to work is not quite clear. For different nodes to be
configured to be aware that multiple interfaces have the same address requires
protocol to be exchanged. No such protocol has yet been defined. Clearly, any
use of this facility must be stateless because successive uses may not yield PDUs
being delivered to the same destination. This is another kludge to get around
not having node and PoA addresses.

Multicast addresses. Multicast addresses include two subfields: A flags sub-
field that has 3 unused bits and a single bit that indicates whether this group
address is permanently assigned; and a scope field that currently defines
whether the scope of this group address is the local node, the local link, the local

169BACKGROUND ON NAMING AND ADDRESSING

CHAPTER 5 NAMING AND ADDRESSING170

site, the local organization, or global. Permanently assigned multicast addresses
have global scope; that is, the scope field is ignored. IPv6 defines a multicast
address as “an identifier for a set of interfaces.” There will be more to say on
the nature of anycast and multicast “addresses” in Chapter 9, “Multihoming,
Multicast, and Mobility.”

Link- and site-local addresses. A link-local address essentially consists of the
10-bit format identifier in the high-order bits and a 64-bit interface identifier in
the lower-order bits, and 59 bits of nothing in the middle. This address form is
for “local” use only. The RFC suggests that link local addresses “are designed to
be used for addressing on a single link for purposes such as auto-address config-
uration, neighbor discovery, or when no routers are present.” The use of the
term link implies that they are intended to be used on, for example, a single
LAN segment (i.e., within a single subnet).

A site-local address, although similar to the link-local form, was to corre-
spond to what private address space was in IPv4 (e.g., net 10). The subnet iden-
tifier distinguishes the multiple subnets within the same “site.”

In 2003, there was a movement within the IPv6 working group, over consid-
erable objections, to delete site-local addresses from the specification. There
were strong feelings against the use of private address space within the IETF.
Some believed that this “balkanized” the Internet, which it does, and contra-
dicted some mythic ideal of the “spirit of the Internet.” Engineering on belief
rather than empiricism is always dangerous. As we have seen, NAT and private
address space only break protocols in an incomplete architecture and primarily
indicate bad design choices. Or to paraphrase Buckminster “Bucky” Fuller,
NATS only break broken architectures.10 As it turns out, private address space
is a natural part of any complete architecture and poses no dangers and, in fact,
has many benefits.

However, the removal of private address space from IPv6 would seem to rep-
resent a very large deterrent for corporate adoption. Although NATs do not
provide complete security, they are an important element in securing and exer-
cising control over a subnet. It is hard to imagine corporate IT directors giving
up this simple measure to be replaced by elaborate and as yet unproven IPv6
security mechanisms. Once again, the IETF seems to have cut off its nose to
spite its face.

In addition, address formats are defined for carrying NSAP and IPX
addresses. (Although there is little expectation that these will ever be used.)

IPv6 also allocates two special addresses: 0 and 1 (or to be precise in the IPv6
notation, 0:0:0:0:0:0:0:0 and 0:0:0:0:0:0:0:1). The unspecified address is 0 and

10 Bucky said, “Automation only displaces automaton.”

171

“indicates the absence of an address.” The unspecified address can never be
used as a destination but may appear as the source address for a sender who
does not have an address yet. (It is not clear what you do with such a PDU (you
can’t respond to it), but that is not important. The loopback address is 1 and is
used by a system to send a PDU to itself. It may only be used as a destination
address and then must be sent back to the sender. It should never be relayed to
an address other than the sender, and the loopback address must not appear as
a source address in a PDU.

IPv6 Unicast Addresses
It is the aggregatable unicast address over which there has been the greatest
amount of debate. This debate has evolved around the decision that the IP
address will continue to label an interface. This was complicated by the politics
surrounding IP and OSI. By the time IPv6 was proposed, some had realized that
addresses had to be topological. But they thought topology meant the graph of
the network. Mainly, they were concerned that the addresses had to be aggre-
gatable. As discussed in this chapter, the problem with the IPv4 address space is
not so much the lack of address space but the growth of the routing tables. To
reduce the number of routes that must be stored requires the ability to aggregate
them. For example, the post office aggregates routes based on the hierarchy of
the address (i.e., country, state/province, city, street, street number, and so on).
When a letter is mailed, the first post office has to look at only the first couple
of levels of the hierarchy to know where to send it. It does not need to figure out
precisely where the destination is; it merely has to send the letter in the right
direction. Similarly, some sort of hierarchy was required for IPv6 addresses. As
we saw, CLNP adopted such a hierarchy based on countries and organizations
within them.

The Internet had the same problem that had faced OSI: a
flawed architecture and a reactionary group of traditionalists who
opposed any change to the concept that an address labels an inter-
face. However, the Internet architecture was also weak in another
area. The Internet architecture really only covered the network
and transport layers (or in terms of the seven-layer model, the top
third of the network, SNIC, and transport and only had an
address for the bottom third). Above and below network and
transport, there was not really any structure, so there was no con-
vention for names or routes, as proposed by Saltzer. This led to a
tendency to try to solve everything in the network and transport
layers.

BACKGROUND ON NAMING AND ADDRESSING

Names and Addresses
Giving them the benefit of
the doubt, it might be
closer to the truth that peo-
ple had become so used
to addresses being names
that they used them as
names and expected that
IP addresses could act like
both names and
addresses. After all, they
had never been taught
anything different. There
are no textbooks in net-
working that cover what
should be named.

CHAPTER 5 NAMING AND ADDRESSING172

The IPv6 effort determined the PDU header format and the size of the
address field years before they determined what an address was to look like
(“arithmetic before the algebra”). Also, most of the people involved in IPv6
were initially working under the misconception that the number of addresses
was the major problem to be solved. There were some initial proposals that
were similar to the NSAP address. But because the IPv6 address had to name an
interface, to be aggregatable the addresses had to be provider-based. This had
the unacceptable consequence that if one changed providers all hosts on your
network would have to be re-addressed. (It is significant that the term com-
monly used in Internet circles is renumbering rather than re-addressing, which
indicates that they think of it as enumeration or naming rather than addressing
or changing location.)

As noted previously, a network architecture must make a transition from log-
ical to physical at least once. The Internet architecture has no such transition.
OSI had been “fortunate” enough that its traditionalist faction was X.25. That
forced (or created the opportunity) to separate the physical address or subnet-
work PoA from the network address. The Internet architecture did not really
address the layers below network, and there was no X.25 faction. (Its tradition-
alists hung on to the IP of the “good old days.”) Furthermore, the political
climate was such that if OSI had done something, the Internet would either not
do it or do the opposite and convince themselves there was a good technical rea-
son to codify the old ways.11

This meant the possible solutions were severely limited. Therefore, any solu-
tion had to have an appearance of not doing what was most reasonable (i.e., a
separation of logical and physical in different layers). Even though the idea and
the solution had originated during the early development of the Internet and
had been used by the, at least politically correct, XNS, it had last been used by
OSI and was therefore unacceptable. (And yes, there are many rationalizations
why this was not the reason.)

The developers working on the Internet had for many years realized that
something needed to be done. But in the Internet, the “host” had always been
the focus of attention. There had been several proposals (Curran, 1992; Chi-
appa, 1995) to name “endpoints.” Chiappa defined an endpoint to be “one par-
ticipant of an end-to-end communication, i.e., the fundamental agent of

11 This reaction has always been perplexing: Why react with “do anything but what the ‘opposi-
tion’ has done” and fall prey to “cutting off your nose to spite your face;” rather than “let us
show you how to get it right”? Is this a characteristic of crowd behavior? Or is it something
else? This is not the only example.

end-to-end communication. It is the entity which is performing a reliable com-
munication on an end-to-end basis.” Chiappa et al. saw this as mapping fairly
directly to the concept of “host.” However, the use of one and an in the defini-
tion would seem to imply more a single protocol machine than a collection of
them. This was definitely on the right track. Replacing the traditional semantics
of an IP address with the semantics of an endpoint in the protocol would have
gone a long way to solving the problems confronting IP. However, this did not
meet with much acceptance, probably because the implications of continuing to
name an interface with an aggregatable address had not yet dawned on many of
the members of the Internet community. To replace the semantics of an IP
address with the semantics of an endpoint smacked too much of OSI. This situ-
ation existed for several years, and then Mike O’Dell (O’Dell, 1997) made a
valiant effort to separate the IPv6 address into “routing goop,” which would
change when the host moved and an invariant globally unique “end system des-
ignator” that identified “a system invariant of its interfaces as in the XNS archi-
tecture” (emphasis added). This led to an addressing format (Figure 5-7) where
the interface-id was the end-system identifier and the rest was the “routing-
goop,” as follows:

Where:

FP The format prefix

TLA ID Top-level aggregation identifier (13 bits)

Res Reserved (8 bits)

NLA ID Next-level aggregation identifier (24 bits)

SLA ID Site-level aggregation identifier (16 bits)

Interface ID Interface identifier (64 bits), probably an EUI-64 identifier

173BACKGROUND ON NAMING AND ADDRESSING

3 13 8 24 16 64

FP
001

TLA
ID

NLA
ID

SLA
ID Interface IDRes

Figure 5-7 Format of an aggregatable IPv6 address.

The TLA, NLA, and SLA form the routing hierarchy of the address to the
level of subnet, and the interface-id represents a completely independent glob-
ally unambiguous identifier. But, it does precisely what we found earlier that we
didn’t want to do: make it into a pathname.

CHAPTER 5 NAMING AND ADDRESSING174

This proposal came four years after the initial decision to develop IPv6 was
made. By this time, memories had faded, there had been considerable turnover
in the people involved, and the ramifications of the decision had finally become
clearer to many. So with a little artful prose that did not open old wounds,
O’Dell’s proposal was able to thread the needle between the technical require-
ments and the political climate for a solution with only a moderate level of addi-
tional complexity. However, this was also unacceptable. The routing part of the
IPv6 address is a path through a hierarchy of subnets, while the end-system des-
ignator has the same semantics as an IPv4 address. It names the interface (or to
put it in other terms, the data link protocol machine). Here again, the IPv6
group found a way to take on the trappings of the solution without taking its
substance to solve the problem. So although the form of O’Dell’s proposal may
be discernable in the IPv6 address format, the substance of it is not, and the
problems remain.

At arm’s length, an IPv6 address is similar to an NSAP in form. (…the
longest, most torturous path….) It was common with NSAPs to use an IEEE
802 MAC address as the system-id, analogous to the use of an EUI-64 address
as the interface-id. This was a case where the OSI architecture figured out some-
thing but the OSI Network Layer group, in a different committee, stayed with
their intuitions. And as so often is the case in science, our intuitions were wrong.
The NSAP format had four levels of hierarchy, whereas the IPv6 has three lev-
els. OSI did not require “endpoints” or anything like them because it had appli-
cation names. Because the IETF had no common application naming, it had, or
thought it had, to solve everything in either the network or transport layer.

With IPv6, the routing part is not sufficient alone to distinguish a node. It can
only distinguish the subnet but requires the interface-id to distinguish the node,
whereas the interface-id alone can distinguish the interface. There are roughly
32 bits of redundancy in an IPv6 address (or enough for a couple of more levels
in the routing hierarchy).

This approach will not support multihoming and mobility for the same rea-
sons that IPv4 does not, and it greatly exacerbates the scaling problems in IP.
The impact of these problems have been known about for a decade and a half,
and now at this writing, with IPv6 barely deployed, they are already showing
signs that are causing problems that are somewhere between severe and cata-
strophic. (“But she didn’t do it and….”)

Looking Back over IPv6

IPv6 has not instilled a lot of confidence among the cognoscenti. In fact, fear
and trepidation is closer to the case. But deployment is beginning in fits and
starts. There are still strong debates going on relating to the architecture of its

175

addressing. For example, until very recently, some still argued that multihoming
is being overly stressed. They contend that only a few hosts will need it and that
a solution to multihoming is not really required; or because so few hosts need it,
its cost should not be incurred by those who don’t. This essentially ensures that
any solution will be asymmetric and consequently will appear and be cumber-
some and hence unacceptable.12

Superficially, it might appear that only a small percentage of all hosts require
multihoming; that is, there are many more individuals connected to the Net
than servers. However, even a small percentage of a large number can be a large
number. But the real reason is that the ones that do need multihoming are very
important to all the others. This is changing. As more companies come to rely
on the Internet, the more they see multihoming as a necessity, and it is becoming
more of a problem. Why is there an assumption that a solution must cost more,
when in fact it actually costs less? It makes one wonder why people would argue
that it is not very important. Why should there be so much debate over not
doing multihoming? Redundant connections to the network would seem to be
an “apple pie” issue. Of course, redundancy is a good thing, but not for the
traditionalists. A simple solution to multihoming requires changing the seman-
tics of the address. If multihoming is not important, there is no need for a
change. So, the argument that multihoming is not important is actually more
political than technical.

The concern over the addressing situation was sufficiently great that in 1999
that the IAB created an Internet Research Task Force (IRTF), the research side
of the IETF) working group independent of the IPv6 work to consider name-
space issues. This group met several times. There was a lot of discussion of end-
points as opposed to naming, but without a strong architectural model it was
impossible to establish precisely what was required. Consequently, there was no
consensus on the conclusions. But this effort seemed to focus the discussion on
what has become known as the locator/identifier split. Many see the problem
with the IP address is that its semantics have been overloaded with both locator
meaning and identifier meaning, and if we simply separate them all the prob-
lems will be solved. Notice that they do not see that the IP address naming the
interface is naming the same thing the MAC address does, but they also rely on
the fact that the MAC address has greater scope than the IP address to make
certain mobility-related capabilities work.

However, referring back to the Saltzer paper, this approach will give us an
application name and a PoA address. Once again, it addresses the symptom but

BACKGROUND ON NAMING AND ADDRESSING

12 This is a nice piece of electro-political engineering: Come up with very reasonable criteria that
can only be met by an unacceptable proposal. This one is even better than the “lightweight
transport protocol” red herring.

CHAPTER 5 NAMING AND ADDRESSING176

not the problem. The Internet’s focus on the transport and
network layer has led to attempts to solve these problems in
one of those two places. But, there is no such thing as a trans-
port address. This is creating a “beads-on-a-string in dis-
guise” model, not an operating system or distributed systems
model. Consequently, efforts such as Host Identifier Protocol
(HIP) (RFC 4423) and SHIM6 (Nordmark and Bagnulo,
2006) are simply more stopgaps that fail to address the
whole problem and apply yet another band-aid to one aspect
of the problem. As many in the Internet rightly realize, all of
these myopic band-aids are creating a system that is more
and more unwieldy.

Many prominent members of the Internet technical com-
munity have not expected wide deployment of IPv6. The
biggest problem is that IPv6 offers very little to those who
have to pay for its adoption. The removal of link-local (pri-
vate) addresses provides one more reason not to adopt IPv6
in the enterprise, but to only use it externally. All new facili-
ties, such as security, multicast, QoS-related developments,
and so on, are designed to work equally well with IPv4 or
IPv6. Thus, all statements in the recent trade press that IPv6
is necessary and has better QoS, security, and such are simply
spin. The only new capability provided by IPv6 is a longer
address, and that in and of itself may create more problems
than it solves. In early 2003, figures were published that
around 50% of the IPv4 address space had been assigned and
less than 29% was actually being used (Huston, 2003). A
cursory inspection shows that between 25-30 Class A
address blocks could and should be re-claimed. This would
seem to indicate (and is supported by recent government
reports) that there is no rush to move to IPv6.

The only advantages to IPv6 are the bigger address space,
the loss of isolation with no equivalent to private addresses,
and the knowledge that you are a good network citizen—
hardly the basis for a large capital expense to make the tran-
sition. This is not going to impress corporate budget
committees. However, the possibility of IPv6 failing to be
adopted has so alarmed certain factions that an immense PR
campaign has been initiated to drum up interest in IPv6. (The
possibility that IPv6 may fail for technical reasons does not
seem to bother them.) An IPv6 forum was created and many

How Bad Could It Be?
The designers of IPv6 have
blithely increased the size of the
address without really considering
the scaling implications of a full-
blown IPv6 flat network. For sev-
eral years, they ignored the router
table expansion problem.They
have continued to kludge the mul-
tihoming problem until the fall of
2006 when recognition of a loom-
ing crisis predicted dire conse-
quences. After about ten days of
considering that a more in-depth
investigation was warranted, they
fell back into the artisan response
of looking for another band-aid.

In addition, some experts are
concerned that router table cal-
culations for the much larger v6
address will take much longer,
greatly shortening the period
between calculations. There is
some question as to whether the
effects of new forwarding tables
once calculated would have time
to take effect before it was time
to recalculate. If the effects of the
new forwarding table have not
had time to “settle” before a new
calculation begins, the input for
the new calculation will be based
on transient conditions, increas-
ing the likelihood of unstable
behavior.

Or more starkly, when a failure in
the Net causes a router table
computation, the Net will con-
tinue using the old tables while
the calculation is made. The
longer the calculation takes, the
longer traffic is not responding
to the failure, compounding the
situation so that by the time the
new forwarding tables are avail-
able, they have been computed
for a situation that no longer
exists and may make the
response to the failure worse,
not better.

The rationale for automatic rout-
ing has always been that events
are happening too fast for a
human to be in the decision
loop. It may be that events are
happening too fast to have v6
in the loop.

177

trade journal articles written advocating advantages to IPv6 for security, QoS,
and so on, which, in fact, are unrelated to IPv6. Trade journals go out of their
way to put a positive spin on even the bad news. The European Union and the
U.S. government have endorsed IPv6 in much the same way they endorsed OSI
two decades earlier. IPv6 advocates point to this as proof of IPv6’s pending suc-
cess, just as they ridiculed the same statements by OSI advocates. Others see this
as the kiss of death as it was for OSI. India, Japan, and China have embraced
IPv6 mostly because they cannot get large IPv4 address blocks from IANA to
support their huge populations. However, as we have seen, more than enough
v4 address space exists. IPv6 may happen as much because the IETF has not
been able to come up with anything that solves real problems, rather than on its
own merits. This does not bode well.

But what contribution can we say that IPv6 has brought to our problem of
trying to gain a deeper understanding of the nature of addressing? Unfortu-
nately, not much. There is really nothing new here that has not been done
before. As we have seen, IPv6 is simply a more cumbersome form of IPv4.

However, it does provide further confirmation of the social behavior of stan-
dards committees. (OSI provides earlier confirmation.) Another example of
how a vocal conservative (dare I say ill-informed) faction can slow progress,
and the lengths that a minority with greater technical understanding must go to
find a way to bend the position of conservatives to get some sort of solution that
solves real problems,13 not to mention that this direction benefits the vendors:
Not only does the iterative increase in complexity keep a steady stream of new
products to buy, but it also serves as a barrier to entry to new competitors and
keeps customers tied to the vendor because their personnel can’t understand the
interactions of all the incremental improvements. CLNP had been only a slight
improvement over IPv4. But it had been a bigger step than IPv6 represents and
had been at least a move in the right direction. All of this contributes to the feel-
ing that the concepts had run out of steam. After about 1975, there was very lit-
tle new or innovative thinking going on. The only significant development one
can point to is the development of link-state routing algorithms, which prima-
rily was done in OSI, which stimulated similar efforts in the IETF.

If there is anything to learn from the IPv6 experience, it probably has more to
do with the dynamics (or lack thereof) of consensus. It was James Madison
(1787) who was the first to realize the inherently conservative nature of such
groups. And human nature hasn’t changed in 200 years. In his case, it led to the
creation of mechanisms to stabilize an otherwise unstable system. In this envi-
ronment, the lack of understanding of this dynamic has merely undermined
innovation in a fast-moving technology. OSI started out as a “revolutionary”

BACKGROUND ON NAMING AND ADDRESSING

13 The similarity to controversies in other areas of science are striking.

group intending to promulgate the packet network connectionless model. But
the European tendency toward centralism and fear of the PTTs expanded the
participation in the effort to include the opposition that saw X.25 as the answer
to all network layer issues. This irresolvable conflict so severely split the OSI
attempt that it ultimately failed. We have already discussed how the minority
had to contort that architecture to achieve a semblance of a reasonable address-
ing architecture for the network layer, only to have it botched by the imple-
menters. The fundamental lesson here is that the old paradigm can never be
invited to collaborate with the new paradigm.

In the IETF, the conservatives have been a similar drag on innovation and
good engineering. But here the stakes are much higher. OSI basically never had
wide deployment. Businesses the world over now depend on the Internet. The
IETF is now more concerned that the Internet architecture should not deviate
from the old ways—that the architecture of 1972 has been given to it on stone
tablets handed down from on high. When in reality, it was done by a group of
engineers who were struggling to understand a new field and just to get some-
thing that worked. The conservatives now read deep meaning into what were
expedient hacks, the authors of which knew they were hacks and knew they
would need to be replaced “when there was time.” The keepers of the flame are
protecting an unfinished demo, rather than finishing it in the spirit in which it
was started.

So if we have learned anything from IPv6, it is that all committees behave
pretty much the same and will try to avoid deviating from the status quo. The
problem within the IETF is compounded by the “demokratic” organization,
rather than a “representative” or republican organization. It has been well
understood for 250 years that democracies don’t work and are susceptible to
just this kind of long-term behavior. But, mechanisms can be created in a repub-
lican form of organization that will work; this was Madison’s innovative discov-
ery in system design. Representative forms have the potential to adopt new
results not yet fully understood by the larger group. However, it remains that
the only time a committee will do something innovative is when the majority
perceives it as unimportant. Not exactly a result that is terribly helpful or
encouraging.

“Upper-Layer” or Application Addressing in OSI

From our previous discussion, we would expect addressing for upper layers to
involve some unique problems. According to Shoch and Saltzer, applications are
supposed to have names, whereas lower-layer protocols have addresses. We
must consider the problem of naming applications and relating that to address-
ing. Let’s consider how the Internet and OSI dealt with upper-layer addressing.

CHAPTER 5 NAMING AND ADDRESSING178

179

As noted earlier, the early ARPANET had its hands full demonstrating a
resource-sharing network and created “well-known sockets” as a stopgap so
that it could demonstrate the usefulness of the network. The need for a direc-
tory was well understood at the time, but there were other priorities. Because
there were no new applications in the Internet for another 20 years, there was
no reason to change. (And by this time, there was a new generation of engineers
who now argued that well-known sockets were a gift from the gods, divine
insight, not a kludge that should be fixed.)

The first impetus for change was not required by applications and all the
resource sharing that had been expected, but by the proliferation of hosts. Since
the beginning, each host had maintained its own table of hostnames and their
corresponding network address (NCP or IP). Only a few hosts might be added
per month, and not all hosts found it necessary to keep a complete table. How-
ever, as the rate of new hosts increased in the late 1970s, this fairly informal
approach was no longer practical. The result was the development of DNS or
the Domain Name Server (RFC 881, 882). DNS defined a database structure
not only for mapping hostnames to addresses, but also for distributing the data-
base to servers around the network. Later, DNS was used to also distribute
URLs for HTTP.

URLs are not the same as well-known sockets. A well-known socket identi-
fies a special transport layer port identifier that has a particular application pro-
tocol bound to it. There is an implicit assumption that there is only one instance
of this protocol per host. A connection to a well-known socket will create a dis-
tinct connection or flow to the requestor. A URL identifies an application (i.e., a
particular Web page that uses that protocol [HTTP]), and an arbitrary instance
of that application is created. We must be careful when talking about URLs.
What they were defined for and how they are used in combination with other
conventions make them several things at once. This is fine and perhaps even
advantageous for human use, but for architecture we need to understand the
different objects being named and their relation.

As discussed in Chapter 4, OSI created problems for itself by getting the
upper layers upside down. Applications sat on top of two layers (session and
presentation) that had addressing (a general property of a layer). These layers
were constrained to not allow mapping between connection and connectionless
and to have no multiplexing. Consequently, mappings between two layers were
required to be one-to-one. There was no need for addressing in these two layers.
Another indication that these were not layers.

We saw that for the lower layers it was not a good idea to create addresses for
a layer by concatenating it with the address of the layer below because it formed
a pathname. For the upper layers of OSI, there was no multiplexing and, hence,

BACKGROUND ON NAMING AND ADDRESSING

CHAPTER 5 NAMING AND ADDRESSING180

no multiple paths. However, this would create very long addresses with consider-
able redundant information as one moved up from the network layer. For exam-
ple, because a transport address would be NetAddr.suffixT, the session address
to be carried in protocol would be TrptAddr.suffixS or NetAddr.suffixT.suffixS,
and the presentation address would beNetAddr.suffixT.suffixS.suffixP. This cre-
ates a lot of unnecessary overhead in the PDUs. To avoid this, an (N)-address for
the transport, session, and presentation was defined as a tuple consisting of a net-
work address and the appropriate number of (N)-selectors. Thus, a presentation
address was defined as follows:

(Network address, T-sel, S-sel, P-sel)

The PCI in each layer above the network layer only carried the selector. If an
implementer was smart, the P-selector and S-selector were null. Consequently,
the only addressing above the network layer was that transport protocol had to
carry a T-sel of 16 bits.14

Because there was no addressing in the session and presentation layers, the
interesting aspect of OSI addressing for the upper layers was the addressing
architecture of the application layer. In Chapter 4, we saw how the distinction
between the application process and application entity came about. Now we
have to consider how the naming of them works.

Table 5-1 Summary of OSI Application Naming

Item (Identified by AE) APT APII AEQ AEII

Appl Process +

Appl Process Invocation + +

Appl Entity + +

Appl Entity Invocation + + + +

Scope

APT = Application-Process-Title Application layer

APII = Application-Process-Invocation-Identifier Application process

AEQ = Application Entity Qualifier Application process

AEII = Application Entity Invocation Identifier (API, AE)

14 Somebody in a NIST workshop thought the maximum size of T-sel should be 40 octets. Now I
believe in large addresses as much as anyone, but even I thought 2320 application connections
in a single host at the same time was a little excessive! Another indication that separating
designers and implementers is not a good idea.

To recap from Chapter 4, OSI distinguished the “application entity” (AE),
which was within the OSI architecture and consisted of the application proto-
cols. Databases, file systems, the rest of the application, and so on were outside
of OSI. (This was somewhat political so that the OSI committee did not tread
on the turf of other committees.) Thus, the protocols an application used were
part of the network architecture but everything else was outside. This is exactly
the distinction we noted in the Web page example earlier. The application that
constitutes the Web page and everything it needs is outside the communication
architecture, but the HTTP protocol (and any other application protocols it
uses, such as FTP or a remote query protocol) is within the architecture.

Thus, the Web application is an AP, and HTTP is the AE; and in this case, the
AP may have several AE instances, for the simultaneous HTTP connections.
Each must be distinctly identifiable. An application could have multiple proto-
cols associated with it. For example, a hotel reservation application might use
HTTP to talk to the customer and a remote database protocol to make the
reservation. Similarly, an application could have multiple instances of each pro-
tocol and different dialogs with different customers. So, there could be applica-
tion entity instances. Of course, the designer might choose to instantiate a
different process for each customer so that there are multiple instances of the
application process but single instances of the AEs. Clearly, there could be appli-
cations where there were instances of both processes and entities. The AEs were
the only part of the application process inside the OSI architecture.

We can see in hindsight that the early Internet applications were special cases
and hence not good examples to generalize from. Not only were the protocol
and the application essentially synonymous, but there was only one per system.
This is where our operating system experience was not sufficiently rich and we
needed insight from the users’ world. Our first real-life example of this applica-
tion structure was the Web.

Once this structure was recognized, the application naming architecture was
straightforward. OSI defined naming that allowed AEs and their instances as
well as APs and their instances to be addressed. Addressing in the lower layers
had never bothered to address to the level of instances. There is no reason to
connect to a specific transport or TCP connection. They are all the same. How-
ever, for applications this is not the case. Recovery and other mechanisms would
need to be able to establish or reestablish communication to an existing invoca-
tion of a protocol (AE) or to the invocation of an application (AP) using it. This
leads to the addressing structure shown in Table 5-1.

Before one balks too much at the apparent complexity of this naming struc-
ture, a couple of things need to be observed. First of all, most applications don’t

181BACKGROUND ON NAMING AND ADDRESSING

need most of this. But the ones that do, really need it. Second, the complex
forms, when they are needed, are generally needed by processes, not humans.
Third, it is not at all clear that any “naming” at this level should be intended for
human use. In the days of command language–driven operating systems, appli-
cation names and filenames were intended for human use. However, today this
is much less clear. What we used to think of as “user-friendly” (e.g., www.cnn.
com) is not considered so today.

In the early days of networking, it was believed that applications had names
and hosts had addresses. But this was an artifact of the implementation (and
sloppy thinking); it turns out that when one carefully analyzes the problem, the
host never appears (another surprise). Processes on a host appear but not the
host. As we saw, this concept was brought over from operating systems. As
understanding improved, it became clear that the important property of
addresses is that they are used to “locate” objects; that is, that they be topolog-
ically significant. But application “names” are not just labels. They are used to
locate applications and are just as topological as addresses, although admittedly
in a very different topology. The structure of application names is used just as
much to locate the application in the space of applications as the structure of
network addresses locates in the space of network nodes. (This might be close to
what some call the “semantic Web.”)

In most incarnations, this leads to proposals for a hierarchical name struc-
ture. However, more recently this has been challenged by a more brute-force
approach relying on searching. The role in the 1980s and early 1990s that many
saw a system like the X.500 Directory or URNs playing now seems to be sup-
planted by Google, Yahoo!, and so on. Even within our systems, we have relied
on search rather than richer structures. It remains to be seen whether searching
can scale or whether other mnemonic or more structured methods may be nec-
essary. But the question remains, that some form of common name that humans
can exchange among themselves for use with computers is needed. How do we
make this user friendly when a Macintosh might be a red apple, a computer, a
stereo amplifier, or a raincoat. Or do the humans have to learn how to be
friendly with the names computers use? For our purposes, we are less concerned
with how these interface to people and are more concerned with what needs to
be named, the properties of the names, and their relation.

URI, URL, URN, and So On: Upper-Layer Addressing
in the Internet

As noted in Chapter 4, there has been very little work in the Internet space on
upper-layer architecture and consequently also on naming and addressing issues

CHAPTER 5 NAMING AND ADDRESSING182

in the upper layers. Everything derives from the host-naming convention. Orig-
inally, the convention was simply <hostname>, as the number grew it became
necessary to move to a multilevel structure:

<local domain-id>.†<host/site name>.<TL-domain>
This structure was generally used to name hosts within a site or subnet. In

fact, if one looks closely at the URL syntax, one finds that it is a pathname
through the stack. Precisely what we saw earlier we wanted to avoid.

The work on the Universal Resource Name moves to a more sophisticated
level of directory functions but does not really give us any insight in to the archi-
tecture of application naming requirements. The URN work in essence defines a
syntax for names of resources and its interaction with a database defining vari-
ous mechanisms to search the database and return a record. What the record
contains is left to the designer of the specific URN. The URN syntax defines the
top level of a hierarchy and conventions of notation and then allows specific
communities to define the specific syntax to fit their application.

This would lead us to look at the applications to perhaps find some insights
into application architecture naming issues. Unfortunately, most applications
have not reached a level of complexity that requires more structure than a sim-
ple pathname hierarchy.

Conclusions

As we have seen, addressing is a subtle problem, fraught with traps. Early in the
development of networks, simple solutions that ignored the major issues were
more than sufficient. But as networks grew, the addressing problems should
have been investigated. With the exception of two seminal pieces of work, how-
ever, they were largely ignored. However, the very long incubation period as an
R&D effort (more than 20 years) removed from the pressures of business and
used primarily by experts allowed people’s ideas to calcify. The effect of Moore’s
law, increasing power, and decreasing cost of equipment made it possible to
ignore the problems until long past the point when they should have been
resolved (making it very painful to fix them). Early on (in CYCLADES), it was
understood that it was necessary to make a transition from physical to logical
address at least once (and even better if more than once). This was supported by
Shoch’s and then Saltzer’s view that applications, nodes, points of attachment,
and routes were the fundamental elements of addressing that had to be distin-
guished. From this and early distributed computing experiments, we recognized
that application names were location independent, whereas nodes were location
dependent but not route dependent. Although nodes seemed to be synonymous

183CONCLUSIONS

CHAPTER 5 NAMING AND ADDRESSING184

to hosts most of the time, there were counter-examples that showed that this
was another false intuition. Oddly enough, it turns out that the only require-
ment to name a host or a system occurs in network management. Naming hosts
is irrelevant to communications.15

This was later refined as topologically dependent. It was still unclear how
these properties should manifest themselves. Given how network topologies can
change, it was often unclear how this could be accomplished without being too
tightly coupled to the physical topology of the network. It even took some time
to realize (and is still unlearned by many protocol designers) that the limited
scope of some layers meant that not all addresses had to be globally unambigu-
ous. It is a sorry state of affairs that there has been almost no progress in under-
standing addressing in the past 25 years.

It should also be pointed out that although one can point to these facts in the
literature, they were generally not understood by 99% of the engineers involved
in networking. Very few, if any, textbooks in the field teach general principles of
networking; they generally only teach current practice.16 By the 1990s, current
practice was the only general theory most engineers knew. There had always
been a tendency to concentrate on research directly applicable to the Internet,
instead of understanding the field of networking as a whole. Such general
research had always been a fraction of the total, as one would expect, but by the
mid-1980s it had pretty much died out entirely. Has the field begun to more
resemble an artisan guild than an engineering discipline? This was compounded
by no new applications to drive new requirements. The three applications that
existed were all special cases that did not expose the full structure. This was not
helped by the fact that addressing is a hard problem. Saltzer gave us the basics
of what needed to be named, but finding a meaningful interpretation to location
dependence was a major stumbling block. Both IP and CLNP made attempts,
but both were rooted in the past. Now with all of this background, we are ready
to consider how to assemble larger architectural structures.

15 Yes, it is often the case that node and host are synonymous, and it may be convenient in infor-
mal conversation. But as Shoch’s quote we referenced earlier indicates, professionally we must
be precise in our use of terms, or we will get ourselves in trouble.

16 Every so often, on one of the IETF discussions lists, some young engineer or professor gets a
glimmer of these general principles that often contradict what we currently do. Instead of
being told that “yes, those are the principles but we did not know that at the time,” he is
quickly led back to the party line using varying degrees of coercion.

This page intentionally left blank

Page numbers followed by n
designate footnotes.

A

abstract syntax, 113-114
Abstract Syntax Notation 1

(ASN.1), 114
abstraction, levels of

importance of, 7
layers. See also

communications problem
application layer, 187
data link layer, 187-189
development of layered model,

7-9, 60-62, 186-192
as DIF (distributed IPC

facility), 224
early network architecture,

187-188
end-to-end transport layer, 187
LANs (local area networks),

189-191
layer management, 188-189
network layer, 187
number of, 229-231
organizing, 228-231
OSI Reference Model, 187
physical layer, 187
political issues, 189
purpose of, 223-224

scope, 187
upper layers. See

upper-layer architecture
models, 10-11
protocols

definition, 14-15
Formal Description Techniques

(FDTs), 16-19
informal specifications, 15-16

services
APIs (application

programming interfaces), 15
compared to interfaces, 12
definition, 11-12
protocols, 15
service definitions, 12-14

academia, 355
access control, 52, 262
ack aggregation, 337
Ack implosion, 335
acknowledgement, 50-51
activation/deactivation, 54
activity, 52
ad hoc mobile networking, 346-347
address spaces. See ASs
addressing, 47. See also naming

address spaces (ASs)
definition, 288
hierarchal topology, 299-301
melding address spaces and

hierarchy of layers, 304-306

399

Index

ARPANET, 143-145
definition, 288
early IP (Internet Protocol),

154-161
hierarchical addressing architecture

address topology for hierarchy
of layers, 310-313

address topology for multiple
hierarchies of layers, 313-314

modeling the public Internet,
314-316

overview, 307-308
single-layer address

topology, 308
single-layer hierarchical

address topology, 308-310
hierarchy, role in addressing

hierarchal topology of address
spaces, 299-301

hierarchy of layers, 298-299
hierarchy of networks,

301-304
melding address spaces and

hierarchy of layers, 304-306
overview, 297-298
rough hierarchy, 301

importance of, 142
IPv6

address sizes, 176
advantages, 176
anycast addresses, 169
endpoints, 172
link-local addresses, 170
loopback addresses, 171
multicast addresses, 169
overview, 168
problems and lesson

learned, 174-178
site-local addresses, 170
unicast addresses, 169-174
unspecified address (0), 170

Jerry Saltzer on, xx, 155-159

MAC addresses, 295
multicast addressing, 169, 327-329
(N)-addresses

definition, 249
description, 273-275

node addresses, 379
On the Naming and Binding of

Network Destinations (paper),
155-159

in operating systems, 153
origin of addressing problem,

143-145
OSI application addressing,

178-182
OSI NSAP addressing, 161-168
PoA (point-of-attachment), 158
point-of-attachment addresses, 379
private addresses, 380
public addresses, 380
in telephony, 151-152
topological addresses

aliases, 287
bound/unbound names,

286-287
connotative names, 286
definition, 288
denotative names, 286
distance functions, 292
free names, 286
granularity, 291-292
homeomorphism, 289
homeomorphism of a

topological space, 290-291
IPC addressing topologies,

293-297
metrizable topological

spaces, 292
name assignment/

de-assignment, 286
name scope, 287
name spaces, 286
open sets, 289

INDEX400

order relations, 293
overview, 283-285
relations, 292
title spaces, 288
titles, 288
topological spaces, 289
topological structure, 289
topology, 289
unambiguous names, 287
underlying sets, 289
unique names, 287

upper-layer addressing in
Internet, 182-183

X.25, 154
XNS architecture, 159

adjoining error-control protocols, 80
adjoining relaying protocols, 80
advantages of IPC model, 381-382
AEs (application entities), 116
aggregation, ack aggregation, 337
aliases, 287
allocation of resources

connection/connectionless debate,
73-74

NIPCA (Network IPC
Architecture), 261-262

Andreesen, Marc, 129
Animal House, 60
anycast addresses (IPv6), 169
anycast names, 330
AP (application process), 116-117
AP-Mods (application protocol

modules), 243
APIs (application programming

interfaces)
API primitives, 238, 251-253
definition, 15, 29

APMs (application protocol machines)
application PM-ids, 245
definition, 194, 198, 238
description, 243-245
instances, 246
instance-ids, 246

IPC APM
description, 251
EFCP (error and flow control

protocol), 248, 253-255
IPC API, 251-253

name spaces
definition, 245
description, 247

application addressing (OSI), 178-182
application entities (AEs), 116
application instance names, 379
application layer, 187
application name space, 198
application names, 196, 379
application PMs. See APMs
application processes. See APs
application programming interfaces.

See APIs
application protocol machines.

See APMs
application protocol modules

(AP-Mods), 243
application protocols, 79-80, 198.

See also APMs (application protocol
machines)

data transfer phase, 242
definition, 238
stateless nature of, 242-243
synchronization phase, 242

application service elements (ASEs), 118
applications

embedding relaying and
error-control protocols
into, 81-82

naming, xvi, 246-248
APs (application processes)

definition, 194-197, 237
instance-ids, 245
instances, 245
name spaces

definition, 245
structure, 247

INDEX 401

names, 198
definition, 245
description, 273
scope, 246

overview, 116-117
architecture. See network architecture
Aristotle, 57
ARPANET, 59, 64

beads-on-a-string design, xv
connection-oriented

packet-switching model, xvii
development of, xiv
diversity in connected systems, 99
early excitement over

resource-sharing possibilities, xivn
layers, xv
location dependence and, xvii
naming and addressing, 143-145
Network Working Group

(NWG), 60
packet switching, 66
problems with, xv-xviii
upper-layer architecture

canonical (abstract) models,
107-109

FTP (File Transfer Protocol),
102-105

lessons learned, 105-109
overview, 99-100
Telnet, 100-102

ASEs (application service elements), 118
Ashby, Ross, 371
ASN.1 (Abstract Syntax

Notation 1), 114
ASs (address spaces)

definition, 288
hierarchal topology of, 299-301
melding address spaces and hierar-

chy of layers, 304-306
ASs (autonomous systems), 320-321
assignment (names), 286
associations, 28

AT&T, 63
authentication, 51

NIPCA (Network IPC
Architecture), 262-263

OSI model, 121
autonomous systems (ASs), 320-321

B

Bachman, Charles, 110
bandwidths, 222n
Baran, Paul, 66
Basic Encoding Rules (BER), 114
Basic Laws of Arithmetic, 147
BBN, xxii, 123
BBN 1822 Host–IMP, xx
beads-on-a-string model, xv, 62-66, 189
BER (Basic Encoding Rules), 114
Berners-Lee, Tim, 129
BGP (Border Gateway

Protocol), 320-321
binding, 37

definition, 28
names, 287

black box concept, 8
Border Gateway Protocol

(BGP), 320-321
bound names, 286
boundary between group and other

experts (groupthink), 363
broadcast, 323

C

canonical (abstract) models, 107-109
Carnap, Rudolf, 147
carriage return, line feed (CRLF), 103
Carson, Johnny, 9n
CCITT (Comité Consultatif

International Téléphonique et
Télégraphique), 67

CCR (commitment, concurrency, and
recovery), 115, 120

INDEX402

cellular networks, 339-341
Cerf, Vint, 357
CERN, 129
CFs (control functions), 118
cheap communications with N systems,

enabling, 214-219
checksums, 49
Chiappa, Noel, 185, 235
China, stagnation of science in, 368-370
Clark, David, 351
Clausewitz, Carl von, 6
Clearinghouse, 132
CLNP, xxiv-xxv
CMIP (Common Management

Information Protocol), 115, 126
combining SDUs, 48
Comité Consultatif International

Téléphonique et Télégraphique
(CCITT), 67

commercialization of networking, 362
commitment, concurrency, and recovery

(CCR), 115, 120
Common Management Information

Protocol (CMIP), 115, 126
communications problem

communications between
two systems

DIF (distributed IPC
facility), 204

drivers, 205
EFCP (error and flow control

protocol), 204
IAP (IPC access protocol), 204
invalidated assumptions,

203-204
IPC management tasks, 205
IPC processes, 204
operation of communication,

199-203
simultaneous communication,

205-209

communications with N systems
cheap communication,

enabling, 214-219
DIF (distributed IPC

facility), 212-213
directories, 213
initial conclusions, 219-223
operation of communication,

210-213
RIEP (Resource Information

Exchange Protocol), 211-213
communications within

single system
application name space, 198
application names, 196
application process, 197
application process name, 198
application protocol, 198
application protocol machine,

196-198
IPC facility, 196-198
IPC mechanism, 198
operating system, 197
operation of communication,

194-196
port-ids, 198
processing system, 197

overview, 192-193
complex names, 147
compression, 51
computer science versus other

scientific fields, 3
computing systems

definition, 237
description, 239-240

conceptual schemas
definition, 5
OSI model, 112-113

concrete syntax, 113-114
conditioned response, 87
confidentiality, 52
congestion avoidance, xxi-xxii

INDEX 403

congestion collapse, xxi
connection identifiers, 47, 209, 249
connection/connectionless debate, 68-74

connectionless networks as
maximal shared state, 92-93, 378

dichotomy, 70-72
origins, 66-67, 355, 358-359
OSI model, 69-71
relationship with traffic

characteristics and QoS
desired, 72-74

role of CCITT, 67
shared state approach, 85-87

fate-sharing, 87
hard state (hs), 89-90
limitations, 90-92
pure soft-state (ss), 87-88
soft state with explicit removal

(ss+er), 88
soft state with reliable trigger

(ss+rt), 89
soft state with reliable

trigger/removal (ss+rtr), 89
unifying model, 93-94
X.25, 67-68

connectionless networks
connection/connectionless

debate, 69-74
connectionless networks

as maximal shared state,
92-93, 378

dichotomy, 70-72
origins, 66-67
OSI model, 69-71
relationship with traffic

characteristics and QoS
desired, 72-74

role of CCITT, 67
shared state approach, 85-92
unifying model, 93-94
X.25, 67-68

lessons from ARPANET, xvii

connection-oriented packet-switching
model, xvii

connections, 37
connotative names, 286
consolidation in network

architecture, 352-362
constants, 147
control bits (PDUs), 77
control functions (CFs), 118
control plane, 62, 251
correspondence, 293
CRC (cyclic redundancy check), 32, 49
crisis in network architecture

fundamentals, 351-352
CRLF (carriage return, line feed), 103
CYCLADES, xv-xviii, 59, 66-67
cyclic redundancy check (CRC), 32, 49

D

Dalal, Yogan, 329
DANs (distributed application

names), 246
Data Communications Equipment

(DCE), 189
data corruption, 49
data link layer, 187-189
data plane, 62
Data Terminating Equipment

(DTEs), 65, 189
data transfer mechanisms

access control, 52
activity, 52
addressing, 47
authentication, 51
combining/separation, 48
compression, 51
confidentiality, 52
data corruption, 49
data transfer protocols 82-85

data transfer phase, 242
data transfer PMs, 82-85
definition, 238

INDEX404

description, 241
error-control protocols, 79-82
relaying protocols, 79-82
state and, 242
synchronization phase, 242

delimiting, 45
DIF (distributed IPC facility),

269-271
flow control, 50
flow or connection identifiers, 47
fragmentation/reassembly, 48
initial state synchronization, 45-46
integrity, 52
lost and duplicate detection, 50
multiplexing, 48
nonrepudiation, 52
ordering, 48
policy selection, 46
relaying, 47
retransmission control or

acknowledgement, 50-51
data transfer phase (protocols), 55, 241
data transfer protocols 82-85

data transfer phase, 242
data transfer PMs, 82-85
definition, 238
description, 241
error-control protocols, 79

adjoining protocols, arguments
against, 80

compared to relaying
protocols, 82

embedded into applications,
81-82

relaying protocols, 79
adjoining protocols, arguments

against, 80
compared to error-control

protocols, 82
embedded into applications,

81-82
state and, 242
synchronization phase, 242

data units. See PDUs (protocol
data units)

databases, 113
Datacomputer, xivn
datagram networks. See

connectionless networks
DCE (Data Communications

Equipment), 189
de-assignment (names), 286
de-enrollment, 54
delimiters, 45
delimiting, 45

definition, 249
EFCP (error and flow control

protocol), 253
Delta-t, xviii, 377
denotative names, 286
deployment (TCP), xx
deregistration, 54
DHCP (Dynamic Host Configuration

Protocol), 54
diagrams, FSMs (finite state

machines), 24
DIF (distributed IPC facility),

204, 212-213
adding members to, 266-268
application process names, 273
creating, 268
data transfer, 269-271
definition, 237
description, 240-241
IPC structures, 277-278
layers as, 224
multiple DIFs of same

rank, 278-279
(N)-addresses, 273-275
naming concepts, 245-248
overview, 266
port IDs, 272-273

Dijkstra, Edsger W., 61
THE, 8

INDEX 405

directories, 213
lessons from ARPANET, xvi
NIPCA (Network IPC

Architecture), 261
disregard for and disinterest in the ideas

of experts, 363
distance functions, 292
distinguished names, 133
distributed application names

(DANs), 246
distributed applications, 238
distributed IPC facility (DIF)

adding members to, 266-268
application process names, 273
creating, 268
data transfer, 269-271
definition, 237
description, 240-241
IPC structures, 277-278
layers as, 224
multiple DIFs of same

rank, 278-279
(N)-addresses, 273-275
naming concepts, 245-248
overview, 204, 212-213, 266, 376
port IDs, 272-273

distributed systems, 5
distribution, multicast

problems, 329
in recursive architecture, 331-333

DNS (Domain Name Server), xxi, 179
drivers, 205
DTEs (Data Terminating

Equipment), 65, 189
Dynamic Host Configuration

Protocol (DHCP), 54

E

early imprinting, effect on network
architecture, 2

early success, effect on network
architecture, 2

EFCP (error and flow control protocol)
definition, 204, 248
delimiting, 253
description, 253
IPC control protocol, 254-255
IPC data transfer PM, 254
multiple instances, 206-207

EFCPM, 249
Einstein, Albert, 371
electro-political engineering, 355-356
embedding relaying and error-control

protocols into applications, 81-82
encouraging theory and good

research, 373-375
end-to-end principle, 376
end-to-end transport layer, 187
endpoints (IPv6), 172
engineering

compared to science, 235, 368
over-reliance on, 366-368

Englebart, Doug, 129
enrollment (IPC), 260
enrollment phase (protocols),

53-55, 201
entities, 162
error and flow control protocol.

See EFCP
error-control protocols, 79

adjoining protocols, arguments
against, 80

architecture, 82-85
compared to relaying protocols, 82
embedded into applications, 81-82

error correcting code, 49
establishment phase (protocols), 55
Estelle (Extended Finite Stale Machine

Language), 16
Euclid, 369, 374
Exchange Identification (XID), 55
experimental method, 372
explicit removal, soft state with, 88
expressions, 147
Extended Finite Stale Machine

Language (Estelle), 16

INDEX406

F

Farber, David, 144
Fast Select, 68
fate-sharing, 87
FDTs (Formal Description

Techniques), 16-19
development of, 16
finite state machine methods, 18
guidelines, 17
lack of support by IETF (Internet

Engineering Task Force), 18
mathematical or language-based

techniques, 17
temporal logic approaches, 18

feedback mechanisms, 79
File Transfer Access Method

(FTAM), 115
File Transfer Protocol. See FTP
finite state machines. See FSMs
first-order effectors, 7
flag sequences, 45
flow, 37

definition, 28
flow-control protocols. See

error-control protocols
flow-id, 47

Forester, Heinz von, 87
Formal Description Techniques.

See FDTs
fragmentation, 48
France Telecom, 111
free names, 286
Frege, Gottlieb, 147, 306
frictionless motion, 57
FSMs (finite state machines)

compared to threads, 28
definition, 24
diagrams, 24
methods, 18
modified state machine

approach, 25-26

protocol machines (PMs). See also
data transfer mechanisms

associations, 28
bindings, 28
data transfer PMs, 82-85
definition, 26
flow, 28
interactions, 30, 37
interfaces, 29-31
model of, 37
(N)-PM relation to other

PMs, 30
as procedure calls, 36
protocol machine types

(PMTs), 27
QoS (Quality of service), 43-44
rankings, 27
state maintenance, 37-38

state explosion problem, 25
FTAM (File Transfer Access

Method), 115
FTP (File Transfer Protocol), 102-105

ARPANET FTP model, 103
network virtual file system

(NVFS), 103
Return Job Entry (RJE), 104-105

full addressing architecture, 358n
Fuller, Buckminster, 170
functions, 147

distance functions, 292

G

Galilei, Galileo, 57-58, 317, 369, 372
gedanken experiment on separating

mechanism and policy (outline)
mechanism specifications, 387-388
protocol specifications, 386-387
results, 75
service definitions, 385-386

General Motors, 2n
Geographical Ecology, 1n
Gore, Al, 361

INDEX 407

Gödel, Kurt, 147
granularity, 291-292
The Great Karnak, 9n
groupthink

characteristics, 363
definition, 364
description, 364-365
master craftsmen versus

theoreticians, 365-366

H

half-duplex terminals, 36, 101
handshakes, 45
hard state (hs), 89-90
headers (PDUs), 32
HEMS (High-Level Entity Management

System), xxiii, 126
hierarchies

hierarchical addressing architecture
address topology for hierarchy

of layers, 310-313
address topology for multiple

hierarchies of layers, 313-314
modeling the public Internet,

314-316
overview, 307-308
single-layer address

topology, 308
single-layer hierarchical

address topology, 308-310
role in addressing

hierarchal topology of address
spaces, 299-301

hierarchy of layers, 298-299
hierarchy of networks,

301-304
melding address spaces and

hierarchy of layers, 304-306
overview, 297-298
rough hierarchy, 301

High-Level Entity Management System
(HEMS), 126

HIP (Host Identifier Protocol), 176
history of Internet

addressing, xx
ARPANET

applications, xvi
beads-on-a-string design, xv
connection-oriented

packet-switching model, xvii
development of, xiv
early excitement over

resource-sharing
possibilities, xivn

layers, xv
location dependence and, xvii
naming and addressing,

143-145
problems with, xv-xvi, xviii

CLNP, xxiv-xxv
congestion collapse, xxi
connection/connectionless debate,

355, 358-359
CYCLADES TS, xviii
Delta-t, xviii
DNS (Domain Name Service), xxi
electro-political engineering and

power politics, 355-356
HEMS, xxiii
immaturity of participants, 359
IPng, xxiv-xxv
National Software Works, 144
OSI model

IBM endorsement, 358
lessons learned, 359

perceived success of Internet,
353, 361

policy of small incremental
change, 354

self-similarity of Internet
traffic, xxv

SNMP (Simple Network
Management Protocol), xxii

stagnation in 1970s, 353-355

INDEX408

TCP (Transmission
Control Protocol)

congestion avoidance, xxi-xxii
deployment, xx
selection to replace

NCP, xviii-xix
single PDU format, xviii-xix
splitting out IP from, xx

Web, xxiii-xxiv
XNS - Sequence Packet, xviii

homeomorphism
definition, 289
of topological space, 290-291

Host Identifier Protocol (HIP), 176
host-naming convention, 183
Host-to-Host Protocol, 155
hosts tables, xx
hs (hard state), 89-90
HTTP (Hypertext Transfer Protocol),

129-131
hypothesis, 371

I

I/O, 239n
IAP (IPC access protocol), 201, 204,

250, 257-259
IBM

endorsement of seven-layer
model, 358

influence in European ISO
delegations, 69n

SNA (System Network
Architecture), 68

idempotent mode (PDUs), 34-35
identification with group, 363
identifiers

application PM instance-ids, 246
application PM-ids, 245
application process

instance-ids, 245
connection identifiers, 47, 209, 249

port-ids, 47, 198, 246-248,
272-273

sentential identifiers, 379
IETF (Internet Engineering Task

Force), 59
lack of support for FDTs (Formal

Description Techniques), 18
new architecture and, 360

IFIP (International Federation for Infor-
mation Processing), 69

immaturity of Internet participants, 359
IMP (Interface Message Processor), 64
implementations, 15
in-band, 55
incomplete names, 147
indirection, levels of, 166
informal protocol specifications, 15-16
initial state synchronization, 45-46
instances

application PM instances, 246
application process instances, 245
OSI instances, 163n

integrity, 52
interactions (PMs), 30, 37
Interface Message Processor (IMP), 64
interfaces. See APIs (application

programming interfaces)
Internal Organization of the Network

Layer (IONL), 165
International Federation for Information

Processing (IFIP), 69
Internet

aversion to OSI model, 360-361
compared to NIPCA (Network IPC

Architecture), 276-277
connection/connectionless debate,

355, 358-359
electro-political engineering and

power politics, 355-356
history. See history of Internet
policy of small incremental

change, 354

INDEX 409

topological addresses, 314-316
upper-layer addressing, 182-183

Internet Engineering Task
Force. See IETF

Internet Research Task Force
(IRTF), 175

interpreting evidence optimistically, 364
interprocess communication (IPC), 15
invalidating theory, 371
IONL (Internal Organization of

the Network Layer), 165
IP (Internet Protocol). See also

IPv6 addressing
mobility, 339-341
naming and addressing, 154-161
spitting from TCP (Transmission

Control Protocol), xx
IPC (interprocess communication), 15
IPC access protocol (IAP), 201, 204,

250, 257-259
IPC model. See NIPCA (Network IPC

Architecture)
IPng, xxiv-xxv
IPv6 addressing

address sizes, 176
advantages, 176
anycast addresses, 169
endpoints, 172
link-local addresses, 170
loopback addresses, 171
multicast addresses, 169
overview, 168
problems and lesson

learned, 174-178
site-local addresses, 170
unicast addresses, 169-174
unspecified address (0), 170

irrational numbers, 322n
IRTF (Internet Research Task

Force), 175
ivory tower academics, 355

J-K

Jacobson, Van, xxii
Janis, Irving, 364
JTM (Job Transfer and

Manipulation), 115

keepalive, 52
Kettering, Charles, 2, 235
knowledge bases, 5
Kurt Gödel, 147

L

lack of appreciation for risk, 364
Lakatos, Imre, 193
Language Temporal Ordering

Specification (LOTOS), 17
LANs (local area networks), 189-191
Lawrence Livermore Lab, xviii
layers of network architecture

application layer, 187
ARPANET, xv
as DIF (distributed IPC

facility), 224
communications between

two systems
DIF (distributed IPC

facility), 204
drivers, 205
EFCP (error and flow control

protocol), 204
IAP (IPC access protocol), 204
invalidated assumptions,

203-204
IPC management tasks, 205
IPC processes, 204
operation of communication,

199-203
simultaneous communication,

205-209

INDEX410

communications with N systems
cheap communication,

enabling, 214-219
DIF (distributed IPC

facility), 212-213
directories, 213
initial conclusions, 219-223
operation of communication,

210-213
RIEP (Resource Information

Exchange Protocol), 211-213
communications within

single system
application name space, 198
application names, 196
application process, 197
application process name, 198
application protocol, 198
application protocol machine,

196-198
IPC facility, 196-198
IPC mechanism, 198
operating system, 197
operation of communication,

194-196
port-ids, 198
processing system, 197

data link layer, 187-189
development of layered model, 7-9,

60-62, 186-192
early network architecture, 187-188
end-to-end transport layer, 187
hierarchy of layers, 298-299
LANs (local area

networks), 189-191
layer management, 188-189
nature of layers, 264-266
network layer, 187
NIPCA (Network IPC

Architecture), 237, 240, 375
number of, 229-231

organizing, 228-231
OSI Reference Model, 162, 187
physical layer, 187
political issues, 189
purpose of, 223-224
scope, 187
upper layers

canonical (abstract)
models, 107-109

characteristics, 136
FTP (File Transfer Protocol),

102-105
HTTP and Web, 129-131
lessons from ARPANET,

105-109
location independence,

138-139
network management,

123, 126-129
NRSs (name-resolution

systems), 132-135
OSI model, 110-123, 178-182
overview, 97-99
P2P (peer-to-peer), 135-136
semantic significance, 137-138
Telnet, 100-102

Lee, Stan, 353
levels of abstraction. See

abstraction, levels of
levels of indirection, 166
link-local addresses (IPv6), 170
LLC (Logical Link Control), 189
location dependence, xvii, xxvii, 284
location independence, 138-139
logic, symbolic, 146-148, 151
Logical Link Control (LLC), 189
loopback address (IPv6), 171
lost and duplicate detection, 50
LOTOS (Language Temporal Ordering

Specification), 17

INDEX 411

M

MAC (Media Access Control), 189, 295
MacArthur, Robert, 1n
Madison, James, 177, 360
mainframes, 99n
management agents (MAs), 263-264
Management Information Bases

(MIBs), 109, 227
management tasks (IPC), 205
Mao Zhe Dong, 7
MAP/TOP (Manufacturing Automation

Protocol/Technical and Office
Protocols), 124

MAs (management agents), 263-264
master craftsmen, 365-366
mathematics

mathematical techniques (FDTs), 17
naming and, 146-151

McKenzie, Alex, 97
mechanism, separating from policy

gedanken experiment (outline), 75,
385-388

protocols, 39-43, 75
mechanism specifications (gedanken

experiment), 387-388
Media Access Control (MAC), 189, 295
Metcalfe, Robert, 155, 185, 220, 383
metrizable topological spaces, 292
MIBs (Management Information

Bases), 109, 227
Minitel, 111
mobile application processes, 347-348
mobility

ad hoc mobile networking, 346-347
IP and cellular networks, 339-341
mobile application processes,

347-348
NIPCA, 342-346
overview, 338-339

models, definition of, 10-11
modified state machine approach

(FSMs), 25-26
monolithic communities, 363

Moore’s law
effect on network architecture, 2
multihoming and, 319-321
overview, 159n
and perceived success of

Internet, 353
moral philosophy, 5
multicast architecture

definition, 323
multicast addressing, 169, 327-329
multicast distribution in recursive

architecture, 331-333
multicast distribution problem, 329
multicast model, 327
multicast names, 329
multiplexing multicast

groups, 333-334
overview of multicast

problem, 324-326
reliable multicast, 334-338
sentential naming operations and

resolution, 330-331
Multics, 61
multihoming

BGP ASs (autonomous systems),
320-321

cost of supporting, 318
definition, 318
lessons from ARPANET, xvi
need for multihoming solution,

321-323
opportunity to fix in IPng, 319
redundant paths from same

provider, 319
SCTP PoAs (points of

attachment), 320
solution model, 322-323

multipeer architecture, 323
multiple DIFs (distributed IPC facilities)

of same rank, 278-279
multiplexing

definition, 48
multicast groups, 333-334

INDEX412

overview, xxvin
relaying protocols, 79

adjoining protocols, arguments
against, 80

architecture, 82-85
compared to error-control

protocols, 82
embedded into applications,

81-82
tasks, 209

N

(N)-addresses, 164, 249, 273-275
(N)-API-primitive, 238, 251-253
(N)-associations, 163
(N)-connections, 163
(N)-data-transfer-protocol. See data

transfer protocols
(N)-DIF. See DIF (distributed

IPC facility)
(N)-entities, 162-164
(N)-entity-titles, 164
(N)-IPC-process, 204, 238, 250-251
(N)-layers, 162, 219, 237, 240
(N)-PCI. See PCI (protocol control

information)
(N)-PDUs. See PDUs (protocol

data units)
(N)-PM. See PMs (protocol machines)
(N)-port-id, 246, 248, 272-273
(N)-protocols. See protocols
(N)-SDUs. See SDUs (service data units)
(N)-subsystems, 162, 219
(N)-user-data, 31, 238
N systems, communications with

cheap communication, enabling,
214-219

DIF (distributed IPC facility),
212-213

directories, 213
initial conclusions, 219-223

operation of communication,
210-213

RIEP (Resource Information
Exchange Protocol), 211-213

n2 problem, 107
nack (negative acknowledgment), 50
Name Binding in Computer

Systems, 153
name spaces, 245-247, 286
name-resolution systems. See NRSs
naming. See also addressing

aliases, 287
anycast names, 330
application instance names, 379
application names, 196,

379, 246-248
application process names,

245-246, 273
ARPANET, 143-145
assignment/de-assignment, 286
bound/unbound names, 286-287
complex names, 147
connotative names, 286
DANs (distributed application

names), 246
definition of names, 286
denotative names, 286
DIF (distributed IPC facility)

naming concepts, 245-248
early IP (Internet Protocol),

154-161
foundations of mathematics and

symbolic logic, 146-151
free names, 286
importance of, 142
incomplete names, 147
IPC process names, 246-247
multicast names, 329
name spaces, 245-247, 286
in operating systems, 153
origin of naming problem, 143-145
OSI application addressing,

178-182

INDEX 413

OSI NSAP addressing structure,
161-168

pathnames, 153, 164
primitive names, 148
scope, 287
sentential names, 330-331, 379
simple names, 147
in telephony, 151-152
unambiguous names, 287
unique names, 287
URN (Universal Resource

Name), 183
X.25, 154

NAT (network address translation), xxiv
National Center for Supercomputer

Applications (NCSA), 129
National Research Council, 351
National Software Works, xivn, 144
natural history versus science, 1
nature of service (NoS), 44
NCP (Network Control Program), 143

problems with, xv
replacement with TCP

(Transmission Control
Protocol), xx

NCSA (National Center for
Supercomputer Applications), 129

Needham, Joseph, 322n, 369
negative acknowledgment (nack), 50
Net. See Internet
NETRJE, 104
network address translation (NAT), xxiv
network architecture

addressing. See addressing
ARPANET

beads-on-a-string design, xv
development of, xiv
connection-oriented

packet-switching model, xvii
layers, xv
location dependence and, xvii
problems with, xv-xviii

beads-on-a-string model, xv,
62-66, 189

commercialization of, 362
communications between

two systems
DIF (distributed IPC facility),

204
drivers, 205
EFCP (error and flow control

protocol), 204
IAP (IPC access protocol), 204
invalidated assumptions,

203-204
IPC management tasks, 205
IPC processes, 204
operation of communication,

199-203
simultaneous communication,

205-209
communications with N systems

cheap communication,
enabling, 214-219

DIF (distributed IPC facility),
212-213

directories, 213
initial conclusions, 219-223
operation of communication,

210-213
RIEP (Resource Information

Exchange Protocol), 211-213
communications within

single system
application name space, 198
application names, 196
application process, 197
application process name, 198
application protocol, 198
application protocol machine,

196-198
IPC facility, 196-198
IPC mechanism, 198
operating system, 197
operation of communication,

194-196
port-ids, 198
processing system, 197

INDEX414

compared to design specs, 119
connection/connectionless

debate, 68-74
connectionless networks as

maximal shared state,
92-93, 378

dichotomy, 70-72
origins, 66-67
OSI model, 69-71
relationship with traffic

characteristics and QoS
desired, 72-74

role of CCITT, 67
shared state approach, 85-92
unifying model, 93-94
X.25, 67-68

consolidation, 352-362
controversy, 59-60
crisis in fundamentals, 351-352
definition, 9
factors constraining early

solutions, 2-3
faulty rationales for, 363
finding patterns in, 57-59
groupthink

characteristics, 363
definition, 364
description, 364-365
master craftsmen versus

theoreticians, 365-366
indirection, levels of, 166
IPC model

advantages, 381-382
delta-t, 377
distributed IPC facilities, 376
layers, 375
properties, 381-382
protocols, 376-377
security, 376
summary of characteristics,

375-380
layers. See layers of network

architecture

levels of abstraction
APIs (application

programming interfaces), 15
Formal Description Techniques

(FDTs), 16-19
implementation, 15
importance of, 7
informal specifications, 15-16
models, 10-11
protocols, 14-15
services, 11-14

location dependence, 284
mobility

ad hoc mobile networking,
346-347

IP and cellular networks,
339-341

mobile application processes,
347-348

NIPCA, 342-346
overview, 338-339

multicast architecture
definition, 323
multicast addressing,

169, 327-329
multicast distribution in

recursive architecture,
331-333

multicast distribution
problem, 329

multicast model, 327
multicast names, 329
multiplexing multicast

groups, 333-334
overview of multicast

problem, 324-326
reliable multicast, 334-338
sentential naming operations

and resolution, 330-331
multihoming

BGP ASs (autonomous
systems), 320-321

cost of supporting, 318

INDEX 415

definition, 318
need for multihoming

solution, 321-323
opportunity to fix in IPng, 319
redundant paths from same

provider, 319
SCTP PoAs (points of

attachment), 320
solution model, 322-323

multipeer architecture, 323
naming. See naming
NIPCA (Network IPC

Architecture). See NIPCA
over-reliance on engineering,

366-368
packet-switched networks, 66
protocols. See protocols
reflections on existing model, 382
relevance of historical

development, 63-64
repeaters, 310
routers, 310
science versus engineering, 368
SNA (System Network

Architecture), 68, 143
switches, 310
theory

encouraging theory and good
research, 373-375

importance of, 368-373
transition from natural history

to science, 1
Network Control Program (NCP), 143
Network Information Center

(NIC), xx, 129
Network IPC Architecture. See NIPCA
network layer, 187
network management, 123-129

CMIP (Common Management
Information Protocol), 126

HEMS (High-Level Entity
Management System), 126

NMP (Network Management
Protocol), 259

NMS (network management
system), 263-264

SNMP (Simple Network
Management Protocol), 126-128

Network Management Protocol
(NMP), 259

network management system
(NMS), 263-264

network virtual file system (NVFS), 103
network virtual terminals (NVT),

100-101
Network Working Group (NWG), 60
NEWARCH project, 352
Newton, Isaac, 58, 236
NIC (Network Information

Center), xx, 129
NIPCA (Network IPC

Architecture), 225
addressing topologies,

249, 293-297
advantages, 381-382
API primitives, 238, 251-253
APMs (application protocol

machines)
application PM-ids, 245
definition, 194, 198, 238
description, 243-245
instances, 246
instance-ids, 246
IPC APM, 248, 251-255
name spaces, 245-247

application naming, 246-248
application protocols

data transfer phase, 242
definition, 238
stateless nature of, 242-243
synchronization phase, 242

APs (application processes), 237
compared to Internet

architecture, 276-277

INDEX416

computing systems, 237-240
connection-identifiers, 249
data transfer protocols

data transfer phase, 242
definition, 238
description, 241
state and, 242
synchronization phase, 242

delimiting, 249
delta-t, 377
description, 251
DIF (distributed IPC facility),

204, 212-213
adding members to, 266-268
application process names, 273
creating, 268
data transfer, 269-271
definition, 237
description, 240-241
IPC structures, 277-278
layers as, 224
multiple DIFs of same

rank, 278-279
(N)-addresses, 273-275
naming concepts, 245-248
overview, 266
port IDs, 272-273

distributed applications, 238
distributed IPC facilities, 376
EFCP (error and flow

control protocol)
definition, 248-249
delimiting, 253
description, 253
IPC control protocol, 254-255
IPC data transfer PM, 254

IAP (IPC access protocol), 201,
204, 250, 257-259

IPC API, 251-253
IPC facility, 196-198
IPC mechanism, 198

IPC processes, 204, 238, 246-247,
250-251

layers, 375
MAs (management agents),

263-264
management tasks, 205

directory, 261
enrollment, 260
resource allocation, 261-262
routing, 261
security management, 262-263

mobility, 342-346
(N)-layer, 237, 240
NMS (network management

system), 263-264
overview, 225-227, 235-236
PCI (protocol control

information), 238
PDUs (protocol data

units), 238, 257
PMs (protocol machines), 238
processing systems, 237-240
properties, 381-382
protocols, 376-377

data transfer phase, 241
definition, 238
synchronization phase, 241

Relaying PCI, 249
RIB (Resource Information

Base), 260
RIEP (Resource Information

Exchange Protocol), 250
compared to NMP (Network

Management Protocol), 259
definition, 249
description, 259-260

RMT (relaying and multiplexing
task), 249, 255-257

SDU (service data unit) protection,
238, 249

security, 279-281, 376

INDEX 417

summary of characteristics,
375-380

user data, 238
NLS (oNLine System), 129
NMP (Network Management

Protocol), 259
NMS (network management

system), 263-264
node addresses, 379
nonrepudiation, 52
nonterminal domain identifiers, 299
NoS (nature of service), 44
NRSs (name-resolution systems)

definition, 132
distinguished names, 133
structures, 133-135

NSAP addressing structure, 161-168
numbers

irrational numbers, 322n
of layers, 229-231
of PDUs (protocol data

units), 76-77
NVTs (network virtual

terminals), 100-101
NWG (Network Working Group), 60

O

O’Dell GSE proposal, 309
OLTP (Online Transaction

Processing), 82
On Sense and Meaning (essay), 147
On the Naming and Binding of Net-

work Destinations (paper), 155-157
1 (loopback address), 171
oNLine System (NLS), 129
Online Transaction Processing

(OLTP), 82
open sets, 289
operating systems

definition, 197
naming and addressing, 153

operation, phases of (protocols)
data transfer phase, 55
enrollment phase, 53-55
overview, 53
synchronization phase, 55

order relations, 293
ordering, 48
organizing layers, 228-231
orientations of address spaces, 292
OSI Reference Model

associations, 29
application addressing, 178-182
aversion to, 360-361
connection/connectionless debate,

69-71
connections, 29
founding of, 356
IBM endorsement, 358
layers, 187
lessons learned, 359
(N)-addresses, 164
(N)-associations, 163
(N)-connections, 163
(N)-entities, 162-164
(N)-entity-titles, 164
(N)-layers, 162
(N)-subsystems, 162
network management, 124-129
NSAP addressing structure,

161-168
TCP (Transmission Control

Protocol) and, 357
types versus instances, 163n
upper-layer architecture

application addressing,
178-182

application entities (AEs), 116
application process (AP),

116-117
application protocols, 114-115
application service elements

(ASEs), 118

INDEX418

conceptual schemas, 112-113
control functions (CFs), 118
development, 110-113
lessons learned, 121-123
overview, 110
presentation layer, 113-114
problems with, 120-121
PTT (post, telephone, and

telegraph) input, 110-112
session layer, 110-112
single state machine

implementation, 119
syntax language, 113-114
X.400 relaying, 120

out-of-band, 55
outline for gedanken experiment on

separating mechanism and policy
mechanism specifications, 387-388
protocol specifications, 386-387
service definitions, 385-386

P

P2P (peer-to-peer), 135-136
PacBell, 123
Pacific Bell, xxiin
pacing schemes (flow control), 50
Packet Assembler Disassembler

(PAD), 65
packet-switched networks

development, 66
politics and, 356

PAD (Packet Assembler
Disassembler), 65

Papert, Seymour, xxviii
pathnames, 153, 164
patterns in network architecture,

finding, 57-59
PCI (protocol control information), 31

definition, 238
Relaying-PCI, 249

PDUs (protocol data units). See also
data transfer mechanisms

control bits, 77
definition, 238
description, 257
headers, 32
idempotent mode, 34-35
mechanism and policy, 39-43, 75
number of, 76-77
overview, 31-32
PCI (protocol control

information), 31
PDU protection, 257
record mode, 34-36
SDUs (service data units), 33
size, 38-39
stream mode, 34-36
trailers, 32-33
Transfer PDU, 76
user-data, 31

peer-to-peer (P2P), 135-136
Petit, John Louis, 235
phases of operation (protocols)

data transfer phase, 55
enrollment phase, 53-55
overview, 53
synchronization phase, 55

philosophical triangulation, 7
physical layer, 187
Plain Old InterNet Service (POINS), 315
PMs (protocol machines). See also data

transfer mechanisms
APMs (application protocol

machines)
application PM-ids, 245
definition, 194, 198, 238
description, 243-245
instances, 246
instance-ids, 246
IPC APM, 248, 251-255
name spaces, 245-247

INDEX 419

associations
(N)-PM relation to other

PMs, 30
definition, 28

bindings, 28
data transfer PMs, 82-85
definition, 26, 238
flow, 28
interactions, 30, 37
interfaces, 29-31
model of, 37
as procedure calls, 36
PMTs (protocol machine types), 27
protocol machine types (PMTs), 27
QoS (Quality of service), 43-44
rankings, 27
state maintenance, 37-38

PMTs (protocol machine types), 27
PoAs (points of attachment), 158,

320, 379
POINS (Plain Old InterNet Service), 315
points of attachment (PoAs), 158,

320, 379
policy

PDUs (protocol data units),
39-43, 75

policy of small incremental
change, 354

policy-selection mechanism, 46
separating from mechanism

gedanken experiment (outline),
75, 385-388

protocols, 39-43, 75
politics and Net development, 355-356
polling, xxiii
port-ids, 47, 198, 246-248, 272-273
post, telephone, and telegraph. See PTT
Pouzin, Louis, 66
presentation context, 114
presentation layer (OSI), 113-114
primitive names, 148
Principia (Newton), 58

private addresses, 380
procedure calls, PMs (protocol

machines) as, 36
processes

APs (application processes)
definition, 194-197, 237
names, 198

IPC processes, 204
definition, 238
description, 250-251

processing systems
definition, 197, 237
description, 239-240

Proofs and Refutations, 193
properties of IPC model, 381-382
protocol control information

(PCI), 31, 238
protocol converters, 247
protocol data units. See PDUs
protocol machine types (PMTs), 27
protocol machines. See PMs
protocols. See also data

transfer mechanisms
application protocols, 79-80

data transfer phase, 242
definition, 238
stateless nature of, 242-243
synchronization phase, 242

BGP (Border Gateway Protocol),
320-321

CCR (commitment, concurrency,
and recovery), 115, 120

CLNP, xxiv-xxv
CMIP (Common Management

Information Protocol), 115, 126
compared to design specs, 119
CYCLADES, xv-xviii, 59, 66-67
data transfer phase, 241
data transfer protocols

data transfer phase, 242
data transfer PMs, 82-85
definition, 238
description, 241

INDEX420

error-control protocols, 79-82
relaying protocols, 79-82
state and, 242
synchronization phase, 242

definition, 14-15, 26, 238
Delta-t, xviii
DHCP (Dynamic Host

Configuration Protocol), 54
DNS (Domain Name Server),

xxi, 179
EFCP (error and flow

control protocol)
definition, 204, 248
delimiting, 253
description, 253
IPC control protocol, 254-255
IPC data transfer PM, 254
multiple instances, 206-207

error-control protocols, 79
adjoining protocols, arguments

against, 80
architecture, 82-85
compared to relaying

protocols, 82
embedded into applications,

81-82
FDTs (Formal Description

Techniques), 16-19
development of, 16
finite state machine

methods, 18
guidelines, 17
lack of support by IETF

(Internet Engineering Task
Force), 18

mathematical or
language-based
techniques, 17

temporal logic approaches, 18
feedback mechanisms, 79
FTAM (File Transfer Access

Method), 115

FTP (File Transfer Protocol),
102-105

ARPANET FTP model, 103
network virtual file system

(NVFS), 103
Return Job Entry (RJE),

104-105
HEMS (High-Level Entity

Management System), xxiii, 126
HIP (Host Identifier Protocol), 176
Host-to-Host Protocol, 155
HTTP (Hypertext Transfer

Protocol), 129-131
IAP (IPC access protocol), 201, 204

definition, 250
description, 257-259

informal specifications, 15-16
interfaces, 29-31
IONL (Internal Organization of the

Network Layer), 165
IP (Internet Protocol)

ad hoc mobile networking,
346-347

mobile application processes,
347-348

mobility, 339-341
naming and addressing,

154-161
NIPCA, 342, 344-346
spitting from TCP

(Transmission Control
Protocol), xx

IPC model, 376-377
IPng, xxiv-xxv
IPv6 addressing, 168-178
JTM (Job Transfer and

Manipulation), 115
LLC (Logical Link Control), 189
MAC (Media Access Control), 189
MAP/TOP (Manufacturing

Automation Protocol/Technical
and Office Protocols), 124

INDEX 421

n2 problem, 107
NCP (Network Control

Program), 143
problems with, xv
replacement with TCP (Trans-

mission Control Protocol), xx
NMP (Network Management Pro-

tocol), 259
NRSs (name-resolution systems)

definition, 132
distinguished names, 133
structures, 133-135

OLTP (Online Transaction
Processing), 82

overview, 23
P2P (peer-to-peer), 135-136
PCI (protocol control

information), 238
PDUs (protocol data units). See

PDUs
phases of operation

data transfer phase, 55
enrollment phase, 53-55
overview, 53
synchronization phase, 55

PMs (protocol machines). See PMs
protocol converters, 247
protocol specifications (gedanken

experiment), 386-387
RaMP (Relaying and Multiplexing

Protocol), 215
RDA (Remote Database

Access), 115
relaying protocols, 79

adjoining protocols, arguments
against, 80

architecture, 82-85
compared to error-control

protocols, 82
embedded into

applications, 81-82

RIEP (Resource Information
Exchange Protocol), 250

compared to NMP (Network
Management Protocol), 259

definition, 249
description, 259-260

RPC (Remote Procedure Call), 115
RTSE (Reliable Transfer Session

Element), 71n
SCTP, 320
SMTP (Simple Mail Transfer

Protocol), 81
SNACP (Subnetwork Access

Protocol), 165
SNDCP (Subnetwork Dependent

Convergence Protocol), 165
SNICP (Subnetwork Independent

Protocol), 165
SNMP (Simple Network

Management Protocol),
xxii, 126-128

synchronization phase, 241
TCP (Transmission

Control Protocol)
congestion avoidance, xxi-xxii
deployment, xx
implementation, 354
OSI and, 357
selection to replace NCP, xviii-

xix
single PDU format, xviii-xix
splitting out IP from, xx

Telnet
development, 100
half-duplex terminals, 101
importance of, 101
network virtual terminals

(NVTs), 100-101
streams, 102
symmetrical negotiation mech-

anism, 101
tightly coupled protocols, 79

INDEX422

transport protocols, 81
types of, 78-82
UDP (User Datagram Protocol), 46
VTP (Virtual Transfer

Protocol), 115
X.25, 189

connection/connectionless
debate, 67-68

naming and addressing, 154
XID (Exchange Identification), 55
XNS - Sequence Packet, xviii

PTT (post, telephone, and telegraph), 59
OSI development, 110-112
use of network architecture for

competitive ends, 63-65, 189,
355-356

public addresses, 380
pure soft-state (ss), 87-88

Q-R

QoS (Quality of service), 43-44

RaMP (Relaying and Multiplexing
Protocol), 215

RDA (Remote Database Access), 115
re-addressing, 172
reassembly, 48
record mode (PDUs), 34-36
recursive architecture, multicast distribu-

tion in, 331-333
registration, 54
Regulae Philosophandi, 58, 236
relations

definition, 292
order relations, 293

relaying, 47
Relaying and Multiplexing Protocol

(RaMP), 215
relaying and multiplexing task (RMT),

249, 255-257
Relaying PCI, 249

relaying protocols, 79
adjoining protocols, arguments

against, 80
architecture, 82-85
compared to error-control

protocols, 82
embedded into applications, 81-82

reliability
connection/connectionless

debate, 74
reliable multicast, 334-338

Reliable Transfer Session Element
(RTSE), 71n

reliable trigger, soft state with, 89
reliable trigger/removal, soft state

with, 89
Remote Database Access (RDA), 115
Remote Procedure Call (RPC), 115
renumbering, 172
repeaters, 310
Reska, Al, 97
resource allocation

connection/connectionless
debate, 73-74

NIPCA (Network IPC
Architecture), 261-262

Resource Information Base (RIB), 260
Resource Information Exchange Proto-

col. See RIEP
retransmission control, 43, 50-51
Return Job Entry (RJE), 104-105
RIB (Resource Information Base), 260
Ricci, Matteo, 370
RIEP (Resource Information Exchange

Protocol), 211, 213, 250
compared to NMP (Network

Management Protocol), 259
definition, 249
description, 259-260

risk, lack of appreciation for, 364
RJE (Return Job Entry), 104-105

INDEX 423

RMT (relaying and multiplexing task),
249, 255-257

rough hierarchy, 301
routers, 310
routes, 157
routing

definition, 158
NIPCA (Network IPC

Architecture), 261
RPC (Remote Procedure Call), 115
RTSE (Reliable Transfer Session

Element), 71n
Russell, Bertrand, 4, 147
Russell paradox, 147

S

Saint Exupery, Antoine de, 185
Saltzer, Jerry, xxvii, 153-157, 283

paper on addressing, xx
science

compared to engineering, 235, 368
computer science compared to other

scientific fields, 3
experimental method, 372
hypothesis, 371
versus natural history, 1

Science and Civilization in China, 369
scope

layers, 187, 219
names, 246, 287

SCTP, 320
SDL (Specification and Definition

Language), 17
SDUs (service data units), 33

combining, 48
definition, 238
protection, 249

security
IPC model, 376
NIPCA (Network IPC

Architecture), 262-263, 279-281

seers (theoreticians), 365-366
self-confidence, 363
self-similarity of Internet traffic, xxv
semantic significance of upper-layer

architecture, 137-138
sentential identifiers, 379
sentential naming operations and

resolution, 330-331, 379
separating mechanism and policy

gedanken experiment (outline)
mechanism specifications,

387-388
protocol specifications,

386-387
results, 75
service definitions, 385-386

protocols, 39-43, 75
service data units. See SDUs
services

compared to interfaces, 12
definition, 11-12
service definitions, 12-14

gedanken experiment, 385-386
session layer (OSI), 110-112
Dr. Seuss, Too Many Daves, 141
shared state approach, 85

connectionless networks as
maximal shared state, 92-93, 378

fate-sharing, 87
pure soft-state (ss), 87-88
soft state with explicit removal

(ss+er), 88
soft state with reliable trigger

(ss+rt), 89
soft state with reliable

trigger/removal (ss+rtr), 89
Shoch, John, 155
Simple Mail Transfer Protocol

(SMTP), 81
simple names, 147
Simple Network Management Protocol

(SNMP), xxii, 126-128

INDEX424

simultaneous communications between
two systems

connection identifiers, 209
management of single resource,

207-209
multiple instances of EFCP

(error and flow control protocol),
206-207

multiple pairs of applications
communicating, 206

multiplexing tasks, 209
operation of communication, 205

single-layer address topology, 308
single-layer hierarchical address

topology, 308-310
single system, communications within

application name space, 198
application names, 196
application process, 197
application process name, 198
application protocol, 198
application protocol machine,

196-198
IPC facility, 196-198
IPC mechanism, 198
operating system, 197
operation of communication,

194-196
port-ids, 198
processing system, 197

site-local addresses (IPv6), 170
size

of IPv6 addresses, 176
of PDUs (protocol data

units), 38-39
Skinner, B. F., 87
sliding-window mechanism, 51
Sloan, Alfred P., 2n
small incremental change and

stagnation of Internet, 354
Smolin, Lee, 363
SMTP (Simple Mail Transfer

Protocol), 81

SNA (System Network
Architecture), 68, 143

SNACP (Subnetwork Access
Protocol), 165

SNDCP (Subnetwork Dependent
Convergence Protocol), 165

SNICP (Subnetwork Independent
Protocol), 165

SNMP (Simple Network Management
Protocol), xxii, 126-128

socioeconomic forces, effect on network
architecture, 2

sockets, well-known, 98, 115, 179
soft state

pure soft-state (ss), 87-88
soft state with explicit removal

(ss+er), 88
soft state with reliable trigger

(ss+rt), 89
soft state with reliable

trigger/removal (ss+rtr), 89
Specification and Definition

Language (SDL), 17
specifications for protocols

Formal Description Techniques
(FDTs), 16-19

informal specifications, 15-16
speeding up standards process, 110
ss (soft state), 87-88
ss+er (soft state with explicit

removal), 88
ss+rt (soft state with reliable trigger), 89
ss+rtr (soft state with reliable

trigger/removal), 89
standards process, speeding up, 110
state

maintenance, 37-38
shared state approach, 85-87

connectionless networks
as maximal shared state,
92-93, 378

fate-sharing, 87
hard state (hs), 89-90

INDEX 425

limitations, 90-92
pure soft-state (ss), 87-88
soft state with explicit removal

(ss+er), 88
soft state with reliable trigger

(ss+rt), 89
soft state with reliable

trigger/removal (ss+rtr), 89
state explosion problem (FSMs), 25

state machines. See FSMs (finite state
machines)

stream mode (PDUs), 34-36
streams, Telnet, 102
Structure of Scientific Revolutions, 365
subnets, hierarchy of, 301-302
Subnetwork Access Protocol

(SNACP), 165
Subnetwork Dependent Convergence

Protocol (SNDCP), 165
Subnetwork Independent Protocol

(SNICP), 165
superficial insight, 366
switches, 310
symbolic logic, 146-148, 151
synchronization

initial state synchronization, 45-46
synchronization phase

(protocols), 55, 241
syntax language (OSI), 113-114
system calls, 29
System Network Architecture

(SNA), 68, 143

T

TCBs (traffic control blocks), 131
TCP (Transmission Control Protocol),

xviii
congestion avoidance, xxi-xxii
deployment, xx
implementation, 354
OSI and, 357
selection to replace NCP, xviii-xix

single PDU format, xviii-xix
splitting out IP from, xx

TCP (Transport Control Protocol), 18
telephony, naming and addressing,

151-152
Telnet, 100-102

development, 100
half-duplex terminals, 101
importance of, 101
network virtual terminals (NVTs),

100-101
streams, 102
symmetrical negotiation

mechanism, 101
temporal logic approaches (FDTs), 18
term inflation, 374n
Terminal Interface Processor (TIP), 64
THE (Dijkstra), 8
THE operating system, 61
theoreticians, 365-366
theory

encouraging theory and good
research, 373-375

importance of, 368-373
invalidating, 371
theory of conditioned response,

fallacy in, 87
threads, 28
three-way handshake, 45
tightly coupled protocols, 79
TIP (Terminal Interface Processor), 64
title spaces, 288
titles, 164, 288
Too Many Daves, 141
topological addresses

addresses, definition of, 288
aliases, 287
ASs (address spaces), 288
binding/unbinding names, 287
bound/unbound names, 286
connotative names, 286
denotative names, 286
distance functions, 292

INDEX426

free names, 286
granularity

definition, 291-292
metrizable topological

spaces, 292
hierarchical addressing architecture

address topology for hierarchy
of layers, 310-313

address topology for multiple
hierarchies of layers, 313-314

modeling the public Internet,
314-316

overview, 307-308
single-layer address

topology, 308
single-layer hierarchical

address topology, 308-310
hierarchy, role of

hierarchal topology of address
spaces, 299-301

hierarchy of layers, 298-299
hierarchy of networks,

301-304
melding address spaces and

hierarchy of layers, 304-306
overview, 297-298
rough hierarchy, 301

homeomorphism
definition, 289
homeomorphism of a

topological space, 290-291
IPC addressing topologies, 293-297
name assignment/

de-assignment, 286
name scope, 287
name spaces, 286
open sets, 289
order relations, 293
overview, 283-285
relations, 292
title spaces, 288
titles, 288
topological spaces, 289

topological structure, 289
topology, definition of, 289
unambiguous names, 287
underlying sets, 289
unique names, 287

topological spaces, 289
topological structure, 289
topology, 284-285, 289
TP (transaction processing), 115
Tractatus Logico-Philosophicus,

4-6, 147-149
traffic

self-similarity of, xxv
TCBs (traffic control blocks), 131
traffic characteristics,

connection/connectionless debate
and, 72-74

trailers (PDUs), 32-33
transaction processing (TP), 115
transfer mechanisms. See data transfer

mechanisms
Transfer PDU (protocol data unit), 76
translation (ARPANET), 108
Transmission Control Protocol. See TCP
transport protocols, limitations in

designing, 81
The Trouble with Physics, 363
Twain, Mark, xiii
two systems, communications between

DIF (distributed IPC facility), 204
drivers, 205
EFCP (error and flow control

protocol), 204
IAP (IPC access protocol), 204
invalidated assumptions, 203-204
IPC management tasks, 205
IPC processes, 204
operation of communication,

199-203
simultaneous communication

connection identifiers, 209
management of single

resource, 207-209

INDEX 427

multiple instances of EFCP
(error and flow control
protocol), 206-207

multiple pairs of applications
communicating, 206

multiplexing tasks, 209
operation of

communication, 205
two-way handshake, 45
types (OSI), 163n

U

UDP (User Datagram Protocol), 46
unambiguous names, 287
unbinding names, 287
unbound names, 286
underlying sets, 289
unicast, 326n, 331

unicast addresses (IPv6), 169-174
unique names, 287
Universal Resource Locators

(URLs), 130
Universal Resource Name (URN), 183
unspecified address (IPv6), 170
upper-layer architecture

canonical (abstract) models,
107-109

characteristics, 136
FTP (File Transfer Protocol),

102-105
ARPANET FTP model, 103
network virtual file system

(NVFS), 103
Return Job Entry (RJE),

104-105
HTTP and Web, 129-131
lessons from ARPANET, 105-109
location independence, 138-139

network management, 123,
126-129

CMIP (Common Management
Information Protocol), 126

HEMS (High-Level Entity
Management System), 126

SNMP (Simple Network Man-
agement Protocol), 126-128

NRSs (name-resolution systems)
definition, 132
distinguished names, 133
structures, 133-135

OSI model
application addressing,

178-182
application entities (AEs), 116
application process (AP),

116-117
application protocols, 114-115
application service elements

(ASEs), 118
conceptual schemas, 112-113
control functions (CFs), 118
development, 110-113
lessons learned, 121-123
overview, 110
presentation layer, 113-114
problems with, 120-121
PTT (post, telephone, and

telegraph) input, 110-112
session layer, 110, 112
single state machine

implementation, 119
syntax language, 113-114
X.400 relaying, 120

overview, 97-99
P2P (peer-to-peer), 135-136
semantic significance, 137-138
Telnet, 100-102

development, 100
half-duplex terminals, 101
importance of, 101

INDEX428

network virtual terminals
(NVTs), 100-101

streams, 102
symmetrical negotiation

mechanism, 101
upper-layer addressing in

Internet, 182-183
URLs (Universal Resource

Locators), 130
URN (Universal Resource Name), 183
user data, 31, 238
User Datagram Protocol (UDP), 46
USING (Users Interest Group), 106

V

Videotex, 111
Vienna Circle, 147
Virtual Transfer Protocol (VTP), 115
VLR (Visitor Locator Register), 341
VNFS (network virtual file system), 103
VTP (Virtual Transfer Protocol), 115

W

Web
development, 129
effect on Internet

requirements, 129-131
history of, xxiii-xxiv

Weiner, Norbert, 8
well-known sockets, 98, 115, 179
Where Wizard’s Stay Up Late, 383
Whitehead, Alfred North, 147
Wittgenstein, Ludwig, 4-6, 147-150
workarounds for lack of multihoming

solution
BGP ASs (autonomous

systems), 320-321
need for multihoming solution, 323
SCTP PoAs (points of

attachment), 320

X-Y-Z

X.25, 189
connection/connectionless

debate, 67-68
naming and addressing, 154

X.400, 120
X.500, 133
XID (Exchange Identification), 55
XNS architecture

addressing, 159
XNS Grapevine system, 132
XNS - Sequence Packet, xviii

Zipf’s law, 131
0 (unspecified address), 170

INDEX 429

	Contents
	Preface: The Seven Unanswered Questions
	Chapter 5 Naming and Addressing
	Introduction
	Why Do We Need Naming and Addressing?
	How the Problem Arose
	Background on Naming and Addressing
	Foundations of Mathematics and Naming
	Naming and Addressing in Telephony
	Naming in Operating Systems
	X.25 and the ITU
	The Evolution of Addressing in the Internet: Early IP
	OSI and NSAPs
	Addressing in IPv6
	Looking Back over IPv6
	“Upper-Layer” or Application Addressing in OSI
	URI, URL, URN, and So On: Upper-Layer Addressing in the Internet
	Conclusions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

