

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Hallinan, Christopher.
 Embedded Linux primer : a practical real-world approach / Christopher Hallinan.
 p. cm.
 ISBN 978-0-13-701783-6 (hardback : alk. paper) 1. Linux. 2. Operating systems (Computers) 3. Embedded computer
systems--Programming. I. Title.

 QA76.76.O63H34462 2011
 005.4’32--dc22

 2010032891

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-137-01783-6
ISBN-10: 0-137-01783-9

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing September 2010

Editor-in-Chief: Mark L. Taub
Executive Acquisitions Editor: Debra Williams Cauley
Development Editor: Michael Thurston
Managing Editor: Kristy Hart
Project Editors: Alexandra Maurer and Jovana San Nicolas-Shirley
Copy Editor: Gayle Johnson
Indexer: Heather McNeill
Proofreader: Sarah Kearns
Technical Reviewers: Robert P.J. Day, Kurt Lloyd, Jon Masters, Sandra Terrace, and Mark A. Yoder
Publishing Coordinator: Kim Boedigheimer
Cover Designer: Alan Clements
Compositor: Tricia Bronkella

vii

Contents

Foreword for the First Edition ... xxv

Foreword for the Second Edition .. xxvi

Preface ... xxvii

Acknowledgments for the First Edition ..xxxiii

Acknowledgments for the Second Edition ... xxxv

About the Author ... xxxvi

Chapter 1 Introduction..1

1.1 Why Linux? ... 2

1.2 Embedded Linux Today .. 3

1.3 Open Source and the GPL .. 3

1.3.1 Free Versus Freedom .. 4

1.4 Standards and Relevant Bodies .. 5

1.4.1 Linux Standard Base .. 5

1.4.2 Linux Foundation .. 6

1.4.3 Carrier-Grade Linux .. 6

1.4.4 Mobile Linux Initiative: Moblin... 7

1.4.5 Service Availability Forum.. 7

1.5 Summary ... 8

1.5.1 Suggestions for Additional Reading .. 8

viii Embedded Linux Primer, Second Edition

Chapter 2 The Big Picture ...9

2.1 Embedded or Not? .. 10

2.1.1 BIOS Versus Bootloader .. 11

2.2 Anatomy of an Embedded System ... 12

2.2.1 Typical Embedded Linux Setup ... 13

2.2.2 Starting the Target Board ... 14

2.2.3 Booting the Kernel ... 16

2.2.4 Kernel Initialization: Overview .. 18

2.2.5 First User Space Process: init ... 19

2.3 Storage Considerations .. 20

2.3.1 Flash Memory .. 20

2.3.2 NAND Flash ... 22

2.3.3 Flash Usage .. 23

2.3.4 Flash File Systems .. 24

2.3.5 Memory Space ... 25

2.3.6 Execution Contexts .. 26

2.3.7 Process Virtual Memory ... 28

2.3.8 Cross-Development Environment .. 30

2.4 Embedded Linux Distributions ... 32

2.4.1 Commercial Linux Distributions ... 33

2.4.2 Do-It-Yourself Linux Distributions .. 33

2.5 Summary ... 34

2.5.1 Suggestions for Additional Reading .. 35

Chapter 3 Processor Basics ..37

3.1 Stand-Alone Processors .. 38

3.1.1 IBM 970FX ... 39

3.1.2 Intel Pentium M .. 39

 Contents ix

3.1.3 Intel Atom™ ... 40

3.1.4 Freescale MPC7448 ... 40

3.1.5 Companion Chipsets ... 41

3.2 Integrated Processors: Systems on Chip ... 43

3.2.1 Power Architecture ... 44

3.2.2 Freescale Power Architecture .. 44

3.2.3 Freescale PowerQUICC I ... 45

3.2.4 Freescale PowerQUICC II ... 46

3.2.5 PowerQUICC II Pro .. 47

3.2.6 Freescale PowerQUICC III .. 48

3.2.7 Freescale QorIQ™ .. 48

3.2.8 AMCC Power Architecture .. 50

3.2.9 MIPS ... 53

3.2.10 Broadcom MIPS .. 54

3.2.11 Other MIPS ... 55

3.2.12 ARM ... 55

3.2.13 TI ARM ... 56

3.2.14 Freescale ARM ... 58

3.2.15 Other ARM Processors .. 59

3.3 Other Architectures ... 59

3.4 Hardware Platforms .. 60

3.4.1 CompactPCI ... 60

3.4.2 ATCA .. 60

3.5 Summary ... 61

3.5.1 Suggestions for Additional Reading .. 62

x Embedded Linux Primer, Second Edition

Chapter 4 The Linux Kernel: A Different Perspective ..63

4.1 Background ... 64

4.1.1 Kernel Versions .. 65

4.1.2 Kernel Source Repositories ... 67

4.1.3 Using git to Download a Kernel .. 68

4.2 Linux Kernel Construction.. 68

4.2.1 Top-Level Source Directory .. 69

4.2.2 Compiling the Kernel .. 69

4.2.3 The Kernel Proper: vmlinux .. 72

4.2.4 Kernel Image Components .. 73

4.2.5 Subdirectory Layout ... 77

4.3 Kernel Build System .. 78

4.3.1 The Dot-Config ... 78

4.3.2 Configuration Editor(s) ... 80

4.3.3 Makefile Targets ... 83

4.4 Kernel Configuration .. 89

4.4.1 Custom Configuration Options ... 91

4.4.2 Kernel Makefiles .. 95

4.5 Kernel Documentation .. 96

4.6 Obtaining a Custom Linux Kernel .. 96

4.6.1 What Else Do I Need? ... 97

4.7 Summary ... 97

4.7.1 Suggestions for Additional Reading .. 98

Chapter 5 Kernel Initialization ..99

5.1 Composite Kernel Image: Piggy and Friends ... 100

5.1.1 The Image Object ... 103

5.1.2 Architecture Objects .. 104

 Contents xi

5.1.3 Bootstrap Loader ... 105

5.1.4 Boot Messages .. 106

5.2 Initialization Flow of Control .. 109

5.2.1 Kernel Entry Point: head.o .. 111

5.2.2 Kernel Startup: main.c .. 113

5.2.3 Architecture Setup ... 114

5.3 Kernel Command-Line Processing .. 115

5.3.1 The __setup Macro ... 116

5.4 Subsystem Initialization ... 122

5.4.1 The *__initcall Macros ... 122

5.5 The init Thread ... 125

5.5.1 Initialization Via initcalls .. 126

5.5.2 initcall_debug .. 127

5.5.3 Final Boot Steps ... 127

5.6 Summary ... 129

5.6.1 Suggestions for Additional Reading .. 130

Chapter 6 User Space Initialization ...131

6.1 Root File System ... 132

6.1.1 FHS: File System Hierarchy Standard .. 133

6.1.2 File System Layout ... 133

6.1.3 Minimal File System .. 134

6.1.4 The Embedded Root FS Challenge .. 136

6.1.5 Trial-and-Error Method ... 137

6.1.6 Automated File System Build Tools .. 137

xii Embedded Linux Primer, Second Edition

6.2 Kernel’s Last Boot Steps... 137

6.2.1 First User Space Program ... 139

6.2.2 Resolving Dependencies ... 139

6.2.3 Customized Initial Process ... 140

6.3 The init Process .. 140

6.3.1 inittab ... 143

6.3.2 Sample Web Server Startup Script .. 145

6.4 Initial RAM Disk .. 146

6.4.1 Booting with initrd .. 147

6.4.2 Bootloader Support for initrd .. 148

6.4.3 initrd Magic: linuxrc ... 150

6.4.4 The initrd Plumbing .. 151

6.4.5 Building an initrd Image .. 152

6.5 Using initramfs .. 153

6.5.1 Customizing initramfs .. 154

6.6 Shutdown .. 156

6.7 Summary ... 156

6.7.1 Suggestions for Additional Reading .. 157

Chapter 7 Bootloaders ...159

7.1 Role of a Bootloader .. 160

7.2 Bootloader Challenges ... 161

7.2.1 DRAM Controller ... 161

7.2.2 Flash Versus RAM .. 162

7.2.3 Image Complexity.. 162

7.2.4 Execution Context ... 165

 Contents xiii

7.3 A Universal Bootloader: Das U-Boot ... 166

7.3.1 Obtaining U-Boot ... 166

7.3.2 Configuring U-Boot .. 167

7.3.3 U-Boot Monitor Commands ... 169

7.3.4 Network Operations .. 170

7.3.5 Storage Subsystems .. 173

7.3.6 Booting from Disk ... 174

7.4 Porting U-Boot ... 174

7.4.1 EP405 U-Boot Port ... 175

7.4.2 U-Boot Makefile Configuration Target .. 176

7.4.3 EP405 First Build .. 177

7.4.4 EP405 Processor Initialization.. 178

7.4.5 Board-Specific Initialization ... 181

7.4.6 Porting Summary ... 184

7.4.7 U-Boot Image Format .. 185

7.5 Device Tree Blob (Flat Device Tree) ... 187

7.5.1 Device Tree Source ... 189

7.5.2 Device Tree Compiler .. 192

7.5.3 Alternative Kernel Images Using DTB ... 193

7.6 Other Bootloaders ... 194

7.6.1 Lilo .. 194

7.6.2 GRUB ... 195

7.6.3 Still More Bootloaders ... 197

7.7 Summary ... 197

7.7.1 Suggestions for Additional Reading .. 198

xiv Embedded Linux Primer, Second Edition

Chapter 8 Device Driver Basics ...201

8.1 Device Driver Concepts .. 202

8.1.1 Loadable Modules .. 203

8.1.2 Device Driver Architecture .. 204

8.1.3 Minimal Device Driver Example .. 204

8.1.4 Module Build Infrastructure .. 205

8.1.5 Installing a Device Driver .. 209

8.1.6 Loading a Module .. 210

8.1.7 Module Parameters .. 211

8.2 Module Utilities .. 212

8.2.1 insmod ... 212

8.2.2 lsmod ... 213

8.2.3 modprobe ... 213

8.2.4 depmod ... 214

8.2.5 rmmod ... 215

8.2.6 modinfo ... 216

8.3 Driver Methods ... 217

8.3.1 Driver File System Operations ... 217

8.3.2 Allocation of Device Numbers ... 220

8.3.3 Device Nodes and mknod .. 220

8.4 Bringing It All Together ... 222

8.5 Building Out-of-Tree Drivers .. 223

8.6 Device Drivers and the GPL .. 224

8.7 Summary ... 225

8.7.1 Suggestions for Additional Reading .. 226

 Contents xv

Chapter 9 File Systems ...227

9.1 Linux File System Concepts .. 228

9.1.1 Partitions ... 229

9.2 ext2 ... 230

9.2.1 Mounting a File System ... 232

9.2.2 Checking File System Integrity .. 233

9.3 ext3 ... 235

9.4 ext4 ... 237

9.5 ReiserFS .. 238

9.6 JFFS2 .. 239

9.6.1 Building a JFFS2 Image ... 240

9.7 cramfs .. 242

9.8 Network File System ... 244

9.8.1 Root File System on NFS ... 246

9.9 Pseudo File Systems ... 248

9.9.1 /proc File System ... 249

9.9.2 sysfs ... 252

9.10 Other File Systems .. 255

9.11 Building a Simple File System ... 256

9.12 Summary ... 258

9.12.1 Suggestions for Additional Reading .. 259

Chapter 10 MTD Subsystem ...261

10.1 MTD Overview .. 262

10.1.1 Enabling MTD Services ... 263

10.1.2 MTD Basics ... 265

10.1.3 Configuring MTD on Your Target ... 267

xvi Embedded Linux Primer, Second Edition

10.2 MTD Partitions .. 267

10.2.1 Redboot Partition Table Partitioning .. 269

10.2.2 Kernel Command-Line Partitioning .. 273

10.2.3 Mapping Driver ... 274

10.2.4 Flash Chip Drivers ... 276

10.2.5 Board-Specific Initialization ... 276

10.3 MTD Utilities ... 279

10.3.1 JFFS2 Root File System ... 281

10.4 UBI File System .. 284

10.4.1 Configuring for UBIFS .. 284

10.4.2 Building a UBIFS Image .. 284

10.4.3 Using UBIFS as the Root File System .. 287

10.5 Summary ... 287

10.5.1 Suggestions for Additional Reading .. 288

Chapter 11 BusyBox ..289

11.1 Introduction to BusyBox ... 290

11.1.1 BusyBox Is Easy ... 291

11.2 BusyBox Configuration ... 291

11.2.1 Cross-Compiling BusyBox ... 293

11.3 BusyBox Operation ... 293

11.3.1 BusyBox init ... 297

11.3.2 Sample rcS Initialization Script .. 299

11.3.3 BusyBox Target Installation .. 300

11.3.4 BusyBox Applets .. 302

11.4 Summary ... 303

11.4.1 Suggestions for Additional Reading .. 304

 Contents xvii

Chapter 12 Embedded Development Environment ...305

12.1 Cross-Development Environment ... 306

12.1.1 “Hello World” Embedded .. 307

12.2 Host System Requirements .. 311

12.2.1 Hardware Debug Probe ... 311

12.3 Hosting Target Boards ... 312

12.3.1 TFTP Server .. 312

12.3.2 BOOTP/DHCP Server.. 313

12.3.3 NFS Server .. 316

12.3.4 Target NFS Root Mount .. 318

12.3.5 U-Boot NFS Root Mount Example ... 320

12.4 Summary ... 322

12.4.1 Suggestions for Additional Reading .. 323

Chapter 13 Development Tools ...325

13.1 GNU Debugger (GDB) .. 326

13.1.1 Debugging a Core Dump .. 327

13.1.2 Invoking GDB ... 329

13.1.3 Debug Session in GDB .. 331

13.2 Data Display Debugger ... 333

13.3 cbrowser/cscope .. 335

13.4 Tracing and Profiling Tools .. 337

13.4.1 strace ... 337

13.4.2 strace Variations ... 341

13.4.3 ltrace ... 343

13.4.4 ps .. 344

13.4.5 top .. 346

xviii Embedded Linux Primer, Second Edition

13.4.6 mtrace ... 348

13.4.7 dmalloc ... 350

13.4.8 Kernel Oops .. 353

13.5 Binary Utilities .. 355

13.5.1 readelf ... 355

13.5.2 Examining Debug Information Using readelf .. 357

13.5.3 objdump ... 359

13.5.4 objcopy ... 360

13.6 Miscellaneous Binary Utilities ... 361

13.6.1 strip ... 361

13.6.2 addr2line ... 361

13.6.3 strings ... 362

13.6.4 ldd .. 362

13.6.5 nm .. 363

13.6.6 prelink ... 364

13.7 Summary ... 364

13.7.1 Suggestions for Additional Reading .. 365

Chapter 14 Kernel Debugging Techniques ..367

14.1 Challenges to Kernel Debugging ... 368

14.2 Using KGDB for Kernel Debugging ... 369

14.2.1 KGDB Kernel Configuration ... 371

14.2.2 Target Boot with KGDB Support ... 372

14.2.3 Useful Kernel Breakpoints .. 376

14.2.4 Sharing a Console Serial Port with KGDB ... 377

14.2.5 Debugging Very Early Kernel Code ... 379

14.2.6 KGDB Support in the Mainline Kernel ... 380

 Contents xix

14.3 Kernel Debugging Techniques ... 381

14.3.1 gdb Remote Serial Protocol .. 382

14.3.2 Debugging Optimized Kernel Code ... 385

14.3.3 GDB User-Defined Commands ... 392

14.3.4 Useful Kernel GDB Macros ... 393

14.3.5 Debugging Loadable Modules.. 402

14.3.6 printk Debugging ... 407

14.3.7 Magic SysReq Key ... 409

14.4 Hardware-Assisted Debugging ... 410

14.4.1 Programming Flash Using a JTAG Probe ... 411

14.4.2 Debugging with a JTAG Probe .. 413

14.5 When It Doesn’t Boot ... 417

14.5.1 Early Serial Debug Output .. 417

14.5.2 Dumping the printk Log Buffer ... 417

14.5.3 KGDB on Panic ... 420

14.6 Summary ... 421

14.6.1 Suggestions for Additional Reading .. 422

Chapter 15 Debugging Embedded Linux Applications423

15.1 Target Debugging .. 424

15.2 Remote (Cross) Debugging ... 424

15.2.1 gdbserver ... 427

15.3 Debugging with Shared Libraries .. 429

15.3.1 Shared Library Events in GDB ... 431

15.4 Debugging Multiple Tasks ... 435

15.4.1 Debugging Multiple Processes .. 435

15.4.2 Debugging Multithreaded Applications ... 438

15.4.3 Debugging Bootloader/Flash Code .. 441

xx Embedded Linux Primer, Second Edition

15.5 Additional Remote Debug Options ... 442

15.5.1 Debugging Using a Serial Port ... 442

15.5.2 Attaching to a Running Process ... 442

15.6 Summary ... 443

15.6.1 Suggestions for Additional Reading .. 444

Chapter 16 Open Source Build Systems ..445

16.1 Why Use a Build System? .. 446

16.2 Scratchbox... 447

16.2.1 Installing Scratchbox .. 447

16.2.2 Creating a Cross-Compilation Target ... 448

16.3 Buildroot ... 451

16.3.1 Buildroot Installation ... 451

16.3.2 Buildroot Configuration .. 451

16.3.3 Buildroot Build .. 452

16.4 OpenEmbedded .. 454

16.4.1 OpenEmbedded Composition ... 455

16.4.2 BitBake Metadata ... 456

16.4.3 Recipe Basics .. 456

16.4.4 Metadata Tasks ... 460

16.4.5 Metadata Classes .. 461

16.4.6 Configuring OpenEmbedded .. 462

16.4.7 Building Images ... 463

16.5 Summary ... 464

16.5.1 Suggestions for Additional Reading .. 464

 Contents xxi

Chapter 17 Linux and Real Time ...465

17.1 What Is Real Time? ... 466

17.1.1 Soft Real Time ... 466

17.1.2 Hard Real Time ... 467

17.1.3 Linux Scheduling ... 467

17.1.4 Latency .. 467

17.2 Kernel Preemption .. 469

17.2.1 Impediments to Preemption... 469

17.2.2 Preemption Models .. 471

17.2.3 SMP Kernel ... 472

17.2.4 Sources of Preemption Latency .. 473

17.3 Real-Time Kernel Patch... 473

17.3.1 Real-Time Features .. 475

17.3.2 O(1) Scheduler .. 476

17.3.3 Creating a Real-Time Process ... 477

17.4 Real-Time Kernel Performance Analysis .. 478

17.4.1 Using Ftrace for Tracing ... 478

17.4.2 Preemption Off Latency Measurement ... 479

17.4.3 Wakeup Latency Measurement .. 481

17.4.4 Interrupt Off Timing ... 483

17.4.5 Soft Lockup Detection ... 484

17.5 Summary ... 485

17.5.1 Suggestion for Additional Reading ... 485

Chapter 18 Universal Serial Bus ..487

18.1 USB Overview .. 488

18.1.1 USB Physical Topology .. 488

18.1.2 USB Logical Topology ... 490

xxii Embedded Linux Primer, Second Edition

18.1.3 USB Revisions ... 491

18.1.4 USB Connectors .. 492

18.1.5 USB Cable Assemblies ... 494

18.1.6 USB Modes ... 494

18.2 Configuring USB .. 495

18.2.1 USB Initialization .. 497

18.3 sysfs and USB Device Naming .. 500

18.4 Useful USB Tools .. 502

18.4.1 USB File System .. 502

18.4.2 Using usbview .. 504

18.4.3 USB Utils (lsusb) .. 507

18.5 Common USB Subsystems .. 508

18.5.1 USB Mass Storage Class ... 508

18.5.2 USB HID Class ... 511

18.5.3 USB CDC Class Drivers .. 512

18.5.4 USB Network Support ... 515

18.6 USB Debug ... 516

18.6.1 usbmon .. 517

18.6.2 Useful USB Miscellanea ... 518

18.7 Summary ... 519

18.7.1 Suggestions for Additional Reading .. 519

Chapter 19 udev ..521

19.1 What Is udev? .. 522

19.2 Device Discovery ... 523

19.3 Default udev Behavior ... 525

 Contents xxiii

19.4 Understanding udev Rules ... 527

19.4.1 Modalias .. 530

19.4.2 Typical udev Rules Configuration .. 533

19.4.3 Initial System Setup for udev ... 535

19.5 Loading Platform Device Drivers .. 538

19.6 Customizing udev Behavior ... 540

19.6.1 udev Customization Example: USB Automounting 540

19.7 Persistent Device Naming .. 541

19.7.1 udev Helper Utilities .. 542

19.8 Using udev with busybox .. 545

19.8.1 busybox mdev .. 545

19.8.2 Configuring mdev .. 547

19.9 Summary ... 548

19.9.1 Suggestions for Additional Reading .. 548

Appendix A GNU Public License ...549

Preamble .. 550

Terms and Conditions for Copying, Distribution, and Modification 551

No Warranty .. 555

Appendix B U-Boot Configurable Commands ..557

Appendix C BusyBox Commands ..561

Appendix D SDRAM Interface Considerations ... 571

D.1 SDRAM Basics .. 572

D.1.1 SDRAM Refresh ... 573

D.2 Clocking .. 574

xxiv Embedded Linux Primer, Second Edition

D.3 SDRAM Setup ... 575

D.4 Summary ... 580

D.4.1 Suggestions for Additional Reading ... 580

Appendix E Open Source Resources ..581

Source Repositories and Developer Information ... 582

Mailing Lists .. 582

Linux News and Developments .. 583

Open Source Legal Insight and Discussion ... 583

Appendix F Sample BDI-2000 Configuration File ..585

 Index ...593

xxv

Foreword for the First Edition

Computers are everywhere.
This fact, of course, is no surprise to anyone who hasn’t been living in a cave during the

past 25 years or so. And you probably know that computers aren’t just on our desktops, in
our kitchens, and, increasingly, in our living rooms, holding our music collections. They’re
also in our microwave ovens, our regular ovens, our cell phones, and our portable digital
music players.

And if you’re holding this book, you probably know a lot, or are interested in learning
more about, these embedded computer systems.

Until not too long ago, embedded systems were not very powerful, and they ran spe-
cial-purpose, proprietary operating systems that were very different from industry-standard
ones. (Plus, they were much harder to develop for.) Today, embedded computers are as
powerful as, if not more powerful than, a modern home computer. (Consider the high-end
gaming consoles, for example.)

Along with this power comes the capability to run a full-fl edged operating system such
as Linux. Using a system such as Linux for an embedded product makes a lot of sense. A
large community of developers are making this possible. The development environment
and the deployment environment can be surprisingly similar, which makes your life as a
developer much easier. And you have both the security of a protected address space that a
virtual memory-based system gives you and the power and fl exibility of a multiuser, multi-
process system. That’s a good deal all around.

For this reason, companies all over the world are using Linux on many devices such as
PDAs, home entertainment systems, and even, believe it or not, cell phones!

I’m excited about this book. It provides an excellent “guide up the learning curve” for the
developer who wants to use Linux for his or her embedded system. It’s clear, well-written,
and well-organized; Chris’s knowledge and understanding show through at every turn. It’s
not only informative and helpful; it’s also enjoyable to read.

I hope you learn something and have fun at the same time. I know I did.

Arnold Robbins
Series Editor

xxvi

Foreword for the
Second Edition

Smart phones. PDAs. Home routers. Smart televisions. Smart Blu-ray players.
Smart yo-yos. OK, maybe not. More and more of the everyday items in our homes
and offi ces, used for work and play, have computers embedded in them. And those
computers are running GNU/Linux.

You may be a GNU/Linux developer used to working on desktop (or notebook)
Intel Architecture systems. Or you may be an embedded systems developer used
to more traditional embedded and/or real-time operating systems. Whatever your
background, if you’re entering the world of embedded Linux development, Doro-
thy’s “Toto, I’ve a feeling we’re not in Kansas anymore” applies to you. Welcome to
the adventure!

Dorothy had a goal, and some good friends, but no guide. You, however, are bet-
ter off, since you’re holding an amazing fi eld guide to the world of embedded Linux
development. Christopher Hallinan lays it all out for you—the how, the where,
the why, and also the “what not to do.” This book will keep you out of the school
of hard knocks and get you going easily and quickly on the road to building your
product.

It is no surprise that this book has been a leader in its market. This new edition is
even better. It is up to date and brings all the author’s additional experience to bear
on the subject.

I am very proud to have this book in my series. But what’s more important is
that you will be proud of yourself for having built a better product because you read
it! Enjoy!

Arnold Robbins
Series Editor

xxvii

Preface

Although many good books cover Linux, this one brings together many dimensions
of information and advice specifi cally targeted to the embedded Linux developer.
Indeed, some very good books have been written about the Linux kernel, Linux
system administration, and so on. This book refers to many of the ones I consider to
be at the top of their categories.

Much of the material presented in this book is motivated by questions I’ve re-
ceived over the years from development engineers in my capacity as an embedded
Linux consultant and from my direct involvement in the commercial embedded
Linux market.

Embedded Linux presents the experienced software engineer with several unique
challenges. First, those with many years of experience with legacy real-time operat-
ing systems (RTOSs) fi nd it diffi cult to transition their thinking from those environ-
ments to Linux. Second, experienced application developers often have diffi culty
understanding the relative complexities of a cross-development environment.

Although this is a primer, intended for developers new to embedded Linux, I am
confi dent that even developers who are experienced in embedded Linux will benefi t
from the useful tips and techniques I have learned over the years.

PRACTICAL ADVICE FOR THE PRACTICING EMBEDDED DEVELOPER

This book describes my view of what an embedded engineer needs to know to get
up to speed fast in an embedded Linux environment. Instead of focusing on Linux
kernel internals, the kernel chapters in this book focus on the project nature of the
kernel and leave the internals to the other excellent texts on the subject. You will
learn the organization and layout of the kernel source tree. You will discover the

xxviii Embedded Linux Primer, Second Edition

binary components that make up a kernel image, how they are loaded, and what
purpose they serve on an embedded system.

In this book, you will learn how the Linux kernel build system works and how
to incorporate your own custom changes that are required for your projects. You
will learn the details of Linux system initialization, from the kernel to user space
initialization. You will learn many useful tips and tricks for your embedded project,
from bootloaders, system initialization, fi le systems, and Flash memory to advanced
kernel- and application-debugging techniques. This second edition features much
new and updated content, as well as new chapters on open source build systems,
USB and udev, highlighting how to confi gure and use these complex systems on
your embedded Linux project.

INTENDED AUDIENCE

This book is intended for programmers who have working knowledge of program-
ming in C. I assume that you have a rudimentary understanding of local area net-
works and the Internet. You should understand and recognize an IP address and
how it is used on a simple local area network. I also assume that you understand
hexadecimal and octal numbering systems and their common usage in a book such
as this.

Several advanced concepts related to C compiling and linking are explored, so
you will benefi t from having at least a cursory understanding of the role of the linker
in ordinary C programming. Knowledge of the GNU make operation and seman-
tics also will prove benefi cial.

WHAT THIS BOOK IS NOT

This book is not a detailed hardware tutorial. One of the diffi culties the embedded
developer faces is the huge variety of hardware devices in use today. The user manual
for a modern 32-bit processor with some integrated peripherals can easily exceed
3,000 pages. There are no shortcuts. If you need to understand a hardware device
from a programmer’s point of view, you need to spend plenty of hours in your fa-
vorite reading chair with hardware data sheets and reference guides, and many more
hours writing and testing code for these hardware devices!

This is also not a book about the Linux kernel or kernel internals. In this book,
you won’t learn about the intricacies of the Memory Management Unit (MMU)

 Preface xxix

used to implement Linux’s virtual memory-management policies and procedures;
there are already several good books on this subject. You are encouraged to take
advantage of the “Suggestions for Additional Reading” sections found at the end of
every chapter.

CONVENTIONS USED

Filenames, directories, utilities, tools, commands, and code statements are presented
in a monospace font. Commands that the user enters appear in bold monospace.
New terms or important concepts are presented in italics.

When you see a pathname preceded by three dots, this refers to a well-known
but unspecifi ed top-level directory. The top-level directory is context-dependent but
almost universally refers to a top-level Linux source directory. For example, .../
arch/powerpc/kernel/setup_32.c refers to the setup_32.c fi le located in the
architecture branch of a Linux source tree. The actual path might be something like
~/sandbox/linux.2.6.33/arch/power/kernel/setup_32.c.

HOW THIS BOOK IS ORGANIZED

Chapter 1, “Introduction,” provides a brief look at the factors driving the rapid
adoption of Linux in the embedded environment. Several important standards and
organizations relevant to embedded Linux are introduced.

Chapter 2, “The Big Picture,” introduces many concepts related to embedded
Linux upon which later chapters are built.

Chapter 3, “Processor Basics,” presents a high-level look at the more popular
processors and platforms that are being used to build embedded Linux systems. We
examine selected products from many of the major processor manufacturers. All the
major architecture families are represented.

Chapter 4, “The Linux Kernel: A Different Perspective,” examines the Linux
kernel from a slightly different perspective. Instead of kernel theory or internals, we
look at its structure, layout, and build construction so that you can begin learning
your way around this large software project and, more important, learn where your
own customization efforts must be focused. This includes detailed coverage of the
kernel build system.

xxx Embedded Linux Primer, Second Edition

Chapter 5, “Kernel Initialization,” details the Linux kernel’s initialization pro-
cess. You will learn how the architecture- and bootloader-specifi c image components
are concatenated to the image of the kernel proper for downloading to Flash and
booting by an embedded bootloader. The knowledge you gain here will help you
customize the Linux kernel to your own embedded application requirements.

Chapter 6, “User Space Initialization,” continues the detailed examination of the
initialization process. When the Linux kernel has completed its own initialization,
application programs continue the initialization process in a predetermined manner.
Upon completing Chapter 6, you will have the necessary knowledge to customize
your own userland application startup sequence.

Chapter 7, “Bootloaders,” is dedicated to the bootloader and its role in an em-
bedded Linux system. We examine the popular open-source bootloader U-Boot and
present a porting example. We briefl y introduce additional bootloaders in use today
so that you can make an informed choice about your particular requirements.

Chapter 8, “Device Driver Basics,” introduces the Linux device driver model and
provides enough background to launch into one of the great texts on device drivers,
listed in “Suggestions for Additional Reading” at the end of the chapter.

Chapter 9, “File Systems,” describes the more popular fi le systems being used in
embedded systems today. We include coverage of the JFFS2, an important embed-
ded fi le system used on Flash memory devices. This chapter includes a brief intro-
duction to building your own fi le system image, one of the more diffi cult tasks the
embedded Linux developer faces.

Chapter 10, “MTD Subsystem,” explores the Memory Technology Devices
(MTD) subsystem. MTD is an extremely useful abstraction layer between the Linux
fi le system and hardware memory devices, primarily Flash memory.

Chapter 11, “BusyBox,” introduces BusyBox, one of the most useful utilities for
building small embedded systems. We describe how to confi gure and build BusyBox
for your particular requirements, along with detailed coverage of system initializa-
tion unique to a BusyBox environment. Appendix C, “BusyBox Commands,” lists
the available BusyBox commands from a recent BusyBox release.

Chapter 12, “Embedded Development Environment,” takes a detailed look at
the unique requirements of a typical cross-development environment. Several tech-
niques are presented to enhance your productivity as an embedded developer, in-
cluding the powerful NFS root mount development confi guration.

 Preface xxxi

Chapter 13, “Development Tools,” examines many useful development tools.
Debugging with gdb is introduced, including coverage of core dump analysis. Many
more tools are presented and explained, with examples including strace, ltrace,
top, and ps, and the memory profi lers mtrace and dmalloc. The chapter con-
cludes with an introduction to the more important binary utilities, including the
powerful readelf utility.

Chapter 14, “Kernel Debugging Techniques,” provides a detailed examination
of many debugging techniques useful for debugging inside the Linux kernel. We
introduce the use of the kernel debugger KGDB and present many useful debugging
techniques using the combination of gdb and KGDB as debugging tools. Included
is an introduction to using hardware JTAG debuggers and some tips for analyzing
failures when the kernel won’t boot.

Chapter 15, “Debugging Embedded Linux Applications,” moves the debugging
context from the kernel to your application programs. We continue to build on the
gdb examples from the previous two chapters, and we present techniques for multi-
threaded and multiprocess debugging.

Chapter 16, “Open Source Build Systems,” replaces the kernel porting chapter
from the fi rst edition. That chapter had become hopelessly outdated, and proper
treatment of that topic in modern kernels would take a book of its own. I think
you will be pleased with the new Chapter 16, which covers the popular build sys-
tems available for building complete embedded Linux distributions. Among other
systems, we introduce OpenEmbedded, a build system that has gained signifi cant
traction in commercial and other open source projects.

Chapter 17, “Linux and Real Time,” introduces one of the more interesting chal-
lenges in embedded Linux: confi guring for real time via the PREEMPT_RT option.
We cover the features available with RT and how they can be used in a design. We
also present techniques for measuring latency in your application confi guration.

Chapter 18, “Universal Serial Bus,” describes the USB subsystem in easy-to-
understand language. We introduce concepts and USB topology and then present
several examples of USB confi guration. We take a detailed look at the role of sysfs
and USB to help you understand this powerful facility. We also present several tools
that are useful for understanding and troubleshooting USB.

Chapter 19, “udev,” takes the mystery out of this powerful system confi guration
utility. We examine udev’s default behavior as a foundation for understanding how

xxxii Embedded Linux Primer, Second Edition

to customize it. Several real-world examples are presented. For BusyBox users, we
examine BusyBox’s mdev utility.

The appendixes cover the GNU Public License, U-Boot confi gurable com-
mands, BusyBox commands, SDRAM interface considerations, resources for the
open source developer, and a sample confi guration fi le for one of the more popular
hardware JTAG debuggers, the BDI-2000.

FOLLOW ALONG

You will benefi t most from this book if you can divide your time between this book
and your favorite Linux workstation. Grab an old x86 computer to experiment on
an embedded system. Even better, if you have access to a single-board computer
based on another architecture, use that. The BeagleBoard makes an excellent low-
cost platform for experimentation. Several examples in this book are based on that
platform. You will benefi t from learning the layout and organization of a very large
code base (the Linux kernel), and you will gain signifi cant knowledge and experi-
ence as you poke around the kernel and learn by doing.

Look at the code and try to understand the examples produced in this book.
Experiment with different settings, confi guration options, and hardware devices.
You can gain much in terms of knowledge, and besides, it’s loads of fun. If you
are so inclined, please log on and contribute to the website dedicated to this book,
www.embeddedlinuxprimer.com. Feel free to create an account, add content and
comments to other contributions, and share your own successes and solutions as you
gain experience in this growing segment of the Linux community. Your input will
help others as they learn. It is a work in progress, and your contributions will help it
become a valuable community resource.

GPL COPYRIGHT NOTICE

Portions of open-source code reproduced in this book are copyrighted by a large
number of individual and corporate contributors. The code reproduced here has
been licensed under the terms of the GNU Public License (GPL).

Appendix A contains the text of the GNU Public License.

www.embeddedlinuxprimer.com

159

7

Bootloaders

In This Chapter

■ 7.1 Role of a Bootloader 160

■ 7.2 Bootloader Challenges 161

■ 7.3 A Universal Bootloader: Das U-Boot 166

■ 7.4 Porting U-Boot 174

■ 7.5 Device Tree Blob (Flat Device Tree) 187

■ 7.6 Other Bootloaders 194

■ 7.7 Summary 197

160

Previous chapters have referred to and even provided examples of bootloader
operations. A critical component of an embedded system, the bootloader

provides the foundation from which the primary system software is spawned.
This chapter starts by examining the bootloader’s role in a system. We follow
this with an introduction to some common features of bootloaders. Armed with
this background, we take a detailed look at a popular bootloader used for em-
bedded systems. We conclude this chapter by introducing a few of the more
popular bootloaders.

Numerous bootloaders are in use today. It would be impractical to go into much
detail on even the most popular ones. Therefore, we have chosen to explain
concepts and use examples based on one of the more popular bootloaders in the
open source community for Power Architecture, MIPS, ARM, and other archi-
tectures: the U-Boot bootloader.

7.1 Role of a Bootloader

When power is fi rst applied to a processor board, many elements of hardware must
be initialized before even the simplest program can run. Each architecture and pro-
cessor has a set of predefi ned actions and confi gurations upon release of reset, which
includes fetching initialization code from an onboard storage device (usually Flash
memory). This early initialization code is part of the bootloader and is responsible
for breathing life into the processor and related hardware components.

Most processors have a default address from which the fi rst bytes of code are
fetched upon application of power and release of reset. Hardware designers use this
information to arrange the layout of Flash memory on the board and to select which
address range(s) the Flash memory responds to. This way, when power is fi rst ap-
plied, code is fetched from a well-known and predictable address, and software con-
trol can be established.

The bootloader provides this early initialization code and is responsible for ini-
tializing the board so that other programs can run. This early initialization code is
almost always written in the processor’s native assembly language. This fact alone
presents many challenges, some of which we examine here.

7.2 Bootloader Challenges 161

Of course, after the bootloader has performed this basic processor and platform ini-
tialization, its primary role is fetching and booting a full-blown operating system. It is
responsible for locating, loading, and passing control to the primary operating system.
In addition, the bootloader might have advanced features, such as the capability to
validate an OS image, upgrade itself or an OS image, or choose from among several OS
images based on a developer-defi ned policy. Unlike the traditional PC-BIOS model,
when the OS takes control, the bootloader is overwritten and ceases to exist.1

7.2 Bootloader Challenges

Even a simple “Hello World” program written in C requires signifi cant hardware and
software resources. The application developer does not need to know or care much
about these details. This is because the C runtime environment transparently provides
this infrastructure. A bootloader developer enjoys no such luxury. Every resource that
a bootloader requires must be carefully initialized and allocated before it is used. One
of the most visible examples of this is Dynamic Random Access Memory (DRAM).

7.2.1 DRAM Controller

DRAM chips cannot be directly read from or written to like other microprocessor
bus resources. They require specialized hardware controllers to enable read and write
cycles. To further complicate matters, DRAM must be constantly refreshed, or the data
contained within will be lost. Refresh is accomplished by sequentially reading each
location in DRAM in a systematic manner within the timing specifi cations set forth
by the DRAM manufacturer. Modern DRAM chips support many modes of opera-
tion, such as burst mode and dual data rate for high-performance applications. It is the
DRAM controller’s responsibility to confi gure DRAM, keep it refreshed within the
manufacturer’s timing specifi cations, and respond to the various read and write com-
mands from the processor.

Setting up a DRAM controller is the source of much frustration for the newcomer
to embedded development. It requires detailed knowledge of DRAM architecture, the
controller itself, the specifi c DRAM chips being used, and the overall hardware design.
This topic is beyond the scope of this book, but you can learn more about this im-
portant concept by consulting the references at the end of this chapter. Appendix D,

1 Some embedded designs protect the bootloader and provide callbacks to bootloader routines, but this is almost never a good
design approach. Linux is far more capable than bootloaders, so there is often little point in doing so.

162 Chapter 7 Bootloaders

“SDRAM Interface Considerations,” provides more background on this important
topic.

Very little can happen in an embedded system until the DRAM controller and
DRAM itself have been properly initialized. One of the fi rst things a bootloader must
do is enable the memory subsystem. After it is initialized, memory can be used as a
resource. In fact, one of the fi rst actions many bootloaders perform after memory ini-
tialization is to copy themselves into DRAM for faster execution.

7.2.2 Flash Versus RAM

Another complexity inherent in bootloaders is that they are required to be stored in
nonvolatile storage but usually are loaded into RAM for execution. Again, the com-
plexity arises from the level of resources available for the bootloader to rely on. In
a fully operational computer system running an operating system such as Linux, it
is relatively easy to compile a program and invoke it from nonvolatile storage. The
runtime libraries, operating system, and compiler work together to create the infra-
structure necessary to load a program from nonvolatile storage into memory and pass
control to it. The aforementioned “Hello World” program is a perfect example. When
compiled, it can be loaded into memory and executed simply by typing the name of
the executable (hello) on the command line (assuming, of course, that the executable
exists somewhere on your PATH).

This infrastructure does not exist when a bootloader gains control upon power-on.
Instead, the bootloader must create its own operational context and move itself, if
required, to a suitable location in RAM. Furthermore, additional complexity is intro-
duced by the requirement to execute from a read-only medium.

7.2.3 Image Complexity

As application developers, we do not need to concern ourselves with the layout of a
binary executable fi le when we develop applications for our favorite platform. The
compiler and binary utilities are preconfi gured to build a binary executable image
containing the proper components needed for a given architecture. The linker places
startup (prologue) and shutdown (epilogue) code into the image. These objects set up
the proper execution context for your application, which typically starts at main().

This is absolutely not the case with a typical bootloader. When the bootloader gets
control, there is no context or prior execution environment. A typical system might

7.2 Bootloader Challenges 163

not have any DRAM until the bootloader initializes the processor and related hard-
ware. Consider what this means. In a typical C function, any local variables are stored
on the stack, so a simple function like the one shown in Listing 7-1 is unusable.

LISTING 7-1 Simple C Function with a Local Variable

int setup_memory_controller(board_info_t *p)

 {

 unsigned int *dram_controller_register = p->dc_reg;

...

When a bootloader gains control on power-on, there is no stack and no stack pointer.
Therefore, a simple C function similar to Listing 7-1 will likely crash the processor, because
the compiler will generate code to create and initialize the pointer dram_controller_
register on the stack, which does not yet exist. The bootloader must create this execu-
tion context before any C functions are called.

When the bootloader is compiled and linked, the developer must exercise com-
plete control over how the image is constructed and linked. This is especially true if
the bootloader is to relocate itself from Flash to RAM. The compiler and linker must
be passed a handful of parameters defi ning the characteristics and layout of the fi nal
executable image. Two primary characteristics conspire to add complexity to the fi nal
binary executable image: code organization compatible with the processor’s boot re-
quirements, and the execution context, described shortly.

The fi rst characteristic that presents complexity is the need to organize the startup
code in a format compatible with the processor’s boot sequence. The fi rst executable
instructions must be at a predefi ned location in Flash, depending on the processor and
hardware architecture. For example, the AMCC Power Architecture 405GP processor
seeks its fi rst machine instructions from a hard-coded address of 0xFFFF_FFFC. Other
processors use similar methods with different details. Some processors can be confi g-
ured at power-on to seek code from one of several predefi ned locations, depending on
hardware confi guration signals.

How does a developer specify the layout of a binary image? The linker is passed
a linker description fi le, also called a linker command script. This special fi le can be
thought of as a recipe for constructing a binary executable image. Listing 7-2 is a snip-
pet from an existing linker description fi le in use in the U-Boot bootloader, which we’ll
discuss shortly.

164 Chapter 7 Bootloaders

LISTING 7-2 Linker Command Script: Reset Vector Placement

SECTIONS

{

 .resetvec 0xFFFFFFFC :

 {

 *(.resetvec)

 } = 0xffff

...

A complete description of linker command scripts syntax is beyond the scope of this
book. Consult the GNU LD manual referenced at the end of this chapter. Looking at
Listing 7-2, we see the beginning of the defi nition for the output section of the binary
ELF image. It directs the linker to place the section of code called .resetvec at a fi xed
address in the output image, starting at location 0xFFFF_FFFC. Furthermore, it specifi es
that the rest of this section shall be fi lled with all 1s (0xffff.) This is because an erased
Flash memory array contains all 1s. This technique not only saves wear and tear on the
Flash memory, but it also signifi cantly speeds up programming of that sector.

Listing 7-3 is the complete assembly language fi le from a recent U-Boot distribu-
tion that defi nes the .resetvec code section. It is contained in an assembly language
fi le called .../cpu/ppc4xx/resetvec.S. Notice that this code section cannot exceed
4 bytes in length in a machine with only 32 address bits. This is because only a single
instruction is defi ned in this section, no matter what confi guration options are present.

LISTING 7-3 Source Defi nition of .resetvec

/* Copyright MontaVista Software Incorporated, 2000 */

#include <config.h>

 .section .resetvec,”ax”

#if defined(CONFIG_440)

 b _start_440

#else

#if defined(CONFIG_BOOT_PCI) && defined(CONFIG_MIP405)

 b _start_pci

#else

 b _start

#endif

#endif

This assembly language fi le is easy to understand, even if you have no assembly lan-
guage programming experience. Depending on the particular confi guration (as specifi ed

7.2 Bootloader Challenges 165

by the CONFIG_* macros), an unconditional branch instruction (b in Power Architecture
assembler syntax) is generated to the appropriate start location in the main body of
code. This branch location is a 4-byte Power Architecture instruction. As we saw in the
snippet from the linker command script shown in Listing 7-2, this simple branch in-
struction is placed in the absolute Flash address of 0xFFFF_FFFC in the output image. As
mentioned earlier, the 405GP processor fetches its fi rst instruction from this hard-coded
address. This is how the fi rst sequence of code is defi ned and provided by the developer
for this particular architecture and processor combination.

7.2.4 Execution Context

The other primary reason for bootloader image complexity is the lack of execution
context. When the sequence of instructions from Listing 7-3 starts executing (recall
that these are the fi rst machine instructions after power-on), the resources available to
the running program are nearly zero. Default values designed into the hardware ensure
that fetches from Flash memory work properly. This also ensures that the system clock
has some default values, but little else can be assumed.2 The reset state of each processor
is usually well defi ned by the manufacturer, but the reset state of a board is defi ned by
the hardware designers.

Indeed, most processors have no DRAM available at startup for temporary storage
of variables or, worse, for a stack that is required to use C program calling conventions.
If you were forced to write a “Hello World” program with no DRAM and, therefore,
no stack, it would be quite different from the traditional “Hello World” example.

This limitation places signifi cant challenges on the initial body of code designed
to initialize the hardware. As a result, one of the fi rst tasks the bootloader performs
on startup is to confi gure enough of the hardware to enable at least some minimal
amount of RAM. Some processors designed for embedded use have small amounts of
on-chip static RAM available. This is the case with the 405GP we’ve been discussing.
When RAM is available, a stack can be allocated using part of that RAM, and a proper
context can be constructed to run higher-level languages such as C. This allows the
rest of the processor and platform initialization to be written in something other than
assembly language.

2 The details differ, depending on architecture, processor, and details of the hardware design.

166 Chapter 7 Bootloaders

7.3 A Universal Bootloader: Das U-Boot

Many open source and commercial bootloaders are available, and many more one-of-
a-kind homegrown designs are in widespread use today. Most of these have some level
of commonality of features. For example, all of them have some capability to load and
execute other programs, particularly an operating system. Most interact with the user
through a serial port. Support for various networking subsystems (such as Ethernet) is
a very powerful but less common feature.

Many bootloaders are specifi c to a particular architecture. The capability of a boot-
loader to support a wide variety of architectures and processors can be an important
feature to larger development organizations. It is not uncommon for a single develop-
ment organization to have multiple processors spanning more than one architecture.
Investing in a single bootloader across multiple platforms ultimately results in lower
development costs.

This section studies an existing bootloader that has become very popular in the
embedded Linux community. The offi cial name of this bootloader is Das U-Boot. It
is maintained by Wolfgang Denx and hosted at www.denx.de/wiki/U-Boot. U-Boot
supports multiple architectures and has a large following of embedded developers and
hardware manufacturers who have adopted it for use in their projects and who have
contributed to its development.

7.3.1 Obtaining U-Boot

The simplest way to get the U-Boot source code is via git. If you have git installed on
your desktop or laptop, simply issue this command:

$ git clone git://git.denx.de/u-boot.git

This creates a directory called u-boot in the directory in which you executed this
command.

If you don’t have git, or you prefer to download a snapshot instead, you can do so
through the git server at denx.de. Point your browser to http://git.denx.de/ and click
the “summary” link on the fi rst project, u-boot.git. This takes you to a summary
screen and provides a “snapshot” link, which generates and downloads a tarball that
you can install on your system. Select the most recent snapshot, which is at the top of
the “shortlog” list.

www.denx.de/wiki/U-Boot
http://git.denx.de/

 7.3 A Universal Bootloader: Das U-Boot 167

7.3.2 Configuring U-Boot

For a bootloader to be useful across many processors and architectures, some method
of confi guring the bootloader is necessary. As with the Linux kernel itself, a bootloader
is confi gured at compile time. This method signifi cantly reduces the complexity of the
binary bootloader image, which in itself is an important characteristic.

In the case of U-Boot, board-specifi c confi guration is driven by a single header fi le
specifi c to the target platform, together with a few soft links in the source tree that
select the correct subdirectories based on target board, architecture, and CPU. When
confi guring U-Boot for one of its supported platforms, issue this command:

$ make <platform>_config

Here, platform is one of the many platforms supported by U-Boot. These plat-
form confi guration targets are listed in the top-level U-Boot makefi le. For example, to
confi gure for the Spectrum Digital OSK, which contains a TI OMAP 5912 processor,
issue this command:

$ make omap5912osk_config

This confi gures the U-Boot source tree with the appropriate soft links to select
ARM as the target architecture, the ARM926 core, and the 5912 OSK as the target
platform.

The next step in confi guring U-Boot for this platform is to edit the confi gura-
tion fi le specifi c to this board. This fi le is found in the U-Boot ../include/configs
subdirectory and is called omap5912osk.h. The README fi le that comes with the
U-Boot source code describes the details of confi guration and is the best source of this
information. (For existing boards that are already supported by U-Boot, it may not be
necessary to edit this board-specifi c confi guration fi le. The defaults may be suffi cient
for your needs. Sometimes minor edits are needed to update memory size or fl ash size,
because many reference boards can be purchased with varying confi gurations.)

U-Boot is confi gured using confi guration variables defi ned in a board-specifi c head-
er fi le. Confi guration variables have two forms. Confi guration options are selected us-
ing macros in the form of CONFIG_XXXX. Confi guration settings are selected using mac-
ros in the form of CONFIG_SYS_XXXX. In general, confi guration options (CONFIG_XXX)
are user-confi gurable and enable specifi c U-Boot operational features. Confi guration
settings (CONFIG_SYS_XXX) usually are hardware-specifi c and require detailed knowl-
edge of the underlying processor and/or hardware platform. Board-specifi c U-Boot
confi guration is driven by a header fi le dedicated to that specifi c platform that contains

168 Chapter 7 Bootloaders

confi guration options and settings appropriate for the underlying platform. The U-
Boot source tree includes a directory where these board-specifi c confi guration header
fi les reside. They can be found in .../include/configs from the top-level U-Boot
source directory.

You can select numerous features and modes of operation by adding defi nitions to
the board-confi guration fi le. Listing 7-4 is a partial confi guration header fi le for the
Yosemite board based on the AMCC 440EP processor.

LISTING 7-4 Portions of the U-Boot Board-Confi guration Header File

/*---

 * High Level Configuration Options

 ---/

/* This config file is used for Yosemite (440EP) and Yellowstone (440GR)*/

#ifndef CONFIG_YELLOWSTONE

#define CONFIG_440EP 1 /* Specific PPC440EP support */

#define CONFIG_HOSTNAME yosemite

#else

#define CONFIG_440GR 1 /* Specific PPC440GR support */

#define CONFIG_HOSTNAME yellowstone

#endif

#define CONFIG_440 1 /* ... PPC440 family */

#define CONFIG_4xx 1 /* ... PPC4xx family */

#define CONFIG_SYS_CLK_FREQ 66666666 /* external freq to pll */

<...>

/*---

 * Base addresses -- Note these are effective addresses where the

 * actual resources get mapped (not physical addresses)

 ---/

#define CONFIG_SYS_FLASH_BASE 0xfc000000 /* start of FLASH */

#define CONFIG_SYS_PCI_MEMBASE 0xa0000000 /* mapped pci memory*/

#define CONFIG_SYS_PCI_MEMBASE1 CONFIG_SYS_PCI_MEMBASE + 0x10000000

#define CONFIG_SYS_PCI_MEMBASE2 CONFIG_SYS_PCI_MEMBASE1 + 0x10000000

#define CONFIG_SYS_PCI_MEMBASE3 CONFIG_SYS_PCI_MEMBASE2 + 0x10000000

<...>

#ifdef CONFIG_440EP

 #define CONFIG_CMD_USB

 #define CONFIG_CMD_FAT

 #define CONFIG_CMD_EXT2

#endif

<...>

/*--

 7.3 A Universal Bootloader: Das U-Boot 169

LISTING 7-4 Continued

 * External Bus Controller (EBC) Setup

 --/

#define CONFIG_SYS_FLASH CONFIG_SYS_FLASH_BASE

#define CONFIG_SYS_CPLD 0x80000000

/* Memory Bank 0 (NOR-FLASH) initialization */

#define CONFIG_SYS_EBC_PB0AP 0x03017300

#define CONFIG_SYS_EBC_PB0CR (CONFIG_SYS_FLASH | 0xda000)

/* Memory Bank 2 (CPLD) initialization */

#define CONFIG_SYS_EBC_PB2AP 0x04814500

#define CONFIG_SYS_EBC_PB2CR (CONFIG_SYS_CPLD | 0x18000)

<...>

Listing 7-4 gives you an idea of how U-Boot itself is confi gured for a given board.
An actual board-confi guration fi le can contain hundreds of lines similar to those found
here. In this example, you can see the defi nitions for the CPU (CONFIG_440EP), board
name (CONFIG_HOSTNAME), clock frequency, and Flash and PCI base memory addresses.
We have included examples of confi guration variables (CONFIG_XXX) and confi gura-
tion settings (CONFIG_SYS_XXX). The last few lines are actual processor register values
required to initialize the external bus controller for memory banks 0 and 1. You can see
that these values can come only from detailed knowledge of the board and processor.

Many aspects of U-Boot can be confi gured using these mechanisms, including what
functionality will be compiled into U-Boot (support for DHCP, memory tests, debug-
ging support, and so on). This mechanism can be used to tell U-Boot how much and
what kind of memory is on a given board, and where that memory is mapped. You
can learn much more by looking at the U-Boot code directly, especially the excellent
README fi le.

7.3.3 U-Boot Monitor Commands

U-Boot supports more than 70 standard command sets that enable more than 150
unique commands using CONFIG_CMD_* macros. A command set is enabled in U-Boot
through the use of confi guration setting (CONFIG_*) macros. For a complete list from
a recent U-Boot snapshot, consult Appendix B, “U-Boot Confi gurable Commands.”
Table 7-1 shows just a few, to give you an idea of the capabilities available.

170 Chapter 7 Bootloaders

TABLE 7-1 Some U-Boot Confi gurable Commands

Command Set Description Commands

CONFIG_CMD_FLASH Flash memory commands

CONFIG_CMD_MEMORY Memory dump, fill, copy, compare, and so on

CONFIG_CMD_DHCP DHCP support

CONFIG_CMD_PING Ping support

CONFIG_CMD_EXT2 EXT2 file system support

To enable a specifi c command, defi ne the macro corresponding to the command you want.
These macros are defi ned in your board-specifi c confi guration fi le. Listing 7-4 shows several
commands being enabled in the board-specifi c confi guration fi le. There you see CONFIG_CMD_
USB, CONFIG_CMD_FAT, and CONFIG_CMD_EXT2 being defi ned conditionally if the board
is a 440EP.

Instead of specifying each individual CONFIG_CMD_* macro in your own board-
specifi c confi guration header, you can start from the full set of commands defi ned in
.../include/config_cmd_all.h. This header fi le defi nes every command available. A
second header fi le, .../include/config_cmd_default.h, defi nes a list of useful default
U-Boot command sets such as tftpboot (boot an image from a tftpserver), bootm (boot
an image from memory), memory utilities such as md (display memory), and so on. To
enable your specifi c combination of commands, you can start with the default and add
and subtract as necessary. Listing 7-4 adds the USB, FAT, and EXT2 command sets to the
default. You can subtract in a similar fashion, starting from config_cmd_all.h:

#include “condif_cmd_all.h”

#undef CONFIG_CMD_DHCP

#undef CONFIG_CMD_FAT

#undef CONFIG_CMD_FDOS

<...>

Take a look at any board-confi guration header fi le in .../include/configs/ for
examples.

7.3.4 Network Operations

Many bootloaders include support for Ethernet interfaces. In a development environ-
ment, this is a huge time saver. Loading even a modest kernel image over a serial port

 7.3 A Universal Bootloader: Das U-Boot 171

can take minutes versus a few seconds over an Ethernet link, especially if your board
supports Fast or Gigabit Ethernet. Furthermore, serial links are more prone to errors
from poorly behaved serial terminals, line noise, and so on.

Some of the more important features to look for in a bootloader include support
for the BOOTP, DHCP, and TFTP protocols. If you’re unfamiliar with these, BOOTP
(Bootstrap Protocol) and DHCP (Dynamic Host Confi guration Protocol) enable a
target device with an Ethernet port to obtain an IP address and other network-related
confi guration information from a central server. TFTP (Trivial File Transfer Protocol)
allows the target device to download fi les (such as a Linux kernel image) from a TFTP
server. References to these protocol specifi cations are listed at the end of this chap-
ter. Servers for these services are described in Chapter 12, “Embedded Development
Environment.”

Figure 7-1 illustrates the fl ow of information between the target device and a
BOOTP server. The client (U-Boot, in this case) initiates the exchange by sending
a broadcast packet searching for a BOOTP server. The server responds with a reply
packet that includes the client’s IP address and other information. The most useful
data includes a fi lename used to download a kernel image.

FIGURE 7-1 BOOTP client/server handshake

In practice, dedicated BOOTP servers no longer exist as stand-alone servers. DHCP
servers included with your favorite Linux distribution also support BOOTP protocol
packets and are almost universally used for BOOTP operations.

Start

U-Boot

Broadcast: BOOTREQUEST

Unicast: BOOTREPLY

BOOTP/DHCP
Server

Time

172 Chapter 7 Bootloaders

The DHCP protocol builds on BOOTP. It can supply the target with a wide variety
of confi guration information. In practice, the information exchange is often limited
by the target/bootloader DHCP client implementation. Listing 7-5 shows a DHCP
server confi guration block identifying a single target device. This is a snippet from a
DHCP confi guration fi le from the Fedora Core 2 DHCP implementation.

LISTING 7-5 DHCP Target Specifi cation

host coyote {

 hardware ethernet 00:0e:0c:00:82:f8;

 netmask 255.255.255.0;

 fixed-address 192.168.1.21;

 server-name 192.168.1.9;

 filename “coyote-zImage”;

 option root-path “/home/sandbox/targets/coyote-target”;

}

...

When this DHCP server receives a packet from a device matching the hardware
Ethernet address contained in Listing 7-5, it responds by sending that device the pa-
rameters in this target specifi cation. Table 7-2 describes the fi elds in the target specifi -
cation.

TABLE 7-2 DHCP Target Parameters

DHCP Target
Parameter Purpose Description

host Hostname Symbolic label from the DHCP configuration file

hardware ethernet Ethernet hardware address Low-level Ethernet hardware address of the target’s
Ethernet interface

fixed-address Target IP address The IP address that the target will assume

netmask Target netmask The IP netmask that the target will assume

server-name TFTP server IP address The IP address to which the target will direct requests
for file transfers, the root file system, and so on

filename TFTP filename The filename that the bootloader can use to boot a
secondary image (usually a Linux kernel)

root-path NFS root path Defines the network path for the remote NFS root
mount

 7.3 A Universal Bootloader: Das U-Boot 173

When the bootloader on the target board has completed the BOOTP or DHCP
exchange, these parameters are used for further confi guration. For example, the boot-
loader uses the target IP address (fixed-address) to bind its Ethernet port to this IP
address. The bootloader then uses the server-name fi eld as a destination IP address to
request the fi le contained in the filename fi eld, which, in most cases, represents a Linux
kernel image. Although this is the most common use, this same scenario could be used
to download and execute manufacturing test and diagnostics fi rmware.

It should be noted that the DHCP protocol supports many more parameters than
those detailed in Table 7-2. These are simply the more common parameters you might
encounter for embedded systems. See the DHCP specifi cation referenced at the end of
this chapter for complete details.

7.3.5 Storage Subsystems

Many bootloaders support the capability of booting images from a variety of nonvola-
tile storage devices in addition to the usual Flash memory. The diffi culty in supporting
these types of devices is the relative complexity in both hardware and software. To ac-
cess data on a hard drive, for example, the bootloader must have device driver code for
the IDE controller interface, as well as knowledge of the underlying partition scheme
and fi le system. This is not trivial and is one of the tasks more suited to full-blown
operating systems.

Even with the underlying complexity, methods exist for loading images from this
class of device. The simplest method is to support the hardware only. In this scheme,
no knowledge of the fi le system is assumed. The bootloader simply raw-loads from
absolute sectors on the device. This scheme can be used by dedicating an unformat-
ted partition from sector 0 on an IDE-compatible device (such as CompactFlash) and
loading the data found there without any structure imposed on the data. This is a
simple confi guration for loading a kernel image or other binary image from a block
storage device. Additional partitions on the device can be formatted for a given fi le sys-
tem and can contain complete fi le systems. After the kernel boots, Linux device drivers
can be used to access the additional partitions.

U-Boot can load an image from a specifi ed raw partition or from a partition with
a fi le system structure. Of course, the board must have a supported hardware device
(an IDE subsystem), and U-Boot must be so confi gured. Adding CONFIG_CMD_IDE to
the board-specifi c confi guration fi le enables support for an IDE interface, and adding
CONFIG_CMD_BOOTD enables support for booting from a raw partition. If you are porting

174 Chapter 7 Bootloaders

U-Boot to a custom board, you will likely have to modify U-Boot to understand your
particular hardware.

7.3.6 Booting from Disk

As just described, U-Boot supports several methods for booting a kernel image from a
disk subsystem. This simple command illustrates one of the supported methods:

=> diskboot 0x400000 0:0

To understand this syntax, you must fi rst understand how U-Boot numbers disk
devices. The 0:0 in this example specifi es the device and partition. In this simple ex-
ample, U-Boot performs a raw binary load of the image found on the fi rst IDE device
(IDE device 0) from the fi rst partition (partition 0) found on this device. The image is
loaded into system memory at physical address 0x400000.

After the kernel image has been loaded into memory, the U-Boot bootm command
(boot from memory) is used to boot the kernel:

=> bootm 0x400000

7.4 Porting U-Boot

One of the reasons U-Boot has become so popular is the ease with which new plat-
forms can be supported. Each board port must supply a subordinate makefi le that
supplies board-specifi c defi nitions to the build process. These fi les are all given the
name config.mk. They exist in the .../board/vendor/boardname subdirectory under
the U-Boot top-level source directory, where boardname specifi es a particular board.

As of a recent U-Boot snapshot, more than 460 different board confi guration fi les
are named config.mk under the .../boards subdirectory. In this same U-Boot version,
49 different CPU confi gurations are supported (counted in the same manner). Note
that, in some cases, the CPU confi guration covers a family of chips, such as ppc4xx,
that supports several processors in the Power Architecture 4xx family. U-Boot supports
a large variety of popular CPUs and CPU families in use today, and a much larger col-
lection of reference boards based on these processors.

If your board contains one of the supported CPUs, porting U-Boot is straightfor-
ward. If you must add a new CPU, plan on substantially more effort. The good news
is that someone before you has probably done the bulk of the work. Whether you are

7.4 Porting U-Boot 175

porting to a new CPU or a new board based on an existing CPU, study the existing
source code for specifi c guidance. Determine what CPU is closest to yours, and clone
the functionality found in that CPU-specifi c directory. Finally, modify the resulting
sources to add the specifi c support for your new CPU’s requirements.

7.4.1 EP405 U-Boot Port

The same logic used in porting to a different CPU applies to porting U-Boot to a new
board. Let’s look at an example. We will use the Embedded Planet EP405 board, which
contains the AMCC Power Architecture 405GP processor. The particular board used
for this example was provided courtesy of Embedded Planet and came with 64MB of
SDRAM and 16MB of on-board Flash. Numerous other devices complete the design.

The fi rst step is to see how close we can come to an existing board. Many boards
in the U-Boot source tree support the 405GP processor. A quick grep of the board-
confi guration header fi les narrows the choices to those that support the 405GP
processor:

$ cd .../u-boot/include/configs

$ grep -l CONFIG_405GP *

In a recent U-Boot snapshot, 28 board confi guration fi les are confi gured for the
405GP. After examining a few, we choose the AR405.h confi guration as a baseline. It
supports the LXT971 Ethernet transceiver, which is also on the EP405. The goal is to
minimize any development work by borrowing from similar architectures in the spirit
of open source.

We’ll tackle the easy steps fi rst. We need a custom board confi guration header fi le
for our EP405 board. Copy the board confi guration fi le to a new fi le with a name ap-
propriate for your board. We’ll call ours EP405.h. These commands are issued from the
top-level U-Boot source tree:

$ cp .../include/configs/AR405.h .../include/configs/EP405.h

After you have copied the confi guration header fi le, you must create the board-
specifi c directory and make a copy of the AR405 board fi les. We don’t know yet if we
need all of them. That step will come later. After copying the fi les to your new board
directory, edit the fi lenames appropriately for your board name:

$ cd board <<< from top-level U-Boot source directory

$ mkdir ep405

$ cp esd/ar405/* ep405

176 Chapter 7 Bootloaders

Now comes the hard part. Jerry Van Baren, a developer and U-Boot contributor,
detailed a humorous but realistic process for porting U-Boot in an e-mail posting to
the U-Boot mailing list. His complete process, documented in pseudo-C, can be found
in the U-Boot README fi le. The following summarizes the hard part of the porting
process in Jerry’s style and spirit:

while (!running) {

 do {

 Add / modify source code

 } until (compiles);

 Debug;

...

}

Jerry’s process, as summarized here, is the simple truth. When you have selected
a baseline from which to port, you must add, delete, and modify source code until
it compiles, and then debug it until it is running without error! There is no magic
formula. Porting any bootloader to a new board requires knowledge of many areas of
hardware and software. Some of these disciplines, such as setting up SDRAM control-
lers, are rather specialized and complex. Virtually all of this work involves detailed
knowledge of the underlying hardware. Therefore, be prepared to spend many enter-
taining hours poring over your processor’s hardware reference manual, along with the
data sheets of numerous other components that reside on your board.

7.4.2 U-Boot Makefile Configuration Target

Now that we have a code base to start from, we must make some modifi cations to the
top-level U-Boot makefi le to add the confi guration steps for our new board. Upon ex-
amining this makefi le, we fi nd a section for confi guring the U-Boot source tree for the
various supported boards. This section can be found starting with the unconfig target in
the top-level makefi le. We now add support for our new board to allow us to confi gure
it. Because we derived our board from the ESD AR405, we will use that rule as the
template for building our own. If you follow along in the U-Boot source code, you will
see that these rules are placed in the makefi le in alphabetical order according to their
confi guration names. We will be good open-source citizens and follow that lead. We
call our confi guration target EP405_config, again in concert with the U-Boot conven-
tions. Listing 7-6 details the edits you will need to make in your top-level makefi le.

7.4 Porting U-Boot 177

LISTING 7-6 Makefi le Edits

ebony_config: unconfig

 @$(MKCONFIG) $(@:_config=) ppc ppc4xx ebony amcc

+EP405_config: unconfig

+ @$(MKCONFIG) $(@:_config=) ppc ppc4xx ep405 ep

+

ERIC_config: unconfig

 @./mkconfig $(@:_config=) ppc ppc4xx eric

Our new confi guration rule has been inserted as shown in the three lines preceded
by the + character (unifi ed diff format). Edit the top-level makefi le using your favorite
editor.

Upon completing the steps just described, we have a U-Boot source tree that repre-
sents a starting point. It probably will not compile cleanly, so that should be our fi rst
step. At least the compiler can give us some guidance on where to start.

7.4.3 EP405 First Build

We now have a U-Boot source tree with our candidate fi les. Our fi rst step is to confi g-
ure the build tree for our newly installed EP405 board. Using the confi guration target
we just added to the top-level makefi le, we confi gure the tree. Listing 7-7 gives you a
starting point for where you need to focus your efforts.

LISTING 7-7 Confi gure and Build for EP405

$ make ARCH=ppc CROSS_COMPILE=ppc_405- EP405_config

Configuring for EP405 board...

$ # Now do the build

$ make ARCH=ppc CROSS_COMPILE=ppc_405-

<...lots of build steps...>

make[1]: Entering directory ‘/home/chris/sandbox/u-boot/board/ep/ep405’

ppc_440ep-gcc -g -Os -mrelocatable -fPIC -ffixed-r14 -meabi -D__KERNEL__
-DTEXT_BASE=0xFFFC0000 -I/home/chris/sandbox/u-boot/include -fno-builtin -ffree-
standing -nostdinc -isystem /opt/pro5/montavista/pro/devkit/ppc/440ep/bin/../lib/
gcc/powerpc-montavista-linux-gnu/4.2.0/include -pipe -DCONFIG_PPC -D__powerpc__
-DCONFIG_4xx -ffixed-r2 -mstring -msoft-float -Wa,-m405 -mcpu=405 -Wall -Wstrict-
prototypes -fno-stack-protector -o ep405.o ep405.c -c

ep405.c:25:19: error: ar405.h: No such file or directory

ep405.c:44:22: error: fpgadata.c: No such file or directory

ep405.c:48:27: error: fpgadata_xl30.c: No such file or directory

ep405.c:54:28: error: ../common/fpga.c: No such file or directory

ep405.c: In function ‘board_early_init_f’:

178 Chapter 7 Bootloaders

LISTING 7-7 Continued

ep405.c:75: warning: implicit declaration of function ‘fpga_boot’

ep405.c:91: error: ‘ERROR_FPGA_PRG_INIT_LOW’ undeclared (first use in this func-
tion)

ep405.c:91: error: (Each undeclared identifier is reported only once

ep405.c:91: error: for each function it appears in.)

ep405.c:94: error: ‘ERROR_FPGA_PRG_INIT_HIGH’ undeclared (first use in this func-
tion)

ep405.c:97: error: ‘ERROR_FPGA_PRG_DONE’ undeclared (first use in this function)

make[1]: *** [ep405.o] Error 1

make[1]: Leaving directory ‘/home/chris/sandbox/u-boot/board/ep/ep405’

make: *** [board/ep/ep405/libep405.a] Error 2

At fi rst glance, we notice we need to edit our cloned ep405.c fi le and fi x up a few
references. These include the board header fi le and references to the FPGA. We can
eliminate these, because the EP405 board doesn’t contain an FPGA like the AR405 we
derived from. These edits should be straightforward, so we’ll leave them as an exercise
for the reader. Again, there is no formula better than Jerry’s: edit-compile-repeat until
the fi le compiles cleanly. Then comes the hard part—actually making it work. It was
not diffi cult. Less than an hour of editing had the fi le compiling without errors.

7.4.4 EP405 Processor Initialization

The fi rst task that your new U-Boot port must do correctly is initialize the processor
and the memory (DRAM) subsystems. After reset, the 405GP processor core is de-
signed to fetch instructions starting from 0xFFFF_FFFC. The core attempts to execute
the instructions found here. Because this is the top of the memory range, the instruc-
tion found here must be an unconditional branch instruction.

This processor core is also hard-coded to confi gure the upper 2MB memory region
so that it is accessible without programming the external bus controller, to which Flash
memory is usually attached. This forces the requirement to branch to a location within
this address space, because the processor is incapable of addressing memory anywhere
else until our bootloader code initializes additional memory regions. We must branch
to somewhere at or above 0xFFE0_0000. How do we know all this? Because we read the
405GP user manual!

The behavior of the 405GP processor core, as just described, places requirements
on the hardware designer to ensure that, on power-up, nonvolatile memory (Flash) is
mapped to the required upper 2MB memory region. Certain attributes of this initial

7.4 Porting U-Boot 179

memory region assume default values on reset. For example, this upper 2MB region
will be confi gured for 256 wait states, three cycles of address to chip select delay, three
cycles of chip select to output enable delay, and seven cycles of hold time.3 This allows
maximum freedom for the hardware designer to select appropriate devices or methods
of getting instruction code to the processor directly after reset.

We’ve already seen how the reset vector is installed to the top of Flash in Listing
7-2. When confi gured for the 405GP, our fi rst lines of code will be found in the fi le
.../cpu/ppc4xx/start.S. The U-Boot developers intended this code to be processor-
generic. In theory, there should be no need for board-specifi c code in this fi le. You will
see how this is accomplished.

You don’t need to understand Power Architecture assembly language in any depth
to understand the logical fl ow in start.S. Many frequently asked questions (FAQs)
have been posted to the U-Boot mailing list about modifying low-level assembly code.
In nearly all cases, it is not necessary to modify this code if you are porting to one of
the many supported processors. It is mature code, with many successful ports running
on it. You need to modify the board-specifi c code (at a bare minimum) for your port.
If you fi nd yourself troubleshooting or modifying the early startup assembler code for
a processor that has been around for a while, you are most likely heading down the
wrong road.

Listing 7-8 reproduces a portion of start.S for the 4xx architecture.

LISTING 7-8 U-Boot 4xx Startup Code

...

#if defined(CONFIG_405GP) || defined(CONFIG_405CR) ||

 defined(CONFIG_405) || defined(CONFIG_405EP)

 /*--------------------------------- */

 /* Clear and set up some registers. */

 /*--------------------------------- */

 addi r4,r0,0x0000

 mtspr sgr,r4

 mtspr dcwr,r4

 mtesr r4 /* clear Exception Syndrome Reg */

 mttcr r4 /* clear Timer Control Reg */

 mtxer r4 /* clear Fixed-Point Exception Reg */

 mtevpr r4 /* clear Exception Vector Prefix Reg */

 addi r4,r0,0x1000 /* set ME bit (Machine Exceptions) */

 oris r4,r4,0x0002 /* set CE bit (Critical Exceptions) */

 mtmsr r4 /* change MSR */

3 This data was taken directly from the 405GP user’s manual, referenced at the end of this chapter.

180 Chapter 7 Bootloaders

LISTING 7-8 Continued

 addi r4,r0,(0xFFFF-0x10000) /* set r4 to 0xFFFFFFFF (status in the */

 /* dbsr is cleared by setting bits to 1) */

 mtdbsr r4 /* clear/reset the dbsr */

 /*---------------------------------- */

 /* Invalidate I and D caches. Enable I cache for defined memory regions */

 /* to speed things up. Leave the D cache disabled for now. It will be */

 /* enabled/left disabled later based on user-selected menu options. */

 /* Be aware that the I cache may be disabled later based on the menu */

 /* options as well. See miscLib/main.c. */

 /*------------------------------------- */

 bl invalidate_icache

 bl invalidate_dcache

 /*-------------------------------------- */

 /* Enable two 128MB cachable regions. */

 /*----------------------------------- */

 addis r4,r0,0x8000

 addi r4,r4,0x0001

 mticcr r4 /* instruction cache */

 isync

 addis r4,r0,0x0000

 addi r4,r4,0x0000

 mtdccr r4 /* data cache */

The fi rst code to execute in start.S for the 405GP processor starts about a third
of the way into the source fi le, where a handful of processor registers are cleared or set
to sane initial values. The instruction and data caches are then invalidated, and the in-
struction cache is enabled to speed up the initial load. Two 128MB cacheable regions
are set up—one at the high end of memory (the Flash region), and the other at the
bottom (normally the start of system DRAM). U-Boot eventually is copied to RAM in
this region and executed from there. The reason for this is performance: raw reads from
RAM are an order of magnitude (or more) faster than reads from Flash. However, for
the 4xx CPU, there is another subtle reason for enabling the instruction cache, as you
shall soon discover.

7.4 Porting U-Boot 181

7.4.5 Board-Specific Initialization

The fi rst opportunity for any board-specifi c initialization comes in .../cpu/ppc4xx/
start.S just after the cacheable regions have been initialized. Here we fi nd a call to an
external assembler language routine called ext_bus_cntlr_init:

bl ext_bus_cntlr_init /* Board-specific bus cntrl init */

This routine is defi ned in .../board/ep405/init.S, in the new board-specifi c direc-
tory for our board. It provides a hook for very early hardware-based initialization. This
is one of the fi les that has been customized for our EP405 platform. This fi le contains
the board-specifi c code to initialize the 405GP’s external bus controller for our applica-
tion. Listing 7-9 contains the meat of the functionality from this fi le. This is the code
that initializes the 405GP’s external bus controller.

LISTING 7-9 External Bus Controller Initialization

 .globl ext_bus_cntlr_init

ext_bus_cntlr_init:

 mflr r4 /* save link register */

 bl ..getAddr

..getAddr:

 mflr r3 /* get _this_ address */

 mtlr r4 /* restore link register */

 addi r4,0,14 /* prefetch 14 cache lines... */

 mtctr r4 /* ...to fit this function */

 /* cache (8x14=112 instr) */

..ebcloop:

 icbt r0,r3 /* prefetch cache line for [r3] */

 addi r3,r3,32 /* move to next cache line */

 bdnz ..ebcloop /* continue for 14 cache lines */

 /*--- */

 /* Delay to ensure all accesses to ROM are complete */

 /* before changing bank 0 timings */

 /* 200usec should be enough. */

 /* 200,000,000 (cycles/sec) X .000200 (sec) = */

 /* 0x9C40 cycles */

 /*--- */

 addis r3,0,0x0

 ori r3,r3,0xA000 /* ensure 200usec have passed t */

182 Chapter 7 Bootloaders

LISTING 7-9 Continued

 mtctr r3

..spinlp:

 bdnz ..spinlp /* spin loop */

 /*--*/

 /* Now do the real work of this function */

 /* Memory Bank 0 (Flash and SRAM) initialization */

 /*--*/

 addi r4,0,pb0ap /* *ebccfga = pb0ap; */

 mtdcr ebccfga,r4

 addis r4,0,EBC0_B0AP@h /* *ebccfgd = EBC0_B0AP; */

 ori r4,r4,EBC0_B0AP@l

 mtdcr ebccfgd,r4

 addi r4,0,pb0cr /* *ebccfga = pb0cr; */

 mtdcr ebccfga,r4

 addis r4,0,EBC0_B0CR@h /* *ebccfgd = EBC0_B0CR; */

 ori r4,r4,EBC0_B0CR@l

 mtdcr ebccfgd,r4

 /*--*/

 /* Memory Bank 4 (NVRAM & BCSR) initialization */

 /*--*/

 addi r4,0,pb4ap /* *ebccfga = pb4ap; */

 mtdcr ebccfga,r4

 addis r4,0,EBC0_B4AP@h /* *ebccfgd = EBC0_B4AP; */

 ori r4,r4,EBC0_B4AP@l

 mtdcr ebccfgd,r4

 addi r4,0,pb4cr /* *ebccfga = pb4cr; */

 mtdcr ebccfga,r4

 addis r4,0,EBC0_B4CR@h /* *ebccfgd = EBC0_B4CR; */

 ori r4,r4,EBC0_B4CR@l

 mtdcr ebccfgd,r4

 blr /* return */

Listing 7-9 was chosen because it is typical of the subtle complexities involved in
low-level processor initialization. It is important to realize the context in which this

7.4 Porting U-Boot 183

code is running. It is executing from Flash, before any DRAM is available. There is
no stack. This code is preparing to make fundamental changes to the controller that
governs access to the very Flash it is executing from. It is well documented for this
particular processor that executing code from Flash while modifying the external bus
controller to which the Flash is attached can lead to errant reads and a resulting proces-
sor crash.

The solution is shown in this assembly language routine. Starting at the label
..getAddr, and for the next seven assembly language instructions, the code essentially
prefetches itself into the instruction cache, using the icbt instruction. When the entire
subroutine has been successfully read into the instruction cache, it can proceed to make
the required changes to the external bus controller without fear of a crash, because it
is executing directly from the internal instruction cache. Subtle, but clever! This is fol-
lowed by a short delay to make sure that all the requested i-cache reads have completed.

When the prefetch and delay have completed, the code proceeds to confi gure
Memory Bank 0 and Memory Bank 4 appropriately for our board. The values come
from detailed knowledge of the underlying components and their interconnection on
the board. Consult the last section in this chapter for all the details of the Power Ar-
chitecture assembler and the 405GP processor from which this example was derived.

Consider making a change to this code without a complete understanding of what
is happening here. Perhaps you added a few lines and increased its size beyond the
range that was prefetched into the cache. It would likely crash (worse, it might crash
only sometimes), but stepping through this code with a debugger would not yield a
single clue as to why.

The next opportunity for board-specifi c initialization comes after a temporary stack
has been allocated from the processor’s data cache. This is the branch to initialize the
SDRAM controller around line 727 of .../cpu/ppc4xx/start.S:

bl sdram_init

The execution context now includes a stack pointer and some temporary memory
for local data storage—that is, a partial C context, allowing the developer to use C
for the relatively complex task of setting up the system SDRAM controller and other
initialization tasks. In our EP405 port, the sdram_init() code resides in .../board/
ep405/ep405.c and is customized for this particular board and DRAM confi guration.
Because this board does not use a commercially available memory SIMM, it is not pos-
sible to determine the confi guration of the DRAM dynamically, as with so many other
boards supported by U-Boot. It is hard-coded in sdram_init.

184 Chapter 7 Bootloaders

Many off-the-shelf memory DDR modules have an SPD (Serial Presence Detect)
PROM containing parameters that identify the memory module and its architecture
and organization. These parameters can be read under program control via I2C and
can be used as input to determine proper parameters for the memory controller. U-
Boot has support for this technique but may need modifi cations to work with your
specifi c board. Many examples of its use can be found in the U-Boot source code. The
confi guration option CONFIG_SPD_EEPROM enables this feature. You can grep for this
option to fi nd examples of its use.

7.4.6 Porting Summary

By now, you can appreciate some of the diffi culties of porting a bootloader to a hard-
ware platform. There is simply no substitute for detailed knowledge of the underlying
hardware. Of course, we’d like to minimize our investment in time required for this
task. After all, we usually are not paid based on how well we understand every hardware
detail of a given processor, but rather on our ability to deliver a working solution in a
timely manner. Indeed, this is one of the primary reasons open source has fl ourished.
You just saw how easy it is to port U-Boot to a new hardware platform—not because
you’re an expert on the processor, but because many before us have done the bulk of
the hard work already.

Listing 7-10 is the complete list of new or modifi ed fi les that complete the basic
EP405 port for U-Boot. Of course, if there had been new hardware devices for which
no support exists in U-Boot, or if we were porting to a new CPU that is not yet sup-
ported in U-Boot, this would have been a much more signifi cant effort. The point to
be made here, at the risk of sounding redundant, is that there is simply no substitute
for detailed knowledge of both the hardware (CPU and subsystems) and the underly-
ing software (U-Boot) to complete a port successfully in a reasonable time frame. If
you start the project from that frame of mind, you will have a successful outcome.

LISTING 7-10 New or Changed Files for U-Boot EP405 Port

$ git diff HEAD --stat

 Makefile | 3 +

 board/ep/ep405/Makefile | 53 ++++

 board/ep/ep405/config.mk | 30 ++

 board/ep/ep405/ep405.c | 329 ++++++++++++++++++++

 board/ep/ep405/ep405.h | 44 +++

 board/ep/ep405/flash.c | 749 ++

 include/configs/EP405.h | 272 +++++++++++++++++

 7 files changed, 1480 insertions(+), 0 deletions(-)

7.4 Porting U-Boot 185

Recall that we derived all the fi les in the .../board/ep405 directory from another
directory. Indeed, we didn’t create any fi les from scratch for this port. We borrowed
from the work of others and customized where necessary to achieve our goals.

7.4.7 U-Boot Image Format

Now that we have a working bootloader for our EP405 board, we can load and run
programs on it. Ideally, we want to run an operating system such as Linux. To do this,
we need to understand the image format that U-Boot requires. U-Boot expects a small
header on the image fi le that identifi es several attributes of the image. U-Boot provides
the mkimage tool (part of the U-Boot source code) to build this image header.

Recent Linux kernel distributions have built-in support for building images directly
bootable by U-Boot. Both the arm and powerpc branches of the kernel source tree sup-
port a target called uImage. Let’s look at the Power Architecture case.

Browsing through the makefi le .../arch/powerpc/boot/Makefile, we see the uImage
target defi ning a call to an external wrapper script called, you guessed it, wrapper. With-
out delving into the syntactical tedium, the wrapper script sets up some default variable
values and eventually calls mkimage. Listing 7-11 reproduces this processing from the
wrapper script.

LISTING 7-11 mkimage from Wrapper Script

case “$platform” in

uboot)

 rm -f “$ofile”

 mkimage -A ppc -O linux -T kernel -C gzip -a $membase -e $membase \

 $uboot_version -d “$vmz” “$ofile”

 if [-z “$cacheit”]; then

 rm -f “$vmz”

 fi

 exit 0

 ;;

esac

The mkimage utility creates the U-Boot header and prepends it to the supplied ker-
nel image. It writes the resulting image to the fi nal parameter passed to mkimage—in
this case, the value of the $ofile variable, which in this example will be called uImage.
The parameters are as follows:

 • -A specifies the target image architecture.

 • -O species the target image OS—in this case, Linux.

186 Chapter 7 Bootloaders

 • -T specifies the target image type—in this case, a kernel.

 • -C specifies the target image compression type—in this case, gzip.

 • -a sets the U-Boot loadaddress to the value specified.

 • -e sets the U-Boot image entry point to the supplied value.

 • -n is a text field used to identify the image to the human user (supplied in the
uboot_version variable).

 • -d is the executable image file to which the header is prepended.

Several U-Boot commands use this header data both to verify the integrity of the
image (U-Boot also puts a CRC signature in the header) and to identify the image
type. U-Boot has a command called iminfo that reads the image header and displays
the image attributes from the target image. Listing 7-12 contains the results of loading
a uImage (bootable Linux kernel image formatted for U-Boot) to the EP405 board via
U-Boot’s tftp command and executing the iminfo command on the image.4

LISTING 7-12 U-Boot iminfo Command

=> tftp 400000 uImage-ep405

ENET Speed is 100 Mbps - FULL duplex connection

TFTP from server 192.168.1.9; our IP address is 192.168.1.33

Filename ‘uImage-ep405’.

Load address: 0x400000

Loading: ########## done

Bytes transferred = 891228 (d995c hex)

=> iminfo

Checking Image at 00400000 ...

 Image Name: Linux-2.6.11.6

 Image Type: PowerPC Linux Kernel Image (gzip compressed)

 Data Size: 891164 Bytes = 870.3 kB

 Load Address: 00000000

 Entry Point: 00000000

 Verifying Checksum ... OK

=>

4 We changed the name of the uImage to refl ect the target it corresponds to. In this example, we appended -ep405 to indicate
it is a kernel for that target.

 7.5 Device Tree Blob (Flat Device Tree) 187

7.5 Device Tree Blob (Flat Device Tree)

One of the more challenging aspects of porting Linux (and U-Boot) to your new board
is the recent requirement for a device tree blob (DTB). It is also referred to as a fl at
device tree, device tree binary, or simply device tree. Throughout this discussion, these
terms are used interchangeably. The DTB is a database that represents the hardware
components on a given board. It is derived from the IBM OpenFirmware specifi ca-
tions and has been chosen as the default mechanism to pass low-level hardware infor-
mation from the bootloader to the kernel.

Prior to the requirement for a DTB, U-Boot would pass a board information struc-
ture to the kernel, which was derived from a header fi le in U-Boot that had to exactly
match the contents of a similar header fi le in the kernel. It was very diffi cult to keep
them in sync, and it didn’t scale well. This was, in part, the motivation for incorporat-
ing the fl at device tree as a method to communicate low-level hardware details from
the bootloader to the kernel.

Similar to U-Boot or other low-level fi rmware, mastering the DTB requires com-
plete knowledge of the underlying hardware. You can do an Internet search to fi nd
some introductory documents that describe the device tree. A great starting point is
the Denx Software Engineering wiki page. References are provided at the end of this
chapter.

To begin, let’s see how the DTB is used during a typical boot sequence. Listing 7-13
shows a boot sequence on a Power Architecture target using U-Boot. The Freescale
MPC8548CDS system was used for this example.

LISTING 7-13 Booting Linux with the Device Tree Blob from U-Boot

=> tftp $loadaddr 8548/uImage

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.11.103; our IP address is 192.168.11.18

Filename ‘8548/uImage’.

Load address: 0x600000

Loading: ###

 ###

done

Bytes transferred = 1838553 (1c0dd9 hex)

=> tftp $fdtaddr 8548/dtb

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.11.103; our IP address is 192.168.11.18

188 Chapter 7 Bootloaders

LISTING 7-13 Continued

Filename ‘8548/dtb’.

Load address: 0xc00000

Loading: ##

done

Bytes transferred = 16384 (4000 hex)

=> bootm $loadaddr - $fdtaddr

Booting kernel from Legacy Image at 00600000 ...

 Image Name: MontaVista Linux 6/2.6.27/freesc

 Image Type: PowerPC Linux Kernel Image (gzip compressed)

 Data Size: 1838489 Bytes = 1.8 MB

 Load Address: 00000000

 Entry Point: 00000000

 Verifying Checksum ... OK

Flattened Device Tree blob at 00c00000

 Booting using the fdt blob at 0xc00000

 Uncompressing Kernel Image ... OK

 Loading Device Tree to 007f9000, end 007fffff ... OK

 <... Linux begins booting here...>

...and away we go!!

The primary difference here is that we loaded two images. The large image (1.8MB)
is the kernel image. The smaller image (16KB) is the fl at device tree. Notice that we
placed the kernel and DTB at addresses 0x600000 and 0xc00000, respectively. All the
messages from Listing 7-13 are produced by U-Boot. When we use the bootm com-
mand to boot the kernel, we add a third parameter, which tells U-Boot where we
loaded the DTB.

By now, you are probably wondering where the DTB came from. The easy answer
is that it was provided as a courtesy by the board/architecture developers as part of the
Linux kernel source tree. If you look at the powerpc branch of any recent Linux kernel
tree, you will see a directory called .../arch/powerpc/boot/dts. This is where the
“source code” for the DTB resides.

The hard answer is that you must provide a DTB for your custom board. Start with
something close to your platform, and modify from there. At the risk of sounding re-
dundant, there is no easy path. You must dive in and learn the details of your hardware
platform and become profi cient at writing device nodes and their respective properties.
Hopefully, this section will start you on your way toward that profi ciency.

 7.5 Device Tree Blob (Flat Device Tree) 189

7.5.1 Device Tree Source

The device tree blob is “compiled” by a special compiler that produces the binary in
the proper form for U-Boot and Linux to understand. The dtc compiler usually is
provided with your embedded Linux distribution, or it can be found at http://jdl.com/
software. Listing 7-14 shows a snippet of the device tree source (DTS) from a recent
kernel source tree.

LISTING 7-14 Partial Device Tree Source Listing

/*

 * MPC8548 CDS Device Tree Source

 *

 * Copyright 2006, 2008 Freescale Semiconductor Inc.

 *

 * This program is free software; you can redistribute it and/or modify it

 * under the terms of the GNU General Public License as published by the

 * Free Software Foundation; either version 2 of the License, or (at your

 * option) any later version.

 */

/dts-v1/;

/ {

 model = “MPC8548CDS”;

 compatible = “MPC8548CDS”, “MPC85xxCDS”;

 #address-cells = <1>;

 #size-cells = <1>;

 aliases {

 ethernet0 = &enet0;

 ethernet1 = &enet1;

 ethernet2 = &enet2;

 ethernet3 = &enet3;

 serial0 = &serial0;

 serial1 = &serial1;

 pci0 = &pci0;

 pci1 = &pci1;

 pci2 = &pci2;

 rapidio0 = &rio0;

 };

 cpus {

http://jdl.com/software
http://jdl.com/software

190 Chapter 7 Bootloaders

LISTING 7-14 Continued

 #address-cells = <1>;

 #size-cells = <0>;

 PowerPC,8548@0 {

 device_type = “cpu”;

 reg = <0x0>;

 d-cache-line-size = <32>; // 32 bytes

 i-cache-line-size = <32>; // 32 bytes

 d-cache-size = <0x8000>; // L1, 32K

 i-cache-size = <0x8000>; // L1, 32K

 timebase-frequency = <0>; // 33 MHz, from uboot

 bus-frequency = <0>; // 166 MHz

 clock-frequency = <0>; // 825 MHz, from uboot

 next-level-cache = <&L2>;

 };

 };

 memory {

 device_type = “memory”;

 reg = <0x0 0x8000000>; // 128M at 0x0

 };

 localbus@e0000000 {

 #address-cells = <2>;

 #size-cells = <1>;

 compatible = “simple-bus”;

 reg = <0xe0000000 0x5000>;

 interrupt-parent = <&mpic>;

 ranges = <0x0 0x0 0xff000000 0x01000000>; /*16MB Flash*/

 flash@0,0 {

 #address-cells = <1>;

 #size-cells = <1>;

 compatible = “cfi-flash”;

 reg = <0x0 0x0 0x1000000>;

 bank-width = <2>;

 device-width = <2>;

 partition@0x0 {

 label = “free space”;

 reg = <0x00000000 0x00f80000>;

 };

 7.5 Device Tree Blob (Flat Device Tree) 191

LISTING 7-14 Continued

 partition@0x100000 {

 label = “bootloader”;

 reg = <0x00f80000 0x00080000>;

 read-only;

 };

 };

 };

<...truncated here...>

This is a long listing, but it is well worth the time spent studying it. Although it may
seem obvious, it is worth noting that this device tree source is specifi c to the Freescale
MPC8548CDS Confi gurable Development System. Part of your job as a custom em-
bedded Linux developer is to adopt this DTS to your own MPC8548-based system.

Some of the data shown in Listing 7-14 is self-explanatory. The fl at device tree is
made up of device nodes. A device node is an entry in the device tree, usually describ-
ing a single device or bus. Each node contains a set of properties that describe it. It is,
in fact, a tree structure. It can easily be represented by a familiar tree view, as shown in
Listing 7-15.

LISTING 7-15 Tree View of DTS

|-/ Model: model = “MPC8548CDS”, etc.

|

|---- cpus: #address-cells = <1>, etc.

| |

| |---- PowerPC,8548@0, etc.

|

|--- Memory: device_type = “memory”, etc.

|

|---- localbus@e0000000: #address-cells = <2>, etc.

| |

| |---- flash@0,0: #address-cells = <1>, etc.

|

<...>

In the fi rst few lines of Listing 7-14, we see the processor model and a property
indicating compatibility with other processors in the same family. The fi rst child node
describes the CPU. Many of the CPU device node properties are self-explanatory. For
example, we can see that the 8548 CPU has data and instruction cache line sizes of

192 Chapter 7 Bootloaders

32 bytes and that these caches are both 32KB in size (0x8000 bytes.) We see a cou-
ple properties that show clock frequencies, such as timebase-frequency and clock-
frequency, both of which indicate that they are set by U-Boot. That would be natural,
because U-Boot confi gures the hardware clocks.

The properties called address-cells and size-cells are worth explaining. A “cell”
in this context is simply a 32-bit quantity. address-cells and size-cells simply in-
dicate the number of cells (32-bit fi elds) required to specify an address (or size) in the
child node.

The memory device node offers no mysteries. From this node, it is obvious that this
platform contains a single bank of memory starting at address 0, which is 128MB in
size.

For complete details of fl at device tree syntax, consult the references at the end of
this chapter. One of the most useful is the document produced by Power.org, found at
www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf.

7.5.2 Device Tree Compiler

Introduced earlier, the device tree compiler (dtc) converts the human-readable device
tree source into the machine-readable binary that both U-Boot and the Linux kernel
understand. Although a git tree is hosted on kernel.org for dtc, the device tree source
has been merged into the kernel source tree and is built along with any Power Archi-
tecture kernel from the .../arch/powerpc branch.

It is quite straightforward to use the device tree compiler. A typical command to
convert source to binary looks like this:

$ dtc -O dtb -o myboard.dtb -b 0 myboard.dts

In this command, myboard.dts is the device tree human-readable source, and
myboard.dtb is the binary created by this command invocation. The -O fl ag specifi es
the output format—in this case, the device tree blob binary. The -o fl ag names the out-
put fi le, and the -b 0 parameter specifi es the physical boot CPU in the multicore case.

Note that the dtc compiler allows you to go in both directions. The command
example just shown performs a compile from source to device tree binary, whereas a
command like this produces source from the binary:

$ dtc -I dtb -O dts mpc8548.dtb >mpc8548.dts

www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf

 7.5 Device Tree Blob (Flat Device Tree) 193

You can also build the DTB for many well-known reference boards directly from the
kernel source. The command looks similar to the following:

$ make ARCH=powerpc mpc8548cds.dtb

This produces a binary device tree blob from a source fi le with the same base name
(mpc8548cds) and the dts extension. These are found in .../arch/powerpc/boot/dts.
A recent kernel source tree had 120 such device tree source fi les for a range of Power
Architecture boards.

7.5.3 Alternative Kernel Images Using DTB

Entering make ARCH=powerpc help at the top-level Linux kernel source tree outputs
many lines of useful help, describing the many build targets available. Several archi-
tecture-specifi c targets combine the device tree blob with the kernel image. One good
reason to do this is if you are trying to boot a newer kernel on a target that has an older
version of U-Boot that does not support the device tree blob. On a recent Linux kernel,
Listing 7-16 reproduces the powerpc targets defi ned for the powerpc architecture.

LISTING 7-16 Architecture-Specifi c Targets for Powerpc

* zImage - Build default images selected by kernel config

 zImage.* - Compressed kernel image (arch/powerpc/boot/zImage.*)

 uImage - U-Boot native image format

 cuImage.<dt> - Backwards compatible U-Boot image for older

 versions which do not support device trees

 dtbImage.<dt> - zImage with an embedded device tree blob

 simpleImage.<dt> - Firmware independent image.

 treeImage.<dt> - Support for older IBM 4xx firmware (not U-Boot)

 install - Install kernel using

 (your) ~/bin/installkernel or

 (distribution) /sbin/installkernel or

 install to $(INSTALL_PATH) and run lilo

 *_defconfig - Select default config from arch/powerpc/configs

The zImage is the default, but many targets use uImage. Notice that some of these
targets have the device tree binary included in the composite kernel image. You need to
decide which is most appropriate for your particular platform and application.

194 Chapter 7 Bootloaders

7.6 Other Bootloaders

Here we introduce the more popular bootloaders, describe where they might be used,
and summarize their features. This is not intended to be a thorough tutorial; doing so
would require a book of its own. Consult the last section of this chapter for further
study.

7.6.1 Lilo

The Linux Loader, or Lilo, was widely used in commercial Linux distributions for
desktop PC platforms; as such, it has its roots in the Intel x86/IA32 architecture. Lilo
has several components. It has a primary bootstrap program that lives on the fi rst sec-
tor of a bootable disk drive.5 The primary loader is limited to a disk sector size, usu-
ally 512 bytes. Therefore, its primary purpose is simply to load and pass control to a
secondary loader. The secondary loader can span multiple sectors and does most of the
bootloader’s work.

Lilo is driven by a confi guration fi le and utility that is part of the Lilo executable.
This confi guration fi le can be read or written to only under control of the host operat-
ing system. That is, the confi guration fi le is not referenced by the early boot code in
either the primary or secondary loaders. Entries in the confi guration fi le are read and
processed by the Lilo confi guration utility during system installation or administra-
tion. Listing 7-17 shows a simple lilo.conf confi guration fi le describing a typical
dual-boot Linux and Windows installation.

LISTING 7-17 Sample Lilo Confi guration: lilo.conf

This is the global lilo configuration section

These settings apply to all the “image” sections

boot = /dev/hda

timeout=50

default=linux

This describes the primary kernel boot image

Lilo will display it with the label ‘linux’

image=/boot/myLinux-2.6.11.1

 label=linux

 initrd=/boot/myInitrd-2.6.11.1.img

5 This is mostly for historical reasons. From the early days of PCs, BIOS programs loaded only the fi rst sector of a disk drive and
passed control to it.

7.6 Other Bootloaders 195

LISTING 7-17 Continued

 read-only

 append=”root=LABEL=/”

This is the second OS in a dual-boot configuration

This entry will boot a secondary image from /dev/hda1

other=/dev/hda1

 optional

 label=that_other_os

This confi guration fi le instructs the Lilo confi guration utility to use the master boot
record of the fi rst hard drive (/dev/hda). It contains a delay instruction to wait for the
user to press a key before the timeout (5 seconds, in this case). This allows the system
operator to select from a list of OS images to boot. If the system operator presses the
Tab key before the timeout, Lilo presents a list to choose from. Lilo uses the label tag
as the text to display for each image.

The images are defi ned with the image tag in the confi guration fi le. In Listing 7-17,
the primary (default) image is a Linux kernel image with a fi lename of myLinux-2.6.11.1.
Lilo loads this image from the hard drive. It then loads a second fi le to be used as an ini-
tial ramdisk. This is the fi le myInitrd-2.6.11.1.img. Lilo constructs a kernel command
line containing the string “root=LABEL=/” and passes this to the Linux kernel upon ex-
ecution. This instructs Linux where to get its root fi le system after boot.

7.6.2 GRUB

Many current commercial Linux distributions now ship with the GRUB bootloader.
GRUB, or GRand Unifi ed Bootloader, is a GNU project. It has many enhanced fea-
tures not found in Lilo. The biggest difference between GRUB and Lilo is GRUB’s ca-
pability to understand fi le systems and kernel image formats. Furthermore, GRUB can
read and modify its confi guration at boot time. GRUB also supports booting across a
network, which can be a tremendous asset in an embedded environment. GRUB offers
a command-line interface at boot time to modify the boot confi guration.

Like Lilo, GRUB is driven by a confi guration fi le. Unlike Lilo’s static confi guration,
however, the GRUB bootloader reads this confi guration at boot time. This means that
the confi gured behavior can be modifi ed at boot time for different system confi gura-
tions.

196 Chapter 7 Bootloaders

Listing 7-18 is a sample GRUB confi guration fi le. This is the confi guration fi le
from the PC on which this book was written. The GRUB confi guration fi le is called
grub.conf6 and usually is placed in a small partition dedicated to storing boot images.
On the machine from which this example was taken, that directory is called /boot.

LISTING 7-18 Sample GRUB Confi guration File: grub.conf

default=0

timeout=3

splashimage=(hd0,1)/grub/splash.xpm.gz

title Fedora Core 2 (2.6.9)

 root (hd0,1)

 kernel /bzImage-2.6.9 ro root=LABEL=/ rhgb proto=imps quiet

 initrd /initrd-2.6.9.img

title Fedora Core (2.6.5-1.358)

 root (hd0,1)

 kernel /vmlinuz-2.6.5-1.358 ro root=LABEL=/ rhgb quiet

title That Other OS

 rootnoverify (hd0,0)

 chainloader +1

GRUB fi rst presents the user with a list of images that are available to boot. The
title entries from Listing 7-18 are the image names presented to the user. The default
tag specifi es which image to boot if no keys have been pressed in the timeout period,
which is 3 seconds in this example. Images are counted starting from 0.

Unlike Lilo, GRUB can actually read a fi le system on a given partition to load an
image from. The root tag specifi es the root partition from which all fi lenames in the
grub.conf confi guration fi le are rooted. In this sample confi guration, the root is par-
tition number 1 on the fi rst hard disk drive, specifi ed as root(hd0,1). Partitions are
numbered from 0; this is the second partition on the fi rst hard disk.

The images are specifi ed as fi lenames relative to the specifi ed root. In Listing 7-18,
the default boot image is a Linux 2.6.9 kernel with a matching initial ramdisk image
called initrd-2.6.9.img. Notice that the GRUB syntax has the kernel command-line
parameters on the same line as the kernel fi le specifi cation.

6 Some newer distributions call this fi le menu.lst.

7.7 Summary 197

7.6.3 Still More Bootloaders

Numerous other bootloaders have found their way into specifi c niches. For example,
Redboot is another open source bootloader that Intel and the XScale community have
adopted for use on various evaluation boards based on the Intel IXP and Marvel PXA
processor families. Micromonitor is in use by board vendors such as Cogent and oth-
ers. YAMON7 has found popularity in MIPs circles. LinuxBIOS is used primarily in
X86 environments. In general, when you consider a boot loader, you should consider
some important factors up front:

 • Does it support my chosen processor?

 • Has it been ported to a board similar to my own?

 • Does it support the features I need?

 • Does it support the hardware devices I intend to use?

 • Is there a large community of users where I might get support?

 • Are there any commercial vendors from which I can purchase support?

These are some of the questions you must answer when considering what bootload-
er to use in your embedded project. Unless you are doing something on the “bleeding
edge” of technology using a brand-new processor, you are likely to fi nd that someone
has already done the bulk of the hard work in porting a bootloader to your chosen
platform. Use the resources listed at the end of this chapter to help make your fi nal
decisions.

7.7 Summary

This chapter examined the role of the bootloader and discovered the limited execu-
tion context in which a bootloader must exist. We covered one of the most popular
bootloaders, U-Boot, in some detail. We walked through the steps of a typical port to
a board with similar support in U-Boot. We briefl y introduced additional bootloaders
in use today so that you can make an informed choice for your particular requirements.

 • The bootloader’s role in an embedded system cannot be overstated. It is the
first piece of software that takes control upon applying power.

7 In an acknowledgment of the number of bootloaders in existence, the YAMON user’s guide bills itself as Yet Another
MONitor.

198 Chapter 7 Bootloaders

 • Das U-Boot has become a popular universal bootloader for many processor
architectures. It supports a large number of processors, reference hardware plat-
forms, and custom boards.

 • U-Boot is configured using a series of configuration variables in a board-specific
header file. Appendix B contains a list of all the standard U-Boot command sets
supported in a recent U-Boot release.

 • Porting U-Boot to a new board based on a supported processor is relatively
straightforward.

 • There is no substitute for detailed knowledge of your processor and hardware
platform when bootloader modification or porting must be accomplished.

 • You may need a device tree binary for your board, especially if it is Power
Architecture and soon perhaps ARM.

7.7.1 Suggestions for Additional Reading

Application Note: Introduction to Synchronous DRAM
Maxwell Technologies
www.maxwell.com/pdf/me/app_notes/Intro_to_SDRAM.pdf

Using LD, the GNU linker
Free Software Foundation
http://sourceware.org/binutils/docs/ld/index.html

The DENX U-Boot and Linux Guide (DLUG) for TQM8xxL
Wolfgang Denx, et al., Denx Software Engineering
www.denx.de/twiki/bin/view/DULG/Manual

RFC 793, “Trivial File Transfer Protocol”
The Internet Engineering Task Force
www.ietf.org/rfc/rfc783.txt

RFC 951, “Bootstrap Protocol”
The Internet Engineering Task Force
www.ietf.org/rfc/rfc951.txt

RFC 1531, “Dynamic Host Control Protocol”
The Internet Engineering Task Force
www.ietf.org/rfc/rfc1531.txt

www.maxwell.com/pdf/me/app_notes/Intro_to_SDRAM.pdf
http://sourceware.org/binutils/docs/ld/index.html
www.denx.de/twiki/bin/view/DULG/Manual
www.ietf.org/rfc/rfc783.txt
www.ietf.org/rfc/rfc951.txt
www.ietf.org/rfc/rfc1531.txt

7.7 Summary 199

PowerPC 405GP Embedded Processor user manual
International Business Machines, Inc.

Programming Environments Manual for 32-bit Implementations of the PowerPC
Architecture
Freescale Semiconductor, Inc.

Lilo Bootloader
www.tldp.org/HOWTO/LILO.html

GRUB Bootloader
www.gnu.org/software/grub/

Device tree documentation
Linux Kernel Source Tree
.../Documentation/powerpc/booting-without-of.txt

Device trees everywhere
David Gibson, Benjamin Herrenschmidt
http://ozlabs.org/people/dgibson/papers/dtc-paper.pdf

Excellent list of fl at device tree references
www.denx.de/wiki/U-Boot/UBootFdtInfo#Background_Information_on_Flatte

www.tldp.org/HOWTO/LILO.html
www.gnu.org/software/grub/
http://ozlabs.org/people/dgibson/papers/dtc-paper.pdf
www.denx.de/wiki/U-Boot/UBootFdtInfo#Background_Information_on_Flatte

Index

593

Symbol
\ (UNIX line-continuation character), 119

A
“A Non-Technical Look Inside the EXT2 File

System” website, 259
Abatron website, 410
access rights, 26
add-symbol-file command, 403
addr2line utility, 361
adduser BusyBox command, 562
adjtimex BusyBox command, 562
Almesberger, Werner, 157
AltiVec, 41
AMCC

Power Architecture processors, 50-53
Yosemite board kernel debugging example,

381-382
announcement of Linux, 64
applications, multithreaded, 438-441
ar BusyBox command, 562
architecture

device drivers, 204
embedded systems, 12

init user space process, 19
kernel, booting, 16-18
kernel initialization, 18-19
setup, 13-14
target boards, starting, 15-16

setup routine, 114
specific targets, 193

ARM
Corporate Backgrounder website, 56
processors, 55

additional companies, 59
Freescale, 58-59
TI, 56-57

website, 59

arp BusyBox command, 562
arping BusyBox command, 562
ash BusyBox command, 562
ATCA hardware platforms, 60-61
autoconf.h file, 82-83
automating root file system builds, 137
autotools.bbclass class, 461

B
backtrace command, 330
basename BusyBox command, 562
bbconfig BusyBox command, 562
bbsh BusyBox command, 562
BDI-2000 configuration file sample, 586-592
BeagleBoard, 57, 62, 513
big kernel locks (BKLs), 473
binary tools

addr2line, 361
ldd, 362-363
nm, 363-364
objcopy, 360-361
objdump, 359
prelink, 364
readelf, 355-359
resources, 365
strings, 362
strip, 361

BIOS, 11
BitBake Hello World recipe processing, 458-459
BitBake (OpenEmbedded), 137, 456
BKLs (big kernel locks), 473
blkid BusyBox command, 562
board-specific initialization, 181-184
boot blocks, 21-22
booting

from disks, 174
kernel, 16-18
KGDB enabled with U-Boot, 373-374

594 Index

messages, 106-109
troubleshooting, 417-420

“Booting Linux: The History and the Future,” 157
bootloaders, 11

challenges
DRAM controllers, 161-162
execution context, 165
image complexity, 162-165
storage, 162

debugging, 441
GRUB, 195-196
initial serial output, 15
initrd support, 148-150
Lilo, 194-195
Micromonitor, 197
Redboot, 197
roles, 160-161
selecting, 197
startup tasks, 11
U-Boot

booting from disks, 174
BOOTP client/server handshakes, 171
commands, 169-170
configuring, 167-169
DHCP target identification, 172-173
DTBs on boot sequence, 187-188
Ethernet interface support, 170
finding, 166
image formats, 185-186
porting, 174-185
reference website, 198
storage subsystems, 173
website, 166

bootm command, 17
BOOTP (Bootstrap Protocol), 171

servers, configuring, 313-316
U-Boot bootloader support, 171
website, 198, 323

bootstrap loaders, 105-106
bottom-half processing, 468
brctl BusyBox command, 562
breakpoints

KGDB, 376
target memory, 383

Broadcom SiByte processors, 54-55
building

file systems, 256-257
JFFS2 images, 240-242
UBIFS images, 284-287

build numbers, 109
Buildroot, 137, 451

configuring, 451-452
installing, 451

output, 452-454
website, 464

build systems
benefits, 446-447
Buildroot, 451-454
kernel

autoconf.h file, 82-83
configuration editors, 80-82
custom configuration options, 91-94
dot-config file, 78-80
final sequence example, 101
Kconfig files, 89-91
makefiles, 95
makefile targets, 83-89

OpenEmbedded, 454-463
Scratchbox, 447-450

bunzip2 BusyBox command, 562
BusyBox

applets, 302-303
commands, listing of, 563-570
configuring, 291-293
cross-compiling, 293
default startup, 298
description, 295
launching, 293
mdev, 545-547
output example, 294-295
overview, 290-291
rcs initialization script, 299-300
symlinks, 300-302
system initialization, 297-299
target directory structure, 295
toolkit, 135
website, 304

busybox command, 562
bzcat BusyBox command, 562
bzImage targets, 83
bzip2 BusyBox command, 562

C
C function with local variables listing, 163
cable assemblies (USB), 494
cal BusyBox command, 562
carrier-grade, 6
cat BusyBox command, 562
catv BusyBox command, 562
cbrowser utility, 335-336, 365
CDC (Communications Device Class) drivers,

512-515
cell write lifetimes (Flash memory), 22
CFI (Common Flash Interface), 270

 Index 595

chat BusyBox command, 562
chattr BusyBox command, 562
chcon BusyBox command, 562
checking file system integrity, 233-235
chgrp BusyBox command, 562
chipsets, 41-43
chmod BusyBox command, 562
chown BusyBox command, 562
chpasswd BusyBox command, 562
chpst BusyBox command, 562
chroot BusyBox command, 562
chrt BusyBox command, 563
chvt BusyBox command, 563
cksum BusyBox command, 563
classes (OpenEmbedded metadata), 461-462
clear BusyBox command, 563
clocks, configuring, 574-575
cmp BusyBox command, 563
coldplug processing (udev), 537-538
command-line

options, 341-342
partitions, 273-274
processing, 115-116

code listing, 119-121
parameters, 115-116
setup macro, 116-118

commands. See also utilities
add-symbol-file, 403
backtrace, 330
bootm, 17
BusyBox, listing of, 563-570
connect, 393
continue, 382
dd, 257
detach, 443
e2fsck, 233-235
GDB user-defined, 392-393
git, 166
i shared, 432
iminfo, 186
kgdboc, 380
kgdbwait, 380
ldd, 139, 362-363, 432-433
make distclean, 78
make gconfig, 81
make menuconfig, 291
mkcramfs, 242
mkfs.ext2, 257
mkfs.jffs2, 241
modinfo, 539
modprobe, 532-533
mount, 232

shutdown, 156
stop-on-solib-events, 432
tftp, 17
ubiformat, 286
U-Boot bootloader supported, 169-170
U-Boot configurable, 558-560
udevadm, 523-524, 543-544

commBusyBox command, 563
commercial distributions, 33
Common Flash Interface (CFI), 270
Common Flash Memory Interface Specification, 288
Communications Device Class (CDC), 512-515
CompactPCI hardware platform, 60
companion chipsets, 41-43
compiling

DTBs, 192-193
dtc, 192-193
kernel, 70-72
native compilation, 30

components required, 97
composite kernel image

architecture objects, 104
boot messages, 106-109
bootstrap loaders, 105-106
constructing, 100-102
final build sequence example, 101
Image object, 103
piggy assembly file, 104

configuration descriptors, 491
configuration editors, 80-82
configuring

board-specific MTD partitions, 276-278
BOOTP servers, 313-316
Buildroot, 451-452
BusyBox, 291-293
busybox mdev, 547
clocks, 574-575
device drivers, 205-208

ARM system example, 208
directory, creating, 206
makefile, editing, 208
menu items, adding, 206-207
output, 208

DHCP servers, 313-316
DRAM controllers, 161-162
inittab file, 143-144
KGDB

kernel, 371
runtime, 380-381

MTD, 263, 267
NFS kernel support, 247
NFS servers, 316-318

596 Index

OpenEmbedded, 462-463
Scratchbox environment, 449
SDRAM controllers, 575-579

memory bank control register, 578
timing requirements, 578-579
U-Boot sdram_init() function, 576-577

TFTP servers, 312-313
UBIFS, 284
U-Boot

bootloader, 167-169
build tree, 177-178
makefile targets, 176-177

udev rules, 533-535
USB, 495-497

core makefile, 496-497
Freescale Semiconductor iMX31 Applications

Processor example, 496
volume of options, 495

connect command, 393
connections

Ethernet, 512-515
KGDB, 374-375

connectors (USB), 492-493
contexts (execution), 26
continue command, 382
controllers (SDRAM), configuring, 575-579
core dumps, debugging, 327-329
cp BusyBox command, 563
cpio BusyBox command, 563
cpp search directories, 309
cramfs file system, 242-244
cramfs project README file website, 259
crond BusyBox command, 563
crontab BusyBox command, 563
cross-compiling

BusyBox, 293
targets, 448-450

cross debugging, 424
cross-development environments, 30-31

default cross-search directories, 310
flexibility, 307
Hello World program, 307-309
hosts, 306
layout, 307
overview, 306
targets, 306

cross-strip utility, 426-427
cross tools, distributions, 33
cryptpw BusyBox command, 563
cttyhack BusyBox command, 563
customizing

initramfs, 154-155
udev, 540

D
Das U-Boot. See U-Boot bootloader
dateBusyBox command, 563
dc BusyBox command, 563
dd BusyBox command, 563
dd command, 257
DDD (Data Display Debugger), 333-335

debug session, 335
invoking, 334
resources, 365

deallocvt BusyBox command, 563
debugging

booting, 417
early serial debug output, 417
KGDB trapping crashes on panic, 420
printk log buffer, dumping, 417-419

bootloaders, 441
cbrowser, 335-336, 365
core dumps, 327-329
cross, 424
DDD, 333-335, 365
dmalloc, 365
Flash code, 441
GDB, 326

backtrace command, 330
core dumps, 327-329
debug sessions, 331-333
invoking, 329-331
resources, 365
sessions, 331-333
stack frames, 330
website, 422

hardware-assisted. See JTAG probes
with JTAG probes, 413-417
kernel. See kernel debugging
multiple processes, 435-438
multithreaded applications, 438-441
real time kernel patch, 473-475

features, 475-476
O(1) scheduler, 476
preemption modes, 474-475
real-time processes, creating, 477

remote. See remote debugging
shared libraries, 429

events, 431-434
finding, 433
initial target memory segment mapping, 430-431
invoking ldd command, 432-433
locations, 433
</proc/pid>/maps memory segments, 434
requirements, 430
viewing, 432

 Index 597

target, 424
USB, 516-518

device driver support, 518
Ethernet dongle insertion debug output

example, 516
platform-specific options, 517
usbmon utility, 517-518

delgroup BusyBox command, 563
deluser BusyBox command, 563
Denx, Wolfgang, 166
depmod BusyBox command, 563
depmod utility, 214-215
“Design and Implementation of the Second

Extended Filesystem” website, 259
detach command, 443
/dev directory, 522
development

cross-development environments. See
cross-development environments

hosts
BOOTP/DHCP servers, configuring, 313-316
NFS servers, configuring, 316-318
requirements, 311-312
target NFS root mount, 318-321
TFTP servers, configuring, 312-313

setup, 13-14
device drivers

architecture, 204
build configuration, 205-208
debugging, 402-406

init code, 406-407
initializing, 403-404
loopback breakpoints, 405
sessions, initiating, 404-405
symbolic debug information, accessing, 402

dependencies, 214-215
dynamic, 80
ext3 and jbd relationship, 213-214
GPL, 224
information, viewing, 216
installing, 209-210
listing of, viewing, 213
loading/unloading, 203, 210, 528
methods

device nodes, 220-221
file system operations, 217-220
numbers, allocating, 220

minimal example, 204-205
out-of-tree, 223-224
parameters, 211-212
platform, loading, 538-539
removing from kernels, 215-216

resources, 226
running kernels, adding, 212
USB support, debugging, 518
user space application example, 222-223
utilities

depmod, 214-215
insmod, 212
lsmod, 213
modinfo, 216
modprobe, 213-214
rmmod, 215-216

devices
descriptors, 490
discovery, 523-524
loopback, 256
nodes, 220-221, 522
persistent naming, 541-545
trees

blobs. See DTBs
compiler, 192-193
loading, 17
source, 189-192
website, 199

devmem BusyBox command, 563
df BusyBox command, 563
DHCP (Dynamic Host Configuration

Protocol), 171
servers, configuring, 313-316
U-Boot bootloader support, 172-173
website, 198

dhcprelay BusyBox command, 563
diff BusyBox command, 563
directories

/dev, 522
root file systems, 134
runlevels, 142
top-level kernel source, 69

dirname BusyBox command, 563
disassembled object code, viewing, 359
discovering devices, 523-524
distributions

commercial, 33
components, 97
cross tools, 33
defined, 32
do-it-yourself, 33-34
file sizes, 239
installing, 33
packages, 32
targets, 33

dmalloc utility, 350-353
libraries, generating, 350
log output example, 351-352

598 Index

requirements, 350
resources, 365

dmesg BusyBox command, 563
dnsd BusyBox command, 563
do-it-yourself distributions, 33-34
dongles, 515
dos2unix BusyBox command, 563
dot-config file, 78

code snippet listing, 79-80
customizations, 93-94
deleting, 78
hidden, 78

downloading kernel, 68
dpkg BusyBox command, 563
dpkg-deb BusyBox command, 563
DRAM (Dynamic Random Access Memory),

161-162, 198
drivers

device. See device drivers
Flash chips, 276
g_ether, 513
KGDB I/O, 379-380
mapping, 274-276
platform device, loading, 538-539
sd-mod, adding, 509
USB

CDC, 512-515
HID class support, 511
host controller, installing, 498

usb_storage, 508
DTBs (device tree blobs), 187

architecture-specific targets, 193
boot sequence role, 187-188
compiling, 192-193
device tree source, 189-192

dtc (device tree compiler), 192-193
DTS (device tree source), 189-192
du BusyBox command, 563
dumpkmap BusyBox command, 563
dumpleases BusyBox command, 563
dynamically loadable modules, 80
Dynamic Host Configuration Protocol. See DHCP
Dynamic Random Access Memory (DRAM),

161-162, 198

E
e2fsck BusyBox command, 563
e2fsck command, 233-235
echo BusyBox command, 563
Eclipse Project website, 365
ed BusyBox command, 563

EHCI (Enhanced Host Controller Interface),
498, 519

ELF files, 356-359
embedded systems

architecture, 12
init user space process, 19
kernel, booting, 16-18
kernel initialization, 18-19
setup, 13-14
target boards, starting, 15-16

characteristics, 10-11
endpoints, 489-491
Enhanced Host Controller Interface (EHCI),

498, 519
env BusyBox command, 563
envdir BusyBox command, 563
envuidgid BusyBox command, 564
EP405 U-Boot port, 175-176
erase blocks, 21
Ethernet

connectivity (USB), 512-515
interfaces, 170

ether-wake BusyBox command, 564
events

locations, 433
shared library, 431-434

exbibytes, 237
execution contexts, 26
expand BusyBox command, 564
expr BusyBox command, 564
ext2 file systems, 257
ext3 file systems, 235-237
ext4 file systems, 237
external bus controller initialization listing, 181-182

F
fakeidentd BusyBox command, 564
FALSE BusyBox command, 564
fbset BusyBox command, 564
fbsplash BusyBox command, 564
fdflush BusyBox command, 564
fdformat BusyBox command, 564
fdisk BusyBox command, 564
fdisk utility, 229-230
fgrep BusyBox command, 564
FHS (File System Hierarchy Standard), 133, 226
File System Hierarchy Standard (FHS), 133, 226
“File System Performance: The Solaris OS, UFS,

Linux ext3, and Reiser FS” website, 259

 Index 599

files
autoconf.h, 82-83
BDI-2000 configuration, 586-592
device trees, loading, 17
dot-config file, 78

code snippet listing, 79-80
customizations, 93-94
deleting, 78
hidden, 78

ELF, 356-359
GDB initialization, 393
GRUB configuration, 196
inittab, configuring, 143-144
Kconfig, 89-92
kernel-parameters.txt, 115
linuxrc, 150-151
main.c, 113-114
makefiles

targets, 83-89
U-Boot configuration target, 176-177
uImage target wrapper script, 185
USB core, 496-497
Vega and Constellation example, 95

object
formats, converting, 360
symbols, viewing, 363-364

piggy assembly, 104
size distribution, 239
system.map, 70
systems

building, 256-257
cramfs, 242-244
ext2, 257
ext3, 235-237
ext4, 237
Flash, 24
integrity, checking, 233-235
JFFS2. See JFFS2
journaling, 235
mounting, 232-233
NFS, 244-248
partition relationship, 229
pseudo. See /proc file system; sysfs file system
ramfs, 255-256
ReiserFS, 238
resources, 259
root. See root file systems
sysfs, 252-255, 500-502
tmpfs, 256
UBI, 284
UBIFS, 284-287, 500-502
USBFS, 502-504

ubinize configuration, 285

versions, 109
vmlinux, 70-72

image components, 73-76
listing, 72-73

find_next_task macro, 400
find_task macro, 394-395
findfs BusyBox command, 564
finding

kernels, 96
shared libraries, 433
U-Boot bootloader, 166

Flash, 24
chip drivers, 276
code, debugging, 441
device listing, 232
memory. See memory, Flash

flash_erase utility, 280
flashcp utility, 280
flashing, 280
flat device tree websites

references, 199
syntax, 192

flow of control, 109-111
architecture setup, 114
head.o module, 111-113
startup file, 113-114

fold BusyBox command, 564
fork() function, 435-437
founder of Linux, 6
free BusyBox command, 564
freedom versus free, 4-5
freeramdisk BusyBox command, 564
Freescale processors

ARM, 58-59
MPC7448, 40-41
Power Architecture, 44-48

PowerQUICC I, 45-46
PowerQUICC II, 46-47
PowerQUICC II Pro, 47
PowerQUICC III, 48

QorIQ, 48-50
Semiconductor iMX31 Applications Processor

USB example, 496
bus topology, 507
configuration options, 496
device node, creating, 510
host controller drivers, installing, 498
partition, mounting, 510
sysfs file system output, 500-502
usbview output, 504-507
website, 62

free versus freedom, 4-5
fsck BusyBox command, 564

600 Index

fsck.minix BusyBox command, 564
ftpget BusyBox command, 564
ftpput BusyBox command, 564
Ftrace utility

interrupt off timing measurements, 484
kernel performance analysis, 478-479
preemption off measurements, 479-481
wakeup latency measurements, 481-483

functions. See also methods
fork(), 435-437
gethostbyname(), 432
prepare_namespace, 151
pthread_create(), 438
sdram_init(), 576-577
setup_arch(), 114
start_kernel(), 114

fuser BusyBox command, 564

G
g_ether driver example, 513
Garzik, Jeff ’s git utility website, 68
GCC website, 323
GDB (GNU Debugger), 326. See also KGDB

backtrace command, 330
bootloaders, 441
core dumps, 327-329
cross debugging, 424
debug sessions, 331-333
detach command, 443
Flash code, 441
invoking, 329-331
multiple processes, 435-438
multithreaded applications, 438-441
remote debugging

file stripping, 426-427
gdbserver utility, 427-429
sample program ELF file debug information,

425-426
remote serial protocol, 382-385
resources, 365, 444
shared libraries, 429

events, 431-434
finding, 433
initial target memory segement mapping,

430-431
invoking ldd command, 432-433
locations, 433
</proc/pid>/maps memory segments, 434
requirements, 430
viewing, 432

stack frames, 330
website, 444

gdbserver utility, 427-429
General Public License. See GNU, GPL
getenforce BusyBox command, 564
gethostbyname() function, 432
getsebool BusyBox command, 564
getty BusyBox command, 564
git command

kernel downloads, 68
U-Boot bootloader, 166

GNU
Compiler Collection documentation website, 130
Debugger. See GDB
GPL (General Public License), 3-4, 550

device drivers, 224
exact reproduction, 550-556
website, 550

linker website, 130, 198
Press website, 422

grep BusyBox command, 564
growth of embedded Linux, 2
GRUB (Grand Unified Bootloader), 195-196, 199
gunzip BusyBox command, 564
gzip applet, 302
gzip BusyBox command, 564

H
halt BusyBox command, 564
hard real time, 467
hardware-assisted debugging, 312
hardware-debug probe. See JTAG probes
hardware platforms, 60-61
hd BusyBox command, 564
hdparm BusyBox command, 564
head BusyBox command, 564
head.o module, 111-113
Hello World program, 28-29

cross-development environments, 307-310
cpp search directories, 309
default cross-search directories, 310
listing, 307-308

OpenEmbedded version, 457-459
Scratchbox example, 449

hexdump BusyBox command, 564
HID (Human Input Device), 511-512
hosted BusyBox command, 564
hostname BusyBox command, 564
hosts

controllers, 489
cross-development environments, 306
mode (USB), 494

 Index 601

requirements, 311-312
target boards

BOOTP/DHCP servers, configuring, 313-316
NFS root mount, 318-321
NFS servers, configuring, 316-318
TFTP servers, configuring, 312-313

httpd BusyBox command, 564
hush BusyBox command, 564

I
i shared command, 432
IBM 970FX processor, 39
id BusyBox command, 564
ifconfig BusyBox command, 565
ifdown BusyBox command, 565
ifenslave BusyBox command, 565
ifup BusyBox command, 565
images, 103

bootloader complexities, 162-165
composite kernel

architecture objects, 104
boot messages, 106-109
bootstrap loaders, 105-106
constructing, 100-102
final build sequence example, 101
Image object, 103
piggy assembly file, 104

initrd, 148
creating, 152-153
decompressing, 151

JFFS2, building, 240-242
OpenEmbedded recipes, 463
U-Boot bootloader format, 185-186
UBIFS, building, 284-287
vmlinux file, 73-76

iminfo command, 186
inetd BusyBox command, 565
init BusyBox command, 565
initcall_debug parameter, 127
initcall macros, 122-126
initialization

board-specific, 181-184
details, viewing, 127
flow of control, 109-111

architecture setup, 114
head.o module, 111-113
startup file, 113-114

inittab file, 143-144
kernel, 18-19

creating, 125-126
details, viewing, 127

final boot steps, 127-129
flow of control, 109-114
initcall macros, 126
user space process, 19

library dependencies, resolving, 139
processors, 178-180
runlevels, 141-142
startup scripts, 144-145
subsystems, 122-124
System V Init. See System V Init
udev setup, 535

coldplug processing, 537-538
default static device nodes, 536
startup script, 535-536

USB, 499-500
host controllers, 498-499
usbcore module, loading, 497

user space process, 19
user-specified, 140
web server startup script example, 145-146

initramfs, 153
customizing, 154-155
file specification, 154
initrd, compared, 153
kernel build directory contents, 153

initrd root file system, 146
booting, 147-148
bootloader support, 148-150
images, 148

creating, 152-153
decompressing, 151

initramfs, compared, 153
linuxrc file, 150-151
mounting, 151

inittab file, configuring, 143-144
inodes, 231
inotifyd BusyBox command, 565
insmod BusyBox command, 565
insmod utility, 212
install BusyBox command, 565
installing

Buildroot, 451
device drivers, 209-210
distributions, 33
Scratchbox, 447-448

integrated SOC processors, 43
AMCC Power Architecture, 50-53
ARM, 55-59
Broadcom SiByte, 54-55
Freescale. See Freescale processors
MIPS, 53-55
Power Architecture, 44

602 Index

Intel processors
Atom, 40, 62
Pentium M, 39-40
XScale website, 62

interfaces
descriptors, 491
Ethernet, 170

interrupt context, 28
interrupt off timing measurements, 483-484
interrupt service routine (ISR), 467
invoking

configuration editors, 81
DDD, 334
GDB, 329-331
ps macro, 395-396

ioctl() method, 217-219
ipaddr BusyBox command, 565
ip BusyBox command, 565
ipcalc BusyBox command, 565
ipcrm BusyBox command, 565
ipcs BusyBox command, 565
iplink BusyBox command, 565
iproute BusyBox command, 565
iprule BusyBox command, 565
iptunnel BusyBox command, 565
ISR (interrupt service routine), 467

J
JFFS: The Journaling Flash File System website, 259
JFFS2 (Journaling Flash File System 2), 24, 239-240

directory layout, 241
Flash memory limitations, 239-240
images, building, 240-242
mkfs.jffs2 command, 241
mounting on MTD RAM drive, 265-266

journaling, 235
JTAG (Joint Test Action Group) probes, 410

debugging, 413-417
Flash, programming, 411-413
setting up, 411

K
kbd_mode BusyBox command, 565
Kbuild documentation website, 98
Kconfig files, 89-92
kernel

booting, 16-18
build system

autoconf.h file, 82-83
configuration editors, 80-82

custom configuration options, 91-94
dot-config file, 78-80
final sequence example, 101
Kconfig files, 89-91
makefiles, 95
makefile targets, 83-89

command-line processing, 115-116
code listing, 119-121
parameters, 115-116
setup macro, 116-118

compiling, 70-72
composite image

architecture objects, 104
boot messages, 106-109
bootstrap loaders, 105-106
constructing, 100-102
final build sequence example, 101
Image object, 103
piggy assembly file, 104

context, 19, 26
debugging. See kernel debugging
documentation, 96
downloading with git utility, 68
final boot

messages, 18
steps, 137-138

finding, 96
GDB. See KGDB
HOWTO website, 98
initialization, 18-19, 125

creating, 125-126
details, viewing, 127
final boot steps, 127-129
flow of control, 109-114
initcall macros, 126
user space process, 19

KGDB configuration, 371
NFS configuration, 247
oops, 353-355
parameters.txt file, 115
preemption, 469

challenges, 469-471
checking for, 471-472
concurrency errors, 470
critical sections, locking, 470
latency sources, 473
models, 471-472
off measurements, 479-481
real time patch modes, 474-475
SMP, 472

real time patch, 473-475
features, 475-476
O(1) scheduler, 476

 Index 603

preemption modes, 474-475
real-time processes, creating, 477

real time performance analysis, 478
Ftrace, 478-479
interrupt off timing measurements, 483-484
preemption off measurements, 479-481
soft lockup detection, 484
wakeup latency measurements, 481-483

source repositories, 65-68
subdirectory, 77-78
subsystem initialization, 122-124
top-level source directory, 69
versions, 66-67
vmlinux file, 72-76
website, 65

kernel debugging, 368-369
JTAG probes, 410

debugging, 413-417
Flash memory, programming, 411-413
setting up, 411

KGDB, 369
booting with U-Boot, 373-374
breakpoints, 376
connections, 374-375
console serial port, sharing, 377-379
debug session in progress, 377
early kernel code support, 379-380
enabling, 372
kernel configuration, 371
loadable modules, 402-406
logic, 372
macros, 393-402
optimized code, 385-392
platform-specific code, 381-382
remote, 382-385
runtime configuration, 380-381
serial ports, 372
setting up, 370
trapping crashes on panic, 420
user-defined commands, 392-393
websites, 422

Magic SysReq key, 409-410
optimized kernel code, 389
printk, 407-409
resources, 422

KERNELRELEASE macro, 67
KGDB (Kernel GDB), 369

booting with U-Boot, 373-374
breakpoints, 376
connections, 374-375
console serial port, sharing, 377-379
debug session in progress, 377

early kernel code support, 379-380
enabling, 372
I/O drivers, 379-380
kernel configuration, 371
loadable modules, 402-406

init code, 406-407
initializing, 403-404
loopback breakpoints, 405
sessions, initiating, 404-405
symbolic debug information, accessing, 402

logic, 372
macros, 393-402

find_next_task, 400
find_task, 394-395
ps, 395-397
task_struct_show, 398-399

optimized code, 385-392
platform-specific code, debugging, 381-382
remote serial protocol, 382-385
runtime configuration, 380-381
serial ports, 372
setting up, 370
trapping crashes on panic, 420
user-defined commands, 392-393
websites, 422

kgdb8250 I/O driver, 379-380
kgdboc command, 380
kgdbwait command, 380
kill BusyBox command, 565
killall BusyBox command, 565
killall5 BusyBox command, 565
klogd BusyBox command, 565
Kroah-Hartman, Greg, 504
ksoftirqd task, promoting, 476

L
lash BusyBox command, 565
last BusyBox command, 565
latency

interrupt off timing, 483-484
kernel preemption sources, 473
preemption off measurements, 479-481
real time, 467-468
wakeup measurements, 481-483

layout
cross-development environments, 307
root file systems, 133-134

ldd command, 139, 362-363, 432-433
Lehrbaum, Rick, 3
length BusyBox command, 565
lessBusyBox command, 565

604 Index

Library Optimizer Tool website, 136
Lilo

bootloader, 194-195
website, 199

linker command scripts, 163
linux32BusyBox command, 565
Linux

Allocated Devices website, 548
Documentation Project, 96, 157
Foundation, 6-8
news and developments resources, 583
Standard Base, 5, 8

LinuxDevices.com, 3
linuxrc file, 150-151
listings

architecture-specific targets, 193
autoconf.h file, 82-83
backtrace command, 330
BDI-2000 configuration file, 586-592
booting with DTBs, 187-188
bootloaders, initial serial output, 15
boot messages on IPX425, 106-108
Buildroot output directory, 453
BusyBox

build options, 291
default startup, 298
gzip applet, 302
library dependencies, 292
mdev startup script, 546
output, 294-295
rcs initialization script, 299-300
root file system example, 297
root file system installation, 301
target directory structure, 295

C function with local variables, 163
command-line MTD partitions, 273
cramfs file system, 242-243
device drivers

build configuration, 206-208
file system operations methods, 217-219
loading/unloading, 210
lsmod output, 213
minimal example, 204
modinfo output, 216
modprobe configuration file, 214
parameter example, 211
user space application, 222-223

DHCP
exchange, 314
server configuration, 315
target identification, 172

dmalloc utility, 351-352

dot-config file, 79-80
DTBs, 189-192
ext2 file system, 257
ext3 file system, 236
file system check, 233-234
find_next_task, 400
find_task macro, 394
Flash device, 232
fork(), 435-437
GDB

core dump analysis, 328
debug sessions, initiating, 332
initialization file, 393
stack frames, 330

gdbserver utility
invoking, 429
starting on target board, 427
target board connection, 427-428

GRUB configuration file, 196
Hello World, 28-29, 307-308

cpp search directories, 309
default cross-search directories, 310

init process, 125-126
initcall macros, 123-124
initramfs

build directory, 153
file specification, 154
minimal contents, 155

initrd
boot sequence, 148-150
images, creating, 152

inittab file, 143
JFFS2

booting as root file system, 283
copying to root partition, 282
directory layout, 241
mkfs.jffs2 command, 241

JTAG, 412-414
Kconfig file for ARM architecture, 90
kernel

booting, 16-17
build output, 70-72
command-line processing, 119-121
.config file customizations, 93-94
final boot messages, 18
final boot steps, 127-129
final build sequence example, 101
IXP4xx-specific Kconfig file, 92
loading with TFTP servers, 320
makefiles example, 95
oops, 353
preemption, 470-472

 Index 605

subdirectory, 77-78
top-level ARM Kconfig file, 92
vmlinux file, 72-73

KGDB
booting with U-Boot, 373-374
breakpoints, 376
connecting, 374-375
console serial port, sharing, 378-379
debug session in progress, 377
runtime configuration, 380-381
trapping crashes on panic, 420

Lilo bootloader, 194
linker command script, 163
linuxrc file, 150-151
loadable modules

debug sessions, initiating, 404-405
debugging init code, 406-407
initializing, 403-404

ltrace utility, 343
makefiles

targets, 83-89
U-Boot configuration, 176

minimal root file system, 134-135
mstrace utility, 349
MTD

configuring, 263
JFFS2file system, mounting, 265-266

MTD partitions
board-specific configuration, 276-278
Flash partition mounting, 280
kernel partition list, 279
PQ2FADS Flash mapping driver, 274-276

mtrace utility, 348
multithreaded applications, debugging, 438-439
NFS

exports configuration file, 244, 317
root mount, booting, 320
target example, 246

nm utility output, 363
objdump utility, 359
OpenEmbedded

autotools.bbclass example, 461
BitBake Hello recipe processing, 458-459
recipe example, 457
tasks, 460

optimized kernel code, debugging
code, 385-386
disassemble command, 387-389
local variable output example, 391
source file, 389-390

partitions
formatting, 230-231
information, viewing, 229-230

piggy assembly file, 104
platform-specific kernel debugging, 381-382
preemption off measurements, 480
printk log buffer, dumping, 418-419
/proc file system, 249-251
processes, listing, 345
ps macro, 395-397
ramfs file systems, 255
readelf utility, 356-358
real time, 476-477
Redboot partitions

creating, 272
detecting, 270
Flash partition listing, 269
Flash partitions, 271
new partition list, 272
power-up messages, 269

remote debugging
continue command, 382
ELF file debug information, 425-426
file stripping, 426-427
target memory breakpoints, 384

resetvec source definition, 164
runlevels, 141-142
Scratchbox, 448-449
SDRAM controllers, configuring, 576-577
setup macro, 117-118
shared libraries

debugging, 430-431
event alerts, 431
invoking ldd command, 432-433
</proc/pid>/maps memory segments, 434

startup scripts, 144-145
strace utility

profiling, 341
web demo application example, 337-340

subsystem initialization, 122
sysfs file system, 252-255
task_struct_show, 398-399
TFTP configuration, 313
top utility default configuration, 347
UBIFS images, building, 284-286
U-Boot bootloader

4xx startup code, 179
build tree, configuring, 177
configuration header file, 168-169
EP405 port summary, 184
external bus controller, 181-182
iminfo command, 186
uImage target wrapper script, 185

udev
default static device nodes, 536
device discovery, 523-524

606 Index

device nodes, creating, 525-526
mouse device example, 529
persistent device naming, 541
platform device driver, loading, 538
rules configuration, 533-535
rules example, 528
startup script, 535-536
udevadm device query, 543-544
uevents emitted on USB mouse insertion,

530-531
uevents for USB interface 1-1:1.0, 531
uevents on four-port hub insertion, 525
USB automounting, 540-541

USB
core makefile, 496-497
device node, creating, 510
direct host and peripheral links, 513
Ethernet dongle insertion debug output, 516
host controllers, 498-499
lsusb utility, 507
partition, mounting, 510
sd-mod driver, adding, 509
sysfs file system output, 500-502
usb-storage module, 509
USBFS directory listing, 502
usbmon utility, 517
usbview utility output, 504-507

wakeup latency measurements, 481-483
web server startup script, 145-146

load_policy BusyBox command, 565
loadable modules. See device drivers
loading

device drivers, 210, 528
platform device drivers, 538-539

loadkmap BusyBox command, 565
logger BusyBox command, 565
login BusyBox command, 565
logname BusyBox command, 565
logread BusyBox command, 565
loopback devices, 256
losetup BusyBox command, 565
lpd BusyBox command, 565
lpq BusyBox command, 565
lpr BusyBox command, 566
lsattr BusyBox command, 566
LSB (Linux Standard Base), 5, 8
ls BusyBox command, 566
lsmod BusyBox command, 566
lsmod utility, 213
lsusb utility, 507-508
ltrace utility, 343-344
lzmacat BusyBox command, 566

M
macros

initcall, 122-126
KERNELRELEASE, 67
KGDB, 393-402

find_next_task, 400
find_task, 394-395
ps, 395-397
task_struct_show, 398-399

setup
command-line processing, 116-121
console setup code snippet, 117
family definitions, 118

used, 119
Magic SysReq key, 409-410
mailing list resources, 582
main.c file, 113-114
make distclean command, 78
make gconfig command, 81
make menuconfig command, 291
makedevs BusyBox command, 566
makefiles

targets, 83-89
U-Boot configuration target, 176-177
uImage target wrapper script, 185
USB core, 496-497
Vega and Constellation example, 95

makemine BusyBox command, 566
man BusyBox command, 566
mapping drivers, 274-276
marketplace momentum, 3
mass storage class (USB), 508-511

device node, creating, 510
mounting, 510
partition, mounting, 510
SCSI support, 508
sd-mod driver, adding, 509
usb_storage driver, 508
usb-storage module, 509

matchpathcon BusyBox command, 566
md5sum BusyBox command, 566
mdev BusyBox command, 566
memory

analysis tool. See dmalloc utility
cross-development environments, 30-31
DRAM, 161-162, 198
execution contexts, 26
Flash, 20-22

boot blocks, 21-22
cell write lifetimes, 22
erasing, 239

 Index 607

file systems, 24
lifetime, 240
NAND, 22-23
programming, 411-413
typical layouts, 23
writing to/erasing, 20-21

layout, 25-26
leaks, detecting, 349
MMUs, 26
process virtual, 28-30
translation, 26
virtual, 26-30

Memory Management Units (MMUs), 26
Memory Technology Devices (MTD), 262
mesg BusyBox command, 566
methods. See also functions

device drivers
device nodes, 220-221
file system operations, 217-220
numbers, allocating, 220

ioctl(), 217-219
open(), 217-219
release(), 217-219

microcom BusyBox command, 566
Micromonitor bootloader, 197
mini connectors, 493
minimal device driver example, 204-205
minimal root file systems, 134-136
MIPS processors, 53-55, 67
mkcramfs command, 242
mkdir BusyBox command, 566
mke2fs BusyBox command, 566
mkfifo BusyBox command, 566
mkfs.ext2 utility, 230-231, 257
mkfs.jffs2 command, 241
mkfs.minix BusyBox command, 566
mkimage utility, 185
mknod BusyBox command, 566
mkswap BusyBox command, 566
mktemp BusyBox command, 566
MMUs (Memory Management Units), 26
Moblin (Mobile Linux Initiative), 7
MODALIAS field, 532-533
modinfo utility, 216, 539
modprobe BusyBox command, 566
modprobe utility, 213-214, 532-533
more BusyBox command, 566
mount BusyBox command, 566
mount command, 232
mounting

dependencies, 249
file systems, 232-233

initrd, 151
root file systems, 18
USB, 510-540-541
USBFS, 502

mountpoint BusyBox command, 566
mount points, 151, 232
mouse device udev example, 529
msh BusyBox command, 566
MTD (Memory Technology Device), 262

CFI support, 270
configuring, 263-267
JFFS2 file systems, mounting, 265-266
overview, 262-263
partitions, 267-268

board-specific configuration, 276-278
command-line, 273-274
configuring, 267
Flash chips, 276
kernel partition list, 279
mapping drivers, 274-276
Redboot, 269-273

resources, 288
services, enabling, 263-265
utilities, 279-283

flash_erase, 280
flashcp, 280
JFFS2, 282-283
kernel MTD partition list, 279
MTD Flash partition, mounting, 280

mtrace utility, 348-349
multiple processes, debugging, 435-438
multithreaded applications, debugging, 438-441
mv BusyBox command, 566

N
nameif BusyBox command, 566
NAND Flash, 22-23
native compilation, 30
nc BusyBox command, 566
netstat BusyBox command, 566
NFS (Network File System), 244-246

configuration file, 244
kernel configuration, 247
mounting workspace on target embedded system,

245-246
restarting, 141-142
root file system, 246-248
servers, configuring, 316-318
targets

example, 246
root mount, 318-321

website, 259

608 Index

nice BusyBox command, 566
nm utility, 363-364
nmeter BusyBox command, 566
nohup BusyBox command, 566
northbridge chips, 42
nslookup BusyBox command, 566

O
objcopy utility, 360-361
objdump utility, 359
objects

disassembled code, viewing, 359
formats, converting, 360
Image. See images
piggy, 104
symbols, viewing, 363-364

od BusyBox command, 566
On-The-Go (OTG) USB, 495
open() method, 217-219
open source legal insight website, 583
OpenEmbedded, 454

benefits, 454
BitBake, 456
configuring, 462-463
image recipes, 463
metadata, 456

classes, 461-462
recipes, 456-459
tasks, 460

website, 137, 454, 464
openvt BusyBox command, 566
optimized kernel code, debugging, 385-392

code example, 385-386
disassemble command, 387-389
local variable output example, 391
source file, 389-390

options. See parameters
OTG (On-The-Go) USB, 495
out-of-tree drivers, 223-224

P
packages, 32
parameters

command-line, 115-116
device drivers, 211-212
initcall_debug, 127
rdinit=, 155

parse BusyBox command, 566
partitions, 229

file system relationship, 229
formatting, 230-231

information, viewing, 229-230
MTD. See MTD, partitions

passwd BusyBox command, 566
patch BusyBox command, 567
performance, real time analysis, 478

Ftrace, 478-479
interrupt off timing measurements, 483-484
preemption off measurements, 479-481
soft lockup detection, 484
wakeup latency measurements, 481-483

persistent device naming, 541-542
pgrep BusyBox command, 567
pidof BusyBox command, 567
PIDs (process IDs), 250
piggy assembly file, 104
ping BusyBox command, 567
ping6 BusyBox command, 567
pipe_progress BusyBox command, 567
pkill BusyBox command, 567
platforms (hardware), 60-61

device drivers, loading, 538-539
specific kernel debugging, 381-382

popmaildir BusyBox command, 567
populating root file systems, 137
porting U-Boot bootloaders, 174

board-specific initialization, 181-184
build tree, configuring, 177-178
EP405 board, 175-176
makefile configuration targets, 176-177
processor initialization, 178-180
summary, 184-185

Power Architecture processors, 44, 62
Power.org website, 62
poweroff BusyBox command, 567
PowerPC 64-bit architecture reference manual

website, 62
PowerQUICC processors, 44

PowerQUICC I processor, 45-46
PowerQUICC II processor, 46-47
PowerQUICC II Pro processor, 47
PowerQUICC III processor, 48

PQ2FADS Flash mapping driver, 274-276
preemption. See kernel, preemption
prelink utility, 364
prepare_namespace() function, 151
printenv BusyBox command, 567
printf BusyBox command, 567
printk debugging, 407-409
printk log buffers, dumping, 417-419
/proc file system, 249-252

common entries, 252
debugging with maps entry, 251

 Index 609

mount dependency, 249
original purpose, 249
process IDs, 250
virtual memory addresses, 251
website, 259

process IDs (PIDs), 250
processes

bottom-half processing, 468
context, 28
init. See initialization
listing, 345
multiple, debugging, 435-438
real-time, creating, 477
user space. See user space, processes
virtual memory, 28-30

processors
initializing, 178-180
integrated SOCs, 43

additional ARM, 59
AMCC Power Architecture, 50-53
ARM, 55
Broadcom SiByte, 54-55
Freescale ARM, 58-59
Freescale Power Architecture, 44-45
Freescale PowerQUICC, 45-48
Freescale QorIQ, 48-50
MIPS, 53-55
TI ARM, 56-57

stand-alone
companion chipsets, 41-43
Freescale MPC7448, 40-41
IBM 970FX, 39
Intel Atom M, 40
Intel Pentium M, 39-40
overview, 38

program dependencies, 32
protocols

BOOTP
servers, configuring, 313-316
U-Boot bootloader support, 171
website, 198

DHCP
servers, configuring, 313-316
U-Boot bootloader support, 172-173
website, 198

gdb remote serial protocol, 382-385
TFTP

servers, configuring, 312-313
website, 198

ps BusyBox command, 567
ps macro, 344-346

invoking, 395-396
output, 396-397

pscan BusyBox command, 567
pseudo file systems. See /proc file system;

sysfs file system
pthread_create() function, 438
pwd BusyBox command, 567

Q – R
QorIQ processors, 45-50

raidautorun BusyBox command, 567
ramfs file system, 255-256
rcs initialization scripts, 299-300
rdate BusyBox command, 567
rdev BusyBox command, 567
rdinit= parameter, 155
readahead BusyBox command, 567
readelf utility, 355-357

ELF file debug information, 357-359
section headers, 356

readlink BusyBox command, 567
readprofile BusyBox command, 567
real time

hard, 467
kernel patch, 473-475

features, 475-476
O(1) scheduler, 476
preemption modes, 474-475
real-time processes, creating, 477

kernel performance analysis, 478
Ftrace, 478-479
interrupt off timing measurements, 483-484
preemption off measurements, 479-481
soft lockup detection, 484
wakeup latency measurements, 481-483

kernel preemption, 469
challenges, 469-471
checking, 471-472
concurrency errors, 470
critical sections, locking, 470
latency sources, 473
models, 471-472
SMP, 472

latency, 467-468
processes, creating, 477
scheduling, 467
soft, 466

realpath BusyBox command, 567
reboot BusyBox command, 567
recipes (OpenEmbedded metadata), 456-459

BitBake Hello World processing, 458-459
Hello World example, 457
images, 463

610 Index

Red Hat’s New Journaling File System: ext3
website, 259

Redboot
bootloaders, 197
partitions, 269-273

CFI support, 270
creating, 272
detecting, 270
Flash partitions, 269-271
new partition list, 272
power-up messages, 269

user documentation website, 288
reformime BusyBox command, 567
refreshing SDRAM, 573
Reiser4 File System website, 259
ReiserFS file system, 238
release() method, 217-219
remote debugging

file stripping, 426-427
gdbserver utility, 427-429
kernel, 382-385
running processes, connecting, 442-443
sample program ELF file debug information,

425-426
serial ports, 442

renice BusyBox command, 567
requirements

dependencies, 32
development, 13-14
distribution components, 97
hosts, 311-312

reset BusyBox command, 567
resize BusyBox command, 567
resources

binary tools, 365
Buildroot, 464
BusyBox, 304
cbrowser, 365
DDD, 365
device drivers, 226
dmalloc, 365
file systems, 259
GDB, 365, 444
kernel debugging, 422
Linux Kernel Development, 3rd Edition, 485
Linux news and developments, 583
mailing lists, 582
MTD, 288
open source legal insight, 583
OpenEmbedded, 464
Scratchbox, 464
SDRAM, 580

source repositories, 582
udev, 548
USB, 519

restorecon BusyBox command, 567
rm BusyBox command, 567
rmdir BusyBox command, 567
rmmod BusyBox command, 567
rmmod utility, 215-216
roles

bootloaders, 160-161
DTBs in boot sequences, 187-188

root file systems
automated build tools, 137
defined, 132
directories, 134
embedded challenges, 136
FHS, 133, 226
layout, 133-134
minimal, 134-136
mounting, 18
NFS. See NFS
populating, 137
UBIFS as, 287

root hubs, 489
route BusyBox command, 567
rpm BusyBox command, 567
rpm2cpio BusyBox command, 567
rtcwake BusyBox command, 567
rules (udev), 527-530

configuring, 533-535
cumulative, 534
distribution-specific attributes/actions, 534
event-driven, 535
example, 528
loading device drivers example, 528
MODALIAS field, 532-533
mouse device example, 529
storage location, 527
uevents, USB, 530-531

run-parts BusyBox command, 567
runcon BusyBox command, 567
runlevel BusyBox command, 568
runlevels, 141-142
runsv BusyBox command, 568
runsvdir BusyBox command, 568
Rusty’s Linux Kernel Page website, 226
rx BusyBox command, 568

S
sb-menu utility, 448
SCCs (Serial Communication Controllers), 45
scheduling real time, 467

 Index 611

Scratchbox, 447
cross-compilation targets, creating, 448-450
environment, configuring, 449
Hello World example, 449
installing, 447-448
menuconfig, 449
remote shell feature, 450
website, 449, 464

script BusyBox command, 568
scripts

linker command, 163
rcs initialization, 299-300
startup, 144-146
uImage target wrapper, 185

sd-mod driver, adding, 509
SDRAM (Synchronous Dynamic Random Access

Memory), 572
clocking, 574-575
controllers, configuring, 575-579

memory bank control register, 578
timing requirements, 578-579
U-Boot sdram_init() function, 576-577

operation basics, 572-573
refresh, 573
resources, 580

sdram_init() function, 576-577
sed BusyBox command, 568
selinuxenabled BusyBox command, 568
seq BusyBox command, 568
Serial Communication Controllers (SCCs), 45
Serial Management Controllers (SMCs), 45
serial ports

KGDB, 372
remote debugging, 442
sharing console with KGDB, 377-379

servers
BOOTP, 313-316
DHCP, 313-316
NFS

configuring, 316-318
target root mount, 318-321

TFTP, 312-313
Service Availability Forum, 7
services

MTD, enabling, 263-265
NFS, restarting, 141-142

sestatus BusyBox command, 568
setarch BusyBox command, 568
setconsole BusyBox command, 568
setenforce BusyBox command, 568
setfont BusyBox command, 568
setkeycodes BusyBox command, 568

setlogcons BusyBox command, 568
setsebool BusyBox command, 568
setsid BusyBox command, 568
setuidgid BusyBox command, 568
setup_arch() function, 114
setup macro, command-line processing, 116-118

code listing, 119-121
console setup code, 117
family definitions, 118

sh BusyBox command, 568
shared libraries

debugging with, 429
events, 431-434
initial target memory segment mapping, 430-431
invoking ldd command, 432-433
locations, 433
</proc/pid>/maps memory segments, 434
requirements, 430

finding, 433
viewing, 432

showkey BusyBox command, 568
shutdown command, 156
shutting down, 156
slattach BusyBox command, 568
sleep BusyBox command, 568
SMCs (Serial Management Controllers), 45
SMP (Symmetric multiprocessing), 472
SOCs (system on chips), 43

AMCC Power Architecture, 50-53
ARM, 55

additional companies, 59
Freescale, 58-59
TI, 56-57

Broadcom SiByte, 54-55
Freescale Power Architecture, 44-45

PowerQUICC I, 45-46
PowerQUICC II, 46-47
PowerQUICC II Pro, 47
PowerQUICC III, 48

Freescale QorIQ, 48-50
MIPS, 53-55

soft lockup detection, 484
soft real time, 466
softlimit BusyBox command, 568
sort BusyBox command, 568
source repositories, 67-68, 582
southbridge chips, 42
split BusyBox command, 568
stack frames (GDB), 330
stand-alone processors

companion chipsets, 41-43
Freescale MPC7448, 40-41

612 Index

IBM 970FX, 39
Intel, 39-40
overview, 38

standards
carrier-grade, 6
Linux Foundation, 6-7
LSB, 5
Moblin, 7
Service Availability Forum, 7

start_kernel() function, 114
startup

scripts, 144-146
tasks, 11

stat BusyBox command, 568
stop-on-solib-event command, 432
storage

bootloaders, 162
cross-development environments, 30-31
execution contexts, 26
memory. See memory
MMUs, 26
U-Boot bootloader support, 173
udev rules, 527

strace utility, 337
command-line options, 341-342
profiling, 341
web demo application example, 337-340

strings BusyBox command, 568
strings utility, 362
strip utility, 361
stty BusyBox command, 568
subdirectories (kernel), 77-78
su BusyBox command, 568
subsystems (USB), 508

CDC (Communications Device Class) drivers,
512-515

HID (Human Input Device), 511-512
initializing, 122-124
mass storage, 508-511

device node, creating, 510
mounting, 510
partition, mounting, 510
SCSI support, 508
sd-mod driver, adding, 509
usb_storage driver, 508
usb-storage module, 509

sulogin BusyBox command, 568
sum BusyBox command, 568
sv BusyBox command, 568
svlogd BusyBox command, 568
swapoff BusyBox command, 568
swapon BusyBox command, 568

switch_root BusyBox command, 569
symlinks, 300-302
Symmetric multiprocessing (SMP), 472
sync BusyBox command, 569
Synchronous Dynamic Random Access Memory. See

SDRAM
syntax

command-line parameters, 116
flat device tree, 192

sysctl BusyBox command, 569
sysfs file system, 252-255

browsing, 253
directory structure, 252-253
systool output example, 253-255
USB devices, 500-502

syslogd BusyBox command, 569
system initialization, 297-299
system.map file, 70
system on chips. See SOCs
System V Init, 140

inittab file, 143-144
runlevels, 141-142
startup scripts, 144-145
web server startup script example, 145-146
website, 157

systool utility, 253

T
tac BusyBox command, 569
tail BusyBox command, 569
tar BusyBox command, 569
target boards

BOOTP/DHCP servers, configuring, 313-316
NFS

root mount, 318-321
servers, configuring, 316-318

starting, 15-16
TFTP servers, configuring, 312-313

targets
architecture-specific, 193
bzImage, 83
cross-compilation, 448-450
cross-development environments, 306
debugging, 424
DHCP identification, 172-173
distributions, 33
makefile, 83-89
memory breakpoints, 383
U-Boot makefiles, 176-177
zImage, 83

 Index 613

task_struct_show macro, 398-399
tasks

ksoftirqd, 476
OpenEmbedded metadata, 460
startup, 11

taskset BusyBox command, 569
tc BusyBox command, 569
tcpsvd BusyBox command, 569
tee BusyBox command, 569
telnet BusyBox command, 569
telnetd BusyBox command, 569
test BusyBox command, 569
Texas Instruments (TI) ARM processors, 56-57
TFTP (Trivial File transfer Protocol), 171

servers, configuring, 312-313
website, 198, 323

tftp BusyBox command, 569
tftp command, 17
tftpd BusyBox command, 569
time BusyBox command, 569
TI (Texas Instruments) ARM processors, 56-57
tmpfs file system, 256
Tool Interface Standard (TIS) Executable and

Linking Format, 98
tools. See utilities
top BusyBox command, 569
top-level kernel source directory, 69
topologies (USB)

logical, 490-491
physical, 488-490

top utility, 346-348
Torvalds, Linus, 6, 64
touch BusyBox command, 569
tr BusyBox command, 569
traceroute BusyBox command, 569
tracing and profiling tools

dmalloc, 350-353
kernel oops, 353-355
ltrace, 343-344
mtrace, 348-349
ps, 344-346
strace, 337

command-line options, 341-342
profiling, 341
web demo application example, 337-340

top, 346-348
Trivial File Transfer Protocol. See TFTP
troubleshooting. See debugging
TRUE BusyBox command, 569
tty BusyBox command, 569
ttysize BusyBox command, 569
Tundra chip, 42
tune2fs BusyBox command, 569

U
U-Boot bootloader

booting from disks, 174
commands, 169-170, 558-560
configuring, 167-169
debugging with JTAG probes, 414
DTBs on boot sequence, 187-188
finding, 166
image formats, 185-186
KGDB enabled booting, 373-374
network support

BOOTP client/server, 171
DHCP target, 172-173
Ethernet interfaces, 170

NFS root mount example, 320-321
porting, 174

board-specific initialization, 181-184
build tree, configuring, 177-178
EP405 board, 175-176
makefile configuration targets, 176-177
processor initialization, 178-180
summary, 184-185

reference website, 198
storage subsystems, 173
website, 166

ubiformat command, 286
UBIFS (Unsorted Block Image File System), 284

as root file system, 287
configuring, 284
images, building, 284-287

ubinize configuration file, 285
udev

busybox mdev, 545-547
customizing, 540
devices

discovery, 523-524
nodes, creating, 525-526

initial system setup, 535
coldplug processing, 537-538
default static device nodes, 536
startup script, 535-536

persistent device naming, 541-542
/dev directory contents, 541
helper utilities, 542-545

platform device drivers, loading, 538-539
resources, 548
rules, 527-530

configuring, 533-535
cumulative, 534
distribution-specific attributes/actions, 534
event-driven, 535

614 Index

example, 528
loading device drivers example, 528
MODALIAS field, 532-533
mouse device example, 529
storage location, 527
uevents emitted on USB mouse insertion,

530-531
uevents for USB interface 1-1:1.0, 531

uevents on four-port hub insertion, 525
USB automounting, 540-541

“Udev: A Userspace Implementation of devfs”
website, 548

udevadm command, 523-524
udevadm info command, 543-544
udhcpc BusyBox command, 569
udhcpd BusyBox command, 569
udpscd BusyBox command, 569
uevents, 523-524

device discovery, 523
four-port hub insertion, 525
USB, 530-531

umount BusyBox command, 569
uname BusyBox command, 569
uncompress BusyBox command, 569
unexpand BusyBox command, 569
uniq BusyBox command, 569
Universal Serial Bus. See USB
unix2dos BusyBox command, 569
UNIX line-continuation character (\), 119
unlzma BusyBox command, 569
Unsorted Block Image File System. See UBIFS
unzip BusyBox command, 569
uptime BusyBox command, 569
USB (Universal Serial Bus), 488

automounting, 540-541
bus topology, 507
cable assemblies, 494
configuring, 495-497

core makefile, 496-497
descriptors, 491
volume of options, 495

connectors, 492-493
debugging, 516

device driver support, 518
Ethernet dongle insertion debug output

example, 516
platform-specific options, 517
usbmon utility, 517-518

device descriptors, 490
EHCI, 498
endpoints, 491

Ethernet connectivity, 513-515
file system, 502-504
Freescale Semiconductor iMX31 Applications

Processor example. See Freescale processors,
Semiconductor iMX31 Applications Processor
USB example

initializing, 499-500
host controllers, 498-499
usbcore module, loading, 497

interface descriptors, 491
modes, 494-495
resources, 519
revisions, 491
subsystems, 508

CDC drivers, 512-514
HID, 511-512
mass storage, 508-511

sysfs file system, 500-502
tools

lsusb utility, 507-508
USBFS, 502-504
usbview utility, 504-507

topologies
logical, 490-491
physical, 488-490
usbfs, viewing, 504

usb_id utility, 542-543
usb_storage driver, 508-509
USB-USB direct networking example, 513
usbcore module, loading, 497
USBFS (USB File System), 502-504
usbmon utility, 517-518
usbview utility, 504-507
used macro, 119
user space

context, 26
processes

dependencies, resolving, 139-140
first user space program, 139
init, 19, 140
initial RAM disk method. See initrd
initramfs, 153-155

usleep BusyBox command, 570
utilities. See also commands

addr2line, 361
automated root file system builds, 137
bitbake, 137
buildroot, 137
busybox, 135
cbrowser, 335-336, 365
cross, 33

 Index 615

cross-strip, 426-427
DDD, 333-335, 365
depmod, 214-215
dmalloc, 350-353

libraries, generating, 350
log output example, 351-352
requirements, 350
resources, 365

fdisk, 229-230
Ftrace

interrupt off timing measurements, 484
kernel performance analysis, 478-479
preemption off measurements, 479-481
wakeup measurements, 481-483

GDB, 326
backtrace command, 330
core dumps, 327-329
debug sessions, 331-333
invoking, 329-331
resources, 365
stack frames, 330

gdbserver, 427-429
git, 68
insmod, 212
kernel oops, 353-355
ldd, 139, 362-363
Library Optimizer, 136
lsmod, 213
lsusb, 507-508
ltrace, 343-344
Magic SysReq key, 409-410
mkfs.ext2, 230-231
mkiage, 185
modinfo, 216
modprobe, 213-214
MTD, 279-283

flash_erase, 280
flashcp, 280
JFFS2 as root file system, 283
JFFS2 images, copying, 282
kernel MTD partition list, 279
MTD Flash partition, mounting, 280

mtrace, 348-349
nm, 363-364
objcopy, 360-361
objdump, 359
prelink, 364
printk, 407-409
ps, 344-346
readelf, 355-357
rmmod, 215-216
sb-menu, 448

strace, 337
command-line options, 341-342
profiling, 341
web demo application example, 337-340

strings, 362
strip, 361
systool, 253
top, 346-348
udev helper, 542-545
USB

lsusb utility, 507-508
USBFS, 502-504
usb_id, 542-543
usbmon, 517-518
usbview, 504-507

uudecode BusyBox command, 570
uuencode BusyBox command, 570

V
vconfig BusyBox command, 570
versions (kernel), 66-67
vi BusyBox command, 570
viewing

disassembled object code, 359
kernel initialization details, 127
.modinfo sections, 539
shared libraries, 432

virtual memory, 26-30
vlock BusyBox command, 570
vmlinux file, 70-72

image components, 73-76
listing, 72-73

W
wakeup measurements, 481-483
watch BusyBox command, 570
watchdog BusyBox command, 570
wc BusyBox command, 570
wear leveling, 240
web demo application, 337-340
websites

A Non-Technical Look Inside the EXT2 File
System, 259

Abatron, 410
ARM Technologies, 56, 59
BeagleBoard, 62
binary tool resources, 365
Booting Linux: The History and the Future, 157
BOOTP, 198, 323
buildroot utility, 137, 464

616 Index

BusyBox, 304
cbrowser utility, 365
Common Flash Memory Interface

Specification, 288
CompactPCI, 60
cramfs project README, 259
DDD resources, 365
Debugging with GDB, 422
“Design and Implementation of the Second

Extended Filesystem,” 259
device trees, 199
DHCP protocol, 198
dmalloc utility, 365
DRAM, 198
dtc compiler, 189
Dynamic Host Configuration, 323
Eclipse Project, 365
EHCI, 519
“File System Performance: The Solaris OS, UFS,

Linux ext3, and Reiser FS,” 259
Filesystem Hierarchy Standard, 226
flat device trees

references, 199
syntax, 192

Freescale Semiconductor, 62
FSH, 157
Garzik, Jeff ’s git utility, 68
GCC, 323
GDB: The GNU Project Debugger, 444
GDB resources, 365
GNU

Compiler Collection documentation, 130
linker, 130-198
Press, 422

GPL, 550
GRUB, 199
Intel, 62
JFFS: The Journaling Flash File System, 259
Kbuild, 98
kernel, 65

debugging resources, 422
HOWTO, 98

KGDB, 422
Library Optimizer Tool, 136
Lilo, 199
Linux

Documentation Project, 96, 157
Foundation, 8
news and developments, 583
Standard Base Project, 8

LinuxDevices.com, 3
mailing lists, 582

MIPS architecture, 67
Moblin, 7
MTD resources, 288
NFS, 259
open source legal insight, 583
OpenEmbedded, 137, 454, 464
Power Architecture, 62
Power.org, 62
PowerPC 64-bit architecture reference manual, 62
/proc file system, 259
“Red Hat’s New Journaling File

System: ext3,” 259
Redboot user documentation, 288
Reiser4 File System, 259
Rusty’s Linux Kernel Page, 226
Scratchbox, 449, 464
SDRAM resources, 580
Service Availability Forum, 7
source repositories, 582
System V init, 157
TFTP protocol, 198, 323
Tool Interface Standard (TIS) Executable and, 98
U-Boot, 166, 198
udev, 548
USB resources, 519

wget BusyBox command, 570
which BusyBox command, 570
who BusyBox command, 570
whoami BusyBox command, 570
wrapper script, 185
“Writing udev Rules” website, 548

X–Z
xargs BusyBox command, 570

yes BusyBox command, 570

zcat BusyBox command, 570
zcip BusyBox command, 570
zImage targets, 83

	Contents
	Foreword for the First Edition
	Foreword for the Second Edition
	Preface
	Chapter 7 Bootloaders
	7.1 Role of a Bootloader
	7.2 Bootloader Challenges
	7.2.1 DRAM Controller
	7.2.2 Flash Versus RAM
	7.2.3 Image Complexity
	7.2.4 Execution Context

	7.3 A Universal Bootloader: Das U-Boot
	7.3.1 Obtaining U-Boot
	7.3.2 Configuring U-Boot
	7.3.3 U-Boot Monitor Commands
	7.3.4 Network Operations
	7.3.5 Storage Subsystems
	7.3.6 Booting from Disk

	7.4 Porting U-Boot
	7.4.1 EP405 U-Boot Port
	7.4.2 U-Boot Makefile Configuration Target
	7.4.3 EP405 First Build
	7.4.4 EP405 Processor Initialization
	7.4.5 Board-Specific Initialization
	7.4.6 Porting Summary
	7.4.7 U-Boot Image Format

	7.5 Device Tree Blob (Flat Device Tree)
	7.5.1 Device Tree Source
	7.5.2 Device Tree Compiler
	7.5.3 Alternative Kernel Images Using DTB

	7.6 Other Bootloaders
	7.6.1 Lilo
	7.6.2 GRUB
	7.6.3 Still More Bootloaders

	7.7 Summary
	7.7.1 Suggestions for Additional Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q – R
	S
	T
	U
	V
	W
	X – Z

