Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication data is on file.

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

ISBN-10: 0-137-02506-8
Text printed in the United States on recycled paper at RR Donnelley,
Crawfordsville, IN.
First printing February 2010

Cover - The Big Ben clock tower symbolizes Great Britain, where best practices for IT infrastructure processes were first formalized.
Preface

Introduction to the Second Edition

Few industries have grown as rapidly or as widely as that of Information Technology (IT). What began as an infant offshoot of the accounting profession just a few generations ago has since matured into a prevalent and compelling force in nearly every segment of business, industry, and society in general. IT is the latest, and most significant, of cultural revolutions.

Futurist author Alvin Tofler, in his book on cultural phenomena, *The Third Wave*, describes three significant movements in American social development. These were the agricultural revolution of the late 1800s; the industrial revolution of the early 1900s; and the information revolution of the last two decades of the 20th century.

Some 40 years ago, Tofler correctly forecast many of today’s social and technological trends. But even he could not predict the rapid rate of progress which the IT industry would sustain, nor its profound impact on living standards and business practices.

Much has been written about the various IT breakthroughs involving chip technology, compiler designs, hardware components, and programming languages. But little has been written about how to effectively manage the environment in which IT entities coexist and thrive. This environment is commonly called the IT infrastructure, and the process of managing the many attributes that contribute to a stable, responsive IT infrastructure is known as systems management.

This book offers an in-depth technical treatment of the various disciplines of systems management, from the perspective of people, process, and technology. The people discussion shows the importance of executive support, customer service, and other management aspects of delivering and supporting IT services. The process discussion of each discipline shows how to implement and manage each one effectively, regardless of the size and types of platforms or the complexity of environments. For the first time, systems management is shown as it applies to mainframe data centers, mid-range shops, client/server environments, and web-enabled systems alike.
The 12 disciplines of systems management are presented in the approximate order in which they became prevalent and integral to an infrastructure’s operation. Obviously this prioritization varies slightly from enterprise to enterprise, depending on the emphasis of applications running at a particular center. The technology discussion describes several key developments that enable these disciplines to be implemented more productively. As a final discussion, three appendices offer an historical perspective of the various disciplines of systems management and an in-depth technical treatment of each of them. The historical background explains the when and why of each discipline to better explain its purpose and evolution.

Why the Second Edition was Written

When the first edition of *IT Systems Management* came out a few years ago, I could not predict what type of reception it would receive. Fortunately, thousands of readers found the book to be a practical and helpful guide for managing IT infrastructure processes. As a result, it has landed on several best-selling lists and has been translated into four languages.

During the past few years it has been in publication, a number of suggestions have been offered by readers for a possible second edition. Chief among these suggestions was to make it more university-friendly in the form of classroom materials for instructors and end-of-chapter materials for students.

This formed the primary motivation for writing a second edition. There were a number of other reasons that led to the decision to produce another version, including:

1. Enable the book to be both a useful reference for practicing IT professionals and a comprehensive textbook for university instructors and students.
2. Supply electronic classroom materials for university instructors to use in developing courses around this book.
3. Include additional material at the end of each chapter for readers to test their knowledge and understanding of the content, computational problems to make the material more interactive, and further sources of information on the chapter topic.
4. Provide additional real life examples in each chapter and highlight them in separate sections within each chapter.
5. Update information about technology and trends in most of the process areas, especially problem management, storage
management, network management, strategic security, disaster recovery, and facilities management.

6. Develop two new chapters, one covering ethics, legislation and outsourcing and a second showing the alignment of the systems management processes to the IT Infrastructure Library (ITIL).

7. Offer electronic copies of the non-weighted and the weighted assessment worksheets to readers.

How the Second Edition Differs from the First Edition

The second edition of this book differs in several ways from the first edition. First, two new chapters have been added. The first chapter deals with three timely and related topics of ethics, legislation, and outsourcing. The privacy of personal information, identity theft, falsifying financial records, and high-level corporate scandals surrounding unethical accounting procedures and over-inflated stock valuations all led to a variety of new legislation in the United States that related directly to IT. This chapter describes the ethics and legislation that resulted from these activities. It also presents the factors that lead many companies to outsource portions of their IT organization as well as the advantages and disadvantages of doing so. This chapter is inserted as the new Chapter 5, “Ethics, Legislation and Outsourcing,” at the end of Part One: People.

The second new chapter describes the IT Infrastructure Library (ITIL) and how the various processes it comprises align themselves with the 12 processes covered in this edition. Many of the ITIL methodologies are similar to, but not identical to, the processes explained in Part Two of this book; any significant differences are explained in this chapter. You will find this supplement as Chapter 6, “Comparison to ITIL Processes,” and it is a fitting introduction to Part Two: Processes.

IT is a rapidly changing industry and there have been a number of advances in technologies and methodologies in the six years since the first edition came out. As a result, I have updated several of the original chapters from the first edition. The first three chapters in the first edition served as an historical reference for IT infrastructures. Although many readers found these chapters interesting, they did not directly relate to infrastructures of today. As a result, these first three chapters have been dropped from the printed book but are available online at www.informit.com/title/0137025068. The topic of staffing in Chapter 3, “Staffing for Systems Management,” now includes a discussion of career-pathing and suggestions on how to prepare for advancements in the field of IT.
The chapters in Part Two that have been revised include:

- Chapter 12, “Storage Management,” which includes updates on more advanced methods for storage area networks (SANs).
- Chapter 13, “Network Management,” discusses the role of voice over the Internet protocols (VoIP).
- Chapter 16, “Strategic Security,” presents the topical issues of identity theft, authentication, verification, token smart cards, single sign-on, and blogging.
- Chapter 17, “Business Continuity,” includes updates to the more proactive and inclusive concept of business continuity.
- Chapter 18, “Facilities Management,” now includes more contemporary issues of equipment density, data-center hot spots, maximization of floor space, and the outsourcing of environmental monitoring.

Two other chapters in Part Two have been modified extensively. Chapter 9, “Production Acceptance,” now contains a major case study in which I compare how seven clients of mine dealt with their own versions of production acceptance. I also significantly expanded Chapter 11, “Problem Management,” now includes its closely related process of incident management and the critical function of the service desk. This area was not included in the first edition because, strictly speaking, it is not truly an infrastructure process but rather an organizational function. But the function of the service desk in any of its various forms (such as the help desk, the trouble desk, and the Customer Service Center) has become such a vital component of problem management that it warrants being included here.

One of the most popular features of the first edition, among IT practitioners and university students alike, are the numerous real-life experiences I include in several of the chapters. In this second edition, I expand the number of these experiences throughout the book and highlight them in separate sections. Each chapter also contains terms and definitions as they occur in the text, also highlighted in separate sections.

This edition also features a number of enhancements at the end of each chapter. These include a few true and false questions to enable students and other readers to test their knowledge and understanding of the material. There are also one or two essay-type questions to provoke deeper thought and discussion about a specific aspect of the chapter topic. Finally, there are sources of further readings to provide additional perspectives and more detailed information about topic at hand.

One of the most frequent requests surrounding the first edition concerned the assessment worksheets used to evaluate the quality of infrastructure processes.
Many readers were disappointed that these useful charts were not available in electronic form. This edition affords readers the opportunity to download electronic copies of all 24 non-weighted or weighted assessment worksheets. Go to www.informit.com/title/0137025068 to download the worksheets.

Another request for electronic material often was made by professors who developed courses around the first edition. Many instructors asked for PowerPoint slides of each chapter to use in classroom presentations and for electronic versions of quizzes and essay-type questions with answers provided. This edition provides these types of materials for credentialed instructors. A test bank containing more than 400 questions and answers is also available for credentialed instructors. The questions are in the forms of true or false, multiple choice, fill in the blank, and essay-type. The requesting procedure is similar to that used to request the assessment worksheets. Lastly, this edition corrects a small number of minor typographical and formatting errors present in the first edition.

Intended Audience

This book is intended for IT professionals who are involved in designing, implementing, and managing parts or all of the infrastructure of an IT environment. It is also intended for teachers, instructors and university professors who are involved with the development of courses or the conducting of classes that focus on the topic of IT infrastructure management. An infrastructure usually consists of departments involving data and voice networks and communications, technical services, database administration, computer operations, and help desks. While the structure and composition of infrastructure groups may vary, the previously mentioned departments represent a typical organization in a medium-sized to large IT department.

Most of the concepts presented here are based on experiences with infrastructure groups varying in size from 50 to 150 individuals, but the underlying principles described here apply equally well to all sized groups. Smaller shops may have less need for implementing all of the disciplines of systems management and should focus only on those which most apply to their particular environment.

The format and content of this book are based on a fundamental belief that people, process, and technology are the three key ingredients in any successful implementation of systems management. A section of this book is dedicated to each of these three key ingredients, with primary and secondary audiences intended for each segment.

Infrastructure managers, directors, and CIOs are the intended audiences for the People part of this book. For purposes of brevity and simplicity, this group is referred to as managers.
The Process part of this book is especially intended for senior analysts, leads, senior systems administrators, and supervisors who are typically involved with designing and implementing systems management processes and procedures. This group is called leads.

The Technology part of this book is primarily intended for technical professionals such as systems programmers, database administrators, operations analysts, and systems administrators who are responsible for installing and maintaining systems management products. Once again, for purposes of brevity and simplicity, this group is called technicians.

Secondary groups of audiences will benefit from the parts of the book that are outside their primary areas of interest. For example, people issues will be of interest to technicians for topics such as communication and will be of importance to leads for the emphasis on teamwork.

The efficiency and cost savings of process improvements will be of interest to managers, while the eliminating of duplicate work should be of interest to technicians. Each chapter of the technology section contains an introduction and a summary to facilitate time-saving skimming for managers. Leads will find these chapters cross-referenced to corresponding chapters in the process section.

Topics Not Included In This Book

The term systems management as used in this book refers to the 12 specific processes of IT infrastructures that I have found to be the most prevalent and significant in relation to managing a world-class IT organization. As with virtually any business organization within American industry, few infrastructures are organized exactly the same. Some companies may include in their own infrastructures more or less of the 12 functions that I describe within these chapters. So it is worth noting those related areas of the infrastructure that I chose not to include in this book.

Asset management is not included here. Asset management is primarily a financial and administrative function; it isn’t normally an integral part of an IT infrastructure. While it is closely related to infrastructure management, particularly in the area of desktop hardware and software, most IT organizations view it as a procurement responsibility. Some companies have their corporate procurement departments, which are outside of the IT organization, managing their IT assets. Others have a separate procurement department inside of IT, but outside of the infrastructure, to manage IT assets.

Similarly, the infrastructure functions of systems administration, network administration, and database administration are not covered here since any meaningful discussion of these important topics would require technical details that would go beyond our intended focus. Elements of systems administration are
touched on in Chapter 7, “Availability,” and in Chapter 8, “Performance and Tuning.” Some fundamentals of network administration are covered in Chapter 13, “Network Management,” and some of the basics of database administration are mentioned in Chapter 12, “Storage Management.”

Desktop support is usually an infrastructure activity but it is not discussed here due to the day-to-day details of hardware and software maintenance that go beyond the emphasis of process design and management. Another more timely reason for excluding this area is that many companies are now outsourcing their desktop-support functions.

Three areas of traditional computer operations are not included because of their reduced emphasis due to automation, distributed processing, and the use of the Internet. These include batch scheduling, console operations, and output processing. Finally, I do not cover voice networks in this book in detail due to this function’s highly technical nature. I do include a brief discussion of voice over Internet protocols (VoIP) in Chapter 13.

How Instructors and Students Can Use This Book

This book can be used for an upper-level undergraduate course for technology, science, or business majors or as a first-level graduate course for business majors and management majors. Courses are structured in a variety of formats, such as 12-week quarters, 15-week semesters, or six-week summer school sessions. As a general guideline, a 12-week quarter that meets three times a week (36 hours total) could develop the following course based on this book. The nine chapters that comprise Part One and Part Three could be allotted one hour each. The 13 chapters of Part Two could be allotted 1.5 hours each due to the more complex nature of the process material. This totals 28.5 hours (9 + 19.5) with 7.5 hours left for quizzes, tests, a mid-term exam, and a final exam. For courses comprising slightly more or less hours, slight adjustments to the times allotted for Part One and Part Three could be made. Homework can be assigned from the material at the end of each chapter, and quizzes, tests, and examinations can be developed from a test bank of questions provided for instructors.

How IT Practitioners Can Use This Book

IT practitioners can benefit from all three parts of this book. It is intended to be informative reading for any IT professional desiring a basic understanding of systems management.
The three major parts address the issues of people, process, and technology.
Part One discusses various people issues such as executive support, staffing, retention, organization, budgets, communication, customer service, supplier partnerships, and service level agreements (SLAs). All IT professionals should read these chapters. While the emphasis is on traditional management topics, leads, technicians, and even desktop users should benefit from this enterprise-wide view of systems management. Students of business should find this section especially relevant to their field of study.

Part Two focuses on the process issues of systems management. This part consists of 13 chapters, an initial one that discusses the IT infrastructure library (ITIL) processes, and one for each of the 12 separate disciplines covered in this book. Each of these 12 chapters defines what the discipline is, which technologies within the infrastructure are involved, and what types of technical tools are commonly used to manage it.

Technicians and leads should thoroughly read all of these chapters with particular attention to the disciplines for which they are directly responsible. Managers should read the introduction and summary of each chapter to gain a basic understanding of systems management and then select those chapters which most apply to their enterprises to read more fully. Technology students should gain valuable insights from Part Three into the complex management of a modern computer center.

Part Three describes how to use technology to develop and integrate robust, bulletproof processes to support any of the disciplines of systems management. Understanding how these processes integrate with each other is critical to the success of any systems management implementation. One of today’s greatest challenges is to apply the tried and true processes of traditional systems management to an open systems environment and to web-enabled applications. These topics should be of particular interest to those involved with client/server systems and Internet applications, as well as to students who may be pursuing a career in these fields.

Some of the techniques presented here are based on proven Baldrige National Quality Award (BNQA) methodologies. I became very involved with these methods and their practical applications while serving as an internal Baldrige examiner at a major aerospace company. While the emphasis on the BNQA has diminished a bit in recent years, the effectiveness of its process-improvement techniques is without question.

Leads for any of the disciplines of systems management should read all of the chapters of Part Three. This information provides them with a sound basis for applying technology tools to process improvements and communicating these
improvements in detail to technicians and in summary form to managers. Technicians who are assigned responsibilities for either tactical or strategic disciplines should read those chapters applicable to their involvement. Managers should skim all these chapters to gain a good understanding of the important role of processes in managing a world-class infrastructure organization.

Because some chapters are intended to be skimmed by some readers to determine their applicability, I have prefaced each chapter with a short introduction. There is also a brief summary at the end of each chapter to capture its essential highlights.

The terms process, function, and discipline are all used synonymously throughout this book, as in a systems management function of availability being compared to the systems management discipline of security. Similarly, the terms infrastructure and systems management are used interchangeably when referring to the above three terms, as in the infrastructure process of availability being compared to the systems management process of security.
CHAPTER 9

Production Acceptance

Introduction

No matter how well designed and well tested an application may be, the first—and often lasting—impressions that users form about that application come from how successfully it is deployed into production. Developers and operations personnel sometimes let unnecessary obstacles take their eyes off the goal of a successful deployment. This chapter defines the process of production acceptance and describes many of the benefits this process provides to a variety of groups both inside and outside of IT. The middle sections of this chapter discuss each of the 14 steps required to design and implement an effective production acceptance process. The chapter closes with a case study involving the assessment of production acceptance processes for seven diverse companies.

Definition of Production Acceptance

The primary objective of systems management is to provide a consistently stable and responsive operating environment. A secondary goal is to ensure that the production systems themselves run in a stable and responsive manner. The function of systems management that addresses this challenge is production acceptance.
Production Acceptance

Production acceptance is a methodology used to consistently and successfully deploy application systems into a production environment regardless of platform.

The following key words from this definition are worth noting.

- **Consistent methodology**. While the methodology is consistent, it is not necessarily identical across all platforms. This means there are essential steps of the process that need to be done for every production deployment, and then there are other steps that can be added, omitted, or modified depending on the type of platform selected for production use.

- **Deploying into a production environment**. This implies that the process is not complete until all users are fully up and running on the new system. For large applications, this could involve thousands of users phased in over several months.

- **Application system**. This refers to any group of software programs necessary for conducting a company’s business—the end-users of which are primarily, but not necessarily, in departments outside of IT. This excludes software still in development, as well as software used as tools for IT support groups.

The Benefits of a Production Acceptance Process

An effective production deployment process offers several advantages to a variety of user groups. These beneficiaries include the applications department, executive management, various groups within the IT infrastructure, customers, and suppliers (see Table 9-1).
Table 9-1 Beneficiaries and Benefits of Production Acceptance

<table>
<thead>
<tr>
<th>Beneficiary</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>1. Ensures that adequate network and system capacity is available for both development and production</td>
</tr>
<tr>
<td></td>
<td>2. Identifies desktop upgrade requirements in advance to ensure sufficient budget, resources, and time frame</td>
</tr>
<tr>
<td></td>
<td>3. Specifies detailed hardware and software configurations of both the development and production servers to ensure identical environments are used for testing and deployment</td>
</tr>
<tr>
<td></td>
<td>4. Ensures infrastructure support groups (systems, networks, solution center) are trained on supporting the application weeks prior to cutover</td>
</tr>
<tr>
<td>Executive Management</td>
<td>1. Quantifies total ongoing support costs prior to project start-up</td>
</tr>
<tr>
<td></td>
<td>2. Reduces overtime costs by identifying upgrade requirements early on</td>
</tr>
<tr>
<td></td>
<td>3. Increases the likelihood of deploying production systems on schedule by ensuring thorough and timely testing</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>1. Identifies initial system and network requirements early on</td>
</tr>
<tr>
<td></td>
<td>2. Identifies future infrastructure requirements enabling more cost-effective capacity planning</td>
</tr>
<tr>
<td></td>
<td>3. Identifies ongoing support requirements early on</td>
</tr>
<tr>
<td>Customers</td>
<td>1. Involves customers early in the planning phase</td>
</tr>
<tr>
<td></td>
<td>2. Ensures customer equipment upgrades are identified early and scheduled with customer involvement</td>
</tr>
<tr>
<td></td>
<td>3. Ensures satisfactory user testing</td>
</tr>
<tr>
<td>Suppliers</td>
<td>1. Involves key suppliers in the success of the project</td>
</tr>
<tr>
<td></td>
<td>2. Identifies and partners key suppliers with each other and with support groups</td>
</tr>
<tr>
<td></td>
<td>3. Provides suppliers with opportunities to suggest improvements for deployment</td>
</tr>
</tbody>
</table>
Implementing a Production Acceptance Process

The following list details the 14 steps necessary for implementing an effective production acceptance process. Along with our detailed discussion of each of these steps, we will look at actual experiences from industry, where appropriate, to highlight suggestions to pursue and obstacles to avoid.

1. Identify an executive sponsor
2. Select a process owner
3. Solicit executive support
4. Assemble a production acceptance team
5. Identify and prioritize requirements
6. Develop policy statements
7. Nominate a pilot system
8. Design appropriate forms
9. Document the procedures
10. Execute the pilot system
11. Conduct a lessons-learned session
12. Revise policies, procedures, and forms
13. Formulate marketing strategy
14. Follow up on ongoing enforcement and improvements

Step 1: Identify an Executive Sponsor

Production acceptance is one of a handful of systems management processes that directly involve departments outside of the infrastructure group. In this case it is the applications development area that plays a key role in making this process effective. An executive sponsor is necessary to ensure ongoing support and cooperation between these two departments. Depending on the size and scope of the IT organization, the sponsor could be the CIO, the head of the infrastructure group, or some other executive in the infrastructure. (We should note that an application manager could be an excellent sponsor providing the head of the infrastructure agrees with the selection. In this case, the executives from both departments should concur on the choice of process owner, who needs to be from the infrastructure group.)

In general, the higher the level of executive sponsor, the better. It should be noted that senior executives are usually more time constrained than those at lower levels, so support sessions should be well planned, straightforward, and to the point.
The executive sponsor must be a champion of the process, particularly if the shop has gone many years with no structured turnover procedure in place. He or she needs to be able to persuade other executives both inside and outside of IT to follow the lead. This individual is responsible for providing executive leadership, direction, and support for the process. The executive sponsor is also responsible for selecting the process owner, for addressing conflicts that the process owner cannot resolve, and for providing marketing assistance.

Step 2: Select a Process Owner

One of the first responsibilities of the executive sponsor is to select the production acceptance process owner. The process owner should be a member of the infrastructure organization since most of the ongoing activities of operating and supporting a new production application fall within this group. This person will be interacting frequently with the programmers who developed and will be maintaining the system.

This continual interaction with applications makes a working knowledge of application systems an important prerequisite for the process owner. Being able to evaluate applications documentation and to communicate effectively with program developers are two additional characteristics highly recommended in a process owner. Several other medium-priority and lower-priority characteristics (see Table 9-2) assist in selecting the process lead. These attributes and priorities may vary from shop to shop, but they are intended to emphasize the importance of predetermining the traits that best suit your organization.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of applications</td>
<td>High</td>
</tr>
<tr>
<td>Ability to evaluate documentation</td>
<td>High</td>
</tr>
<tr>
<td>Ability to communicate effectively with developers</td>
<td>High</td>
</tr>
<tr>
<td>Knowledge of company’s business model</td>
<td>Medium</td>
</tr>
<tr>
<td>Ability to meet effectively with users</td>
<td>Medium</td>
</tr>
<tr>
<td>Ability to communicate effectively with IT executives</td>
<td>Medium</td>
</tr>
<tr>
<td>Ability to promote teamwork and cooperation</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Table 9-2 Prioritized Characteristics for a Production Acceptance Process Owner
Continued

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to manage diversity</td>
<td>Medium</td>
</tr>
<tr>
<td>Knowledge of backup systems</td>
<td>Medium</td>
</tr>
<tr>
<td>Knowledge of database systems</td>
<td>Medium</td>
</tr>
<tr>
<td>Knowledge of desktop hardware and software</td>
<td>Medium</td>
</tr>
<tr>
<td>Knowledge of software configurations</td>
<td>Medium</td>
</tr>
<tr>
<td>Knowledge of systems software and components</td>
<td>Low</td>
</tr>
<tr>
<td>Knowledge of network software and components</td>
<td>Low</td>
</tr>
<tr>
<td>Knowledge of hardware configurations</td>
<td>Low</td>
</tr>
</tbody>
</table>

Step 3: Solicit Executive Support

Production acceptance requires much cooperation and support between the applications development and infrastructure departments. Executive support from both of these departments should be solicited to ensure that policies and decisions about the design of the process are backed up and pushed down from higher levels of management.

Step 4: Assemble a Production Acceptance Team

The process owner should assemble a cross-functional team to assist in developing and implementing a production acceptance process. The team should consist of key representatives from the development organization as well as those from operations, technical support, capacity planning, the help desk, and database administration. In cases where the development group is larger than a few hundred programmers, multiple development representatives should participate.

It is important that all key areas within development are represented on this team to ensure support and buy-in for the process. Appropriate development representatives also ensure that potential obstacles to success are identified and resolved to everyone’s satisfaction. An effective executive sponsor and the soliciting of executive support (steps 1 and 3) can help to ensure proper representation.

At one company where I managed a large infrastructure group, there were more than 400 programmers in the development department
grouped into the four areas of finance, engineering, manufacturing, and logistics. A representative from each of these four areas participated in the development of a production acceptance procedure; each brought unique perspectives, and together they helped to ensure a successful result to the process.

Step 5: Identify and Prioritize Requirements

Early in my career I participated on a number of production acceptance teams that fell short in providing an effective production turnover process. In looking for common causes for these failed attempts, I noticed that in almost every case there were no agreed-upon requirements at the start; when there were requirements, they were never prioritized.

Later on, as I led my own production acceptance design teams, I realized that having requirements that were prioritized and agreed upon by all participants added greatly to the success of the efforts. Requirements vary from company to company, but some are common to almost all instances. Table 9-3 lists some of the more common requirements I have witnessed in successful implementations of production acceptance, along with their typical priorities.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ensure that operations, technical support, help desk, network services,</td>
<td>High</td>
</tr>
<tr>
<td>and database administration are all involved early on in implementing a</td>
<td></td>
</tr>
<tr>
<td>new application.</td>
<td></td>
</tr>
<tr>
<td>2. Ensure capacity-gathering requirements are compatible with the</td>
<td>High</td>
</tr>
<tr>
<td>capacity planning process.</td>
<td></td>
</tr>
<tr>
<td>3. Provide application documentation to operations prior to production</td>
<td>High</td>
</tr>
<tr>
<td>turnover.</td>
<td></td>
</tr>
<tr>
<td>4. Develop and enforce management policy statements.</td>
<td>High</td>
</tr>
<tr>
<td>5. Ensure adequate service desk support from applications during the first</td>
<td>Medium</td>
</tr>
<tr>
<td>week of production.</td>
<td></td>
</tr>
<tr>
<td>6. Implement a pilot subset for very large applications.</td>
<td>Medium</td>
</tr>
<tr>
<td>7. Do not set up a separate help desk for a new application.</td>
<td>Medium</td>
</tr>
<tr>
<td>8. Ensure that a user test plan is developed and executed.</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Table 9-3 Sample of Prioritized Requirements Continued

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Ensure that a user acceptance plan is developed and executed.</td>
<td>Medium</td>
</tr>
<tr>
<td>10. Analyze daily the types and frequencies of service desk calls during</td>
<td>Medium</td>
</tr>
<tr>
<td>the first two weeks of production; then weekly thereafter.</td>
<td></td>
</tr>
<tr>
<td>11. Leverage the use of existing tools and processes.</td>
<td>Medium</td>
</tr>
<tr>
<td>12. Simplify forms as much as possible for ease of use.</td>
<td>Low</td>
</tr>
<tr>
<td>13. Involve appropriate groups in the design and approval of forms.</td>
<td>Low</td>
</tr>
<tr>
<td>14. Ensure that developers estimate the type and volume of service</td>
<td>Low</td>
</tr>
<tr>
<td>desk calls during the first week of production.</td>
<td></td>
</tr>
<tr>
<td>15. Include desktop capacity requirements.</td>
<td>Low</td>
</tr>
<tr>
<td>16. For systems being upgraded, ensure that all impacts to end-users</td>
<td>Low</td>
</tr>
<tr>
<td>are identified up front.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6: Develop Policy Statements

The cross-functional team should develop policy statements for a production acceptance process. These statements should then be approved by the executive sponsor. Policy statements help ensure that issues such as compliance, enforcement, and accountability will be supported by senior management and communicated to the applicable levels of staffs. The following lists some sample policy statements:

1. All new mainframe- or server-based applications are to go through the formal production acceptance process prior to deployment into production.
2. All major new versions of existing production applications are to go through the formal production acceptance process prior to deployment into production.
3. Process owner ([insert name]) is responsible for coordinating and maintaining the production acceptance process and has authority to delay an application’s deployment into production pending full compliance with the process.
4. Key support groups such as operations, technical support, network services, database administration, and the help desk are to be informed about the application from its start and involved
with its development as prescribed by the production acceptance process.

5. Development owners of applications that are deployed through the production acceptance process are expected to regularly update the capacity plan for their applications to ensure adequate resource support in the future.

6. Any applications deployed through the production acceptance process that require substantial desktop capacity upgrades are to provide specific requirements to capacity planners with sufficient lead time for planning, ordering, delivering, and installing all upgrades.

Pilot System

A pilot system is a small-scale version of an application used to try out new processes, functions, or features associated with the application. A single purchasing module of a comprehensive enterprise-wide financial system is an example of a pilot system.

Step 7: Nominate a Pilot System

When a production acceptance process is designed and implemented, particularly in environments that have never had one, there is normally a major change in the manner in which application systems are deployed. Therefore, it is usually more effective to introduce this new method of production turnover on a smaller scale with a minimal-impact pilot system. If a small system is not available as a pilot, consider putting only an initial portion of a major system through the new process.

Step 8: Design Appropriate Forms

During the requirements step, the cross-functional team normally discusses the quantity, types, and characteristics of forms to be used with a production acceptance process. The following list details some of the forms that are typically considered here. Some shops elect to combine some or all of these forms, depending on their complexity.
1. Primary production acceptance form
2. Capacity planning form
3. Customer-acceptance form
4. Service desk form
5. Testing plan
6. Lessons-learned form

- The capacity form is for periodic updates to resource requirements.
- The customer-acceptance form is for user feedback prior to deployment.
- The service desk form is for anticipated calls during start-up.
- The test plan is for developers to show function and performance of the new system.
- The lessons-learned form is for follow-up and improvements after full deployment of a new system.

The forms are proposed, designed, and finalized by the team. Figure 9-1 shows a production acceptance form used by one of my clients. Specific requirements of the form vary from shop to shop, but the form should always be simple, thorough, understandable, and accessible. Many shops today keep forms like these online via their company intranets for ease of use and access.

Step 9: Document the Procedures

The documentation of any systems management process is important, but it is especially so in the case of production acceptance because such a large number of developers will be using it. The documentation for these procedures must be effective and accessible (see Chapter 20 for ways to ensure that documentation is both of high quality and of high value).

Step 10: Execute the Pilot System

With a pilot system identified, forms designed, and procedures in place, it is time to execute the pilot system. User testing and acceptance plays a major role in this step, as does the involvement of support groups such as technical support, systems administration, and the help desk.
Implementing a Production Acceptance Process 171

Production Acceptance Request Form
Part One: Actions Required at Time of Project Approval

I. General Information about the Application

A. Customer/Supplier Information (To be completed by the Project Manager)

Full system name/acronym__
Brief description of the system:___
__
Current Date _________ Planned Pilot Date _________ Full Deployment Date________
Risk Assessment and Analysis
__
Mission Critical: Yes No Prty: A B
Prim Proj Mgr ____________ Alt Proj Mgr ____________ IT Dept________
Prim Cust Contact ____________ Alt Cust Contact ____________ Cust Dept________
Prim Ops Support ____________ Alt Ops Support ____________ Soln Ctr Rep________

B. Service Level Information (To be completed by the Project Manager)

Tech Ctr Hrs of Oprtn Soln Ctr Hrs of Oprtn Monitoring Hrs:
Expected prime-shift % avail/wk: _________ Expected off-shift % avail/wk: _________
For ____________ type transactions, expected response time is _________
For ____________ type transactions, expected response time is _________
Batch requirements:

C. Minimum System Requirements (To be completed by the Project Manager)

DB System_________ Appl Vendor (if applicable)_________ Appl Lang_________________
Server Platform: ___________ Client Platform: ___________

D. Actual Development and Production Environment (To be completed by the Manager of Systems Administration)

DB System, Ver/Rel_________ Appl Vendor, Ver/Rel (if applicable)_________
Server O/S Ver/Rel: _________ Dev Hostname_________ Prod Hostname_________
List any dependencies between server O/S, DB, and appl ver/rel _________
List any differences between Dev & Prod server, O/S, DB, appl, utilities, etc. _________

E. Local Area Network Architecture (To be completed by the Manager of Network Operations)

Server Topology Required (10BaseT/100BaseT/FDDI/GB-Fiber/Other):_________
Client Topology Required (10BaseT/100BaseT/FDDI/GB-Fiber/Other):_________
Protocols Required (TCP/IP/Other):_________ Estimated Bandwidth:_________
Ntwk Class: On-air Business Internet Access (Yes/No)
Prod Loc: Data Ctr Other Switch Location:_________

F. Wide Area Network Architecture (To be completed by the Manager of Network Operations)
Comments

G. Remote Network Access (To be completed by the Manager of Network Operations)
Remote access needed (Yes/No)_________ Method of Connectivity_________
Comments

Figure 9-1 Sample Production Acceptance Form (page 1 of 3)
II. Capacity, Support, and Costs

A. Application Usage Information
(To be completed by the Project Manager)

<table>
<thead>
<tr>
<th></th>
<th>Time at Start-Up</th>
<th>6 Mos after Start-Up</th>
<th>12 Mos after Start-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Concurrent LAN users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Total LAN users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Concurrent WAN users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Total WAN users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Concurrent remote users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Total remote users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Total concurrent users (sum of 1,3,5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Total overall users (sum of 2,4,6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Application Resource Information
(To be completed by the Project Manager)

<table>
<thead>
<tr>
<th></th>
<th>Time at Start-Up</th>
<th>6 Mos after Start-Up</th>
<th>12 Mos after Start-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disk storage (GB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. New/upgraded desktops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Peak update transactions/hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Peak inquiry transactions/hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Peak data throughput/hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Avg. data throughput/hour</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Technical Center Capacity Requirements
(To be completed by the Manager of Systems Administration)

<table>
<thead>
<tr>
<th></th>
<th>Time at Start-Up</th>
<th>6 Mos after Start-Up</th>
<th>12 Mos after Start-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Additional server required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Type of server required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Server processor upgrades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Server memory upgrades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Server software upgrades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Disk resource upgrades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Tape resource upgrades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Backup media required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Physical floor space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Racks, cabinets, furniture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Facilities (electrical, a/c, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Operations Support Requirements
(To be completed by the Manager of Systems Administration)

<table>
<thead>
<tr>
<th></th>
<th>Time at Start-Up</th>
<th>6 Mos after Start-Up</th>
<th>12 Mos after Start-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FTE Computer Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. FTE Systems Administrator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. FTE Database Administrator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. FTE Network Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. FTE Call Center Analyst</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9-1 Sample Production Acceptance Form (page 2 of 3)
Part Two: Actions Required during Month Prior to Start-Up

I. Documentation from Applications (From Project Manager)

<table>
<thead>
<tr>
<th>Documentation</th>
<th>No</th>
<th>Progress</th>
<th>Yes</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Architecture Diagram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Flow Diagram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator Run Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backup Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disaster Recovery Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan with all current infrastructure tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Acceptance Test Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBA Documents (data model, dictionary, scripts, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Status of Testing (From Project Manager)

<table>
<thead>
<tr>
<th>Testing</th>
<th>No</th>
<th>Progress</th>
<th>Yes</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Unit Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Systems Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Integration Tests (when applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Regression Tests (when applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Stress Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. User Acceptance Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Parallel Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Training Plans (From Project Manager)

<table>
<thead>
<tr>
<th>Training</th>
<th>No</th>
<th>Progress</th>
<th>Yes</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Operations Support Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Solution Center Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. User Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Project Manager</th>
<th>Date</th>
<th>Customer Contact</th>
<th>Date</th>
<th>Primary Operations Support</th>
<th>Date</th>
</tr>
</thead>
</table>

Part Three: Actions Required during Week Prior to Start-Up

I. Documentation Follow-Up

A. Review, correct, and update as needed

II. Execution of Training Plans

A. Operator Training
B. Call Center Training
C. User Training

III. Service Level Agreements

A. Signed Service Level Agreements with Customers and Operations Support

<table>
<thead>
<tr>
<th></th>
<th>Project Manager</th>
<th>Date</th>
<th>Customer Contact</th>
<th>Date</th>
<th>Primary Operations Support</th>
<th>Date</th>
</tr>
</thead>
</table>

Figure 9-1 Sample Production Acceptance Form (page 3 of 3)
Step 11: Conduct a Lessons-Learned Session

In this step, the process owner conducts a thorough, candid lessons-learned session with key participants involved in executing the pilot system. Participants should include representatives from the user community, development area, support staff, and help desk.

Step 12: Revise Policies, Procedures, and Forms

The recommendations resulting from the lessons-learned session may include revisions to policies, procedures, forms, test plans, and training techniques for users and support staff. These revisions should be agreed to by the entire cross-functional team and implemented prior to full deployment.

Step 13: Formulate Marketing Strategy

Regardless of how thoroughly and effectively a cross-functional team designs a production acceptance process, the process does little good if it is not supported and applied by development groups. Once the final policies, procedures, and forms are in place, the process owner and design team should formulate and implement a marketing strategy. The marketing plan should include the benefits of using the process; the active support of the executive sponsor and peers; examples of any quick wins as evidenced by the pilot system; and testimonials from users, service desk personnel, and support staff.

Step 14: Follow-up for Ongoing Enforcement and Improvements

Improvement processes such as production acceptance often enjoy much initial support and enthusiasm, but that is sometimes short-lived. Changing priorities, conflicting schedules, budget constraints, turnover of staff or management, lack of adequate resources, and a general reluctance to adopt radically new procedures all contribute to the de-emphasis and avoidance of novel processes. One of the best ways to ensure ongoing support and consistent use is to follow up with reviews, post-mortems, and lessons learned to constantly improve the overall quality, enforcement, and effectiveness of the process.
Full Deployment of a New Application

By this point, the production acceptance process should be designed, approved, documented, tested, and implemented. So when does the new application become deployed? The answer is that the process of developing the process does not specifically include the deployment of a new application. When the production acceptance process is applied, it will include the use of a form such as the one previously described in Figure 9-1, which includes all of the activities leading up to the actual deployment. In other words, if all of the tasks outlined by the form in Figure 9-1 are completed on time for any new application, its successful deployment is all but guaranteed.

One of the key aspects of this entire process is the involvement of the infrastructure group early on. The development manager who owns the new application should notify and involve the production acceptance process owner as soon as a new application is approved. This ensures infrastructure personnel and support staff are given adequate lead time to plan, coordinate, and implement the required resources and training prior to deployment. Just as important are the follow-up and lessons-learned portions of the process, which usually occurs two to three weeks after initial deployment.

Real Life Experience—Celebrating Process Independence Every Day

The IT department of a company offering satellite services to residential users contracted with a consultant to implement a production acceptance process. They selected a financial module of PeopleSoft as their perfect pilot. Everything went flawlessly and the team consisting of the project manager, developers, operations, and other support groups celebrated their modest success. Two months later, several additional modules of PeopleSoft were planned to be installed. But the CIO and development manager had now both moved on and their replacements did not see the immediate value in a production acceptance process. Without it, the implementation of the three additional modules took far longer, and with far more disruption, then the original pilot module.

The new CIO and development manager eventually agreed to follow the process for all future production application implementations. But it came at a price. The original consultant had moved on to his next client and was
unavailable for a short follow-up. The development group was familiarized with the original production acceptance process, but it took longer and cost more than if it had been followed through from the start. The important lesson learned here was to commit to a new process for the long-haul, and to make it independent of key personnel changes.

Distinguishing New Applications from New Versions of Existing Applications

Users of a new process understandably will have questions about when and how to apply it. One of the most frequent questions I hear asked about production acceptance is: Should it be used only for new applications, or is it for new versions of existing applications as well? The answer lies in the overall objective of the process, which is to consistently and successfully deploy application systems into production.

A new version of an existing application often has major changes that impact customers and infrastructure groups alike. In this case, deploying it into production is very similar to deploying a new application. Test plans should be developed, customer acceptance pilots should be formulated, and capacity requirements should be identified well in advance. The guideline for deciding when to use production acceptance is this: Determine how different the new version of the system is from its predecessor. If users, support staff, and service desk personnel are likely to experience even moderate impact from a new version of an existing application, then the production acceptance process should be used.

Distinguishing Production Acceptance from Change Management

Another question I frequently hear is: How does one distinguish production acceptance from change management, since both seem to be handling software changes? The answer is that production acceptance is a special type of change that involves many more elements than the typical software modification. Capacity forecasts, resource requirements, customer sign-off, service desk training, and close initial monitoring by developers are just some of the usual aspects of production acceptance
that are normally not associated with change management. The other obvious difference between the two processes is that, while production acceptance is involved solely with deploying application software into production, change management covers a wide range of activities outside of production software, such as hardware, networks, desktops, and facilities.

Case Study: Assessing the Production Acceptance Process at Seven Diverse Companies

All the theory in the world about designing world-class infrastructures is of little use if it cannot be applied to real-life environments. In this section, I present real-life applications of infrastructure processes in general and applications of the production acceptance process in particular. All of the material in this part of the book is taken from work involving the production acceptance process that I performed in recent years at seven separate companies. The companies vary significantly in size, age, industry, orientation, and IT maturity. As a result, they offer a wide diversity of real-life experiences in how companies recognize, support, and improve the quality of their production acceptance environments.

In addition to the general company attributes previously mentioned, this initial part of the case study describes several key IT characteristics of each firm. This is to show both the amount and range of diversity among these organizations. I then discuss each company in more detail with emphasis on its particular strengths and weaknesses in its approach to infrastructure processes. Included in this section is a unique feature of this book: a completed assessment worksheet measuring the relative quality and robustness of each company’s production acceptance process. The last part of this section summarizes and compares the attributes, relative strengths, weaknesses, and lessons learned from each of the seven companies studied.

The Seven Companies Selected

These seven companies were selected based on my familiarity with each one either as a client of my professional services or as a client whose infrastructure I personally managed. It is fortunate that these companies provided such a wide variety of IT environments. To gain further insight
from studying the relative strengths and weaknesses of numerous production acceptance processes, it is helpful to draw from a variety of IT environments.

The seven companies studied here could not have been more diverse. They each consisted primarily of one of the four major platform environments: mainframe, midrange, client/server, or web-enabled. No two were in the same industry. They covered a wide spectrum of businesses that included aerospace, broadcast content, motion pictures, defense contracting, dotcom e-tailor, broadcast delivery, and financial services.

The age of the oldest company, 50 years, was more than 10 times the age of the youngest one. Even more striking was the variation by a factor of 1,000 from the largest number of total employees (and the number of IT employees specifically) to the smallest. Despite the diversity of these companies, they all had production applications to deploy, operate, maintain, and manage. They all shared a common production goal to run these systems as reliably and as efficiently as possible. The degree to which they accomplished that goal varied almost as widely as the environments that described them. Studying what each company did well or not so well when managing its applications provides important lessons as to how to implement a truly world-class production services department.

Types of Attributes

In setting out to study and analyze the production services function of these companies, I first identified attributes of each company that fell into one of three categories: business-oriented, IT-oriented and production services-oriented. The following characteristics were associated with each category.

Business-oriented attributes:

- Type of industry of the company
 - Manufacturing
 - High technology
 - Entertainment
 - Services
■ Total number of its employees at the time of the study
 Largest had 80,000 workers
 Smallest had 75
 Average number was 17,300
■ Number of years it had been in business
 Oldest was 70 years
 Youngest was 4 years
 Average was 31 years

IT-oriented attributes:
■ Number of IT workers
 Largest had 2000 employees
 Smallest had 25 employees
 Average was 457 employees
■ Number of processors by platform
■ Number of desktops

Production services-oriented attributes:
■ Total number of applications in production
■ Number of production applications deployed per month
■ Existence of a production services department
■ To which group the production services department reported

The largest IT department in our sample skews the data slightly since the average is a more reasonable 200 with it removed.

Table 9-4 lists all of these attributes for each of the seven companies. We identify these seven firms simply as Company A, Company B and on through Company G. A few observations are worth noting aside from the obvious diversity of the companies. One is that the size of the company does not necessarily dictate the size of the IT department. For example, Company A has 80,000 employees, with 400 of them in IT; Company D has 30,000 workers, with 2,000 of them in IT. This is because Company A has many manufacturing workers not directly tied to IT, whereas Company D has major defense programs requiring huge investments in IT.
Table 9-4 Summary Comparison of Case Study Companies

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Company A</th>
<th>Company B</th>
<th>Company C</th>
<th>Company D</th>
<th>Company E</th>
<th>Company F</th>
<th>Company G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry:</td>
<td>Aerospace</td>
<td>Broadcast</td>
<td>Motion</td>
<td>Defense</td>
<td>Dot-com</td>
<td>Broadcast</td>
<td>Financial</td>
</tr>
<tr>
<td>Number of Employees:</td>
<td>80,000</td>
<td>1,500</td>
<td>3,000</td>
<td>30,000</td>
<td>75</td>
<td>4,000</td>
<td>2,500</td>
</tr>
<tr>
<td>Age of Company:</td>
<td>50</td>
<td>15</td>
<td>70</td>
<td>60</td>
<td>4</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Employees Within IT:</td>
<td>400</td>
<td>125</td>
<td>200</td>
<td>2,000</td>
<td>25</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Mainframes:</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(Midranges):</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(Servers)</td>
<td>4</td>
<td>40</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>Desktops</td>
<td>1,200</td>
<td>600</td>
<td>2,000</td>
<td>5,000</td>
<td>80</td>
<td>1,800</td>
<td>1,500</td>
</tr>
<tr>
<td># of Prod. Applications</td>
<td>350</td>
<td>125</td>
<td>150</td>
<td>500</td>
<td>25</td>
<td>700</td>
<td>250</td>
</tr>
<tr>
<td>Applications Deployed/Month:</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Prod. Services Dept.:</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dept. to Which PS Reported:</td>
<td>Ops</td>
<td>N/A</td>
<td>N/A</td>
<td>Ops</td>
<td>N/A</td>
<td>Application Support</td>
<td>N/A</td>
</tr>
<tr>
<td>Quality Assurance Dept.:</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dept. to Which QA Reported:</td>
<td>N/A</td>
<td>N/A</td>
<td>Enterprise Planning</td>
<td>Apps Dev.</td>
<td>N/A</td>
<td>Apps Dev.</td>
<td>Apps Dev.</td>
</tr>
<tr>
<td>Change Mgmt. Formality</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>None</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td>Prod. Acceptance Formality</td>
<td>Medium</td>
<td>None</td>
<td>Low</td>
<td>High</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
We will next look at each of the seven companies in more detail, focusing on their use, or non-use, of a production services function. We will also discuss each IT organization’s relative strengths and weaknesses and what they learned from their experiences with attempting to implement robust infrastructure processes.

Company A

Company A is a large, well-established aerospace firm. The company is more than 50 years old and enjoys a reputation for researching, developing, and applying cutting-edge technology for both the military and commercial sectors. At the time of our assignment, it employed 80,000 workers—of whom 400 resided in IT. The IT platform environment of its main corporate computer center consisted primarily of four huge mainframes, with the same number of midrange computers and servers and approximately 1,200 desktops.

The IT operations department of Company A had a well-established production services function that ran 350 production applications daily (slightly more during month-end processing) and deployed on average two new production applications per month. There was no quality-assurance group at this company, although they did have the beginnings of a formal change management and production acceptance process.

The production services department was staffed by two very competent individuals who thoroughly knew the ins and outs of running virtually every production application in the company, though little of it was documented. They were very technically knowledgeable, as was most all of the staff in IT. This reflected part of the company’s mission to develop highly technical expertise throughout the enterprise. Another part of the company’s mission was to dedicate every department to continuous process improvement. The production services function was still very manually oriented and consequently somewhat inefficient. No automated scheduling systems were in place here at this time, but the company was willing to try new techniques and try new technologies to improve their processes.

Production services was also very segregated from other processes, such as change and problem management. There was only the start of a production acceptance process, which was not tied to production services at all. This segregation occasionally strained communications between operations and applications development. The fact that they were 25 miles apart sometimes added to the lack of face-to-face meetings.

Operations did a good job of collecting meaningful metrics such as outages, abnormal terminations, reruns, reprints, and reports delivered
on time. There was an inconsistent emphasis on how often or how deeply their metrics should be analyzed, which sometimes undermined their usefulness.

To summarize Company A’s strengths, they were willing to try new techniques and new technologies, they committed to continuous process improvement, they hired and developed a technically competent staff, and they were willing to collect meaningful metrics. To summarize their weaknesses, they tended to not interact with members of other IT staffs, they provided little documented training, they did not always have effective communications with the development group (due, in part, to a 25-mile separation), and they did not always analyze the metrics they collected.

Eventually, the operations department implemented a more formal production acceptance process. One of the most important lessons we learned was to ensure the operations department was involved very early with a new application project. This helps ensure that the appropriate operation’s group provides or receives the proper resources, capacity, documentation, and training required for a successful deployment. The other important lesson we learned was that the other infrastructure support groups (such as network services, the help desk, storage management, and desktop applications) need to provide their full support to the production services function. Because this function had worked in an isolated manner in the past, other infrastructure support groups were initially reluctant to support it. They eventually did as improved processes, automation, and increased communication became more prevalent.

The nonweighted worksheet shown in Figure 9-2 presents a quick-and-simple method for assessing the overall quality, efficiency, and effectiveness of the production acceptance process at Company A. As mentioned previously, one of the most valuable characteristics of a worksheet of this kind is that it can be customized to evaluate each of the 12 processes individually. The worksheet in the following sections of this chapter applies only to the production acceptance process for each of the seven companies studied. However, the fundamental concepts applied in using these evaluation worksheets are the same for all 12 disciplines. As a result, the detailed explanation on the general use of these worksheets presented near the end of Chapter 7 also applies to the other worksheets in the book. Please refer to that discussion if you need more information on how weights are computed.

Process owners and their managers collaborate with other appropriate individuals to fill out this form. Along the left-hand column are 10 categories of characteristics about a process. The degree to which each of these characteristics is put to use in designing and managing a process is a good measure of its relative robustness.
Production Acceptance Process - Assessment Worksheet

Process Owner: Employee A
Owner’s Manager: Manager A
Date: N/A

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions About Production Acceptance</th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Support</td>
<td>To what degree does the executive sponsor show support for the production acceptance process with actions such as engaging development managers and their staffs in this process?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Owner</td>
<td>To what degree does the process owner exhibit desirable traits and understand application development and deployment?</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Involvement</td>
<td>To what degree are key customers, especially from development, operations and the help desk, involved in the design and use of the process?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier Involvement</td>
<td>To what degree are key suppliers, such as 3rd party vendors, trainers and technical writers, involved in the design of the process?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Metrics</td>
<td>To what degree are service metrics analyzed for trends such as the amount of positive feedback from users and the number of calls to the help desk, immediately after deployment?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Metrics</td>
<td>To what degree are process metrics analyzed for trends such as the frequency and duration of delays to deployment and the accuracy and timeliness of documentation and training?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Integration</td>
<td>To what degree does the production acceptance process integrate with other processes and tools such as change management and problem management?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlining/Automation</td>
<td>To what degree is the production acceptance process streamlined by automating actions such as the documentation of a new application and online training for it by means of the intranet?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training of Staff</td>
<td>To what degree is the staff cross-trained on the production acceptance process, and how well is the effectiveness of the training verified?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Documentation</td>
<td>To what degree is the quality and value of production acceptance documentation measured and maintained?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals: 4 6 6 4
Grand Total = 20
Assessment Score = 20/40 = 50%

Figure 9-2
Assessment Worksheet for Company A
The categories that assess the overall quality of a process are executive support, process owner, and process documentation. Categories assessing the overall efficiency of a process consist of supplier involvement, process metrics, process integration, and streamlining/automation. The categories used to assess effectiveness include customer involvement, service metrics, and the training of staff.

The evaluation of each category is a very simple procedure. The relative degree to which the characteristics within each category are present and being used is rated on a scale of 1 to 4, with 1 indicating no or barely any presence and 4 representing a large presence of the characteristic. For example, at this particular company, the executive sponsor for the production acceptance process demonstrated some initial support for the process by carefully selecting and coaching the process owner. However, over time, this same executive showed only mild interest in engaging all of the necessary development managers and staffs in the process. We consequently rated the overall degree to which this executive showed support for this process as small, giving it a 3 on the scale of 1 to 4. On the other hand, the process owner was extremely knowledgeable on all of the critical applications and their deployments, so we rated this category a 4.

We similarly rated each of the categories as shown in Figure 9-2. Obviously, a single column could be used record the ratings of each category; however, if we format separate columns for each of the four possible scores, categories scoring the lowest and highest ratings stand out visually. The next step is to sum the numerical scores within each column. For Company A, this totals to 4 + 6 + 6 + 4 = 20. This total is then divided by the maximum possible rating of 40, for an assessment score of 50 percent.

Company B

Company B is a satellite broadcast venture featuring informational programming. It is a relatively young firm at 15 years old. When it began, the technology of digital informational broadcasting was in its early refinement stages. This, among other reasons, resulted in them being very willing to employ cutting-edge technology. They did this almost to a fault, using very advanced but questionably tested technology at the outset for their satellites. They learned from their experiences, improved
their technology, and eventually applied to their IT department by implementing cutting-edge but proved infrastructure processes.

Company B employs 1,500 workers, of whom 125 resided in IT. Their IT platform environment consists of 40 servers and approximately 600 desktops. There was no production services function at Company B nor was there a quality assurance group. They ran 125 production applications daily and deployed on average two new production applications per month. There was only a start of a change management process and no production acceptance process.

With the company poised to implement major enterprise applications, senior IT management realized they needed a formal production acceptance process. While preferring to do the work with their own staffs, they acknowledged limited in-house process expertise and hired professional consultants to run a pilot program. The IT executives were also very helpful in supplying qualified staff members from both applications development and operations to support the pilot program.

Since this was the first formal implementation of any infrastructure process, there was no integration to other processes and no immediate plans to do so. While applications development was extremely helpful in designing the production acceptance process and testing it with a perfect pilot application, they did not provide adequate training and documentation to the operations help desk. This was partly due to a re-shuffling of applications priorities, which also delayed the implementation of the process with a fully deployed application.

In summary of Company B’s strengths, they saw the need for professional support for designing a Production Acceptance processes, they started out with pilot programs, and they staffed the pilot programs with qualified staff. For their weaknesses, the company did not provide adequate training and documentation to the help-desk group for their pilot program; they allowed support for the production acceptance process to weaken.

In a manner similar to that described for Company A, we performed an initial assessment of the production acceptance environment for Company B (see Figure 9-3). Their points totaled 18, for a final assessment score of 45 percent.
Production Acceptance Process - Assessment Worksheet

Process Owner: Employee B
Owner’s Manager: Manager B
Date: N/A

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions About Production Acceptance</th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Support</td>
<td>To what degree does the executive sponsor show support for the production acceptance process with actions such as engaging development managers and their staffs in this process?</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Process Owner</td>
<td>To what degree does the process owner exhibit desirable traits and understand application development and deployment?</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Involvement</td>
<td>To what degree are key customers, especially from development, operations, and the help desk, involved in the design and use of the process?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Supplier Involvement</td>
<td>To what degree are key suppliers, such as 3rd party vendors, trainers, and technical writers, involved in the design of the process?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Service Metrics</td>
<td>To what degree are service metrics analyzed for trends such as the amount of positive feedback from users and the number of calls to the help desk, immediately after deployment?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Metrics</td>
<td>To what degree are process metrics analyzed for trends such as the frequency and duration of delays to deployment and the accuracy and timeliness of documentation and training?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Integration</td>
<td>To what degree does the production acceptance process integrate with other processes and tools such as change management and problem management?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlining/Automation</td>
<td>To what degree is the production acceptance process streamlined by automating actions such as the documentation of a new application and online training for it by means of the intranet?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training of Staff</td>
<td>To what degree is the staff cross-trained on the production acceptance process, and how well is the effectiveness of the training verified?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Process Documentation</td>
<td>To what degree is the quality and value of production acceptance documentation measured and maintained?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Grand Total = 18
Assessment Score = 18/40 = 45%

Figure 9-3
Assessment Worksheet for Company B
Company C

Our third company is one of the seven major motion picture studios in southern California. Studios in Hollywood tend to be an interesting paradox. On the one hand, they are some of the most creative companies for which one could ever hope to work. This applies to the writing, directing, acting, special effects, and other artistic pursuits that go into the production of a major motion picture. But when it comes to the traditional, administrative support of the company, they are as conservative as can be. This was especially true in their IT departments, and Company C was certainly no different in this regard. By the late 1990s, its IT department needed to be significantly upgraded to meet aggressive new business expansions.

Company C employs 3,000 workers, of whom 200 resided in IT. Their IT platform environment consists of two key midrange computers, 50 servers, and approximately 2,000 desktops. The company outsourced its mainframe processing, which still runs many of its core financial systems. There was no production services function at Company C, but there was a quality-assurance department that reported to an enterprise-planning group. Operations ran 150 production applications daily and deployed on average three new production applications per month. There was a formal, though not robust, change management process and an informal production acceptance process.

The IT executives at Company C conducted a studio-wide business assessment and determined that its current IT architecture would not support the future growth of the company. Many of the IT business systems would have to be upgraded or replaced and there would have to be a major overhaul of the IT infrastructure and its processes to support the new application environment. Among the processes needing improving was production acceptance. IT managers recognized the need and the opportunity to re-engineer their systems development life cycle (SDLC) methodology at the same time, and they committed the resources to do so. Software suppliers played key roles in these upgrades and re-engineering efforts. Managers also ensured that users, both internal and external to IT, received sufficient training on these new processes.

The IT quality assurance group at Company C worked closely with operations and developers in chartering a productions services function and in designing a production acceptance process. Since QA reported to the applications development department, IT executives elected to have the production services function report to them as well. This proved to be problematic in that the infrastructure group was often excluded from key deployment decisions. Another result of this arrangement was that it
provided little documentation or training to the service desk and computer operations teams.

Summing up Company C’s strengths, they recognized the need to upgrade their antiquated processes, they committed resources to re-engineer the SDLC process, and they provided considerable training to users on new processes. As to their weaknesses, they did not involve the infrastructure when designing the production acceptance process, they moved the control of production acceptance into applications development and out of operations, and they provided little or no training and documentation for the help desk and operations.

Eventually, the production services function became little more than an extension of the QA department, which still reported to applications development. As a result, although the company did now have a production acceptance process in place, the lack of infrastructure ownership of it made it less robust and less effective. The key lesson learned here was that IT executives must ensure that operations control the production acceptance process and that development be involved in the process design from the start.

Similar to the previous companies, we performed an initial assessment of the production acceptance environment for Company C (see Figure 9-4). Their points totaled 19, for a final assessment score of 48 percent.

Company D

This company is a major defense contractor which has supplied major weapons systems to the United States and foreign governments for more than 60 years. Its customers are primarily the five branches of the U.S. armed forces and secondarily the militaries of foreign governments. The company manages both classified and non-classified programs, putting an additional premium on fail-safe security systems. It also supplies limited commercial aviation products.

At the time of our involvement, Company D employed 30,000 workers, of whom 2,000 resided in IT. Their IT platform environment consists of eight mainframes, 10 midrange computers, 20 servers, and 5,000 desktops. There was a relatively formal production services function at Company D that reported to operations and a quality-assurance group that reported to applications development. They ran 500 production applications daily (dozens more on weekends) and deployed on average four new production applications per month. The company had very formal change management and production acceptance processes and was very committed to the practices of total quality and continuous process improvement.
Production Acceptance Process - Assessment Worksheet

Process Owner: Employee C
Owner’s Manager: Manager C
Date: N/A

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions About Production Acceptance</th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Support</td>
<td>To what degree does the executive sponsor show support for the production acceptance process with actions such as engaging development managers and their staff in this process?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Process Owner</td>
<td>To what degree does the process owner exhibit desirable traits and understand application development and deployment?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Customer Involvement</td>
<td>To what degree are key customers, especially from development, operations, and the help desk, involved in the design and use of the process?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Supplier Involvement</td>
<td>To what degree are key suppliers, such as 3rd party vendors, trainers, and technical writers, involved in the design of the process?</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Service Metrics</td>
<td>To what degree are service metrics analyzed for trends such as the amount of positive feedback from users and the number of calls to the help desk, immediately after deployment?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Metrics</td>
<td>To what degree are process metrics analyzed for trends such as the frequency and duration of delays to deployment and the accuracy and timeliness of documentation and training?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Integration</td>
<td>To what degree does the production acceptance process integrate with other processes and tools such as change management and problem management?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlining/Automation</td>
<td>To what degree is the production acceptance process streamlined by automating actions such as the documentation of a new application and online training for it by means of the intranet?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Training of Staff</td>
<td>To what degree is the staff cross-trained on the production acceptance process, and how well is the effectiveness of the training verified?</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Process Documentation</td>
<td>To what degree is the quality and value of production acceptance documentation measured and maintained?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

| Totals | 3 | 10 | 6 | 0 |

Grand Total = 19
Assessment Score = 19/40 = 48%

Figure 9-4 Assessment Worksheet for Company C
The company also emphasized the use and analysis of meaningful metrics. By meaningful, we mean metrics that our customers and our suppliers can both use to improve the level of our services. One of the most refreshing aspects of this company was their support of our prescribed process improvement sequence of integrating first, standardizing second, streamlining third, and automating last.

As with many government defense contractors, Company D found itself rushing to meet program milestones and this sometimes undermined infrastructure processes such as production acceptance. High-priority projects were allowed to bypass the process to meet critical deadlines. Plans to streamline and automate the production acceptance process became a victim of unfortunate timing. Just as they were about to be put into place, cutbacks in personnel prevented the plans from being implemented. Subsequent mergers and acquisitions brought about some temporary turf wars that further delayed the standardization of processes across all divisions.

To summarize Company D’s strengths, they were committed to total quality and continuous process improvement criteria, they were committed to doing excellent analysis of metrics, and they were striving sequentially to integrate, standardize, streamline, and then automate processes. To summarize their weaknesses, they were undermining the production acceptance process by rushing to meet deadlines, they were allowing high-priority projects to bypass the process, they were not allowing the process to be streamlined due to cutbacks, and they were experiencing occasional turf wars between IT departments.

Eventually, the standardization, streamlining, and automating of processes did occur among departments and across divisions and remote sites, and it brought with it significant operation and financial benefits. The standardization also helped facilitate future company acquisitions and the merging of remote sites.

As we did with our prior companies, we performed an initial assessment of the production acceptance environment for Company D (see Figure 9-5). They scored one of the highest initial assessments we had ever seen. Their points totaled 33, for a final assessment score of 83 percent.
Case Study: Assessing the Production Acceptance Process at Seven Diverse Companies

Production Acceptance Process - Assessment Worksheet

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions About Production Acceptance</th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Support</td>
<td>To what degree does the executive sponsor show support for the production acceptance process with actions such as engaging development managers and their staffs in this process?</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Process Owner</td>
<td>To what degree does the process owner exhibit desirable traits and understand application development and deployment?</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Customer Involvement</td>
<td>To what degree are key customers, especially from development, operations, and the help desk, involved in the design and use of the process?</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Supplier Involvement</td>
<td>To what degree are key suppliers, such as 3rd party vendors, trainers, and technical writers, involved in the design of the process?</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Service Metrics</td>
<td>To what degree are service metrics analyzed for trends such as the amount of positive feedback from users and the number of calls to the help desk, immediately after deployment?</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Process Metrics</td>
<td>To what degree are process metrics analyzed for trends such as the frequency and duration of delays to deployment and the accuracy and timeliness of documentation and training?</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Process Integration</td>
<td>To what degree does the production acceptance process integrate with other processes and tools such as change management and problem management?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Streamlining/Automation</td>
<td>To what degree is the production acceptance process streamlined by automating actions such as the documentation of a new application and online training for it by means of the intranet?</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Training of Staff</td>
<td>To what degree is the staff cross-trained on the production acceptance process, and how well is the effectiveness of the training verified?</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Process Documentation</td>
<td>To what degree is the quality and value of production acceptance documentation measured and maintained?</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totals</th>
<th>0</th>
<th>2</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
</table>

Grand Total = 33

Assessment Score = 33/40 = 83%

Figure 9-5 Assessment Worksheet for Company D
Company E

Our next company is a dot-com victim, but fortunately not a casualty. Like many dot-com start-ups before it, this company began with a simple idea. The idea was to offer pop culture merchandise from television, motion pictures, sports, and other forms of entertainment. It had been in existence barely four years and was poised for significant growth. A shrinking national economy coupled with fierce competition on the Internet forced dramatic cutbacks in the company. It did survive, but on a much smaller scale.

Company E employs 75 workers, of whom 25 resided in IT. Their IT platform environment consists of 10 servers and 80 desktops. There was no production services function at Company E nor was there a quality-assurance group. They ran 25 production applications daily and deployed on average one new production application per month. The initial priorities of the company were to get their website up and operational and to start producing revenue. As a result, there was no change management or production acceptance processes in place. As the company started to grow, the need for these processes became more apparent.

Since the company was starting with a clean slate, there were no previous processes to undo, replace, or re-engineer. There were many young, energetic individuals who were eager to learn new skills and methods. The relatively small profile of applications meant that we had a large number from which to select for a pilot program. A willing staff and a select group of pilot applications could not overcome the problems and changing priorities of the company’s rapid growth. Just as a process was about to be implemented, a new crisis would arise, putting the new procedure on hold.

A larger challenge common to many dot-com companies was the culture clashes that arose between the entrepreneurial spirit of those behind the company’s initial success and the more disciplined approach of those charged with implementing structured processes into the environment. The clash was especially evident between the technical gurus who were used to having free reign when deploying new applications, installing upgrades, or making routine maintenance changes. Those of us tasked with implementing infrastructure processes spent a fair amount of time negotiating, compromising, and marketing before achieving some positive results.

In summarizing Company E’s strengths, they were a high-energy start-up with no prior processes needing to be re-engineered, they had
only a small profile of existing applications with many new ones planned (allowing for a number of pilot programs), and they had a young staff eager to learn new methods. For their weaknesses, their rapid growth hindered the use of processes, their entrepreneurial culture clashed with disciplined processes, and their influential technical gurus were at times unwilling to support new processes.

Despite these drawbacks, we were able to design and pilot an initial production acceptance process. The process was much more streamlined than normal due to the accelerated nature of web-enabled applications. This streamlining actually helped to integrate it with a pilot change management process also being developed. The frequency of new applications builds in this Internet environment at times made change management and production acceptance almost indistinguishable. This integration also facilitated much cross-training between infrastructure groups and applications development to ensure each area understood the other as changes and deployments were being planned.

As we did with our prior companies, we performed an initial assessment of the production acceptance environment for Company E (see Figure 9-6). As you might expect with a start-up, the assessment was relatively low (although they did score well for cross-training). Their points totaled 16, for a final assessment score of 40 percent.

Company F

This company did everything right—almost. It broke off from a relatively rigid, conservative parent company and vowed to be more flexible, progressive, and streamlined. The IT executives understood the importance of robust infrastructure processes and committed the resources to make them a reality. Their only flaw was in diving headfirst into production acceptance before any semblance of a change management process was put in place.

Company F employs 4,000 workers, of whom 300 resided in IT. Their IT platform environment consists of two mainframe processors, two midrange computers, 30 servers, and approximately 1,800 desktops. There was a production services department at Company F that reported to an applications-support group, and there was a quality-assurance group that reported to applications development. They ran 700 production applications daily, a dozen or so more on weekends and during month-end closings, and deployed on average three new production applications per month. There was only a start of change management process and no production acceptance process.
Production Acceptance Process - Assessment Worksheet

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions About Production Acceptance</th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Support</td>
<td>To what degree does the executive sponsor show support for the production acceptance process with actions such as engaging development managers and their staffs in this process?</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Process Owner</td>
<td>To what degree does the process owner exhibit desirable traits and understand application development and deployment?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Involvement</td>
<td>To what degree are key customers, especially from development, operations, and the help desk, involved in the design and use of the process?</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier Involvement</td>
<td>To what degree are key suppliers, such as 3rd party vendors, trainers, and technical writers, involved in the design of the process?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Metrics</td>
<td>To what degree are service metrics analyzed for trends such as the amount of positive feedback from users and the number of calls to the help desk, immediately after deployment?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Metrics</td>
<td>To what degree are process metrics analyzed for trends such as the frequency and duration of delays to deployment and the accuracy and timeliness of documentation and training?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Integration</td>
<td>To what degree does the production acceptance process integrate with other processes and tools such as change management and problem management?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlining/Automation</td>
<td>To what degree is the production acceptance process streamlined by automating actions such as the documentation of a new application and online training for it by means of the intranet?</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training of Staff</td>
<td>To what degree is the staff cross-trained on the production acceptance process, and how well is the effectiveness of the training verified?</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Process Documentation</td>
<td>To what degree is the quality and value of production acceptance documentation measured and maintained?</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Totals

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Grand Total = 16

Assessment Score = 16/40 = 40%

Figure 9-6 Assessment Worksheet for Company E
When the company first asked us to upgrade their IT environment by implementing robust infrastructure processes, they suggested we begin with production acceptance. They reasoned that this would be a natural place to start because they were planning to deploy several new critical applications during the upcoming year and already had an application-support group in place. We conducted an initial assessment of their infrastructure and concluded that a change management process was more urgently needed than production acceptance. We based this conclusion on the number and variety of changes being made to their production environment locally and remotely and that both were increasing at an accelerated rate.

The IT executives were very receptive to our recommendation about change management and were very supportive of our efforts to involve various departments within IT. They suggested that we include the remote sites as part of our strategy and committed time and resources to the process. Including the remote sites was a key addition since it allowed us to standardize and integrate the process across all locations. Even though a partial change management process was already in place, the IT managers realized its disjointed nature and its lack of metrics and were willing to design a new process from scratch. They had not realized much need in the past to collect or analyze metrics, but they were won over after seeing how effective they could be in managing changes and new deployments.

One downside during our involvement at Company F was the frequent reorganizations, especially concerning operations, applications support, and our new production services function. This delayed some of the process approvals and made some of the managers unwilling to select a pilot project for production acceptance because responsibilities for certain applications were likely to change.

As to Company F’s strengths then, they recognized that change management needed to be implemented prior to any other infrastructure processes, their IT executives provided strong support for these processes, they included their remote sites as part of the strategy, and they were willing to start with a clean slate. As to its weaknesses, Company F saw little need for the use of metrics, they had no recognition of the need to analyze metrics, they reorganized frequently, which undermined attempts at process improvements, and they were unwilling to nominate a pilot production acceptance project.

Despite these hurdles, a very effective change management process was implanted at Company F. There was total standardization among three sites despite the fact each site was separated from the other by more than 1,000 miles. There were service and process metrics in place
that were regularly collected, analyzed, and distributed. And it laid the foundation for a production acceptance process that would shortly follow. The most significant lesson learned was how important it was to implement key processes in the proper sequence. We would not have been as successful with either change management or production acceptance if we had not implemented them in the order we did.

As we did with our prior companies, we performed an initial assessment of the production acceptance environment for Company F (see Figure 9-7). Their prior establishment of an application-support group resulted in them having good services metrics, which were collected and analyzed on a regular basis. Their points totaled 27, for a final assessment score of 68 percent.

Company G

Company G is a relatively young financial services establishment that began eight years ago. It is successfully transitioning from that of a small start-up to a medium-sized enterprise. We have seen many a company at a similar time in their development struggle to transform from a novice firm into a mature organization. Company G does not seem to be struggling in this transformation. They have effectively promoted a culture of empowerment, honesty, and change; it is very much in evidence in their everyday manner of doing business.

Company G employs 2,500 workers, of whom 150 reside in IT. Their IT platform environment consists of 200 servers and approximately 1,500 desktops. The reason they have such a large number of servers in relation to desktops is that for several years, each new application was given its own server. This was one of several reasons for instituting a production acceptance process. There was no production services function at Company G, although there was a quality-assurance group that reported to applications development. They run 250 production applications daily and deploy an average of five new production applications per month. There was only the start of a change management process and no production acceptance process at the time we initiated our involvement.

Because the company was so young, it had few infrastructures processes in place. The upside to this was that there were few poor processes that needed to be re-worked. IT executives recognized the need to implement robust infrastructure processes and were willing to hire full-time staff to help implement and maintain them, particularly change management, production acceptance, and business continuity. They also saw the huge benefits from integrating these processes and stressed the need to design and implement these processes in a coordinated fashion.
Production Acceptance Process - Assessment Worksheet

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions About Production Acceptance</th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Support</td>
<td>To what degree does the executive sponsor show support for the production acceptance process with actions such as engaging development managers and their staffs in this process?</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Process Owner</td>
<td>To what degree does the process owner exhibit desirable traits and understand application development and deployment?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Involvement</td>
<td>To what degree are key customers, especially from development, operations, and the help desk, involved in the design and use of the process?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier Involvement</td>
<td>To what degree are key suppliers, such as 3rd party vendors, trainers, and technical writers, involved in the design of the process?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Metrics</td>
<td>To what degree are service metrics analyzed for trends such as the amount of positive feedback from users and the number of calls to the help desk, immediately after deployment?</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Metrics</td>
<td>To what degree are process metrics analyzed for trends such as the frequency and duration of delays to deployment and the accuracy and timeliness of documentation and training?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Integration</td>
<td>To what degree does the production acceptance process integrate with other processes and tools such as change management and problem management?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlining/Automation</td>
<td>To what degree is the production acceptance process streamlined by automating actions such as the documentation of a new application and online training for it by means of the intranet?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training of Staff</td>
<td>To what degree is the staff cross-trained on the production acceptance process, and how well is the effectiveness of the training verified?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Documentation</td>
<td>To what degree is the quality and value of production acceptance documentation measured and maintained?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand Total = 27</td>
</tr>
<tr>
<td></td>
<td>Assessment Score = 27/40 = 68%</td>
</tr>
</tbody>
</table>

Figure 9-7 Assessment Worksheet for Company F
The company did have a few hurdles to overcome. Audits are a fact of life in the banking and financial services industry and Company G had their share of them. This sometimes caused them to focus more on the results of audits than on the quality of their processes and services. Another hurdle was the lack of experience of critical team leads. This was no fault of the leads. The company believed strongly in promoting from within, and with such a young organization, this meant the leads needed some time to grow into their jobs. The company did invest well in training and mentoring to address this.

The rapid growth of the company also caused many shifts in priorities. This caused some pilot applications for production acceptance to change, causing the pilot to be re-started more than once. The production acceptance process did integrate well into their system development life cycle (SDLC) methodology, although an exorbitant amount of detail went into the analyses of these processes.

In review of Company G’s strengths, they provided a highly empowering environment, they were a relatively young firm with few poor processes, they integrated their processes well, and they were willing to hire full-time staff to implement a production acceptance process. As to their weaknesses, they sometimes placed more emphasis on audits than on results, they lacked experienced team leads, their rapid growth caused frequent priority changes, and their production acceptance analysis was overly detailed.

This company used three excellent strategies in its process-improvement efforts

1. They used a simple design in their processes.
2. They used widely accepted tools.
3. They had widespread involvement and agreement by multiple groups to ensure the required buy-in from all required areas.

These strategies worked very well in fashioning processes that were efficient, effective, and widely used.

As we did with our prior companies, we performed an initial assessment of the production acceptance environment for Company G (see Figure 9-8). Their points totaled 24, for a final assessment score of 60 percent.

Selected Companies Comparison in Summary

This concludes our discussion of our process experiences at seven client companies. Table 9-5 presents a summary comparison of each company's overall assessment scores, their relative strengths and weaknesses, and the lessons they and we learned from our process-improvement efforts.
Production Acceptance Process - Assessment Worksheet

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions About Production Acceptance</th>
<th>None</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Support</td>
<td>To what degree does the executive sponsor show support for the production acceptance process with actions such as engaging development managers and their staffs in this process?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Owner</td>
<td>To what degree does the process owner exhibit desirable traits and understand application development and deployment?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Involvement</td>
<td>To what degree are key customers, especially from development, operations, and the help desk, involved in the design and use of the process?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier Involvement</td>
<td>To what degree are key suppliers, such as 3rd party vendors, trainers, and technical writers, involved in the design of the process?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Metrics</td>
<td>To what degree are service metrics analyzed for trends such as the amount of positive feedback from users and the number of calls to the help desk, immediately after deployment?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Metrics</td>
<td>To what degree are process metrics analyzed for trends such as the frequency and duration of delays to deployment and the accuracy and timeliness of documentation and training?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Integration</td>
<td>To what degree does the production acceptance process integrate with other processes and tools such as change management and problem management?</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlining/Automation</td>
<td>To what degree is the production acceptance process streamlined by automating actions such as the documentation of a new application and online training for it by means of the intranet?</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training of Staff</td>
<td>To what degree is the staff cross-trained on the production acceptance process, and how well is the effectiveness of the training verified?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Documentation</td>
<td>To what degree is the quality and value of production acceptance documentation measured and maintained?</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totals</th>
<th>1</th>
<th>10</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
</table>

Grand Total = 24

Assessment Score = 24/40 = 60%

Figure 9-8 Assessment Worksheet for Company G
<table>
<thead>
<tr>
<th>Strengths</th>
<th>Company A</th>
<th>Company B</th>
<th>Company C</th>
<th>Company D</th>
<th>Company E</th>
<th>Company F</th>
<th>Company G</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 50%</td>
<td>- willing to try new techniques and new technologies - committed to continuous process improvement - technically competent staff - willing to collect meaningful metrics</td>
<td>- saw need for professional support for designing PA processes - started out with pilot programs - staffed pilot programs with qualified staff</td>
<td>- recognized need to upgrade antiquated processes - committed resources to re-engineer SDLC - provided much training to users on new processes</td>
<td>- committed to Baldridge quality award criteria - analyzed metrics well - strived to integrate, standardize, streamline, and then automate</td>
<td>- high-energy start-up with no prior processes to re-engineer - small profile of applications allowed for many pilots - young staff eager to learn</td>
<td>- recognized that change management must come first - total support of IT executives - remote sites part of strategy - willing to start with clean slate</td>
<td>- highly empowering environment - relatively young firm with few poor processes - willing to hire full-time staff to implement PA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weaknesses</th>
<th>Company A</th>
<th>Company B</th>
<th>Company C</th>
<th>Company D</th>
<th>Company E</th>
<th>Company F</th>
<th>Company G</th>
</tr>
</thead>
<tbody>
<tr>
<td>- tended to not interact with staff - little documented training - operations and development group physically apart by 25 miles - collected metrics, but did not always analyze them</td>
<td>- did not provide training and documentation to help desk group - support for PA process weakened after pilot program - no plans to integrate with other processes</td>
<td>- did not involve the infrastructure - moved the control of PA into development out of operations - little or no training and documentation for help desk and operations</td>
<td>- rush to meet deadlines undermined the following of the PA process - high priority projects allowed to bypass process - process not streamlined due to cutbacks - turf wars</td>
<td>- rapid growth hindered use of processes - entrepreneurial culture clashed with disciplined processes - influential gurus unwilling to support new processes</td>
<td>- saw little need to use metrics - no recognition of need to analyze metrics - frequent re-orgs undermined improvements - unwilling to nominate a pilot PA project</td>
<td>- more emphasis on audits than on results - lack of experienced team leads - rapid growth caused frequent priority changes - PA analysis overly detailed</td>
<td></td>
</tr>
<tr>
<td>Lessons Learned</td>
<td>Company A</td>
<td>Company B</td>
<td>Company C</td>
<td>Company D</td>
<td>Company E</td>
<td>Company F</td>
<td>Company G</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>development and operations need to work together from the start</td>
<td>AS 50%</td>
<td>45%</td>
<td>48%</td>
<td>83%</td>
<td>40%</td>
<td>68%</td>
<td>60%</td>
</tr>
<tr>
<td>infrastructure support groups need to support the PA process and operations</td>
<td>- ensure the long-range commitments of IT. - consider a change management process prior to a PA process.</td>
<td>- IT executives must ensure that operations control the PA process and that development is involved in the process design from the start.</td>
<td>- there are significant benefits from standardizing across all divisions and remote sites; this helps merger integration.</td>
<td>- one must be aware of changing and conflicting cultures due to the unstructured and entrepreneurial nature of startups.</td>
<td>- important to implement key processes in proper sequence, such as a change management process prior to production services.</td>
<td>- use simple, widely agreed upon processes, strategies, and tools to ensure the buy-in of all required support groups.</td>
<td></td>
</tr>
</tbody>
</table>
Production acceptance is the first systems management process we have looked at that significantly involves other departments and for which we offer a structured methodology to develop its procedures. I began with a formal definition of production acceptance followed by a summary of the 14 steps necessary to implement this process successfully.

We then discussed each of the 14 steps in detail and included recommended attributes for a production acceptance process owner, examples of prioritized requirements and policy statements, and a sample of a production acceptance process form. Next I explained the differences between production acceptance of new applications and that of new versions of existing applications and the change management process. The chapter concluded with a case study comparing the production acceptance processes of seven different companies.
Test Your Understanding

1. The production acceptance methodology is consistent and identical across all platforms. (True or False)

2. Service providers typically need just a small number of key representative customers to serve as a barometer of good customer service. (True or False)

3. Which of the following is not a high priority characteristic of a production acceptance process owner?
 a. knowledge of applications
 b. knowledge of operating systems
 c. ability to evaluate documentation
 d. ability to communicate effectively with software developers

4. Production acceptance requires much cooperation and support between the _____________ and infrastructure departments.

5. Why are policy statements necessary for a robust production acceptance process?

Suggested Further Readings

1. *Managing the IT Service Process*; Computer Weekly Professional Services; Bruton, Noel; 2004
2. *Effective Computer User Support: How to Manage the IT Help Desk*; Bruton, Noel, 2002; Butterworth-Heinemann
Index

A

access patterns, performance issues, 150
administrative tools, 154
AIX (advanced interactive executive), 524
alternative call tracking tools, identifying, 243
alternative sources of staffing, 39
analyzing metrics, 377
applicability, 36
application systems, 162
applications
 deploying for production acceptance process, 175–176
 existing versions, distinguishing from new applications, 176
applying systems management processes to client/server environments, 434–439
assembling
 cross-functional team for production acceptance process, 166–167
 problem management cross-functional team, 241
assessing
 availability process, 127–131
 capacity planning process, 319
 change management process, 224–227
 configuration management process, 298
 disaster recovery process, 353
 network management process, 285
 performance and tuning process, 155
 problem management process, 249, 252
 production acceptance process, case study, 177–201
 skill levels, 35–38
 strategic security process, 336
assessment worksheets
 availability process, 462, 476
 business continuity process, 472, 486
 capacity planning process, 470, 484
 change management process, 465, 479
 configuration management process, 469, 483
 facilities management process, 369, 473, 487
 network management process, 468, 482
 performance and tuning process, 463, 477
 problem management process, 466, 480
 production acceptance process, 464, 478
 security process, 471, 485
 storage management process, 271, 274, 467, 481
assigning process owners
 change management process, 210
 problem management, 240–241
attitude, importance in IT environment, 36
attributes
 of business-oriented companies, assessing production acceptance, 178
 of IT-oriented companies, assessing production acceptance, 179
 of process owners, recommendations, 25
 of production services-oriented companies, assessing production acceptance, 179
 of web-enabled environments, 439
dotcom companies, 443–444
moderate/growing companies, 442–443
traditional companies, 441–442
authority of network management process owner, 281–283
automated console, 522
automated monitoring, 523
automated tape library, 522
automating robust processes, 395–398
availability, 110–111, 326, 459
assessment worksheet, 462, 476
FAQs, 448
improving, 120
measuring, 116–120
metrics, gaining executive support, 11–12
process owners, desired traits of, 115
systems management process, assessing, 127–131
versus high availability, 114
avoiding poor customer service tendencies, 68–69

B
Babbage, Charles, 489
background applications, performance issues, 153
backups, disk-to-disk, 269
Backus, Jim, 497
bandwidth, performance issues, 151
benefits
key personnel, retaining, 45
of capacity planning, 312–314
of change management process, identifying, 212–213
of production acceptance process, 162–163
BIA (business impact analysis), 348
binary numbering system, 506–508
Boole, George, 490
brainstorming, 391
branding, 42
broadcast storms, 152
Brooks, Frederick, 500
buffers, performance issues, 142
business cases, 4
developing, 5
costs, estimating, 6
testimonials, soliciting, 7
business continuity, 342, 459, 486
assessment worksheet, 472
case study, 342–344
disaster recovery plans, 351–353
effective program, developing, 345–351
FAQs, 455
process owner characteristics, 346
business ethics
legislation
California Senate Bill 1386, 84
Graham-Leach-Bliley Act, 83–84
Sarbanes-Oxley Act, 82–83
unethical business practices
Enron case, 79–81
Radio Shack case, 76
Tyco case, 76–77
WorldCom case, 77–78
versus personal ethics, 74–76
business metrics, gaining executive support, 9
business-oriented companies, assessing production acceptance process, 178
business-oriented computers, 494

C
CAB (Change Advisory Board) charter, developing for change management process, 222–223
cache memory, performance issues, 141–144
calculating
availability, 116–120
availability process worksheet score, 131
MTBF, 124
MTTR, 124–125
uptime, 117–118, 120
call handling process, designing, 245
call management as criteria for world-class infrastructure, 379
call tracking tools
 for problem management process, implementing, 245
 identifying, 243
capacity planning, 303–304, 459
 assessment worksheet, 470, 484
 benefits of, 312–314
 effective program, developing, 307–316
 FAQs, 452
 in client/server environments, 439
 ineffectiveness of, reasons for, 305–307
career paths
 of CIOs, 10–11
 developing, 50–52
case studies
 for business continuity, 342, 344
 production acceptance process, assessing, 177–179
 Company A, 181–182, 184
 Company B, 184, 186
 Company C, 187, 189
 Company D, 188, 190
 Company E, 192–193
 Company F, 193, 195–196
 Company G, 196, 198–199
 summary comparison, 198–201
change management, 205, 459
 assessment worksheet, 465
 comparing
 with problem management, 233
 with production acceptance, 176
disadvantages of, 207–208
 scope of, 206–207
change management process
 assessing, 224–227
 assessment worksheets, 479
 developing
 benefits, identifying, 212–213
 CAB charter, developing, 222–223
 cross-functional process design team, 211–212
 executive sponsor, identifying, 209
 initial design, 216, 219–221
 key term definitions, developing, 215–216
 metrics, 213
 policy statements, developing, 221–222
 process owner, assigning, 210
 requirements, identifying, 213–215
 emergency changes metric, 223–224
 FAQs, 450
 streamlining, 228
 channels, performance issues, 142
characteristics
 of availability process owner, prioritizing, 115
 of business continuity owner, 346
 of configuration management process owner, 293
 of facilities management process owner, 363–364
 of network management process owner, 279–280
 of performance and tuning process owner, 139–140
 of production acceptance owner, prioritizing, 165–166
 of quality documentation, 405, 408–412
 of robust processes, 381–389, 400
 of security process owner, 327
 of storage management process owner, 256–257
CIOs, typical career path, 10–11
client issues (problem management), handling, 247–249
client/server environments, applying systems management processes, 434–439
evolution of, 517, 525–527
closing service desk problems, 246–247
COBOL, 498
communicating with executives, 7–9
comparing
availability
 and high availability, 114
 and uptime, 110–111
functions and processes, 236
informal and formal processes, 390
ITIL and ITSM processes, 98, 100–101
performance and tuning with other
 infrastructure processes, 136–138
problem management
 and change management, 233
 incident management, 235
 and request management, 233
process and service metrics, 385
production acceptance
 and change management, 176
 assessment methods, 198, 201
slow response and downtime, 112–113
strategic and tactical processes, 415, 418–420
conducting
 follow-up for production acceptance
 process, 174
 lessons-learned sessions for production
 acceptance process, 174
configuration management, 292, 459
 assessment worksheet, 298, 469, 483
FAQs, 451
 improving, 293–295
process owner characteristics, 293
consultants, 46
 benefits of, 47–48
 disadvantages of, 48–50
contractors, 46
 benefits of, 47–48
 disadvantage of, 48–50
corporate acquisitions, impact on systems
 management, 532–533
costs, estimating for business cases, 6
 CPUs, 493, 508
criteria for world-class infrastructure, 375
call management, 379
effective use of technology, 381
employee empowerment, 379
executive support, 377
integrated systems management
 functions, 381
meaningful metric analysis, 377
proactive management, 378
robust processes, 380
well-developed standards, 380
well-equipped employees, 380
well-trained employees, 380
cross-functional process design team
 assembling for production acceptance
 process, 166–167
meetings, arranging, 211
requirements, prioritizing, 391, 393
responsibilities, establishing, 211–212
selecting for change management
 process, 211
CSC (Customer Service Center), 20
CTCA (Centralized Telecommunications
 and Computing Agency), 93
currency, 37
customer service
 customers, identifying, 57–59
 evolution of, 56–57
 integrating elements of, 64–68
 key processes, identifying, 64
 key services, identifying, 59–62
 key suppliers, identifying, 64
 tendencies to avoid, 68–69
 work-flow process model, 65–68
D
data backups, 268–271
data centers, evaluating risks to, 366
data files, placement of, 148
data storage capacity, 258
database administration, placement within
 IT infrastructure, 22–23
databases, 147–150, 516
deploying new applications for production
 acceptance process, 175–176

546 Index
depth, 37
designing
call handling for problem management process, 245
forms for production acceptance process, 169, 173
initial change management process, 216, 219–221
IT infrastructures, 16–18
database administration, 22–23
network operations, 23
service desk, 19–21
systems management, 23–25
desired characteristics of performance and tuning process owners, 139–140
availability process owners, 115
desktop computers, performance and tuning, 152–153
developing
business cases, 5
costs, estimating, 6
testimonials, soliciting, 7
business continuity process, 345–351
capacity planning program, 307–316
career paths, 50–52
change management process benefits of, identifying, 212–213
CAB charter, developing, 222–223
cross-functional process design team, 211–212
executive sponsor, identifying, 209
initial design, 216, 219–221
key term definitions, developing, 215–216
metrics, 213
policy statements, developing, 221–222
process owner, assigning, 210
requirements, identifying, 213–215
policy statements for production acceptance process, 168–169
problem management process, 239
alternative call tracking tools, identifying, 243
call handling process, 245
call tracking tools, implementing, 245
cross-functional team, assembling, 241
escalation scheme, establishing, 243–244
executive sponsor, selecting, 239
metrics, 245–246
process owner, assigning, 240–241
requirements, identifying, 241–242
service levels, negotiating, 243
robust processes, brainstorming, 391
strategic security process, 326–328, 331, 335
development of IBM, 496–498
System/360, 499–504
of portable disk storage, 258
of systems management, 490–494
client/server platform, evolution of, 525–527
in the current decade, 532–533
Internet, global growth of, 529
mainframe, re-invention of, 522–524
midrange computers, evolution of, 525–527
personal computers, evolution of, 527–529
timeline, 534–535
Y2K, 530–532
of tape storage, 260
developments leading up to ITIL, 90–91
diagnostic tools, 154
digital computers, 508
disadvantages of change management, 207–208
disaster recovery, 255, 351–353
in client/server environments, 437–438
assessing, 353
disk storage space
performance issues, 143–147, 153
disk-to-disk backups, 269
distinguishing new applications from existing versions, 176
documentation, 386
evaluating, 401–412
quality characteristics, 405, 408–412
dotcom company attributes, 443–444
downtime
measuring, 119
versus slow response, 112–113

E

Ebbers, Bernard, 77
Eckert, J.P., 490
Edmondson, David, 76
effective processes, developing
business continuity process, 345–351
capacity planning program, 307–316
effectiveness of systems management processes, assessing, 127
efficiency of systems management processes, assessing, 127
Eisenhower, Dwight D., 492
elements of good customer service
key customers’ services, identifying, 59–62
key customers, identifying, 57–59
key processes, identifying, 64
key suppliers, identifying, 64
emergency changes metric for change management process, 223–224
empirical component reliability analysis, 123
ENIAC (Electronic Numerical Integrated Accounting Calculator), 490
ENIAC II, 491
Enron, unethical business practices, 79–81
ERP (Enterprise Resource Planning), 149
escalation scheme, establishing, 243–244
establishing
escalation scheme, 243–244
metrics for change management process, 213
estimating costs for business cases, 6
ethics, 74, 76
unethical business practices
Enron case, 79–81
Radio Shack case, 76
Tyco case, 76–77
WorldCom case, 77–78
evaluating
availability process, 127–131
infrastructure processes, 398
performance and tuning process, 155
physical environment, 365–366
problem management process, 249, 252
process documentation, 401–405, 408–412
production acceptance process, case study, 177–201
evolution
of customer service, 56–57
of ITIL, 90–96
of mainframe computers, 516
of midrange and client/server platforms, 525–527
of systems management
1980s, 519
binary numbering system, 506–508
client/server systems, emergence of, 517
impact on systems management disciplines, 513–515
locality characteristic, 511
mainframe computers, 515
midrange computers, 516
personal computers, proliferation of, 517
S/370, 510–515
executing pilot system for production acceptance process, 170
executive sponsors
CIOs, typical career path, 9–11
communicating with, 7–9
identifying for change management process, 209
importance of, 3
production acceptance process,
identifying, 164–165
reinforcing, 12
selecting for problem management
process, 239
soliciting for production acceptance
process, 166
support, gaining, 11–12
experience, 36
extents, performance issues, 147

F
facilities management, 359, 459
assessment worksheet, 369, 473, 487
elements of, 360–362
FAQs, 456
improving, 367–368
outsourcing, 369
physical environment, evaluating, 365
risks to data center, 366
stable environment, ensuring, 366
process owner
desired traits of, 363–364
scope of responsibilities, 363
streamlining, 372
UPS, 360
FAQs
availability-related, 448
business continuity-related, 455
capacity planning-related, 452
change management-related, 450
configuration management-related, 451
facilities management-related, 456
network management-related, 453
performance-related, 448
problem management-related, 449
production acceptance-related, 449
security-related, 454
storage management-related, 453
systems management-related, 447
Fastow, Andrew, 79
Fastow, Lea, 79
fat clients, 528
fault tolerance, 114, 265
fiber-optic channels, 258
floppy disks, 258
follow-up, conducting for production
acceptance process, 174
formal processes versus informal
processes, 390
forms, designing for production
acceptance process, 169, 173
formulating marketing strategy for
production acceptance process, 174
FORTRAN, 497
fragmentation, performance issues, 147, 150
future of systems management, 534

G
gaining executive support, 7–9
GDG (generation data group), 270
general-purpose computers, need for,
495–496
global growth of the Internet, 529
good customer service, integrating
elements of, 64–68
Graham-Leach-Bliley Act, 83–84

H
handling service desk client issues, 247, 249
hidden costs of upgrades, 317–318
high availability
seven Rs, 120
recoverability, 125
redundancy, 121–122
reliability, 123–124
repairability, 125
reputation, 122
responsiveness, 126
robustness, 126
versus availability, 114
history of IBM
impact on systems management, 501–504
history of systems management, 490–494
client/server platform, evolution of, 525–527
IBM System/360, 496–504
in the current decade, 532–533
Internet, global growth of, 529
mainframe, re-invention of, 522–524
midrange computers, evolution of, 525–527
personal computers, evolution of, 527–529
timeline, 534–535
Y2K, 530–532
hit ratio, 144
Hollerith, Herman, 490

I–J
I/O channel, 493
IBM, history of, 496–504
identifying
alternative call tracking tools, 243
benefits of change management process, 212–213
executive sponsor
for production acceptance process, 164–165
of change management process, 209
key customers, 57–62
key processes, 64
key suppliers, 64
problem management process
requirements, 241–242
requirements for change management process, 213–215
requirements for production acceptance process, 167–168
strategic processes, 416
tactical processes, 417
impact of System/360 on systems management, 501–504
implementation of ITIL, myths concerning, 102–107
implementing
call tracking tools for problem management process, 245
production acceptance process, 164
cross functional team, assembling, 166–167
executive sponsor, identifying, 164–165
executive support, soliciting, 166
follow-up, conducting, 174
forms, designing, 169, 173
lessons-learned sessions, conducting, 174
marketing strategy, formulating, 174
pilot system, executing, 170
pilot system, nominating, 169
policy statements, developing, 168–169
process owner, selecting, 165–166
requirements, identifying, 167–168
improving
availability, 120
configuration management, 293–295
facilities management process, 367–368
incident management, comparing with problem management, 235
indexes, performance issues, 148–149
ineffectiveness of capacity planning, reasons for, 305–307
informal processes versus formal processes, 390
infrastructure processes
documentation, evaluating, 401–405, 408–412
evaluating, 398
relationships between, 428–430
robustness, evaluating, 400
strategic
identifying, 416
integrating with tactical, 421–427
tactical
identifying, 417
integrating, difficulty of, 420–421
tactical processes,
initial design for change management process, 216, 219–221
initialization parameters, performance issues, 148
integrating
 elements of good customer services, 64–68
 service desks, 237–239
 strategic and tactical processes, 420–427
Internet, global growth of, 529
interviewing, 62–63
IT infrastructures, organizing, 16–18
 database administration, 22–23
 network operations, 23
 service desk, 19–21
 systems management, organizing, 23–25
IT-oriented companies, assessing production acceptance process, 179
ITIL (Information Technology Infrastructure Library), 89
 evolution of, 90–91
 ITSM, 91–92
 objectives, 92
 myths concerning implementation, 102–107
 origins of, 92–96
 processes, comparing to ITSM, 98–101
 standards, 97–98
V2, 95
V3, 95
ITSM, 91
 objectives, 92
 processes, comparing to ITIL, 98–101
ITSMF (Information Technology Service Management Forum), 93
keys, performance issues, 148–149
Kozlowski, Dennis, 76

L

Lay, Kenneth, 79
Lay, Linda, 80
legislation
 California Senate Bill 1386, 84
 Graham-Leach-Bliley Act, 83–84
 Sarbanes-Oxley Act, 82–83
the Leo Factor, 524
lessons-learned sessions, conducting for production acceptance process, 174
level of service provided by network management process, 284
line speed, performance issues, 151
locality characteristic, 510
location of IT infrastructure departments
 database administration, 22–23
 network operations, 23
 service desk, 19–21
 systems management, 23–25
locks, performance issues, 149
logical backups, 267
logical volume groups, 262
macros, 512
main memory, performance issues, 141
mainframes, 492
 evolution of in 1980s, 515–516
 re-invention of, 522–524
marketing strategy, formulating for production acceptance process, 174
Mauchly, Dr. John, 490
measuring
 availability, 116–120
 downtime, 119
 problem management process, 252
 uptime, rule of nines, 119
memory, performance issues, 153
metrics, 385
 analyzing, 377
 availability, gaining executive support, 11–12
 emergency changes, 223–224
 establishing for change management process, 213
 for problem management process developing, 245
 reviewing, 246
Microsoft NT (New Technology) architecture, 526
midrange computers evolution of, 525–527
 extended use of, 516
millennium bug, impact on systems management, 530–532
moderate/growing companies, attributes, 442–443
Moore’s Law, 508
most qualified candidates, selecting, 41–42
MTBF (mean-time between failure), 3, 124, 264
MTTR (mean-time to repair), 3, 124–125
multiplatform support in client/server environments, 435
MVS (Multiple Virtual Storage), 510
MWS (maximum weighted score), calculating for availability process worksheet, 131
Myers, David, 78
 The Mythical Man Month (Brooks), 500
myths concerning implementation of ITIL, 102–107

N
NAS (network attached storage), 263
 performance issues, 146
 negotiating service levels, 243
 network operations, placement within IT infrastructure, 23
network management process, 277, 459
 assessing, 285
 assessment worksheets, 482, 468
 expected level of service, 284
 FAQs, 453
 integration with other processes, 284
 process owner, 279–280
 authority of, 281–283
 tools and vendor support, 283
 responsibilities, 278–279
 streamlining, 288
network protocols, performance issues, 151
networks, performance and tuning, 151–152
Neuman Counting Machine, 490
new applications deploying for production acceptance process, 175–176
distinguishing from existing versions, 176
NGT (nominal group technique), 393
nominating pilot system for production acceptance process, 169
nonstandard interfaces, performance issues, 152
nonweighted attributes, evaluating infrastructure processes, 398
NPI (non-public information), 83

O
objectives of ITSM, 92
optimizing storage management, 261–263
organizing IT infrastructures, 16–18
 database administration, 22–23
 network operations, 23
 service desk, 19–23
 systems management, 23–25
origins of ITIL, 92–96
OS (operating system), 495
outsourcing, 84–85, 369
PeopleSoft, 175

process owner characteristics
 availability process owners, 115
 network management process owners, 279–280
 performance and tuning process owners, 139–140
 production acceptance owners, 165–166

priority scheme, establishing, 243–244

problem management, 231, 459
 assessing, 249, 252
 assessment worksheet, 466, 480
 client issues, 247–249
 comparing
 with change and request management, 233
 with incident management, 235
 FAQs, 449
 measuring, 252
 problems, closing, 246–247
 process development, 239
 alternative call-tracking tools, identifying, 243
 call handling process, 245
 call tracking tools, implementing, 245
 cross-functional team, assembling, 241
 escalation scheme, establishing, 243–244
 executive sponsor, selecting, 239
 metrics, 245
 metrics, reviewing, 246
 process owner, assigning, 240–241
 requirements, identifying, 241–242
 service levels, negotiating, 243
 scope of, 232–233
 service desk
 integrating, 237–239
 role of, 236–237
 process metrics versus service metrics, 385

pre-fetch algorithms, 144

personal computers, proliferation of, 517, 527–529

personal ethics versus business ethics, 74–76

physical backups, 267

physical environment, evaluating, 365–366

pilot systems
 executing for production acceptance process, 170
 nominating for production acceptance process, 169

policy statements, developing
 for change management process, 221–222
 for production acceptance process, 168–169

portable disk storage, development of, 258

prioritizing
 problem management process requirements, 241–242

PeopleSoft, 175

performance
 performance and tuning, 138–139, 459
 assessing, 155
 assessment worksheet, 463, 477
 comparing with other infrastructure processes, 136–138
 FAQs, 448
 in client/server environments, 435–436

preferred characteristics of process owners, 139–140

resource environment applications
 database environment, 147–150
 desktop computer environment, 152–153
 disk storage environment, 143–147
 network environment, 151–152
 server environment, 141–142
 storage management, optimizing, 261–263

prioritizing
 problem management process requirements, 241–242
process owners
assigning for change management process, 210
for production acceptance process, selecting, 165–166
recommended attributes, 25
process-management initiatives, 91
processes
and functions, 236
comparing ITIL and ITSM, 98–101
processors, performance issues, 141, 153
production acceptance process, 161, 459
assessing, case study, 177–201
assessment worksheets, 464, 478
benefits of, 162–163
comparing to change management, 176
FAQs, 450
implementing, 164
 cross-functional team, assembling, 166–167
 executive sponsor, identifying, 164–165
 executive support, soliciting, 166
 follow-up, conducting, 174
 forms, designing, 169, 173
 lessons-learned sessions, conducting, 174
 marketing strategy, formulating, 174
 pilot system, executing, 170
 pilot system, nominating, 169
 policy statements, developing, 168–169
 process owner, selecting, 165–166
requirements, identifying, 167–168
new applications
deploying, 175–176
distinguishing from existing versions, 176
production services-oriented companies, assessing production acceptance process, 179
PTFs (Program Temporary Fixes), 503

Q–R
quality characteristics
of documentation, 405, 408–412
of service provided by network management process, 284
of system management processes, assessing, 127
Radio Shack, unethical business practices, 76
RAID, 265–266
re-invention of mainframe, 522–524
recommended attributes of process owners, 25
recoverability, 125
 in storage management, 268–271
recruiting, 40–41
redundancy, 121–122
reinforcing executives support, 12
relationships of systems management processes, 423–430
reliability, 123–124, 263–266
repairability, 125
reputation, 122
request management, comparing with problem management, 233
requirements
identifying
 for change management process, 213–215
 for problem management process, 241–242
 for production acceptance process, 167–168
prioritizing, 391–393
resource environments, performance and tuning
database environment, 147–150
desktop computer environment, 152–153
disk storage environment, 143–147
network environment, 151–152
server environment, 141–142
responsibilities
 of facilities management process owner, 363
 of network management process, 278–279
responsiveness, 3, 126
retaining key personnel, 43–45
reviewing metrics for problem management process, 246
robust processes, 126
 automating, 395–398
 characteristics of, 381–400
 developing through brainstorming, 391
role of service desk, 236–237
rolling average, calculating for availability, 117–120
rule of nines, 119

S
S/360, 24-bit addressing scheme, 508
S/370, 510–512
 impact on systems management disciplines, 513–515
 locality characteristic, 511
sampling interval, 124
SANs (storage area networks), 145, 263
Sarbanes-Oxley Act, 82–83
scientifically-oriented computers, 494
scope
 of change management, 206–207
 of problem management, 232–233
security
 assessment worksheet, 471, 485
 FAQs, 454
 strategic processes, 326–328, 331, 335
segregating service desks, 237–239
selecting
 cross-functional process design team, 211–212
 executive sponsor for problem management process, 239
 most qualified candidate, 41–42
 production acceptance process owner, 165–166
qualified configuration management process owner, 293–297
servers, 141–142, 526
service desks
 client issues, handling, 247–249
 integrating, 237–239
 placement within IT infrastructure, 19–21
 problems, closing, 246–247
 role of, 236–237
service levels, negotiating, 243
service metrics versus process metrics, 385
seven Rs of high availability, 120
 recoverability, 125
 redundancy, 121–122
 reliability, 123–124
 repairability, 125
 reputation, 122
 responsiveness, 126
 robustness, 126
Sidgemore, John, 78
single sign-ons, performance issues, 152
skill levels, 32
 assessing, 35–38
 staffing requirements, 33–35
skill sets, 32
Skilling, Jeffrey, 79
SLAs (service-level agreements), 56, 285
slow response versus downtime, 112–113
soliciting
 executive support for production acceptance process, 166
 testimonials for business cases, 7
stability, 2, 366
staffing
 alternative sources of, 39
 career paths, developing, 50–52
 consultants, 46–50
 contractors, 46–50
 key personnel, retaining, 43–45
 most qualified candidate, selecting, 41–42
 recruiting, 40–41
 skill level requirements, 33–38
standards, ITIL, 97–98
Stevenson, Alai J., 492
storage management, 256, 460
 assessment worksheet, 271, 274, 467
desired traits of process owner, 256–257
FAQs, 453
 optimizing, 261–263
 portable disk storage, development of, 258
recoverability, 268–271
reliability, 263–266
storage capacity, 258
streamlining, 274
 tape storage, development of, 260
storage management process, assessment worksheets, 481
strategic planning, 18
strategic processes
 assessing, 336
 developing, 326–328, 331, 335
 identifying, 416
 integrating with tactical processes, 421–427
 versus tactical processes, 415, 418–420
strategic security, 326, 460
streamlining
 change management process, 228
 configuration management process, 301
 facilities management, 372
 network management process, 288
 problem management process, 252
 storage management, 274
striping, performance issues, 145
Sullivan, David, 78
swap space, performance issues, 142
Swartz, Mark, 76
System/360, 499–504
System/390, 523
systems management, 1–2, 460
 applying to client server environments, 434–439
 FAQs, 447
 placement within IT infrastructure, 23–25
 process owners, recommended attributes, 25
 responsiveness, 3
 stability, 2

T

table files, placement of, 147
tactical processes
 identifying, 417
 integrating with strategic, 420–427
 versus strategic processes, 415, 418–420
tape storage, development of, 260
technical writers, matching background with technicians, 295
testimonials, soliciting for business cases, 7
thin clients, 527
timeline of systems management disciplines, 534–535
tools for network management process, 283
traditional companies, attributes, 441–442
traits
 of availability process owner, prioritizing, 115
 of business continuity owner, 346
 of configuration management process owner, 293
 of facilities management process owner, 363–364
 of network management process owner, 279–280
 of performance and tuning process owner, 139–140
 of production acceptance owner, prioritizing, 165–166
 of robust processes, 382–389
 of security process owner, 327
 of storage management process owner, 256–257
troubleshooting. See problem management tuning, 139, 435–436. See also
 performance and tuning
Turing Machine, 490
Turing, Alan, 490
Tyco, unethical business practices, 76–77

U
unethical business practices
Enron case, 79–81
Radio Shack case, 76
Tyco case, 76–77
WorldCom case, 77–78
UNIVAC, 492
upgrades, hidden costs of, 317–318
UPS, 360
uptime, 110
 effect on availability, 111–112
 measuring, 117–120
 rule of nines, 119
USB flash drives, 258

V
validate/negotiate/escalate interview method, 63
vendor relationships
 in client/server environments, 434
 network management process, 283
versioning control, 292
virtual storage, 510
volume groups, performance issues, 144
Von Neuman, Eric, 490
VS 1 (Virtual Storage 1), 510
VS 2 (Virtual Storage 2), 510

W–X–Y–Z
Watson, Thomas, 496
web-enabled environment attributes, 439
 dotcom companies, 443–444
 moderate/growing companies, 442–443
 traditional companies, 441–442
weighted attributes, evaluating
 infrastructure processes, 400
work-flow process model, 65–68
worksheets, configuration management assessment, 298
world-class infrastructures, criteria for, 375
 call management, 379
 effective use of technology, 381
 employee empowerment, 379
 executive support, 377
 integrated systems management functions, 381
 meaningful metric analysis, 377
 proactive management, 378
 robust processes, 380
 well-developed standards, 380
 well-equipped employees, 380
 well-trained employees, 380
WorldCom, unethical business practices, 77–78

Y2K, impact on systems management, 530–532
Yates, Buford, 78