

Praise for The Software IP Detective’s
Handbook
“ As a frequent expert witness myself, I found Bob’s book to be important and well

written. Intellectual property and software plagiarism are complicated subjects, as are

patents and copyrights. This book explains the key elements better than anything else

I have seen. The book is highly recommended to anyone who develops software and also

to those who need to protect proprietary software algorithms. The book should also be

useful to attorneys who are involved with intellectual property litigation.”

—Capers Jones, president, Capers Jones & Associates, LLC

“ Intellectual property [IP] is an engine of growth for our high-tech world and a valuable

commodity traded in its own right. Bob Zeidman is a leading authority on software IP,

and in this book he shares with us his expertise. The book is comprehensive. It contains

clear explanations of many difficult subjects. Businesspeople who study it will learn

how to protect their IP. Lawyers will use it to understand the specifics of how software

embodies IP. Judges will cite it in their decisions on IP litigation.”

—Abraham Sofaer, George P. Shultz Senior Fellow in Foreign Policy and

National Security Affairs, Hoover Institution, Stanford University

“ Bob has done a fantastic job in making computer science forensics understandable to mere

mortals: attorneys, engineers, and managers. This is the ultimate handbook for expert

witnesses, due diligence execution, and developing a baseline for software valuation.

Buy it before your competitors do!”

—Don Shafer, CSDP, chief technology officer, Athens Group, LLC

“ Bob has considerable experience in dealing with issues associated with unauthorized

use of software code. His insights in this book are particularly helpful for those seeking

to provide expert analysis with respect to software code.”

—Neel I. Chatterjee, partner, Orrick, Herrington & Sutcliffe, LLC

“ This readable book perfectly bridges the jargon divide between software engineers and

IP attorneys. It helps each group finally understand exactly what the other is talking

about. As a software developer and expert witness I will definitely keep a copy handy

and recommend it to others on my team.”

—Michael Barr, president, Netrino, LLC

“ This book makes intellectual property law understandable and accessible to program-

mers by combining discussions of the law with discussions of computer science, and

interweaving case studies to elucidate the intersection of these disciplines.”

—Robert C. Seacord, Secure Coding Manager, Software Engineering Institute

This page intentionally left blank

THE SOFTWARE IP
DETECTIVE’S HANDBOOK

This page intentionally left blank

The Software IP
Detective’s Handbook

MEASUREMENT, COMPARISON, AND
INFRINGEMENT DETECTION

Robert Zeidman
Software Analysis and Forensic Engineering Corporation

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales
 international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data is on file with the Library
of Congress

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or
 transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax: (617) 671-3447

ISBN-13: 978-0-13-703533-5
ISBN-10: 0-13-703533-0

Text printed in the United States on recycled paper at Courier in Westford,
Massachusetts.
First printing, April 2011

Editor-in-Chief
Mark L. Taub

Acquisitions Editor
Bernard Goodwin

Managing Editor
John Fuller

Full-Service

Production Manager
Julie B. Nahil

Copy Editor
Barbara Wood

Indexer
Lenity Mauhar

Proofreader
Linda Begley

Cover Designer
Anne Jones

Compositor
LaurelTech

This book is dedicated to all those who attempt to do things that others say
are wrong or impossible, and to all those who encourage them.

This page intentionally left blank

CONTENTS

Preface xxi

Acknowledgments xxiii

About the Author xxv

PART I INTRODUCTION 1

Objectives 2

Intended Audience 2

Chapter 1 About this Book 5

Part I: Introduction 6

Part II: Software 6

Part III: Intellectual Property 6

Part IV: Source Code Differentiation 9

Part V: Source Code Correlation 9

Part VI: Object and Source/Object Code Correlation 10

Part VII: Source Code Cross-Correlation 10

Part VIII: Detecting Software IP Theft and Infringement 11

Part IX: Miscellaneous Topics 11

Part X: Past, Present, and Future 11

Chapter 2 Intellectual Property Crime 13

2.1 The Extent of IP Theft 14

2.1.1 Unintentional Loss 14

2.1.2 Poor Economy 15

ix

2.1.3 Cheap Labor 16

2.1.4 Criminal Operations 17

PART II SOFTWARE 21

Objectives 22

Intended Audience 22

Chapter 3 Source Code 23

3.1 Programming Languages 24

3.2 Functions, Methods, Procedures, Routines, and Subroutines 26

3.3 Files 32

3.4 Programs 35

3.5 Executing Source Code 36

3.5.1 Compilers 36

3.5.2 Interpreters 36

3.5.3 Virtual Machines 36

3.5.4 Synthesizers 37

Chapter 4 Object Code and Assembly Code 39

4.1 Object Code 39

4.2 Assembly Code 40

4.3 Files 43

4.4 Programs 44

Chapter 5 Scripts, Intermediate Code, Macros, and Synthesis Primitives 45

5.1 Scripts 45

5.2 Intermediate Code 47

5.3 Macros 48

5.4 Synthesis Primitives 49

PART III INTELLECTUAL PROPERTY 53

Objectives 55

Intended Audience 55

Chapter 6 Copyrights 57

6.1 The History of Copyrights 57

6.2 Copyright Protections 60

6.3 Software Copyrights 63

6.3.1 Copyrighting Code 64

6.3.2 Copyrighting Screen Displays 67

x CONTENTS

6.3.3 Registering a Software Copyright 70

6.3.4 Term of Copyright Protection 71

6.4 Allowable and Nonallowable Uses of Copyrighted Code 72

6.4.1 Fair Use 72

6.4.2 Reimplementation 72

6.4.3 Versions, Modifications, and Derivatives 73

6.4.4 Compilations 73

6.4.5 Reverse Engineering 74

Chapter 7 Patents 79

7.1 The History of Patents 80

7.2 Types of Patents 81

7.3 Parts of a Patent 82

7.4 Patenting an Invention 85

7.5 Special Types of Patent Applications 86

7.5.1 Provisional 86

7.5.2 Divisional 87

7.5.3 Continuation 88

7.5.4 Continuation-in-Part (CIP) 88

7.6 Software Patents 90

7.7 Software Patent Controversy 91

7.7.1 Arguments for Software Patents 91

7.7.2 Arguments against Software Patents 92

7.7.3 The Supreme Court Rules? 94

7.8 Patent Infringement 95

7.8.1 Direct Infringement 95

7.8.2 Contributory Infringement 96

7.8.3 Induced Infringement 96

7.8.4 Divided Infringement 97

7.9 NPEs and Trolls 99

Chapter 8 Trade Secrets 103

8.1 The History of Trade Secrets 103

8.2 Uniform Trade Secrets Act (UTSA) 104

8.3 Economic Espionage Act 105

8.4 Aspects of a Trade Secret 106

8.4.1 Not Generally Known 108

8.4.2 Economic Benefit 108

8.4.3 Secrecy 110

CONTENTS xi

8.5 Trade Secret Theft 111

8.6 Patent or Trade Secret? 112

Chapter 9 Software Forensics 113

9.1 Forensic Science 115

9.2 Forensic Engineering 116

9.3 Digital Forensics 119

9.4 Software Forensics 120

9.5 Thoughts on Requirements for Testifying 121

9.5.1 Certification 122

9.5.2 Neutral Experts 123

9.5.3 Testing of Tools and Techniques 124

PART IV SOURCE CODE DIFFERENTIATION 125

Objectives 126

Intended Audience 126

Chapter 10 Theory 127

10.1 Diff 128

10.1.1 Diff Theory 128

10.1.2 Diff Implementation 131

10.1.3 False Positives 131

10.1.3 False Negatives 132

10.2 Differentiation 133

10.2.1 Definitions 134

10.2.2 Axioms 134

10.3 Types of Similarity 135

10.3.1 Mutual Similarity 135

10.3.2 Directional Similarity 136

10.4 Measuring Similar Lines 136

10.4.1 Simple Matching 137

10.4.2 Fractional Matching 137

10.4.3 Weighted Fractional Matching 139

10.4.4 Case Insensitivity 140

10.4.5 Whitespace Reduction 140

10.5 Measuring File Similarity 140

10.6 Measuring Similar Programs 142

10.6.1 Maximizing Based on Files 143

10.6.2 Maximizing Based on Programs 144

xii CONTENTS

Chapter 11 Implementation 147

11.1 Creating and Comparing Arrays 147

11.1.1 Sorting Lines 149

11.1.2 Ordering Lines 149

11.1.3 Hashing Lines 150

11.1.4 Saving Arrays to Disk 151

11.2 Number of Optimal Match Score Combinations 151

11.3 Choosing Optimal Match Scores for Calculating File Similarity 153

11.3.1 Simple Matching 153

11.3.2 Fractional Matching 156

11.4 Choosing File Similarity Scores for Reporting
 Program Similarity 161

11.4.1 Choosing File Pairs for Optimally Determining
Program Similarity 161

11.4.2 Choosing File Pairs for Approximately Determining
Program Similarity 162

Chapter 12 Applications 165

12.1 Finding Similar Code 165

12.1.1 Comparing Multiple Versions of Potentially
Copied Code 165

12.1.2 Use of Third-Party Code 167

12.1.3 Use of Open Source Code 168

12.2 Measuring Source Code Evolution 168

12.2.1 Lines of Code 169

12.2.2 Halstead Measures 170

12.2.3 Cyclomatic Complexity 171

12.2.4 Function Point Analysis 172

12.2.5 How Source Code Evolves 173

12.2.6 Changing Lines of Code Measure (CLOC) 175

12.2.7 Non-Header Files 181

PART V SOURCE CODE CORRELATION 183

Objectives 185

Intended Audience 185

Chapter 13 Software Plagiarism Detection 187

13.1 The History of Plagiarism Detection 187

13.2 Problems with Previous Algorithms 189

13.3 Requirements for Good Algorithms 192

CONTENTS xiii

Chapter 14 Source Code Characterization 197

14.1 Statements 199

14.1.1 Special Statements 201

14.1.2 Instructions 202

14.1.3 Identifiers 204

14.2 Comments 206

14.3 Strings 207

Chapter 15 Theory 209

15.1 Practical Definition 210

15.1.1 Statement Correlation 211

15.1.2 Comment/String Correlation 211

15.1.3 Identifier Correlation 213

15.1.4 Instruction Sequence Correlation 213

15.1.5 Overall Source Code Correlation 213

15.2 Comparing Different Programming Languages 213

15.3 Mathematical Definitions 214

15.4 Source Code Correlation Mathematics 215

15.4.1 Commutativity Axiom 215

15.4.2 Identity Axiom 216

15.4.3 Location Axiom 216

15.4.4 Correlation Definition 216

15.4.5 Lemma 216

15.5 Source Code Examples 216

15.6 Unique Elements 218

15.7 Statement Correlation 219

15.7.1 Statement Correlation Equations 219

15.7.2 Calculating the Statement Correlation 220

15.8 Comment/String Correlation 223

15.8.1 Comment/String Correlation Equations 223

15.8.2 Calculating the Comment/String Correlation 224

15.9 Identifier Correlation 225

15.10 Instruction Sequence Correlation 227

15.11 Overall Correlation 228

15.11.1 S-Correlation 228

15.11.2 A-Correlation 229

15.11.3 M-Correlation 229

15.11.4 Recommended Correlation Method 230

xiv CONTENTS

Chapter 16 Implementation 233

16.1 Creating Arrays from Source Code 234

16.2 Statement Correlation 239

16.3 Comment/String Correlation 240

16.4 Identifier Correlation 241

16.5 Instruction Sequence Correlation 243

16.6 Overall Correlation 245

16.7 Comparing Programs in Different Programming
 Languages 246

16.8 Comparing Sections of Code Other than Files 246

Chapter 17 Applications 247

17.1 Functional Correlation 248

17.2 Identifying Authorship 249

17.3 Identifying Origin 251

17.4 Detecting Copyright Infringement (Plagiarism) 252

17.5 Detecting Trade Secret Theft 252

17.6 Locating Third-Party Code (Open Source) 253

17.7 Compiler Optimization 254

17.8 Refactoring 254

17.9 Detecting Patent Infringement 255

PART VI OBJECT AND SOURCE/OBJECT CODE CORRELATION 257

Objectives 258

Intended Audience 259

Chapter 18 Theory 261

18.1 Practical Definition 266

18.2 Extracting Elements 268

18.2.1 Comment/String Elements 269

18.2.2 Identifier Elements 269

18.3 Comparing Different Programming Languages 270

18.4 Mathematical Definitions 270

18.5 Object and Source/Object Code Correlation Mathematics 272

18.5.1 Commutativity Axiom 272

18.5.2 Identity Axiom 272

18.5.3 Location Axiom 272

18.5.4 Correlation Definition 272

18.5.5 Lemma 273

CONTENTS xv

18.6 Comment/String Correlation 273

18.6.1 Comment/String Correlation Equations 273

18.7 Identifier Correlation 274

18.8 Overall Correlation 275

18.8.1 S-Correlation 276

18.8.2 A-Correlation 276

18.8.3 M-Correlation 276

18.9 False Negatives 276

Chapter 19 Implementation 279

19.1 Creating Text Substring Arrays from Object Code 279

19.2 Creating Arrays from Source Code 283

19.2.1 Extracting Identifiers 283

19.2.2 Extracting Comments and Strings 284

19.2.3 String Delimiters 284

19.2.4 Escape Characters 284

19.2.5 Substitution Characters 286

19.3 Identifier Correlation 287
19.4 Comment/String Correlation 287

19.5 Overall Correlation 287

Chapter 20 Applications 289

20.1 Pre-Litigation Detective Work 289

20.1.1 The Code in Dispute Is Distributed as Object Code 290

20.1.2 A Third Party Is Bringing the Suit 290

20.1.3 The Original Source Code Cannot Be Located 292

20.2 Tracking Malware 293

20.3 Locating Third-Party Code 293

20.4 Detecting Open Source Code License Violations 294

PART VII SOURCE CODE CROSS-CORRELATION 295

Objectives 296

Intended Audience 296

Chapter 21 Theory, Implementation, and Applications 299

21.1 Comparing Different Programming Languages 300

21.2 Mathematical Definitions 300

21.3 Source Code Cross-Correlation Mathematics 301

21.3.1 Commutativity Axiom 301

21.3.2 Identity Axiom 302

xvi CONTENTS

21.3.3 Location Axiom 302

21.3.4 Correlation Definition 302

21.3.5 Lemmas 303

21.4 Source Code Examples 303

21.5 Statement-to-Comment/String Correlation 307

21.6 Comment/String-to-Statement Correlation 308

21.7 Overall Correlation 308

21.7.1 S-Correlation 309

21.7.2 A-Correlation 309

21.7.3 M-Correlation 309

21.8 Implementation and Applications 310

PART VIII DETECTING SOFTWARE IP THEFT AND INFRINGEMENT 313

Objectives 315

Intended Audience 315

Chapter 22 Detecting Copyright Infringement 317

22.1 Reasons for Correlation 318

22.1.1 Third-Party Source Code 318

22.1.2 Code Generation Tools 319

22.1.3 Commonly Used Elements 321

22.1.4 Commonly Used Algorithms 322

22.1.5 Common Author 325

22.1.6 Copying (Plagiarism, Copyright Infringement) 325
22.2 Steps to Find Correlation Due to Copying 326

22.2.1 Filtering Out Correlation Due to Third-Party Code 326

22.2.2 Filtering Out Correlation Due to Automatically
Generated Code 327

22.2.3 Filtering Out Correlation Due to Common
Elements 328

22.2.4 Filtering Out Correlation Due to Common
Algorithms 329

22.2.5 Filtering Out Correlation Due to Common Author 329

22.2.6 Any Correlation Remaining Is Due to Copying 330
22.3 Abstraction Filtration Comparison Test 331

22.3.1 Background 331

22.3.2 How CodeSuite Implements the Test 333

22.3.3 Problems with the Test 334
22.4 Copyright Infringement Checklist 338

CONTENTS xvii

Chapter 23 Detecting Patent Infringement 341

23.1 Interpreting the Claims 341

23.1.1 Markman Hearing 345

23.1.2 The Role of Experts at a Markman Hearing 347

23.2 Examining the Software 348

23.2.1 Searching for Comments 348

23.2.2 Searching for Identifier Names 349

23.2.3 Reviewing from a High Level 349

23.2.4 Instrumenting Running Software 349

23.3 Tools 350

23.3.1 Understand 350

23.3.2 Klocwork Insight 351

23.3.3 DMS Software Reengineering Toolkit 351

23.3.4 Structure101 352

23.4 Determining Patent Validity 352

23.4.1 Invalidity Based on MPEP 35 U.S.C. § 102 353

23.4.2 Invalidity Based on MPEP 35 U.S.C. § 103 354

23.4.3 Invalidity Based on MPEP 35 U.S.C. § 112 356

Chapter 24 Detecting Trade Secret Theft 359

24.1 Identifying Trade Secrets 360

24.1.1 Top-Down versus Bottom-Up 360

24.1.2 Input from Owner 361

24.1.3 State with Specificity 361

24.1.4 Reasonable Efforts to Maintain Secrecy 364

24.1.5 Copied Code as Trade Secrets 365

24.1.6 Public Sources 366

24.2 Tools 367

PART IX MISCELLANEOUS TOPICS 369

Objectives 370

Intended Audience 370

Chapter 25 Implementing a Software Clean Room 371

25.1 Background 372

25.2 The Setup 374

25.2.1 The Dirty Room 374

25.2.2 The Clean Room 375

25.2.3 The Monitor 376

xviii CONTENTS

25.3 The Procedure 376

25.3.1 Write a Detailed Description 377

25.3.2 Sign Agreements 379

25.3.3 Examine the Original Code in the Dirty
Room 380

25.3.4 Transfer Specification to the Monitor and
Then to the Clean Room 380

25.3.5 Begin Development in the Clean Room 380

25.3.6 Transfer Questions to the Monitor and
Then to the Dirty Room 380

25.3.7 Transfer Answers to the Monitor and
Then to the Clean Room 381

25.3.8 Continue Process Until New Software Is
Completed 381

25.3.9 Check Final Software for Inclusion of
Protected IP 381

25.3.10 Violations of the Procedure 381

Chapter 26 Open Source Software 383

26.1 Definition 383

26.2 Free Software 386

26.2.1 Copyleft 387

26.2.2 Creative Commons 387

26.2.3 Patent Rights 387

26.3 Open Source Licenses 388

26.4 Open Source Lawsuits 390

26.4.1 SCO v. Linux 391

26.4.2 The BusyBox Lawsuits 393

26.4.3 IP Innovation LLC v. Red Hat and Novell 394

26.4.4 Network Appliance, Inc. v. Sun Microsystems, Inc. 395

26.5 The Pervasiveness of Open Source Software 396

Chapter 27 Digital Millennium Copyright Act 399

27.1 What Is the DMCA? 399

27.2 For and Against the DMCA 400

27.3 Noteworthy Lawsuits 403

27.3.1 Adobe Systems Inc. v. Elcom Ltd. and
Dmitry Sklyarov 403

27.3.2 MPAA v. RealNetworks Inc. 404

27.3.3 Viacom Inc. v. YouTube, Google Inc. 404

CONTENTS xix

PART X CONCLUSION: PAST, PRESENT, AND FUTURE 407

Glossary 409

References 423

Index 435

xx CONTENTS

PREFACE

WHAT IS THIS BOOK ABOUT?

This book is generally about software intellectual property and specifically
about the field of software forensics. While you may never testify in a court-
room, attempt to deduce the true owner of a valuable program, or measure the
intellectual property (IP) value of software source code, if you are at all involved
with software you need to know how to protect your rights to that software.
This book will give you an understanding of those rights, their limitations,
how to protect those rights, and how to take action against someone or some
organization that you believe has infringed on those rights.

Unlike digital forensics, which studies the bits and bytes on a digital storage
medium, such as a hard disk or DVD-ROM, without a deep understanding of
what those ones and zeros represent, software forensics studies the software code
that instructs a computer to perform operations. Software forensics discovers
information about the history and usage of that software for presentation in a
court of law. It combines information and techniques from computer science,
mathematics, and law in a way that is unique and, I believe, particularly interesting.

HOW IS THIS BOOK ORGANIZED?

This book contains overviews as well as in-depth information about law,
mathematics, and computer science. The book is organized into chapters that

xxi

can be categorized as follows: those primarily about intellectual property law,
those about computer science, those about mathematics, and those about
business and business procedures. There is, of course, overlap. Chapter 1
describes the organization of the book in detail and allows you to choose
those chapters that are most relevant to your career and your interests.

WHO SHOULD READ THIS BOOK?

This book is for anyone interested in software intellectual property. Specifically,
I believe the book will appeal to computer scientists, computer programmers,
business managers, lawyers, engineering consultants, expert witnesses, and
software entrepreneurs. While the focus is on software IP measurement,
comparison, and infringement detection, the book also has useful information
about many issues related to software IP, and I believe that many people
involved with software will find the book valuable and interesting.

SUPPORT AND COMMENTS

Thank you for purchasing my book. Please send me feedback on corrections
and improvements. Of course, I also like to hear about the things I did right, the
things you like about the book, and how it has helped you in some way.

Bob Zeidman
bob@SAFE-corp.biz
www.SAFE-corp.biz
Cupertino, California
March 2011

xxii PREFACE

www.SAFE-corp.biz

ACKNOWLEDGMENTS

When I finished my last book, back in 2002, I swore I’d never write another one.
They say that pregnancy is the same way. Ask a woman right after delivering a
child whether she’d do it again and, if she’s coherent, she’ll give you an emphatic,
“Never!” Yet within months, if not days, she forgets the pain of birth and only
remembers the pleasure of spending time with her baby, then her infant, then
her toddler, then her kid. (By the time the child is a teenager, some of the pain of
birth may have returned to her memory, though.)

So it took me seven years to forget the pain of giving birth to my last book.
Actually, I remembered that pain (though the memory had softened over the
years) but really felt I had something worthwhile to say once again. I’m proud of
all of my books (a parent isn’t supposed to favor one child), but this one is different.
Those other books were intended to explain areas of engineering that many others
had invented, developed, and explored before me. I explained some of my own
discoveries here and there, but the bulk of the creativity is correctly credited to the
pioneers who preceded me. For this book, most of the work is original. The
techniques, the mathematics, the algorithms, and the procedures in this book are
being adopted fairly well, and that’s exciting. I hope that others can take what I’ve done
and build upon it. I continue to do that myself and am finding lots of unexplored
areas that are being revealed, offering plenty of opportunities, I believe, for
mathematicians, lawyers, programmers, computer scientists, and entrepreneurs.

Many people helped me with this book, some explicitly and some implicitly. First, I’ll
mention the lawyers who, despite their unbelievably full schedules, still found time to

xxiii

xxiv ACKNOWLEDGMENTS

review my work and offer suggestions and corrections. This was particularly important
because I’m not a lawyer, but I wanted this book to be accurate. Thanks to Joe Zito, Ed
Kwok, Tait Graves, and Neel Chatterjee. Next are the mathematicians and computer
scientists who gave me suggestions for representations for the formulas in the book.
Thanks to John Wakerly, Kelvin Sung, and Ron Summers, and to the engineers who
looked over my definitions and explanations and suggested numerous improvements.
Thanks to Robert Seacord, Tom Quilty, Capers Jones, Jack Grimes, and Michael Barr.
Special thanks go to Don Shafer and Chuck Pfleeger. Don did some scathing critiques
of early versions of the manuscript that really pushed me to improve the book. Chuck
did such detailed reviews and gave me such in-depth feedback that at times I was afraid
that he understood the material better than I did. The employees at my companies have
also provided a lot of great research and development, especially Nik Baer who, among
other things, united the concepts of CLOC into one concise set of equations and nom-
enclature. Other employees who supplied a lot of great ideas and input include Jim
Zamiska, Ilana Shay, Larry Melling, Tim Hoehn, and Michael Everest. I also want to
thank Grace Seidman for setting up and taking the great photograph that became the
cover art, and Jessica Yates for taking the flattering pictures of me.

I have a great, supportive editor at Prentice Hall: Bernard Goodwin. Sometimes I think
that if I went to Bernard and said I want to do a book on the engineering principles of
navel lint and dust bunnies, he’d give me the okay. As long as it was about engineering.
I’ve heard horror stories about tough editors who put a lot of pressure on their writers,
but that certainly wasn’t the case with Bernard. And when I told him the schedule was
slipping, but I felt I needed more time to make some important improvements, he
responded, “Better trumps the schedule.” I hope this is the “better” book we planned.

I want to thank Mike Flynn, Professor Emeritus of Electrical Engineering at
Stanford. Mike has supported every one of my business and engineering endeav-
ors, and this book is no exception. The concepts in this book took root in his
office when he suggested I create a theory about source code correlation and
spent a day working on it with me. Before that, I had a very useful program;
after that, I had a new area of study including a set of axioms, theorems, and
equations, and a vision about how to create something pretty big.

Finally, I want to thank my wife, Carrie. She has always been supportive of every crazy
thing I decide to do, no matter how much time it takes me away from her. In this
case, she gave up many weekends we wanted to spend together because I just had to
get a few more pages written. I promise to spend all the weekends with her from now
on, though she knows I’ll find some other project that will keep me busy and that I’ll
keep on promising. I love her and thank her for her patience and also for the great
artwork on the book cover and the figures inside the book, which she created.

ABOUT THE AUTHOR

Bob Zeidman is the president and founder of Zeidman
Consulting (www.ZeidmanConsulting.com), a premiere
contract research and development firm in Silicon Valley
that focuses on engineering consulting to law firms handling
intellectual property dispute cases. Since 1983, Bob has
designed computer chips and circuit boards for RISC-based
parallel processor systems, laser printers, network switches
and routers, and other complex systems. His clients have
included Apple Computer, Cisco Systems, Cadence Design

Systems, Facebook, Intel, Symantec, Texas Instruments, and Zynga. Bob has
worked on and testified in cases involving billions of dollars in disputed
intellectual property.

Bob is also the president and founder of Software Analysis and Forensic
Engineering Corporation (www.SAFE-corp.biz), the leading provider of soft-
ware intellectual property analysis tools. Bob is considered a pioneer in the field
of analyzing software source code, having created the CodeSuite program for
detecting software intellectual property theft, which is sold by SAFE Corp,
founded in 2007.

Previously, Bob was the president and founder of Zeidman Technologies (www
.zeidman.biz) where he invented the patented SynthOS program for automati-
cally generating real-time software. Before that, Bob was the president and

xxv

www.ZeidmanConsulting.com
www.SAFE-corp.biz
www.zeidman.biz
www.zeidman.biz

xxvi ABOUT THE AUTHOR

founder of The Chalkboard Network, an e-learning company that put high-end
business and technology courses from well-known subject matter experts on
the web. Prior to that, Bob invented the concept of remote backup and started
Evault, the first remote backup company.

Bob is a prolific writer and instructor, giving seminars at conferences around the
world. Among his publications are numerous articles on engineering and business
as well as three textbooks—Designing with FPGAs and CPLDs, Verilog Designer’s
Library, and Introduction to Verilog. Bob holds numerous patents and earned two
bachelor’s degrees, in physics and electrical engineering, from Cornell University
and a master’s degree in electrical engineering from Stanford University.

Bob is also active in a number of nonprofits. He also enjoys writing novels and
screenplays and has won a number of awards for this work.

5

1ABOUT THIS BOOK

This book crosses a number of different fields of computer science, mathematics,
and law. Not all readers will want to delve into every chapter. This is the place
to start, but from this point onward each reader’s experience will be different.
In this chapter I describe each of the parts and chapters of the book to help you
determine which chapters will be useful and appealing for your specific needs
and interests.

I should make clear that I am not a lawyer, have never been one, and have never
even played one on TV. All of the issues I discuss in this book are my under-
standing based on my technical consulting and expert witness work on nearly
100 intellectual property cases to date. My consulting company, Zeidman
Consulting, has been growing over the years, and now the work is split between
my employees and me. When I refer in the book to my experiences, in most
cases that is firsthand information, but in other cases it may be information
discovered and tested by an employee and related and explained to me.

In this book I also refer to forensic analysis tools that I have used to analyze
software, in particular the CodeSuite tool that is produced and offered for sale
by my software company, Software Analysis and Forensic Engineering
Corporation (S.A.F.E. Corporation), and can be downloaded from the company
website at www.SAFE-corp.biz. The CodeSuite set of tools currently consists of
the following functions: BitMatch, CodeCLOC, CodeCross, CodeDiff, and
SourceDetective. Functions are being continually added and updated. Each of
these functions uses one or more of the algorithms described in later chapters.

www.SAFE-corp.biz

6 ABOUT THIS BOOK

Also, the CodeMeasure program uses the CLOC method to measure soft-
ware evolution, which is explained in Chapter 12. It is also produced and
sold by S.A.F.E. Corporation and can be downloaded from its own site at
www.CodeMeasure.com.

Table 1.1 should help you determine which chapters will be the most helpful
and relevant to you. Find your occupation at the top of the table and read
downward to see the chapters that will be most relevant to your background
and your job.

PART I: INTRODUCTION

The introduction to the book is just that—an introduction, intended to give
you a broad overview of the book and help you determine why you want to
read it and which chapters you will find most in line with your own interests
and needs. This part includes a description of the other parts and chapters in
the book. It also gives information and statistics about intellectual property
crime, to give you an understanding of why this book is useful and important.

PART II: SOFTWARE

In this part I describe source code, object code, interpreted code, macros, and
synthesis code, which are the blueprints for software. This part describes these
important concepts, which are well known to computer scientists and program-
mers but may not be understood, or may not be understood in sufficient depth,
by attorneys involved in software IP litigation. This part will be valuable for
lawyers to help them understand how different kinds of software code relate to
each other, and how these different kinds of software code can affect a software
copyright infringement, software trade secret, or software patent case.

PART III: INTELLECTUAL PROPERTY

In this part I describe intellectual property, in particular copyrights, patents,
and trade secrets. I have found that many of these concepts are unclear or only
partially understood by many computer scientists, programmers, and corporate
managers. In this part I define these terms in ways that I believe will be
comprehensible to those with little or no legal background.

www.CodeMeasure.com

P
A

R
T III: IN

T
E

L
L

E
C

T
U

A
L P

R
O

P
E

R
T

Y 7
Table 1.1 Finding Your Way through This Book

Chapter Title
Computer
scientist

Computer
programmer Manager Lawyer

Consultant/
expert witness

Software
entrepreneur

Part I Introduction X X X X X X

Chapter 1 About This Book X X X X X X

Chapter 2 Intellectual Property Crime X X X X X X

Part II Software X X X X X X

Chapter 3 Source Code X X

Chapter 4 Object Code and Assembly Code X X

Chapter 5 Scripts, Intermediate Code, Macros,
and Synthesis Primitives X X

Part III Intellectual Property X X X X X X

Chapter 6 Copyrights X X X X X

Chapter 7 Patents X X X X X

Chapter 8 Trade Secrets X X X X X

Chapter 9 Software Forensics X X X X X X

Part IV Source Code Differentiation X X X X X X

Chapter 10 Theory X X X

Chapter 11 Implementation X X X X

Chapter 12 Applications X X X X X

Part V Source Code Correlation X X X X X X

Chapter 13 Plagiarism Detection X X X

Chapter 14 Source Code Characterization X X X X X

Continues

Table 1.1 Finding Your Way through This Book (Continued)

Chapter Title
Computer
scientist

Computer
programmer Manager Lawyer

Consultant/
expert witness

Software
entrepreneur

Chapter 15 Theory X X X

Chapter 16 Implementation X X X X

Chapter 17 Applications X X X X X

Part VI Object and Source/Object Code
Correlation

X

X

X

X

X

X

Chapter 18 Theory X X X

Chapter 19 Implementation X X X X

Chapter 20 Applications X X X X X

Part VII Source Code Cross-Correlation X X X X X X

Chapter 21 Theory, Implementation, Application X X X X X

Part VIII Detecting Software IP Theft and
Infringement

X

X

X

X

X

X

Chapter 22 Detecting Copyright Infringement X X X X

Chapter 23 Detecting Patent Infringement X X X X

Chapter 24 Detecting Trade Secret Theft X X X X

Part IX Miscellaneous Topics X X X X X X

Chapter 25 Implementing a Software Clean Room X X X X X

Chapter 26 Open Source Software X X X X X

Chapter 27 Digital Millennium Copyright Act X X X X X

Part X Past, Present, and Future X X X X X

8 A
B

O
U

T T
H

IS B
O

O
K

PART V: SOURCE CODE CORRELATION 9

I also define the field of software forensics in this part. When I am asked to
work on a case, there is sometimes confusion about the fields of software
forensics and digital forensics. In some cases, engineers practicing digital
forensics claim to practice software forensics and sometimes use the tools of
digital forensics to attempt to draw conclusions about software IP, yielding
incorrect or inconclusive results. Software forensics requires the specialized
tools of the field and expertise in the field to extract relevant information from
the tools, reach appropriate conclusions, and opine on those conclusions. In this
part I offer definitions of the two fields. In fact, the definition of software
forensics has, to this point, been somewhat vague. My explanation in this part
will clarify the practice of software forensics, show how it fits into the field of
forensic science, and differentiate it from digital forensics.

PART IV: SOURCE CODE DIFFERENTIATION

This part describes source code differentiation, a very basic method of
comparing and measuring software source code. Source code differentiation is
especially useful for finding code that has been directly copied from one
program to another and for determining a percentage of direct copying.
While there are many metrics for measuring qualities of software, source
code differentiation has some unique abilities to measure development
effort, software changes, and software intellectual property changes that are
particularly useful for determining software intellectual property value for such
applications as transfer pricing calculations.

In this part I introduce the mathematics of the theory of source code
differentiation and explain implementations of source code differentiation for
programmers who want to understand how to implement it. I also describe the
“changing lines of code” or “CLOC” method of measuring software growth that
is based on source code differentiation, and I compare it to traditional methods
like “source lines of code” or “SLOC.” I then discuss various applications of
source code differentiation, though I believe that many more applications of
this metric will be found in the future.

PART V: SOURCE CODE CORRELATION

This part starts by exploring the various methods and algorithms for “software
plagiarism detection” that have been developed over the last few decades.

I describe the origins of these methods and algorithms, and I explain their
limitations. In particular, there have been no standard definitions and no
supporting theory for this work, so I introduce the theory of source code
correlation and definitions for characterizing source code. This characterization
of software source code is practical for determining correlation and, ultimately,
for determining whether copying occurred. While the theory and definitions are
broad enough to be useful in various areas of computer science, they are
particularly valuable in litigation.

In this part I also describe practical implementations of the theory for those
programmers who want to understand how to implement the algorithms.
Additionally, I describe applications of the theory in the real world. This part is
highly mathematical, though the chapter on source code characterization will
be useful for lawyers in understanding how elements of software source code
can be categorized, how these various elements relate, and how the elements
can affect a software copyright infringement, software trade secret, or software
patent case.

PART VI: OBJECT AND SOURCE/OBJECT CODE CORRELATION

In this part I introduce the theory and mathematics of object code correlation,
which is used to compare object code to object code to find signs of copying.
I also introduce the theory of source/object code correlation, which is used
to compare source code to object code to find signs of copying. Both of these
correlation measures are helpful before litigation when there is no access to
source code from at least one party’s software. I also describe practical imple-
mentations of the theory for those programmers who want to understand how
to implement these correlation measures, and I describe applications of the
methods and algorithms in the real world.

PART VII: SOURCE CODE CROSS-CORRELATION

In this part I introduce the theory and mathematics of source code cross-
correlation, which is specifically used to compare functional source code
statements to nonfunctional source code comments to find signs of copying.
This correlation measure is effective, in certain cases, for finding copied code
that has been disguised enough to avoid detection with one of the other
correlation measures. I describe some ways of effectively implementing code to

10 ABOUT THIS BOOK

PART X: PAST, PRESENT, AND FUTURE 11

measure source code cross-correlation for those programmers who want to
understand how to implement this measure, and I describe applications of
source code cross-correlation in the real world.

PART VIII: DETECTING SOFTWARE IP THEFT
AND INFRINGEMENT

All of the correlation measures described in previous parts are useful for
detecting software intellectual property theft; however, expert review is still
required. Previously developed algorithms often produced a measure that
claimed to show whether code was copied or not. In reality, a mathematical
measure in and of itself is not enough to make this determination, and that is
one of the problems with previous work in this area. In this part I describe
detailed, precise steps to be taken once correlation has been calculated. These
steps are as important to the standardization and objectivity required for
determining intellectual property theft and infringement as are the various
correlation measurements described in the previous parts.

PART IX: MISCELLANEOUS TOPICS

This part covers areas that have come up in my involvement with intellectual
property litigation. These subjects were also suggested by some of the experi-
enced reviewers of this book who felt they deserved discussion. The issues
described in this part often arise in software intellectual property cases and are
also important for code developers and managers to understand. In particular,
I discuss procedures for implementing a software clean room, I explain open
source code, and I describe the Digital Millennium Copyright Act.

PART X: PAST, PRESENT, AND FUTURE

The topics discussed in this book are cutting-edge, and I find them to be very
interesting and exciting. A lot of work remains to be done, including extending
the theories, advancing the mathematics, standardizing the definitions, and
promoting the methodologies. In this part I discuss what has been done to date,
speculate on areas of future research that build on the concepts in this book,
and look toward new applications in various aspects of law and computer
 science.

This page intentionally left blank

435

INDEX

435

A
Abelson, Hal, 387

Abstract ideas, 95

Abstraction, CodeSuite, 333–337

Abstraction filtration comparison
test, 331–338

Accolade, 74–76

A-correlation, 229–230, 275–276, 309

Adobe Systems Inc. v. Dmitry Sklyarov,
403–404

Aiken, Alex, 191–192

Albrecht, Allan, 172

Alert, 285

Algorithms, 189–195, 322–325, 329

Altai, Inc., 331–336

Alto, 70

Apache HTTP Server, 179–180

Apple Computer, 66–70

Apple Computer Inc. v. Franklin
Computer Corp., 66

Arney, Claude, 332

Arrays

brute-force, 148

creating from source code, 283–287

hashing lines, 150–151

ordering lines, 149–150

saving to disk, 151

sorting lines, 149

from source code, 234–238, 245

ASCII, 279–283

Assembly code, 40–44, 64

Assignment operator, 24

Associative property, 137

Asterisk (*) symbol, 24

Atanasoff-Berry Computer (ABC), 89–90

Atari court ruling, 76–77

Atari Games Corp. v. Nintendo of
America Inc., 74–77

AT&T, 391

Author (programmer) in common, 325,
329–330

Author rights, 57–58, 60

436 INDEX

Authorship, identifying, 249–251

Automatic code generation (ACG), 49,
319–321, 327–328

AutoZone, 392

B
Backslash, 48, 285

Backspace, 279, 285

Baer, Nik, 182

BASIC (programming language), 25

Baxter, Ira, 254–255

Bell, Alexander Graham, 83–84

Binary code, 39

Bit, 23

BitMatch, 258, 279

Black Duck Software, 392

Blank lines, 30, 169, 236

Board of Patent Appeals and Interferences
(BPAI), 95

Book publishers, 58–59

Boolean variable, 30

Bottom-up approach, 360–361

Brackets, 27–31, 149, 329

Built-in functions, 31

Business method patent, 94–95

BusyBox, 393–394

Byte, 23

Bytecode, 47

C
C (programming language), 23n, 25

C++ (programming language), 25

CA Scheduler, 331–338

Cadence Design Systems Inc. v. Avant!
Corporation, 212

Carriage return, 279, 285

Case-insensitive comparison, 239–241, 287

Case-insensitive matching, 140

Case-sensitivity, 237, 241

Catcher in the Rye, The (Salinger), 65

Categories of IP, 1

Certification of experts, 122–123

Challenger space shuttle, 116–118

Changing lines of code measure (CLOC)

CLOC growth, 177, 179, 180

file continuity, 177–178

LOC continuity, 178

measured results, 178–180

SLOC growth, 177

terms, 175–177

Character-weighting function, 134, 139

Checklist, copyright infringement, 338–340

Churchett, Dale, 254–255

Circular 1, Copyright Basics (U.S. Copyright
Office), 60

CL (continuing LOC), 176, 178, 179

Claim construction, 341–347

Clean room development

dirty room, 374–375, 380

guidelines for implementation, 376–380

history, 372–373

the monitor, 376, 380–381

room separation, 378

security, 378

setup, 374–376

Clinton, William Jefferson, 105

CLOC. See Changing lines of code measure
(CLOC)

Clone detection, 254–255

COBOL (programming language), 25

Code comments, 170–171

Code generation tools. See Automatic code
generation (ACG)

Code loop, 31

CodeMeasure, 6, 175

CodeSuite

abstraction, 333–337

BitMatch, 258, 279

CodeCLOC, 126

CodeCross, 296

CodeDiff, 126, 147, 182, 408

CodeMatch, 115, 130, 193–195, 212,
233, 335

filtration, 334

SourceDetective, 327–328, 334

tools, 5

Coincidence, 330n

Collected Cases of Injustice Rectified
(Ci), 115

Colting, Fredrik, 65

Columbia space shuttle, 116–118

Comment comparison, 212

Comment delimiters, 207, 235–236

Commented-out statements, 310–311

Comments

in code, 27–29, 31, 170–171, 198,
206–207

extracting, 284

and patent infringement, 348

Comment/string correlation, 211, 214,
224–225, 240–241, 273–274, 287

Comment/string element identity match
score, 223, 273, 308

Comment/string elements, 268–269

Comment/string-matching algorithm,
240, 245

Comment/string-to-statement correlation,
299, 308

Commodities trading patent, 94–95

Commutativity axiom, 215–216, 272,
301–302

Commutativity property, 129–130,
134–136

Compilations, code, 73–74

Compilers, 36, 39–40, 254

Compiling process, 39

Computer Associates (CA), 331–338

Computer Associates International Inc. v.
Altai Inc., 331–337

Computer patents and history, 88–89

Computer program definition, 60

Computer Software Copyright Act of
1980, 60

Computer visual display, 67–70

“Conditions for Patentability; Non-Obvious
Subject Matter” (MPEP, 35 U.S.C. § 103)
354–355

“Conditions for Patentability; Novelty and
Loss of Right to Patent” (MPEP, 35
U.S.C. § 102), 353–354

Confidentiality agreements, 107, 110,
364–365

Constant, Benjamin, 54

Constants, 198

Context-dependent macros, 51

Continuation character, 48

Continuation patents, 88

Continuation-in-part (CIP) patents, 88

Continuing file, 176–177, 179

Continuing LOC, 176, 178, 179

Contributory infringement, 96

Control words, 198, 202–203

Copyleft, 387

Copyright(s), 1

Atari court ruling, 76–77

code, 64–66

compilations, 73–74

fair use, 72, 74–76

Great Britain, 58

INDEX 437

438 INDEX

Copyright(s) (Cont.)

history and origins, 57–60

inception, 61

ineligible works and material, 61

infringement lawsuit, 62

redacting code, 64, 71

registration, 61–63, 70–71

reimplementation, 72–73

reverse engineering, 74–76

revisions and updates, 73

rule of doubt, 71

screen displays, 67–70

term, 71

U.S. Copyright Office circular, 60–61

WIPO definition, 60

Copyright Acts, 58–60, 63, 71

Copyright infringement

abstraction-filtration-comparison test,
331–338

author in common, 325, 329–330

checklist, 338–340

code generation tools, 319–321,
327–328

common algorithms, 322–325, 329

open source code, 318–319, 326–327

plagiarism, 325–326, 330–331

standard elements, 321, 328–329

Correlation

definition, 216, 272–273, 302–303

due to copying, 326–331

functional, 248–249

six reasons for, 318–326

Country of origin, identifying, 251

Court of Appeals for the Federal Circuit
(CAFC), 95

Creative Commons (CC) license, 387

Creative works, 331

Crime. See also Digital Millennium Copyright
Act (DMCA); Software forensics

Economic Espionage Act, 105–106

intellectual property (IP), 13–19

Cross compiler, 40

Cross-language comparisons, 213–214, 246

Cybertheft, 17

Cyclomatic complexity (a.k.a. McCabe
measure), 171–172

D
DaimlerChrysler, 392

Data recovery, 119–120

Date, priority, 87–88

Date of copyright registration, 62

Date of patent grant, 81

Date of publication, 58, 62–63

Debug option, 266, 269

Decompiled source code file, 263–265

Defender, 64–65

Defense Command, 64–65

Delimiter, 227, 235, 275, 284

Derivative works, 60, 70, 73

Salinger v. Colting, 65

Design patent, 81

Diamond v. R. Diehr, 91

Diff (comparison utility)

false negatives/false positives, 131–132

implementation, 131

theory, 128–131

Digital forensics, 119–120

Digital Millennium Copyright Act
(DMCA), 58

Adobe Systems Inc. v. Dmitry Sklyarov,
403–404

industry support of, 400–403

MPAA v. RealNetworks Inc., 404

opposition, 401–402

origins, 399

Titles I through V, 399–400

Viacom Inc. v. YouTube, Google Inc.,
404–405

Direct infringement, 95–96

Directional similarity, 136, 156

Dirty room, 374–375, 380

Divided infringement, 97

Divisional patents, 84, 87–88

DMS Software Reengineering Toolkit
(SRT), 351–352

Double equal (==) sign, 31

Double quotes, 200, 285

Double slash (//), 207

Duration of copyright, 71–72

Duration of patents, 87

E
Eckert-Mauchly Computer Corporation, 89

Economic benefit, trade secrets, 108–109

Economic Espionage Act (18 U.S.C. § 1831
and § 1832), 105–106

Eldred, Eric, 387

Element identity match score, 214, 271, 300

Element match score, 214, 271, 300

Elements, 198–199, 214, 218–219, 321,
328–329

else statement, 201–202

Employee policies, 14–15, 110–112, 364

Employee theft, 14–16

Enabling (patent criterion), 85

Energy Risk Management patent
application, 94–95

ENIAC, 88–89

Equality test operator (==), 203–204

Equals (=) symbol, 24, 202

Escape character, 284–285

Escape sequences, 208, 285–286

eVault Remote Backup Service, 98–99

Executable code, 39, 44

Executing source code, 36–37

Expert witnesses, 121–124, 347

Extended ASCII, 281–283

Extrinsic evidence, 346–347

F
Faidhi, J. A. W., 187–188

Fair use, 72, 74–76

False negatives/false positives, 132–133,
230–231, 276–277

Feynman, Richard, 116–118

File continuity, 177–178, 179

File decay, 177–178

File element identity match score, 215,
272, 301

File element match score, 215, 271, 301

File similarity scores, 161–164

Filtration, 326–338

Firmware, 66

First Electronic Computer, The (Burks and
Burks), 90

First-to-file patent law, 86

First-to-invent patent law, 86

Flynn, Mike, 194

for statement, 201–202

Foreign laws, and IP theft, 16–17

Forensics

digital forensics, 119–120

expert witnessing, 121–124

forensic engineering, 116–118

forensic examiner, 119–121

forensic science, 114–116

Form feed, 285

INDEX 439

440 INDEX

Fortran (programming language), 25

Four essential freedoms (FSF), 386

Fowler, Martin, 254

Fractional matching, 137–141, 156–160

Franklin Computer Corporation, 66

Free, Libre and Open Source Software
(FLOSS), 294

Free software, 386–388

Free Software Foundation (FSF), 294,
386–388

French Revolution, 54

Function declarations, 35

Function point analysis, 172

Functional correlation, 248–249

Functions, 26–32, 198

G
Galler, Bernard, 376

Gates, Bill, 70, 173

GNU Operating System open source
project, 386

GNU Public License (GPL), 294, 386,
393–394

Google, Inc., 404–405

Graves, Charles Tait, 362

Great Britain, 58

Guidelines, clean room development,
376–380

GUIs, 69–70

H
Halstead, Maurice H., 170, 189

Halstead measures, 170–171, 173, 189

Hamblen, James, 189

Hard disk data recovery, 119–120

Hashing algorithm, 131, 151

Hashing lines, 150–151

Head patents (Texas Instruments), 341–345

Header comments, 27–29

Header files, 33–34

Headway Software, 352

Hex number, 285

History

clean rooms, 372–373

copyrights, 57–60

Digital Millennium Copyright Act
(DMCA), 399

forensic science, 115

patents, 79–80

plagiarism detection, 187–189

trade secrets, 103–104

Hitz, Dave, 395–396

Honeywell, 89

I
“Identification of Trade Secret Claims in

Litigation: Solutions for a Ubiquitous
Dispute,” (Graves et al.), 362

Identifier(s), 198, 204–205

delimiter, 284

elements, 269

extracting, 284

match score, 225–227

names, 188, 213, 349

Identifier correlation, 211, 213, 214, 225–227,
241–243, 268, 274–275, 287

Identifier-matching algorithm, 241–243, 245

Identity axiom, 216, 272, 302

Identity property, 129, 134–135

if statement, 201–202

Include files, 33

Induced infringement, 96

Industrial property, 1

Ineligible material, 61

INDEX 441

Infringement. See also Copyright
infringement; Patent infringement

contributory, 96

direct, 95–96

divided, 97

induced, 96

lawsuit, 62

patents, 95–97

Instruction sequence correlation, 213, 214,
227–228, 243–245

Instruction sequence-matching algorithm,
243–244

Instructions (code), 198, 202–203

Instrumenting the software, 349–350

Intellectual property (IP). See also
Copyrights; Patent(s); Software
forensics; Trade secret(s)

categories, 1

crime, 13–19

definition, 1

early legal rulings, 53–55

opponent, 54

tax issues, 181–182

Intermediate code, 47

Internal Revenue Service, 181–182

International Copyright Act of 1891, 58

Internet Archive, 366

Internet code searches, 18, 327–328

Interpreters (source code), 36, 45–46

Intrinsic evidence, 346–347

Invalidity sections of MPEP, 353–357

IP Innovation v. Red Hat and Novell,
394–395

J
Jankowitz, Hugo, 189–190

Java (programming language), 25

JavaScript (programming language), 25, 46

Jefferson, Thomas, 80

Jobs, Steve, 70

JPlag program, 192

K
Kentucky Fried Chicken, 106–107

Khodorkovsky, Mikhail, 16

King Henry VI, 80

Klocwork Insight, 351

L
Labels, 198, 204–205

LCCS (longest common contiguous
subsequence), 134, 137–138, 140, 210n,
242–243

LCS (longest common subsequence), 134,
137–138, 140, 210n

Lebedev, Platon, 16

Lemma, 137, 216, 273, 303

Lessig, Larry, 387

Licenses, open source, 388–390

Line continuity, 177–178

Line decay, 177–178

Lines of code (LOC), 169–170, 173–175,
177–180

Line-weighting function, 134, 139–140

Linux (operating system), 391–393

LISP (programming language), 25

Literary work, 67

Litigation preparation, 289–293

LLOC, 169–170

LOC, 169–170, 173–175, 177–180

LOC continuity, 178, 179

Local variables, 30

Location axiom, 216, 272, 302

Location property, 130–131, 135

Logical SLOC, 169–170

442 INDEX

Longest common contiguous subsequence.
See LCCS

Longest common subsequence. See LCS

Longest common substring. See LCCS

Loop, 31

M
Machine language, 39

Macros, 48–49

Malpohl, Guido, 192

Malware, 293

Manual of Patent Examining Procedure
(MPEP) (U.S. Patent and Trademark
Office), 83, 353–357

Markman hearing, 343–347

Markman v. Westview Instruments, Inc.,
345–347

Match score, 134, 137–138, 140–145,
151–160, 214–216, 275, 307

Match types, 210

Matching lines, 133, 135–136

Mathematical definitions, 214–215,
270–272, 300–301

Mathematics, 215–216, 272–273, 301

MatrixCalc(), 156–160

MatrixCalcOptimized(), 159–160

McAfee, Inc. research report, 14–17

McCabe, Thomas, 171

McCabe measure (a.k.a. cyclomatic
complexity), 171–172

MCF (modified continuing files), 174, 176, 179

M-correlation, 229–230, 275–276, 309–310

Measuring similar files, 140–142

Measuring similar lines, 136–140

Measuring similar programs, 142–145

Measuring source code evolution. See
Source code changes and evolution

Metadata preservation, 119–120

Methods, 26, 204

Michels, Doug, 391

Michels, Larry, 391

Microsoft Visual Studio code, 319–321

Microsoft Windows, 67–70

Misappropriation, 111–112

Modified continuing files (MCF), 174, 176, 179

Moglen, Eben, 386

Molasses, 100–101

Monitor, 376, 380–381

Monsoon Multimedia, Inc., 393

Morton Thiokol, Inc., 117

MOSS program, 192

Mozilla Firefox, 178–180

MPAA v. RealNetworks Inc., 404

MPEP. See Manual of Patent Examining
Procedure

Mutual similarity, 135–136, 156

N
National Conference of Commissioners on

Uniform State Laws (NCCUSL), 104

Native code, 40

NDAs, 110–112, 364

Netscape Communications
Corporation, 384

Neutral experts, 123–124

Newline, 208, 240, 285

NF (new files), 176, 178

Nintendo, 74–77

NLCF (new LOC in continuing files),
176, 179

Nondisclosure agreements (NDAs),
110–112, 364

Non-enabling (patent criterion), 85

Non-header files, 181

Noninfringement, 352–357

INDEX 443

Nonobviousness, 85, 91, 354–355

Non-practicing entities (NPEs), 99–100

Nonprintable characters, 285

Novell Corporation, 391–392, 394

Novelty, 85

Null, 236, 285

O
Object code

A-correlation, 275

arrays, 283–287

and assembly code, 40–43

comment/string correlation,
273–274, 287

copyrights, 64–66

decompiled source code file, 263–265

definition, 266–268

elements, 268–270

false negatives, 276–277

files, 43–44

identifier correlation, 274–275, 287

libraries, 290

litigation preparation, 289–293

malware, 293

mathematical definitions, 270–272

mathematics, 272–273

M-correlation, 275

open source code, 294

original source code file, 261–263

overall correlation, 287

S-correlation, 275

text strings, 279–283

third-party code, 293

Octal number, 285

On Demand Machine Corporation v. Ingram
Industries, Inc. et al., 97

OOSITA (one of ordinary skill in the art), 86

Open source code, 108, 168, 253–254, 294,
318–319, 326–327

Open source database search engine, 327

Open Source Initiative (OSI), 384–385

Open source software

free software, 386–388

lawsuits, 390–396

open source licenses, 388–390

OSI certification, 385

Operators, 198, 203–204, 233

Opposition to DMCA, 401–402

Ordering lines, 149–150

Origin identity, 251

Outsourcing, 16–17

Overall correlation, 245–246, 287, 299,
308–309

Overall source code correlation, 213, 214,
228–230, 268

P
Parker, Alan, 189

Partial matching, 210, 242, 274, 287, 307

Patent(s)

anticipated, 353–354

arguments for/against, 91–94

compared with trade secrets, 112

continuation, 88

continuation-in-part (CIP), 88

criteria, 85

divisional, 87–88

duration, 87

free software and, 388

history, 80–81

NPEs and trolls, 99–100

process, 85–86

provisional, 86–87

public disclosure, 86

444 INDEX

Patent(s) (Cont.)

software, 90–95

structure of, 82–84

types, 81–82

validity/invalidity, 352–357

Patent infringement

claim construction, 341–347

claims interpretation guidelines, 346–347

DMS Software Reengineering Toolkit
(SRT), 351–352

invalidity sections of MPEP, 353–357

Klocwork Insight, 351

types, 95–97

Patent trolls, 99–100

Peabody v. Norfolk, 104

Perens, Bruce, 384

Perl, 46

Phillips v. AWH Corporation, 346

Phlippsen, Michael, 192

PHP (programming language), 25

Physical SLOC, 169

Plagiarism. See also Copyright infringement

algorithms, 192–195

code correlation, 252, 325–326

defined, 191

detection history, 187–192

Jankowitz algorithm, 189–190

JPlag program, 192

levels of, 188

Plague program, 191–192

Plant patents, 81

Plus (+) symbol, 24

Ponemon Institute, 15

Prechelt, Lutz, 192

Primitives, 37, 49–51

Printable characters, 279–283

Priority date, 87–88

Procedures (functions), 26

Programming languages

cross language comparison, 213–214

description table, 25

Programming style, 325

Prototypes, 35

Provisional patent application, 86–87

PTO. See U.S. Patent and Trademark
Office (PTO)

Public disclosure of invention, 86, 87n

Public knowledge of trade secrets, 366–367

Public performance, 61

Publication date, 61–63

Published works and copyright, 60–62

Python, 46

Q
Qualifications of expert witnesses, 121–124

Queen Anne, 58–59

Quotation marks, 200, 285

R
Rabbinic law, 57

Rabin-Karp algorithm, 138

Range, Brian D., 362

Raymond, Eric S., 384

Reagan, Ronald, 116

Recursive function, 156–160

Red Hat, 394–395

Redacting code, 64, 71

Refactoring, 254–255

Registration of copyright, 61–62

Reimplementing computer programs, 72–73

Remote backup, 97–98

Restatement of Torts (§ 757 and § 758), 104

Reverse engineering, 74–76, 350–352

INDEX 445

Revisions to software, 73

Rewriting source code, 72–73

Robinson, S. K., 187–188

ROM, 66

Routines (functions), 26

Rule of doubt, 71

S
S.A.F.E. Corporation (Software Analysis

and Forensic Engineering Corporation),
5, 279, 333, 408

Salinger v. Colting, 65, 81

Schleimer, Saul, 191

Scientific Toolworks, 350

SCO Group, 391

SCO v. IBM, 391

SCO v. Linux, 391–392

S-correlation, 228–230, 275–276, 309

Screen displays, 67–70

Scripting languages, 46

Scripts, 45–47

Secrecy, 364–365

Secrecy policy, 110–111

Security

clean room, 378

measures, 365

policies, 14–15

source code, 14

Sega Enterprises Ltd. v. Accolade Inc., 74–76

Semicolon, 200

Separators, 233–235

Shell Oil, 16

Similarity measurements

case insensitivity, 140, 156

directional similarity, 136, 156

fractional matching, 137–140, 156–160

mutual similarity, 135–136, 156

programs, 142–145

simple matching, 137, 140–142, 153–156

weighted fractional matching, 139–140

whitespace, 140

Simple matching, 137, 140–142, 153–156

Single quote, 285

Slashes, 48, 207, 235, 285

SLOC (source lines of code), 169–170,
173–175, 177–180

SLOC growth, 177, 179, 180

Software, instrumenting, 349–350

Software and Intellectual Property Protection
(Galler), 376

Software architecture, 337–338

Software copyrights

Apple Computer Inc v. Franklin Computer
Corp., 66

Apple GUIs, 69–70

first submissions, 63

length of protection, 71

redaction, 64, 71

registration, 70–71

screen displays, 67–69

trade secrets, 63–64

Williams Electronics, Inc. v. Arctic
International, Inc., 64–65

Software forensics

digital forensics, 119–120

expert witnessing, 121–124

forensic engineering, 116–118

forensic science, 114–116

need for, 114–115

Software Freedom Law Center (SFLC),
294, 393

Software patents

arguments for/against, 91–94

infringement, 95–97

worldwide variances, 91

446 INDEX

Software plagiarism. See Plagiarism

Software synthesis, 37, 49–51

Software valuations, 181–182

Sorting lines, 149

Source code

copyrights, 64

detailed sample, 27–29

example language, 23n

executing, 36–37

files, 32–35, 43–44

functions, 26–32

header files, 33–35

programming languages, 24–25

programs, 35–36

rewriting, 72–73

submission requirements, 70–71

transfer security, 14

Source code changes and evolution,
measuring

CLOC metric, 175–180

cyclomatic complexity, 171–172

function point analysis, 172

Halstead measures, 170–171

lines of code, 169–170

non-header files, 181

project evolution, 173–175

transfer pricing, 181–182

Source code characterization

comments, 206–207

source code elements, 197–199

statements, 199–205

strings, 207–208

Source code correlation

arrays, 234–238

authorship, 247, 249–251

Cadence Design Systems Inc. v. Avant!
Corporation, 212

comment comparison, 212

comment/string correlation, 211,
223–225, 240–241

compiler optimization, 248, 254

copyright infringement, 247, 252

cross-language comparisons, 213–214,
246

false negatives/false positives, 230–231

functional correlation, 248–249

identifier correlation, 213, 225–227,
241–243

instruction sequence correlation, 213,
227–228, 243–245

match types, 210

mathematical definitions, 214–215

mathematics, 215–216

open source code, 248, 253–254

origin identity, 247, 251

overall correlation, 228–230, 245–246

overall source code correlation, 213

patent infringement, 248, 255–256

refactoring, 248, 254–255

source code examples, 217–218

statement correlation, 211, 220–222

statement-matching algorithm, 239–240

trade secret theft, 247, 252–253

transformational matches, 246

unique elements, 218–219

Source code cross-correlation

commented-out statements, 310–311

comment/string-to-statement
correlation, 308

commutativity axiom, 301–302

correlation definition, 302–303

cross-language comparison, 300

identity axiom, 302

lemmas, 303

location axiom, 302

INDEX 447

mathematical definitions, 300–301

overall correlation, 308–309

sample code, 303–307

statement-to-comment/string
correlation, 307

Source code differentiation

arrays, 147–151

axioms, 134–135

changing lines of code measure (CLOC),
175–180

cyclomatic complexity (aka McCabe
measure), 171–172

definitions, 134

diff (comparison utility), 128–133

directional similarity, 135–136, 156

file similarity scores, 161–164

finding similar code, 165–168

function point analysis, 172

halstead measures, 170–171, 173

lines of code, 169–170

measuring file similarity, 140–142

measuring similar lines, 136–140

measuring similar programs, 142–145

mutual similarity, 135–136, 156

non-header files, 181

optimal match score, 151–160

similarity, 135–136

similarity score, 133

source code differentiation, 133–135

source code evolution, 173–175

tax issues, 181–182

Source lines of code (SLOC), 169–170,
173–175, 177–180

SourceDetective, 327–328, 334

Source/object code correlation
applications

malware, 293

open source code, 294

pre-litigation work, 289–293

third-party code, 293

Source/object code correlation
implementation

arrays, 283–287

comment/string correlation, 287

identifier correlation, 287

overall correlation, 287

text strings, 279–283

Source/object code correlation theory

A-correlation, 275

comment/string correlation, 273–274

decompiled source code file, 263–265

definition, 266–268

elements, 268–270

false negatives, 276–277

identifier correlation, 274–275

mathematical definitions, 270–272

mathematics, 272–273

M-correlation, 275

original source code file, 261–263

S-correlation, 275

Space shuttles, 116–118

“Specification” (MPEP, 35 U.S.C. § 112),
356–357

Specificity, 361–364

Specifiers, 198, 203

Spelling errors, 211, 328–330

Sperry Rand, 89–90

SQL (programming language), 25

Stallman, Richard, 386, 392

Standard elements, 321, 328–329

State Street Bank & Trust Co. v. Signature
Financial Group, 91

Statement correlation, 211, 239–240, 248

calculation, 214, 220–223

448 INDEX

Statement correlation (Cont.)

case-sensitivity, 239

equations, 219–220

Statement element identity match score, 307

Statement element match score, 223

Statement-matching algorithm, 239

Statements

control words, 202–203

identifiers, 204–205

if and else statements, 201

operators, 203–204

quotation marks, 200

semicolon, 200

specifiers, 203

for statement, 201

Statement-to-comment/string correlation,
299–300, 307

Static analysis tools, 350–352

Statue of Liberty, 81–82

Statute of Anne, 58–59

Statutory damages, 62

String correlation, 211, 214, 223–225

String delimiters, 235, 284

Strings, 198, 200, 207–208

Stroud, John, 171

Stroud number, 171

Structure101, 352

Subroutines (functions), 26, 48

Substantial changes, 73

Substantial code, 331

Substantial similarity, 332–333

Substitution characters, 286–287

Substring, 283

Symantec v. Commissioner of Internal
Revenue, 181–182

Synthesis primitives, 49–51

Synthesizers, 37

T
Tab, 208, 285

Tarantella, 391

Tax issues, 181–182

TCF (total continuing files), 176–178

Telephone patent, 83–84

Term of copyright protection, 71, 92

Texas Instruments, 341–345

Text characters, 279

Text length threshold, 283

Text strings, 279–283

Text substring, 281, 283

TF (total files), 176, 179

Third-party code, 248, 253–254, 293–294.
See also Open source code

Title 17, U.S. Code, 72

TL (total LOC), 176–180

TLCF (total LOC in continuing files),
176, 179

TNL (total new LOC), 176, 179

Top-down approach, 360

Torvalds, Linus, 392

Trade secrets

characteristics, 106–111, 365–366

compared with patents, 112

copied code, 365–366

Economic Espionage Act (18 U.S.C.
§ 1831 and § 1832), 105–106

history, 103–104

identifying, 360–367

Peabody v. Norfolk, 104

public knowledge of, 366–367

secrecy of, 364–366

software copyrights, 63–64, 71

specificity, 361–364

theft, 106, 111–112, 252–253

INDEX 449

Vickery v. Welch, 104

Yield Dynamics, Inc. v. TEA Systems
Corporation, 109

Transfer pricing, 181–182

Transformational matches, 210, 246

Translations, 73

U
UCF (unchanged continuing files), 174,

176, 177–178, 179

Unchanged file continuity, 177, 179

Unclean hands, 76–77

Underscore, 234, 270

Understand (reverse-engineering tool),
350–351

Unicode, 279, 285

Unicode Consortium, 281

Unified Modeling Language (UML), 21

Uniform Trade Secrets Act (UTSA), 104–105

Unique elements, 218–219

UNIX (operating system), 128, 391–392

Unpublished works and copyright, 60

U.S. Code (Title 17), 72

U.S. Constitution (Art. I, sec. 8), 54

U.S. Copyright Office circular, 60–61

U.S. Patent Act, 80

U.S. Patent and Trademark Office (PTO),
81, 90–91

U.S. Supreme Court, 95

Utility (patentability criteria), 85

Utility patent, 81

V
Variables, 24, 30, 198

Verilog (programming language), 25, 49,
322–325

Veritas, 181–182

Vertical tab, 285

VHDL, 49

Viacom Inc. v. YouTube, Google Inc., 404–405

Vickery v. Welch, 104

Video game lawsuits, 64–65, 74–77

Virtual machines, 36–37

VisiCalc, 66

Visual arts work, 67

Visual Basic (programming language), 25

W
Washington, George, 80

WayBack Machine, 366

Weighted fractional matching, 139–140

Whale, Geoff, 191

Whitespace, 283

Whitespace patterns, 317n

Whitespace reduction, 134, 140, 234–235,
269, 273

Wilkerson, Daniel, 191

Williams, James, 332

Williams Electronics, Inc. v. Arctic
International, Inc., 64–65

WIPO (World Intellectual Property
Organization) definitions

copyright, 60

intellectual property (IP), 1

patent, 79

trade secrets, 103

WIPO treaties, 399

Word (bytes), 23

X
Xenix, 391

Xerox, 67–70

450 INDEX

Y
YAP programs, 191

Yield Dynamics, Inc. v. TEA Systems
Corporation, 109

YouTube, 404–405

Z
Zeidman Consulting, 5, 338–340

Zeke, 332

Zettabyte File System (ZFS), 395

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 About this Book
	Part I: Introduction
	Part II: Software
	Part III: Intellectual Property
	Part IV: Source Code Differentiation
	Part V: Source Code Correlation
	Part VI: Object and Source/Object Code Correlation
	Part VII: Source Code Cross-Correlation
	Part VIII: Detecting Software IP Theft and Infringement
	Part IX: Miscellaneous Topics
	Part X: Past, Present, and Future

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

