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“ As a frequent expert witness myself, I found Bob’s book to be important and well 

written. Intellectual property and software plagiarism are complicated subjects, as are 

patents and copyrights.  This book explains the key elements better than anything else  

I have seen. The book is highly recommended to anyone who develops software and also 

to those who need to protect proprietary software algorithms. The book should also be 

useful to attorneys who are involved with intellectual property litigation.”

—Capers Jones, president, Capers Jones & Associates, LLC

“ Intellectual property [IP] is an engine of growth for our high-tech world and a valuable 

commodity traded in its own right. Bob Zeidman is a leading authority on software IP, 

and in this book he shares with us his expertise. The book is comprehensive. It contains 

clear explanations of many difficult subjects. Businesspeople who study it will learn 

how to protect their IP. Lawyers will use it to understand the specifics of how software 

embodies IP. Judges will cite it in their decisions on IP litigation.”

—Abraham Sofaer, George P. Shultz Senior Fellow in Foreign Policy and 

National Security Affairs, Hoover Institution, Stanford University

“ Bob has done a fantastic job in making computer science forensics understandable to mere 

mortals: attorneys, engineers, and managers. This is the ultimate handbook for expert  

witnesses, due diligence execution, and developing a baseline for software valuation. 

Buy it before your competitors do!”

—Don Shafer, CSDP, chief technology officer, Athens Group, LLC

“ Bob has considerable experience in dealing with issues associated with unauthorized 

use of software code. His insights in this book are particularly helpful for those seeking 

to provide expert analysis with respect to software code.”

—Neel I. Chatterjee, partner, Orrick, Herrington & Sutcliffe, LLC

“ This readable book perfectly bridges the jargon divide between software engineers and 

IP attorneys. It helps each group finally understand exactly what the other is talking 

about. As a software developer and expert witness I will definitely keep a copy handy 

and recommend it to others on my team.”

—Michael Barr, president, Netrino, LLC

“ This book makes intellectual property law understandable and accessible to program-

mers by combining discussions of the law with discussions of computer science, and 

interweaving case studies to elucidate the intersection of these disciplines.”

—Robert C. Seacord, Secure Coding Manager, Software Engineering Institute
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PREFACE

WHAT IS THIS BOOK ABOUT?

This book is generally about software intellectual property and specifically 
about the field of software forensics. While you may never testify in a court-
room, attempt to deduce the true owner of a valuable program, or measure the 
intellectual property (IP) value of software source code, if you are at all involved 
with software you need to know how to protect your rights to that software. 
This book will give you an understanding of those rights, their limitations,  
how to protect those rights, and how to take action against someone or some 
organization that you believe has infringed on those rights.

Unlike digital forensics, which studies the bits and bytes on a digital storage 
medium, such as a hard disk or DVD-ROM, without a deep understanding of  
what those ones and zeros represent, software forensics studies the software code 
that instructs a computer to perform operations. Software forensics discovers 
information about the history and usage of that software for presentation in a 
court of law. It combines information and techniques from computer science, 
mathematics, and law in a way that is unique and, I believe, particularly interesting.

HOW IS THIS BOOK ORGANIZED?

This book contains overviews as well as in-depth information about law,  
mathematics, and computer science. The book is organized into chapters that 

xxi



can be categorized as follows: those primarily about intellectual property law, 
those about computer science, those about mathematics, and those about  
business and business procedures. There is, of course, overlap. Chapter 1 
describes the organization of the book in detail and allows you to choose  
those chapters that are most relevant to your career and your interests.

WHO SHOULD READ THIS BOOK?

This book is for anyone interested in software intellectual property. Specifically, 
I believe the book will appeal to computer scientists, computer programmers, 
business managers, lawyers, engineering consultants, expert witnesses, and  
software entrepreneurs. While the focus is on software IP measurement,  
comparison, and infringement detection, the book also has useful information 
about many issues related to software IP, and I believe that many people 
involved with software will find the book valuable and interesting.

SUPPORT AND COMMENTS

Thank you for purchasing my book. Please send me feedback on corrections 
and improvements. Of course, I also like to hear about the things I did right, the 
things you like about the book, and how it has helped you in some way.

Bob Zeidman
bob@SAFE-corp.biz
www.SAFE-corp.biz
Cupertino, California
March 2011
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had invented, developed, and explored before me. I explained some of my own 
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1ABOUT THIS BOOK

This book crosses a number of different fields of computer science, mathematics, 
and law. Not all readers will want to delve into every chapter. This is the place  
to start, but from this point onward each reader’s experience will be different.  
In this chapter I describe each of the parts and chapters of the book to help you 
determine which chapters will be useful and appealing for your specific needs 
and interests.

I should make clear that I am not a lawyer, have never been one, and have never 
even played one on TV. All of the issues I discuss in this book are my under-
standing based on my technical consulting and expert witness work on nearly 
100 intellectual property cases to date. My consulting company, Zeidman 
Consulting, has been growing over the years, and now the work is split between 
my employees and me. When I refer in the book to my experiences, in most 
cases that is firsthand information, but in other cases it may be information  
discovered and tested by an employee and related and explained to me.

In this book I also refer to forensic analysis tools that I have used to analyze 
software, in particular the CodeSuite tool that is produced and offered for sale 
by my software company, Software Analysis and Forensic Engineering 
Corporation (S.A.F.E. Corporation), and can be downloaded from the company 
website at www.SAFE-corp.biz. The CodeSuite set of tools currently consists of 
the following functions: BitMatch, CodeCLOC, CodeCross, CodeDiff, and 
SourceDetective. Functions are being continually added and updated. Each of 
these functions uses one or more of the algorithms described in later chapters.

www.SAFE-corp.biz
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Also, the CodeMeasure program uses the CLOC method to measure soft- 
ware evolution, which is explained in Chapter 12. It is also produced and 
sold by S.A.F.E. Corporation and can be downloaded from its own site at  
www.CodeMeasure.com.

Table 1.1 should help you determine which chapters will be the most helpful 
and relevant to you. Find your occupation at the top of the table and read 
downward to see the chapters that will be most relevant to your background 
and your job.

PART I: INTRODUCTION

The introduction to the book is just that—an introduction, intended to give 
you a broad overview of the book and help you determine why you want to 
read it and which chapters you will find most in line with your own interests 
and needs. This part includes a description of the other parts and chapters in 
the book. It also gives information and statistics about intellectual property 
crime, to give you an understanding of why this book is useful and important.

PART II: SOFTWARE

In this part I describe source code, object code, interpreted code, macros, and 
synthesis code, which are the blueprints for software. This part describes these 
important concepts, which are well known to computer scientists and program-
mers but may not be understood, or may not be understood in sufficient depth, 
by attorneys involved in software IP litigation. This part will be valuable for 
lawyers to help them understand how different kinds of software code relate to 
each other, and how these different kinds of software code can affect a software 
copyright infringement, software trade secret, or software patent case.

PART III: INTELLECTUAL PROPERTY

In this part I describe intellectual property, in particular copyrights, patents, 
and trade secrets. I have found that many of these concepts are unclear or only 
partially understood by many computer scientists, programmers, and corporate 
managers. In this part I define these terms in ways that I believe will be 
comprehensible to those with little or no legal background.

www.CodeMeasure.com
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Table 1.1 Finding Your Way through This Book

Chapter Title
Computer 
scientist

Computer  
programmer Manager Lawyer

Consultant/ 
expert witness

Software 
entrepreneur

Part I Introduction X X X X X X

Chapter 1 About This Book X X X X X X

Chapter 2 Intellectual Property Crime X X X X X X

Part II Software X X X X X X

Chapter 3 Source Code X X

Chapter 4 Object Code and Assembly Code X X

Chapter 5 Scripts, Intermediate Code, Macros,  
and Synthesis Primitives X X

Part III Intellectual Property X X X X X X

Chapter 6 Copyrights X X X X X

Chapter 7 Patents X X X X X

Chapter 8 Trade Secrets X X X X X

Chapter 9 Software Forensics X X X X X X

Part IV Source Code Differentiation X X X X X X

Chapter 10 Theory X X X

Chapter 11 Implementation X X X X

Chapter 12 Applications X X X X X

Part V Source Code Correlation X X X X X X

Chapter 13 Plagiarism Detection X X X

Chapter 14 Source Code Characterization X X X X X

Continues



Table 1.1 Finding Your Way through This Book (Continued)

Chapter Title
Computer 
scientist

Computer  
programmer Manager Lawyer

Consultant/ 
expert witness

Software 
entrepreneur

Chapter 15 Theory X X X

Chapter 16 Implementation X X X X

Chapter 17 Applications X X X X X

Part VI Object and Source/Object Code 
Correlation

 
X

 
X

 
X

 
X

 
X

 
X

Chapter 18 Theory X X X

Chapter 19 Implementation X X X X

Chapter 20 Applications X X X X X

Part VII Source Code Cross-Correlation X X X X X X

Chapter 21 Theory, Implementation, Application X X X X X

Part VIII Detecting Software IP Theft and 
Infringement

 
X

 
X

 
X

 
X

 
X

 
X

Chapter 22 Detecting Copyright Infringement X X X X

Chapter 23 Detecting Patent Infringement X X X X

Chapter 24 Detecting Trade Secret Theft X X X X

Part IX Miscellaneous Topics X X X X X X

Chapter 25 Implementing a Software Clean Room X X X X X

Chapter 26 Open Source Software X X X X X

Chapter 27 Digital Millennium Copyright Act X X X X X

Part X Past, Present, and Future X X X X X
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PART V: SOURCE CODE CORRELATION  9

I also define the field of software forensics in this part. When I am asked to 
work on a case, there is sometimes confusion about the fields of software 
forensics and digital forensics. In some cases, engineers practicing digital 
forensics claim to practice software forensics and sometimes use the tools of 
digital forensics to attempt to draw conclusions about software IP, yielding 
incorrect or inconclusive results. Software forensics requires the specialized 
tools of the field and expertise in the field to extract relevant information from 
the tools, reach appropriate conclusions, and opine on those conclusions. In this 
part I offer definitions of the two fields. In fact, the definition of software 
forensics has, to this point, been somewhat vague. My explanation in this part 
will clarify the practice of software forensics, show how it fits into the field of 
forensic science, and differentiate it from digital forensics.

PART IV: SOURCE CODE DIFFERENTIATION

This part describes source code differentiation, a very basic method of 
comparing and measuring software source code. Source code differentiation is 
especially useful for finding code that has been directly copied from one 
program to another and for determining a percentage of direct copying.  
While there are many metrics for measuring qualities of software, source  
code differentiation has some unique abilities to measure development  
effort, software changes, and software intellectual property changes that are 
particularly useful for determining software intellectual property value for such 
applications as transfer pricing calculations.

In this part I introduce the mathematics of the theory of source code 
differentiation and explain implementations of source code differentiation for 
programmers who want to understand how to implement it. I also describe the 
“changing lines of code” or “CLOC” method of measuring software growth that 
is based on source code differentiation, and I compare it to traditional methods 
like “source lines of code” or “SLOC.” I then discuss various applications of 
source code differentiation, though I believe that many more applications of 
this metric will be found in the future.

PART V: SOURCE CODE CORRELATION

This part starts by exploring the various methods and algorithms for “software 
plagiarism detection” that have been developed over the last few decades.  



I describe the origins of these methods and algorithms, and I explain their 
limitations. In particular, there have been no standard definitions and no 
supporting theory for this work, so I introduce the theory of source code 
correlation and definitions for characterizing source code. This characterization 
of software source code is practical for determining correlation and, ultimately, 
for determining whether copying occurred. While the theory and definitions are 
broad enough to be useful in various areas of computer science, they are 
particularly valuable in litigation.

In this part I also describe practical implementations of the theory for those 
programmers who want to understand how to implement the algorithms. 
Additionally, I describe applications of the theory in the real world. This part is 
highly mathematical, though the chapter on source code characterization will 
be useful for lawyers in understanding how elements of software source code 
can be categorized, how these various elements relate, and how the elements 
can affect a software copyright infringement, software trade secret, or software 
patent case.

PART VI: OBJECT AND SOURCE/OBJECT CODE CORRELATION

In this part I introduce the theory and mathematics of object code correlation, 
which is used to compare object code to object code to find signs of copying. 
I also introduce the theory of source/object code correlation, which is used 
to compare source code to object code to find signs of copying. Both of these 
correlation measures are helpful before litigation when there is no access to 
source code from at least one party’s software. I also describe practical imple-
mentations of the theory for those programmers who want to understand how 
to implement these correlation measures, and I describe applications of the 
methods and algorithms in the real world.

PART VII: SOURCE CODE CROSS-CORRELATION

In this part I introduce the theory and mathematics of source code cross-
correlation, which is specifically used to compare functional source code 
statements to nonfunctional source code comments to find signs of copying. 
This correlation measure is effective, in certain cases, for finding copied code 
that has been disguised enough to avoid detection with one of the other 
correlation measures. I describe some ways of effectively implementing code to 

10  ABOUT THIS BOOK
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measure source code cross-correlation for those programmers who want to 
understand how to implement this measure, and I describe applications of 
source code cross-correlation in the real world.

PART VIII: DETECTING SOFTWARE IP THEFT  
AND INFRINGEMENT

All of the correlation measures described in previous parts are useful for 
detecting software intellectual property theft; however, expert review is still 
required. Previously developed algorithms often produced a measure that 
claimed to show whether code was copied or not. In reality, a mathematical 
measure in and of itself is not enough to make this determination, and that is 
one of the problems with previous work in this area. In this part I describe 
detailed, precise steps to be taken once correlation has been calculated. These 
steps are as important to the standardization and objectivity required for 
determining intellectual property theft and infringement as are the various 
correlation measurements described in the previous parts.

PART IX: MISCELLANEOUS TOPICS

This part covers areas that have come up in my involvement with intellectual 
property litigation. These subjects were also suggested by some of the experi-
enced reviewers of this book who felt they deserved discussion. The issues 
described in this part often arise in software intellectual property cases and are 
also important for code developers and managers to understand. In particular, 
I discuss procedures for implementing a software clean room, I explain open 
source code, and I describe the Digital Millennium Copyright Act.

PART X: PAST, PRESENT, AND FUTURE

The topics discussed in this book are cutting-edge, and I find them to be very 
interesting and exciting. A lot of work remains to be done, including extending 
the theories, advancing the mathematics, standardizing the definitions, and 
promoting the methodologies. In this part I discuss what has been done to date, 
speculate on areas of future research that build on the concepts in this book, 
and look toward new applications in various aspects of law and computer 
 science.
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