
Understanding Digital
Signal Processing

Third Edition

This page intentionally left blank

Understanding Digital
Signal Processing

Third Edition

Richard G. Lyons

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or con-
sequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data
Lyons, Richard G., 1948-

Understanding digital signal processing / Richard G. Lyons.—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-702741-9 (hardcover : alk. paper)

1. Signal processing—Digital techniques. I. Title.
TK5102.9.L96 2011
621.382'2—dc22 2010035407

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street Upper Saddle River, New Jersey 07458, or you may fax your request
to (201) 236-3290.

ISBN-13: 978-0-13-702741-5
ISBN-10: 0-13-702741-9

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
Fourth printing, August 2012

I dedicate this book to my daughters, Julie and Meredith—I wish I
could go with you; to my mother, Ruth, for making me finish my
homework; to my father, Grady, who didn’t know what he started
when he built that workbench in the basement; to my brother Ray
for improving us all; to my brother Ken who succeeded where I
failed; to my sister Nancy for running interference for us; and to the
skilled folks on the USENET newsgroup comp.dsp. They ask the good
questions and provide the best answers. Finally, to Sigi Pardula (Bat-
girl): Without your keeping the place running, this book wouldn’t
exist.

This page intentionally left blank

Contents
PREFACE xv
ABOUT THE AUTHOR xxiii

1 DISCRETE SEQUENCES AND SYSTEMS 1

1.1 Discrete Sequences and Their Notation 2
1.2 Signal Amplitude, Magnitude, Power 8
1.3 Signal Processing Operational Symbols 10
1.4 Introduction to Discrete Linear Time-Invariant Systems 12
1.5 Discrete Linear Systems 12
1.6 Time-Invariant Systems 17
1.7 The Commutative Property of Linear Time-Invariant Systems 18
1.8 Analyzing Linear Time-Invariant Systems 19

References 21
Chapter 1 Problems 23

2 PERIODIC SAMPLING 33

2.1 Aliasing: Signal Ambiguity in the Frequency Domain 33
2.2 Sampling Lowpass Signals 38
2.3 Sampling Bandpass Signals 42
2.4 Practical Aspects of Bandpass Sampling 45

References 49
Chapter 2 Problems 50

3 THE DISCRETE FOURIER TRANSFORM 59

3.1 Understanding the DFT Equation 60
3.2 DFT Symmetry 73

vii

3.3 DFT Linearity 75
3.4 DFT Magnitudes 75
3.5 DFT Frequency Axis 77
3.6 DFT Shifting Theorem 77
3.7 Inverse DFT 80
3.8 DFT Leakage 81
3.9 Windows 89
3.10 DFT Scalloping Loss 96
3.11 DFT Resolution, Zero Padding, and Frequency-Domain

Sampling 98
3.12 DFT Processing Gain 102
3.13 The DFT of Rectangular Functions 105
3.14 Interpreting the DFT Using the Discrete-Time

Fourier Transform 120
References 124
Chapter 3 Problems 125

4 THE FAST FOURIER TRANSFORM 135

4.1 Relationship of the FFT to the DFT 136
4.2 Hints on Using FFTs in Practice 137
4.3 Derivation of the Radix-2 FFT Algorithm 141
4.4 FFT Input/Output Data Index Bit Reversal 149
4.5 Radix-2 FFT Butterfly Structures 151
4.6 Alternate Single-Butterfly Structures 154

References 158
Chapter 4 Problems 160

5 FINITE IMPULSE RESPONSE FILTERS 169

5.1 An Introduction to Finite Impulse Response (FIR) Filters 170
5.2 Convolution in FIR Filters 175
5.3 Lowpass FIR Filter Design 186
5.4 Bandpass FIR Filter Design 201
5.5 Highpass FIR Filter Design 203
5.6 Parks-McClellan Exchange FIR Filter Design Method 204
5.7 Half-band FIR Filters 207
5.8 Phase Response of FIR Filters 209
5.9 A Generic Description of Discrete Convolution 214

viii Contents

5.10 Analyzing FIR Filters 226
References 235
Chapter 5 Problems 238

6 INFINITE IMPULSE RESPONSE FILTERS 253

6.1 An Introduction to Infinite Impulse Response Filters 254
6.2 The Laplace Transform 257
6.3 The z-Transform 270
6.4 Using the z-Transform to Analyze IIR Filters 274
6.5 Using Poles and Zeros to Analyze IIR Filters 282
6.6 Alternate IIR Filter Structures 289
6.7 Pitfalls in Building IIR Filters 292
6.8 Improving IIR Filters with Cascaded Structures 295
6.9 Scaling the Gain of IIR Filters 300
6.10 Impulse Invariance IIR Filter Design Method 303
6.11 Bilinear Transform IIR Filter Design Method 319
6.12 Optimized IIR Filter Design Method 330
6.13 A Brief Comparison of IIR and FIR Filters 332

References 333
Chapter 6 Problems 336

7 SPECIALIZED DIGITAL NETWORKS AND FILTERS 361

7.1 Differentiators 361
7.2 Integrators 370
7.3 Matched Filters 376
7.4 Interpolated Lowpass FIR Filters 381
7.5 Frequency Sampling Filters: The Lost Art 392

References 426
Chapter 7 Problems 429

8 QUADRATURE SIGNALS 439

8.1 Why Care about Quadrature Signals? 440
8.2 The Notation of Complex Numbers 440
8.3 Representing Real Signals Using Complex Phasors 446
8.4 A Few Thoughts on Negative Frequency 450

Contents ix

8.5 Quadrature Signals in the Frequency Domain 451
8.6 Bandpass Quadrature Signals in the Frequency Domain 454
8.7 Complex Down-Conversion 456
8.8 A Complex Down-Conversion Example 458
8.9 An Alternate Down-Conversion Method 462

References 464
Chapter 8 Problems 465

9 THE DISCRETE HILBERT TRANSFORM 479

9.1 Hilbert Transform Definition 480
9.2 Why Care about the Hilbert Transform? 482
9.3 Impulse Response of a Hilbert Transformer 487
9.4 Designing a Discrete Hilbert Transformer 489
9.5 Time-Domain Analytic Signal Generation 495
9.6 Comparing Analytical Signal Generation Methods 497

References 498
Chapter 9 Problems 499

10 SAMPLE RATE CONVERSION 507

10.1 Decimation 508
10.2 Two-Stage Decimation 510
10.3 Properties of Downsampling 514
10.4 Interpolation 516
10.5 Properties of Interpolation 518
10.6 Combining Decimation and Interpolation 521
10.7 Polyphase Filters 522
10.8 Two-Stage Interpolation 528
10.9 z-Transform Analysis of Multirate Systems 533
10.10 Polyphase Filter Implementations 535
10.11 Sample Rate Conversion by Rational Factors 540
10.12 Sample Rate Conversion with Half-band Filters 543
10.13 Sample Rate Conversion with IFIR Filters 548
10.14 Cascaded Integrator-Comb Filters 550

References 566
Chapter 10 Problems 568

x Contents

11 SIGNAL AVERAGING 589

11.1 Coherent Averaging 590
11.2 Incoherent Averaging 597
11.3 Averaging Multiple Fast Fourier Transforms 600
11.4 Averaging Phase Angles 603
11.5 Filtering Aspects of Time-Domain Averaging 604
11.6 Exponential Averaging 608

References 615
Chapter 11 Problems 617

12 DIGITAL DATA FORMATS AND THEIR EFFECTS 623

12.1 Fixed-Point Binary Formats 623
12.2 Binary Number Precision and Dynamic Range 632
12.3 Effects of Finite Fixed-Point Binary Word Length 634
12.4 Floating-Point Binary Formats 652
12.5 Block Floating-Point Binary Format 658

References 658
Chapter 12 Problems 661

13 DIGITAL SIGNAL PROCESSING TRICKS 671

13.1 Frequency Translation without Multiplication 671
13.2 High-Speed Vector Magnitude Approximation 679
13.3 Frequency-Domain Windowing 683
13.4 Fast Multiplication of Complex Numbers 686
13.5 Efficiently Performing the FFT of Real Sequences 687
13.6 Computing the Inverse FFT Using the Forward FFT 699
13.7 Simplified FIR Filter Structure 702
13.8 Reducing A/D Converter Quantization Noise 704
13.9 A/D Converter Testing Techniques 709
13.10 Fast FIR Filtering Using the FFT 716
13.11 Generating Normally Distributed Random Data 722
13.12 Zero-Phase Filtering 725
13.13 Sharpened FIR Filters 726
13.14 Interpolating a Bandpass Signal 728
13.15 Spectral Peak Location Algorithm 730

Contents xi

13.16 Computing FFT Twiddle Factors 734
13.17 Single Tone Detection 737
13.18 The Sliding DFT 741
13.19 The Zoom FFT 749
13.20 A Practical Spectrum Analyzer 753
13.21 An Efficient Arctangent Approximation 756
13.22 Frequency Demodulation Algorithms 758
13.23 DC Removal 761
13.24 Improving Traditional CIC Filters 765
13.25 Smoothing Impulsive Noise 770
13.26 Efficient Polynomial Evaluation 772
13.27 Designing Very High-Order FIR Filters 775
13.28 Time-Domain Interpolation Using the FFT 778
13.29 Frequency Translation Using Decimation 781
13.30 Automatic Gain Control (AGC) 783
13.31 Approximate Envelope Detection 784
13.32 A Quadrature Oscillator 786
13.33 Specialized Exponential Averaging 789
13.34 Filtering Narrowband Noise Using Filter Nulls 792
13.35 Efficient Computation of Signal Variance 797
13.36 Real-time Computation of Signal Averages and Variances 799
13.37 Building Hilbert Transformers from Half-band Filters 802
13.38 Complex Vector Rotation with Arctangents 805
13.39 An Efficient Differentiating Network 810
13.40 Linear-Phase DC-Removal Filter 812
13.41 Avoiding Overflow in Magnitude Computations 815
13.42 Efficient Linear Interpolation 815
13.43 Alternate Complex Down-conversion Schemes 816
13.44 Signal Transition Detection 820
13.45 Spectral Flipping around Signal Center Frequency 821
13.46 Computing Missing Signal Samples 823
13.47 Computing Large DFTs Using Small FFTs 826
13.48 Computing Filter Group Delay without Arctangents 830
13.49 Computing a Forward and Inverse FFT Using a Single FFT 831
13.50 Improved Narrowband Lowpass IIR Filters 833
13.51 A Stable Goertzel Algorithm 838

References 840

xii Contents

A THE ARITHMETIC OF COMPLEX NUMBERS 847

A.1 Graphical Representation of Real and Complex Numbers 847
A.2 Arithmetic Representation of Complex Numbers 848
A.3 Arithmetic Operations of Complex Numbers 850
A.4 Some Practical Implications of Using Complex Numbers 856

B CLOSED FORM OF A GEOMETRIC SERIES 859

C TIME REVERSAL AND THE DFT 863

D MEAN, VARIANCE, AND STANDARD DEVIATION 867

D.1 Statistical Measures 867
D.2 Statistics of Short Sequences 870
D.3 Statistics of Summed Sequences 872
D.4 Standard Deviation (RMS) of a Continuous Sinewave 874
D.5 Estimating Signal-to-Noise Ratios 875
D.6 The Mean and Variance of Random Functions 879
D.7 The Normal Probability Density Function 882

E DECIBELS (DB AND DBM) 885

E.1 Using Logarithms to Determine Relative Signal Power 885
E.2 Some Useful Decibel Numbers 889
E.3 Absolute Power Using Decibels 891

F DIGITAL FILTER TERMINOLOGY 893

G FREQUENCY SAMPLING FILTER DERIVATIONS 903

G.1 Frequency Response of a Comb Filter 903
G.2 Single Complex FSF Frequency Response 904
G.3 Multisection Complex FSF Phase 905
G.4 Multisection Complex FSF Frequency Response 906

Contents xiii

G.5 Real FSF Transfer Function 908
G.6 Type-IV FSF Frequency Response 910

H FREQUENCY SAMPLING FILTER DESIGN TABLES 913

I COMPUTING CHEBYSHEV WINDOW SEQUENCES 927

I.1 Chebyshev Windows for FIR Filter Design 927
I.2 Chebyshev Windows for Spectrum Analysis 929

INDEX 931

xiv Contents

Preface

This book is an expansion of previous editions of Understanding Digital Signal
Processing. Like those earlier editions, its goals are (1) to help beginning stu-
dents understand the theory of digital signal processing (DSP) and (2) to pro-
vide practical DSP information, not found in other books, to help working
engineers/scientists design and test their signal processing systems. Each
chapter of this book contains new information beyond that provided in ear-
lier editions.

It’s traditional at this point in the preface of a DSP textbook for the au-
thor to tell readers why they should learn DSP. I don’t need to tell you how
important DSP is in our modern engineering world. You already know that.
I’ll just say that the future of electronics is DSP, and with this book you will
not be left behind.

FOR INSTRUCTORS

This third edition is appropriate as the text for a one- or two-semester under-
graduate course in DSP. It follows the DSP material I cover in my corporate
training activities and a signal processing course I taught at the University of
California Santa Cruz Extension. To aid students in their efforts to learn DSP,
this third edition provides additional explanations and examples to increase
its tutorial value. To test a student’s understanding of the material, home-
work problems have been included at the end of each chapter. (For qualified
instructors, a Solutions Manual is available from Prentice Hall.)

xv

FOR PRACTICING ENGINEERS

To help working DSP engineers, the changes in this third edition include, but
are not limited to, the following:

• Practical guidance in building discrete differentiators, integrators, and
matched filters

• Descriptions of statistical measures of signals, variance reduction by
way of averaging, and techniques for computing real-world signal-to-
noise ratios (SNRs)

• A significantly expanded chapter on sample rate conversion (multirate
systems) and its associated filtering

• Implementing fast convolution (FIR filtering in the frequency domain)
• IIR filter scaling
• Enhanced material covering techniques for analyzing the behavior and

performance of digital filters
• Expanded descriptions of industry-standard binary number formats

used in modern processing systems
• Numerous additions to the popular “Digital Signal Processing Tricks”

chapter

FOR STUDENTS

Learning the fundamentals, and how to speak the language, of digital signal
processing does not require profound analytical skills or an extensive back-
ground in mathematics. All you need is a little experience with elementary al-
gebra, knowledge of what a sinewave is, this book, and enthusiasm. This may
sound hard to believe, particularly if you’ve just flipped through the pages of
this book and seen figures and equations that look rather complicated. The
content here, you say, looks suspiciously like material in technical journals
and textbooks whose meaning has eluded you in the past. Well, this is not just
another book on digital signal processing.

In this book I provide a gentle, but thorough, explanation of the theory
and practice of DSP. The text is not written so that you may understand the ma-
terial, but so that you must understand the material. I’ve attempted to avoid the
traditional instructor–student relationship and have tried to make reading this
book seem like talking to a friend while walking in the park. I’ve used just
enough mathematics to help you develop a fundamental understanding of DSP
theory and have illustrated that theory with practical examples.

I have designed the homework problems to be more than mere exercises
that assign values to variables for the student to plug into some equation in
order to compute a result. Instead, the homework problems are designed to

xvi Preface

be as educational as possible in the sense of expanding on and enabling fur-
ther investigation of specific aspects of DSP topics covered in the text. Stated
differently, the homework problems are not designed to induce “death by al-
gebra,” but rather to improve your understanding of DSP. Solving the prob-
lems helps you become proactive in your own DSP education instead of
merely being an inactive recipient of DSP information.

THE JOURNEY

Learning digital signal processing is not something you accomplish; it’s a
journey you take. When you gain an understanding of one topic, questions
arise that cause you to investigate some other facet of digital signal process-
ing.† Armed with more knowledge, you’re likely to begin exploring further
aspects of digital signal processing much like those shown in the diagram on
page xviii. This book is your tour guide during the first steps of your journey.

You don’t need a computer to learn the material in this book, but it
would certainly help. DSP simulation software allows the beginner to verify
signal processing theory through the time-tested trial and error process.‡ In
particular, software routines that plot signal data, perform the fast Fourier
transforms, and analyze digital filters would be very useful.

As you go through the material in this book, don’t be discouraged if
your understanding comes slowly. As the Greek mathematician Menaechmus
curtly remarked to Alexander the Great, when asked for a quick explanation
of mathematics, “There is no royal road to mathematics.” Menaechmus was
confident in telling Alexander the only way to learn mathematics is through
careful study. The same applies to digital signal processing. Also, don’t worry
if you need to read some of the material twice. While the concepts in this
book are not as complicated as quantum physics, as mysterious as the lyrics
of the song “Louie Louie,” or as puzzling as the assembly instructions of a
metal shed, they can become a little involved. They deserve your thoughtful
attention. So, go slowly and read the material twice if necessary; you’ll be
glad you did. If you show persistence, to quote Susan B. Anthony, “Failure is
impossible.”

Preface xvii

†“You see I went on with this research just the way it led me. This is the only way I ever heard of
research going. I asked a question, devised some method of getting an answer, and got—a fresh
question. Was this possible, or that possible? You cannot imagine what this means to an investi-
gator, what an intellectual passion grows upon him. You cannot imagine the strange colourless
delight of these intellectual desires” (Dr. Moreau—infamous physician and vivisectionist from
H.G. Wells’ Island of Dr. Moreau, 1896).

‡“One must learn by doing the thing; for though you think you know it, you have no certainty
until you try it” (Sophocles, 496–406 B.C.).

COMING ATTRACTIONS

Chapter 1 begins by establishing the notation used throughout the remainder
of the book. In that chapter we introduce the concept of discrete signal se-
quences, show how they relate to continuous signals, and illustrate how those
sequences can be depicted in both the time and frequency domains. In addi-
tion, Chapter 1 defines the operational symbols we’ll use to build our signal
processing system block diagrams. We conclude that chapter with a brief in-
troduction to the idea of linear systems and see why linearity enables us to
use a number of powerful mathematical tools in our analysis.

Chapter 2 introduces the most frequently misunderstood process in dig-
ital signal processing, periodic sampling. Although the concept of sampling a

xviii Preface

How can the spectra of sampled
signals be analyzed?

How can the sample rates of
discrete signals be changed?

How can digital filter
frequency responses

be improved?

Why are discrete spectra
periodic, and what causes

DFT leakage?

How does
windowing

work?

What causes
passband ripple in

digital filters?

How can the noise reduction
effects of averaging be improved?

How can spectral noise be reduced
to enhance signal detection?

How can DFT
measurement accuracy

be improved?

Periodic
Sampling

Window
Functions

Digital Filters

Convolution

Signal
Averaging

Discrete Fourier
Transform

How can
spectra be
modified?

continuous signal is not complicated, there are mathematical subtleties in the
process that require thoughtful attention. Beginning gradually with simple
examples of lowpass sampling, we then proceed to the interesting subject of
bandpass sampling. Chapter 2 explains and quantifies the frequency-domain
ambiguity (aliasing) associated with these important topics.

Chapter 3 is devoted to one of the foremost topics in digital signal pro-
cessing, the discrete Fourier transform (DFT) used for spectrum analysis.
Coverage begins with detailed examples illustrating the important properties
of the DFT and how to interpret DFT spectral results, progresses to the topic
of windows used to reduce DFT leakage, and discusses the processing gain
afforded by the DFT. The chapter concludes with a detailed discussion of the
various forms of the transform of rectangular functions that the reader is
likely to encounter in the literature.

Chapter 4 covers the innovation that made the most profound impact on
the field of digital signal processing, the fast Fourier transform (FFT). There
we show the relationship of the popular radix 2 FFT to the DFT, quantify the
powerful processing advantages gained by using the FFT, demonstrate why
the FFT functions as it does, and present various FFT implementation struc-
tures. Chapter 4 also includes a list of recommendations to help the reader
use the FFT in practice.

Chapter 5 ushers in the subject of digital filtering. Beginning with a sim-
ple lowpass finite impulse response (FIR) filter example, we carefully
progress through the analysis of that filter’s frequency-domain magnitude
and phase response. Next, we learn how window functions affect, and can be
used to design, FIR filters. The methods for converting lowpass FIR filter de-
signs to bandpass and highpass digital filters are presented, and the popular
Parks-McClellan (Remez) Exchange FIR filter design technique is introduced
and illustrated by example. In that chapter we acquaint the reader with, and
take the mystery out of, the process called convolution. Proceeding through
several simple convolution examples, we conclude Chapter 5 with a discus-
sion of the powerful convolution theorem and show why it’s so useful as a
qualitative tool in understanding digital signal processing.

Chapter 6 is devoted to a second class of digital filters, infinite impulse
response (IIR) filters. In discussing several methods for the design of IIR fil-
ters, the reader is introduced to the powerful digital signal processing analy-
sis tool called the z-transform. Because the z-transform is so closely related to
the continuous Laplace transform, Chapter 6 starts by gently guiding the
reader from the origin, through the properties, and on to the utility of the
Laplace transform in preparation for learning the z-transform. We’ll see how
IIR filters are designed and implemented, and why their performance is so
different from that of FIR filters. To indicate under what conditions these fil-
ters should be used, the chapter concludes with a qualitative comparison of
the key properties of FIR and IIR filters.

Preface xix

Chapter 7 introduces specialized networks known as digital differentia-
tors, integrators, and matched filters. In addition, this chapter covers two spe-
cialized digital filter types that have not received their deserved exposure in
traditional DSP textbooks. Called interpolated FIR and frequency sampling fil-
ters, providing improved lowpass filtering computational efficiency, they be-
long in our arsenal of filter design techniques. Although these are FIR filters,
their introduction is delayed to this chapter because familiarity with the
z-transform (in Chapter 6) makes the properties of these filters easier to un-
derstand.

Chapter 8 presents a detailed description of quadrature signals (also
called complex signals). Because quadrature signal theory has become so im-
portant in recent years, in both signal analysis and digital communications
implementations, it deserves its own chapter. Using three-dimensional illus-
trations, this chapter gives solid physical meaning to the mathematical nota-
tion, processing advantages, and use of quadrature signals. Special emphasis
is given to quadrature sampling (also called complex down-conversion).

Chapter 9 provides a mathematically gentle, but technically thorough,
description of the Hilbert transform—a process used to generate a quadrature
(complex) signal from a real signal. In this chapter we describe the properties,
behavior, and design of practical Hilbert transformers.

Chapter 10 presents an introduction to the fascinating and useful
process of sample rate conversion (changing the effective sample rate of dis-
crete data sequences through decimation or interpolation). Sample rate con-
version—so useful in improving the performance and reducing the
computational complexity of many signal processing operations—is essen-
tially an exercise in lowpass filter design. As such, polyphase and cascaded
integrator-comb filters are described in detail in this chapter.

Chapter 11 covers the important topic of signal averaging. There we
learn how averaging increases the accuracy of signal measurement schemes
by reducing measurement background noise. This accuracy enhancement is
called processing gain, and the chapter shows how to predict the processing
gain associated with averaging signals in both the time and frequency do-
mains. In addition, the key differences between coherent and incoherent aver-
aging techniques are explained and demonstrated with examples. To
complete that chapter the popular scheme known as exponential averaging is
covered in some detail.

Chapter 12 presents an introduction to the various binary number for-
mats the reader is likely to encounter in modern digital signal processing. We
establish the precision and dynamic range afforded by these formats along
with the inherent pitfalls associated with their use. Our exploration of the
critical subject of binary data word width (in bits) naturally leads to a discus-
sion of the numerical resolution limitations of analog-to-digital (A/D) con-
verters and how to determine the optimum A/D converter word size for a

xx Preface

given application. The problems of data value overflow roundoff errors are
covered along with a statistical introduction to the two most popular reme-
dies for overflow, truncation and rounding. We end that chapter by covering
the interesting subject of floating-point binary formats that allow us to over-
come most of the limitations induced by fixed-point binary formats, particu-
larly in reducing the ill effects of data overflow.

Chapter 13 provides the literature’s most comprehensive collection of
tricks of the trade used by DSP professionals to make their processing algo-
rithms more efficient. These techniques are compiled into a chapter at the end
of the book for two reasons. First, it seems wise to keep our collection of tricks
in one chapter so that we’ll know where to find them in the future. Second,
many of these clever schemes require an understanding of the material from
the previous chapters, making the last chapter an appropriate place to keep
our arsenal of clever tricks. Exploring these techniques in detail verifies and
reiterates many of the important ideas covered in previous chapters.

The appendices include a number of topics to help the beginner under-
stand the nature and mathematics of digital signal processing. A comprehen-
sive description of the arithmetic of complex numbers is covered in Appendix
A, and Appendix B derives the often used, but seldom explained, closed form
of a geometric series. The subtle aspects and two forms of time reversal in dis-
crete systems (of which zero-phase digital filtering is an application) are ex-
plained in Appendix C. The statistical concepts of mean, variance, and
standard deviation are introduced and illustrated in Appendix D, and Ap-
pendix E provides a discussion of the origin and utility of the logarithmic
decibel scale used to improve the magnitude resolution of spectral represen-
tations. Appendix F, in a slightly different vein, provides a glossary of the ter-
minology used in the field of digital filters. Appendices G and H provide
supplementary information for designing and analyzing specialized digital
filters. Appendix I explains the computation of Chebyshev window se-
quences.

ACKNOWLEDGMENTS

Much of the new material in this edition is a result of what I’ve learned from
those clever folk on the USENET newsgroup comp.dsp. (I could list a dozen
names, but in doing so I’d make 12 friends and 500 enemies.) So, I say thanks to
my DSP pals on comp.dsp for teaching me so much signal processing theory.

In addition to the reviewers of previous editions of this book, I thank
Randy Yates, Clay Turner, and Ryan Groulx for their time and efforts to help
me improve the content of this book. I am especially indebted to my eagle-
eyed mathematician friend Antoine Trux for his relentless hard work to both
enhance this DSP material and create a homework Solutions Manual.

Preface xxi

As before, I thank my acquisitions editor, Bernard Goodwin, for his pa-
tience and guidance, and his skilled team of production people, project editor
Elizabeth Ryan in particular, at Prentice Hall.

If you’re still with me this far in this Preface, I end by saying I had a ball
writing this book and sincerely hope you benefit from reading it. If you have
any comments or suggestions regarding this material, or detect any errors no
matter how trivial, please send them to me at R.Lyons@ieee.org. I promise I
will reply to your e-mail.

xxii Preface

About the Author

xxiii

Richard Lyons is a consulting systems engineer and lecturer with Besser Associates in
Mountain View, California. He has been the lead hardware engineer for numerous
signal processing systems for both the National Security Agency (NSA) and Northrop
Grumman Corp. Lyons has taught DSP at the University of California Santa Cruz Ex-
tension and authored numerous articles on DSP. As associate editor for the IEEE Sig-
nal Processing Magazine he created, edits, and contributes to the magazine’s “DSP Tips
& Tricks” column.

This page intentionally left blank

CHAPTER ONE

Digital signal processing has never been more prevalent or easier to perform.
It wasn’t that long ago when the fast Fourier transform (FFT), a topic we’ll
discuss in Chapter 4, was a mysterious mathematical process used only in in-
dustrial research centers and universities. Now, amazingly, the FFT is readily
available to us all. It’s even a built-in function provided by inexpensive
spreadsheet software for home computers. The availability of more sophisti-
cated commercial signal processing software now allows us to analyze and
develop complicated signal processing applications rapidly and reliably. We
can perform spectral analysis, design digital filters, develop voice recogni-
tion, data communication, and image compression processes using software
that’s interactive both in the way algorithms are defined and how the result-
ing data are graphically displayed. Since the mid-1980s the same integrated
circuit technology that led to affordable home computers has produced pow-
erful and inexpensive hardware development systems on which to imple-
ment our digital signal processing designs.† Regardless, though, of the ease
with which these new digital signal processing development systems and
software can be applied, we still need a solid foundation in understanding
the basics of digital signal processing. The purpose of this book is to build
that foundation.

In this chapter we’ll set the stage for the topics we’ll study throughout the re-
mainder of this book by defining the terminology used in digital signal process-

1

Discrete
Sequences
and Systems

† During a television interview in the early 1990s, a leading computer scientist stated that had
automobile technology made the same strides as the computer industry, we’d all have a car that
would go a half million miles per hour and get a half million miles per gallon. The cost of that
car would be so low that it would be cheaper to throw it away than pay for one day’s parking in
San Francisco.

ing, illustrating the various ways of graphically representing discrete signals, es-
tablishing the notation used to describe sequences of data values, presenting the
symbols used to depict signal processing operations, and briefly introducing the
concept of a linear discrete system.

1.1 DISCRETE SEQUENCES AND THEIR NOTATION

In general, the term signal processing refers to the science of analyzing time-
varying physical processes. As such, signal processing is divided into two cat-
egories, analog signal processing and digital signal processing. The term
analog is used to describe a waveform that’s continuous in time and can take
on a continuous range of amplitude values. An example of an analog signal is
some voltage that can be applied to an oscilloscope, resulting in a continuous
display as a function of time. Analog signals can also be applied to a conven-
tional spectrum analyzer to determine their frequency content. The term ana-
log appears to have stemmed from the analog computers used prior to 1980.
These computers solved linear differential equations by means of connecting
physical (electronic) differentiators and integrators using old-style telephone
operator patch cords. That way, a continuous voltage or current in the actual
circuit was analogous to some variable in a differential equation, such as
speed, temperature, air pressure, etc. (Although the flexibility and speed of
modern-day digital computers have since made analog computers obsolete, a
good description of the short-lived utility of analog computers can be found
in reference [1].) Because present-day signal processing of continuous radio-
type signals using resistors, capacitors, operational amplifiers, etc., has noth-
ing to do with analogies, the term analog is actually a misnomer. The more
correct term is continuous signal processing for what is today so commonly
called analog signal processing. As such, in this book we’ll minimize the use
of the term analog signals and substitute the phrase continuous signals when-
ever appropriate.

The term discrete-time signal is used to describe a signal whose indepen-
dent time variable is quantized so that we know only the value of the signal
at discrete instants in time. Thus a discrete-time signal is not represented by a
continuous waveform but, instead, a sequence of values. In addition to quan-
tizing time, a discrete-time signal quantizes the signal amplitude. We can il-
lustrate this concept with an example. Think of a continuous sinewave with a
peak amplitude of 1 at a frequency fo described by the equation

x(t) = sin(2πfot). (1–1)

The frequency fo is measured in hertz (Hz). (In physical systems, we usually
measure frequency in units of hertz. One Hz is a single oscillation, or cycle,
per second. One kilohertz (kHz) is a thousand Hz, and a megahertz (MHz) is

2 Discrete Sequences and Systems

one million Hz.†) With t in Eq. 1–1 representing time in seconds, the fot factor
has dimensions of cycles, and the complete 2πfot term is an angle measured in
radians.

Plotting Eq. (1–1), we get the venerable continuous sinewave curve
shown in Figure 1–1(a). If our continuous sinewave represents a physical volt-

1.1 Discrete Sequences and Their Notation 3

† The dimension for frequency used to be cycles/second; that’s why the tuning dials of old radios
indicate frequency as kilocycles/second (kcps) or megacycles/second (Mcps). In 1960 the scien-
tific community adopted hertz as the unit of measure for frequency in honor of the German
physicist Heinrich Hertz, who first demonstrated radio wave transmission and reception in
1887.

Figure 1–1 A time-domain sinewave: (a) continuous waveform representa-
tion; (b) discrete sample representation; (c) discrete samples with
connecting lines.

0

1

0.5

(a)
Continuous-time
variable, t

Continous x(t)

0(b)
Discrete-time
index, n

1 3 5 7 9

11 13 15 17 19

21 23 25 27 29

31 33 35 37 39

Discrete x(n)

–0.5

1

0.5

ts

x(7) at time 7t secondss

0(c)
Discrete-time
index, n

1 3 5 7 9

11 13 15 17 19

21 23 25 27 29

31 33 35 37 39

Discrete x(n)

–1

1

0.5

–1

–0.5

–0.5

–1

age, we could sample it once every ts seconds using an analog-to-digital con-
verter and represent the sinewave as a sequence of discrete values. Plotting
those individual values as dots would give us the discrete waveform in Fig-
ure 1–1(b). We say that Figure 1–1(b) is the “discrete-time” version of the con-
tinuous signal in Figure 1–1(a). The independent variable t in Eq. (1–1) and
Figure 1–1(a) is continuous. The independent index variable n in Figure 1–1(b)
is discrete and can have only integer values. That is, index n is used to iden-
tify the individual elements of the discrete sequence in Figure 1–1(b).

Do not be tempted to draw lines between the dots in Figure 1–1(b). For
some reason, people (particularly those engineers experienced in working
with continuous signals) want to connect the dots with straight lines, or the
stair-step lines shown in Figure 1–1(c). Don’t fall into this innocent-looking
trap. Connecting the dots can mislead the beginner into forgetting that the
x(n) sequence is nothing more than a list of numbers. Remember, x(n) is a
discrete-time sequence of individual values, and each value in that sequence
plots as a single dot. It’s not that we’re ignorant of what lies between the dots
of x(n); there is nothing between those dots.

We can reinforce this discrete-time sequence concept by listing those Fig-
ure 1–1(b) sampled values as follows:

x(0) = 0 (1st sequence value, index n = 0)
x(1) = 0.31 (2nd sequence value, index n = 1)
x(2) = 0.59 (3rd sequence value, index n = 2)
x(3) = 0.81 (4th sequence value, index n = 3)

.
and so on, (1–2)

where n represents the time index integer sequence 0, 1, 2, 3, etc., and ts is
some constant time period between samples. Those sample values can be rep-
resented collectively, and concisely, by the discrete-time expression

x(n) = sin(2πfonts). (1–3)

(Here again, the 2πfonts term is an angle measured in radians.) Notice that the
index n in Eq. (1–2) started with a value of 0, instead of 1. There’s nothing sa-
cred about this; the first value of n could just as well have been 1, but we start
the index n at zero out of habit because doing so allows us to describe the
sinewave starting at time zero. The variable x(n) in Eq. (1–3) is read as “the se-
quence x of n.” Equations (1–1) and (1–3) describe what are also referred to as
time-domain signals because the independent variables, the continuous time t
in Eq. (1–1), and the discrete-time nts values used in Eq. (1–3) are measures of
time.

With this notion of a discrete-time signal in mind, let’s say that a discrete
system is a collection of hardware components, or software routines, that op-
erate on a discrete-time signal sequence. For example, a discrete system could

4 Discrete Sequences and Systems

be a process that gives us a discrete output sequence y(0), y(1), y(2), etc., when
a discrete input sequence of x(0), x(1), x(2), etc., is applied to the system input
as shown in Figure 1–2(a). Again, to keep the notation concise and still keep
track of individual elements of the input and output sequences, an abbrevi-
ated notation is used as shown in Figure 1–2(b) where n represents the integer
sequence 0, 1, 2, 3, etc. Thus, x(n) and y(n) are general variables that represent
two separate sequences of numbers. Figure 1–2(b) allows us to describe a sys-
tem’s output with a simple expression such as

y(n) = 2x(n) – 1. (1–4)

Illustrating Eq. (1–4), if x(n) is the five-element sequence x(0) = 1, x(1) = 3,
x(2) = 5, x(3) = 7, and x(4) = 9, then y(n) is the five-element sequence y(0) = 1,
y(1) = 5, y(2) = 9, y(3) = 13, and y(4) = 17.

Equation (1–4) is formally called a difference equation. (In this book we
won’t be working with differential equations or partial differential equations.
However, we will, now and then, work with partially difficult equations.)

The fundamental difference between the way time is represented in con-
tinuous and discrete systems leads to a very important difference in how we
characterize frequency in continuous and discrete systems. To illustrate, let’s
reconsider the continuous sinewave in Figure 1–1(a). If it represented a volt-
age at the end of a cable, we could measure its frequency by applying it to an
oscilloscope, a spectrum analyzer, or a frequency counter. We’d have a prob-
lem, however, if we were merely given the list of values from Eq. (1–2) and
asked to determine the frequency of the waveform they represent. We’d
graph those discrete values, and, sure enough, we’d recognize a single
sinewave as in Figure 1–1(b). We can say that the sinewave repeats every 20
samples, but there’s no way to determine the exact sinewave frequency from
the discrete sequence values alone. You can probably see the point we’re lead-
ing to here. If we knew the time between samples—the sample period ts—
we’d be able to determine the absolute frequency of the discrete sinewave.

1.1 Discrete Sequences and Their Notation 5

Figure 1–2 With an input applied, a discrete system provides an output: (a) the
input and output are sequences of individual values; (b) input and
output using the abbreviated notation of x(n) and y(n).

x(n)

Discrete
System

x(0), x(1), x(2), x(3), . . .

y(n)

y(0), y(1), y(2), y(3), . . .

(a)

(b)
Discrete
System

Given that the ts sample period is, say, 0.05 milliseconds/sample, the period
of the sinewave is

(1–5)

Because the frequency of a sinewave is the reciprocal of its period, we now know
that the sinewave’s absolute frequency is 1/(1 ms), or 1 kHz. On the other hand, if
we found that the sample period was, in fact, 2 milliseconds, the discrete samples
in Figure 1–1(b) would represent a sinewave whose period is 40 milliseconds and
whose frequency is 25 Hz. The point here is that when dealing with discrete
systems, absolute frequency determination in Hz is dependent on the sam-
pling frequency

fs = 1/ts. (1–5’)

We’ll be reminded of this dependence throughout the remainder of this book.
In digital signal processing, we often find it necessary to characterize the

frequency content of discrete time-domain signals. When we do so, this fre-
quency representation takes place in what’s called the frequency domain. By

sinewave period
20 samples

period
0.05 milliseconds

sample
1 millisecond.= =⋅

6 Discrete Sequences and Systems

Figure 1–3 Time- and frequency-domain graphical representations: (a) sinewave
of frequency fo; (b) reduced amplitude sinewave of frequency 2fo;
(c) sum of the two sinewaves.

(a)

0

–0.5

0.5

–1

–0.5

0

0.5

1

(b)

(c)

0

0.5

1

0

Time (n)

Frequency

x (n) in the time domain

Time (n)
0

1

0

1

0.5

0.5

x (n) in the time domain

x (n) in the time domain

X (m) amplitude in the
 frequency domain

X (m) amplitude in the
 frequency domain

X (m) amplitude in the
 frequency domain

1

1

2
2

sum

sum

0.4

o o o o o

0 o o o o o

0

5 10 15

20 25 30

5

10 15

20

25 30

–1.5

–1

–0.5

0

0.5

1

1.5

Time (n)5 10 15

20 25 30

f 2f 3f 4f 5fo o o o o

Frequency

Frequency

f 2f 3f 4f 5f

f 2f 3f 4f 5f

way of example, let’s say we have a discrete sinewave sequence x1(n) with an
arbitrary frequency fo Hz as shown on the left side of Figure 1–3(a). We can
also characterize x1(n) by showing its spectral content, the X1(m) sequence on
the right side of Figure 1-3(a), indicating that it has a single spectral compo-
nent, and no other frequency content. Although we won’t dwell on it just
now, notice that the frequency-domain representations in Figure 1–3 are
themselves discrete.

To illustrate our time- and frequency-domain representations further,
Figure 1–3(b) shows another discrete sinewave x2(n), whose peak amplitude
is 0.4, with a frequency of 2fo. The discrete sample values of x2(n) are ex-
pressed by the equation

x2(n) = 0.4 ⋅ sin(2π2fonts). (1–6)

When the two sinewaves, x1(n) and x2(n), are added to produce a new
waveform xsum(n), its time-domain equation is

xsum(n) = x1(n) + x2(n) = sin(2πfonts) + 0.4 ⋅ sin(2π2fonts), (1–7)

and its time- and frequency-domain representations are those given in Figure
1–3(c). We interpret the Xsum(m) frequency-domain depiction, the spectrum, in
Figure 1–3(c) to indicate that xsum(n) has a frequency component of fo Hz and
a reduced-amplitude frequency component of 2fo Hz.

Notice three things in Figure 1–3. First, time sequences use lowercase
variable names like the “x” in x1(n), and uppercase symbols for frequency-
domain variables such as the “X” in X1(m). The term X1(m) is read as “the spec-
tral sequence X sub one of m.” Second, because the X1(m) frequency-domain
representation of the x1(n) time sequence is itself a sequence (a list of num-
bers), we use the index “m” to keep track of individual elements in X1(m). We
can list frequency-domain sequences just as we did with the time sequence in
Eq. (1–2). For example, Xsum(m) is listed as

Xsum(0) = 0 (1st Xsum (m) value, index m = 0)
Xsum(1) = 1.0 (2nd Xsum(m) value, index m = 1)
Xsum(2) = 0.4 (3rd Xsum (m) value, index m = 2)
Xsum(3) = 0 (4th Xsum (m) value, index m = 3)

.
and so on,

where the frequency index m is the integer sequence 0, 1, 2, 3, etc. Third, be-
cause the x1(n) + x2(n) sinewaves have a phase shift of zero degrees relative to
each other, we didn’t really need to bother depicting this phase relationship
in Xsum(m) in Figure 1–3(c). In general, however, phase relationships in
frequency-domain sequences are important, and we’ll cover that subject in
Chapters 3 and 5.

1.1 Discrete Sequences and Their Notation 7

A key point to keep in mind here is that we now know three equivalent
ways to describe a discrete-time waveform. Mathematically, we can use a
time-domain equation like Eq. (1–6). We can also represent a time-domain
waveform graphically as we did on the left side of Figure 1–3, and we can de-
pict its corresponding, discrete, frequency-domain equivalent as that on the
right side of Figure 1–3.

As it turns out, the discrete time-domain signals we’re concerned with
are not only quantized in time; their amplitude values are also quantized. Be-
cause we represent all digital quantities with binary numbers, there’s a limit
to the resolution, or granularity, that we have in representing the values of
discrete numbers. Although signal amplitude quantization can be an impor-
tant consideration—we cover that particular topic in Chapter 12—we won’t
worry about it just now.

1.2 SIGNAL AMPLITUDE, MAGNITUDE, POWER

Let’s define two important terms that we’ll be using throughout this book:
amplitude and magnitude. It’s not surprising that, to the layman, these terms
are typically used interchangeably. When we check our thesaurus, we find
that they are synonymous.† In engineering, however, they mean two different
things, and we must keep that difference clear in our discussions. The ampli-
tude of a variable is the measure of how far, and in what direction, that vari-
able differs from zero. Thus, signal amplitudes can be either positive or
negative. The time-domain sequences in Figure 1–3 presented the sample
value amplitudes of three different waveforms. Notice how some of the indi-
vidual discrete amplitude values were positive and others were negative.

8 Discrete Sequences and Systems

† Of course, laymen are “other people.” To the engineer, the brain surgeon is the layman. To the
brain surgeon, the engineer is the layman.

Figure 1–4 Magnitude samples, |x1(n)|, of the time waveform in Figure 1–3(a).

–0.5

0

0.5

1

Time (n)

|x (n)|1

5 10 15 20 25 30

The magnitude of a variable, on the other hand, is the measure of how
far, regardless of direction, its quantity differs from zero. So magnitudes are
always positive values. Figure 1–4 illustrates how the magnitude of the x1(n)
time sequence in Figure 1–3(a) is equal to the amplitude, but with the sign al-
ways being positive for the magnitude. We use the modulus symbol (||) to
represent the magnitude of x1(n). Occasionally, in the literature of digital sig-
nal processing, we’ll find the term magnitude referred to as the absolute value.

When we examine signals in the frequency domain, we’ll often be inter-
ested in the power level of those signals. The power of a signal is proportional
to its amplitude (or magnitude) squared. If we assume that the proportional-
ity constant is one, we can express the power of a sequence in the time or fre-
quency domains as

xpwr(n) = |x(n)|2, (1–8)

or

Xpwr(m) = |X(m)|2. (1–8’)

Very often we’ll want to know the difference in power levels of two signals in
the frequency domain. Because of the squared nature of power, two signals
with moderately different amplitudes will have a much larger difference in
their relative powers. In Figure 1–3, for example, signal x1(n)’s amplitude is
2.5 times the amplitude of signal x2(n), but its power level is 6.25 that of
x2(n)’s power level. This is illustrated in Figure 1–5 where both the amplitude
and power of Xsum(m) are shown.

Because of their squared nature, plots of power values often involve
showing both very large and very small values on the same graph. To make
these plots easier to generate and evaluate, practitioners usually employ the
decibel scale as described in Appendix E.

1.2 Signal Amplitude, Magnitude, Power 9

Figure 1–5 Frequency-domain amplitude and frequency-domain power of the
xsum(n) time waveform in Figure 1–3(c).

0

1

0.5

X (m) amplitude in the
 frequency domain

sum

0
0

1

0.5

X (m) power in the
 frequency domain

sum

0 Frequency

0.16

0.4

f 2f 3f 4f 5fo o o o o f 2f 3f 4f 5fo o o o oFrequency

1.3 SIGNAL PROCESSING OPERATIONAL SYMBOLS

We’ll be using block diagrams to graphically depict the way digital signal
processing operations are implemented. Those block diagrams will comprise
an assortment of fundamental processing symbols, the most common of
which are illustrated and mathematically defined in Figure 1–6.

Figure 1–6(a) shows the addition, element for element, of two discrete
sequences to provide a new sequence. If our sequence index n begins at 0, we
say that the first output sequence value is equal to the sum of the first element
of the b sequence and the first element of the c sequence, or a(0) = b(0) + c(0).
Likewise, the second output sequence value is equal to the sum of the second

10 Discrete Sequences and Systems

Figure 1–6 Terminology and symbols used in digital signal processing block
diagrams.

Delay

a(n)b(n)

c(n)

a(n) = b(n) + c(n)

a(n)b(n)

c(n)

a(n) = b(n) – c(n)
+

–

a(n)

b(n)

a(n) = b(k)b(n+1)

b(n+2)

b(n+3)

k = n

n+3

Addition:

Subtraction:

Summation:

Unit delay:

+

+

+

a(n)b(n)

z -1

a(n) = b(n-1)

a(n)b(n)

(a)

(b)

(c)

Multiplication:

a(n)b(n)

c(n)

a(n) = b(n)c(n) = b(n) c(n).
(d)

(e)

.[Sometimes we use a " "
to signify multiplication.]

= b(n) + b(n+1) + b(n+2) + b(n+3)

element of the b sequence and the second element of the c sequence, or
a(1) = b(1) + c(1). Equation (1–7) is an example of adding two sequences. The
subtraction process in Figure 1–6(b) generates an output sequence that’s the
element-for-element difference of the two input sequences. There are times
when we must calculate a sequence whose elements are the sum of more than
two values. This operation, illustrated in Figure 1–6(c), is called summation
and is very common in digital signal processing. Notice how the lower and
upper limits of the summation index k in the expression in Figure 1–6(c) tell
us exactly which elements of the b sequence to sum to obtain a given a(n)
value. Because we’ll encounter summation operations so often, let’s make
sure we understand their notation. If we repeat the summation equation from
Figure 1–6(c) here, we have

(1–9)

This means that

when n = 0, index k goes from 0 to 3, so a(0) = b(0) + b(1) + b(2) + b(3)
when n = 1, index k goes from 1 to 4, so a(1) = b(1) + b(2) + b(3) + b(4)
when n = 2, index k goes from 2 to 5, so a(2) = b(2) + b(3) + b(4) + b(5) (1–10)

when n = 3, index k goes from 3 to 6, so a(3) = b(3) + b(4) + b(5) + b(6)
.

and so on.

We’ll begin using summation operations in earnest when we discuss digital
filters in Chapter 5.

The multiplication of two sequences is symbolized in Figure 1–6(d).
Multiplication generates an output sequence that’s the element-for-element
product of two input sequences: a(0) = b(0)c(0), a(1) = b(1)c(1), and so on. The
last fundamental operation that we’ll be using is called the unit delay in Figure
1–6(e). While we don’t need to appreciate its importance at this point, we’ll
merely state that the unit delay symbol signifies an operation where the out-
put sequence a(n) is equal to a delayed version of the b(n) sequence. For ex-
ample, a(5) = b(4), a(6) = b(5), a(7) = b(6), etc. As we’ll see in Chapter 6, due to
the mathematical techniques used to analyze digital filters, the unit delay is
very often depicted using the term z–1.

The symbols in Figure 1–6 remind us of two important aspects of digital
signal processing. First, our processing operations are always performed on
sequences of individual discrete values, and second, the elementary opera-
tions themselves are very simple. It’s interesting that, regardless of how com-
plicated they appear to be, the vast majority of digital signal processing
algorithms can be performed using combinations of these simple operations.
If we think of a digital signal processing algorithm as a recipe, then the sym-
bols in Figure 1–6 are the ingredients.

a n b k
k n

n

() ()=
=

+

∑ .
3

1.3 Signal Processing Operational Symbols 11

1.4 INTRODUCTION TO DISCRETE LINEAR TIME-INVARIANT SYSTEMS

In keeping with tradition, we’ll introduce the subject of linear time-invariant
(LTI) systems at this early point in our text. Although an appreciation for LTI
systems is not essential in studying the next three chapters of this book, when
we begin exploring digital filters, we’ll build on the strict definitions of linear-
ity and time invariance. We need to recognize and understand the notions of
linearity and time invariance not just because the vast majority of discrete
systems used in practice are LTI systems, but because LTI systems are very ac-
commodating when it comes to their analysis. That’s good news for us be-
cause we can use straightforward methods to predict the performance of any
digital signal processing scheme as long as it’s linear and time invariant. Be-
cause linearity and time invariance are two important system characteristics
having very special properties, we’ll discuss them now.

1.5 DISCRETE LINEAR SYSTEMS

The term linear defines a special class of systems where the output is the su-
perposition, or sum, of the individual outputs had the individual inputs been
applied separately to the system. For example, we can say that the application
of an input x1(n) to a system results in an output y1(n). We symbolize this situ-
ation with the following expression:

(1–11)

Given a different input x2(n), the system has a y2(n) output as

(1–12)

For the system to be linear, when its input is the sum x1(n) + x2(n), its output
must be the sum of the individual outputs so that

(1–13)

One way to paraphrase expression (1–13) is to state that a linear system’s out-
put is the sum of the outputs of its parts. Also, part of this description of lin-
earity is a proportionality characteristic. This means that if the inputs are
scaled by constant factors c1 and c2, then the output sequence parts are also
scaled by those factors as

(1–14)

In the literature, this proportionality attribute of linear systems in expression
(1–14) is sometimes called the homogeneity property. With these thoughts in
mind, then, let’s demonstrate the concept of system linearity.

c x n c x n c y n c y n1 1 2 2 1 1 2 2() () () () .+ ⎯ →⎯⎯⎯ +results in

x n x n y n y n1 2 1 2() () () () .+ ⎯ →⎯⎯⎯ +results in

x n y n2 2() () .results in⎯ →⎯⎯⎯

x n y n1 1() ()results in .⎯ →⎯⎯⎯⎯

12 Discrete Sequences and Systems

1.5.1 Example of a Linear System

To illustrate system linearity, let’s say we have the discrete system shown in
Figure 1–7(a) whose output is defined as

(1–15)

that is, the output sequence is equal to the negative of the input sequence
with the amplitude reduced by a factor of two. If we apply an x1(n) input se-
quence representing a 1 Hz sinewave sampled at a rate of 32 samples per
cycle, we’ll have a y1(n) output as shown in the center of Figure 1–7(b). The
frequency-domain spectral amplitude of the y1(n) output is the plot on the

y n
x n

()
()

 ,= −
2

1.5 Discrete Linear Systems 13

Figure 1–7 Linear system input-to-output relationships: (a) system block diagram
where y(n) = –x(n)/2; (b) system input and output with a 1 Hz
sinewave applied; (c) with a 3 Hz sinewave applied; (d) with the sum
of 1 Hz and 3 Hz sinewaves applied.

–1

–0.5

0

0.5

1

(b)

(c) 0

0.5

1

0

0.5

1

0

1

2

(d)

x (n)1 y (n)1

x (n)2 y (n)2

x (n) = x (n) + x (n)3 y (n)3

Time

Time

Time

(a) Input x(n) Output y(n) = –x(n)/2
Linear

Discrete
System

Time

0

0.5

1

Time

–2

–1

0

1

2

Time

–0.5

2 4 6 8 10 12 14

0.5

0
0

Y (m)1

Y (m)2

Y (m)3

1

2 4 6 8 10 12 14

0.5

0
0

–0.5

2 4 6 8 10 12 14 Freq
(Hz)

0.5

0
0

1 2

Freq
(Hz)

Freq
(Hz)

1 3

3

–1

–0.5

–1

–0.5

–1

–0.5
–0.5

–2

–1

right side of Figure 1–7(b), indicating that the output comprises a single tone
of peak amplitude equal to –0.5 whose frequency is 1 Hz. Next, applying an
x2(n) input sequence representing a 3 Hz sinewave, the system provides a
y2(n) output sequence, as shown in the center of Figure 1–7(c). The spectrum
of the y2(n) output, Y2(m), confirming a single 3 Hz sinewave output is shown
on the right side of Figure 1–7(c). Finally—here’s where the linearity comes
in—if we apply an x3(n) input sequence that’s the sum of a 1 Hz sinewave
and a 3 Hz sinewave, the y3(n) output is as shown in the center of Figure
1–7(d). Notice how y3(n) is the sample-for-sample sum of y1(n) and y2(n). Fig-
ure 1–7(d) also shows that the output spectrum Y3(m) is the sum of Y1(m) and
Y2(m). That’s linearity.

1.5.2 Example of a Nonlinear System

It’s easy to demonstrate how a nonlinear system yields an output that is not
equal to the sum of y1(n) and y2(n) when its input is x1(n) + x2(n). A simple ex-
ample of a nonlinear discrete system is that in Figure 1–8(a) where the output
is the square of the input described by

y(n) = [x(n)]2. (1–16)

We’ll use a well-known trigonometric identity and a little algebra to predict
the output of this nonlinear system when the input comprises simple
sinewaves. Following the form of Eq. (1–3), let’s describe a sinusoidal se-
quence, whose frequency fo = 1 Hz, by

x1(n) = sin(2πfonts) = sin(2π ⋅ 1 ⋅ nts). (1–17)

Equation (1–17) describes the x1(n) sequence on the left side of Figure 1–8(b).
Given this x1(n) input sequence, the y1(n) output of the nonlinear system is
the square of a 1 Hz sinewave, or

y1(n) = [x1(n)]2 = sin(2π ⋅ 1 ⋅ nts) ⋅ sin(2π ⋅ 1 ⋅ nts). (1–18)

We can simplify our expression for y1(n) in Eq. (1–18) by using the following
trigonometric identity:

(1–19)

Using Eq. (1–19), we can express y1(n) as

(1–20)

y n
nt nt nt nt

nt nt

s s s s

s s

1
2 1 2 1

2
2 1 2 1

2

0
2

4 1
2

1
2

2 2
2

()
cos() cos()

cos() cos() cos()
,

= π − π − π + π

= − π = − π

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

sin() sin()
cos() cos()

 .α β α β α β⋅ = − − +
2 2

14 Discrete Sequences and Systems

which is shown as the all-positive sequence in the center of Figure 1–8(b). Be-
cause Eq. (1–19) results in a frequency sum (α + β) and frequency difference
(α – β) effect when multiplying two sinusoids, the y1(n) output sequence will
be a cosine wave of 2 Hz and a peak amplitude of –0.5, added to a constant
value of 1/2. The constant value of 1/2 in Eq. (1–20) is interpreted as a zero
Hz frequency component, as shown in the Y1(m) spectrum in Figure 1–8(b).
We could go through the same algebraic exercise to determine that when a
3 Hz sinewave x2(n) sequence is applied to this nonlinear system, the output
y2(n) would contain a zero Hz component and a 6 Hz component, as shown
in Figure 1–8(c).

System nonlinearity is evident if we apply an x3(n) sequence comprising
the sum of a 1 Hz and a 3 Hz sinewave as shown in Figure 1–8(d). We can

1.5 Discrete Linear Systems 15

Figure 1–8 Nonlinear system input-to-output relationships: (a) system block dia-
gram where y(n) = [x(n)]2; (b) system input and output with a 1 Hz
sinewave applied; (c) with a 3 Hz sinewave applied; (d) with the sum
of 1 Hz and 3 Hz sinewaves applied.

(b)

(c)

0

0.5

1

1.5

2

2.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

–1

2

4 6 8 10 12 14

0

1

2

(d)

x (n)
y (n) Y (m)

1
1 1

x (n)
y (n) Y (m)

2
2 2

x (n)
y (n) Y (m)3

3 3

Time

Time

Time

Time

Time

Time

1

0.5

0

–0.5

(a) Input x(n) Output y(n) = [x(n)] 2
Nonlinear
Discrete
System

zero Hz component

0

–1

2 4

6

8 10 12 14

1

0
0

–1

2

4 6

8 10 12 14

1

0
0

Freq
(Hz)

Freq
(Hz)

Freq
(Hz)

0.5

–0.5

0.5

–0.5

–1

–0.5

–1

–2

–1

–0.5

predict the frequency content of the y3(n) output sequence by using the alge-
braic relationship

(a+b)2 = a2+2ab+b2, (1–21)

where a and b represent the 1 Hz and 3 Hz sinewaves, respectively. From Eq.
(1–19), the a2 term in Eq. (1–21) generates the zero Hz and 2 Hz output sinu-
soids in Figure 1–8(b). Likewise, the b2 term produces in y3(n) another zero Hz
and the 6 Hz sinusoid in Figure 1–8(c). However, the 2ab term yields addi-
tional 2 Hz and 4 Hz sinusoids in y3(n). We can show this algebraically by
using Eq. (1–19) and expressing the 2ab term in Eq. (1–21) as

Equation (1–22) tells us that two additional sinusoidal components will be
present in y3(n) because of the system’s nonlinearity, a 2 Hz cosine wave
whose amplitude is +1 and a 4 Hz cosine wave having an amplitude of –1.
These spectral components are illustrated in Y3(m) on the right side of Figure
1–8(d).

Notice that when the sum of the two sinewaves is applied to the nonlin-
ear system, the output contained sinusoids, Eq. (1–22), that were not present
in either of the outputs when the individual sinewaves alone were applied.
Those extra sinusoids were generated by an interaction of the two input sinu-
soids due to the squaring operation. That’s nonlinearity; expression (1–13)
was not satisfied. (Electrical engineers recognize this effect of internally gen-
erated sinusoids as intermodulation distortion.) Although nonlinear systems are
usually difficult to analyze, they are occasionally used in practice. References
[2], [3], and [4], for example, describe their application in nonlinear digital fil-
ters. Again, expressions (1–13) and (1–14) state that a linear system’s output
resulting from a sum of individual inputs is the superposition (sum) of the in-
dividual outputs. They also stipulate that the output sequence y1(n) depends
only on x1(n) combined with the system characteristics, and not on the other
input x2(n); i.e., there’s no interaction between inputs x1(n) and x2(n) at the
output of a linear system.

2 2 2 1 2 3

2 2 1 2 3
2

2 2 1 2 3
2

2 2 2 4

ab nt nt

nt nt nt nt

nt nt

s s

s s s s

s s

= π π

= π − π − π + π

= π − π

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

sin() sin()

cos() cos()

cos() cos() .†

16 Discrete Sequences and Systems

† The first term in Eq. (1–22) is cos(2π ⋅ nts – 6π ⋅ nts) = cos(–4π ⋅ nts) = cos(–2π ⋅ 2 ⋅ nts). However, be-
cause the cosine function is even, cos(–α) = cos(α), we can express that first term as cos(2π ⋅ 2 ⋅nts).

(1–22)

1.6 TIME-INVARIANT SYSTEMS

A time-invariant system is one where a time delay (or shift) in the input se-
quence causes an equivalent time delay in the system’s output sequence.
Keeping in mind that n is just an indexing variable we use to keep track of
our input and output samples, let’s say a system provides an output y(n)
given an input of x(n), or

(1–23)

For a system to be time invariant, with a shifted version of the original x(n)
input applied, x’(n), the following applies:

(1–24)

where k is some integer representing k sample period time delays. For a sys-
tem to be time invariant, Eq. (1–24) must hold true for any integer value of k
and any input sequence.

1.6.1 Example of a Time-Invariant System

Let’s look at a simple example of time invariance illustrated in Figure 1–9. As-
sume that our initial x(n) input is a unity-amplitude 1 Hz sinewave sequence
with a y(n) output, as shown in Figure 1–9(b). Consider a different input se-
quence x’(n), where

x’(n) = x(n–4). (1–25)

Equation (1–25) tells us that the input sequence x’(n) is equal to sequence x(n)
shifted to the right by k = –4 samples. That is, x’(4) = x(0), x’(5) = x(1), x’(6) =
x(2), and so on as shown in Figure 1–9(c). The discrete system is time invari-
ant because the y’(n) output sequence is equal to the y(n) sequence shifted to
the right by four samples, or y’(n) = y(n–4). We can see that y’(4) = y(0), y’(5) =
y(1), y’(6) = y(2), and so on as shown in Figure 1–9(c). For time-invariant sys-
tems, the time shifts in x’(n) and y’(n) are equal. Take careful notice of the
minus sign in Eq. (1–25). In later chapters, that is the notation we’ll use to al-
gebraically describe a time-delayed discrete sequence.

Some authors succumb to the urge to define a time-invariant system as
one whose parameters do not change with time. That definition is incomplete
and can get us in trouble if we’re not careful. We’ll just stick with the formal
definition that a time-invariant system is one where a time shift in an input se-
quence results in an equal time shift in the output sequence. By the way, time-
invariant systems in the literature are often called shift-invariant systems.†

x n x n k y n y n k' () () ' () () ,= + ⎯ →⎯⎯⎯ = +results in

x n y n() () .results in⎯ →⎯⎯⎯

1.6 Time-Invariant Systems 17

† An example of a discrete process that’s not time invariant is the downsampling, or decimation,
process described in Chapter 10.

1.7 THE COMMUTATIVE PROPERTY OF LINEAR TIME-INVARIANT SYSTEMS

Although we don’t substantiate this fact until we reach Section 6.11, it’s not
too early to realize that LTI systems have a useful commutative property by
which their sequential order can be rearranged with no change in their final
output. This situation is shown in Figure 1–10 where two different LTI
systems are configured in series. Swapping the order of two cascaded systems
does not alter the final output. Although the intermediate data sequences f(n)
and g(n) will usually not be equal, the two pairs of LTI systems will have iden-

18 Discrete Sequences and Systems

Figure 1–9 Time-invariant system input/output relationships: (a) system block dia-
gram, y(n) = –x(n)/2; (b) system input/output with a sinewave input;
(c) input/output when a sinewave, delayed by four samples, is the input.

(b)

(a)

0

0.5

–1

0
1

2 14
–1

0

1

–0.5

0
0.5

4 6 8
12

10
0

2 14
4 6 8

12
10

2
14

4 6
8 1210

0 2 14
4 6

8 12100

Time

Time

Time

Time

Input x(n) Output y(n) = –x(n)/2

Linear
Time-Invariant

Discrete
System

(c)

x(n) y(n)

x '(n) y '(n)

–0.5

Figure 1–10 Linear time-invariant (LTI) systems in series: (a) block diagram of two
LTI systems; (b) swapping the order of the two systems does not
change the resultant output y(n).

(b)

(a)
Input x(n) Output y(n)LTI

System #1
LTI

System #2

Input x(n) Output y(n)LTI
System #2

LTI
System #1

f(n)

g(n)

tical y(n) output sequences. This commutative characteristic comes in handy
for designers of digital filters, as we’ll see in Chapters 5 and 6.

1.8 ANALYZING LINEAR TIME-INVARIANT SYSTEMS

As previously stated, LTI systems can be analyzed to predict their perfor-
mance. Specifically, if we know the unit impulse response of an LTI system, we
can calculate everything there is to know about the system; that is, the sys-
tem’s unit impulse response completely characterizes the system. By “unit
impulse response” we mean the system’s time-domain output sequence
when the input is a single unity-valued sample (unit impulse) preceded and
followed by zero-valued samples as shown in Figure 1–11(b).

Knowing the (unit) impulse response of an LTI system, we can deter-
mine the system’s output sequence for any input sequence because the out-
put is equal to the convolution of the input sequence and the system’s impulse
response. Moreover, given an LTI system’s time-domain impulse response,
we can find the system’s frequency response by taking the Fourier transform in
the form of a discrete Fourier transform of that impulse response[5]. The con-
cepts in the two previous sentences are among the most important principles
in all of digital signal processing!

Don’t be alarmed if you’re not exactly sure what is meant by convolu-
tion, frequency response, or the discrete Fourier transform. We’ll introduce
these subjects and define them slowly and carefully as we need them in
later chapters. The point to keep in mind here is that LTI systems can be de-
signed and analyzed using a number of straightforward and powerful
analysis techniques. These techniques will become tools that we’ll add to

1.8 Analyzing Linear Time-Invariant Systems 19

Figure 1–11 LTI system unit impulse response sequences: (a) system block dia-
gram; (b) impulse input sequence x(n) and impulse response output
sequence y(n).

x(n) impulse input

(b) unity-valued sample

y(n) impulse response

0 Time0 Time

1

(a) Input x(n) Output y(n)

Linear
Time-Invariant

Discrete
System

our signal processing toolboxes as we journey through the subject of digital
signal processing.

In the testing (analyzing) of continuous linear systems, engineers often
use a narrow-in-time impulsive signal as an input signal to their systems. Me-
chanical engineers give their systems a little whack with a hammer, and elec-
trical engineers working with analog-voltage systems generate a very narrow
voltage spike as an impulsive input. Audio engineers, who need an impulsive
acoustic test signal, sometimes generate an audio impulse by firing a starter
pistol.

In the world of DSP, an impulse sequence called a unit impulse takes the
form

x(n) = . . . 0, 0, 0, 0, 0, A, 0, 0, 0, 0, 0, . . . (1–26)

The value A is often set equal to one. The leading sequence of zero-valued
samples, before the A-valued sample, must be a bit longer than the length of
the transient response of the system under test in order to initialize the sys-
tem to its zero state. The trailing sequence of zero-valued samples, following
the A-valued sample, must be a bit longer than the transient response of the
system under test in order to capture the system’s entire y(n) impulse re-
sponse output sequence.

Let’s further explore this notion of impulse response testing to deter-
mine the frequency response of a discrete system (and take an opportunity to
start using the operational symbols introduced in Section 1.3). Consider the
block diagram of a 4-point moving averager shown in Figure 1–12(a). As the
x(n) input samples march their way through the system, at each time index n
four successive input samples are averaged to compute a single y(n) output.
As we’ll learn in subsequent chapters, a moving averager behaves like a digital
lowpass filter. However, we can quickly illustrate that fact now.

If we apply an impulse input sequence to the system, we’ll obtain its
y(n) impulse response output shown in Figure 1–12(b). The y(n) output is
computed using the following difference equation:

(1–27)

If we then perform a discrete Fourier transform (a process we cover in much
detail in Chapter 3) on y(n), we obtain the Y(m) frequency-domain informa-
tion, allowing us to plot the frequency magnitude response of the 4-point
moving averager as shown in Figure 1–12(c). So we see that a moving aver-
ager indeed has the characteristic of a lowpass filter. That is, the averager at-
tenuates (reduces the amplitude of) high-frequency signal content applied to
its input.

y n x n x n x n x n x k
k n

n

() [() () (()] ().= + − + − − =
= −
∑1

4
1 2) + 3

1
4 3

20 Discrete Sequences and Systems

OK, this concludes our brief introduction to discrete sequences and sys-
tems. In later chapters we’ll learn the details of discrete Fourier transforms,
discrete system impulse responses, and digital filters.

REFERENCES

[1] Karplus, W. J., and Soroka, W. W. Analog Methods, 2nd ed., McGraw-Hill, New York, 1959,
p. 117.

[2] Mikami, N., Kobayashi, M., and Yokoyama, Y. “A New DSP-Oriented Algorithm for Cal-
culation of the Square Root Using a Nonlinear Digital Filter,” IEEE Trans. on Signal Process-
ing, Vol. 40, No. 7, July 1992.

1.8 Analyzing Linear Time-Invariant Systems 21

Figure 1–12 Analyzing a moving averager: (a) averager block diagram; (b)
impulse input and impulse response; (c) averager frequency mag-
nitude response.

x(n) impulse input

(b) unity-valued sample

y(n) impulse response

00 n (Time)

1

(a)

x(n)

y(n)

1/4

1/4

DelayDelayDelay
x(n-1) x(n-2) x(n-3)

n (Time)

|Y(m)|

0

0.25

0.5

0.75

1

0 3 6 9 12 15 18 m (Freq)

Frequency
magnitude
response(c)

Discrete Fourier
transform

[3] Heinen, P., and Neuvo, Y. “FIR-Median Hybrid Filters,” IEEE Trans. on Acoust. Speech, and
Signal Proc., Vol. ASSP-35, No. 6, June 1987.

[4] Oppenheim, A., Schafer, R., and Stockham, T. “Nonlinear Filtering of Multiplied and Con-
volved Signals,” Proc. IEEE, Vol. 56, August 1968.

[5] Pickerd, John. “Impulse-Response Testing Lets a Single Test Do the Work of Thousands,”
EDN, April 27, 1995.

22 Discrete Sequences and Systems

CHAPTER 1 PROBLEMS

1.1 This problem gives us practice in thinking about sequences of numbers. For
centuries mathematicians have developed clever ways of computing π. In
1671 the Scottish mathematician James Gregory proposed the following very
simple series for calculating π:

Thinking of the terms inside the parentheses as a sequence indexed by the
variable n, where n = 0, 1, 2, 3, . . ., 100, write Gregory’s algorithm in the form

replacing the “?” characters with expressions in terms of index n.

1.2 One of the ways to obtain discrete sequences, for follow-on processing, is to
digitize a continuous (analog) signal with an analog-to-digital (A/D) con-
verter. A 6-bit A/D converter’s output words (6-bit binary words) can only
represent 26=64 different numbers. (We cover this digitization, sampling, and
A/D converters in detail in upcoming chapters.) Thus we say the A/D con-
verter’s “digital” output can only represent a finite number of amplitude val-
ues. Can you think of a continuous time-domain electrical signal that only has
a finite number of amplitude values? If so, draw a graph of that continuous-
time signal.

1.3 On the Internet, the author once encountered the following line of
C-language code

PI = 2*asin(1.0);

whose purpose was to define the constant π. In standard mathematical nota-
tion, that line of code can be described by

π = 2 · sin–1(1).

Under what assumption does the above expression correctly define the con-
stant π?

π ≈ ⋅ −() ⋅
=
∑4 1

0

100
? ?

n

π ≈ ⋅ − + − + −⎛
⎝

⎞
⎠4 1

1
3

1
5

1
7

1
9

1
11

... .

Chapter 1 Problems 23

1.4 Many times in the literature of signal processing you will encounter the identity

x0 = 1.

That is, x raised to the zero power is equal to one. Using the Laws of Expo-
nents, prove the above expression to be true.

1.5 Recall that for discrete sequences the ts sample period (the time period be-
tween samples) is the reciprocal of the sample frequency fs. Write the equa-
tions, as we did in the text’s Eq. (1–3), describing time-domain sequences for
unity-amplitude cosine waves whose fo frequencies are

(a) fo = fs/2, one-half the sample rate,
(b) fo = fs/4, one-fourth the sample rate,
(c) fo = 0 (zero) Hz.

1.6 Draw the three time-domain cosine wave sequences, where a sample value is
represented by a dot, described in Problem 1.5. The correct solution to Part (a)
of this problem is a useful sequence used to convert some lowpass digital fil-
ters into highpass filters. (Chapter 5 discusses that topic.) The correct solution
to Part (b) of this problem is an important discrete sequence used for frequency
translation (both for signal down-conversion and up-conversion) in modern-day
wireless communications systems. The correct solution to Part (c) of this
problem should convince us that it’s perfectly valid to describe a cosine se-
quence whose frequency is zero Hz.

1.7 Draw the three time-domain sequences of unity-amplitude sinewaves (not
cosine waves) whose frequencies are

(a) fo = fs/2, one-half the sample rate,
(b) fo = fs/4, one-fourth the sample rate,
(c) fo = 0 (zero) Hz.

The correct solutions to Parts (a) and (c) show us that the two frequencies, 0
Hz and fs/2 Hz, are special frequencies in the world of discrete signal pro-
cessing. What is special about the sinewave sequences obtained from the
above Parts (a) and (c)?

1.8 Consider the infinite-length time-domain sequence x(n) in Figure P1–8. Draw
the first eight samples of a shifted time sequence defined by

xshift(n) = x(n+1).

24 Discrete Sequences and Systems

1.9 Assume, during your reading of the literature of DSP, you encounter the
process shown in Figure P1–9. The x(n) input sequence, whose fs sample rate
is 2500 Hz, is multiplied by a sinusoidal m(n) sequence to produce the y(n)
output sequence. What is the frequency, measured in Hz, of the sinusoidal
m(n) sequence?

Chapter 1 Problems 25

Figure P1–8

0

1

n0 5

2

1 3 4

. . .
6

x(n)

7

Figure P1–9

x(n) y(n)

m(n) = sin(0.8 n)fs = 2500 Hz

1.10 There is a process in DSP called an “N-point running sum” (a kind of digital
lowpass filter, actually) that is described by the following equation:

Write out, giving the indices of all the x() terms, the algebraic expression that
describes the computations needed to compute y(9) when N=6.

1.11 A 5-point moving averager can be described by the following difference equa-
tion:

(P1–1)

The averager’s signal-flow block diagram is shown in Figure P1–11, where
the x(n) input samples flow through the averager from left to right.

y n x n x n x n x n x n x k
k n

n
() [() () () () ()] ().= =

1
5

1 2 3 4
1
5 4

+ − + − + − + −
= −
∑

y n x n p
p

N

() ().= −
=

−

∑
0

1

Equation (P1–1) is equivalent to

(P1–2)

(a) Draw the block diagram of the discrete system described by Eq. (P1–2).
(b) The moving average processes described by Eqs. (P1–1) and (P1–2) have

identical impulse responses. Draw that impulse response.
(c) If you had to implement (using programmable hardware or assembling

discrete hardware components) either Eq. (P1–1) or Eq. (P1–2), which
would you choose? Explain why.

1.12 In this book we will look at many two-dimensional drawings showing the value
of one variable (y) plotted as a function of another variable (x). Stated in different
words, we’ll graphically display what are the values of a y axis variable for vari-
ous values of an x axis variable. For example, Figure P1–12(a) plots the weight of
a male child as a function of the child’s age. The dimension of the x axis is years

y n
x n x n x n x n x n

()
() () () () ()

=
5

1
5

2
5

3
5

5

4
5

+ − + − + − + −

x k

k n

n ()
.=

4= −
∑

26 Discrete Sequences and Systems

Figure P1–12

x axis

y
ax

is

20
30
40
50
60
70

4 6 8 10 12 14 16 182
Age (years)

W
ei

gh
t (

K
g)

(a)

(b)

Figure P1–11

x(n)

y(n)

1/5

DelayDelayDelayDelay
x(n-1) x(n-2) x(n-3) x(n-4)

Using the trigonometric identity cos(α+β) + cos(α–β) = 2cos(α)cos(β), derive
an equation for x(n) that is of the form

x(n) = 2cos(α)cos(β)

where variables α and β are in terms of 2πfonts and φ.

1.14 In your engineering education you’ll often read in some mathematical deriva-
tion, or hear someone say, “For small α, sin(α) = α.” (In fact, you’ll encounter
that statement a few times in this book.) Draw two curves defined by

x = α, and y = sin(α)

over the range of α = –π/2 to α = π/2, and discuss why that venerable “For
small α, sin(α) = α” statement is valid.

1.15 Considering two continuous (analog) sinusoids, having initial phase angles of
α radians at time t = 0, replace the following “?” characters with the correct
angle arguments:

(a) sin(2πfot + α) = cos(?).
(b) cos(2πfot + α) = sin(?).

Chapter 1 Problems 27

and the dimension of the y axis is kilograms. What are the dimensions of the x
and y axes of the familiar two-dimensional plot given in Figure P1–12(b)?

1.13 Let’s say you are writing software code to generate an x(n) test sequence com-
posed of the sum of two equal-amplitude discrete cosine waves, as

x(n) = cos(2πfonts + φ) + cos(2πfonts)

where ts is the time between your x(n) samples, and φ is a constant phase shift
measured in radians. An example x(n) when φ = π/2 is shown in Figure P1–13
where the x(n) sequence, represented by the circular dots, is a single sinusoid
whose frequency is fo Hz.

Figure P1–13

0

1

0 10 20 30n

x(n) sequence

sequence
cos(2 fonts)

sequence
cos(2 fonts + /2)

1.16 National Instruments Corp. manufactures an A/D converter, Model #NI USB-
5133, that is capable of sampling an analog signal at an fs sample rate of 100
megasamples per second (100 MHz). The A/D converter has internal mem-
ory that can store up to 4x106 discrete samples. What is the maximum number
of cycles of a 25 MHz analog sinewave that can be stored in the A/D con-
verter’s memory? Show your work.

1.17 In the first part of the text’s Section 1.5 we stated that for a process (or system)
to be linear it must satisfy a scaling property that we called the proportionality
characteristic in the text’s Eq. (1–14). Determine if the following processes
have that proportionality characteristic:

(a) ya(n) = x(n–1)/6,
(b) yb(n) = 3 + x(n),
(c) yc(n) = sin[x(n)].

This problem is not “busy work.” Knowing if a process (or system) is linear
tells us what signal processing principles, and algorithms, can be applied in
the analysis of that process (or system).

1.18 There is an often-used process in DSP called decimation, and in that process
we retain some samples of an x(n) input sequence and discard other x(n) sam-
ples. Decimation by a factor of two can be described algebraically by

y(m) = x(2n) (P1–3)

where index m=0,1,2,3,. . . The decimation defined by Eq. (P1–3) means that
y(m) is equal to alternate samples (every other sample) of x(n). For example:

y(0) = x(0), y(1) = x(2), y(2) = x(4), y(3) = x(6), . . .

and so on. Here is the question: Is that decimation process time invariant? Il-
lustrate your answer by decimating a simple sinusoidal x(n) time-domain se-
quence by a factor of two to obtain y(m). Next, create a shifted-by-one-sample
version of x(n) and call it xshift(n). That new sequence is defined by

xshift(n) = x(n+1). (P1–4)

Finally, decimate xshift(n) according to Eq. (P1–3) to obtain yshift(m). The deci-
mation process is time invariant if yshift(m) is equal to a time-shifted version of
y(m). That is, decimation is time invariant if

yshift(m) = y(m+1).

1.19 In Section 1.7 of the text we discussed the commutative property of linear
time-invariant systems. The two networks in Figure P1–19 exhibit that prop-

28 Discrete Sequences and Systems

1.20 Here we investigate several simple discrete processes that turn out to be useful
in a number of DSP applications. Draw the block diagrams, showing their in-
puts as x(n), of the processes described by the following difference equations:

(a) a 4th-order comb filter: yC(n) = x(n) – x(n–4),
(b) an integrator: yI(n) = x(n) + yI(n–1),
(c) a leaky integrator: yLI(n) = Ax(n) + (1–A)yLI(n–1) [the scalar value A is a

real-valued constant in the range 0 <A<1],
(d) a differentiator: yD(n) = 0.5x(n) – 0.5x(n-2).

1.21 Draw the unit impulse responses (the output sequences when the input is a
unit sample impulse applied at time n=0) of the four processes listed in Prob-
lem 1.20. Let A = 0.5 for the leaky integrator. Assume that all sample values
within the systems are zero at time n = 0.

1.22 DSP engineers involved in building control systems often need to know what
is the step response of a discrete system. The step response, ystep(n), can be de-
fined in two equivalent ways. One way is to say that ystep(n) is a system’s re-
sponse to an input sequence of all unity-valued samples. A second definition
is that ystep(n) is the cumulative sum (the accumulation, discrete integration)
of that system’s unit impulse response yimp(n). Algebraically, this second defi-
nition of step response is expressed as

In words, the above ystep(n) expression tells us: “The step response at time
index n is equal to the sum of all the previous impulse response samples up
to and including yimp(n).” With that said, what are the step responses of the

y n y k
k

n

step imp= () ().
=−∞
∑

Chapter 1 Problems 29

Figure P1–19

y2(n)x(n)

(a)

Delay
A

B

y1(n) x(n)

(b)

Delay
A

B

erty. Prove this to be true by showing that, given the same x(n) input se-
quence, outputs y1(n) and y2(n) will be equal.

four processes listed in Problem 1.20? (Let A = 0.5 for the leaky integrator.)
Assume that all sample values within the system are zero at time n=0.

1.23 Thinking about the spectra of signals, the ideal continuous (analog) square-
wave s(t) in Figure P1–23, whose fundamental frequency is fo Hz, is equal to
the sum of an fo Hz sinewave and all sinewaves whose frequencies are odd
multiples of fo Hz. We call s(t) “ideal” because we assume the amplitude tran-
sitions from plus and minus A occur instantaneously (zero seconds!). Contin-
uous Fourier analysis of the s(t) squarewave allows us to describe this sum of
frequencies as the following infinite sum:

s t
A

f t
f t f t f t

() sin()
sin() sin() sin()

.= + ...o
o o o4

2
6
3

10
5

14
7π

π π π π
+ + +⎡

⎣⎢
⎤
⎦⎥

30 Discrete Sequences and Systems

Figure P1–23

t (Time)

.

t = 0 t = 1/fo

A

A

s(t)

Using a summation symbol, we can express squarewave s(t) algebraically as

for n = odd integers only, showing s(t) to be an infinite sum of sinusoids.

(a) Imagine applying s(t) to a filter that completely removes s(t)’s lowest-
frequency spectral component. Draw the time-domain waveform at the
output of such a filter.

(b) Assume s(t) represents a voltage whose fo fundamental frequency is 1 Hz,
and we wish to amplify that voltage to peak amplitudes of ±2A. Over
what frequency range must an amplifier operate (that is, what must be
the amplifier’s passband width) in order to exactly double the ideal 1 Hz
squarewave’s peak-peak amplitude?

1.24 This interesting problem illustrates an illegal mathematical operation that we
must learn to avoid in our future algebraic activities. The following claims to

s t
A

nf t n
n

() sin()/ ,= o
4

2
1π

π
=

∞

∑

be a mathematical proof that 4 = 5. Which of the following steps is illegal? Ex-
plain why.

Proof that 4 = 5:

Step 1: 16 – 36 = 25 – 45
Step 2: 42 – 9 · 4 = 52 – 9 · 5
Step 3: 42 – 9 · 4 + 81/4 = 52 – 9 · 5 + 81/4
Step 4: (4 – 9/2)2 = (5 – 9/2)2

Step 5: 4 – 9/2 = 5 – 9/2
Step 6: 4 = 5

Chapter 1 Problems 31

This page intentionally left blank

Index

AGC (automatic gain control), 783–784
Aliasing

definition, 36
frequency-domain ambiguity, 33–38
in IIR filters, 304–305

All-ones rectangular functions
DFT for, 115–118
Dirichlet kernel, 115–118, 120

Allpass filters, definition, 893
AM demodulation

filtering narrowband noise, 792–797
Hilbert transforms, 484–485

Amplitude
definition, 8
loss. See Attenuation.

Amplitude response, DFT
complex input, 73
real cosine input, 83–84

Analog, definition, 2
Analog filters

approximating, 302
vs. digital, 169

Analog signal processing, 2
Analog-to-digital (A/D) converters.

See A/D converters.
Analytic signals

bandpass quadrature, 455
definition, 483
generation methods, comparing,

497–498
half-band FIR filters, 497
time-domain, generating, 495–497

A

Absolute value, 9. See also Magnitude.
A/D converters, quantization noise

clipping, 706
crest factor, 640
dithering, 706–709
effective bits, 641
fixed-point binary word length, effects

of, 634–642
oversampling, 704–706
reducing, 704–709
SNR (signal-to-noise ratio), 637–642,

711–714
triangular dither, 708

A/D converters, testing techniques
A/D dynamic range, estimating,

714–715
histogram testing, 711
missing codes, detecting, 715–716
quantization noise, estimating with the

FFT, 709–714
SFDR (spurious free dynamic range),

714–715
SINAD (signal-to-noise-and-distortion),

711–714
SNR (signal-to-noise ratio), 711–714

Adaptive filters, 184
Addition

block diagram symbol, 10
complex numbers, 850

Additive white noise (AWN), 380

931

Anti-aliasing filters, 42, 555–558
Anti-imaging filters, 555–558
Arctangent

approximation, 756–758
vector rotation. See Vector rotation with

arctangents.
Argand, Jean Robert, 848
Argand diagrams of complex numbers,

848
Argand plane, 440–441
Attenuation

CIC filters, improving, 557–558
definition, 894

Automatic gain control (AGC), 783–784
Average, statistical measures of noise,

868–870
Average power in electrical circuits,

calculating, 874–875
Averaging signals. See Signal averaging.
AWN (additive white noise), 380

B
Band reject filters, 894
Band-limited signals, 38
Bandpass design, for FIR filters, 201–203
Bandpass filters

comb filters, 400
definition, 895
from half-band FIR filters, 497
multisection complex FSFs, 398–403

Bandpass sampling
1st-order sampling, 46
definition, 43
optimum sampling frequency, 46
positioning sampled spectra, 48
real signals, 46
sampling translation, 44
SNR (signal-to-noise) ratio, 48–49
spectral inversion, 46–47
spectral replication, 44–45

Bandpass signals
in the frequency-domain, 454–455
interpolating, 728–730

Bandwidth, definition, 895
Bartlett windows. See Triangular

windows.
Base 8 (octal) numbers, 624–625
Base 16 (hexadecimal) numbers, 625

932 Index

Bell, Alexander Graham, 885
Bels, definition, 885
Bessel functions

definition, 895
Bessel-derived filters, ripples, 901
Bessel’s correction, 870–871
Bias

DC, sources and removal, 761
in estimates, 870–871
fixed-point binary formats, 628
in signal variance, computing, 797–799

Bilateral Laplace transforms, 258
Bilinear transform method, designing IIR

filters
analytical methods, 302
definition, 257
example, 326–330
frequency warping, 319, 321–325,

328–330
mapping complex variables, 320–324
process description, 324–326

Bin centers, calculating absolute
frequency, 139–140

Binary points, 629
Binary shift multiplication/division,

polynomial evaluation, 773–774
Biquad filters, 299
Bit normalization, 653
Bit reversals

avoiding, 158
fast Fourier transform input/output

data index, 149–151
Bits, definition, 623
Blackman windows

in FIR filter design, 195–201
spectral leakage reduction, 686

Blackman windows (exact), 686, 733
Blackman-Harris windows, 686, 733
Block averaging, SNR (signal-to-noise

ratio), 770
Block convolution. See Fast convolution.
Block diagrams

filter structure, 172–174
quadrature sampling, 459–462
symbols, 10–11
uses for, 10

Block floating point, 656–657
Boxcar windows. See Rectangular

windows.

Butterfly patterns in FFTs
description, 145–149
optimized, 156
radix-2 structures, 151–154
single butterfly structures, 154–158
wingless, 156

Butterworth function
definition, 895
derived filters, ripples, 901

C
Cardano, Girolamo, 439
Carrier frequency, 44
Cartesian form, quadrature signals, 442
Cascaded filters, 295–299, 895
Cascaded integrators, 563
Cascaded-comb subfilters, 412–413
Cascade/parallel filter combinations,

295–297
Cauer filters, 896
Causal systems, 258
Center frequency, definition, 895
Central Limit Theory, 723
Central-difference differentiators, 363–366
CFT (continuous Fourier transform), 59,

98–102
Chebyshev function, definition, 895
Chebyshev windows, 197–201, 927–930
Chebyshev-derived filters, ripples, 900
CIC (cascaded integrator-comb) filters

cascaded integrators, 563
comb section, 553
compensation FIR filters, 563–566
definition, 895
implementation issues, 558–563
nonrecursive, 765–768
recursive running sum filters, 551–552
structures, 553–557
substructure sharing, 765–770
transposed structures, 765–770
two’s complement overflow, 559–563

Circular buffers, IFIR filters, 388–389
Clipping A/D converter quantization

noise, 706
Coefficients. See Filter coefficients.
Coherent sampling, 711
Coherent signal averaging. See Signal

averaging, coherent.

Index 933

Comb filters. See also Differentiators.
alternate FSF structures, 416–418
bandpass FIR filtering, 400
cascaded-comb subfilters, 412–413
with complex resonators, 392–398
frequency response, 903–904
second-order comb filters, 412–413

Comb section. CIC filters, 553
Commutative property, LTI, 18–19
Commutator model, polyphase filters, 524
Compensation FIR filters, CIC filters,

563–566
Complex conjugate, DFT symmetry, 73
Complex down-conversion

decimation, in frequency translation,
782

quadrature signals, 455, 456–462
Complex exponentials, quadrature

signals, 447
Complex frequency, Laplace variable, 258
Complex frequency response, filters, 277
Complex mixing, quadrature signals, 455
Complex multipliers, down-converting

quadrature signals, 458
Complex number notation, quadrature

signals, 440–446
Complex numbers. See also Quadrature

signals.
Argand diagrams, 848
arithmetic of, 848–858
definition, 439
as a function of time, 446–450
graphical representation of, 847–848
rectangular form, definition, 848–850
rectangular form, vs. polar, 856–857
roots of, 853–854
trigonometric form, 848–850

Complex phasors, quadrature signals,
446–450

Complex plane, quadrature signals,
440–441, 446

Complex resonators
with comb filters, 392–398
FSF (frequency sampling filters),

394–398
Complex signals. See Quadrature signals.
Conditional stability, Laplace transform,

268
Conjugation, complex numbers, 851–852

Constant-coefficient transversal FIR
filters, 184

Continuous Fourier transform (CFT), 59,
98–102

Continuous lowpass filters, 41
Continuous signal processing

definition, 2
frequency in, 5–6

Continuous signals, definition, 2
Continuous systems, time representation,

5
Continuous time-domain, Laplace

transform, 258–259
Converting analog to digital. See A/D

converters.
Convolution. See also FIR (finite impulse

response) filters, convolution.
fast, 716–722
LTI, 19
overlap-and-add, 720–722
overlap-and-save, 718–720

Cooley, J., 135
CORDIC (COordinate Rotation DIgital

Computer), 756–758
Coupled quadrature oscillator, 787
Coupled-form IIR filter, 834–836
Crest factor, 640
Critical Nyquist, 37
Cutoff frequencies

definition, 896
designing FIR filters, 186

D
Data formats

base systems, 624
definition, 623
place value system, 624

Data formats, binary numbers. See also
Fixed-point binary formats;
Floating-point binary formats.

1.15 fixed-point, 630–632
block floating point, 656–657
converting to hexadecimal, 625
converting to octal, 624–625
definition, 623
dynamic range, 632–634

934 Index

precision, 632–634
representing negative values, 625–626

Data overflow. See Overflow.
dB (decibels), definition, 886, 896
dBm (decibels), definition, 892
DC

bias, sources of, 761
block-data DC removal, 762
defined, 62
from a time-domain signal, 812–815

DC removal, real-time
using filters, 761–763
noise shaping property, 765
with quantization, 763–765

Deadband effects, 293
DEC (Digital Equipment Corp.), floating-

point binary formats, 654–655
Decibels

bels, definition, 885
common constants, 889–891
dB, definition, 886, 896
dBm, definition, 892

Decimation. See also Interpolation.
combining with interpolation, 521–522
definition, 508
to implement down-conversion, 676–679
multirate filters, 521–522
sample rate converters, 521–522
drawing downsampled spectra,

515–516
frequency properties, 514–515
magnitude loss in the frequency-

domain, 515
overview, 508–510
time invariance, 514
time properties, 514–515
example, 512–513
overview, 510–511
polyphase decomposition, 514

Decimation filters
choosing, 510
definition, 896

Decimation-in-frequency algorithms, FFTs
radix-2 butterfly structures, 151–154,

734–735
Decimation-in-time algorithms, FFTs

index bit reversal, 149–151
radix-2 butterfly structures, 151–154

single butterfly structures, 154–158,
735–737

Demodulation
AM, 484–485
FM, 486
quadrature signals, 453–455, 456–462

Descartes, René, 439
Detection

envelope, 784–786
peak threshold, with matched filters,

377, 379–380
quadrature signals, 453–454
signal transition, 820–821
single tone. See Single tone detection.

DFT (discrete Fourier transform). See also
DTFT (discrete-time Fourier trans-
form); SDFT (sliding DFT).

analyzing FIR filters, 228–230
computing large DFTs from small FFTs,

826–829
definition, 60
examples, 63–73, 78–80
versus FFT, 136–137
frequency axis, 77
frequency granularity, improving. See

Zero padding.
frequency spacing, 77
frequency-domain sampling, 98–102
inverse, 80–81
linearity, 75
magnitudes, 75–76
picket fence effect, 97
rectangular functions, 105–112
resolution, 77, 98–102
scalloping loss, 96–97
shifting theorem, 77–78
spectral estimation, improving. See Zero

padding.
time reversal, 863–865
zero padding, 97–102

DFT leakage. See also Spectral leakage,
FFTs.

cause, 82–84
definition, 81
description, 81–82
predicting, 82–84
sinc functions, 83, 89
wraparound, 86–88

Index 935

DFT leakage, minimizing
Chebyshev windows, 96
Hamming windows, 89–93
Hanning windows, 89–97
Kaiser windows, 96
rectangular windows, 89–97
triangular windows, 89–93
windowing, 89–97

DFT processing gain
average output noise-power level,

103–104
inherent gain, 102–105
integration gain, 105
multiple DFTs, 105
output signal-power level, 103–104
single DFT, 102–105
SNR (signal-to-noise ratio), 103–104

DIF (decimation-in-frequency), 734–735
Difference equations

example, 5
IIR filters, 255–256

Differentiators
central-difference, 363–366
differentiating filters, 364
first-difference, 363–366
narrowband, 366–367
optimized wideband, 369–370
overview, 361–363
performance improvement, 810–812
wideband, 367–369

Digital differencer. See Differentiators.
Digital Equipment Corp. (DEC), floating-

point binary formats, 654–655
Digital filters. See also specific filters.

vs. analog, 169
definition, 896

Digital signal processing, 2
Direct Form I filters, 275–278, 289
Direct Form II filters, 289–292
Direct Form implementations, IIR filters,

292–293
Dirichlet, Peter, 108
Dirichlet kernel

all-ones rectangular functions, 115–118,
120

general rectangular functions, 108–112
symmetrical rectangular functions,

113–114

Discrete convolution in FIR filters.
See also FIR (finite impulse response)
filters, convolution.

description, 214–215
in the time domain, 215–219

Discrete Fourier transform (DFT).
See DFT (discrete Fourier transform).

Discrete Hilbert transforms. See Hilbert
transforms.

Discrete linear systems, 12–16
Discrete systems

definition, 4
example, 4–5
time representation, 5

Discrete-time expression, 4
Discrete-time Fourier transform (DTFT),

101, 120–123
Discrete-time signals

example of, 2
frequency in, 5–6
sampling, frequency-domain

ambiguity, 33–38
use of term, 2

Discrete-time waveforms, describing, 8
Dispersion, statistical measures of noise,

869
DIT (decimation-in-time), 735–737
Dithering

A/D converter quantization noise,
706–709

with filters, 294
triangular, 708

Dolph-Chebyshev windows in FIR filter
design, 197

Down-conversion
Delay/Hilbert transform filter, 817–818,

819–820
filtering and decimation, 676–679
folded FIR filters, 818
frequency translation, without

multiplication, 676–679
half-band filters, 817–818
single-decimation technique, 819–820

Down-conversion, quadrature signals
complex, 455, 456–462
complex multipliers, 458
sampling with digital mixing,

462–464

936 Index

Downsampling, decimation
drawing downsampled spectra,

515–516
frequency properties, 514–515
magnitude loss in the frequency-

domain, 515
overview, 508–510
time invariance, 514
time properties, 514–515

DTFT (discrete-time Fourier transform),
101, 120–123. See also DFT (discrete
Fourier transform).

Dynamic range
binary numbers, 632–634
floating-point binary formats,

656–658
SFDR (spurious free dynamic range),

714–715

E
Elliptic functions, definition, 896
Elliptic-derived filters, ripples, 900
Envelope delay. See Group delay.
Envelope detection

approximate, 784–786
Hilbert transforms, 483–495

Equiripple filters, 418, 901
Estrin’s Method, polynomial evaluation,

774–775
Euler, Leonhard, 442, 444
Euler’s equation

bilinear transform design of IIR filters,
322

DFT equations, 60, 108
impulse invariance design of IIR filters,

315
quadrature signals, 442–443, 449, 453

Exact Blackman windows, 686
Exact interpolation, 778–781
Exponent, floating-point binary format,

652
Exponential averagers, 608–612
Exponential moving averages, 801–802
Exponential signal averaging. See Signal

averaging, exponential.
Exponential variance computation,

801–802

F

Fast convolution, 716–722
FFT (fast Fourier transform)

averaging multiple, 139
constant-geometry algorithms, 158
convolution. See Fast convolution.
decimation-in-frequency algorithms,

151–154
decimation-in-time algorithms, 149–158
versus DFT, 136–137
exact interpolation, 778–781
fast FIR filtering, 716–722
hints for using, 137–141
history of, 135
interpolated analytic signals,

computing, 781
interpolated real signals, interpolating,

779–780
interpreting results, 139–141
inverse, computing, 699–702, 831–833
in place algorithm, 157
radix-2 algorithm, 141–149
radix-2 butterfly structures, 151–158
signal averaging, 600–603
single tone detection, 737–738, 740–741
vs. single tone detection, 740–741
software programs, 141
time-domain interpolation, 778–781
Zoom FFT, 749–753

FFT (fast Fourier transform), real
sequences

a 2N-point real FFT, 695–699
two N-point real FFTs, 687–694

FFT (fast Fourier transform), twiddle
factors

derivation of the radix-2 FFT algorithm,
143–149

DIF (decimation-in-frequency), 734–735
DIT (decimation-in-time), 735–737

Fibonacci, 450–451
Filter coefficients

definition, 897
for FIRs. See Impulse response.
flipping, 493–494
for FSF (frequency sampling filters),

913–926
quantization, 293–295

Index 937

Filter order, 897
Filter taps, estimating, 234–235, 386–387
Filters. See also FIR (finite impulse re-

sponse) filters; IIR (infinite impulse
response) filters; Matched filters;
specific filters.

adaptive filters, 184
allpass, 893
analog vs. digital, 169
band reject, 894
bandpass, 895
cascaded, 895
Cauer, 896
CIC, 895
DC-removal, 762–763
decimation, 896
differentiating, 364. See also

Differentiators.
digital, 896
down-conversion, 676–679
equiripple, 418
highpass, 898
linear phase, 899
lowpass, 899
narrowband noise, 792–797
nonrecursive, 226–230, 290–291, 899
optimal FIR, 418
overview, 169–170
parallel, 295–297
passband, 900
process description, 169–170
prototype, 303
quadrature, 900
real-time DC removal, 762–763
recursive, 290–291, 900
recursive running sum, 551–552
Remez Exchange, 418
sharpening, 726–728
structure, diagramming, 172–174
time-domain slope detection, 820–821
transposed structure, 291–292
transversal, 173–174. See also FIR

(finite impulse response) filters.
zero-phase, 725, 902

Filters, analytic signals
half-band FIR filters, 497
I-channel filters, 496
in-phase filters, 496

Filters, analytic signals (con’t)
Q-channel filters, 496
quadrature phase filters, 496
time-domain FIR filter implementation,

489–494
Finite-word-length errors, 293–295
FIR (finite impulse response) filters. See

also FSF (frequency sampling filters);
IFIR (interpolated FIR) filters; IIR
(infinite impulse response) filters.

coefficients. See Impulse response.
constant coefficients, 184
definition, 897
fast FIR filtering using the FFT, 716–722
folded structure. See Folded FIR filters.
frequency magnitude response, deter-

mining, 179
frequency-domain response,

determining, 179
group delay, 211–212
half-band. See Half-band FIR filters.
vs. IIR filters, 332–333
impulse response, 177–179
narrowband lowpass. See IFIR

(interpolated FIR) filters.
nonrecursive, analyzing, 226–230
phase response in, 209–214
phase unwrapping, 210
phase wrapping, 209, 900
polyphase filters, 522–527
sharpening, 726–728
signal averaging. See Signal averaging,

with FIR filters.
signal averaging with, 178, 180–184
stopband attenuation, improving,

726–728
tapped delay, 181–182
transient response, 181–182
z-transform of, 288–289

FIR (finite impulse response) filters,
analyzing

with DFTs, 228–230
estimating number of, 234–235
fractional delay, 233
group delay, 230–233
passband gain, 233–234
stopband attenuation, 234–235
symmetrical-coefficient FIR filters,

232–233

938 Index

FIR (finite impulse response) filters,
convolution

description, 175–186
discrete, description, 214–215
discrete, in the time domain, 215–219
fast convolution, 716–722
impulse response, 177–178
inputs, time order reversal, 176
signal averaging, 175–176
theorem, applying, 222–226
theorem, description, 219–222
time-domain aliasing, avoiding,

718–722
time-domain convolution vs. fre-

quency-domain multiplication,
191–194

FIR (finite impulse response) filters,
designing

bandpass method, 201–203
cutoff frequencies, 186
with forward FFT software routines,

189
Fourier series design method. See

Window design method, FIR filters.
Gibbs’s phenomenon, 193
highpass method, 203–204
low-pass design, 186–201
magnitude fluctuations, 190–194
Optimal design method, 204–207
Parks-McClellan Exchange method,

204–207
passband ripples, minimizing, 190–194,

204–207. See also Windows.
Remez method, 204–207
stopband ripples, minimizing, 204–207
time-domain coefficients, determining,

186–194
time-domain convolution vs. fre-

quency-domain multiplication,
191–194

very high performance filters, 775–778
window design method, 186–194
windows used in, 194–201

1st-order IIR filters, signal averaging,
612–614

1st-order sampling, 46
First-difference differentiators, 363–366
Fixed-point binary formats. See also

Floating-point binary formats.

1.15 format, 630–632
bias, 628
binary points, 629
decimal numbers, converting to 1.5

binary, 632
fractional binary numbers, 629–632
hexadecimal (base 16) numbers, 625
integer plus fraction, 629
lsb (least significant bit), 624
msb (most significant bit), 624
octal (base 8) numbers, 624–625
offset, 627–628
overflow, 629
Q30 format, 629
radix points, 629
representing negative values, 625–626
sign extend operations, 627
sign-magnitude, 625–626
two’s complement, 626–627, 629

Fixed-point binary formats, finite word
lengths

A/D converter best estimate values, 635
A/D converter quantization noise,

634–642
A/D converter vs. SNR, 640–642
convergent rounding, 651
crest factor, 640
data overflow, 642–646
data rounding, 649–652
effective bits, 641
round off noise, 636–637
round to even method, 651
round-to-nearest method, 650–651
truncation, 646–649

Floating-point binary formats. See also
Fixed-point binary formats.

bit normalization, 653
common formats, 654–655
DEC (Digital Equipment Corp.), 654–655
description, 652
dynamic range, 656–658
evaluating, 652
exponent, 652
fractions, 653
gradual underflow, 656
hidden bits, 653
IBM, 654–655
IEEE Standard P754, 654–655
mantissa, 652

Index 939

MIL-STD 1750A, 654–655
min/max values, determining,

656–657
unnormalized fractions, 656
word lengths, 655

FM demodulation
algorithms for, 758–761
filtering narrowband noise, 792–797
Hilbert transforms, 486

Folded FIR filters
designing Hilbert transforms, 493
down-conversion, 818
frequency translation, without

multiplication, 678
half-band filters, sample rate

conversion, 548
Hilbert transforms, designing, 493
multipliers, reducing, 702–704
nonrecursive, 419–420
tapped-delay line, 389

Folding frequencies, 40
Forward FFT

computing, 831–833
software routines for designing FIR

filters, 189
Fourier series design FIR filters. See

Window design method, FIR filters.
Fourier transform pairs, FIR filters,

178–179
Fractional binary numbers, 629–632
Fractional delay, FIR filters, 233
Frequency

continuous vs. discrete systems, 5
of discrete signals, determining. See

DFT (discrete Fourier transform).
discrete-time signals, 5–6
properties, interpolation, 519
resolution, improving with FIR filters,

228–230
units of measure, 2–3

Frequency attenuation, FIR filters, 182
Frequency axis

definition, 77
DFT, 77
in Hz, 118
normalized angle variable, 118
in radians/seconds, 118–119
rectangular functions, 118–120
with zero padding, 100

Frequency domain
definition, 6
Hamming windows, 683–686
Hanning windows, 683–686
listing sequences, 7
performance. IIR filters, 282–289
quadrature signals, 451–454
spectral leak reduction, 683–686
windowing in, 683–686
windows, 683–686

Frequency magnitude response
definition, 897
determining with FIR filters, 179

Frequency response
LTI, determining, 19
for Mth-order IIR filter, 275–276

Frequency response, FIR filters
determining, 179–186
factors affecting, 174
modifying, 184–186

Frequency sampling design method vs.
FSF, 393–394

Frequency sampling filters. See FSF
(frequency sampling filters).

Frequency translation, bandpass
sampling, 44

Frequency translation, with decimation
complex down-conversion, 782
complex signals, 781–783
real signals, 781

Frequency translation, without
multiplication

by 1/2 the sampling rate, 671–673
by 1/4 the sampling rate, 674–676
down-conversion, 676–679
inverting the output spectrum, 678–679

Frequency translation to baseband,
quadrature signals, 455

Frequency warping, 319, 321–325, 328–330
FSF (frequency sampling filters). See also

FIR (finite impulse response) filters.
complex resonators, 394–398
designing, 423–426
frequency response, single complex

FSF, 904–905
history of, 392–394
linear-phase multisection real-valued,

409–410

940 Index

modeling, 413–414
multisection complex, 398–403
multisection real-valued, 406–409
vs. Parks-McClellan filters, 392
real FSF transfer function, 908–909
stability, 403–406
stopband attenuation, increasing,

414–416
stopband sidelobe level suppression,

416
transition band coefficients, 414–416
Type IV example, 419–420, 423–426

G
Gain. See also DFT processing gain.

AGC (automatic gain control), 783–784
IIR filters, scaling, 300–302
integration, signal averaging, 600–603
passband, 233–234
windows, 92

Gauss, Karl, 439, 444
Gaussian PDFs, 882–883
General numbers, 446. See also Complex

numbers.
Geometric series, closed form, 107, 859–861
Gibbs’s phenomenon, 193
Goertzel algorithm, single tone detection

advantages of, 739
description, 738–740
example, 740
vs. the FFT, 740–741
stability, 838–840

Gold-Rader filter, 834–836
Gradual underflow, floating-point binary

formats, 656
Gregory, James, 23
Group delay

definition, 897–898
differentiators, 365
filters, computing, 830–831
FIR filters, 211–212, 230–233

H
Half Nyquist, 37
Half-band FIR filters

analytic signals, 497

as complex bandpass filters, 497
definition, 898
description, 207–209
down-conversion, 817–818
frequency translation, 802–804

Half-band FIR filters, sample rate
conversion

fundamentals, 544–546
implementation, 546–548
overview, 543

Hamming, Richard, 366
Hamming windows

in the frequency domain, 683–686
spectral peak location, 733

Hann windows. See Hanning windows.
Hanning windows

description, 89–97
DFT leakage, minimizing, 89–97
in the frequency domain, 683–686
spectral peak location, 733

Harmonic sampling. See Bandpass
sampling.

Harmonics of discrete signals,
determining. See DFT (discrete
Fourier transform).

Harris, Fred, 791
Heaviside, Oliver, 257
Hertz, 3
Hertz, Heinrich, 3
Hexadecimal (base 16) numbers, 625
Hidden bits, floating-point binary

formats, 653
Highpass filters, definition, 898
Highpass method, designing FIR filters,

203–204
Hilbert, David, 479
Hilbert transformers, designing

common mistake, 493–494
even-tap transformers, 493
frequency-domain transformers, 494–495
half-band filter coefficient modification,

804–805
half-band filter frequency translation,

802–804
odd-tap transformers, 493
time-domain FIR filter implementation,

489–494
time-domain transformers, 489–494

Index 941

Hilbert transforms
AM demodulation, 484–485
definition, 480
envelope detection, 483–495
example, 481–482
FM demodulation, 486
impulse response, 487–489
one-sided spectrum, 483
signal envelope, 483–495

Hilbert transforms, analytic signals
definition, 483
generation methods, comparing,

497–498
half-band FIR filters, 497
time-domain, generating, 495–497

Histogram testing, A/D converter
techniques, 711

Homogeneity property, 12
Horner, William, 773
Horner’s Rule, 772–774
Human ear, sensitivity to decibels, 886

I
IBM, floating-point binary formats,

654–655
I-channel filters, analytic signals, 496
IDFT (inverse discrete Fourier transform),

80–81
IEEE Standard P754, floating-point binary

formats, 654–655
IF sampling. See Bandpass sampling.
IFIR (interpolated FIR) filters. See also FIR

(finite impulse response) filters.
computational advantage, 384–385,

391
definition, 381
expansion factor M, 381, 385–386
filter taps, estimating, 386–387
image-reject subfilter, 382–384, 390
implementation issues, 388–389
interpolated, definition, 384
interpolators. See Image-reject subfilter.
lowpass design example, 389–391
optimum expansion factor, 386
performance modeling, 387–388
prototype filters, 382
shaping subfilters, 382, 385

IIR (infinite impulse response) filters. See
also FIR (finite impulse response) fil-
ters; FSF (frequency sampling filters).

allpass, 893
analytical design methods, 302
coupled-form, 834–836
definition, 899
design techniques, 257. See also specific

techniques.
difference equations, 255–256
vs. FIR filters, 253, 332–333
frequency domain performance,

282–289
infinite impulse response, definition,

280
interpolated, example, 837–838
phase equalizers. See Allpass filters.
poles, 284–289
recursive filters, 290–291
scaling the gain, 300–302
SNR (signal-to-noise ratio), 302
stability, 263–270
z-domain transfer function, 282–289
zeros, 284–289
z-plane pole / zero properties, 288–289
z-transform, 270–282

IIR (infinite impulse response) filters,
pitfalls in building

coefficient quantization, 293–295
deadband effects, 293
Direct Form implementations, 292–293
dither sequences, 294
finite word length errors, 293–295
limit cycles, 293
limited-precision coefficients, 293
overflow, 293–295
overflow oscillations, 293
overview, 292–293
rounding off, 293

IIR (infinite impulse response) filters,
structures

biquad filters, 299
cascade filter properties, 295–297
cascaded, 295–299
cascade/parallel combinations, 295–297
changing, 291–292
Direct Form 1, 275–278, 289
Direct Form II, 289–292
optimizing partitioning, 297–299

942 Index

parallel filter properties, 295–297
transposed, 291–292
transposed Direct Form II, 289–290
transposition theorem, 291–292

Imaginary numbers, 439, 446
Imaginary part, quadrature signals, 440,

454–455
Impulse invariance method, designing IIR

filters
aliasing, 304–305
analytical methods, 302
definition, 257
Method 1, description, 305–307
Method 1, example, 310–313
Method 2, description, 307–310
Method 2, example, 313–319
preferred method, 317
process description, 303–310
prototype filters, 303

Impulse response
convolution in FIR filters, 177–178
definition, 898–899
FIR filters, 177–179
Hilbert transforms, 487–489

Incoherent signal averaging. See Signal
averaging, incoherent.

Infinite impulse response (IIR) filters. See
IIR (infinite impulse response) filters.

Integer plus fraction fixed-point binary
formats, 629

Integration gain, signal averaging,
600–603

Integrators
CIC filters, 553
overview, 370
performance comparison, 373–376
rectangular rule, 371–372
Simpson’s rule, 372, 373–376
Tick’s rule, 373–376
trapezoidal rule, 372

Intermodulation distortion, 16
Interpolated analytic signals, computing,

781
Interpolated FIR (IFIR) filters. See IFIR

(interpolated FIR) filters.
Interpolated real signals, interpolating,

779–780
Interpolation. See also Decimation.

accuracy, 519

bandpass signals, 728–730
combining with decimation, 521–522
definition, 384, 508
drawing upsampled spectra, 520–521
exact, 778–781
frequency properties, 519
history of, 519
linear, 815–816
multirate filters, 521–522
overview, 516–518
sample rate converters, 521–522
time properties, 519
time-domain, 778–781
unwanted spectral images, 519
upsampling, 517–518, 520–521
zero stuffing, 518

Interpolation filters, 518
Inverse DFT, 80–81
Inverse discrete Fourier transform (IDFT),

80–81
Inverse FFT, 699–702, 831–833
Inverse of complex numbers, 853
Inverse sinc filters, 563–566
I/Q demodulation, quadrature signals,

459–462

J
Jacobsen, Eric, 775
j-operator, quadrature signals, 439,

444–450

K
Kaiser, James, 270
Kaiser windows, in FIR filter design,

197–201
Kaiser-Bessel windows, in FIR filter

design, 197
Kelvin, Lord, 60
Kootsookos, Peter, 603, 724
Kotelnikov, V., 42

L
Lanczos differentiators, 366–367
Laplace transfer function

conditional stability, 268
description, 262–263

Index 943

determining system stability, 263–264,
268

impulse invariance design, Method 1,
305–307, 310–313

impulse invariance design, Method 2,
307–310, 313–319

in parallel filters, 295–297
second order, 265–268

Laplace transform. See also Z-transform.
bilateral transform, 258
causal systems, 258
conditional stability, 268
for continuous time-domain, 258–259
description, 257–263
development of, 257
one-sided transform, 258
one-sided/causal, 258
poles on the s-plane, 263–270
stability, 263–270
two-sided transform, 258
zeros on the s-plane, 263–270

Laplace variable, complex frequency, 258
Leakage. See DFT leakage.
Leaky integrator, 614
Least significant bit (lsb), 624
l’Hopital’s Rule, 110
Limit cycles, 293
Linear, definition, 12
Linear differential equations, solving.

See Laplace transform.
Linear interpolation, 815–816
Linear phase filters, 899
Linear systems, example, 13–14
Linear time-invariant (LTI) systems. See

LTI (linear time-invariant) systems.
Linearity, DFT, 75
Linear-phase filters

DC removal, 812–815
definition, 899

Logarithms
and complex numbers, 854–856
measuring signal power, 191

Lowpass design
designing FIR filters, 186–201
IFIR filters, example, 389–391

Lowpass filters, definition, 899
Lowpass signals

definition, 38
sampling, 38–42

lsb (least significant bit), 624
LTI (linear time-invariant) systems

analyzing, 19–21
commutative property, 18–19
convolution, 19
DFT (discrete Fourier transform), 19
discrete linear systems, 12–16
frequency response, determining, 19
homogeneity property, 12
intermodulation distortion, 16
internally generated sinusoids, 16
linear, definition, 12
linear system, example, 13–14
nonlinear system, example, 14–16
output sequence, determining, 19
overview, 12
proportionality characteristic, 12
rearranging sequential order, 18–19
time-invariant systems, 17–18
unit impulse response, 19–20

M
MAC (multiply and accumulate)

architecture
polynomial evaluation, 773
programmable DSP chips, 333

Magnitude
approximation (vector), 679–683
of complex numbers, 848
definition, 8–9
DFT, 75–76

Magnitude and angle form of complex
numbers, 848–850

Magnitude response of DFTs
aliased sinc function, 108
all-ones rectangular functions, 115–118
fluctuations. See Scalloping.
general rectangular functions, 106–112
overview, 105–106
sidelobe magnitudes, 110–111
symmetrical rectangular functions,

112–115
Magnitude response of DFTs, Dirichlet

kernel
all-ones rectangular functions, 115–118,

120
general rectangular functions, 108–112
symmetrical rectangular functions,

113–114

944 Index

Magnitude-angle form, quadrature
signals, 442

Mantissa, floating-point binary formats,
652

Matched filters
definition, 376
example, 378–380
implementation considerations, 380
peak detection threshold, 377, 379–380
properties, 376–378
purpose, 376
SNR (signal-power-to-noise-power

ratio), maximizing, 376
McClellan, James, 206. See also Parks-

McClellan algorithm.
Mean (statistical measure of noise)

definition, 868–869
PDF (probability density function),

879–882
of random functions, 879–882

Mean (statistical average), of random
functions, 879–882

Mehrnia, A., 386
MIL-STD 1750A, floating-point binary

formats, 654–655
Missing

A/D conversion codes, checking,
715–716

sample data, recovering, 823–826.
See also Interpolation.

Mixing. See Frequency translation.
Modeling FSF (frequency sampling

filters), 413–414
Modulation, quadrature signals, 453–454
Modulus of complex numbers, 848
Most significant bit (msb), 624
Moving averages

CIC filters, 551–552
as digital lowpass filters, 20–21, 173,

231
sample rate conversion, CIC filters,

551–552
Moving averages, coherent signal

averaging
exponential moving averages,

computing, 801–802
exponential signal averaging, 801–802
moving averages, computing, 799–801
nonrecursive moving averagers,

606–608

recursive moving averagers, 606–608
time-domain averaging, 604–608

msb (most significant bit), 624
Multiplication

block diagram symbol, 10
CIC filters, simplified, 765–770
complex numbers, 850–851

Multirate filters
decimation, 521–522
interpolation, 521–522

Multirate systems, sample rate conversion
filter mathematical notation, 534–535
signal mathematical notation, 533–534
z-transform analysis, 533–535

Multirate systems, two-stage decimation,
511

N
Narrowband differentiators, 366–367
Narrowband noise filters, 792–797
Natural logarithms of complex numbers,

854
Negative frequency, quadrature signals,

450–451
Negative values in binary numbers,

625–626
Newton, Isaac, 773
Newton’s method, 372
Noble identities, polyphase filters, 536
Noise

definition, 589
measuring. See Statistical measures

of noise.
random, 868

Noise shaping property, 765
Nonlinear systems, example, 14–16
Nonrecursive CIC filters

description, 765–768
prime-factor-R technique, 768–770

Nonrecursive filters. See FIR filters
Nonrecursive moving averagers, 606–608
Normal distribution of random data,

generating, 722–724
Normal PDFs, 882–883
Normalized angle variable, 118–119
Notch filters. See Band reject filters.
Nyquist, H., 42
Nyquist criterion, sampling lowpass

signals, 40

Index 945

O
Octal (base 8) numbers, 624–625
Offset fixed-point binary formats, 627–628
1.15 fixed-point binary format, 630–632
Optimal design method, designing FIR

filters, 204–207
Optimal FIR filters, 418
Optimization method, designing IIR

filters
definition, 257
description, 302
iterative optimization, 330
process description, 330–332

Optimized butterflies, 156
Optimized wideband differentiators,

369–370
Optimum sampling frequency, 46
Order

of filters, 897
polyphase filters, swapping, 536–537

Orthogonality, quadrature signals, 448
Oscillation, quadrature signals, 459–462
Oscillator, quadrature

coupled, 787
overview, 786–789
Taylor series approximation, 788

Overflow
computing the magnitude of complex

numbers, 815
fixed-point binary formats, 629,

642–646
two’s complement, 559–563

Overflow errors, 293–295
Overflow oscillations, 293
Oversampling A/D converter

quantization noise, 704–706

P
Parallel filters, Laplace transfer function,

295–297
Parks-McClellan algorithm

designing FIR filters, 204–207
vs. FSF (frequency sampling filters), 392
optimized wideband differentiators,

369–370
Parzen windows. See Triangular

windows.
Passband, definition, 900

Passband filters, definition, 900
Passband gain, FIR filters, 233–234
Passband ripples

cascaded filters, estimating, 296–297
definition, 296, 900
IFIR filters, 390
minimizing, 190–194, 204–207

PDF (probability density function)
Gaussian, 882–883
mean, calculating, 879–882
mean and variance of random func-

tions, 879–882
normal, 882–883
variance, calculating, 879–882

Peak correlation, matched filters, 379
Peak detection threshold, matched filters,

377, 379–380
Periodic sampling

aliasing, 33–38
frequency-domain ambiguity, 33–38

Periodic sampling
1st-order sampling, 46
anti-aliasing filters, 42
bandpass, 43–49
coherent sampling, 711
definition, 43
folding frequencies, 40
Nyquist criterion, 40
optimum sampling frequency, 46
real signals, 46
sampling translation, 44
SNR (signal-to-noise) ratio, 48–49
spectral inversion, 46–47
undersampling, 40

Phase angles, signal averaging, 603–604
Phase delay. See Phase response.
Phase response

definition, 900
in FIR filters, 209–214

Phase unwrapping, FIR filters, 210
Phase wrapping, FIR filters, 209, 900
Pi, calculating, 23
Picket fence effect, 97
Pisa, Leonardo da, 450–451
Polar form

complex numbers, vs. rectangular,
856–857

quadrature signals, 442, 443–444

946 Index

Poles
IIR filters, 284–289
on the s-plane, Laplace transform,

263–270
Polynomial curve fitting, 372
Polynomial evaluation

binary shift multiplication/division,
773–774

Estrin’s Method, 774–775
Horner’s Rule, 772–774
MAC (multiply and accumulate)

architecture, 773
Polynomial factoring, CIC filters, 765–770
Polynomials, finding the roots of, 372
Polyphase decomposition

CIC filters, 765–770
definition, 526
diagrams, 538–539
two-stage decimation, 514

Polyphase filters
benefits of, 539
commutator model, 524
implementing, 535–540
issues with, 526
noble identities, 536
order, swapping, 536–537
overview, 522–528
polyphase decomposition, 526, 538–539
prototype FIR filters, 522
uses for, 522

Power, signal. See also Decibels.
absolute, 891–892
definition, 9
relative, 885–889

Power spectrum, 63, 140–141
Preconditioning FIR filters, 563–566
Prewarp, 329
Prime decomposition, CIC filters,

768–770
Prime factorization, CIC filters, 768–770
Probability density function (PDF). See

PDF (probability density function).
Processing gain or loss. See DFT

processing gain; Gain; Loss.
Prototype filters

analog, 303
FIR polyphase filters, 522
IFIR filters, 382

Q
Q30 fixed-point binary formats, 629
Q-channel filters, analytic signals, 496
Quadratic factorization formula, 266, 282
Quadrature component, 454–455
Quadrature demodulation, 455, 456–462
Quadrature filters, definition, 900
Quadrature mixing, 455
Quadrature oscillation, 459–462
Quadrature oscillator

coupled, 787
overview, 786–789
Taylor series approximation, 788

Quadrature phase, 440
Quadrature processing, 440
Quadrature sampling block diagram,

459–462
Quadrature signals. See also Complex

numbers.
analytic, 455
Argand plane, 440–441
bandpass signals in the frequency-

domain, 454–455
Cartesian form, 442
complex exponentials, 447
complex mixing, 455
complex number notation, 440–446
complex phasors, 446–450
complex plane, 440–441, 446
decimation, in frequency translation,

781–783
definition, 439
demodulation, 453–454
detection, 453–454
down-conversion. See Down-

conversion, quadrature signals.
Euler’s identity, 442–443, 449, 453
exponential form, 442
in the frequency domain, 451–454
generating from real signals. See Hilbert

transforms.
generation, 453–454
imaginary part, 440, 454–455
in-phase component, 440, 454–455
I/Q demodulation, 459–462
j-operator, 439, 444–450
magnitude-angle form, 442

Index 947

mixing to baseband, 455
modulation, 453–454
negative frequency, 450–451
orthogonality, 448
polar form, 442, 443–444
positive frequency, 451
real axis, 440
real part, 440, 454–455
rectangular form, 442
representing real signals, 446–450
sampling scheme, advantages of,

459–462
simplifying mathematical analysis,

443–444
three-dimensional frequency-domain

representation, 451–454
trigonometric form, 442, 444
uses for, 439–440

Quantization
coefficient/errors, 293–295
noise. See A/D converters, quantization

noise.
real-time DC removal, 763–765

R
Radix points, fixed-point binary formats,

629
Radix-2 algorithm, FFT

butterfly structures, 151–154
computing large DFTs, 826–829
decimation-in-frequency algorithms,

151–154
decimation-in-time algorithms, 151–154
derivation of, 141–149
FFT (fast Fourier transform), 151–158
twiddle factors, 143–149

Raised cosine windows. See Hanning
windows.

Random data
Central Limit Theory, 723
generating a normal distribution of,

722–724
Random functions, mean and variance,

879–882
Random noise, 868. See also SNR

(signal-to-noise ratio).

Real numbers
definition, 440
graphical representation of, 847–848

Real sampling, 46
Real signals

bandpass sampling, 46
decimation, in frequency translation, 781
generating complex signals from. See

Hilbert transforms.
representing with quadrature signals,

446–450
Rectangular form of complex numbers

definition, 848–850
vs. polar form, 856–857

Rectangular form of quadrature signals,
442

Rectangular functions
all ones, 115–118
DFT, 105–112
frequency axis, 118–120
general, 106–112
overview, 105–106
symmetrical, 112–115
time axis, 118–120

Rectangular windows, 89–97, 686
Recursive filters. See IIR filters
Recursive moving averagers, 606–608
Recursive running sum filters, 551–552
Remez Exchange, 204–207, 418
Replications, spectral. See Spectral

replications.
Resolution, DFT, 77, 98–102
Ripples

in Bessel-derived filters, 901
in Butterworth-derived filters, 901
in Chebyshev-derived filters, 900
definition, 900–901
designing FIR filters, 190–194
in Elliptic-derived filters, 900
equiripple, 418, 901
out-of-band, 901
in the passband, 900
in the stopband, 901

rms value of continuous sinewaves,
874–875

Roll-off, definition, 901
Roots of

complex numbers, 853–854
polynomials, 372

948 Index

Rosetta Stone, 450
Rounding fixed-point binary numbers

convergent rounding, 651
data rounding, 649–652
effective bits, 641
round off noise, 636–637
round to even method, 651
round-to-nearest method, 650–651

Roundoff errors, 293

S
Sample rate conversion. See also

Polyphase filters.
decreasing. See Decimation.
definition, 507
with IFIR filters, 548–550
increasing. See Interpolation.
missing data, recovering, 823–826.

See also Interpolation.
by rational factors, 540–543

Sample rate conversion, multirate
systems

filter mathematical notation, 534–535
signal mathematical notation, 533–534
z-transform analysis, 533–535

Sample rate conversion, with half-band
filters

folded FIR filters, 548
fundamentals, 544–546
implementation, 546–548
overview, 543

Sample rate converters, 521–522
Sampling, periodic. See Periodic

sampling.
Sampling translation, 44
Sampling with digital mixing, 462–464
Scaling IIR filter gain, 300–302
Scalloping loss, 96–97
SDFT (sliding DFT)

algorithm, 742–746
overview, 741
stability, 746–747

SFDR (spurious free dynamic range),
714–715

Shannon, Claude, 42
Shape factor, 901
Sharpened FIR filters, 726–728
Shifting theorem, DFT, 77–78

Shift-invariant systems. See Time-
invariant systems.

Sidelobe magnitudes, 110–111
Sidelobes

Blackman window and, 194–197
DFT leakage, 83, 89
FIR (finite impulse response) filters, 184
ripples, in low-pass FIR filters, 193–194

Sign extend operations, 627
Signal averaging. See also SNR (signal-

to-noise ratio).
equation, 589
frequency-domain. See Signal

averaging, incoherent.
integration gain, 600–603
mathematics, 592–594, 599
multiple FFTs, 600–603
phase angles, 603–604
postdetection. See Signal averaging,

incoherent.
quantifying noise reduction, 594–597
rms. See Signal averaging, incoherent.
scalar. See Signal averaging, incoherent.
standard deviation, 590
time-domain. See Signal averaging,

coherent.
time-synchronous. See Signal averag-

ing, coherent.
variance, 589–590
video. See Signal averaging, incoherent.

Signal averaging, coherent
exponential averagers, 608–612
exponential moving averages,

computing, 801–802
exponential smoothing, 608
filtering aspects, 604–608
moving averagers, 604–608
moving averages, computing, 799–801
nonrecursive moving averagers,

606–608
overview, 590–597
recursive moving averagers, 606–608
reducing measurement uncertainty,

593, 604–608
time-domain filters, 609–612
true signal level, 604–608
weighting factors, 608, 789

Signal averaging, exponential
1st-order IIR filters, 612–614

Index 949

dual-mode technique, 791
example, 614
exponential smoothing, 608
frequency-domain filters, 612–614
moving average, computing, 801–802
multiplier-free technique, 790–791
overview, 608
single-multiply technique, 789–790

Signal averaging, incoherent
1st-order IIR filters, 612–614
example, 614
frequency-domain filters, 612–614
overview, 597–599

Signal averaging, with FIR filters
convolution, 175–176
example, 170–174, 183–184
as a lowpass filter, 180–182
performance improvement, 178

Signal envelope, Hilbert transforms,
483–495

Signal power. See also Decibels.
absolute, 891–892
relative, 885–889

Signal processing
analog, 2. See also Continuous signals.
definition, 2
digital, 2
operational symbols, 10–11

Signal transition detection, 820–821
Signal variance

biased and unbiased, computing,
797–799, 799–801

definition, 868–870
exponential, computing, 801–802
PDF (probability density function),

879–882
of random functions, 879–882
signal averaging, 589–590

Signal-power-to-noise-power ratio (SNR),
maximizing, 376

Signal-to-noise ratio (SNR). See SNR
(signal-to-noise ratio).

Sign-magnitude, fixed-point binary
formats, 625–626

Simpson, Thomas, 372
SINAD (signal-to-noise-and-distortion),

711–714
Sinc filters. See CIC (cascaded

integrator-comb) filters.

Sinc functions, 83, 89, 116
Single tone detection, FFT method

drawbacks, 737–738
vs. Goertzel algorithm, 740–741

Single tone detection, Goertzel algorithm
advantages of, 739
description, 738–740
example, 740
vs. the FFT, 740–741
stability, 838–840

Single tone detection, spectrum analysis,
737–741

Single-decimation down-conversion,
819–820

Single-multiply technique, exponential
signal averaging, 789–790

Single-stage decimation, vs. two-stage,
514

Single-stage interpolation, vs. two-stage,
532

Sliding DFT (SDFT). See SDFT
(sliding DFT).

Slope detection, 820-821
Smoothing impulsive noise, 770–772
SNDR. See SINAD (signal-to-noise-and-

distortion).
SNR (signal-to-noise ratio)

vs. A/D converter, fixed-point binary
finite word lengths, 640–642

A/D converters, 711–714
bandpass sampling, 48–49
block averaging, 770
corrected mean, 771
DFT processing gain, 103–104
IIR filters, 302
measuring. See Statistical measures of

noise.
reducing. See Signal averaging.
smoothing impulsive noise, 770–772

SNR (signal-power-to-noise-power ratio),
maximizing, 376

Software programs, fast Fourier trans-
form, 141

Someya, I., 42
Spectral inversion

around signal center frequency, 821–823
bandpass sampling, 46–47

Spectral leakage, FFTs, 138–139, 683–686.
See also DFT leakage.

950 Index

Spectral leakage reduction
A/D converter testing techniques,

710–711
Blackman windows, 686
frequency domain, 683–686

Spectral peak location
estimating, algorithm for, 730–734
Hamming windows, 733
Hanning windows, 733

Spectral replications
bandpass sampling, 44–45
sampling lowpass signals, 39–40

Spectral vernier. See Zoom FFT.
Spectrum analysis. See also SDFT

(sliding DFT); Zoom FFT.
center frequencies, expanding, 748–749
with SDFT (sliding DFT), 748–749
single tone detection, 737–741
weighted overlap-add, 755
windowed-presum FFT, 755
Zoom FFT, 749–753

Spectrum analyzer, 753–756
Spurious free dynamic range (SFDR),

714–715
Stability

comb filters, 403–404
conditional, 268
FSF (frequency sampling filters),

403–406
IIR filters, 263–270
Laplace transfer function, 263–264, 268
Laplace transform, 263–270
SDFT (sliding DFT), 746–747
single tone detection, 838–840
z-transform and, 272–274, 277

Stair-step effect, A/D converter
quantization noise, 637

Standard deviation
of continuous sinewaves, 874–875
definition, 870
signal averaging, 590

Statistical measures of noise
average, 868–870
average power in electrical circuits,

874–875
Bessel’s correction, 870–871
biased estimates, 870–871
dispersion, 869
fluctuations around the average, 869

overview, 867–870. See also SNR
(signal-to-noise ratio).

of real-valued sequences, 874
rms value of continuous sinewaves,

874–875
of short sequences, 870–871
standard deviation, definition, 870
standard deviation, of continuous

sinewaves, 874–875
summed sequences, 872–874
unbiased estimates, 871

Statistical measures of noise, estimating
SNR

for common devices, 876
controlling SNR test signals, 879
in the frequency domain, 877–879
overview, 875–876
in the time domain, 876–877

Statistical measures of noise, mean
definition, 868–869
PDF (probability density function),

879–882
of random functions, 879–882

Statistical measures of noise, variance.
See also Signal variance.

definition, 868–870
PDF (probability density function),

879–882
of random functions, 879–882

Steinmetz, Charles P., 446
Stockham, Thomas, 716
Stopband, definition, 901
Stopband ripples

definition, 901
minimizing, 204–207

Stopband sidelobe level suppression,
416

Structure, definition, 901
Structures, IIR filters

biquad filters, 299
cascade filter properties, 295–297
cascaded, 295–299
cascade/parallel combinations, 295–297
changing, 291–292
Direct Form 1, 275–278, 289
Direct Form II, 289–292
optimizing partitioning, 297–299
parallel filter properties, 295–297
transposed, 291–292

Index 951

transposed Direct Form II, 289–290
transposition theorem, 291–292

Sub-Nyquist sampling. See Bandpass
sampling.

Substructure sharing, 765–770
Subtraction

block diagram symbol, 10
complex numbers, 850

Summation
block diagram symbol, 10
description, 11
equation, 10
notation, 11

Symbols
block diagram, 10–11
signal processing, 10–11

Symmetrical rectangular functions,
112–115

Symmetrical-coefficient FIR filters,
232–233

Symmetry, DFT, 73–75

T
Tacoma Narrows Bridge collapse, 263
Tap, definition, 901
Tap weights. See Filter coefficients.
Tapped delay, FIR filters, 174, 181–182
Taylor series approximation, 788
Tchebyschev function, definition, 902
Tchebyschev windows, in FIR filter

design, 197
Time data, manipulating in FFTs, 138–139
Time invariance, decimation, 514
Time properties

decimation, 514–515
interpolation, 519

Time representation, continuous vs.
discrete systems, 5

Time reversal, 863–865
Time sequences, notation syntax, 7
Time-domain

aliasing, avoiding, 718–722
analytic signals, generating, 495–497
coefficients, determining, 186–194
convolution, matched filters, 380
convolution vs. frequency-domain

multiplication, 191–194
equations, example, 7

Time-domain (cont.)
FIR filter implementation, 489–494
Hilbert transforms, designing, 489–494
interpolation, 778–781
slope filters, 820–821

Time-domain data, converting
from frequency-domain data. See IDFT

(inverse discrete Fourier transform).
to frequency-domain data. See DFT

(discrete Fourier transform).
Time-domain filters

coherent signal averaging, 609–612
exponential signal averaging, 609–612

Time-domain signals
amplitude, determining, 140
continuous, Laplace transform for, 258
DC removal, 812–815
definition, 4
vs. frequency-domain, 120–123

Time-invariant systems. See also LTI
(linear time-invariant) systems.

analyzing, 19–21
commutative property, 18–19
definition, 17–18
example of, 17–18

Tone detection. See Single tone detection.
Transfer functions. See also Laplace

transfer function.
definition, 902
real FSF, 908–909
z-domain, 282–289

Transient response, FIR filters, 181–182
Transition region, definition, 902
Translation, sampling, 44
Transposed Direct Form II filters, 289–290
Transposed Direct Form II structure,

289–290
Transposed filters, 291–292
Transposed structures, 765–770
Transposition theorem, 291–292
Transversal filters, 173–174. See also FIR

(finite impulse response) filters.
Triangular dither, 708
Triangular windows, 89–93
Trigonometric form, quadrature signals,

442, 444
Trigonometric form of complex numbers,

848–850

952 Index

Truncation, fixed-point binary numbers,
646–649

Tukey, J., 135
Two’s complement

fixed-point binary formats, 626–627,
629

overflow, 559–563
Two-sided Laplace transform, 258
Type-IV FSF

examples, 419–420, 423–426
frequency response, 910–912
optimum transition coefficients,

913–926

U
Unbiased estimates, 871
Unbiased signal variance, computing,

797–799, 799–801
Undersampling lowpass signals, 40.

See also Bandpass sampling.
Uniform windows. See Rectangular

windows.
Unit circles

definition, 271
z-transform, 271

Unit circles, FSF
forcing poles and zeros inside, 405
pole / zero cancellation, 395–398

Unit delay
block diagram symbol, 10
description, 11

Unit impulse response, LTI, 19–20
Unnormalized fractions, floating-point

binary formats, 656
Unwrapping, phase, 210
Upsampling, interpolation, 517–518,

520–521

V
Variance. See Signal variance.
Vector, definition, 848
Vector rotation with arctangents

to the 1st octant, 805–808
division by zero, avoiding, 808
jump address index bits, 807
overview, 805

by ± π/8, 809–810
rotational symmetries, 807

Vector-magnitude approximation,
679–683

von Hann windows. See Hanning
windows.

W
Warping, frequency, 319, 321–325, 328–330
Weighted overlap-add spectrum analysis,

755
Weighting factors, coherent signal

averaging, 608, 789
Wideband compensation, 564
Wideband differentiators, 367–370
Willson, A., 386
Window design method, FIR filters,

186–194
Windowed-presum FFT spectrum

analysis, 755
Windows

Blackman, 195–201, 686, 733
Blackman-Harris, 686, 733
exact Blackman, 686
FFTs, 139
in the frequency domain, 683–686
magnitude response, 92–93
mathematical expressions of, 91
minimizing DFT leakage, 89–97
processing gain or loss, 92
purpose of, 96
rectangular, 89–97, 686
selecting, 96
triangular, 89–93

Windows, Hamming
description, 89–93
DFT leakage reduction, 89–93
in the frequency domain, 683–686
spectral peak location, 733

Windows, Hanning
description, 89–97
DFT leakage, minimizing, 89–97
in the frequency domain, 683–686
spectral peak location, 733

Windows used in FIR filter design
Bessel functions, 198–199
Blackman, 195–201

Index 953

Chebyshev, 197–201, 927–930
choosing, 199–201
Dolph-Chebyshev, 197
Kaiser, 197–201
Kaiser-Bessel, 197
Tchebyschev, 197

Wingless butterflies, 156
Wraparound leakage, 86–88
Wrapping, phase, 209, 900

Z
z-domain expression for Mth-order IIR

filter, 275–276
z-domain transfer function, IIR filters,

282–289
Zero padding

alleviating scalloping loss, 97–102
FFTs, 138–139
FIR filters, 228–230
improving DFT frequency granularity,

97–102
spectral peak location, 731

Zero stuffing
interpolation, 518
narrowband lowpass filters, 834–836

Zero-overhead looping
DSP chips, 333
FSF (frequency sampling filters),

422–423
IFIR filters, 389

Zero-phase filters
definition, 902
techniques, 725

Zeros
IIR filters, 284–289
on the s-plane, Laplace transform,

263–270
Zoom FFT, 749–753
z-plane, 270–273
z-plane pole / zero properties, IIR filters,

288–289
z-transform. See also Laplace transform.

definition, 270
description of, 270–272
FIR filters, 288–289
IIR filters, 270–282
infinite impulse response, definition, 280

z-transform (cont.)
polar form, 271
poles, 272–274
unit circles, 271
zeros, 272–274

z-transform, analyzing IIR filters
digital filter stability, 272–274, 277

954 Index

Direct Form 1 structure, 275–278
example, 278–282
frequency response, 277–278
overview, 274–275
time delay, 274–278
z-domain transfer function, 275–278,

279–280

	CONTENTS
	PREFACE
	ABOUT THE AUTHOR
	1 DISCRETE SEQUENCES AND SYSTEMS
	1.1 Discrete Sequences and Their Notation
	1.2 Signal Amplitude, Magnitude, Power
	1.3 Signal Processing Operational Symbols
	1.4 Introduction to Discrete Linear Time-Invariant Systems
	1.5 Discrete Linear Systems
	1.6 Time-Invariant Systems
	1.7 The Commutative Property of Linear Time-Invariant Systems
	1.8 Analyzing Linear Time-Invariant Systems
	References
	Chapter 1 Problems

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

