Contents

Foreword xvii
Preface xix
Acknowledgments xxi
About the Authors xxiii
List of Acronyms xxv

1 Evolution of Cellular Technologies 1
1.1 Introduction 1
1.2 Evolution of Mobile Broadband 3
   1.2.1 First Generation Cellular Systems 5
   1.2.2 2G Digital Cellular Systems 6
   1.2.3 3G Broadband Wireless Systems 10
   1.2.4 Beyond 3G: HSPA+, WiMAX, and LTE 15
   1.2.5 Summary of Evolution of 3GPP Standards 22
1.3 The Case for LTE/SAE 23
   1.3.1 Demand Drivers for LTE 24
   1.3.2 Key Requirements of LTE Design 26
1.4 Key Enabling Technologies and Features of LTE 28
   1.4.1 Orthogonal Frequency Division Multiplexing (OFDM) 28
   1.4.2 SC-FDE and SC-FDMA 30
   1.4.3 Channel Dependent Multi-user Resource Scheduling 30
   1.4.4 Multiantenna Techniques 31
   1.4.5 IP-Based Flat Network Architecture 32
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 LTE Network Architecture</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>1.6 Spectrum Options and Migration Plans for LTE</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1.7 Future of Mobile Broadband—Beyond LTE</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>1.8 Summary and Conclusions</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

**Part I LTE Tutorials**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Wireless Fundamentals</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.1 Communication System Building Blocks</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>2.2 The Broadband Wireless Channel: Path Loss and Shadowing</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Path Loss</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Shadowing</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2.3 Cellular Systems</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2.3.1 The Cellular Concept</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Analysis of Cellular Systems</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>2.3.3 Sectoring</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2.4 The Broadband Wireless Channel: Fading</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Delay Spread and Coherence Bandwidth</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Doppler Spread and Coherence Time</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2.4.3 Angular Spread and Coherence Distance</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>2.5 Modelling Broadband Fading Channels</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Statistical Channel Models</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2.5.2 Statistical Correlation of the Received Signal</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2.5.3 Empirical Channel Models</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>2.6 Mitigation of Narrowband Fading</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>2.6.1 The Effects of Unmitigated Fading</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>2.6.2 Spatial Diversity</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>2.6.3 Coding and Interleaving</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>2.6.4 Automatic Repeat Request (ARQ)</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>2.6.5 Adaptive Modulation and Coding (AMC)</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>2.6.6 Combining Narrowband Diversity Techniques—The Whole Is Less Than the Sum of the Parts</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>2.7 Mitigation of Broadband Fading</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>2.7.1 Spread Spectrum and RAKE Receivers</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>2.7.2 Equalization</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>2.7.3 Multicarrier Modulation: OFDM</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>2.7.4 Single-Carrier Modulation with Frequency Domain Equalization</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>2.8 Chapter Summary</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>
3 Multicarrier Modulation

3.1 The Multicarrier Concept
3.1.1 An Elegant Approach to Intersymbol Interference

3.2 OFDM Basics
3.2.1 Block Transmission with Guard Intervals
3.2.2 Circular Convolution and the DFT
3.2.3 The Cyclic Prefix
3.2.4 Frequency Equalization
3.2.5 An OFDM Block Diagram

3.3 OFDM in LTE

3.4 Timing and Frequency Synchronization
3.4.1 Timing Synchronization
3.4.2 Frequency Synchronization

3.5 The Peak-to-Average Ratio
3.5.1 The PAR Problem
3.5.2 Quantifying the PAR
3.5.3 Clipping and Other PAR Reduction Techniques
3.5.4 LTE’s Approach to PAR in the Uplink

3.6 Single-Carrier Frequency Domain Equalization (SC-FDE)
3.6.1 SC-FDE System Description
3.6.2 SC-FDE Performance vs. OFDM
3.6.3 Design Considerations for SC-FDE and OFDM

3.7 The Computational Complexity Advantage of OFDM and SC-FDE

3.8 Chapter Summary

4 Frequency Domain Multiple Access: OFDMA and SC-FDMA

4.1 Multiple Access for OFDM Systems
4.1.1 Multiple Access Overview
4.1.2 Random Access vs. Multiple Access
4.1.3 Frequency Division Multiple Access (OFDM-FDMA)
4.1.4 Time Division Multiple Access (OFDM-TDMA)
4.1.5 Code Division Multiple Access (OFDM-CDMA or MC-CDMA)

4.2 Orthogonal Frequency Division Multiple Access (OFDMA)
4.2.1 OFDMA: How It Works
4.2.2 OFDMA Advantages and Disadvantages

4.3 Single-Carrier Frequency Division Multiple Access (SC-FDMA)
4.3.1 SC-FDMA: How It Works 142
4.3.2 SC-FDMA Advantages and Disadvantages 143
4.4 Multiuser Diversity and Opportunistic Scheduling 144
  4.4.1 Multiuser Diversity 144
  4.4.2 Opportunistic Scheduling Approaches for OFDMA 146
  4.4.3 Maximum Sum Rate Algorithm 147
  4.4.4 Maximum Fairness Algorithm 148
  4.4.5 Proportional Rate Constraints Algorithm 148
  4.4.6 Proportional Fairness Scheduling 149
  4.4.7 Performance Comparison 150
4.5 OFDMA and SC-FDMA in LTE 152
  4.5.1 The LTE Time-Frequency Grid 153
  4.5.2 Allocation Notification and Uplink Feedback 154
  4.5.3 Power Control 154
4.6 OFDMA System Design Considerations 155
  4.6.1 Resource Allocation in Cellular Systems 156
  4.6.2 Fractional Frequency Reuse in Cellular Systems 157
  4.6.3 Multiuser Diversity vs. Frequency and Spatial Diversity 159
4.7 Chapter Summary 160

5 Multiple Antenna Transmission and Reception 167
  5.1 Spatial Diversity Overview 168
    5.1.1 Array Gain 168
    5.1.2 Diversity Gain 169
    5.1.3 Increasing the Data Rate with Spatial Diversity 170
    5.1.4 Increased Coverage or Reduced Transmit Power 171
  5.2 Receive Diversity 171
    5.2.1 Selection Combining 171
    5.2.2 Maximal Ratio Combining 173
  5.3 Transmit Diversity 174
    5.3.1 Open-Loop Transmit Diversity: $2 \times 1$ Space-Frequency Block Coding 175
    5.3.2 Open-Loop Transmit Diversity with More Antennas 177
    5.3.3 Transmit Diversity vs. Receive Diversity 180
    5.3.4 Closed-Loop Transmit Diversity 181
  5.4 Interference Cancellation Suppression and Signal Enhancement 186
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3</td>
<td>Physical Channels: Actual Transmission</td>
<td>239</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Channel Mapping</td>
<td>240</td>
</tr>
<tr>
<td>6.3</td>
<td>Downlink OFDMA Radio Resources</td>
<td>241</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Frame Structure</td>
<td>242</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Physical Resource Blocks for OFDMA</td>
<td>246</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Resource Allocation</td>
<td>248</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Supported MIMO Modes</td>
<td>251</td>
</tr>
<tr>
<td>6.4</td>
<td>Uplink SC-FDMA Radio Resources</td>
<td>251</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Frame Structure</td>
<td>252</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Physical Resource Blocks for SC-FDMA</td>
<td>252</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Resource Allocation</td>
<td>254</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Supported MIMO Modes</td>
<td>254</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary and Conclusions</td>
<td>255</td>
</tr>
<tr>
<td>7</td>
<td>Downlink Transport Channel Processing</td>
<td>257</td>
</tr>
<tr>
<td>7.1</td>
<td>Downlink Transport Channel Processing Overview</td>
<td>257</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Channel Coding Processing</td>
<td>258</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Modulation Processing</td>
<td>263</td>
</tr>
<tr>
<td>7.2</td>
<td>Downlink Shared Channels</td>
<td>268</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Channel Encoding and Modulation</td>
<td>269</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Multiantenna Transmission</td>
<td>270</td>
</tr>
<tr>
<td>7.3</td>
<td>Downlink Control Channels</td>
<td>276</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Downlink Control Information (DCI) Formats</td>
<td>277</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Channel Encoding and Modulation</td>
<td>279</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Multiantenna Transmission</td>
<td>282</td>
</tr>
<tr>
<td>7.4</td>
<td>Broadcast Channels</td>
<td>283</td>
</tr>
<tr>
<td>7.5</td>
<td>Multicast Channels</td>
<td>284</td>
</tr>
<tr>
<td>7.6</td>
<td>Downlink Physical Signals</td>
<td>285</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Downlink Reference Signals</td>
<td>285</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Synchronization Signals</td>
<td>289</td>
</tr>
<tr>
<td>7.7</td>
<td>H-ARQ in the Downlink</td>
<td>290</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary and Conclusions</td>
<td>293</td>
</tr>
<tr>
<td>8</td>
<td>Uplink Transport Channel Processing</td>
<td>295</td>
</tr>
<tr>
<td>8.1</td>
<td>Uplink Transport Channel Processing Overview</td>
<td>296</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Channel Coding Processing</td>
<td>296</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Modulation Processing</td>
<td>297</td>
</tr>
</tbody>
</table>
8.2 Uplink Shared Channels 298
8.2.1 Channel Encoding and Modulation 299
8.2.2 Frequency Hopping 299
8.2.3 Multiantenna Transmission 300
8.3 Uplink Control Information 301
8.3.1 Channel Coding for Uplink Control Information 302
8.3.2 Modulation of PUCCH 306
8.3.3 Resource Mapping 308
8.4 Uplink Reference Signals 309
8.4.1 Reference Signal Sequence 310
8.4.2 Resource Mapping of Demodulation Reference Signals 310
8.4.3 Resource Mapping of Sounding Reference Signals 311
8.5 Random Access Channels 313
8.6 H-ARQ in the Uplink 315
8.6.1 The FDD Mode 315
8.6.2 The TDD Mode 315
8.7 Summary and Conclusions 317

9 Physical Layer Procedures and Scheduling 319
9.1 Hybrid-ARQ Feedback 319
9.1.1 H-ARQ Feedback for Downlink (DL) Transmission 320
9.1.2 H-ARQ Indicator for Uplink (UL) Transmission 321
9.2 Channel Quality Indicator (CQI) Feedback 322
9.2.1 A Primer on CQI Estimation 323
9.2.2 CQI Feedback Modes 325
9.3 Precoder for Closed-Loop MIMO Operations 333
9.3.1 Precoder Estimation for Multicarrier Systems 333
9.3.2 Precoding Matrix Index (PMI) and Rank Indication (RI) Feedback 334
9.4 Uplink Channel Sounding 337
9.5 Buffer Status Reporting in Uplink 337
9.6 Scheduling and Resource Allocation 339
9.6.1 Signaling for Scheduling in Downlink and Uplink 340
9.6.2 Multiuser MIMO Signaling 344
9.7 Semi-persistent Scheduling for VoIP 344
9.7.1 Motivation for Semi-persistent Scheduling 344
9.7.2 Changes in the Signaling Structure 345
# Contents

9.8 Cell Search ............................................... 346  
9.9 Random Access Procedures ........................................ 348  
9.10 Power Control in Uplink ......................................... 350  
9.11 Summary and Conclusions ........................................ 352  

10 Data Flow, Radio Resource Management, and Mobility Management .................................................. 355  
10.1 PDCP Overview ............................................. 359  
10.1.1 Header Compression .......................................... 361  
10.1.2 Integrity and Ciphering ....................................... 361  
10.2 MAC/RLC Overview ........................................... 363  
10.2.1 Data Transfer Modes ......................................... 363  
10.2.2 Purpose of MAC and RLC Layers ................................. 364  
10.2.3 PDU Headers and Formats ..................................... 365  
10.2.4 ARQ Procedures ............................................ 368  
10.3 RRC Overview .............................................. 369  
10.3.1 RRC States ............................................... 369  
10.3.2 RRC Functions ........................................... 370  
10.4 Mobility Management ........................................... 371  
10.4.1 S1 Mobility ............................................... 371  
10.4.2 X2 Mobility ............................................... 373  
10.4.3 RAN Procedures for Mobility ................................. 374  
10.4.4 Paging ................................................... 376  
10.5 Inter-cell Interference Coordination ............................... 377  
10.5.1 Downlink .................................................. 377  
10.5.2 Uplink .................................................... 379  
10.6 Summary and Conclusions ....................................... 380  

Index .......................................................... 383
Foreword

With the deployment of LTE, the wireless revolution will achieve an important milestone. For the first time, a wide-area wireless network will be universally deployed that has been primarily designed for IP-centric broadband data (rather than voice) from the very beginning. LTE also is rapidly becoming the dominant global standard for fourth generation cellular networks with nearly all the major cellular players behind it and working toward its success.

Having been personally involved in designing, developing, and promoting one of the first OFDM-based cellular systems since the late 1990s, back when such an approach was considered slightly eccentric, LTE’s success is personally very satisfying for me to see. As with any standard, which by political necessity is “designed by committee,” the LTE specification is not without flaws and there is room for progress and future evolution. The system architecture is not yet a fully flat IP platform, for example, and some interference issues are not fully addressed. But there can be no doubt that LTE is a giant step in the right direction and a necessary step to meet the anticipated growth in consumer and business mobile broadband applications and services. LTE provides a credible platform for wireless broadband access based on OFDMA, multiantenna technologies, and other cutting-edge techniques that provide improvements in spectral efficiency and significantly lower the cost of delivering mobile broadband. I expect the future evolution of LTE to continually improve the standard.

Fundamentals of LTE is an excellent introduction to the LTE standard and the various technologies that it incorporates, like OFDMA, SC-FDMA, and multiantenna transmission and reception. It is exceptionally well written, easy to understand, and concisely but completely covers the key aspects of the standard. Because of its diverse author team—including both LTE systems engineers as well as leading academic researchers who have worked extensively on the core underlying technologies—this book will be of use to a wide set of potential readers. I recommend it to folks in the industry who are involved with the development of LTE-based technology and products, as well as to students and faculty in academia who wish to understand the standard and participate in incorporating more advanced techniques into the future versions of the specification. The book also describes some of the “weak points” in the current specification of the standard. This helps ensure that these issues will be fixed as the specification evolves.

I hope you will enjoy reading the book and benefit from it, and am confident you will.

Rajiv Laroia
Senior vice president, Qualcomm Flarion Technologies
Preface

The Long-Term Evolution (LTE) is the next evolutionary step beyond 3G for mobile wireless communication. LTE brings together many technological innovations from different areas of research such as digital signal processing, Internet protocols, network architecture, and security, and is poised to dramatically change the way we use the worldwide mobile network in the future. Unlike 3G, LTE uses a clean-slate design approach for all the components of the network including the radio access network, the transport network, and the core network. This design approach, along with its built-in flexibility, allows LTE to be the first truly global wireless standard that can be deployed in a variety of spectrum and operating scenarios, and support a wide range of wireless applications. A large number of service providers around the world have already announced LTE as their preferred next generation technology.

Fundamentals of LTE is a comprehensive tutorial on the most innovative cellular standard since CDMA emerged in the early 1990s. The impending worldwide deployment of LTE (Long-Term Evolution, often called 4G cellular) will revolutionize the cellular networks by going to much larger bandwidths, data rates, and an all-IP framework. Fundamentals of LTE is the only book to provide an accessible but complete tutorial on the key enabling technologies behind LTE, such as OFDM, OFDMA, SC-FDMA, and MIMO, as well as provide a step-by-step breakdown of all the key aspects of the standard from the physical layer through the network stack. The book begins with a historical overview and the reasons for the radical departure from conventional voice-centric cellular systems that LTE represents. Following this, four tutorial chapters explain the essential underpinnings of LTE, which could also be used as the basis for an entry-level university course. Finally, five chapters on the LTE standard specifically attempt to illuminate its key aspects, explaining both how LTE works, and why certain choices were made by the LTE standards body. This collaboration between UT Austin and AT&T has resulted in a uniquely accessible and comprehensive book on LTE.

Chapter 1 provides an overview and history of the cellular wireless technologies, starting from first-generation systems such as AMPS to fourth-generation technologies such as LTE and WiMAX. This chapter provides a historical account of the mobile wireless networks and illustrates the key technological breakthroughs and market forces that drove the evolution of the mobile wireless network over the past two decades. This chapter also provides an executive summary of the LTE and some of its key technical enablers.

The balance of the book is organized into two parts, as noted. Part I consists of four tutorial chapters (Chapters 2–5) on the essential wireless networking and communications
technologies underpinning LTE. Chapter 2 provides a tutorial introduction to broadband wireless channels and systems, and demonstrates the challenges inherent to the development of a broadband wireless system such as LTE. Chapter 3 provides a comprehensive tutorial on multicarrier modulation, detailing how it works in both theory and practice. This chapter emphasizes a practical understanding of OFDM system design, and discusses implementation issues, in particular the peak-to-average power ratio. An overview of single-carrier frequency domain equalization (SC-FDE), which overcomes the peak-to-average problem, is also provided. Chapter 4 extends Chapter 3 to provide an overview on the frequency domain multiple access techniques adopted in LTE: OFDMA in the downlink and SC-FDMA in the uplink. Resource allocation to the users, especially relevant opportunistic scheduling approaches, is discussed, along with important implementation issues pertinent to LTE. Chapter 5 provides a rigorous tutorial on multiple antenna techniques, covering techniques such as spatial diversity, interference cancellation, spatial multiplexing, and multiuser and networked MIMO. The inherent tradeoffs between different techniques and practical considerations for the deployment of MIMO in LTE are distinguishing features of this chapter.

Part II of the book, consisting of Chapters 6–10, provides a detailed description of the LTE standard with particular emphasis on the air-interface protocol. We begin this part in Chapter 6 with an introduction to the basic structure of the air-interface protocol and the channel structure utilized by LTE at different layers. This chapter also provides an overview of the physical layer and various OFDMA-related aspects of LTE. Chapters 7 and 8 provide a thorough description of the physical and MAC layer processing (at the transport channel level) for downlink (DL) and uplink (UL), respectively. Features such as channel encoding, modulation mapping, Hybrid-ARQ (H-ARQ), and multiantenna processing for the different DL and UL channels are discussed in detail. In Chapter 9 we discuss the various feedback mechanisms that are essential components of LTE and are needed to enable various features such as channel aware scheduling, closed-loop and open-loop multiantenna processing, adaptive modulation and coding, etc. These concepts are critical to a complete understanding of LTE and its operation. In this chapter we also discuss various MAC layer concepts related to scheduling, QoS, ARQ, etc. Finally, in Chapter 10 we discuss the higher layers of the LTE protocol stack, such as RLC, PDCP, and RRM, and the role of these in the overall operation of an LTE system. In this chapter we also provide an in-depth discussion on the mobility and handoff procedures in LTE from a radio access network point of view.
Overview and Channel Structure of LTE

In Part I, we discussed the inherent challenges and associated technical solutions in designing a broadband wireless network. From here onward, we describe the technical details of the LTE specifications. As a starting point, in this chapter we provide an overview of the LTE radio interface. The 3rd Generation Partnership Project (3GPP) defines a separable network structure, that is, it divides the whole network into a radio access network (RAN) and a core network (CN), which makes it feasible to evolve each part independently. The Long-Term Evolution (LTE) project in 3GPP focuses on enhancing the UMTS Terrestrial Radio Access (UTRA)—the 3G RAN developed within 3GPP, and on optimizing 3GPP’s overall radio access architecture. Another parallel project in 3GPP is the Evolved Packet Core (EPC), which focuses on the CN evolution with a flatter all-IP, packet-based architecture. The complete packet system consisting of LTE and EPC is called the Evolved Packet System (EPS). This book focuses on LTE, while EPC is discussed only when necessary. LTE is also referred to as Evolved UMTS Terrestrial Radio Access (E-UTRA), and the RAN of LTE is also referred to as Evolved UMTS Terrestrial Radio Access Network (E-UTRAN).

The radio interface of a wireless network is the interface between the mobile terminal and the base station, and thus in the case of LTE it is located between the RAN–E-UTRAN and the user equipment (UE, the name for the mobile terminal in 3GPP). Compared to the UMTS Terrestrial Radio Access Network (UTRAN) for 3G systems, which has two logical entities—the Node-B (the radio base station) and the radio network controller (RNC)—the E-UTRAN network architecture is simpler and flatter. It is composed of only one logical node—the evolved Node-B (eNode-B). The RAN architectures of UTRAN and E-UTRAN are shown in Figure 6.1. Compared to the traditional Node-B, the eNode-B supports additional features, such as radio resource control, admission control, and mobility management, which were originally contained in the RNC. This simpler structure simplifies the network operation and allows for higher throughput and lower latency over the radio interface.
The LTE radio interface aims for a long-term evolution, so it is designed with a clean slate approach as opposed to High-Speed Packet Access (HSPA), which was designed as an add-on to UMTS in order to increase throughput of packet switched services. HSPA is a collection of High-Speed Downlink Packet Access (HSDPA) and High-Speed Uplink Packet Access (HSUPA). The clean slate approach allows for a completely different air interface, which means that advanced techniques, including Orthogonal Frequency Division Multiplexing (OFDM) and multiantenna transmission and reception (MIMO), could be included from the start of the standardization of LTE. For multiple access, it moves away from Code Division Multiple Access (CDMA) and instead uses Orthogonal Frequency Division Multiple Access (OFDMA) in the downlink and Single-Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink. All these techniques were described in detail in Part I, so in Part II we assume a basic knowledge of a wireless system, antenna diversity, OFDMA, and other topics covered in Part I.

In this chapter, we provide an introduction to the LTE radio interface, and describe its hierarchical channel structure. First, an overview of the LTE standard is provided, including design principles, the network architecture, and radio interface protocols. We then describe the purpose of each channel type defined in LTE and the mapping between channels at various protocol layers. Next, the downlink OFDMA and uplink SC-FDMA aspects of the air interface are described, including frame structures, physical resource blocks, resource allocation, and the supported MIMO modes. This chapter serves as the foundation for understanding the physical layer procedures and higher layer protocols of LTE that are described in the chapters to follow.

6.1 Introduction to LTE

As mentioned previously, LTE is the next step in the evolution of mobile cellular systems and was standardized as part of the 3GPP Release 8 specifications. Unlike 2G and 3G cellular systems\(^1\) that were designed mainly with voice services in mind, LTE was

---

\(^1\) Evolution of different 3GPP standards, including GPRS, UMTS, and HSPA, was discussed in Chapter 1.
designed primarily for high-speed data services, which is why LTE is a packet-switched network from end to end and has no support for circuit-switched services. However, the low latency of LTE and its sophisticated quality of service (QoS) architecture allow a network to emulate a circuit-switched connection on top of the packet-switched framework of LTE.

6.1.1 Design Principles

The LTE standard was designed as a completely new standard, with new numbering and new documentation, and it is not built on the previous versions of 3GPP standards. Earlier elements were brought in only if there was a compelling reason for them to exist in the new standard. The basic design principles that were agreed upon and followed in 3GPP while designing the LTE specifications include:

- **Network Architecture**: Unlike 3G networks, LTE was designed to support packet-switched traffic with support for various QoS classes of services. Previous generations of networks such as UMTS/HSPA and 1xRTT/EvDO also support packet-switched traffic but this was achieved by subsequent add-ons to the initial version of the standards. For example, HSPA, which is a packet-switched protocol (packet-switched over the air), was built on top of the Release 99 UMTS network and as a result carried some of the unnecessary burdens of a circuit-switched network. LTE is different in the sense that it is a clean slate design and supports packet switching for high data rate services from the start. The LTE radio access network, E-UTRAN, was designed to have the minimum number of interfaces (i.e., the minimum number of network elements) while still being able to provide efficient packet-switched transport for traffic belonging to all the QoS classes such as conversational, streaming, real-time, non-real-time, and background classes.

- **Data Rate and Latency**: The design target for downlink and uplink peak data rates for LTE are 100 Mbps and 50 Mbps, respectively, when operating at the 20MHz frequency division duplex (FDD) channel size. The user-plane latency is defined in terms of the time it takes to transmit a small IP packet from the UE to the edge node of the radio access network or vice versa measured on the IP layer. The target for one-way latency in the user plane is 5 ms in an unloaded network, that is, if only a single UE is present in the cell. For the control-plane latency, the transition time from a camped state to an active state is less than 100 ms, while the transition time between a dormant state and an active state should be less than 50 ms.

- **Performance Requirements**: The target performance requirements for LTE are specified in terms of spectrum efficiency, mobility, and coverage, and they are in general expressed relative to the 3GPP Release 6 HSPA.
  
  - **Spectrum Efficiency** The average downlink user data rate and spectrum efficiency target is three to four times that of the baseline HSDPA network. Similarly, in the uplink the average user data rate and spectrum efficiency

---

2 See Section 1.2.4 for a comparison of different beyond-3G systems, including HSPA+, WiMAX, and LTE.
target is two to three times that of the baseline HSUPA network. The cell edge throughput, measured as the 5th percentile throughput, should be two to three times that of the baseline HSDPA and HSUPA.

- **Mobility** The mobility requirement for LTE is to be able to support handoff/mobility at different terminal speeds. Maximum performance is expected for the lower terminal speeds of 0 to 15 km/hr, with minor degradation in performance at higher mobile speeds up to 120 km/hr. LTE is also expected to be able to sustain a connection for terminal speeds up to 350 km/hr but with significant degradation in the system performance.

- **Coverage** For the cell coverage, the above performance targets should be met up to 5 km. For cell ranges up to 30 km, a slight degradation of the user throughput is tolerated and a more significant degradation for spectrum efficiency is acceptable, but the mobility requirements should be met. Cell ranges up to 100 km should not be precluded by the specifications.

- **MBMS Service** LTE should also provide enhanced support for the Multimedia Broadcast and Multicast Service (MBMS) compared to UTRA operation.

- **Radio Resource Management**: The radio resource management requirements cover various aspects such as enhanced support for end-to-end QoS, efficient support for transmission of higher layers, and support for load sharing/balancing and policy management/enforcement across different radio access technologies.

- **Deployment Scenario and Co-existence with 3G**: At a high level, LTE shall support the following two deployment scenarios:
  
  - Standalone deployment scenario, where the operator deploys LTE either with no previous network deployed in the area or with no requirement for interworking with the existing UTRAN/GERAN (GSM EDGE radio access network) networks.
  
  - Integrating with existing UTRAN and/or GERAN deployment scenario, where the operator already has either a UTRAN and/or a GERAN network deployed with full or partial coverage in the same geographical area.

- **Flexibility of Spectrum and Deployment**: In order to become a truly global standard, LTE was designed to be operable under a wide variety of spectrum scenarios, including its ability to coexist and share spectrum with existing 3G technologies. Service providers in different geographical regions often have different spectrums in terms of the carrier frequency and total available bandwidth, which is why LTE was designed to have a scalable bandwidth from 1.4MHz to 20MHz. In order to accommodate flexible duplexing options, LTE was designed to operate in both frequency division duplex (FDD) and time division duplex (TDD) modes.

- **Interoperability with 3G and 2G Networks**: Multimode LTE terminals, which support UTRAN and/or GERAN operation, should be able to support measurement of, and handover from and to, both 3GPP UTRAN and 3GPP GERAN systems with acceptable terminal complexity and network performance.
6.1.2 Network Architecture

Figure 6.2 shows the end-to-end network architecture of LTE and the various components of the network. The entire network is composed of the radio access network (E-UTRAN) and the core network (EPC), both of which have been defined as new components of the end-to-end network in Release 8 of the 3GPP specifications. In this sense, LTE is different from UMTS since UMTS defined a new radio access network but used the same core network as the previous-generation Enhanced GPRS (EDGE) network. This obviously has some implications for the service providers who are upgrading from a UMTS network to LTE. The main components of the E-UTRAN and EPC are

- **UE**: The mobile terminal.
- **eNode-B**: The eNode-B (also called the base station) terminates the air interface protocol and is the first point of contact for the UE. As already shown in Figure 6.1, the eNode-B is the only logical node in the E-UTRAN, so it includes some functions previously defined in the RNC of the UTRAN, such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
- **Mobility Management Entity (MME)**: MME is similar in function to the control plane of legacy Serving GPRS Support Node (SGSN). It manages mobility aspects in 3GPP access such as gateway selection and tracking area list management.
• **Serving Gateway (Serving GW):** The Serving GW terminates the interface toward E-UTRAN, and routes data packets between E-UTRAN and EPC. In addition, it is the local mobility anchor point for inter-eNode-B handovers and also provides an anchor for inter-3GPP mobility. Other responsibilities include lawful intercept, charging, and some policy enforcement. The Serving GW and the MME may be implemented in one physical node or separate physical nodes.

• **Packet Data Network Gateway (PDN GW):** The PDN GW terminates the SGi interface toward the Packet Data Network (PDN). It routes data packets between the EPC and the external PDN, and is the key node for policy enforcement and charging data collection. It also provides the anchor point for mobility with non-3GPP accesses. The external PDN can be any kind of IP network as well as the IP Multimedia Subsystem (IMS) domain. The PDN GW and the Serving GW may be implemented in one physical node or separated physical nodes.

• **S1 Interface:** The S1 interface is the interface that separates the E-UTRAN and the EPC. It is split into two parts: the S1-U, which carries traffic data between the eNode-B and the Serving GW, and the S1-MME, which is a signaling-only interface between the eNode-B and the MME.

• **X2 Interface:** The X2 interface is the interface between eNode-Bs, consisting of two parts: the X2-C is the control plane interface between eNode-Bs, while the X2-U is the user plane interface between eNode-Bs. It is assumed that there always exists an X2 interface between eNode-Bs that need to communicate with each other, for example, for support of handover.

The specific functions supported by each component and the details about reference points (S1-MME, S1-U, S3, etc.) can be found in [1]. For other nodes in Figure 6.2, the Policy and Charging Rules Function (PCRF) is for policy and charging control, the Home Subscriber Server (HSS) is responsible for the service authorization and user authentication, and the Serving GPRS Support Node (SGSN) is for controlling packet sessions and managing the mobility of the UE for GPRS networks. The topics in this book mainly focus on the E-UTRAN and the LTE radio interface.

### 6.1.3 Radio Interface Protocols

As in other communication standards, the LTE radio interface is designed based on a layered protocol stack, which can be divided into control plane and user plane protocol stacks and is shown in Figure 6.3. The packet flow in the user plane is shown in Figure 6.4. The LTE radio interface protocol is composed of the following layers:

• **Radio Resource Control (RRC):** The RRC layer performs the control plane functions including paging, maintenance and release of an RRC connection-security handling-mobility management, and QoS management.

• **Packet Data Convergence Protocol (PDCP):** The main functions of the PDCP sublayer include IP packet header compression and decompression based
6.1 Introduction to LTE

Control plane

User plane

RRC

PDCP

RLC

MAC

PHY

Figure 6.3 The LTE radio interface protocol stack.

Figure 6.4 The packet flow in the user plane.

on the RObust Header Compression (ROHC) protocol, ciphering of data and signaling, and integrity protection for signaling. There is only one PDCP entity at the eNode-B and the UE per bearer.\(^3\)

---

\(^3\) A bearer is an IP packet flow with a defined QoS between the PDN GW and the UE. It will be discussed in more detail in Chapter 10.
• **Radio Link Control (RLC):** The main functions of the RLC sublayer are segmentation and concatenation of data units, error correction through the Automatic Repeat reQuest (ARQ) protocol, and in-sequence delivery of packets to the higher layers. It operates in three modes:
  
  – **The Transparent Mode (TM):** The TM mode is the simplest one, without RLC header addition, data segmentation, or concatenation, and it is used for specific purposes such as random access.
  
  – **The Unacknowledged Mode (UM):** The UM mode allows the detection of packet loss and provides packet reordering and reassembly, but does not require retransmission of the missing protocol data units (PDUs).
  
  – **The Acknowledged Mode (AM):** The AM mode is the most complex one, and it is configured to request retransmission of the missing PDUs in addition to the features supported by the UM mode.

There is only one RLC entity at the eNode-B and the UE per bearer.

• **Medium Access Control (MAC):** The main functions of the MAC sublayer include error correction through the Hybrid-ARQ (H-ARQ) mechanism, mapping between logical channels and transport channels, multiplexing/demultiplexing of RLC PDUs on to transport blocks, priority handling between logical channels of one UE, and priority handling between UEs by means of dynamic scheduling. The MAC sublayer is also responsible for transport format selection of scheduled UEs, which includes selection of modulation format, code rate, MIMO rank, and power level. There is only one MAC entity at the eNode-B and one MAC entity at the UE.

• **Physical Layer (PHY):** The main function of PHY is the actual transmission and reception of data in forms of transport blocks. The PHY is also responsible for various control mechanisms such as signaling of H-ARQ feedback, signaling of scheduled allocations, and channel measurements.

In Chapter 7 to Chapter 9, we focus on the PHY layer, also referred to as layer 1 of the Open Systems Interconnection (OSI) reference model. Higher layer processing is described in Chapter 10.

### 6.2 Hierarchical Channel Structure of LTE

To efficiently support various QoS classes of services, LTE adopts a hierarchical channel structure. There are three different channel types defined in LTE—logical channels, transport channels, and physical channels, each associated with a service access point (SAP) between different layers. These channels are used by the lower layers of the protocol stack to provide services to the higher layers. The radio interface protocol architecture and the SAPs between different layers are shown in Figure 6.5. Logical channels provide services at the SAP between MAC and RLC layers, while transport channels provide services at the SAP between MAC and PHY layers. Physical channels are the actual implementation of transport channels over the radio interface.
6.2 Hierarchical Channel Structure of LTE

The channels defined in LTE follow a similar hierarchical structure to UTRA/HSPA. However, in the case of LTE, the transport and logical channel structures are much more simplified and fewer in number compared to UTRA/HSPA. Unlike UTRA/HSPA, LTE is based entirely on shared and broadcast channels and contains no dedicated channels carrying data to specific UEs. This improves the efficiency of the radio interface and can support dynamic resource allocation between different UEs depending on their traffic/QoS requirements and their respective channel conditions. In this section, we describe in detail the various logical, transport, and physical channels that are defined in LTE. The description of different channel types and the channel mapping between different protocol layers provides an intuitive manner to understand the data flow of different services in LTE, which builds the foundation to understand the detail processing procedures in later chapters.

6.2.1 Logical Channels: What to Transmit

Logical channels are used by the MAC to provide services to the RLC. Each logical channel is defined based on the type of information it carries. In LTE, there are two categories of logical channels depending on the service they provide: logical control channels and logical traffic channels.
The logical control channels, which are used to transfer control plane information, include the following types:

- **Broadcast Control Channel (BCCH):** A downlink common channel used to broadcast system control information to the mobile terminals in the cell, including downlink system bandwidth, antenna configuration, and reference signal power. Due to the large amount of information carried on the BCCH, it is mapped to two different transport channels: the Broadcast Channel (BCH) and the Downlink Shared Channel (DL-SCH).

- **Multicast Control Channel (MCCH):** A point-to-multipoint downlink channel used for transmitting control information to UEs in the cell. It is only used by UEs that receive multicast/broadcast services.

- **Paging Control Channel (PCCH):** A downlink channel that transfers paging information to registered UEs in the cell, for example, in case of a mobile-terminated communication session. The paging process is discussed in Chapter 10.

- **Common Control Channel (CCCH):** A bi-directional channel for transmitting control information between the network and UEs when no RRC connection is available, implying the UE is not attached to the network such as in the idle state. Most commonly the CCCH is used during the random access procedure.

- **Dedicated Control Channel (DCCH):** A point-to-point, bi-directional channel that transmits dedicated control information between a UE and the network. This channel is used when the RRC connection is available, that is, the UE is attached to the network.

The logical traffic channels, which are to transfer user plane information, include:

- **Dedicated Traffic Channel (DTCH):** A point-to-point, bi-directional channel used between a given UE and the network. It can exist in both uplink and downlink.

- **Multicast Traffic Channel (MTCH):** A unidirectional, point-to-multipoint data channel that transmits traffic data from the network to UEs. It is associated with the multicast/broadcast service.

### 6.2.2 Transport Channels: How to Transmit

The transport channels are used by the PHY to offer services to the MAC. A transport channel is basically characterized by how and with what characteristics data is transferred over the radio interface, that is, the channel coding scheme, the modulation scheme, and antenna mapping. Compared to UTRA/HSPA, the number of transport channels in LTE is reduced since no dedicated channels are present.
LTE defines two MAC entities: one in the UE and one in the E-UTRAN, which handle the following downlink/uplink transport channels.

**Downlink Transport Channels**

- **Downlink Shared Channel (DL-SCH):** Used for transmitting the downlink data, including both control and traffic data, and thus it is associated with both logical control and logical traffic channels. It supports H-ARQ, dynamic link adaptation, dynamic and semi-persistent resource allocation, UE discontinuous reception, and multicast/broadcast transmission. The concept of shared channel transmission originates from HSDPA, which uses the *High-Speed Downlink Shared Channel* (HS-DSCH) to multiplex traffic and control information among different UEs. By sharing the radio resource among different UEs the DL-SCH is able to maximize the throughput by allocating the resources to the optimum UEs. The processing of the DL-SCH is described in Section 7.2.

- **Broadcast Channel (BCH):** A downlink channel associated with the BCCH logical channel and is used to broadcast system information over the entire coverage area of the cell. It has a fixed transport format defined by the specifications. The processing of the BCH will be described in Section 7.4.

- **Multicast Channel (MCH):** Associated with MCCH and MTCH logical channels for the multicast/broadcast service. It supports *Multicast/Broadcast Single Frequency Network* (MBSFN) transmission, which transmits the same information on the same radio resource from multiple synchronized base stations to multiple UEs. The processing of the MCH is described in Section 7.5.

- **Paging Channel (PCH):** Associated with the PCCH logical channel. It is mapped to dynamically allocated physical resources, and is required for broadcast over the entire cell coverage area. It is transmitted on the Physical Downlink Shared Channel (PDSCH), and supports UE discontinuous reception.

**Uplink Transport Channels**

- **Uplink Shared Channel (UL-SCH):** The uplink counterpart of the DL-SCH. It can be associated to CCCH, DCCH, and DTCH logical channels. It supports H-ARQ, dynamic link adaptation, and dynamic and semi-persistent resource allocation. The processing of the UL-SCH is described in Section 8.2.

- **Random Access Channel (RACH):** A specific transport channel that is not mapped to any logical channel. It transmits relatively small amounts of data for initial access or, in the case of RRC, state changes. The processing of the RACH is described in Section 8.5, while the random access procedure is described in Section 9.9.
The data on each transport channel is organized into *transport blocks*, and the transmission time of each transport block, also called Transmission Time Interval (TTI), is 1 ms in LTE. TTI is also the minimum interval for link adaptation and scheduling decision. Without spatial multiplexing, at most one transport block is transmitted to a UE in each TTI; with spatial multiplexing, up to two transport blocks can be transmitted in each TTI to a UE.

Besides transport channels, there are different types of control information defined in the MAC layer, which are important for various physical layer procedures. The defined control information includes

- **Downlink Control Information (DCI):** It carries information related to downlink/uplink scheduling assignment, modulation and coding scheme, and Transmit Power Control (TPC) command, and is sent over the Physical Downlink Control Channel (PDCCH). The DCI supports 10 different formats, listed in Table 6.1. Among them, Format 0 is for signaling uplink transmission allocation, Format 3 and 3A are for TPC, and the remaining formats are for signaling downlink transmission allocation. The detail content of each format can be found in [7], some of which is discussed in Section 7.3.

- **Control Format Indicator (CFI):** It indicates how many symbols the DCI spans in that subframe. It takes values CFI = 1, 2, or 3, and is sent over the Physical Control Format Indicator Channel (PCFICH).

- **H-ARQ Indicator (HI):** It carries H-ARQ acknowledgment in response to uplink transmissions, and is sent over the Physical Hybrid ARQ Indicator Channel (PHICH). HI = 1 for a positive acknowledgment (ACK) and HI = 0 for a negative acknowledgment (NAK).

<table>
<thead>
<tr>
<th>Format</th>
<th>Carried Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format 0</td>
<td>Uplink scheduling assignment</td>
</tr>
<tr>
<td>Format 1</td>
<td>Downlink scheduling for one codeword</td>
</tr>
<tr>
<td>Format 1A</td>
<td>Compact downlink scheduling for one codeword and random access procedure</td>
</tr>
<tr>
<td>Format 1B</td>
<td>Compact downlink scheduling for one codeword with precoding information</td>
</tr>
<tr>
<td>Format 1C</td>
<td>Very compact downlink scheduling for one codeword</td>
</tr>
<tr>
<td>Format 1D</td>
<td>Compact downlink scheduling for one codeword with precoding and power offset information</td>
</tr>
<tr>
<td>Format 2</td>
<td>Downlink scheduling for UEs configured in closed-loop spatial multiplexing mode</td>
</tr>
<tr>
<td>Format 2A</td>
<td>Downlink scheduling for UEs configured in open-loop spatial multiplexing mode</td>
</tr>
<tr>
<td>Format 3</td>
<td>TPC commands for PUCCH and PUSCH with 2-bit power adjustments</td>
</tr>
<tr>
<td>Format 3A</td>
<td>TPC commands for PUCCH and PUSCH with 1-bit power adjustments</td>
</tr>
</tbody>
</table>
• **Uplink Control Information (UCI):** It is for measurement indication on the downlink transmission, scheduling request of uplink, and the H-ARQ acknowledgment of downlink transmissions. The UCI can be transmitted either on the Physical Uplink Control Channel (PUCCH) or the Physical Uplink Shared Channel (PUSCH). The detail transmission format is discussed in Section 8.3.

### 6.2.3 Physical Channels: Actual Transmission

Each physical channel corresponds to a set of resource elements in the time-frequency grid that carry information from higher layers. The basic entities that make a physical channel are resource elements and resource blocks. A resource element is a single sub-carrier over one OFDM symbol, and typically this could carry one (or two with spatial multiplexing) modulated symbol(s). A resource block is a collection of resource elements and in the frequency domain this represents the smallest quanta of resources that can be allocated. The details of the time-frequency resource structures for downlink and uplink are described in Section 6.3 and Section 6.4, respectively.

**Downlink Physical Channels**

- **Physical Downlink Control Channel (PDCCH):** It carries information about the transport format and resource allocation related to the DL-SCH and PCH transport channels, and the H-ARQ information related to the DL-SCH. It also informs the UE about the transport format, resource allocation, and H-ARQ information related to UL-SCH. It is mapped from the DCI transport channel.

- **Physical Downlink Shared Channel (PDSCH):** This channel carries user data and higher-layer signaling. It is associated to DL-SCH and PCH.

- **Physical Broadcast Channel (PBCH):** It corresponds to the BCH transport channel and carries system information.

- **Physical Multicast Channel (PMCH):** It carries multicast/broadcast information for the MBMS service.

- **Physical Hybrid-ARQ Indicator Channel (PHICH):** This channel carries H-ARQ ACK/NAKs associated with uplink data transmissions. It is mapped from the HI transport channel.

**Uplink Physical Channels**

- **Physical Uplink Control Channel (PUCCH):** It carries uplink control information including Channel Quality Indicators (CQI), ACK/NAKs for H-ARQ in response to downlink transmission, and uplink scheduling requests.

- **Physical Uplink Shared Channel (PUSCH):** It carries user data and higher-layer signaling. It corresponds to the UL-SCH transport channel.
• **Physical Random Access Channel (PRACH):** This channel carries the random access preamble sent by UEs.

Besides physical channels, there are signals embedded in the downlink and uplink physical layer, which do not carry information from higher layers. The physical signals defined in the LTE specifications are

• **Reference signal:** It is defined in both downlink and uplink for channel estimation that enables coherent demodulation and for channel quality measurement to assist user scheduling. There are three different reference signals in the downlink:
  - Cell-specific reference signals, associated with non-MBSFN transmission
  - MBSFN reference signals, associated with MBSFN transmission
  - UE-specific reference signals

There are two types of uplink reference signals:
  - Demodulation reference signal, associated with transmission of PUSCH or PUCCH
  - Sounding reference signal, to support uplink channel-dependent scheduling

The processing of reference signals in the downlink and uplink are treated in Section 7.6.1 and Section 8.4, respectively.

• **Synchronization signal:** It is split into a primary and a secondary synchronization signal, and is only defined in the downlink to enable acquisition of symbol timing and the precise frequency of the downlink signal. It is discussed further in Section 7.6.2.

### 6.2.4 Channel Mapping

From the description of different channel types, we see that there exists a good correlation based on the purpose and the content between channels in different layers. This requires a mapping between the logical channels and transport channels at the MAC SAP and a mapping between transport channels and physical channels at the PHY SAP. Such channel mapping is not arbitrary, and the allowed mapping between different channel types is shown in Figure 6.6,\(^4\) while the mapping between control information and physical channels is shown in Figure 6.7. It is possible for multiple channels mapped to a single channel, for example, different logical control channels and logical traffic channels are mapped to the DL-SCH transport channel. The channel mapping in Figures 6.6 and 6.7 will reappear in different sections in Chapters 7 and 8 when we discuss downlink and uplink transport channel processing.

---

\(^4\) The mapping of multicast-related channels, that is, MCCH, MTCH, MCH, and PMCH, is not specified in Release 8 but in Release 9.
6.3 Downlink OFDMA Radio Resources

In LTE, the downlink and uplink use different transmission schemes due to different considerations. In this and the next section, we describe downlink and uplink radio transmission schemes, respectively. In the downlink, a scalable OFDM transmission/multiaccess technique is used that allows for high spectrum efficiency by utilizing multiuser diversity in a frequency selective channel. On the other hand, a scalable SC-FDMA transmission/multiaccess technique is used in the uplink since this reduces the peak-to-average power ratio (PAPR) of the transmitted signal.

The downlink transmission is based on OFDM with a cyclic prefix (CP), which was described in Chapter 3 along with the associated multiple access scheme described in Chapter 4. We summarize some key advantages of OFDM that motivate using it in the LTE downlink:

- As shown in Chapter 3, OFDM is efficient in combating the frequency-selective fading channel with a simple frequency-domain equalizer, which makes it a suitable technique for wireless broadband systems such as LTE.

**Figure 6.6** Mapping between different channel types.

**Figure 6.7** Mapping of control information to physical channels.
• As shown in Chapter 4, it is possible to exploit frequency-selective scheduling with OFDM-based multiple access (OFDMA), while HSPA only schedules in the time domain. This can make a big difference especially in slow time-varying channels.

• The transceiver structure of OFDM with FFT/IFFT enables scalable bandwidth operation with a low complexity, which is one of the major objectives of LTE.

• As each subcarrier becomes a flat fading channel, compared to single-carrier transmission OFDM makes it much easier to support multiantenna transmission, which is a key technique to enhance the spectrum efficiency.

• OFDM enables multicast/broadcast services on a synchronized single frequency network, that is, MBSFN, as it treats signals from different base stations as propagating through a multipath channel and can efficiently combine them.

The multiple access in the downlink is based on OFDMA. In each TTI, a scheduling decision is made where each scheduled UE is assigned a certain amount of radio resources in the time and frequency domain. The radio resources allocated to different UEs are orthogonal to each other, which means there is no intra-cell interference. In the remaining part of this section, we describe the frame structure and the radio resource block structure in the downlink, as well as the basic principles of resource allocation and the supported MIMO modes.

### 6.3.1 Frame Structure

Before going into details about the resource block structure for the downlink, we first describe the frame structure in the time domain, which is a common element shared by both downlink and uplink.

In LTE specifications, the size of elements in the time domain is expressed as a number of time units $T_s = 1/(15000 \times 2048)$ seconds. As the normal subcarrier spacing is defined to be $\Delta f = 15$kHz, $T_s$ can be regarded as the sampling time of an FFT-based OFDM transmitter/receiver implementation with FFT size $N_{FFT} = 2048$. Note that this is just for notation purpose, as different FFT sizes are supported depending on the transmission bandwidths. A set of parameters for typical transmission bandwidths for LTE in the downlink is shown in Table 6.2, where the subcarrier spacing is $\Delta f = 15$kHz. The FFT size increases with the transmission bandwidth, ranging from 128 to 2048. With $\Delta f = 15$kHz, the sampling frequency, which equals $\Delta f \times N_{FFT}$, is a multiple or sub-multiple of the UTRA/HSPA chip rate of 3.84MHz. In this way, multimode UTRA/HSPA/LTE terminals can be implemented with a single clock circuitry. In addition to the 15kHz subcarrier spacing, a reduced subcarrier spacing of 7.5kHz is defined for MBSFN cells, which provides a larger OFDM symbol duration that is able to combat the large delay spread associated with the MBSFN transmission. Unless otherwise stated, we will assume $\Delta f = 15$kHz in the following discussion.

In the time domain, the downlink and uplink multiple TTIs are organized into radio frames with duration $T_f = 307200 \times T_s = 10$ ms. For flexibility, LTE supports both FDD
and TDD modes.\(^5\) Most of the design parameters are common to FDD and TDD in order to reduce the terminal complexity and maximize reuse between the designs of FDD and TDD systems. Accordingly, LTE supports two kinds of frame structures: frame structure type 1 for the FDD mode and frame structure type 2 for the TDD mode.

### Frame Structure Type 1

Frame structure type 1 is applicable to both full duplex and half duplex FDD. There are three different kinds of units specified for this frame structure, illustrated in Figure 6.8. The smallest one is called a *slot*, which is of length \(T_{\text{slot}} = 15360 \cdot T_s = 0.5\) ms. Two consecutive slots are defined as a *subframe* of length 1 ms, and 20 slots, numbered from 0 to 19, constitute a *radio frame* of 10 ms. Channel-dependent scheduling and link adaptation operate on a subframe level. Therefore, the subframe duration corresponds to the minimum downlink TTI, which is of 1 ms duration, compared to a 2 ms TTI for the HSPA and a minimum 10 ms TTI for the UMTS. A shorter TTI is for fast link adaptation and is able to reduce delay and better exploit the time-varying channel through channel-dependent scheduling.

Each slot consists of a number of OFDM symbols including CPs. As shown in Chapter 3, CP is a kind of guard interval to combat inter-OFDM-symbol interference, which should be larger than the channel delay spread. Therefore, the length of CP depends on the environment where the network operates, and it should not be too large as it brings a bandwidth and power penalty. With a subcarrier spacing \(\Delta f = 15\) kHz, the OFDM symbol time is \(1/\Delta f \approx 66.7\mu s\). As shown in Figure 6.8, LTE defines two different

\(^5\) The LTE TDD mode, also referred to as TD-LTE, provides the long-term evolution path for TD-SCDMA-based networks.
CP lengths: a normal CP and an extended CP, corresponding to seven and six OFDM symbols per slot, respectively. The extended CP is for multicell multicast/broadcast and very-large-cell scenarios with large delay spread at a price of bandwidth efficiency, with length $T_{eCP} = 512 \cdot T_s \approx 16.7 \mu s$. The normal CP is suitable for urban environment and high data rate applications. Note that the normal CP lengths are different for the first ($T_{CP} = 160 \cdot T_s \approx 5.2 \mu s$) and subsequent OFDM symbols ($T_{CP} = 144 \cdot T_s \approx 4.7 \mu s$), which is to fill the entire slot of 0.5 ms. The numbers of CP samples for different bandwidths are shown in Table 6.2. For example, with 10MHz bandwidth, the sampling time is $1/(15000 \times 1024)$ sec and the number of CP samples for the extended CP is 256, which provides the required CP length of $256/(15000 \times 1024) \approx 1.67 \mu s$. In case of 7.5kHz subcarrier spacing, there is only a single CP length, corresponding to 3 OFDM symbols per slot.

For FDD, uplink and downlink transmissions are separated in the frequency domain, each with 10 subframes. In half-duplex FDD operation, the UE cannot transmit and receive at the same time while there are no such restrictions in full-duplex FDD. However, full-duplex FDD terminals need high quality and expensive RF duplex-filters to separate uplink and downlink channels, while half-duplex FDD allows hardware sharing between the uplink and downlink, which offers a cost saving at the expense of reducing data rates by half. Half-duplex FDD UEs are also considered a good solution if the duplex separation between the uplink and downlink transmissions is relatively small. In such cases, the half-duplex FDD is the preferable approach to mitigate the cross-interference between the transmit and receive chains.

**Frame Structure Type 2**

Frame structure type 2 is applicable to the TDD mode. It is designed for coexistence with legacy systems such as the 3GPP TD-SCDMA-based standard. As shown in Figure 6.9, each radio frame of frame structure type 2 is of length $T_f = 30720 \cdot T_s = 10$ ms, which...
consists of two half-frames of length 5 ms each. Each half-frame is divided into five subframes with 1 ms duration. There are special subframes, which consist of three fields: Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS). These fields are already defined in TD-SCDMA and are maintained in the LTE TDD mode to provide sufficiently large guard periods for the equipment to switch between transmission and reception.

- **The DwPTS field**: This is the downlink part of the special subframe, and can be regarded as an ordinary but shorter downlink subframe for downlink data transmission. Its length can be varied from three up to twelve OFDM symbols.

- **The UpPTS field**: This is the uplink part of the special subframe, and has a short duration with one or two OFDM symbols. It can be used for transmission of uplink sounding reference signals and random access preambles.

- **The GP field**: The remaining symbols in the special subframe that have not been allocated to DwPTS or UpPTS are allocated to the GP field, which is used to provide the guard period for the downlink-to-uplink and the uplink-to-downlink switch.

The total length of these three special fields has a constraint of 1 ms. With the DwPTS and UpPTS durations mentioned above, LTE supports a guard period ranging from two to ten OFDM symbols, sufficient for cell size up to and beyond 100 km. All other subframes are defined as two slots, each with length $T_{\text{slot}} = 0.5$ ms.

Figure 6.9 only shows the detail structure of the first half-frame. The second half-frame has the similar structure, which depends on the uplink-downlink configuration. Seven uplink-downlink configurations with either 5 ms or 10 ms downlink-to-uplink switch-point periodicity are supported, as illustrated in Table 6.3, where “D” and “U” denote subframes reserved for downlink and uplink, respectively, and “S” denotes the special
subframe. In the case of 5 ms switch-point periodicity, the special subframe exists in both half-frames, and the structure of the second half-frame is the same as the first one depicted in Figure 6.9. In the case of 10 ms switch-point periodicity, the special subframe exists in the first half-frame only. Subframes 0, 5, and the field DwPTS are always reserved for downlink transmission, while UpPTS and the subframe immediately following the special subframe are always reserved for uplink transmission.

6.3.2 Physical Resource Blocks for OFDMA

The physical resource in the downlink in each slot is described by a time-frequency grid, called a resource grid, as illustrated in Figure 6.10. Such a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation. Each column and each row of the resource grid correspond to one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource grid in the time domain corresponds to one slot in a radio frame. The smallest time-frequency unit in a resource grid is denoted as a resource element. Each resource grid consists of a number of resource blocks, which describe the mapping of certain physical channels to resource elements. The detail of these resource units is described as follows.

Resource Grid

The structure of each resource grid is characterized by the following three parameters:

- **The number of downlink resource blocks** \(N_{RB}^{DL}\): It depends on the transmission bandwidth and shall fulfill \(N_{RB}^{min,DL} \leq N_{RB}^{DL} \leq N_{RB}^{max,DL}\), where \(N_{RB}^{min,DL} = 6\) and \(N_{RB}^{max,DL} = 110\) are for the smallest and largest downlink channel bandwidth, respectively. The values of \(N_{RB}^{DL}\) for several current specified bandwidths are listed in Table 6.2.

- **The number of subcarriers in each resource block** \(N_{sc}\): It depends on the subcarrier spacing \(\Delta f\), satisfying \(N_{sc} \Delta f = 180kHz\), that is, each resource block is
of 180kHz wide in the frequency domain. The values of $N_{RB}^{sc}$ for different subcarrier spacings are shown in Table 6.4. There are a total of $N_{RB}^{DL} \times N_{RB}^{sc}$ subcarriers in each resource grid. For downlink transmission, the DC subcarrier is not used as it may be subject to a too high level of interference.

- **The number of OFDM symbols in each block ($N_{symb}^{DL}$)**: It depends on both the CP length and the subcarrier spacing, specified in Table 6.4.

Therefore, each downlink resource grid has $N_{RB}^{DL} \times N_{RB}^{sc} \times N_{symb}^{DL}$ resource elements. For example, with 10MHz bandwidth, $\Delta f = 15kHz$, and normal CP, we get $N_{RB}^{DL} = 50$ from
Table 6.4  Physical Resource Block Parameters for the Downlink

<table>
<thead>
<tr>
<th>Configuration</th>
<th>$N_{sc}^{RB}$</th>
<th>$N_{symb}^{DL}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal CP $\Delta f = 15$kHz</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Extended CP $\Delta f = 15$kHz</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>$\Delta f = 7.5$kHz</td>
<td>24</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 6.2, $N_{sc}^{RB} = 12$ and $N_{symb}^{DL} = 7$ from Table 6.4, so there are $50 \times 12 \times 7 = 4200$ resource elements in the downlink resource grid.

In case of multiantenna transmission, there is one resource grid defined per antenna port. An antenna port is defined by its associated reference signal, which may not correspond to a physical antenna. The set of antenna ports supported depends on the reference signal configuration in the cell. As discussed in Section 6.2.3, there are three different reference signals defined in the downlink, and the associated antenna ports are as follows:

- Cell-specific reference signals support a configuration of 1, 2, or 4 antenna ports and the antenna port number $p$ shall fulfill $p = 0$, $p \in \{0, 1\}$, and $p \in \{0, 1, 2, 3\}$, respectively.
- MBSFN reference signals are transmitted on antenna port $p = 4$.
- UE-specific reference signals are transmitted on antenna port $p = 5$.

We will talk more about antenna ports when discussing MIMO transmission in the downlink in Section 7.2.2.

**Resource Element**

Each resource element in the resource grid is uniquely identified by the index pair $(k, l)$ in a slot, where $k = 0, 1, \ldots, N_{RB}^{DL} N_{sc}^{RB} - 1$ and $l = 0, 1, \ldots, N_{symb}^{DL} - 1$ are indices in the frequency and time domains, respectively. The size of each resource element depends on the subcarrier spacing $\Delta f$ and the CP length.

**Resource Block**

The resource block is the basic element for radio resource allocation. The minimum size of radio resource that can be allocated is the minimum TTI in the time domain, that is, one subframe of 1 ms, corresponding to two resource blocks. The size of each resource block is the same for all bandwidths, which is 180kHz in the frequency domain. There are two kinds of resource blocks defined for LTE: physical and virtual resource blocks, which are defined for different resource allocation schemes and are specified in the following section.

### 6.3.3 Resource Allocation

Resource allocation’s role is to dynamically assign available time-frequency resource blocks to different UEs in an efficient way to provide good system performance. In LTE,
channel-dependent scheduling is supported, and transmission is based on the shared channel structure where the radio resource is shared among different UEs. Therefore, with resource allocation techniques described in Chapter 4, multiuser diversity can be exploited by assigning resource blocks to the UEs with favorable channel qualities. Moreover, resource allocation in LTE is able to exploit the channel variations in both the time and frequency domain, which provides higher multiuser diversity gain than HSPA that can only exploit the time-domain variation. Given a wide bandwidth in LTE, this property is beneficial especially for slow-time varying channels, such as in the scenario with low mobility, where taking advantage of channel selectivity in the time domain is difficult.

With OFDMA, the downlink resource allocation is characterized by the fact that each scheduled UE occupies a number of resource blocks while each resource block is assigned exclusively to one UE at any time. Physical resource blocks (PRBs) and virtual resource blocks (VRBs) are defined to support different kinds of resource allocation types. The VRB is introduced to support both block-wise transmission (localized) and transmission on non-consecutive subcarriers (distributed) as a means to maximize frequency diversity. The LTE downlink supports three resource allocation types: type 0, 1, and 2 [8]. The downlink scheduling is performed at the eNode-B based on the channel quality information fed back from UEs, and then the downlink resource assignment information is sent to UEs on the PDCCH channel.

A PRB is defined as $N_{symb}^{DL}$ consecutive OFDM symbols in the time domain and $N_{sc}^{RB}$ consecutive subcarriers in the frequency domain, as demonstrated in Figure 6.10. Therefore, each PRB corresponds to one slot in the time domain (0.5 ms) and 180kHz in the frequency domain. PRBs are numbered from 0 to $N_{RB}^{DL}$−1 in the frequency domain. The PRB number $n_{PRB}$ of a resource element $(k,l)$ in a slot is given by:

$$n_{PRB} = \left\lfloor \frac{k}{N_{sc}^{RB}} \right\rfloor.$$

The PRB is to support resource allocations of type 0 and type 1, which are defined for the DCI format 1, 2, and 2A.

- **In type 0 resource allocations**, several consecutive PRBs constitute a resource block group (RBG), and the resource allocation is done in units of RBGs. Therefore, a bitmap indicating the RBG is sufficient to carry the resource assignment. The allocated RBGs to a certain UE do not need to be adjacent to each other, which provides frequency diversity. The RBG size $P$, that is, the number of PRBs in each RBG, depends on the bandwidth and is specified in Table 6.5. An example of type 0

<table>
<thead>
<tr>
<th>Downlink Resource Blocks ($N_{RB}^{DL}$)</th>
<th>RBG Size ($P$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 10</td>
<td>1</td>
</tr>
<tr>
<td>11 – 26</td>
<td>2</td>
</tr>
<tr>
<td>27 – 63</td>
<td>3</td>
</tr>
<tr>
<td>64 – 110</td>
<td>4</td>
</tr>
</tbody>
</table>
resource allocation is shown in Figure 6.11, where $P = 4$ and RBGs 0, 3, 4, ..., are allocated to a particular UE.

- In **type 1 resource allocations**, all the RBGs are grouped into a number of RBG subsets, and certain PRBs inside a selected RBG subset are allocated to the UE. There are a total of $P$ RBG subsets, where $P$ is the RBG size. An RBG subset $p$, where $0 \leq p < P$, consists of every $P$-th RBG starting from RBG $p$. Therefore, the resource assignment information consists of three fields: the first field indicates the selected RBG subset, the second field indicates whether an offset is applied, and the third field contains the bitmap indicating PRBs inside the selected RBG subset. This type of resource allocation is more flexible and is able to provide higher frequency diversity, but it also requires a larger overhead. An example of type 1 resource allocation is shown in Figure 6.11, where $P = 4$ and the RBG subset 0 is selected for the given UE.

In **type 2 resource allocations** that are defined for the DCI format 1A, 1B, 1C, and 1D, PRBs are not directly allocated. Instead, VRBs are allocated, which are then mapped onto PRBs. A VRB is of the same size as a PRB. There are two types of VRBs: VRBs of the localized type and VRBs of the distributed type.
For each type of VRB, a pair of VRBs over two slots in a subframe are assigned together with a single VRB number, $n_{VRB}$. VRBs of the localized type are mapped directly to physical resource blocks such that the VRB number $n_{VRB}$ corresponds to the PRB number $n_{PRB} = n_{VRB}$. For VRBs of the distributed type, the VRB numbers are mapped to PRB numbers according to the rule specified in [6].

For resource allocations of type 2, the resource assignment information indicates a set of contiguously allocated localized VRBs or distributed VRBs. A one-bit flag indicates whether localized VRBs or distributed VRBs are assigned.

Details about the downlink resource allocation can be found in [8]. The feedback for channel quality information and the related signaling is discussed in Chapter 9.

### 6.3.4 Supported MIMO Modes

Multiantenna transmission and reception (MIMO), as described in Chapter 5, is a physical layer technique that can improve both the reliability and throughput of the communications over wireless channels. It is considered a key component of the LTE physical layer from the start. The baseline antenna configuration in LTE is two transmit antennas at the cell site and two receive antennas at the UE. The higher-order downlink MIMO is also supported with up to four transmit and four receive antennas.

The downlink transmission supports both single-user MIMO (SU-MIMO) and multiuser MIMO (MU-MIMO). For SU-MIMO, one or multiple data streams are transmitted to a single UE through space-time processing; for MU-MIMO, modulation data streams are transmitted to different UEs using the same time-frequency resource. The supported SU-MIMO modes are listed as follows:

- Transmit diversity with space frequency block codes (SFBC)
- Open-loop spatial multiplexing supporting four data streams
- Closed-loop spatial multiplexing, with closed-loop precoding as a special case when channel rank = 1
- Conventional direction of arrival (DOA)-based beamforming

The supported MIMO mode is restricted by the UE capability. The PDSCH physical channel supports all the MIMO modes, while other physical channels support transmit diversity except PMCH, which only supports single-antenna–port transmission. The details about MIMO transmission on each downlink physical channel are provided in Chapter 7, while the feedback to assist MIMO transmission is discussed in Chapter 9.

### 6.4 Uplink SC-FDMA Radio Resources

For the LTE uplink transmission, SC-FDMA with a CP is adopted. As discussed in Chapter 4, SC-FDMA possesses most of the merits of OFDM while enjoying a lower PAPR. A lower PAPR is highly desirable in the uplink as less expensive power amplifiers are needed at UEs and the coverage is improved. In LTE, the SC-FDMA signal is
generated by the DFT-spread-OFDM. Compared to conventional OFDM, the SC-FDMA receiver has higher complexity, which, however, is not considered to be an issue in the uplink given the powerful computational capability at the base station.

An SC-FDMA transceiver has a similar structure as OFDM, so the parametrization of radio resource in the uplink enjoys similarities to that in the downlink described in Section 6.3. Nevertheless, the uplink transmission has its own properties. Different from the downlink, only localized resource allocation on consecutive subcarriers is allowed in the uplink. In addition, only limited MIMO modes are supported in the uplink. In this section, we focus on the differences in the uplink radio resource from that in the downlink.

6.4.1 Frame Structure
The uplink frame structure is similar to that for the downlink. The difference is that now we talk about SC-FDMA symbols and SC-FDMA subcarriers. In frame structure type 1, an uplink radio frame consists of 20 slots of 0.5 ms each, and one subframe consists of two slots, as in Figure 6.8. Frame structure type 2 consists of ten subframes, with one or two special subframes including DwPTS, GP, and UpPTS fields, as shown in Figure 6.9. A CP is inserted prior to each SC-FDMA symbol. Each slot carries seven SC-FDMA symbols in the case of normal CP, and six SC-FDMA symbols in the case of extended CP.

6.4.2 Physical Resource Blocks for SC-FDMA
As SC-FDMA can be regarded as conventional OFDM with a DFT-based precoder, the resource grid for the uplink is similar to the one for the downlink, illustrated in Figure 6.12, that is, it comprises a number of resource blocks in the time-frequency plane. The number of resource blocks in each resource grid, $N_{RB}^{UL}$, depends on the uplink transmission bandwidth configured in the cell and should satisfy

$$N_{RB}^{min,UL} \leq N_{RB}^{UL} \leq N_{RB}^{max,UL},$$

where $N_{RB}^{min,UL} = 6$ and $N_{RB}^{max,UL} = 110$ correspond to the smallest and largest uplink bandwidth, respectively. There are $N_{sc}^{RB} \times N_{symb}^{UL}$ resource elements in each resource block. The values of $N_{sc}^{RB}$ and $N_{symb}^{UL}$ for normal and extended CP are given in Table 6.6. There is only one subcarrier spacing supported in the uplink, which is $\Delta f = 15$ kHz. Different from the downlink, the DC subcarrier is used in the uplink, as the DC interference is spread over the modulation symbols due to the DFT-based precoding.

As for the downlink, each resource element in the resource grid is uniquely defined by the index pair $(k, l)$ in a slot, where $k = 0, \ldots, N_{RB}^{UL} N_{sc}^{RB} - 1$ and $l = 0, \ldots, N_{symb}^{UL} - 1$ are the indices in the frequency and time domain, respectively. For the uplink, no antenna port is defined, as only single antenna transmission is supported in the current specifications.

A PRB in the uplink is defined as $N_{symb}^{UL}$ consecutive SC-FDMA symbols in the time domain and $N_{sc}^{RB}$ consecutive subcarriers in the frequency domain, corresponding to one slot in the time domain and 180kHz in the frequency domain. The relation between the
6.4 Uplink SC-FDMA Radio Resources

One radio frame, $T_f = 10 \text{ ms}$

Figure 6.12 The structure of the uplink resource grid.

Table 6.6 Physical Resource Block Parameters for Uplink

<table>
<thead>
<tr>
<th>Configuration</th>
<th>$N_{RB}^{sc}$</th>
<th>$N_{UL\ symb}^{sc}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal CP</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Extended CP</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>
PRB number $n_{PRB}$ in the frequency domain and resource elements $(k, l)$ in a slot is given by:

$$n_{PRB} = \left\lfloor \frac{k}{N_{RB}} \right\rfloor.$$

### 6.4.3 Resource Allocation

Similar to the downlink, shared-channel transmission and channel-dependent scheduling are supported in the uplink. Resource allocation in the uplink is also performed at the eNode-B. Based on the channel quality measured on the uplink sounding reference signals and the scheduling requests sent from UEs, the eNode-B assigns a unique time-frequency resource to a scheduled UE, which achieves orthogonal intra-cell transmission. Such intra-cell orthogonality in the uplink is preserved between UEs by using timing advance such that the transport blocks of different UEs are received synchronously at the eNode-B. This provides significant coverage and capacity gain in the uplink over UMTS, which employs non-orthogonal transmission in the uplink and the performance is limited by inter-channel interference. In general, SC-FDMA is able to support both localized and distributed resource allocation. In the current specification, only localized resource allocation is supported in the uplink, which preserves the single-carrier property and can better exploit the multiuser diversity gain in the frequency domain. Compared to distributed resource allocation, localized resource allocation is less sensitive to frequency offset and also requires fewer reference symbols.

The resource assignment information for the uplink transmission is carried on the PDCCH with DCI format 0, indicating a set of contiguously allocated resource blocks. However, not all integer multiples of one resource block are allowed to be assigned to a UE, which is to simplify the DFT design for the SC-FDMA transceiver. Only factors 2, 3, and 5 are allowed. The frequency hopping is supported to provide frequency diversity, with which the UEs can hop between frequencies within or between the allocated subframes. The resource mapping for different uplink channels is discussed in Chapter 8, and the uplink channel sounding and scheduling signaling is described in Chapter 9.

### 6.4.4 Supported MIMO Modes

For the MIMO modes supported in the uplink, the terminal complexity and cost are among the major concerns. MU-MIMO is supported, which allocates the same time and frequency resource to two UEs with each transmitting on a single antenna. This is also called Spatial Division Multiple Access (SDMA). The advantage is that only one transmit antenna per UE is required. To separate streams for different UEs, channel state information is required at the eNode-B, which is obtained through uplink reference signals that are orthogonal between UEs. Uplink MU-MIMO also requires power control, as the near-far problem arises when multiple UEs are multiplexed on the same radio resource.

For UEs with two or more transmit antennas, closed-loop adaptive antenna selection transmit diversity shall be supported. For this scenario, each UE only needs one transmit
chain and amplifier. The antenna that provides the best channel to the eNode-B is selected based on the feedback from the eNode-B. The details of MIMO transmission in the uplink are described in Chapter 8.

6.5 Summary and Conclusions

This chapter provided an overview of the LTE radio interface, emphasizing the hierarchical channel structure and the radio resource in both downlink and uplink. The material covered should be adequate for the reader to get the unique characteristics of the LTE physical layer and understand the detailed physical layer procedures in the following chapters.

- LTE is the next step in the evolution of mobile cellular systems, and is a packet-switched network from end to end that is designed with a clean slate approach.

- LTE adopts the hierarchical channel structure from UTRA/HSPA. It simplifies the channel structure and is based totally on the shared channel transmission, which improves the efficiency of the air interface.

- LTE applies OFDMA in the downlink and SC-FDMA in the uplink, both of which have similar radio resource structures in the time-frequency plane. The capability of scheduling in both time and frequency domain provides a higher spectral efficiency in LTE than what is achieved in HSPA. Both localized and distributed resource allocations are supported in the downlink, while only localized resource allocation is supported in the uplink.

- MIMO transmission is a key component of LTE. In current specifications, downlink transmission supports a variety of MIMO modes, while uplink transmission has a limited MIMO support considering cost and complexity.

Bibliography


[4] 3GPP TR 25.913, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN).”


Index

Numbers
1xRTT/EvDO, 229
2-ray approximation for path loss, 50
2.5G system, CDMA2000-1X as, 12
2G (second generation) digital cellular systems
  3G systems vs., 10
  AMPS, 6
  CDMA (IS-95), 9–10
  GSM, 7–9
  LTE interoperability with, 27, 230 overview of, 6–7
3G (third generation) broadband wireless systems
  3GPP standards, 22–24
  CDMA 2000 and EV-DO, 11–13
  GSM vs. CDMA evolution plans, 10
  HSPA, 14–15
  LTE interoperability with, 27, 230 overview of, 10–11
  UMTS WCDMA, 13–14
3G (third generation) broadband wireless systems, beyond 3G
  HSPA+, 16–18
  HSPA+ and WiMAX vs. LTE, 20–22
  mobile WiMAX, 18–20 overview of, 15–16
3GPP (Third Generation Partnership Project)
  channel models, 76
  LTE flat network architecture, 32–33
  radio interface standards for IMT-2000, 11 releases, 22–23
  separate network structure for LTE, 227
  standards evolution, 22–24
3GPP2 (Third Generation Partnership Project 2), 11–12
4G (fourth generation) systems
  ITU definition of, 40
  LTE not meeting requirements for, 39
  WiMAX and LTE not technically, 16
16QAM modulation
  computing shadowing effects for, 53–54
  CQI estimation process, 324
downlink shared channels, 269
  HSPA+ enhancements to, 16
  LTE schemes for, 264
  in OFDM, 110
  uplink shared channels, 299
64QAM modulation
  AMC, 86–88
  CQI estimation process, 324
downlink shared channels, 269
  HSPA+ enhancements to, 16
  LTE schemes for, 264
  uplink shared channels, 299

A
AAS (advanced antenna systems), and WiMAX, 19
ACK/NAK
  H-ARQ Indicator transmissions in uplink, 321
  H-ARQ transmissions in downlink, 320
  modulation of PUCCH, 307–308
  multiplexing UCI on PUSCH with
  UL-SCH data, 304–305
  Acknowledged Mode (AM), RLC, 360, 364
  ACK_SN (Acknowledgement SN) field,
    STATUS PDU, 366
  adaptive H-ARQ, 292
  ADC (analog-to-digital) converters, 46, 118
  additive white Gaussian noise (AWGN), 80–81, 89
  adjacent subcarrier allocation, 153
  advanced antenna systems (AAS), and
    WiMAX, 19
Advanced Mobile Phone Service (AMPS), 1, 5–6
advanced wireless services (AWS) band, LTE deployment, 35–38
Alamouti STBC systems
diversity, multiuser vs. frequency vs. spatial, 159–160
MIMO in LTE downlink, 213–214
open-loop transmit diversity, 175–177
vs. MRC for coherent BPSK, 181–182
allocation notification, uplink feedback, 154
ALOHA, 135
AM (Acknowledged Mode), RLC, 360, 364
AM/AM (amplitude modulation-amplitude modulation), and PAR problem, 116
AM/FM (amplitude modulation-phase modulation), and PAR problem, 116
AMC (adaptive modulation and coding)
computing effect of shadowing, 54
HSPDA and, 14
mitigating narrowband fading, 86–89
tuning controller, 88–89
WiMAX link layer and, 19
AMD (AM Data) PDU, 364–366
AMD PDU segments
and ARQ, 369
defined, 364
RLC PDU formats, 365–366
amplitude modulation-amplitude modulation (AM-AM), and PAR problem, 116
amplitude modulation-phase modulation (AM/FM), and PAR problem, 116
AMPS (Advanced Mobile Phone Service), 1, 5–6
analog-to-digital (ADC) converter, 46, 118
angle of arrival. See AoA (angle of arrival)
angle of departure (AoD), 76, 78
angle spread (AS), 76, 78
angular spread, 63, 66–67
antenna ports
cell-specific reference signals, 286–287
generating OFDM baseband signals on, 268
mapping of resources on, 266–268
in MIMO transmission, 265–266, 336
antennas
Advanced Antenna Systems, 19
array fashion, 76
array gain pattern, 76
directional, 59
diversity in HSPA+, 17
multiple transmission and reception. See MIMO (multiantenna transmission and reception)
single antenna systems, 159–160
uncorrelated, 208–209
AoA (angle of arrival)
beamsteering for interference suppression, 187–189
empirical channel models estimating, 76
LTE channels for multipath modelling, 78
AoD (angle of departure), 76, 78
aperiodic CQI reporting
channel feedback and, 207–208
defined, 325–326
understanding, 331–333
ARK NAK, triggering ARQ, 369
ARQ (Automatic Repeat Request) protocol. See also H-ARQ (Hybrid-ARQ) protocol
correcting link layer errors with, 14
defined, 86
DMT theory for, 201
mitigating narrowband fading, 86
procedures in MAC/RLC, 368–369
RLC error correction through, 234
tuning AMC controller, 89
WiMAX link layer supporting, 18
array gain, 168–169
array response vector, DOA-based beamsteering, 188
AS (angle spread), 76, 78
asynchronous H-ARQ, 292
AT&T, evolution of, 3, 5–6
attenuation factor, clipping ratio, 122–123
autocorrelation function
angular spread/coherence distance in, 66–67
delay spread/coherence bandwidth in, 64
Doppler spread/coherence time in, 65–66
for received signals, 71–75
two-dimensional, 61–63
for wireless channel parameters, 63
avoidance, ICI, 378–379
AWGN (additive white Gaussian noise), 80–81, 89
AWS (advanced wireless services) band, LTE deployment, 35–38

B
backward compatibility
LTE-Advanced, 40
WiMAX developed without constraints of, 20
band AMC mode, OFDMA, 138, 141
bandwidth
CQI feedback design, 322
cyclic prefix creating loss of, 106–107
HSPA vs. WiMAX vs. LTE, 20–21
LTE design requirements, 24–27
OFDM communications and, 108
OFDM in LTE, 109–110
range vs., 49
WiMAX scalability, 19
bandwidth part (BP), UE-selected subband CQI report, 328–329
base-station controller (BSC), 8–9, 13
base station coordination, networked MIMO, 212–213
Base Station Subsystem (BSS), GSM, 8–9
base-station transceiver (BTS), 8–9, 13
base stations. See BS (base stations)
baseband signals
OFDM, 268
SC-FDMA, 297–298
battery life, HSPA+, 17
BCCH (Broadcast Control Channel), 236, 284
BCH (Broadcast Channel), 237
downlink transport channels, 283
overview of, 83–84
uplink transport channels, 237
beamforming
DOA-based, 187–189
interference-aware, 191–192
LTE multiantennas and, 31
MIMO in LTE downlink and, 214
multiuser vs. frequency vs. spatial diversity in, 159–160
random orthogonal, 211
transmit selection diversity vs., 183
bearer service architecture, 355–359
bearers, QoS control, 355–359
Bell Labs Layered Space-Time (BLAST) receiver, 196–198
BEP (bit-error probability)
diversity gain and, 169–170
modulation using SDNR, 123
selection combining and, 172–173
BER (bit error)
in AMC, 87–88
in OFDM vs. SC-FDE, 126
in QAM modulation system, 80–81
in unmitigated fading, 81–83
bibliography
cellular technologies, evolution of, 42
downlink transport channels, 293–294
frequency domain multiple access, 160–165
inter-cell interference control, 381–382
LTE radio interface, 255–256
MIMO, 217–224
mobility management, 381–382
multicarrier modulation, 130–132
physical layer procedures/scheduling, 353–354
protocol architecture in LTE, 381–382
uplink transport channels, 317
wireless fundamentals, 93–97
bit error. See BER (bit error)
bit-error probability. See BEP (bit-error probability)
bits
scrambling codewords using, 263–264
in sub-block interleaving, 263
in wireless digital communication systems, 45–46
BLAST (Bell Labs Layered Space-Time) receiver, 196–198
BLER (Block Error Rate), 82, 324
Block Error Rate (BLER), 82, 324
block transmission with guard levels, OFDM, 103
BP (bandwidth part), UE-selected subband CQI report, 328–329
broadband fading
mitigation of, 90–92
modelling channels, 67–80
overview of, 60–67
broadband wireless channels fading phenomenon. See fading overview, 46–48
path loss, 48–51
shadowing, 51–55
Broadcast Channel. See BCH (Broadcast Channel)
Broadcast Control Channel (BCCH), 236, 284
BS (base stations)
    in cellular systems, 55
    early mobile telephone systems, 3
    GSM subsystem, 8–9
    LTE buffer status reporting and, 154
    LTE channel models for path loss
    and, 76–77
    networked MIMO coordinating,
    212–213
    OFDMA architecture, 141
BSC (base-station controller), evolution of,
    8–9, 13
BSR (Buffer Status Report)
    signaling with MAC control element,
    368
    in uplink scheduling, 154, 337–338
BSS (Base Station Subsystem), GSM, 8–9
BTS (base-station transceiver), 8–9, 13
Buffer Status Report. See BSR (Buffer Status Report)

C
C Band, 38
C-RNTI, and semi-persistent scheduling,
    345–346
Cancellation, ICI, 377, 379
Carrier Sense Multiple Access (CSMA)
    systems, 135–136, 142
carrier-to-interference ratio (CIR), 6
CAZAC (Constant Amplitude Zero
    Auto-Correlation) property, 289
CCCH (Common Control Channel) logical
    channel, 236
CCDF (complimentary cumulative
    distribution function), 54,
    119–120
CCI (co-channel interference), 56–60
CDD (cyclic delay diversity)
    large-delay, 273
    open-loop spatial multiplexing, 214
CDMA (Code Division Multiple Access)
    for 2G systems, 6–7
    for 3G systems, 11–12
    2000-1X, 11–14
    evolving networks to LTE, 16
    HSPA vs. WiMAX vs. LTE and, 20
    LTE co-existence with, 27
    mitigating broadband fading, 90
    in OFDM systems, 137–138
    OFDM vs., 28–30
    overview of, 134–135
CDMA (Code Division Multiple Access),
    IS-95
    as 2G system, 6–7, 9–10
    evolution beyond 3G, 16
    IMT-MC standard for evolution to
    IX-EV-DO, 11
cell search process, physical layer, 346–348
    cell-specific downlink reference signals,
    285–287
cells, in cellular systems, 55–56
    cellular systems
        analysis of, 56–58
        concept of, 55–56
        development of, 3
        overview of, 54–55
        sectoring, 58–60
    cellular technologies, evolution of
        3G broadband wireless, 10–15
        3GPP standards, 22–24
        beyond 3G, 15–22
        beyond LTE- future of mobile
        broadband, 39–41
        case for LTE/SAE, 23–28
        introduction, 1–2
        LTE network architecture, 33–35
        LTE spectrums and migration, 35–39
        LTE technologies and features, 28–33
        mobile broadband, 3–10
        summary and conclusions, 41
Central Limit Theorem. See CLT (Central
    Limit Theorem)
CEPT (Conference of European Posts and
    Telegraphs), GSM, 7
CFI (Control Format Indicator)
    in channel encoding and modulation,
    281–282
    in downlink control channels, 277,
    280–282
    in MAC layer, 238
CGF (Charging Gateway Function),
    GSM, 8
    channel coding
        code block concatenation, 263
        code block segmentation, 259
        CRC addition, 259
        downlink transport channel
        processing and, 257–258
        HSPA vs. WiMAX vs. LTE, 21
        overview of, 258–260
        rate matching, 262–263
        schemes for, 259–262
        tail-biting convolutional coding, 260
        for Uplink Control Information,
        302–306
    uplink transport channels, 296–297
channel delay spread
  coherence bandwidth and, 64
cyclic prefix and, 105–107
in ISI suppression, 100–101
severity of ISI and, 63
wireless channel parameters in, 47
channel-dependent scheduling, 339
channel encoding
  downlink control channels, 279–282
downlink shared channels, 269–270
uplink shared channels, 299
channel estimation
  MIMO/MIMO-OFDM, 202–206
  OFDM/SC-FDE, 127
channel feedback, MIMO and
  MIMO-OFDM, 206–208
channel-independent scheduling, 339
channel knowledge
  linear interference suppression with
    complete, 189–192
  linear interference suppression with
    statistical, 190–192
  open-loop MIMO without, 194–198
channel mapping
  around downlink shared channel, 269–270
  around uplink shared channel, 298
  for downlink control channels, 277
  LTE radio interface and, 240–241
  for uplink control information, 302
channel matrix, in spatial multiplexing, 193
Channel Quality Indicator. See CQI
  (Channel Quality Indicator) feedback
channel sounding, uplink, 337
channel state information. See CSI
  (channel state information)
channel state information at transmitter
  (CSIT), 206–208
channel structure. See hierarchical channel
  structure, LTE
Charging Gateway Function (CGF),
  GSM, 8
chase combining, H-ARQ
  defined, 14
  procedures in MAC/RLC, 369
  in type I H-ARQ, 86
ciphering function, PDCP, 362
CIR (carrier-to-interference ratio), 6
circuit-switched data, original GSM, 8
circular convolution
  DFT and, 104–105
  OFDM cyclic prefix creating, 106
CL (closed-loop) MIMO
  downlink shared channels, 273–275
  overview of, 198–200
  precoder for, 333–337
  rank-1 precoding, 271, 274
  spatial multiplexing. See spatial
    multiplexing, CL MIMO
  uplink shared channels, 300
CL (closed-loop) power control, LTE, 155
CL (closed-loop) switched antenna
diversity, 214–215
CL (closed-loop) transmit diversity
  defined, 174–175
  with linear diversity precoding,
    185–186
  overview of, 181–182
  with TSD, 182–185
clean slate approach, LTE radio interface,
  228–229
clipping (soft limiting)
  OFDM/SC-FDE design, 127
  reducing PAR with, 121–123
closed-loop (CL) MIMO. See CL
  (closed-loop) MIMO
closed-loop (CL) power control, LTE, 155
closed-loop (CL) switched antenna
diversity, 214–215
closed-loop transmit diversity. See CL
  (closed-loop) transmit diversity
CLT (Central Limit Theorem)
  lognormal distribution for shadowing
    and, 54
  PAR and, 118
  Rayleigh fading and, 68
CN (core network), UMTS
  in 3G evolution of GSM, 8
  defined, 13
  LTE radio interface and, 227
  co-channel interference (CCI), 56–60
  co-channel reuse ratio, 56–57
code block concatenation, in channel
  coding, 263
code block segmentation, in channel
  coding, 259
Code Division Multiple Access. See CDMA
  (Code Division Multiple Access)
  codebooks
    channel estimation and feedback for
      MIMO, 207
    for CL MIMO modes, 335–336
codebooks (continued)
in closed-loop spatial multiplexing, 214
defined, 333
in MU-MIMO, 214
precoding, 206
codewords
in channel coding, 257–258
in MIMO transmission, 265–266
modulation mapping in downlink, 264
scrambling, 263–264
coding and interleaving
exploiting diversity with, 201–202
mitigating narrowband fading, 83–85
OFDM vs. SC-FDE performance
and, 126
coding rate, 83
coherence bandwidth
broadband fading parameters for, 63
delay spread and, 64
intersymbol interference approach to, 101–102
multicarriers and, 100
coherence distance
angular spread and, 66–67
broadband fading parameters for, 63
coherence times
broadband fading parameters for, 63
Doppler spread and, 65–66
coherent demodulation, in OFDM, 29
Common Control Channel (CCCH) logical channel, 236
CoMP (Coordinated Multi-Point) transmission/reception, LTE-Advanced, 378–379
competitive market, and LTE development, 25
completion phase
S1 mobility, 373
X2 mobility, 374
complimentary cumulative distribution function (CCDF), 54, 119–120
computational complexity
of maximum likelihood detector, 194–195
OFDM/SC-FDE advantage, 124–125, 127–128
SC-FDMA/OFDMA disadvantage, 144
of transmit diversity, 28–29
Conference of European Posts and Telegraphs (CEPT), GSM, 7
connection control, RRC, 371
Constant Amplitude Zero Auto-Correlation (CAZAC) property, 289
contention resolution, random access channel, 350
Control Format Indicator. See CFI (Control Format Indicator)
control information, defined in MAC layer, 238–241
Control PDU Type (CPT) field, STATUS PDU, 366
control plane
latency in LTE design, 229
overview of, 356–358
PDCP functions, 360–361
PDCP integrity and ciphering in, 362
convolutional coding
interleaving used with, 85
overview of, 83–84
convolutional turbo encoding
channel coding in LTE, 260–262
channel coding scheme/coding rates, 259–260
downlink shared channels, 269
overview of, 260–262
Coordinated Multi-Point (CoMP) transmission/reception, LTE-Advanced, 380
coordination, ICI, 378, 379
cost efficiency, LTE design, 25, 27
COST Hata model, 76–77
COUNT parameter, PDCP security, 361–362
coverage area
LTE design principles, 230
spatial diversity increasing, 171
CP (cyclic prefix)
cell search process, 348
in downlink, 241
in LTE, 109–110
in OFDM, 109
overview of, 105–107
in SC-FDE, 125
in timing synchronization, 111–113
CPT (Control PDU Type) field, STATUS PDU, 366
CQI (Channel Quality Indicator) feedback
in aperiodic CQI reporting, 331–333
channel feedback and, 207
downlink scheduling/AMC-mode selection, 154
downlink shared channel modulation and, 269
estimation process, 323–325
HSPDA cell phones and, 15
modes, overview, 325–326
MU-MIMO in uplink affecting, 301
overview of, 322
in periodic CQI reporting, 326–330
CQI/PMI, UCI on PUCCH, 302–305
CRC (cyclic redundancy check)
channel coding error detection using, 258–259
code block segmentation using, 259
DCI channel encoding and modulation using, 279–280
defined, 259
for PBCH error detection, 283
signaling, in downlink scheduling, 340–341
CSI (channel state information)
linear diversity precoding and, 185–186
MU-MIMO difficulties with, 275–276
obtaining at transmitter, 206–208
OFDMA architecture with, 141
OFDMA opportunistic scheduling and, 146–147
SDMA vs. SU-MIMO sensitivity to, 212
CSIT (channel state information at transmitter), 206–208
CSMA (Carrier Sense Multiple Access) systems, 135–136, 142
cyclic delay diversity (CDD), 214, 273
cyclic prefix. See CP (cyclic prefix)
cyclic redundancy check. See CRC (cyclic redundancy check)
D
D-BLAST (diagonal BLAST), open-loop MIMO, 196–197
D/C (Data/Control) field
PDCP data PDU for user plane, 360–361
RLC PDUs, 366
DAC (digital-to-analog) converters, 46, 116–117
Data Radio Bearers (DRBs), 355
data rate
2G limitations, 7
3G providing higher, 10
3GPP standards evolution, 22–24
advantages of OFDMA lower, 142
CDMA2000-1X as 2.5 system, 12
CDMA2000-1X-EVDO improving, 12–13
GPRS moving towards higher, 8
HSPA+ enhancements to, 17
HSPA vs. WiMAX vs. LTE, 20–22
linear diversity precoding increasing, 185–186
LTE-Advanced requirements, 40
LTE design principles, 26, 229
spatial diversity increasing, 170–171
data transfer modes, RLC layer, 363–364
DCCH (Dedicated Control Channel) logical channel, 236
DCF (Distributed Coordination Function), CSMA, 135
DCI (Downlink Control Information) channel encoding and modulation, 279–280
defined in MAC layer, 238
downlink control channels, 276–279
downlink shared channels, 270
formats, 277–279
semi-persistent scheduling for VoIP, 345–346
signaling for downlink scheduling, 340–341
deciphering function, PDCP, 362
decision feedback equalizers (DFE), 91
DECT (Digital Enhanced Cordless Telephone), 6
dedicated bearer, 357
Dedicated Control Channel (DCCH) logical channel, 236
Dedicated Traffic Channel (DTCH) logical channel, 236
default bearer, 357
delay dimension, broadband fading channels, 62–63
delay spread
broadband fading parameters for, 63
coherence bandwidth and, 64
OFDM robustness against, 29
delay spread (DS), multipath modelling, 78
demodulation reference signals, 309–312
deployment, LTE requirements, 230
DFE (decision feedback equalizers), 91
DFT (Discrete Fourier Transform), OFDM, 103–105, 297–298
diagonal BLAST (D-BLAST), open-loop MIMO, 196–197
Digital Enhanced Cordless Telephone (DECT), 6
digital modulation, 2G systems, 6
Digital Subscriber Line (DSL), and multicable modulation, 99
digital-to-analog (DAC) converters, 46, 116–117
Digital Video Broadcasting, 99
Direct Sequence Spread Spectrum (DSSS), W-CDMA as, 13–14
direction of arrival (DOA)-based beamforming, 187–189, 251
directional antennas, sectoring with, 59
Discontinuous Reception (DRX), Paging function of, 377
Discrete Fourier Transform (DFT), OFDM, 103–105, 297–298
Discrete Multitone (DMT) in DSL, 99
discrete-time channel, broadband wireless model, 47–48
dispersion-selectivity duality, 74–75
Distributed Coordination Function (DCF), CSMA, 135
distributed subcarrier allocation, 153
distributed VRBs (virtual resource blocks), 250–251
diversity
  combining narrowband techniques for, 89
defined, 80
frequency. See frequency diversity
interference suppression vs. spatial multiplexing vs., 200–202
multiuser vs. frequency vs. spatial diversity, 159–160
OFDMA multiuser, 144–146
receive diversity, 171–174
spatial. See spatial diversity
  transmit. See transmit diversity
unmitigated fading affecting, 80–83
diversity gain
defined, 168
  Diversity-Multiplexing Tradeoff, 200–201
multiantennas and, 169–170
Diversity-Multiplexing Tradeoff (DMT), 200–201
DL-SCHs (Downlink Shared Channels)
  channel encoding and modulation, 269–270
  CL MIMO techniques, 273–275
downlink transport channel processing, 268–276
MU-MIMO in downlink, 275–276
  multiantenna transmission, 270–271
OL MIMO techniques, 271–273
  overview of, 268–269
random access response on, 349
  as transport channel, 237
DMT (Discrete Multitone) in DSL, 99
DMT (Diversity-Multiplexing Tradeoff), 200–201
DOA (direction of arrival)-based beamforming, 187–189, 251
Doppler spread
  broadband fading parameters for, 63
  and coherence time, 65–66
time correlation of received signal, 71–72
double space-time transmit diversity (DSTTD), stacked STBCs, 178–179
downlink
  allocation notification in, 154
CDMA2000-1X improvements to, 12
CQI and UCI in, 301
CQI feedback mechanism in, 322
designated FDD frequency bands for, 35–36
H-ARQ transmissions in, 320–321
High-Speed Packet Access in, 14–15
HSPA+ enhancements to, 16–17
HSPA vs. WiMAX vs. LTE in, 20–22
ICI coordination in LTE, 377–379
Layer 2 structure in, 358
LTE-Advanced requirements, 40
LTE design principles, 26, 229
MIMO in LTE, 213–214
OFDM for core modulation in, ?
OFDMA in LTE, 139–141, 152–155
power control in LTE, 154–155
SDMA vs. SU-MIMO, 211
signaling for scheduling in, 340–341
downlink control channels
  Control Format Indicator, 280–282
DCI channel encoding and modulation, 279–280
DCI formats, 277–279
H-ARQ Indicator, 282
  multiantenna transmission, 282–283
overview of, 276–277
Downlink Control Information. See DCI (Downlink Control Information)
downlink OFDMA radio resources
  frame structure, 242–243
  frame structure type 1, 243–244
frame structure type 2, 244–246
overview of, 241–242
physical resource blocks for OFDMA, 246–248
resource allocation, 248–251
supported MIMO modes, 251
downlink physical signals
cell-specific reference signals, 285–287
downlink reference signals, 285
MBSFN reference signals, 287
synchronization signals, 289–290
UE-specific reference signals, 287–288
Downlink Pilot TimeSlot (DwPTS) field, 245, 252
downlink reference signals
cell-specific, 285–287
MBSFN, 287
overview of, 285
UE-specific, 287–288
Downlink Shared Channels. See DL-SCHs (Downlink Shared Channels)
downlink transport channel processing
broadcast channels, 283
channel coding. See channel coding
downlink control channels, 276–283
downlink physical signals, 285–290
downlink shared channels. See DL-SCHs (Downlink Shared Channels)
H-ARQ in downlink, 290–292
modulation, 263–268
multicast channels, 284–285
overview of, 257–258
summary and conclusions, 293
downlink transport channels, 237
DRBs (Data Radio Bearers), 355
DRX (Discontinuous Reception), Paging function of, 377
DS (delay spread), multipath modelling, 78
DSL (Digital Subscriber Line), and multicarrier modulation, 99
DSSS (Direct Sequence Spread Spectrum), W-CDMA as, 13–14
DSTTD (double space-time transmit diversity), stacked STBCs, 178–179
DTCH (Dedicated Traffic Channel) logical channel, 236
dual-carrier operation, HSPA+ and, 17
dual layer beamforming, 276
DwPTS (Downlink Pilot TimeSlot) field, 245, 252

E-E-DCH (Enhanced Dedicated Channel), HSUPA, 15
E (Extension bit) field, MAC subheader, 367
E (Extension bit) field, RLC headers, 365
E-MBMS (Enhanced MBMS), 284
E-UTRA (Evolved UMTS Terrestrial Radio Access), 227
E-UTRAN (Enhanced UTRAN)
development of, 24
LTE network architecture, 231–232
network architecture, 229
overview of, 227
Paging function, 376–377
RAN procedures for mobility, 375–376
E1 (Extension bit 1) field, STATUS PDU, 366
E2 (Extension bit 2) field, STATUS PDU, 366
Earthquake and Tsunami Warning System (ETWS), 376
ECCs (error correction codes), 83–85
EDGE (Enhanced Data Rate for GSM Evolution), 9, 22
effective channel coding rate, downlink shared channels, 269
effective SINR, in CQI estimation, 322–324
EGC (equal gain combining), 174
empirical channel models
defined, 67
functionality of, 75–76
LTE models for multipath, 77–79
LTE models for path loss, 76–77
LTE semi-empirical models, 79–80
empirical path loss formula, 50–52
encoding, wireless digital systems, 45–46
cryptography, in 2G systems, 6
Enhanced Data Rate for GSM Evolution (EDGE), 9, 22
Enhanced Dedicated Channel (E-DCH), HSUPA, 15
Enhanced MBMS (E-MBMS), 284
Enhanced Uplink, 15
eNode-B
CQI estimation process, 324
defined, 32
LTE flat network architecture and, 227–228, 231
MAC entities in, 364
MU-MIMO in uplink affecting, 301
eNode-B (continued)
non-synchronized random access procedure and, 348–350
overriding PMI reported by UEs, 336–337
resource allocation in uplink at, 254
S1 mobility, 371–373
semi-persistent scheduling for VoIP, 344–346
signaling for downlink scheduling, 340–341
signaling for uplink scheduling, 341–343
uplink channel sounding at, 337
X2 mobility at, 232, 373–374

EPC (Evolved Packet Core)
architecture, 33–34
development of, 24
LTE network architecture
components, 231–232
LTE project in 3GPP enhancing, 227
protocol architecture in LTE, 356–357
services in LTE flat architecture, 32

EPS (Evolved Packet System)
bearer, 355–359, 380
defined, 227
development of, 24
equal gain combining (EGC), 174
equalizers
ISI-suppression to OFDM and, 91
OFDM/SC-FDE advantages, 127–128
error correction codes (ECCs), 83–85
errors
detecting for broadcast channels, 283
H-ARQ handling transmission, 369
nonlinear equalizers causing, 91
estimation process, CQI, 322–325

ETACS (Total Access Communication System), 5
Ethernet, CSMA for random access, 135–136

ETSI (European Telecommunications Standards Institute), 7–8
ETWS (Earthquake and Tsunami Warning System) notification, 376
European Telecommunications Standards Institute (ETSI), 7–8
EV-DO, 11–13, 229
events, intra-LTE and intra-RAT handover, 375
Evolved Packet Core. See EPC (Evolved Packet Core)
Evolved Packet System. See EPS (Evolved Packet System)
Evolved UMTS Terrestrial Radio Access (E-UTRA), 227
execution phase
S1 mobility, 372
X2 mobility, 374
Extended delay profiles, 79–80
Extended Pedestrian A delay profile, 79
Extended Vehicular A delay profile, 79
Extension bit 1 (E1) field, STATUS PDU, 366
Extension bit 2 (E2) field, STATUS PDU, 366
Extension bit (E) field, MAC subheader, 367
Extension bit (E) field, RLC headers, 365

F
F field, MAC subheader, 367
fading
empirical/semi-empirical models estimating, 76
large-scale. See large-scale fading
mitigation of narrowband. See narrowband fading, mitigation of
fading, broadband
angular spread/coherence distance in, 66–67
delay spread/coherence bandwidth in, 64
Doppler spread/coherence time in, 65–66
empirical channel models for, 75–80
mitigation of, 90–92
overview of, 60–63
statistical channel models for, 68–71
statistical correlation of received signal for, 71–75
fairness
Maximum Fairness algorithm, 148
in OFDMA resource allocation, 150–152
power control in, 155
fast dynamic scheduling, HSPDA/HSUPA, 14
Fast Fourier Transforms. See FFT (Fast Fourier Transforms)
FCC (Federal Communications Commission), cellular mobile concept, 3
FDD (Frequency Division Duplexing) mode
aperiodic CQI reporting in, 331–332
designated frequency bands for LTE in, 35–36
frame structure type 1 in, 243–244
H-ARQ in downlink, 320
H-ARQ in uplink, 315, 321
LTE support for, 27, 230
resource mapping of sounding reference signals, 311–313
UCI on PUSCH with UL-SCH data in, 304–305
W-CDMA for, 13–14
WiMAX for, 19
FDMA (Frequency Division Multiple Access)
CSMA vs., 136
implementing in OFDM systems, 136–137
overview of, 134–135
single-carrier. See SC-FDMA (Single Carrier Frequency Division Multiple Access)
FEC (forward error correction) code
channel coding error-control, 258
at WiMAX link layer, 19
Federal Communications Commission (FCC), cellular mobile concept, 3
FEQ (frequency domain equalizer), OFDM overview of, 108
SC-FDE vs., 125–126
steps in communications, 109
FER (Frame Error Rate), and unmitigated fading, 82
FFR (Fractional Frequency Reuse), mitigating ICI, 157–159
Fractional Frequency Reuse (Strict FFR), mitigating ICI, 157–158
Fractional Power Control (FPC), in uplink, 351
fractional power control, LTE, 155
Frame Error Rate (FER), and unmitigated fading, 82
frame size, HSPA vs. WiMAX vs. LTE, 21–22
frame structure
downlink OFDMA radio resources, 242–246
mapping synchronization signals, 289–290
random access preambles, 314
uplink SC-OFDMA, 252
Framing Info (FI) field, RLC headers, 365
fixed error probability, DMT theory, 201
flat network architecture, LTE 3GPP evolution towards, 32–33
overview of, 227–228
flat-rate pricing, in LTE development, 25
forward error correction (FEC) code
channel coding error-control, 258
at WiMAX link layer, 19
fourth generation systems. See 4G (fourth generation) systems
FPC (Fractional Power Control), in uplink, 351
Fractional Frequency Reuse (FFR), mitigating ICI, 157–159
Fractional Frequency Reuse (Strict FFR), mitigating ICI, 157–158
Fractional Power Control (FPC), in uplink, 351
fractional power control, LTE, 155
Frame Error Rate (FER), and unmitigated fading, 82
frame size, HSPA vs. WiMAX vs. LTE, 21–22
frame structure
downlink OFDMA radio resources, 242–246
mapping synchronization signals, 289–290
random access preambles, 314
uplink SC-OFDMA, 252
Framing Info (FI) field, RLC headers, 365
free-space path loss (Friss) formula, 48–49
frequency correlation, of received signal, 72–74
frequency, dispersion-selectivity in, 74
frequency diverse scheduling, 339
frequency diversity
for maximal ratio combining, 174
OFDMA advantages, 29, 142
spatial diversity vs. multiuser diversity vs., 159–160
Frequency Division Duplexing. See FDD (Frequency Division Duplexing) mode
Frequency Division Multiple Access. See FDMA (Frequency Division Multiple Access)
frequency domain
cell-specific reference signals in, 287
CQI reporting in, 325
generating random access in, 314
MBSFN reference signals in, 287
resource allocation in, 249
frequency-domain channel estimation, MIMO-OFDM, 205–206
frequency domain equalizer. See FEQ (frequency domain equalizer), OFDM
frequency domain multiple access
Maximum Fairness algorithm, 148
Maximum Sum Rate algorithm, 147–148
multiple access for OFDM systems, 134–138
multiuser diversity and, 144–146
OFDMA, 138–141
OFDMA and SC-FDMA in LTE, 152–155
OFDMA design considerations, 156–160
OFDMA opportunistic scheduling, 146–147
overview of, 133–134
performance comparison, 150–152
Proportional Fairness scheduling, 149–150
Proportional Rate Constraints algorithm, 148–149
SC-FDMA, 142–144
summary, 160
frequency equalization, 107–109, 127–128
frequency hopping, 90, 299–300
Frequency Hopping (FH) field, PUSCH, 299–300
Frequency Modulation, AMPS, 6
frequency planning
cellular performance and, 58
for cellular systems, 55–56
defined, 55
frequency reuse
intelligent planning of, 55–56
mitigating ICI with, 157
sacrificing bandwidth by using, 58
using sectoring with, 59
frequency selection, 20, 26–27
frequency-selective fading
converting to flat-fading with OFDM, 208
defined, 74
DMT theory for, 201
frequency selective scheduling, 339–341
Frequency Shift Keying (FSK), AMPS, 6
frequency shift time diversity (FSTD), 31, 179–180
frequency synchronization, 110–112, 114–116
Friss (free-space path loss) formula, 48–49
FSK (Frequency Shift Keying), AMPS, 6
FSTD (frequency shift time diversity), 31, 179–180
G

gains
combining narrowband diversity techniques for greater, 89
issues limiting MIMO, 208
Gateway GPRS Support Node (GGSN), 8–9, 32
Gaussian Minimum Shift Keying (GMSK), 8
GBR (Guaranteed Bit Rate) bearers, 356
GERAN (GSM EDGE radio access networks), and LTE, 230
GGSN (Gateway GPRS Support Node), 8–9, 32
Global System for Mobile Communications. See GSM (Global System for Mobile Communications)
GMSK (Gaussian Minimum Shift Keying), 8
GP (Guard Period) field
downlink OFDMA radio resources, 245
uplink SC-FDMA radio resources, 252
GPRS (GSM Packet Radio Systems)
latency in, 22
UMTS compatibility with, 13
upgrading GSM system to, 8–9
GPRS Tunneling Protocol (GTP), 357
Groupe Spcial Mobile, 7–8
GSM EDGE radio access networks (GERAN), and LTE, 230
GSM (Global System for Mobile Communications)
as 2G system, 6–7
designated frequency band for LTE, 35–37
evolution of, 7–9
UMTS compatibility with, 13
GSM Packet Radio Systems. See GPRS
(GSM Packet Radio Systems)
GTP (GPRS Tunneling Protocol), 357
Guaranteed Bit Rate (GBR) bearers, 356
Guard Period (GP) field
downlink OFDMA radio
resources, 245
uplink SC-FDMA radio resources, 252

H
H-ARQ-ACK
feedback for downlink transmission,
320–321
modulation of PUCCH, 308
procedures in MAC/RLC, 369
UCI on PUCCH, 303–304
UCI on PUSCH with UL-SCH data,
304–306
H-ARQ (Hybrid-ARQ) protocol
channel coding error-control using,
259
CQI estimation process, 324
in downlink, 290–292, 320–321
in Downlink Shared Channel, 237
HSPA supporting, 15
HSPA vs. WiMAX vs. LTE, 21
HSDPA/HSUPA supporting, 14–15
MAC protocol error correction
through, 234
MAC/RLC procedures, 368–369
mitigating narrowband fading, 86
SAPs between different layers,
234–235
for semi-persistent scheduling in
VoIP, 345–346
Uplink Control Information and, 301
WiMAX link layer supporting, 18
H-ARQ Indicator. See HI (H-ARQ
Indicator)
handover performance
in IS-95 CDMA systems, 9
RAN procedures for mobility, 374–376
Si mobility, 372–373
X2 mobility, 373–374
Hata Model for Suburban and Open
Areas, 77
Hata Model for Urban Areas, 77
HDR (High-Data Rate), EV-DO
evolution, 13
header compression, PDCP, 361
headers, RLC PDU formats, 365–366
hexagonal cell structure, 55–57
HFN (Hyper Frame Number), PDCP,
361–362
HI (H-ARQ Indicator)
channel encoding and
modulation, 282
defined in MAC layer, 238
downlink control channels containing,
277, 282
for uplink transmission, 321
hierarchical cell search scheme, LTE,
346–348
hierarchical channel structure, LTE
cchannel mapping, 240–241
logical channels, 235–236
overview of, 234–235
physical channels, 239
transport channels, 236–237
uplink physical channels, 239–240
uplink transport channels, 237–239
High-Data Rate (HDR), EV-DO
evolution, 13
High Interference Indicator (HII) messages,
mitigating uplink ICI, 380
high-power amplifier (HPA), PAR problem
and, 116–117
High-Speed Downlink Packet Access
(HSDPA), 14–15, 229–230
High-Speed Downlink Packet Access
(HSDPA), 228, 237
High-Speed Downlink Shared Channel
(HS-DSCH), 14, 237
High-Speed Packet Access. See HSPA
(High-Speed Packet Access)+
High-Speed Uplink Packet Access. See
HSUPA (High-Speed Uplink
Packet Access)
higher layer configured subband CQI
report
aperiodic CQI reporting, 325,
331–332
PMI feedback type, 327
HII (High Interference Indicator) messages,
mitigating uplink ICI, 380
HLR (Home Location Register),
GSM, 8–9
Home Location Register (HLR), GSM,
8–9
Home Subscriber Service (HSS), 232
HPA (high-power amplifier), PAR problem and, 116–117
HS-DSCH (High-Speed Downlink Shared Channel), 14, 237
HSDPA (High-Speed Downlink Packet Access), 14–15, 229–230
HSPA (High-Speed Packet Access)+
evolution beyond 3G, 15
H-ARQ of MAC/RLC layers in, 369
LTE radio interface design vs., 228
overview of, 14–15
packet-switched network support in, 229
reduced latency of, 22
technical enhancements of, 16–17
WiMAX vs. LTE vs., 20–22
HSPDA (High-Speed Downlink Packet Access), 228, 237
HSS (Home Subscriber Service), 232
HSUPA (High-Speed Uplink Packet Access)
defined, 14
HSPA as collection of, 228
LTE spectrum efficiency vs., 229–230
overview of, 15
Hybrid-ARQ. See H-ARQ (Hybrid-ARQ) protocol
Hyper Frame Number (HFN), PDCP, 361–362

I
IBO (input backoff), 116–117, 121–123
ICI (Inter-Cell Interference) coordination in LTE
in downlink, 377–379
mitigation techniques, 157–159
OFDMA/SC-FDMA and, 154
overview of, 377
summary and conclusions, 381
in uplink, 379–380
IDFT (Inverse Discrete Fourier Transform), 104–107
IEEE 802.16e. See Mobile WiMAX
IFFT (Inverse Fast Fourier Transform)
cyclic prefix and, 105
defining PAR for output of, 118–120
OFDM baseband signal generation, 268
OFDM implementation with, 28, 103, 108
OFDM in LTE, 109–110
OFDM/SC-FDE computational complexity advantage, 128
OFDM/SC-FDE design, 127
OFDM vs. SC-FDE, 125–126
SC-FDE in LTE and, 30
SC-FDMA and, 91
time correlation of received signal, 72
improved Mobile Telephone System (IMTS), 3
IMS (IP Multimedia Subsystem) domain, 232
IMT-2000 CDMA Direct Spread (IMT-DS) standard. See also W-CDMA (wideband CDMA), 11
IMT-2000 CDMA Multi-carrier (IMT-MC) standard, 11
IMT-2000 CDMA TDD (IMT-TC) standard, 3G, 11
IMT-2000 FDMA/TDMA (IMT-FT) standard, 11
IMT-2000 IP-OFDMA standard. See also WiMAX, 11
IMT-2000 TDMA Single Carrier (IMT-SC) standard, 3G, 11
IMT-Advanced, 4G, 40
IMT-DS (IMT-2000 CDMA Direct Spread) standard. See also W-CDMA (wideband CDMA), 11
IMT extension band, early LTE, 39–40
IMT-FT (IMT-2000 FDMA/TDMA) standard, 11
IMT-MC (IMT-2000 CDMA Multi-carrier) standard, 11
IMT-TC (IMT-2000 CDMA TDD) standard, 3G, 11
IMTS (improved Mobile Telephone System), 3
in-band distortion, by reducing PAR with clipping, 122
incremental redundancy, H-ARQ defined, 14
MAC/RLC procedures, 369
in type II H-ARQ, 86
input backoff (IBO), 116–117, 121–123
integrity protection, PDCP, 361–362
Inter-Cell Interference. See ICI (Inter-Cell Interference) coordination in LTE inter-subframe frequency hopping, LTE, 299
interference-aware beamforming, 191
interference channels, knowledge of, 189–192
interference-limited systems, 56–57, 209
interference suppression
  diversity vs. spatial multiplexing vs., 200–202
  DOA-based beamsteering for, 187–189
  linear, 189–192
  multiantennas and, 186–187
interleaving, and rate matching, 262–263
International Telecommunications Union (ITU), 10–11, 18
Internet access
  global growth of broadband for, 1–2
  limitations of 2G, 10
  LTE development and, 24–25
  LTE requirements, 26–27
intersector handoffs, mitigating OCI, 59–60
intersymbol interference. See ISI (intersymbol interference) mitigation
intra-LTE handover events, 374–376
intra-LTE mobility, 371–374
intra-RAT handover events, 375
intra-subframe frequency hopping, LTE, 299
Inverse Discrete Fourier Transform (IDFT), 104–107
Inverse Fast Fourier Transform. See IFFT (Inverse Fast Fourier Transform)
IP Multimedia Subsystem domain (IMS), 232
IP protocols
  LTE flat network based on, 32–33
  LTE/SAE and, 23–24
  for services in LTE flat architecture, 32
  WiMAX reliance on, 20
ISI (intersymbol interference) mitigation
  circular convolution and DFT, 104–105
  elegant approach to, 101–103
  equalizers for, 91
  multicarrier concept and, 99–101
  OFDM block transmission with guard levels for, 103
  OFDM communication steps and, 108
  OFDM multicarrier modulation for, 91, 99
  overview of, 90
  SC-FDMA for, 91
  spread spectrum and RAKE receivers for, 90
  ITU (International Telecommunications Union), 10–11, 18
  IX-EV-DO, 11–13
L
L field, MAC subheader, 367–368
large-scale fading, 52
Last Segment Flag (LSF) field, RLC PDUs, 366
latency
  3GPP standards evolution, 22–24
  LTE-Advanced requirements, 40
  LTE design requirement of low, 26–27, 229
  layer 1 of OSI reference model, PHY (physical layer) as, 234
  Layer 2 of LTE protocol stack, 357–358, 380
  layer mapping, 264–266
  layers, in MIMO transmission, 265–266
  LCID (Logical Channel ID) field, MAC subheader, 367
  least-squares channel estimation, 205
  legacy systems, frame structure for, 244–246
  Length Indicator (LI) field, RLC headers, 365
line-of-sight path. See LOS (line-of-sight) path
linear detectors, OL MIMO, 195–196
linear diversity precoding, 185–186
linear equalizers, suppressing ISI, 91
linear interference suppression, 189–192
linear precoding
  and postcoding, 198–200
  with quantized feedback, 206–207
links
  WiMAX robust link layer, 19
  wireless digital communication systems, 45–46
  localized VRBs (virtual resource blocks), 250–251
logical CCCH (Common Control Channel), 236
Logical Channel ID (LCID) field, MAC subheader, 367
logical channels
  defined, 234–235
  logical control channels, 236
Index

logical channels (continued)
logical traffic channels, 236
mapping between transport channels and, 240–241
what to transmit, 235–236
lognormal distribution for shadowing, 54
Long-Term Evolution. See LTE (Long-Term Evolution)
LOS (line-of-sight) channels, 69–70
LOS (line-of-sight) path
causing temporary degradation in signal strength, 51
modeling Ricean distribution for, 69–70
using shadowing effect for, 51–55
LSF (Last Segment Flag) field, RLC PDUs, 366
LTE Advanced, 40–41
LTE-Advanced, 378–379
LTE (Long-Term Evolution)
as 4G system, 16
design requirements, 26–27
downlink transport channel processing. See downlink transport channel processing
evolving networks to, 16
future enhancements, 39–41
for high-speed data services, 228–229
HSPA+ vs. WiMAX vs., 20–22
mobile broadband and, 2
multicarrier modulation underlying, 99
network architecture of, 33–35
OFDM in, 109–110
OFDMA and SC-FDMA in, 152–155
open-loop transmit diversity in, 179–180
reduced latency of, 22
spectrum options and migration plans, 35–39
technologies/features of, 28–32
WiMAX inspiring design for, 18
LTE (Long-Term Evolution) radio interface
channel mapping, 240–241
design principles, 229–231
downlink OFDMA. See downlink OFDMA radio resources
hierarchical channel structure of, 234–240
introduction to, 228–229
network architecture, 231–232
overview of, 227–228
protocols, 232–234
summary and conclusions, 255
uplink SC-FDMA radio resources, 251–255
LTE/SAE, 23–28

M
M subpaths, multipath modelling, 77–79
MAC-I field, integrity protection for PDCP, 362
MAC (Medium Access Control) layer
channel mapping at, 240–241
control information defined in, 238
HSPA+ enhancements to, 17–18
interaction with RLC. See MAC/RLC overview
Layer 2 of LTE protocol stack, 357–358
logical channels used by, 235–236
SAPs between different layers, 234–235
transport channel services for, 236–237
MAC RAR (random access response), 368
MAC/RLC overview
ARQ procedures, 368–369
data transfer modes, 363–364
MAC PDU formats, 367–368
PDU headers and formats, 365–367
purpose of, 364–365
mapping
channel. See channel mapping
coding and, 257–258
modulation in downlink, 264
modulation in uplink, 297–298
precoding and layer, 264
resource. See resource mapping
Marconi, Guglielmo, 3
Master Information Block. See MIB (Master Information Block)
matrix theory, 184–185
Max-Min problem, 148
maximal radio transmission (MRT), 191–192
maximal ratio combining. See MRC (maximal ratio combining)
maximum Doppler, 65
Maximum Fairness (MF) algorithm, 148, 150–152
maximum likelihood (ML) detector, OL MIMO, 194–195
Maximum Likelihood Sequence Detection (MLSD), suppressing ISI, 91
Maximum Sum Rate (MSR) algorithm, 147–148, 150–152
MB, LTE design reducing cost in, 25, 27
MBMS (Multimedia Broadcast and Multicast Service)
downlink transport channel processing, 284–285
HSPA+ enhancements to, 18
LTE design principles, 230
MBSFN (Multicast/Broadcast Single Frequency Network)
downlink reference signals, 287
frame structure, 242
Multicast Channel supporting, 237overview of, 284–286
MC-CDMA (Multicarrier CDMA), in OFDM systems, 137–138
MCCH (Multicast Control Channel) logical channel, 236–237
MCH (Multicast Channel) downlink channel, 237, 284–285
MCs (Modulation and Coding Scheme), CQI, 322, 324
Medium Access Control. See MAC (Medium Access Control) layer
MF (Maximum Fairness) algorithm, 148, 150–152
MIB (Master Information Block) broadcast channels, 283
cell search process, 348
functions of RRC protocol, 371
migration, options for LTE, 35–39
milestones, mobile broadband, 4
MIMO (multiantenna transmission and reception), 167–224
3GPP channel model simulating, 78
angular spread/coherence distance in LTE, 66–67
channel estimation, 202–206
channel feedback, 206–208
closed-looped, 198–200
diversity vs. interference suppression vs. spatial multiplexing, 200–202
downlink control channels with, 282
downlink shared channels with, 270–271
HSPA+ enhancements to, 16
HSPA vs. WiMAX vs. LTE, 21–22
interference cancellation suppression/signal enhancement in, 186–192
layer mapping and precoding in, 264–266
limiting gains, 208–209
in LTE, 31–32, 213–215, 228
in LTE downlink, 213–214, 251
in LTE uplink, 214–215, 254–255
multiuser. See MU-MIMO (multiuser MIMO)
multiuser diversity vs. frequency diversity vs. spatial diversity in, 159–160
networked systems, 212–213
OFDM combined with, 29–30
open-loop. See OL (open-loop) MIMO overview of, 167–168
for PBCH, 283
receive diversity and, 171–174
spatial diversity and, 168–171
spatial multiplexing and. See spatial multiplexing
summary and conclusions, 215–216
supported modes for different physical channels, 266–267
transmit diversity, 174–186
MIMO-OFDM
channel estimation for, 202–206
channel feedback for, 206–208
converting frequency-selective fading to flat-fading in, 208
Minimum Mean Square Error receivers. See MMSE (Minimum Mean Square Error) receivers
ML (maximum likelihood) detector, OL MIMO, 194–195
MLSD (Maximum Likelihood Sequence Detection), suppressing ISI, 91
MME (Mobility Management Entity) control plane protocol stack in, 357
defined, 32
EPC architecture and, 33–35
LTE network architecture and, 231
S1 mobility, 371–373
X2 mobility, 373–374
MMSE (Minimum Mean Square Error) receivers
channel estimation for, 205–206
open-loop MIMO for, 196
precoder estimation for, 334
mobile broadband
2G systems, 6–10
first generation systems, 5
future of, 39–41
historical milestones in, 4
overview of, 3–4
mobile stations. See MS (mobile stations)
mobile subscribers, global growth of, 1–2
Mobile Switching Center (MSC), GSM, 8–9
Mobile Telephone System (MTS), 3
Mobile WiMAX, 18–20
Mobility Management Entity. See MME (Mobility Management Entity)
mobility management in LTE
LTE-Advanced requirements, 40
overview of, 371
paging, 376–377
RAN procedures for, 374–376
requirement for, 230
S1 mobility, 371–373
summary and conclusions, 380–381
X2 mobility, 373–374
modulation. See also multicarrier modulation
downlink control channels, 279–282
downlink shared channels, 269–270
HSPA vs. WiMAX vs. LTE, 20–21
of PUCCH, 306–308
signaling for downlink scheduling, 340–341
uplink shared channels, 299
wireless digital communication systems, 45–46
Modulation and Coding Scheme (MCS), CQI, 322, 324
modulation mapping
in downlink, 264
in uplink, 297–298
modulation processing
downlink transport channel and, 257–258
layer mapping and precoding, 264–266
modulation mapping, 264
overview of, 263
resource mapping, 266–268
scrambling, 263–264
uplink transport channels, 297–298
MRC (maximal ratio combining)
Alamouti STBC vs., 181–182
deﬁned, 171–172
linear interference suppression and, 191–192
receive diversity and, 173–174
MRT (maximal radio transmission), 191–192
MS (mobile stations)
in 3G evolution of GSM, 13
3GPP channel model for MIMO simulations, 78
channel feedback, 206–208
GSM base station architecture, 8–9
MSC (Mobile Switching Center), GSM, 8–9
MSR (Maximum Sum Rate) algorithm, 147–148, 150–152
MTCH (Multicast Traffic Channel) logical channel, 236–237
MTS (Mobile Telephone System), 3
MU-MIMO (multiuser MIMO)
deﬁned, 32
in downlink, 214, 251, 271, 275–276
multiuser virtual MIMO, 215
overview of, 209–212
PMI and RI feedback in, 336
signaling for uplink/downlink scheduling, 344
in uplink, 254, 301
multi-access scheme, OFDM as, 29
multiantenna transmission and reception.
See MIMO (multiantenna transmission and reception)
Multicarrier CDMA (MC-CDMA), in OFDM systems, 137–138
multicarrier modulation
circular convolution and DFT, 104
frequency synchronization, 114–116
OFDM and SC-FDE computational complexity advantage and, 127–129
OFDM for ISI-suppression, 91, 101–104
OFDM in LTE, 109–110
often referred to as OFDM, 100
overview of, 99–101
SC-FDE for, 124–127
summary and conclusions, 130
timing synchronization, 110–114
multicarrier modulation, OFDM basics
block transmission with guard levels, 103–104
circular convolution and DFT, 104–105
cyclic prefix, 104–107
frequency equalization, 107–108
steps in communication, 108–109
multicarrier modulation, PAR (peak-to-average ratio)
clipping and other reduction techniques for, 121–123
LTE’s approach in uplink to, 123–124
OFDM signals having high, 116
problem of, 116–118
quantifying, 118–120
Multicast/Broadcast Single Frequency Network. See MBSFN
(Multicast/Broadcast Single Frequency Network)
Multicast Channel (MCH) downlink channel, 237, 284–285
multicast channels. See also MBSFN
(Multicast/Broadcast Single Frequency Network)
Multicast Control Channel, 236–237
Multicast Traffic Channel, 236–237
multicell processing (networked MIMO), 212–213
multicell transmission, E-MBMS, 284
multidimensional correlation, of received signal, 74–75
multimedia, 3G systems, 10
Multimedia Broadcast and Multicast Service. See MBMS (Multimedia Broadcast and Multicast Service)
multipath, converting to flat-fading, 208
Multipath Intensity Profile, 64
multipath interference, 28, 60–62
multipath modelling, 77–80
multiple access for OFDM systems. See also frequency domain multiple access
CDMA of MC-CDMA, 137–138
FDMA, 136–137
overview of, 134–135
random access vs., 135–136
TDMA, 137
multiplexing
Diversity-Multiplexing Tradeoff, 200–201
spatial. See spatial multiplexing
multiuser diversity
exploiting with resource allocation, 249
frequency diversity vs. spatial diversity vs., 159–160
OFDMA and, 144–146

N
N-Channel Stop-and-Wait protocol, H-ARQ, 291, 293
N paths, multipath modelling, 77–79
NACK_SN (Negative Acknowledgement SN) field, STATUS PDU, 366
Nakagami-m fading distribution, 70–71
narrowband fading, mitigation of
adaptive modulation and coding for, 86–89
automatic repeat requests for, 86
coding and interleaving for, 83–85
combining techniques for, 89
effects of unmitigated fading, 80–82
overview of, 80
spatial diversity for, 82–83
narrowband interference, OFDM robustness against, 29
NAS (Non-Access Stratum) protocols, 359
Negative Acknowledgement SN (NACK_SN) field, STATUS PDU, 366
network architecture, LTE
design principles, 229
GSM/GPRS, 8–9
main components of, 231–232
overview of, 33–35
radio interface protocols, 232–234
network switching, GSM for, 9
Network Switching Subsystem (NSS), 8, 13
networked MIMO systems, 212–213
NLOS (non-line-of-sight) conditions robust ISI-suppression for, 99
WiMAX operating in, 19
NMT-400 (Nordic Mobile Telephone), 5
Node-B, UMTS, 13, 32
Node-B, UTRAN, 227
non-3GPP systems, LTE co-existence with, 27
Non-Access Stratum (NAS) protocols, 359
non-GBR (Guaranteed Bit Rate) bearers, 356
non-synchronized random access procedure, 348–350
nonlinear equalizers, suppressing ISI, 91
Nordic Mobile Telephone (NMT-400), 5
NSS (Network Switching Subsystem), 8, 13
NTACS (Total Access Communication System), 5
NTT (Telephone and Telegraph) Company, 5

O
OBO (output backoff), and PAR, 116–117, 118–120
OC (optimum combiner), 191
OCI (other cell interference) limiting wireless cellular performance, 56
OCI (continued)
mitigating with frequency reuse, 58
mitigating with sectoring, 59–60
OFDM (Orthogonal Frequency Division
Multiplexing)
baseband signal generation, 268
cell-specific reference signals using, 286–287
converting frequency-selective fading
to flat-fading, 208
DCI channel encoding and
modulation, 280–281
frequency synchronization, 110–111,
114–116
history of, 129
HSPA vs. WiMAX vs. LTE and, 20
implementing FDMA, 136–137
ISI-suppression with, 91–92
in LTE downlink, 241–242
LTE enabled with, 28–30, 109–110
LTE standardization with, 228
MIMO. See MIMO-OFDM
multicarrier modulation using, 99
multidimensional correlation of
received signal in, 74–75
multiple access for, 134–138
PAR challenges. See PAR
(peak-to-average ratio)
SC-FDE vs., 124–129
timing synchronization, 110–114
WiMAX physical layer based on, 18–19
OFDM (Orthogonal Frequency Division
Multiplexing) basics
block diagram of, 108–109
block transmission with guard
levels, 103
circular convolution and DFT,
104–105
cyclic prefix, 105–107
frequency equalization, 107–108
overview of, 103
OFDM symbols
block transmission with guard levels, 103
and cyclic prefix, 105–107
removing ISI within, 104–105
timing synchronization and, 111–114
OFDMA (Orthogonal Frequency Division
Multiple Access). See also
opportunistic scheduling for OFDMA
adaptive modulation in, 89
advantages and disadvantages
of, 142
how it works, 139–141
HSPA vs. WiMAX vs. LTE, 20
in LTE, 152–155
LTE downlink and, 228
LTE downlink radio resources. See
downlink OFDMA radio resources
multiuser diversity in, 144–146
overview of, 138–139
SC-FDMA vs., 142–144
WiMAX physical layer based on, 19
OI (Overload Indicator) messages, uplink
ICI mitigation, 380
OL (open-loop) antenna selection, LTE
uplink shared channels, 301
OL (open-loop) MIMO
for LTE downlink shared channels,
214, 271–273
OL spatial multiplexing supported by
MU-MIMO, 251
OL spatial multiplexing without
channel feedback, 194–198
PMI and RI feedback in, 334–335
OL (open-loop) power control, random
access preamble, 349
open-loop transmit diversity
with 2 × 1 space-frequency block
coding, 175–177
with 2 × 2 SFBC, 177–178
with 4 × 2 in LTE, 179–180
with 4 × 2 STBCs, 178–179
defined, 174–175
opportunistic beamforming, 159–160
opportunistic scheduling for OFDMA
design considerations, 155–160
Maximum Fairness algorithm, 148
Maximum Sum Rate algorithm,
147–148
overview of, 146–147
performance comparison, 150–152
Proportional Fairness scheduling,
149–150
Proportional Rate Constraints
algorithm, 148–149
optimum combiner (OC), 191
optimum decoding, OL- MIMO,
194–195
optimum eigen-beamformer, 191
Orthogonal Frequency Division Multiple
Access. See OFDMA (Orthogonal
Frequency Division Multiple
Access)
Orthogonal Frequency Division Multiplexing. See OFDM (Orthogonal Frequency Division Multiplexing)

orthogonal (non-interfering) communication channels, 134–138

orthogonal space-time block code (OSTBC), 175

OSTBC (orthogonal space-time block code), 175

other cell interference. See OCI (other cell interference)

output backoff (OBO), and PAR, 116–117, 118–120

Overload Indicator (OI) messages, uplink ICI mitigation, 380

P

P (Polling bit) field, RLC PDUs, 366

P-RNTI (Paging-Radio Network Temporary Identifier), 377

packet control unit (PCU), GSM, 8–9

Packet Data Convergence Protocol. See PDCP (Packet Data Convergence Protocol)

Packet Data Network Gateway (PDN GW), LTE network architecture, 232

Packet Data Network Gateway (PGW), EPC, 33–34

Packet Data Network (PDN), 356–357

Packet Error Rate. See PER (Packet Error Rate)

packet-switched networks, LTE support for, 229

padding, in trellis termination, 260

Paging Channel (PCH), 237

Paging Control Channel (PCCH), 236, 237

Paging Frame (PF) function, 376–377

paging, mobility management in LTE, 376–377

Paging-Radio Network Temporary Identifier (P-RNTI), 377

PAPR (peak-to-average power ratio), 116, 289

PAR (peak-to-average ratio)

clipping and other reduction techniques for, 121–123

implementing OFDM without high, 91, 116

LTE’s approach in uplink to, 123–124

problem of, 116–118

quantifying, 118–120

SC-FDMA vs. OFDMA, 144

Parallel Concatenated Convolutional Code (PCCC), 260–261

parameters, channel

computing effect of shadowing on, 53–54

key wireless, 46–48

LTE channels for multipath modelling, 78–79

OFDM in LTE, 110

summary of broadband fading, 63

path loss

broadband wireless channels and, 48–51

capacity of system increased by, 55

empirical/semi-empirical models estimating, 76

fading vs., 60

LTE channel models for, 76–77

shadowing causing fluctuations in, 51–52

PBCH (Physical Broadcast Channel), 239, 283

PCCC (Parallel Concatenated Convolutional Code), 260–261

PCCH (Paging Control Channel), 236, 237

PCFICH (Physical Control Format Indicator Channel), 239, 282

PCH (Paging Channel), 237

PCRF (Policy and Charging Rules Function)

EPC architecture, 33–35

LTE network architecture, 232

PCU (packet control unit), GSM, 8–9

PDCCH (Physical Downlink Control Channel), 350–352

closed-loop power control with, 154

dCI channel encoding/modulation with, 279–281

downlink control channels sent over, 276

Downlink Control Information sent over, 238

MIMO for downlink control channels over, 282–283

overview of, 154, 239

Paging function and, 377

random access response on, 349

resource allocation for uplink on, 254

semi-persistent scheduling for VoIP, 345–346
PDCCH (continued)
  signaling for downlink scheduling, 340–341
  signaling for uplink scheduling, 341–343
PDCP (Packet Data Convergence Protocol)
  header compression, 361
  integrity and ciphering, 361–362
  at Layer 2 of LTE protocol stack, 357–359
  overview of, 359–361
  SAPs between different layers, 234–235
PDFs (probability density functions), 69–70, 144–146
PDN GW (Packet Data Network Gateway), LTE network architecture, 232
PDN (Packet Data Network), 356–357
PDSCH (Physical Downlink Shared Channel)
  CQI estimation process, 324
  DL-SCHs carried on, 13
  MIMO for downlink control channels, 282–283
  MIMO transmission modes for, 251, 270–271
  paging information carried on, 377
  as physical channel, 239
  resource mapping of, 270
  signaling for downlink scheduling, 340–341
PDU (protocol data unit)
  integrity protection for PDCP, 362
  MAC data formats, 367–368
  protocol architecture in W-CDMA, 359
  RLC data formats, 365–367
  RLC data transfer modes, 363–364
  RLC STATUS PDU format, 366–367
  user plane vs. control plane PDCP data, 360
  peak-to-average power ratio (PAPR), 116, 289
  peak-to-average ratio. See PAR
  (peak-to-average ratio)
Ped (Pedestrian) A/B multipath channel models, 79
PER (Packet Error Rate)
  effects of unmitigated fading, 82–83
  performing AMC, 87–88
  tuning AMC controller, 89
Per Unitary basis stream User and Rate Control (PU2RC), 211
  performance
    aperiodic feedback model, 207
    implementing OFDM for graceful degradation of, 29
    LTE design requirements, 229–230
    OFDMA resource allocation schemes, 150–152
    SC-FDE vs. OFDM, 126
    SC-FDMA vs. OFDMA, 144
    wireless cellular system, 56–58
  periodic BSR, in uplink, 338
  periodic CQI reporting, 206–208, 325–328
  persistent scheduling, 344
  Personal Handyphone System (PHS), 6
  PF (Paging Frame) function, 376–377
  PF (Proportional Fairness) scheduling, 149–152
PGW (Packet Data Network Gateway), EPC, 33–34
PHICH (Physical Hybrid ARQ Indicator Channel)
  defined, 239
  HI for uplink transmission, 238, 321
  HI mapped onto, 282
  MIMO for downlink control channels, 282–283
PHS (Personal Handyphone System), 6
PHY (physical layer), LTE radio interface
  channel mapping at, 240–241
  downlink transport channel processing at. See downlink transport channel processing
  overview of, 234–235
  transport channels used by, 236–237
  uplink transport channel processing. See uplink transport channel processing
PHY (physical layer) procedures and scheduling
  Buffer Status Reporting in uplink, 337–338
  cell search, 346–348
  CQI feedback, 322–333
  H-ARQ feedback, 319–321
  overview of, 319
  power control in uplink, 350–352
  precoder for closed-loop MIMO operations, 333–337
  random access procedures, 348–350
  scheduling and resource allocation, 339–344
PHYSICAL CHANNELS

actual transmission using, 239
defined, 234–235
downlink, 239
mapping between transport channels and, 240–241
signals embedded in, 240
uplink, 239–240
Physical Control Format Indicator Channel (PCFICH), 239, 282
Physical Downlink Control Channel. See PDCCH (Physical Downlink Control Channel)
Physical Downlink Shared Channel. See PDSCH (Physical Downlink Shared Channel)
Physical Hybrid ARQ Indicator Channel. See PHICH (Physical Hybrid ARQ Indicator Channel)
physical layer, LTE radio interface. See PHY (physical layer), LTE radio interface
physical layer procedures and scheduling. See PHY (physical layer) procedures and scheduling
physical (PHY) layer, WiMAX, 18–19
Physical Random Access Channel. See PRACH (Physical Random Access Channel)
physical resource blocks. See PRBs (physical resource blocks)
physical resource element (PRE), CQI estimation, 323
physical signals. See downlink physical signals
Physical Uplink Control Channel. See PUCCH (Physical Uplink Control Channel)
Physical Uplink Shared Channel. See PUSCH (Physical Uplink Shared Channel)
pilot tones, in channel estimation, 202–204
PMCH (Physical Multicast Channel), 239
PMI (Precoding Matrix Indicator) feedback
channel feedback and, 207
CQI reports including, 325
defined, 301
periodic CQI reporting modes and, 326–328
precoder for closed-loop MIMO, 334–337
reporting periods for CQI feedback, 330
UCI on PUCCH, 302–304
UCI on PUSCH with UL-SCH data, 305
wideband CQI reporting, 329–330
PO (Paging Occasion), 376–377
Policy and Charging Rules Function (PCRF)
EPC architecture, 33–35
LTE network architecture, 232
Polling bit (P) field, RLC PDUs, 366
postcoding, 198–200
power control
cyclic prefix creating loss of, 106–107
LTE and, 154–155
random access preamble transmission and, 349
spatial diversity reducing transmit, 171
tuning AMC controller, 89
in uplink, 350–352
uplink ICI mitigation, 379
power delay profile, 64
PRACH (Physical Random Access Channel)
defined, 239
generating random access, 314
random access preamble transmission on, 349
PRBs (physical resource blocks)
for CQI estimation, 323
for OFDMA, 246–250
for SC-FDMA, 252–254
for subband CQI reports, 322
PRC (Proportional Rate Constraints) algorithm, 148–149, 151–152
PRE (physical resource element), CQI estimation, 323
preambles, channel estimation, 202–204
precoder for closed-loop MIMO
estimation for multicarrier systems, 333–334
overview of, 333
PMI and RI feedback, 334–337
precoding
  codebook, 206
  layer mapping and, 264–266
  quantized feedback for linear, 206–207
  rank-1, 274–275
Precoding Matrix Indicator. See PMI
  (Precoding Matrix Indicator)
  feedback
preparation phase
  S1 mobility, 371–372
  X2 mobility, 373–374
primary synchronization signals, 289–290
probability density functions (PDFs), 69–70, 144–146
profiles, ROHC, 361–362
Proportional Fairness (PF) scheduling, 149–152
Proportional Rate Constraints (PRC) algorithm, 148–149, 151–152
protocol architecture in LTE
  Layer 2, 357–358
  LTE radio interface, 232–234
  MAC/RLC. See MAC/RLC overview
  overview of, 356–358
  PDCP, 357–362
  RRC, 369–371
  in W-CDMA, 359
protocol data units. See PDUs (protocol data units)
PSTN (Public Switched Telephone Network), 9
PU2RC (Per Unitary basis stream User and Rate Control), 211
Public Switched Telephone Network (PSTN), 9
PUCCH (Physical Uplink Control Channel)
  CQI feedback modes on, 325–326 defined, 239
  H-ARQ transmissions in downlink and, 320
  modulation of, 306–308
  periodic CQI reporting, 326–330
  resource mapping of, 308–309
  resource mapping of demodulation reference signals, 310–312
  UCI on, 239, 302–304
punctured codes, LTE, 42, 84–85
PUSCH (Physical Uplink Shared Channel)
  aperiodic CQI reporting in, 331–332
  CQI feedback modes on, 325–326 defined, 239
  frequency hopping on, 299–300
  power control in uplink for transmissions of, 350–352
  resource mapping of, 308–309
  resource mapping of demodulation reference signals, 310–311
  signaling for uplink scheduling, 341–343
  UCI on, 239
  UCI on, with UL-SCH data, 304–306
  UCI on, without UL-SCH data, 306
  for Uplink Control Information, 302
  uplink shared channels mapped to, 299
Q
  Q function, 54, 58
  QCI (Qos Class Identifier), 338, 356–357
  QoS (Quality of Service), 11, 355–359
  QPP (Quadrature Permutation Polynomial) interleaver, 260–262
QPSK modulation
  AMC, 87–88
  for broadcast channels, 283
  CQI estimation process, 324–325
downlink shared channels, 269
  LTE schemes for, 264
  multiuser diversity of OFDMA and, 145
  uplink shared channels, 299
Qualcomm, 9
R
  R field, MAC subheader, 367
  RA-RNTI (Random Access Radio Network Temporary Identifier), 349
  RABs (Radio Access Bearers), 372–374
  RACH (Random Access Channel)
    overview of, 237
    random access preamble transmission, 349
    Si mobility, 372
  radio
    development of shortwave, 3
    inventors of, 3
    link quality in LTE, 374–375
    UTRAN/E-UTRAN architectures, 227–228
  Radio Access Bearers (RABs), 372–374
  radio bearers
    mapped to RLC and PDCP, 358
    overview of, 355–356
    PDCP used for, 357
Radio Link Control. See RLC (Radio Link Control) layer
radio network temporary identifier (RNTI), 279
Radio Resource Control. See RRC (Radio Resource Control) layer
radio resources
downlink OFDMA. See downlink OFDMA radio resources
LTE management requirements, 230
uplink SC-FDMA. See uplink SC-FDMA radio resources
RAKE receivers, 9, 90
RAN (Radio Access Network)
GSM network architecture, 8
LTE radio interface and, 227–228
procedures for mobility, 374–376
RAN (Radio Access Network) group, LTE project, 23–24
random access
multiple access vs., 135–136
preamble, 313–314, 349
procedures, 348–350
response, 368
response grant, 349–350
in uplink, 313–314
Random Access Channel. See RACH (Random Access Channel)
Random Access Radio Network Temporary Identifier (RA-RNTI), 349
random orthogonal beamforming, 211
randomization, ICI, 377, 379
range, bandwidth vs., 49
Rank Indication. See RI (Rank Indication) feedback
rate matching, 262–263, 269
Rayleigh fading model, 68–69, 71–75
Re-segmentation Flag (RF), RLC PDUs, 366
receive antenna arrays, mitigating narrowband fading, 83
receive diversity
maximal ratio combining in, 173–174
overview of, 171
selection combining in, 171–173
transmit diversity vs., 180–181
received signal
selection diversity and, 83
statistical correlation of, 71–75
receivers, multicarrier
concept of, 101–102
demodulating OFDM signal, 110–111
OFDM/SC-FDE and, 125–127
Reference Signal Code Power (RSCP), radio link quality, 374–375
Reference Signal Received Power (RSRP), radio link quality, 374–375
reference signals
in downlink, 240, 285–288
in uplink, 240, 309–313
regular BSR, in uplink, 338
Relative Narrowband Transmit Power (RNTP) indicator, ICI coordination/avoidance, 378
reporting periods, CQI feedback, 330
resource allocation
downlink OFDMA, 248–251
LTE channel dependent multi-user, 30–31
non-synchronized random access procedure, 348–349
OFDMA design, 155–160
OFDMA opportunistic scheduling and, 146–147
role of, 248
signaling for downlink scheduling, 340–341
WiMAX per user, 19
resource allocation, scheduling and
MU-MIMO signaling, 344
overview of, 339
signaling for downlink scheduling, 340–341
signaling for uplink scheduling, 341–343
resource block groups (RGBs), 249–250
resource blocks
LTE time-frequency grid and, 153–154
modulation processing in uplink, 298
for OFDMA, 246–248
for OFDMA, resource allocation, 248–249
for SC-FDMA, 252–254
specifying allocation of downlink with PDCCH, 154
UE-specific reference signals transmitted on, 287
resource elements
cell-specific reference signals, 287
in downlink resource grids, 246, 248
in uplink resource grids, 252–254
resource grid structure
downlink, 246–248
uplink, 252–253
resource mapping
  of cell-specific reference signals, 287
  of demodulation reference signals, 310–312
  of MBSFN reference signals, 287–288
in modulation processing, 266–268
  of PDSCH physical channel, 270
  of sounding reference signals, 311–313
  of UE-specific reference signals, 288
  of uplink transport channels, 308–309
Rev. A, EV-DO enhancement, 13
RF (Re-segmentation Flag), RLC PDU, 366
RF signal, 46
RGBs (resource block groups), 249–250
RI (Rank Indication) feedback
  CQI reports including, 325
  defined, 301
  precoder for closed-loop MIMO, 334–337
  reporting periods for CQI feedback, 330
  UCI on PUSCH with UL-SCH data, 305
Ricean distribution, statistical fading model, 69–70
RLC (Radio Link Control) layer. See also MAC/RLC overview
  handling H-ARQ error events, 292
HSPA+ enhancements to, 17–18
Layer 2 of LTE protocol stack, 357–358
  logical channel services to, 235–236
LTE, 234
  PDCP used for, 357
SAPs between different layers, 234–235
RNC (Radio Network Controller)
  in 3G evolution of GSM, 9, 13
  E-UTRAN network architecture vs., 227
evolution of 3GPP network architecture, 32
  protocol architecture in W-CDMA, 359
RNTI (radio network temporary identifier), 279
RNTP (Relative Narrowband Transmit Power) indicator, ICI coordination/avoidance, 378
ROHC (RObust Header Compression) protocol
  LTE header compression with, 361–362
  PDCP based on, 233
  PDCP for user plane and, 357
round-robin scheduling. See also TDMA
  (Time Division Multiple Access) systems
  comparing OFDMA resource allocation, 150–152
defined, 137
RRC (Radio Resource Control) layer
  configuring H-ARQ transmissions at, 292
EPS bearer service architecture, 355–356
  functions of, 369–371
  overview of, 232–233
  paging function of, 376–377
  semi-persistent scheduling for VoIP at, 345–346
states, 369–370
RRC_CONNECTED state, 369–370, 374–376
RRC_IDLE state, 369–370, 374–376
RSCP (Reference Signal Code Power), radio link quality, 374–375
RSRP (Reference Signal Received Power), radio link quality, 374–375
S
S-GW (Serving Gateway)
  EPC architecture, 33–34, 355–356
  LTE network architecture, 232
  X2 mobility, 373–374
S1 bearer, EPS, 355–356
S1 interface, LTE network architecture, 232
S1 mobility, management in LTE, 371–373
S5/S8 bearer, EPS, 355–356
SAE-GW (System Architecture Evolution Gateway), LTE, 32–33
SAE (Systems Architecture Evolution) project, 24
safety, early mobile communications, 3
SAPs (Service Access Points)
  radio interface protocols and, 234–235
  for services to MAC and RLC, 358
SC-FDE (Single Carrier Frequency Domain Equalization)
  computational complexity advantage of, 127–128
for core modulation in uplink, 30, 123–124
design considerations, 126–127
ISI mitigation, 91
OFDM performance vs., 126
system description, 124–125
SC-FDMA (Single Carrier Frequency Division Multiple Access)
advantages and disadvantages of, 143–144
how it works, 142–143
for ISI-suppression, 91
in LTE, 152–155
LTE using, 20, 30
modulation processing in uplink, 297–298
multicarrier modulation underlying, 99
overview of, 142
standardizing LTE in uplink with, 228
uplink LTE radio resources. See uplink SC-FDMA radio resources
SC (selection combining), in receive diversity, 171–173
scalability, 19, 55
SCH (Supplemental Code Channel), CDMA, 10
scheduling
physical layer procedures and. See physical layer procedures and scheduling
resource allocation and. See resource allocation, scheduling and VoIP semi-persistent, 344–346
scheduling algorithms, OFDMA approaches, 146–147
Maximum Fairness algorithm, 148
Maximal Sum Rate algorithm, 147–148
overview of, 146–147
performance comparison, 150–152
Proportional Fairness scheduling, 149–150
Proportional Rate Constraints algorithm, 148–149
Scheduling Request. See SR (Scheduling Request)
scrambling
mitigating ICI with, 377
modulation in downlink, 263–264
modulation in uplink, 297–298
modulation of PUCCH, 307–308
uplink shared channels, 299
SDMA (Space Division Multiple Access), MU-MIMO and, 210–212
SDU (service data unit), W-CDMA, 359
second generation digital systems. See 2G (second generation) digital cellular systems
secondary synchronization signals, 289–290
sectoring, improving SIR with, 58–60
security
2G systems improving, 6
integrity and ciphering in PDCP, 361–362
Segment Offset (SO) field, RLC PDUs, 366
selection combining (SC), in receive diversity, 171–173
selection diversity, 83
selective retransmission, 374
selectivity, dispersion-selectivity duality, 74–75
self-interference, in OFDMA and SC-FDMA, 154–155
semi-empirical channel models, LTE, 79–80
semi-persistent scheduling for VoIP, 344–346
semi-static ICI coordination/avoidance, 378
Sequence Number field. See SN (Sequence Number) field
Service Access Points (SAPs)
radio interface protocols and, 234–235
for services to MAC and RLC, 358
service data unit (SDU), W-CDMA, 359
Serving Gateway. See S-GW (Serving Gateway)
Serving GPRS Support Node. See SGSN (Serving GPRS Support Node)
Serving Radio Network Subsystem (SRNS) relocation, 371
SFBC (space-frequency block code)
$2 \times 1$ transmit diversity, 175–177
$2 \times 2$ transmit diversity, 177–178
LTE transmit diversity based on, 31, 179–180
multiuser diversity vs. frequency diversity vs. spatial diversity in, 159–160
in OL MIMO for transmit diversity, 272
STBCs vs., 175
SFBC (continued)
  SU-MIMO supporting, 251
  transmit diversity vs. receive diversity
  and, 181
SFN (Single-Frequency Network) mode
  HSPA+ enhancements to, 18
  implementing OFDM for broadcast
  services, 30
  LTE support for E-MBMS through, 284
SFR (Soft Frequency Reuse), mitigating
  ICI with, 157–158
SGSN (Serving GPRS Support Node)
  defined, 232
  evolution of 3GPP, 32
  GSM network architecture, 8–9
  MME vs., 231
shadowing
  affect on wireless system, 52–55
  empirical/semi-empirical models
  estimating, 76
  fading vs., 60
  overview of, 51–52
Shannon capacity formula, 22, 147–148,
  170–171
shared channels
  downlink. See DL-SCHs (Downlink
  Shared Channels)
  transmission, 237
  uplink, 298–301
Short Messaging Service (SMS) messages,
  2G, 6–7
shortwave radios, 3
SIBs (System Information Blocks)
  broadcast channels, 283
  cell search process, 348
  functions of RRC protocol, 371
signal-to-interference plus noise ratio. See
  SINR (signal-to-interference plus
  noise ratio)
signal-to-interference ratio. See SIR
  (signal-to-interference ratio)
signal-to-noise-plus-distortion ratio
  (SNDR), 122–123
signal-to-noise ratio. See SNR
  (signal-to-noise ratio)
Signaling Radio Bearers. See SRBs
  (Signaling Radio Bearers)
signals. See also downlink physical signals
  downlink scheduling, 340–341
  for downlink/uplink physical layers, 240
  generating OFDM baseband, 268
  HSPA vs. WiMAX vs. LTE, 20–21
  for MU-MIMO in uplink, 344
time-continuous random access, 314
  uplink scheduling, 341–343
single antenna port
  downlink shared channels, 270–271
  layer mapping and precoding, 264–266
Single Carrier Frequency Division Multiple
  Access. See SC-FDMA (Single
  Carrier Frequency Division
  Multiple Access)
Single Carrier Frequency Domain
  Equalization. See SC-FDE (Single
  Carrier Frequency Domain
  Equalization)
single-cell transmission, E-MBMS, 284
Single-Frequency Network mode. See SFN
  (Single-Frequency Network) mode
Single-Input-Single-Output. See SISO
  (Single-Input-Single-Output)
  mode
single-user OFDM. See OFDM
  (Orthogonal Frequency Division
  Multiplexing)
singular value decomposition (SVD),
  precoding and postcoding, 198
SINR (signal-to-interference plus noise ratio)
  analysis of cellular systems, 57
  calculating, 51
  comparing OFDMA resource
  allocation schemes, 151–152
  CQI estimation process and, 323–325
  CQI feedback mechanism for LTE, 322
  effect of shadowing on, 52
  fractional frequency reuse and, 157
  maximizing total throughput with
  MSR, 147–148
  OFDMA architecture, 138–142
  performing AMC, 87–88
  power control in uplink and, 350–352
  tuning AMC controller, 88–89
SIR (signal-to-interference ratio)
  analysis of cellular systems, 56–58
  calculating using empirical path loss
  formula, 50–51
  improving with sectoring, 58–60
SISO (Single-Input-Single-Output) mode
  channel feedback in, 206
  for downlink shared channels, 271
  multiuser diversity vs. frequency
  diversity vs. spatial diversity in,
  159–160
  slotted ALOHA, in random access, 135
smart mobile devices, LTE
development, 25
SMS (Short Messaging Service) messages,
2G, 6–7
SN (Sequence Number) field
  ACK_SN field, STATUS PDU, 366
  NACK_SN field, STATUS PDU, 366
PDCP, 360–362
RLC PDUs, 365
SNDR (signal-to-noise-plus-distortion ratio), 122–123
SNR (signal-to-noise ratio)
array gain and, 169
diversity gain and, 169–170
effects of shadowing, 53
effects of unmitigated fading, 80–81
increasing data rates with spatial diversity, 170–171
linear diversity precoding and, 186
loss induced by frequency synchronization, 115–116
loss induced by timing synchronization, 113
maximal ratio combining maximizing, 173–174
nonlinear equalizers for
  ISI-suppression and, 91
OFDM vs. SC-FDE performance, 126
selection combining and, 172
selection diversity increasing, 83
in single-user MIMO system, 194
spatial multiplexing and, 194
transmit diversity vs. receive diversity and, 180–181
SO (Segment Offset) field, RLC PDUs, 366
SOend (SO end) field, STATUS PDU, 366
Soft Frequency Reuse (SFR), mitigating ICI with, 157–158
soft-handoff, IS-95 CDMA enabling, 9
soft limiting (clipping)
  OFDM/SC-FDE design, 127
  reducing PAR with, 121–123
SOstart (SO start) field, STATUS PDU, 366
sounding reference signals, 309, 311–313
Sounding Reference Symbol (SRS), 337
Space Division Multiple Access (SDMA),
  MU-MIMO and, 210–212
space-frequency block code. See SFBC
  (space-frequency block code)
space-time block codes (STBCs), 175, 178–179
space-time trellis codes, 177
spatial diversity
array gain and, 168–169
diversity gain and, 169–170
frequency vs. multiuser vs., 159–160
increasing coverage area with, 171
increasing data rate with, 170–171
interference suppression vs. spatial multiplexing vs., 200–202
mitigating narrowband fading, 83–84
overview of, 83–84, 168
receive diversity as, 171–174
reducing transmit power with, 171
transmit diversity. See transmit diversity
spatial multiplexing
  diversity vs. interference suppression vs., 200–202
  introduction to, 193–194
  layer mapping and precoding, 266
  overview of, 192–193
  using transmit selection with, 183
spatial multiplexing, CL MIMO
downlink shared channels, 274–275
LTE downlink, 214
overview of, 198–200
PMI and RI feedback in, 336
spatial multiplexing, OL MIMO
downlink shared channels, 271–272
overview of, 214
PMI and RI feedback in, 336
without channel feedback, 194–198
spectral dispersion, OFDM/SC-FDE design, 127
spectral regrowth
  reducing PAR with clipping causing, 121–123
SC-FDMA disadvantages, 144
spectrum
  3G systems, 10–11
  4G systems, 40
  AMPS, 6
  concept in 1970s cellular mobiles, 3
  early mobile telephone systems and, 3
  LTE-Advanced requirements, 40
  LTE design principles, 26–27,
  229–230
  OFDM and SC-FDE design, 127
  options for LTE, 35–39
spread spectrum
  ISI suppression using, 99
  RAKE receivers and, 90
SR (Scheduling Request)
  encoding H-ARQ-ACK and, 303–304
SR (continued)
   PUCCH formats, 307
   and UCI, 301
SRBs (Signaling Radio Bearers)
   defined in LTE, 370
   EPS bearer service architecture, 355–356
   functions of RRC protocol, 371
SRNS (Serving Radio Network Subsystem)
   relocation, 371
SRS (Sounding Reference Symbol), 337
   stacked STBCs, 178–179
   standalone deployment scenario, LTE, 230
   states, RRC, 369–370
   static ICI coordination/avoidance, 378
   static TDMA. See round-robin scheduling
   statistical channel models
      correlation of received signal, 71–75
      defined, 67
      line-of-sight channels and, 69–70
      Nakagami-m fading distribution, 70–71
      overview of, 68
      pedagogy for developing, 67
      Rayleigh fading model, 68–69
STATUS PDU format, RLC, 366–367
STBCs (space-time block codes), 175, 178–179
Strict FFR (Fractional Frequency Reuse), mitigating ICI, 157–158
SU-MIMO (single-user MIMO)
   downlink transmission support in LTE, 251
   multiuser MIMO vs., 209–212
   sub-block interleaving, rate matching
      performing, 262–263
subband CQI reporting
   CQI estimation process, 323–324
   enabling frequency selective
      scheduling, 340–341
   overview of, 322
   periodic/aperiodic CQI modes
      supporting, 325–326
   periodic CQI reports supporting, 326–330
   reporting periods, 330
subband feedback, CQI estimation, 324
subcarrier bandwidth, 100–102
subscribers, fixed line vs. mobile, 1
supplemental channels, CDMA2000-1X
   and, 12
Supplemental Code Channel (SCH),
   CDMA, 10
SVD (singular value decomposition),
   precoding and postcoding, 198
symbol time
   in ISI suppression, 100–101
   multicarrier modulation and, 91
   severity of ISI and, 63
synchronization signals, 289–290
   demodulating OFDM signal with,
      110–112
   in downlink physical channels, 240,
      289–290
   OFDM and SC-FDE design
      considerations, 127
synchronized random access, 348
System Architecture Evolution Gateway
   (SAE-GW), LTE, 32–33
System Information Blocks. See SIBs
   (System Information Blocks)
Systems Architecture Evolution (SAE)
   project, 24
T
   tail-biting convolutional coding, 259–260
tapped-delay line. See TDL (tapped-delay line) channel model
TBS (Transport Block Size) index,
   downlink scheduling, 340–341
TD-SCDMA (Time Division, Synchronous
   CDMA), 11
TDD (Time Division Duplexing) mode
   aperiodic CQI reporting in, 331–332
   channel feedback in, 206
   designated frequency bands for LTE,
      35, 37
   frame structure type 2 for,
      244–246
   H-ARQ Indicator for uplink
      transmission, 315–317, 321
   H-ARQ transmissions in downlink,
      291–292, 320–321
   IMT-TC standard for, 11
   LTE designed to operate in, 230
   LTE support for, 27
   resource mapping of sounding
      reference signals, 311–313
   UCI on PUSCH with UL-SCH data,
      304–305
   W-CDMA specified for, 13–14
   WiMAX support for, 19
TDL (tapped-delay line) channel model
   broadband fading channels and,
      61–62
broadband wireless channels and, 47–48
free-space path loss (Friss) formula
and, 49
TDM, WiMAX resource allocation, 19
TDMA (Time Division Multiple Access) systems
as 2G system, 6–7
advantages of OFDMA vs., 142
CDMA technology vs., 9–10
classifying CSMA systems as type of, 136
digital evolution of GSM and, 8
HSPA vs. WiMAX vs. LTE, 20
implementing in OFDM systems, 137
overview of, 134–135
Telephone and Telegraph (NTT) Company, 5
third generation broadband wireless. See
3G (third generation) broadband wireless systems
Third Generation Partnership Project. See
3GPP (Third Generation Partnership Project)
Third Generation Partnership Project 2 (3GPP2), 11–12
throughputs
comparing OFDMA resource allocation schemes, 150–152
LTE design for high, 26–27
TIA (Telecommunications Industry Association), 9
time
correlation of received signal, 71–72
dispersion-selectivity in, 74
time-continuous random access signal, 314
time dimension, broadband fading channels, 62–63
time diversity, coding and interleaving as, 83
Time Division - Synchronous CDMA (TD-SCDMA), 11
Time Division Duplexing. See TDD (Time Division Duplexing) mode
Time Division Multiple Access. See TDMA (Time Division Multiple Access) systems
time domain
 cell-specific reference signals, 286–287
frame structure in, 242–243
ISI suppression using equalization of, 99
MBSFN reference signals, 287
resource allocation exploiting channel variations in, 249
time-domain channel estimation,
MIMO-OFDM, 203–205
time-frequency grid, 153
time-frequency uncertainty principle, 65
TimeToTrigger parameter, RAN mobility management, 375
timing synchronization
 demodulating OFDM signal with, 110–112
margin, 113
overview of, 111–114
TM (Transparent Mode), RLC protocol, 234, 363
TMD (TM Data) PDUs, 363, 365
Total Access Communication System (ETACS), 5
Total Access Communication System (NTACS), 5
TPMI (Transmit Precoding Matrix Indication), 336–337
transmission modes, downlink, 270–271, 326–327
transmission rate, mitigating multipath fading, 90
Transmission Time Interval. See TTI (Transmission Time Interval)
transmit beamforming, 159–160
transmit diversity
closed-loop, 181–186
defined, 31
downlink shared channels, 270
MIMO supporting in LTE downlink, 213–214
mitigating narrowband fading with, 83–84
overview of, 174–175
physical channels supporting, 251
receive diversity vs., 180–181
SU-MIMO supporting, 251
transmit diversity, OL MIMO
downlink control channels, 282–283
downlink shared channels, 271–272
layer mapping and precoding, 266
overview of, 175–180
transmit power, spatial diversity reducing, 171
Transmit Precoding Matrix Indication (TPMI), 336–337
transmit selection diversity (TSD), 182–185
transmitters, multicarrier
OFDM and SC-FDE design, 126–127
OFDM vs. SC-FDE, 125
overview of, 101–102
Transparent Mode (TM), RLC protocol, 234, 363
Transport Block Size (TBS) index,
downlink scheduling, 340–341
transport blocks, 238
transport channels. See also downlink
transport channel processing;
uplink transport channel
processing
defined, 234–235
defining control information in MAC
layer, 238
downlink and uplink, 237
how to transmit, 236–237
mapping between logical channels
and, 240–241
mapping between physical channels
and, 240–241
transport blocks, 238
trellis termination, tail-biting
convolutional coding and, 260
TSD (transmit selection diversity), 182–185
TTI (Transmission Time Interval)
defined, 238
downlink OFDMA radio resources
and, 242
frame structure in time domain,
242–243
frame structure type 1 for FDD
and, 243
for PBCH, 283
semi-persistent scheduling for
VoIP, 346
signaling for downlink scheduling,
340–341
turbo coding
convolution, 259–262
defined by LTE for use in uplinks and
donlinks, 84
interleaving used with, 85
performing AMC, 87–88
two-dimensional autocorrelation,
broadband fading channels, 61–63
type 0 resource allocations, 249–250
type 1 frame structure, 243–244, 252
type 1 resource allocations, 250
type 2 frame structure, 244–246, 252
Type 2 hopping, 300
type 2 resource allocations, 250–251
Typical Urban delay profile, 79

U
UCI (Uplink Control Information)
channel coding for, 296–297,
302–306
defined in MAC layer, 239
modulation of PUCCH, 306–308
overview of, 301–302
resource mapping, 308–309
UE-selected subband CQI report
aperiodic CQI reports supporting,
332–333
defined, 325
periodic CQI reports supporting,
327–329
UE-specific downlink reference signals,
287–288
UE (User Equipment)
defined, 13
location of radio interface, 227
LTE network architecture, 231
MAC entities in, 364
resource allocation and, 248–249
resource allocation in uplink
with, 254
UHF spectrum, LTE deployments, 35–36,
38–39
UL-SCHs (Uplink Shared Channels)
channel coding processing, 296–297
defined, 237
overview of, 298–301
UCI on PUSCH with, 304–306
ULA (uniform linear array), DOA-based
beamsteering, 187–189
UM (Unacknowledged Mode), RLC, 234,
363
UMB (Ultra Mobile Broadband), 16
UMD (UM Data) PDUs, 363, 365
UMTS Release 99, 13
UMTS-TDD, 11
UMTS Terrestrial Radio Access Network. See
UTRAN (UMTS Terrestrial
Radio Access Network)
UMTS Terrestrial Radio Access (UTRA), 227
UMTS (Universal Mobile Telephone
Service)
LTE network architecture vs., 231
packet-switched network support
in, 229
using 3GPP releases, 22
W-CDMA standard for, 11, 13–14
uncorrelated antennas, MIMO, 208–209
uniform linear array (ULA), DOA-based
beamsteering, 187–189
uplink
allocation notification/feedback
in, 154
Buffer Status Reporting in, 337–338
CDMA2000-1X improvements to, 12
channel sounding in, 337
designated FDD frequency bands for
LTE in, 35–36
designing CQI feedback for, 322
HSPA+ enhancements to, 16–17
HSPA vs. WiMAX vs. LTE in, 20–21
ICI coordination in LTE, 379–380
LTE design principles, 26, 229
LTE using OFDMA in, 139–141
LTE using SC-FDE in, 30, 123–129
LTE using SC-FDMA in, 142–143,
152–155
MIMO in LTE, 214–215
power control in, 154–155, 350–352
SDMA vs. SU-MIMO in, 211
signaling for scheduling in, 341–343
Uplink Control Information. See UCI
(Uplink Control Information)
uplink feedback, LTE, 154
uplink physical channels, 239–240
Uplink Pilot TimeSlot (UpPTS) field
downlink OFDMA radio
resources, 245
uplink SC-FDMA radio resources, 252
uplink reference signals
overview of, 309–310
resource mapping of demodulation
reference signals, 310–311
resource mapping of sounding
reference signals, 311–313
sequence of, 310
uplink SC-FDMA radio resources
frame structure, 252
overview of, 251–252
physical resource blocks for
SC-FDMA, 252–254
resource allocation, 254–255
Uplink Shared Channels. See UL-SCHs
(Uplink Shared Channels)
uplink transport channel processing
channel coding processing, 296–297
H-ARQ in uplink, 315–317
modulation processing, 297–298
overview of, 295–296
random access channels, 313–314
summary and conclusions, 317
uplink control information, 301–309
uplink reference signals, 309–313
uplink shared channels, 298–301
UpPTS (Uplink Pilot TimeSlot) field
downlink OFDMA radio
resources, 245
uplink SC-FDMA radio resources, 252
User Equipment. See UE (User
Equipment)
user-plane latency, LTE design, 229
user plane protocol stack
ciphering in PDCP for, 362
overview of, 356–357
PDCP services and functions for,
359–361
UTRA (UMTS Terrestrial Radio Access),
227
UTRAN (UMTS Terrestrial Radio Access
Network). See also E-UTRAN
(Enhanced UTRAN)
defined, 13
LTE deployment scenario
requirements and, 230
LTE designed to operate in, 230
UWC-136, 11

V
V-BLAST (vertical BLAST), open-loop
MIMO, 196–198
Veh (Vehicular) A/B multipath channel
models, 79
video, mobile, 24–25
virtual MIMO transmission. See
MU-MIMO (multiuser MIMO)
virtual resource blocks (VRBs), resource
allocation and, 250–251
Viterbi decoder, 84
VLR (Visitor Location Register), GSM,
8–9
voice service
2G systems improving, 6
3G systems and, 10
IS-95 CDMA systems improving,
9–10
using VoIP in LTE to provide,
344–346
VoIP (voice over IP)
header compression in, 361
HSPA vs. WiMAX vs. LTE, 22
VoIP (continued)
semi-persistent scheduling for, 344–346
using Unacknowledged Mode of RLC, 363
utilizing periodic feedback mode, 207
wideband CQI reporting for, 322
WiMAX network using, 18
VRBs (virtual resource blocks), resource allocation and, 249–251

W
W-CDMA (wideband CDMA)
in 3G systems, 11–12
HSPA+ vs., 14–15
overview of, 13–14
protocol architecture in LTE, 359
Wide Sense Stationary Uncorrelated Scattering (WSSUS), 63
Wide Sense Stationary (WSS), 63
wideband CQI reporting
aperiodic CQI modes supporting, 325–326, 331
CQI estimation process, 323–324
overview of, 322
periodic CQI modes supporting, 325–328
reporting periods, 330
understanding, 329–330
WiMAX
as 4G system, 16
evolution beyond 3G, 15
HSPA+ vs. LTE vs., 20–22
IMT-2000 IP-OFDMA standard as, 11
LTE co-existence with, 27
Mobile, 18–20
multicarrier modulation underlying, 99
WiMAX (Worldwide Interoperability for Microwave Access) Forum, 18
wireless fundamentals
broadband wireless channel, fading, 60–67
broadband wireless channel, overview, 46–48
broadband wireless channel, path loss, 48–51
broadband wireless channel, shadowing, 51–55
cellular systems, 54–60
communication system building blocks, 45–46
mitigation of broadband fading, 90–92
mitigation of narrowband fading, 80–89
modelling broadband fading channels, 67–80
overview of, 45
summary, 92–93
wireless telegraphy, development of, 3
WLANs (wireless LANs)
multicarrier modulation underlying, 99
using CSMA for random access, 135–136
WMAN (wireless metropolitan area network), standard for, 18
WSS (Wide Sense Stationary), 63
WSSUS (Wide Sense Stationary Uncorrelated Scattering), 63

X
X2 interface
LTE network architecture, 232
mobility, 373–374

Z
Zadoff-Chu sequence
generating random access preambles, 313
modulation of PUCCH, 307
primary synchronization signals, 289
random access preamble transmission, 349
reference signal sequence, 310
ZF (zero-forcing) detector, OL-MIMO, 195–196