

Implementing the IBM®
Rational Unifi ed Process®
and Solutions
By Joshua Barnes
ISBN-10: 0-321-36945-9

This book delivers all the knowledge and insight
you need to succeed with the IBM Rational
Unifi ed Process and Solutions. Joshua Barnes
presents a start-to-fi nish, best-practice roadmap
to the complete implementation cycle of IBM
RUP–from projecting ROI and making the
business case through piloting, implementa-
tion, mentoring, and beyond. Drawing on his
extensive experience leading large-scale IBM
RUP implementations and working with some of
the industry’s most recognized thought leaders in
the Software Engineering Process world, Barnes
brings together comprehensive “lessons learned”
from both successful and failed projects. You’ll
learn from real-world case studies, including
actual project artifacts.

Implementing IBM® Rational®
ClearQuest®

An End-to-End Deployment Guide
By Christian D. Buckley, Darren W. Pulsipher, and
Kendall Scott
ISBN-10: 0-321-33486-8

Implementing IBM Rational ClearQuest
brings together all you need to integrate
ClearQuest into an over-arching change-
management system that works. Drawing on
decades of experience, the authors present a
detailed, easy-to-use roadmap for each step of
ClearQuest deployment, from evaluating business
cases to planning, design, and implementation.
You will fi nd the industry’s clearest, most useful
explanations of ClearQuest technology here,
along with real-world examples, best practices,
diagrams, and actionable steps.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks.com/newsletters

Related Books of Interest

Visit ibmpressbooks.com
for all product information

A Practical Guide to
Distributed Scrum
By Elizabeth Woodward, Steffan Surdek, and
Matthew Ganis
ISBN-10: 0-13-704113-6

This is the fi rst comprehensive, practical guide
for Scrum practitioners working in large-scale
distributed environments. Written by three of
IBM’s leading Scrum practitioners—in close
collaboration with the IBM QSE Scrum Community
of more than 1,000 members worldwide—this
book offers specifi c, actionable guidance for
everyone who wants to succeed with Scrum in
the enterprise.
Readers will follow a journey through the lifecycle
of a distributed Scrum project, from envisioning
products and setting up teams to preparing for
Sprint planning and running retrospectives. Using
real-world examples, the book demonstrates how
to apply key Scrum practices, such as look-ahead
planning in geographically distributed environ-
ments. Readers will also gain valuable new
insights into the agile management of complex
problem and technical domains.

The Art of Enterprise
Information Architecture
A Systems-Based Approach for
Unlocking Business Insight
By Mario Godinez, Eberhard Hechler, Klaus
Koenig, Steve Lockwood, Martin Oberhofer, and
Michael Schroeck
ISBN-10: 0-13-703571-3

Tomorrow’s winning “Intelligent Enterprises” will
bring together far more diverse sources of data,
analyze it in more powerful ways, and deliver
immediate insight to decision-makers throughout
the organization. Today, however, most companies
fail to apply the information they already have,
while struggling with the complexity and costs of
their existing information environments.
In this book, a team of IBM’s leading information
management experts guide you on a journey that
will take you from where you are today toward
becoming an “Intelligent Enterprise.” Drawing on
their extensive experience working with enterprise
clients, the authors present a new, information-
centric approach to architecture and powerful
new models that will benefi t any organization.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks.com/newsletters

The Business of IT
How to Improve Service and
Lower Costs
Robert Ryan, Tim Raducha-Grace
ISBN-10: 0-13-700061-8

Agile Career Development
Lessons and Approaches from IBM
Mary Ann Bopp, Diana A. Bing,
Sheila Forte-Trammell
ISBN-10: 0-13-715364-3

Dynamic SOA and BPM
Best Practices for Business Process
Management and SOA Agility
Marc Fiammante
ISBN-10: 0-13-701891-6

Multisite Commerce
Proven Principles for Overcoming
the Business, Organizational, and
Technical Challenges
Lev Mirlas
ISBN-10: 0-13-714887-9

Enterprise Master
Data Management
An SOA Approach to
Managing Core Information
Dreibelbis, Hechler, Milman,
Oberhofer, van Run, Wolfson
ISBN-10: 0-13-236625-8

Software Test
Engineering with IBM
Rational Functional Tester
The Defi nitive Resource
By Chip Davis, Daniel Chirillo, Daniel Gouveia,
Fariz Saracevic, Jeffrey B. Bocarsley, Larry
Quesada, Lee B. Thomas, and Marc van Lint
ISBN-10: 0-13-700066-9

If you’re among the thousands of developers
using IBM Rational Functional Tester (RFT), this
book brings together all the insight, examples,
and real-world solutions you need to succeed.
Eight leading IBM testing experts thoroughly
introduce this state-of-the-art product, covering
issues ranging from building test environments
through executing the most complex and power-
ful tests. Drawing on decades of experience with
IBM Rational testing products, they address both
technical and nontechnical challenges and pres-
ent everything from best practices to reusable
code.

Praise for Work Item Management with IBM Rational ClearQuest
and Jazz

“Dave and Shmuel have mastered both CQ ALM and Jazz and produced a primer introducing
these to the IBM Rational Tools audience. This is a great starting point for implementing the
integration.”

—Robert W. Myers
CQ ALM Architect
IBM Rational

“This book is an excellent introduction to how to think about workflows, a topic that has been
severely lacking in discussions of implementing tools that govern workflows. Without this under-
standing of workflows, good tools are often poorly implemented and therefore don’t yield the
ROI expected. Although this book uses Rational tools to describe implementation fine points,
the information presented will be very useful for doing the groundwork for implementing any
workflow-supporting tools.”

—Chuck Walrad
Managing Director
Davenport Consulting

“Dave Bellagio and Shmuel Bashan provide thorough and practical coverage of how to imple-
ment a work item change management process using IBM ClearQuest or the Jazz Platform. A
must-read for professionals involved in implementing a change management process with IBM
ClearQuest or with one of the Jazz-based products.”

—Celso Gonzalez
Coauthor of Patterns-Based Engineering: Successfully Delivering Solutions via Patterns

“Application Lifecycle Management (ALM) is the key to success for today’s increasingly com-
plex enterprise software delivery challenges. At the heart of ALM is work item management.
This book provides an excellent review of practical approaches to work item management based
on real world experience that will help you to deliver enterprise solutions more effectively. It is a
great resource for the whole software delivery team.”

— Alan W. Brown
IBM Distinguished Engineer

Work Item
Management
with IBM
Rational
ClearQuest
and Jazz

This page intentionally left blank

vii

IBM WebSphere

[SUBTITLE]

Deployment and Advanced
Configuration

Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum

Work Item
Management
with IBM
Rational
ClearQuest
and Jazz

A Customization Guide

Shmuel Bashan

David E. Bellagio

IBM Press
Pearson plc

Upper Saddle River, NJ • Boston• Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

© Copyright 2011 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steve Stansel, Ellice Uffer
Cover design: IBM Corporation
Associate Publisher: David Dusthimer
Marketing Manager: Stephane Nakib
Publicist: Heather Fox
Acquisitions Editor: Chris Guzikowski
Development Editors: Sheri Cain and Chris Zahn
Managing Editor: John Fuller
Designer: Alan Clements
Project Editor: Anna Popick
Copy Editor: Barbara Wood
Indexer: Jack Lewis
Compositor: The CIP Group
Proofreader: Kelli M. Brooks
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearson.com

The following terms are trademarks or registered trademarks of International Business Machines Corpo-
ration in the United States, other countries, or both: IBM, Rational, ClearQuest, Rational Team Concert,
Jazz, ClearCase, RequisitePro, BuildForge, PurifyPlus, WebSphere, DB2, DB2 Universal Database, devel-
operWorks, Tivoli, PureCoverage, Quantify, DOORS, Lotus, and Sametime. Microsoft, Visual SourceSafe,
ActiveX, Windows, VisualStudio, Access, Excel, and SharePoint are trademarks of Microsoft Corporation
in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the
United States and other countries. Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other com-
pany, product, or service names may be trademarks or service marks of others.

The following terms appear throughout the book: Introduction: IBM®, Rational®, ClearQuest®, Ratio-
nal Team Concert™, Jazz™, ClearCase®, RequisitePro®, Visual SourceSafe®, BuildForge®, PurifyPlus™;
Chapter 1: ActiveX®, Windows®; Chapter 2: UNIX®, VisualStudio®, WebSphere®, DB2®, DB2 Universal
Database™, Access®, Oracle®; Chapter 4: developerWorks®; Chapter 6: Tivoli®, Linux®, PureCoverage®,
Quantify®, Excel®, Java™, DOORS®, Lotus®, Sametime®, Quickr®, SharePoint®.

Library of Congress Cataloging-in-Publication Data

Bashan, Shmuel, 1952-
 Work item management with IBM Rational Clearquest and jazz : a customization guide / Shmuel
Bashan, David E. Bellagio.
 p. cm.
 Includes index.
 ISBN 978-0-13-700179-8 (pbk. : alk. paper)
 1. Business—Computer programs. 2. Teams in the workplace--Data processing. 3. Computer
software —Development—Management. 4. Jazz (Computer file) 5. Rational Clearquest. I. Bellagio,
David E. II. Title

 HF5548.4.M5265B37 2011
 658.4’04028553—dc22

2011011419

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-700179-8
ISBN-10: 0-13-700179-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, June 2011

In memory of my late parents, Sari and Moni,
for being role models of hard work, modesty, and honesty

—Shmuel

To my children, Anthony, Jacob, and Mark
—Dave

Contents

 Preface xix

 Acknowledgments xxvii

 About the Authors xxix

Chapter 1 Work Items 1
1.1 Work Item Definition 1

1.1.1 Terms Related to Work Items in ClearQuest and Jazz 1
1.2 Work Item Classification 4

1.2.1 Change Requests 4
1.2.2 Activities 5
1.2.3 Test Elements 6
1.2.4 Project-Related Work Items 6

1.3 Work Item Elements 7
1.3.1 Data 7
1.3.2 Presentation Forms 7
1.3.3 Workflow 9
1.3.4 Other Work Item Elements 11

1.4 Customization 13
1.4.1 Which Work Item Elements Can Be Customized? 14
1.4.2 Customizing Jazz Work Items 17
1.4.3 Customizing ClearQuest Record Types 18

1.5 Resources 19
1.6 Summary 20

Chapter 2 Disciplines: Requirements, Analysis & Design 21
2.1 Requirements 23

2.1.1 Gathering Requirements 23
2.1.2 Defining and Documenting Requirements 25
2.1.3 Getting Agreement 28
2.1.4 Using Agile Practice 28
2.1.5 Maintaining Requirements 28

xii Contents

2.2 Analysis & Design 29
2.2.1 Defining the Types of Clients 29
2.2.2 Defining the Infrastructure Architecture 30
2.2.3 Choosing a Database 32
2.2.4 ClearQuest Schema High-Level Design 33
2.2.5 Defining the Data Fields 35
2.2.6 Defining the Workflow 35
2.2.7 Designing the User Interface (Forms) 36

2.3 Design Patterns 36
2.3.1 Closing Pattern 37
2.3.2 Triage Pattern 37
2.3.3 Parent Control Pattern 38
2.3.4 Child Control Pattern 38
2.3.5 Dead End Pattern 39
2.3.6 Data Hierarchy Pattern 39
2.3.7 Superuser Modification Pattern 39
2.3.8 Resolution Pattern 40

2.4 Review and Sign Off Design Models 40
2.5 Resources 40
2.6 Summary 40

Chapter 3 The Workflow 43
3.1 Software Development Processes 44

3.1.1 The Rational Unified Process (RUP) Method 44
3.1.2 OpenUP Method 45

3.2 Process Representation 45
3.2.1 Creating the State Transition Matrix 49

3.3 The States 50
3.3.1 Basic Stages in Workflow 50
3.3.2 State Types 53

3.4 Dynamic Workflow 56
3.4.1 Background 56
3.4.2 The Technique 56
3.4.3 Automatically Move to Another State 57
3.4.4 One Record Type Having Several State Machines for Each Issue Type 59
3.4.5 A State Machine for Each Issue 61

3.5 ClearQuest ALM Schema Workflow 65
3.6 Jazz Workflow 66
3.7 Subflow 68

3.7.1 More Information 69
3.7.2 Build Approval 76

3.8 Summary 78

Contents xiii

Chapter 4 The Data 81
4.1 Work Item Content 83

4.1.1 Work Item Description 83
4.1.2 Location 86
4.1.3 Environment 87
4.1.4 Internal Impacts 88
4.1.5 External Impacts 89
4.1.6 Corrective Actions 91
4.1.7 Times 92
4.1.8 Tests 95
4.1.9 History 96
4.1.10 Additional Data 98
4.1.11 Quality Assurance 103

4.2 State-Based Objects 104
4.3 Stateless Objects 104
4.4 Object Relations 106

4.4.1 ClearQuest Single Relationship 106
4.4.2 ClearQuest Multiple Relationship 108
4.4.3 Back Reference 110
4.4.4 More on ClearQuest Unique Key 113
4.4.5 Jazz Links 115

4.5 Data Representation 117
4.5.1 ClearQuest Data Representation 117
4.5.2 Jazz Work Items Data Representation 118

4.6 ClearQuest Scripts 120
4.6.1 HasAttachment 120
4.6.2 Limit Attachment Size (Perl) 121
4.6.3 Convert Full_Name to Login_Name 122
4.6.4 Create Parent from Child 123

4.7 Summary 126

Chapter 5 Roles 127
5.1 Understanding Typical Problems 128

5.1.1 Enforcing Security Control 128
5.1.2 Unassigned Change 128
5.1.3 Assigning the Wrong Person 128
5.1.4 Blocking Assignment 129

5.2 Understanding Terms and Concepts 129
5.2.1 Basic Definitions 130
5.2.2 Role Type (Cardinality) 130
5.2.3 Roles, Areas, and Groups 131
5.2.4 Key Roles in the Change Request Process 131

5.3 Possible Solutions 132
5.3.1 Implementing Roles with ClearQuest Groups 132

xiv Contents

5.3.2 Implementing Roles Implicitly 133
5.3.3 Using Roles Stateless Record Type (with Static Roles) 136
5.3.4 User-Defined Roles 137

5.4 Security and Roles 139
5.5 Roles in the ClearQuest ALM Schema 140
5.6 Roles in Jazz 142
5.7 Code Examples 144

5.7.1 SQL Command for Group Method 144
5.7.2 Hook to Automatically Set Responsible Based on Role of Type Single 145
5.7.3 Hook to Automatically Set Choices Based on Role of Type Multiple 146
5.7.4 Hook to Automatically Set Responsible Based on Role Object 147
5.7.5 Hooks for User-Defined Roles 150

5.8 Summary 151

Chapter 6 Integrations 153
6.1 Introduction 153
6.2 ClearQuest Integrations 155

6.2.1 ClearQuest Packaged (Built-in) Integrations 156
6.2.2 Creating New Integrations with ClearQuest 162
6.2.3 Third-Party Integrations to ClearQuest 176

6.3 Jazz Products Integrations 177
6.3.1 Rational Quality Manager Integrations 177
6.3.2 Rational Team Concert Integrations 187
6.3.3 Building a New Jazz Integration 192

6.4 Resources 195
6.4.1 ALM 195
6.4.2 Jazz 195
6.4.3 ClearQuest 195
6.4.4 General Information 196

6.5 Summary 196

Chapter 7 Disciplines, Part 2 197
7.1 Implementation Discipline 197

7.1.1 ClearQuest Implementation Tasks 198
7.1.2 Jazz Implementation Tasks 199

7.2 Testing Discipline 199
7.3 Deployment Discipline 201

7.3.1 Preparation 201
7.3.2 Installations 202
7.3.3 Setting Up the Environment 202
7.3.4 Deploying Customizations 203
7.3.5 Importing Initial Data 204
7.3.6 Training 206
7.3.7 Following Up on System Adoption 207

Contents xv

7.4 Maintenance 207
7.4.1 Defining the Change Process 207
7.4.2 Ongoing Support 208
7.4.3 Improving Maintainability 208

7.5 ClearQuest Tool Mentor 208
7.5.1 Importing Records with References 208
7.5.2 Importing Updates 210
7.5.3 Creating a Test Environment 212

7.6 Jazz Tool Mentor 217
7.6.1 Creating a Jazz Project with the Common Process Template 217

7.7 Resources 220
7.8 Summary 220

Chapter 8 Development 221
8.1 ClearQuest Schema Development 222

8.1.1 Common Schema (ALM) 222
8.1.2 Implementing Patterns 222
8.1.3 Employing Reusable Assets 234
8.1.4 Using ClearQuest Packages 238
8.1.5 Understanding Session Variables 239

8.2 Parallel Development 240
8.2.1 Coding Hooks 241
8.2.2 Record Types 241
8.2.3 Designing Forms and Tabs 243

8.3 Comparing and Merging Schema Versions 245
8.4 Storing Hooks Externally 249
8.5 Releasing a Version to Production 250

8.5.1 Developer Testing 250
8.5.2 System Testing 252
8.5.3 Promotion to Production 252

8.6 Globally Distributed Development (GDD) Considerations and ClearQuest
 MultiSite (CQMS) 253

8.6.1 Upgrading the Schema 253
8.6.2 Addressing Mastership Changes 253
8.6.3 Testing the Mastership 254

8.7 ClearQuest Script Debugging 255
8.7.1 Employing the MsgBox() Function 255
8.7.2 Employing the OutputDebugString() Method 256
8.7.3 Debugging with Tracing Information 258

8.8 Other Development Considerations 260
8.8.1 Choosing a Scripting Language 261
8.8.2 When Is a Stateless Record Type Required? 261
8.8.3 Dealing with Records That Have More Than One Field as Unique Key 261
8.8.4 Organizing Global Scripts 262

xvi Contents

8.8.5 Devising a Naming Convention 262
8.8.6 Storing the old_id Field for Future Import 264
8.8.7 Dealing with Long Selection Lists 265
8.8.8 Updating a Dynamic List 271
8.8.9 Using Hard-Coded Data 272

8.9 Web Considerations 274
8.9.1 Enable Button Hooks 274
8.9.2 Field Dependency 275
8.9.3 Other Limitations 276

8.10 Preparing for the Future 277
8.11 Resources 277

8.11.1 ClearQuest 277
8.11.2 Jazz 277

8.12 Summary 278

Chapter 9 Metrics and Governance 279
9.1 Metrics 279

9.1.1 Types of Metrics 280
9.1.2 Metrics Strategy 280
9.1.3 Supporting Data for Metrics 284
9.1.4 Tools 284

9.2 Governance 287
9.2.1 Process Control and Automation 288
9.2.2 Permissions (Access Control and Security) 288
9.2.3 Monitoring 289
9.2.4 Governance with ClearQuest 290
9.2.5 Governance with the ClearQuest ALM Schema 297
9.2.6 Governance with Rational Team Concert 299

9.3 Resources 301
9.3.1 Metrics and Governance 301
9.3.2 Jazz Reports 302
9.3.3 Data Warehouse 303
9.3.4 BIRT Reports 304
9.3.5 C/ALM Reports 304

9.4 Summary 305

Chapter 10 Test Management and Work Items 307
10.1 What Is Rational Quality Manager? 307
10.2 Understanding Test Entities and Work Items 307
10.3 Work Items in the Test Process 310
10.4 Customization 316

10.4.1 Customizing Jazz Work Items 317
10.4.2 Testing Specific Work Items 318

10.5 Summary 324

Contents xvii

Chapter 11 Managing Agile Projects 325
11.1 Defining Agile Development 325
11.2 Agile and Scrum in a Nutshell 326
11.3 Realization with Rational Team Concert 330
11.4 Realization with ClearQuest 337

11.4.1 Required Data 339
11.4.2 Understanding the Workflows of Each Record Type 343
11.4.3 Understanding Metrics in Agile Development 345

11.5 Agile with the ALM Schema 346
11.6 Resources 350

11.6.1 Materials by Scott Ambler 350
11.6.2 DeveloperWorks Articles 350
11.6.3 Other Information 350

11.7 Summary 351

Chapter 12 Sample Applications and Solutions 353
12.1 Collaborative ALM with Jazz-Based Tools 353

12.1.1 Jazz C/ALM 354
12.2 User-Defined Fields in ClearQuest 356

12.2.1 Defining Choice Lists 358
12.2.2 Defining Requiredness 360

12.3 Service Level Agreements (SLAs) in ClearQuest 363
12.3.1 Background 363
12.3.2 The Topic 364
12.3.3 SLA Definition 364
12.3.4 Activate the SLA Rules 365
12.3.5 Notifications 365
12.3.6 Providing Governance Reports 366
12.3.7 The External Program 366

12.4 ClearCase, ClearQuest ALM, Build Forge Integrated Solution Architecture 367
12.4.1 Understanding the Work Projects 368
12.4.2 Developers Work on Activities within a Project 368
12.4.3 Continuously Validating through a Build and Validation Process 369
12.4.4 Creating the Task to Integrate the Baseline That Includes a Defect Fix 370
12.4.5 Releasing Periodically through Stable Composite Baselines 371
12.4.6 Working on Test Artifacts 372

12.5 Manage Release Promotion 374
12.5.1 Current Status Assessment 374
12.5.2 Solution 375
12.5.3 Process Components 376
12.5.4 The Promotion Process Model 379

12.6 Resources 382
12.6.1 Solutions Developed by Customers and Rational Staff 382

xviii Contents

12.6.2 SLA 383
12.6.3 ALM and C/ALM 383
12.6.4 Application Lifecycle Management with Rational ClearQuest 383

12.7 Summary 384

 Index 387

Preface

Almost everyone has had the need at one point or another to keep a list of things that need to be
done. Many people pick up a piece of paper every day and write down the things they want to
attempt to accomplish that day. Such lists drive many people’s lives. Some people keep them in
their heads, but as we get older, we need to write things down more often so as not to forget what
has to be done. When you are keeping track of a list of items for yourself to do, it is pretty easy
to know what has been done and what has not. You only have to depend on yourself. Updating
the list is easy. Having a list of the important things to be done and reviewing it many times a day
might make many people more productive.

There are a few problems with creating a list of items to keep track of. One is that it gets
much more complicated when many different people are working on the items. Now you have to
coordinate updates to the list from all of those people. This problem becomes harder still when
some of the people live in other time zones. Now it is much harder to understand who is doing
what, what has been done, and, more important, what has not been done and why. So we typically
create some sort of database to keep track of these things. In the simplest form, this database may
be a spreadsheet. Some people start creating their own management system from scratch to deal
with these lists. These systems tend to grow over time in both complexity and cost of mainte-
nance. Pretty soon, as your needs grow, you may find that the process you created to keep track
of the items does not scale, nor does it meet your needs anymore. The management system you
created will also have its own list of items that need to be done, and you may find that the cost of
maintaining your custom system outweighs the benefits you are receiving from it.

In the world of software and hardware development, lists of items tell us who is doing
what, what has been done, what problems are being worked on, and which products are affected
by these problems. These lists become the lifeblood for many individuals. Being able to accu-
rately understand your product’s status and exposure can help you make better decisions about
what items should be worked on, what items you need to wait to be done, and what items are not
as important as others.

The focus of this book is to help you implement solutions for dealing with many types of
common patterns that crop up when managing items of work for large teams of people. In this

xx Preface

introduction we briefly explain what a work item is and the business and technical environment
with which work item management is involved. We will also define and explain many basic terms
that are important for you to understand as you apply the techniques provided in this book.

The book’s content is organized to allow selective reading by people who are interested in
only specific subjects. We explain for whom the book is intended and how different roles should
read the book. Many chapters include practical sections with code examples; guidance is given
for you to make the most of the provided assets so that you can reuse them in your applications.
The reality is, you need some sort of management system in place to help you use the knowledge
that exists in the work items. Therefore, all of the example solutions provided within the book
are implemented in IBM Rational ClearQuest (CQ) and/or IBM Rational Team Concert (RTC).
There are many reasons for choosing these tools to highlight the solutions we explore. Some of
the reasons for using ClearQuest as the tool of choice are that it is a mature product, there are
many existing examples of solutions using the tool, and its customization potential is a powerful
feature. It is easier to implement the patterns we explore in ClearQuest. Theory can take you only
so far; we focus on reality and the details needed to implement solutions within these two tools.

What Is a Work Item?
A work item is an object that controls the process of performing a task. The work item contains
the following elements: data, presentation forms, workflow, and possibly other elements and
other objects. We call it the work item triangle (see Figure P.1).

Workflow

Data Presentation

Work item

Figure P.1 Elements of the work item (the work item triangle): workflow, data, and presentation

The bottom vertices of the triangle are the data that constitutes the work item and the pre-
sentation that allows the user to view and modify the data and interact with the system. The top
of the triangle is the workflow. The workflow is a series of activities performed by people having
the specific roles to produce a desired outcome. In different domains the outcome is different; to
achieve the outcome the three elements of the triangle must be customized so that the organiza-
tion will achieve the outcome in an efficient way, with minimal risk and with the highest quality.

Work items are the fundamental mechanisms for tracking and coordinating tasks within
your development organization. They are governed by the workflows within your organization’s
process. This book will show you practical strategies for solving typical problems that will arise

Preface xxi

when you try to implement and deploy a work item management solution based on ClearQuest or
Rational Team Concert.

Chapter 1, “Work Items,” discusses work items in more detail and refers to additional mate-
rials that will help you deal with managing work items.

The Environment
The main environment to which this book pertains is the software development environment.
However, many techniques can be applied to other environments, such as hardware development.

In the software development lifecycle (SDLC) there are several phases and several disci-
plines, as explained in the Rational Unified Process (RUP) and demonstrated in Figure 2.1 in
Chapter 2, “Disciplines: Requirements, Analysis & Design.”

It is possible that different organizational units will have ownership of the process in differ-
ent phases or in different disciplines. For example, defects defined during testing may have one
type of work item and defects found in development or in production may have different work
item types. Another example is that the work items for project activities are different from the
work items for software defect resolution. So within the software development environment there
are subenvironments.

Another environment to which work item management is relevant is the systems devel-
opment environment. In this environment chip, electronic device, and appliance designers and
developers adopt a different development lifecycle and also use different types of work items. In
some cases work items to manage software are combined with work items to manage hardware.
We discuss this important subject in the book as well.

This book contains a lot of content that deals with work item customization, including
detailed examples of how to customize. To meet the specific requirements of each environment it
is necessary to customize the three elements of the work item, and we shall explain how to cus-
tomize the data, the workflow, and the presentation using ClearQuest and Rational Team Concert.

This Book’s Content
The following sections present brief summaries of the chapters of the book.

Chapter 1: Work Items
A work item is an object that contains the following elements: data, presentation forms, work-
flow, and possibly other elements and other objects.

Work items can be classified as changes (defects, enhancement requests, and features),
tasks, activities, test plans, test cases, risks, builds, promotion, and others.

The chapter explains each of the elements, how they differ in types of changes, and the best
practices for design and implementation (for example, when to combine defect and enhancement
requests into a single element such as an issue; how to deal with both hardware and software
defects).

xxii Preface

Chapter 2: Disciplines: Requirements, Analysis & Design
This chapter is about the best practices used to develop ClearQuest and Rational Team Concert
applications. We use the parts of the RUP methodology that are suitable to these types of applica-
tions. The following disciplines are discussed:

• Requirements: Gather requirements from customers and stakeholders, organize, priori-
tize, solve conflicts, and get agreement.

• Analysis & Design: Define types of ClearQuest clients, define the system architecture
(server configuration, network topology, and firewall), databases, schema high-level
design, and user interface. We have also included a section on design patterns.

This topic is continued in Chapter 7, “Disciplines, Part 2,” where we discuss four additional
disciplines.

Chapter 3: The Workflow
In this chapter we discuss various methods of describing the workflow and propose some patterns
for designing it. In addition, ClearQuest is known to have a static state machine. In this chapter
you will learn an advanced technique for creating a dynamic workflow in ClearQuest. Some
implementation benefits and examples are provided.

Chapter 4: The Data
The data of work items is stored in fields of various types. For each type of work item a set of
fields is required to meet the business requirements. We shall discuss what data is required for
each work item and when it is required (which state in the lifecycle). We discuss classification
methods, include recommendations, and give many examples. We also discuss data grouping:
necessity and techniques.

The second part of the chapter explains how to make the most of the different types of
fields, such as Reference, Reference_List, Date_Time, and others.

Performance considerations with certain types of ClearQuest hooks are explained.

Chapter 5: Roles
A role is a key concept in RUP; we explain how to incorporate roles into your ClearQuest schema.
Three techniques are explained, each one with different complexity levels and schema structures,
to meet various organizational needs.

In addition, we explain how to take advantage of roles, such as how to auto-assign owners
based on roles, how to populate choice lists based on roles, and how to notify people of events
based on their roles.

The last section of the chapter explains roles in Jazz and in the ClearQuest Application
Lifecycle Management (CQ-ALM) schema.

Preface xxiii

Chapter 6: Integrations
The chapter starts with a brief introduction to integration types and the value of integrating applica-
tions. It is divided between ClearQuest integrations and Jazz integrations. In the ClearQuest inte-
grations section we describe the built-in packaged integrations, that is, ClearCase, RequisitePro,
Visual SourceSafe, Microsoft Project, Build Forge, Portfolio Manager, and PurifyPlus. We continue
with building new integrations, explain the methods of integrating applications with ClearQuest
(e-mail, import/export, API), and give some examples: expert systems, help desk, and others.

The second part of the chapter is about Jazz integrations. We describe the Jazz platform
integration technology and continue with Rational Quality Manager and Rational Team Concert
integrations with ClearQuest and other products.

Chapter 7: Disciplines, Part 2
This chapter is about the best practices used to develop ClearQuest and Jazz applications. We use
part of the RUP methodology to meet the needs of these types of applications. In this chapter we
discuss the following disciplines:

• Implementing: schema development, parallel implementation

• Testing: building the test environment, testing methods

• Deployment: managing multiple environments, enabling end users in the solution

• Maintenance: managing change to the solution by using the solution

Chapter 8: Development
Although developing a ClearQuest schema is in many aspects similar to code development, there
are significant differences due to the special environment. In this chapter we explain the special
development considerations. Some of the subjects discussed are

• Schema development tips

• Common schema

• Pattern implementation in CQ and Jazz

• Packages

• Parallel development (and multiple schemas, multiple databases)

• Versioning content

• Releasing a version to production

• Globally Distributed Development (GDD) considerations and ClearQuest MultiSite

• Preparing for future product releases

xxiv Preface

Chapter 9: Metrics and Governance
The first part of the chapter is about metrics. We explain some quality metrics (such as defect
density); performance metrics (how fast and efficient our process is); and how to collect, mea-
sure, and present the data. We explain the tools available to create these metrics.

The second part of the chapter is about governance. There are various aspects of gover-
nance. In this chapter we discuss the following: controls such as electronic signature, setting
service level agreements (SLAs), and managing audit logs.

Another important issue that we explain is the security setting with the Security Context
record and additional security measures.

Chapter 10: Test Management and Work items
In this chapter we discuss work items used in the testing process. Test management requires dif-
ferent considerations from change management. We review the Rational Quality Manager work
items and how the different types are used. Other subjects included in this chapter are the custom-
ization of work items and the customization of other test elements.

Chapter 11: Managing Agile Projects
With the emerging popularity of Agile programming methods, organizations need to adapt their
workflows and automation techniques. In this chapter we briefly describe some Agile methods
and how ClearQuest can be used to create a workflow for those techniques. We dive into the
Scrum processes and explain how to mange backlogs and sprints with ClearQuest. A ClearQuest
schema is provided for the Scrum Agile method.

We discuss in detail how Scrum is realized using Rational Team Concert. We also discuss
how to implement the Agile process with the CQ-ALM schema.

Chapter 12: Sample Applications and Solutions
In this chapter we explain some special applications and solutions that extend existing
applications.

We start with a description of a Collaborative Application Lifecycle Management inte-
grated solution with Jazz-based products: Rational Team Concert (RTC), Rational Quality Man-
ager (RQM), and Rational Requirements Composer (RRC).

We describe a solution to extend a ClearQuest schema with project-defined fields and an
example of an SLA with ClearQuest.

The Application Lifecycle Management (ALM) solution is a good basis for many applica-
tions, and we provide some examples and techniques for how to map your solution needs to the
ALM packages that come with ClearQuest. We describe an integrated solution with ClearCase,
ClearQuest, and Build Forge.

Finally, we describe a solution to managing release promotion in a heterogeneous environ-
ment using ClearQuest.

Preface xxv

Audience for the Book
The book will appeal to many roles and to users with a wide range of interests. This book is for
everyone who is interested in software change management.

The large community of ClearQuest users will find this book valuable. This includes all
users involved in ClearQuest administration, all who are interested in developing new applica-
tions with ClearQuest, and those who want to integrate ClearQuest with other applications.

The growing community of Jazz customers will also find this book interesting. In addition
to the theoretical parts, we provide examples of work item management within Rational Team
Concert and Rational Quality Manager, and we have dedicated Chapter 10 to test management
and a focus on Rational Quality Manager.

These roles within your organization will find value in this book:

• Project managers: This role will learn how to use work items to help manage their
project’s health: what metrics are important, how to triage effectively, and obtaining
visibility into potentially desired workflows that meet the organization’s needs. Project
managers can also learn how to use ClearQuest to manage Agile projects.

• Technical leaders: This role will be exposed to solutions to various problems that may
shed some light on a particular issue that affects the organization’s current challenges,
for example, how to model and track activities related to a project’s development pat-
terns using the ClearQuest ALM workflow framework.

• SCM administrators: This role will be exposed to strategies for implementing solu-
tions to problems that should benefit from a complete change management solution, for
example, how the ClearQuest ALM workflows integrate with ClearCase UCM stream
strategies.

• Tools engineers: This role will be exposed to best practices and techniques for imple-
menting solutions to common patterns that may be important to the organization’s needs.

• Test managers: This role will find Chapter 10 of interest, especially if adopting the Jazz
platform is being considered. Test managers will also be interested in various defect-
tracking techniques as well as in Chapter 9.

• QA managers: This role can find value in Chapter 9 as well as Chapter 10, especially if
adopting the Jazz platform is under consideration.

• Process analysts: Process control is discussed in several chapters, in the discipline
chapters and in Chapters 3 and 9. Also, the examples of using ClearQuest ALM to model
the development process should be of importance.

• Experienced ClearQuest users: These users can deepen their knowledge of change
management, learn new techniques, get new ideas for improving the system they work
with, and learn how to implement ideas they have.

• Experienced RTC and RQM users: These users can learn how to customize the Jazz
work items and how to create new work item types.

xxvi Preface

How to Read This Book
This book attempts to close the gap in the existing materials on work item management. There
aren’t many books or articles that discuss this subject. The book is organized in a way that will
allow many users to take advantage of its contents. In each chapter we discuss the theory of the
subject with examples from the industry. After discussing the theory, we dive into the practi-
cal elements of the discipline and provide implementation examples using ClearQuest, Rational
Quality Manager, or Rational Team Concert. In many cases there are several solutions to the spe-
cific requirements, and we have provided proposed solutions from a lighter-weight approach to
an increasingly more complex implementation.

So, how to read this book? It depends on your role and your interests.
One way is to read the book from start to finish. It is organized in a way that will make such

an approach easy. For example, we have split the disciplines between two chapters in order to
make sequential reading more coherent.

Another way is to first read the two chapters about disciplines: Chapter 2 and Chapter 7.
They complement each other, and we have split them so that the disciplines described in each
chapter are followed with the right content. If you are interested only in the theoretical part of
work item management, it makes sense to read those two chapters in sequence. They include ref-
erences to practical materials in other chapters so that you can learn how the discussed disciplines
are implemented with the tools.

The other chapters discuss specific areas of work item management. For example, Chapter
5 discusses roles and includes implementation examples and ClearQuest scripts. If you want to
improve your process governance and lifecycle efficiency, go directly to this chapter.

Another example is Chapter 11 on Agile projects. This chapter includes a theoretical part
and implementation examples in ClearQuest and Rational Team Concert. If your organization is
using ClearQuest and is thinking about adopting Agile practices, you must read this chapter.

You can also use it as a cookbook. If you need to resolve an issue, search in the table of con-
tents or the index for the relevant content. You may find implementation descriptions with code
examples and references to additional materials.

A Note on the Code Examples Because of page width limitations we sometimes break
command lines into two or more lines and use the backslash character (\) as the break
character. Also in code examples you may see some unnatural indentations for the same
reason.

Acknowledgments

This book’s content is not just the effort of the authors. The material was gathered over the past
ten years of using and deploying customer solutions composed of the products mentioned within
this book. The authors would like to thank the host of coworkers and customers who over the
years have contributed to our greater understanding of the principles of change management, the
functioning of the products, and our understanding of which change management strategies work
and which ones don’t.

Our ever-patient editors at Pearson, Christopher Guzikowski and Raina Chrobak, deserve
many thanks as well. Many thanks to our copy editor, Barbara Wood, and to our production edi-
tor, Anna Popick, for their diligence during the production process.

We would also like to thank our families for their long-suffering during the many weekends
we were busy writing the book. Shmuel would like to thank his wife, Catherine, for her support
and encouragement. Dave would like to thank his wife, Laura, and kids, Anthony, Jacob, and
Mark, for allowing him the time to be involved in this effort.

Much of the material is directly related to the experience of the IBM Rational field teams in
engagements with customers using ClearQuest. Some of the folks whom we would like to thank
for their efforts in fleshing out strategies that work with many of our larger customer needs are
Ariel Whol, Shai Shapira, Etan Shomrai, Alan Murphy, Allan Wagner, Daniel Diebolt, Majid
Irani, Stuart Poulin, Michael Saylor, Paul Weiss, Grant Covell, Katur Patel, Marlin Deckert,
David Maroshi, Bob Myers, and Raanon Reutlinger. We have probably missed someone; if so,
our apologies and thanks.

Colleagues who agreed to share content deserve many thanks: Caroline Pampino for con-
tent on C/ALM; Bob Myers for content on CQ-ALM; Scott Ambler for content on Agile; David
Lubanco on metrics; Sharon Weed, Bala Rajaraman, and John Wiegand for content on integra-
tions; Patrick Streule and Nicolas Dangeville for their help with OSLC; Yuhong Yin and Steven
Pitschke for assistance in building charts and content on CQ architecture; and Alan Murphy for
content on CQ development and debugging.

Special thanks to those people who put in the time to review this book and provide com-
ments to help make the information more accurate and the reading more pleasant: Scott Ambler,
Bob Myers, Michael Warfield, Chuck Walrad, and Celso Gonzalez.

xxviii Acknowledgments

We have learned from every client engagement, many of them inspired with ideas and inno-
vative solutions. Many thanks to clients who agreed to share content: Dr. Alexander Karnovsky,
Gerrit Van Doorn, Joseph W. Derr Jr., and Jacob (Kobi) Welber.

Finally, our thanks go to everyone at IBM Rational Software who keeps ClearQuest and the
Jazz-based product efforts moving forward. Keep up the good work.

About the Authors

Shmuel Bashan
Shmuel Bashan is a Senior Deployment Specialist and Mentor on IBM Rational Software’s
global services account team, covering European countries. Prior to this assignment, he worked
as the Rational technical leader, solution architect, and Rational country leader in Israel.

Prior to joining Rational in 1997, Shmuel was a manager of a consulting firm, and prior to
that a software developer of CAD/CAM applications. Shmuel holds a B.Sc. in mechanical engi-
neering from Ben-Gurion University and an Information Systems Analyst Certificate from the
Manufacturers Association of Israel.

Shmuel is an active member of the change management community and has contributed
several articles and reusable assets: scripts for various solutions, advanced training materials, and
workshops. He has also contributed to the RUP 8.0 Change Management practice.

Shmuel presented at several Rational user conferences in Europe and the United States:

“What’s New in Automated Software Testing and ClearQuest” (Israel, 2004)

“From Requirements to Delivery” (Israel, 2005)

“Advanced Techniques in ClearQuest Customization” (Orlando, FL, 2006)

“ClearQuest Tips and Tricks” (Strasbourg, France, 2007)

“Automating Code Integration Activities with ClearQuest ALM, UCM, and Build
Forge” (with David E. Bellagio, Orlando, FL, 2009)

Shmuel published the following articles in developerWorks:

“Adaptive Workflow in ClearQuest”

“Manage Scrum Projects with ClearQuest”

“Using Roles for Automatic Assignment in IBM Rational ClearQuest”

Shmuel resides in Israel with his beloved wife, three children, and two grandchildren.
Shmuel enjoys jazz music, art cinema and theater, playing chess and bridge, jogging along the

xxx About the Authors

seashore, and hiking, but unfortunately time does not allow all these activities. He can be reached
via e-mail at bashansh@il.ibm.com

David E. Bellagio
David E. Bellagio has been involved in the software development community for the past 30
years, ever since he caught the programming bug growing up in Healdsburg, California. David
holds a B.S. and an M.S. in computer science, with honors, from California State University
at Chico. David has worked at various companies, including Computer Sciences Corporation,
Tandem Computers, Automatic Data Processing, and Hewlett Packard. He started with Rational
Software as a technical field representative in the Pacific Northwest in early 1998.

David currently is a Worldwide Integration Engineering Architect at IBM Rational Soft-
ware in charge of developing and deploying integrated solutions to customers around the world.
He has worked on-site with numerous customers to define and manage successful deploy-
ments of Rational Software solutions. David has presented the following topics at Rational user
conferences:

“Building Software with Clearmake on Non-ClearCase Hosts” (Lexington, MA, 1995)

“ClearAdmin: A Set of Scripts, Processes, and Techniques for Administrating Large
ClearCase Sites” (Lexington, MA, 1996)

“UCM Stream Strategies and Best Practices” (Dallas, TX, 2004)

“Automating Code Integration Activities with ClearQuest ALM, UCM, and Build
Forge” (with Shmuel Bashan, Orlando, FL, 2009)

David coauthored Software Configuration Management Strategies and IBM Rational
ClearCase: A Practical Introduction, Second Edition (IBM Press, 2005).

David currently resides in the state of Washington with his lovely wife and three children.
When time allows, David enjoys playing rock music, shooting pool, and brewing fine ales and
mead. He can be reached via e-mail at dbellagio@us.ibm.com.

C H A P T E R 1 1

 325

Managing Agile
Projects

Many software projects are moving to Agile methods. This chapter is not about teaching Agile
development; you can read about Agile in many articles and books. Instead, it is about realizing
Agile with Rational Team Concert (RTC) and ClearQuest.

While Rational Team Concert was developed with Agile methods in mind, Rational Clear-
Quest is an older product and was developed with more traditional methods in mind. Luckily
ClearQuest is highly customizable, so we can develop schemas with a process that meets the
modern development environment.

In this chapter we shall explain in brief the Agile method concept, just to set the right con-
text for the rest of the chapter. The Scrum process is becoming more popular with all types of
software development projects. We will use RTC’s process enactment of Scrum to illustrate some
of the methods within this Agile process. We shall later explain how to build a schema with Clear-
Quest that will help Agile teams and stakeholders manage their projects smarter to help produce
better products.

ClearQuest users using Application Lifecycle Management (ALM) will learn how to con-
figure a project to meet the needs of Agile teams.

11.1 Defining Agile Development
There is no single definition of what Agile development is. There are some principles that many
agree upon, and teams can adapt them as it suits their organization. Scott Ambler (see “Resources”
at the end of this chapter) defines Agile software development as follows:

• Agile is an iterative and incremental (evolutionary) approach to software development

• which is performed in a highly collaborative manner

• by self-organizing teams

• with “just enough” ceremony

326 Chapter 11 Managing Agile Projects

• that produces high quality software

• in a cost effective and timely manner

• which meets the changing needs of its stakeholders.

We shall later see how both Rational Team Concert and a ClearQuest schema we propose
respond to this definition.

The Agile system development lifecycle is described in Figure 11.1.

11.2 Agile and Scrum in a Nutshell
Scrum is a framework for managing Agile software development projects. A Scrum project starts
with a definition of the items that the system should include and address, including functionality,
features, and technology. These items are often called requests. The list of requests is called the
product backlog (or project backlog). The requests can be of various types: textual requirements,
use cases, test cases, stories, defects, enhancement requests, and so on. The requests are likely
captured in an external tool such as Rational Requirements Composer (RRC) and are referenced
or linked from the change management tool.

Requests can be submitted by any team member, affected users, or stakeholders. The
request content is elicited from various sources, but the requests are prioritized by the product
owner only and not by the development team. The product backlog is dynamic; it changes and
evolves as the project advances.

During the first phase of the project, often called warm-up, the requirements are analyzed
by SMEs to determined feasibility, cost, effort, and risk. This phase is done with the close par-
ticipation of the stakeholders. The analysis gives the stakeholders a better basis for setting their
priorities.

Agile projects are divided into iterations; the iteration has a fixed duration of a few weeks,
usually two to four. In Scrum the iteration is called a sprint.

The Scrum team’s responsibility is to take the requirements from the backlog and develop
a usable product or component that has real value to the project, within the sprint period. The
team is cross-functional and performs all activities related to the delivery. The team as a whole is
responsible for delivering the requirements.

The sprint starts with a team planning meeting. Each team takes one or more top-priority
requests from the product backlog, as many as they think they can develop and deliver during the
sprint. A sprint must finish with delivery of a new, executable product; thus each sprint consists of
all lifecycle disciplines: design, development, testing, and so forth.

The team creates a list of activities (or tasks) from the requirement(s) they have selected.
This is called the sprint backlog. The activities represent the way the team decides to implement
the requirements. Each activity is assigned to a team member (or sometimes to team pairs).

Each Scrum team is autonomous; the team decides how to develop work products from a
requirement. Teams are organized in a way that they could be autonomous, thus having expertise
in various domains. The team decides which of the Agile development methods to use—XP, pair

327

Figure 11.1 The Agile System Development Lifecycle (copyright Scott W. Ambler)

328 Chapter 11 Managing Agile Projects

programming, test-driven development, or another method. They decide how much modeling to do.
However, the team must adhere to regulations, standards, and rules that the organization has set.

An important role within the Scrum process is the Scrum Master. This role facilitates and
guides the teams in adopting the agreed-upon practices and removes impediments. The Scrum
Master is not part of the team and does not give orders to the team.

Every day the team gathers for a short (15-minute) stand-up meeting called a Daily Scrum
Meeting. The purpose of the meeting is to share status and identify potential issues. During the
Daily Scrum Meeting the team progress is reviewed and impediments are identified for removal
by management. The Scrum Master facilitates the daily meetings, tracks progress, and works to
resolve any inhibitors raised by team members.

Each Scrum member briefly reports on three items:

• What was accomplished since the previous meeting?

• What is planned to be accomplished before the next meeting?

• What prevents the member from accomplishing the activities?

The report should focus on information that helps other team members gain knowledge,
learn a lesson, or contribute from their experience. Important practices in the meeting are honesty
and transparency.

At the end of the sprint, the team is gathered for a Sprint Review Meeting with the stake-
holders. The team reviews the work that was completed and that was not completed. The products
developed are demonstrated to the stakeholders to examine their value. They will make a deci-
sion about whether to make use of the products and obtain funding for the next iteration. Addi-
tional elements of the meeting are to learn from the experience in order to make an improvement
for the next iteration. Some teams conduct a different meeting for that purpose; members give
their opinions on what went well and what needs improvement. This meeting is called a Sprint
Retrospective.

The Sprint Review usually results in some adaptation of the product backlog. Enhance-
ment requests are added, defects are submitted, and maybe new features are introduced. The
remaining items in the sprint backlog are moved to the product backlog. The team can add an
activity, for example, to learn and experiment with a new technology, or to perform more per-
formance tests. Stakeholders and product owners may decide to change the priorities of some
backlog requirements.

Now a new sprint starts again with teams selecting top-priority requests for development.
The sprint cycles continue until the stakeholders think they have enough value and quality to
release a product. This stage is called the Release Iteration or the End Game. During this iteration
final system testing and acceptance testing are performed. Stakeholders may request some defect
fixing. The team finalizes system and user documentation. Users and administrators are trained,
and the system is deployed to production.

The Scrum project process is often described using the schema illustrated in Figure 11.2.

329

Figure 11.2 The Scrum Project Lifecycle (copyright Scott W. Ambler)

330 Chapter 11 Managing Agile Projects

11.3 Realization with Rational Team Concert
Out of the box, Rational Team Concert has a process template that enacts the Scrum process. This
chapter will discuss what Scrum is in terms of how Rational Team Concert realizes it. By using
a tool’s out-of-the-box process, your organization can be more Agile, as you will spend less time
designing, creating, and testing a custom solution. Within Rational Team Concert, the Scrum
project starts with a definition of all the items that the system should include and address, includ-
ing functionality, features, and technology. These items are called stories. Rational Team Concert
has built in an Agile planning feature through its Web interface. The lists of stories are presented
in a product backlog plan. This plan interface is the main focus during the team planning meet-
ing to decide what to work on in the first sprint. The product backlog list is shown in Figure 11.3.

Figure 11.3 The product backlog of Release 2.0

The user stories can be submitted by any team member, affected users, or stakeholders.
They are submitted against the backlog category and will show up in the product’s backlog plan
and are not assigned to any individual yet. The story content is elicited from various sources. A
work item of type Story is shown in Figure 11.4.

The product backlog is dynamic; it changes and evolves as the project advances. Certain
items may become more important than others during a sprint. Sometimes this process of priori-
tizing is called ranking. With Rational Team Concert you can easily drag stories around to rank
them relative to their position in the list. You also get a visual display of unranked items. All sto-
ries should be ranked to make sure they are not missed. A product backlog ranked list is shown in
Figure 11.5.

11.3 Realization with Rational Team Concert 331

Within Rational Team Concert you have the ability to attach complexity of effort to a story.
The attribute of the Story work item used to convey complexity is Story Points. The larger the
Story Points, the more difficult it will be to implement the Story.

In Rational Team Concert you can set up multiple teams working on multiple releases; each
release plan has its own current sprint (see Figure 11.6).

Figure 11.4 The Story work item

Story points

Ranked storyR

Figure 11.5 Ranking user stories

332 Chapter 11 Managing Agile Projects

Current sprintsCurrent sprCurrent spr

Figure 11.6 Sprints of different releases

Current sprint has
no work defined

View backlog with iterations

n

V

Figure 11.7 Release 2.0 backlog showing iterations

Figure 11.7 shows the backlog and the sprints (iterations). The backlog contains a list of
work items (in this figure of type Story) that should be assigned to teams in a specific sprint.

11.3 Realization with Rational Team Concert 333

Rational Team Concert can easily show a plan of any iteration. Once a team creates its
Sprint backlog, it can be easily communicated and worked further through the Web planning
interface of Rational Team Concert. Figure 11.9 shows sprint backlog stories ordered by priority.

Through the use of Rational Team Concert’s Agile planning through the Web interface, you
can easily create child tasks from a story. You can drag and drop tasks to make them children of
stories, and promote and demote them as needed; this is demonstrated in Figure 11.10.

Stories assigned to
Sprint 1 (2.0)S

Figure 11.8 Assigning stories from the product backlog to a sprint

In Rational Team Concert you facilitate sprint planning meetings by simply dragging and
dropping a story from the product backlog to your sprint; this is shown in Figure 11.8.

334 Chapter 11 Managing Agile Projects

In order to make sure work gets done, you want to assign tasks to individuals. Rational
Team Concert supports Agile assignment of work through drag and drop, making it easier to use
the tool to run a sprint planning meeting. As you are assigning work to people, you can also easily
enter the amount of task time remaining. This is used to calculate the burndown metric. This work
breakdown view of the backlog and the progress bar is shown in Figure 11.11.

Within Rational Team Concert, the Scrum Master role and the other Scrum roles are part
of the out-of-the-box process supporting Scrum as shown in Figure 11.12. The administrator can
define new roles as required.

Figure 11.9 The sprint backlog

Drag new task items
under parent stories to
form child link

Work item types supported
by RTC Scrum process

Add new work
item inlineD

u
fo

Figure 11.10 Working with the sprint backlog

11.3 Realization with Rational Team Concert 335

View backlog as
work breakdown

Drag work item to team
member to assign

Click to set time
remaining (used for
burndown)

ag work it

Figure 11.11 Assigning tasks to individuals

Figure 11.12 Process roles in Scrum

336 Chapter 11 Managing Agile Projects

In Rational Team Concert’s Scrum process, impediments are implemented as work items
and follow a workflow of open resolved, so they can be submitted, assigned, and managed
just like any other work item. Rational Team Concert also provides another useful view for Agile
planning through the Web interface called the Developer Taskboard. This view is perfect for the
Daily Scrum Meeting as you can easily see what team members are working on, what they have
completed, and other data. The Developer Taskboard view is shown in Figure 11.13.

View as Developer
Taskboard

Unassigned stories

Unassigned
impediment

Columns identify what needs to happen,
what is being worked on, and what has
been done

Real-time project progress

T

Figure 11.13 Using the Developer Taskboard in the Daily Scrum Meeting

Another Agile communication vehicle within Rational Team Concert is the dashboard. This
is a way that stakeholders and executives can keep informed on the progress of any project. Much
of the information contained within Rational Team Concert can be presented easily through feeds
to a dashboard. Any Rational Team Concert user (assuming the user has authorization) can set up
a dashboard to collect and present items of interest. A sample Rational Team Concert dashboard
is shown in Figure 11.14.

11.4 Realization with ClearQuest 337

One of the types of work items that Rational Team Concert supplies out of the box in the
Scrum process is a retrospective. You use this work item to log and track the issues that you dis-
cuss during the Sprint Retrospective.

11.4 Realization with ClearQuest
In section 11.2, “Agile and Scrum in a Nutshell,” we described the Agile process and the Scrum
in particular. Unlike Rational Team Concert, which has a built-in process template to support
Scrum, ClearQuest does not have an Agile built-in schema. In this section we shall explain how
to build a schema to support Agile projects. Reading the process description in section 11.2, we
can identify data objects and workflow scenarios. Now let us take out the data objects from the
description. These are

• Request

• Product backlog of requests

All items can be hovered over
to see underlying details

Figure 11.14 Project dashboard showing real-time status of events of interest

338 Chapter 11 Managing Agile Projects

• Sprint

• Activity

• Sprint backlog of activities

• Team

• Iteration

Let’s discuss each of these data objects a bit more.

• A request (or CR or any other name that may fit your environment) is realized by a state-
based record type. We shall describe the fields of this record type in the next section, but
one important field should be the RequestType. Types could be Defect, Enhancement,
Feature, Story, Test Case, and so on. Another important field is Priority; the team will
select Requests to implement in the iteration based mainly on priority.

• The product backlog of requests and sprint backlog of activities are lists of work items.
We do not need to create a special object for these; the reason is that the logs will be
realized with queries whose result set is the backlog. The project backlog is a query on
the Request record type that filters all of the analyzed requests (ready to be selected for
the sprint), sorted by priority. The sprint backlog is a query on the Activity record type
that filters all of the opened activities (not completed) that are referenced from a specific
sprint, sorted by priority.

• A sprint is realized by a state-based record type. This record type will have fields of type
Reference_List to the Requests and the Activity record types, and fields of type Refer-
ence to the Team and Project record types.

• An activity (or task or work item or any other name that may fit your environment) is
realized by a state-based record type. As stakeholder requests are usually high-level and
nontechnical, the team will break down requests into activities. Each activity will be
assigned to a team member.

• The team is realized by a stateless record type. The Team record type contains a list of
team members, specific roles in the team such as Team Leader, and users having a role.

• Iteration is realized by a stateless record type. The Iteration record type contains the
iteration name, the start date, and the end date.

The record types and their relationships are described in Figure 11.15.
We have realized some of the data objects with state-based record types and some with

stateless record types, and we have realized the product backlog and the sprint backlog with
queries.

11.4 Realization with ClearQuest 339

Request Sprint Activity

Users

Iteration

Team

Figure 11.15 Entities relation diagram for the Scrum schema

11.4.1 Required Data
In this section we describe the fields for each record type that are essential for the solution. It is
assumed that each implementation will include additional fields based on products developed,
organizational culture, regulations, and other considerations.

Table 11.1 describes the suggested fields for the Request record type.

Table 11.1 Request Suggested Fields

Field Name Field Type Comments

Headline Short_String

Description Multiline_String

CR_Type Short_String Closed choice list of request types

Priority Short_String

Requestor Reference Reference to the user submitting the request

RequestForProject Reference Reference to the project record (optional)

Activities Reference_List List of the activities this request breaks down to

Iteration Reference Reference to the Iteration record

EstimatedEffort Integer Estimated effort in hours to deliver the request;
 mandatory in the analysis

340 Chapter 11 Managing Agile Projects

Figure 11.16 is a screen shot of the Request record, with several of the fields listed in
Table 11.1.

Figure 11.16 Request record: main tab

Table 11.2 describes the suggested fields of the Sprint record type.

Table 11.2 Sprint Suggested Fields

Field Name Field Type Comments

Headline Short_String

Description Multiline_String

Iteration Reference Reference to the Iteration record

StartDate Display only, derived from Iteration.StartDate

EndDate Display only, derived from Iteration.EndDate

Requests Reference_List Reference to the Request record; optionally include back
reference

Activities Reference_List List of the activities this sprint breaks down to

Team Reference Reference to the Team record

Review Multiline_String

11.4 Realization with ClearQuest 341

Note We have not included the back reference for the Requests and Activities fields. It is
not required for the Scrum process as suggested in this chapter. However, it may ease the
creation of several queries and reports.

Figure 11.17 displays the Sprint record main tab; it shows the sprint details, the responsible
team, iteration name, end date, and other information. You can see the list of requests that will be
realized by the team in this sprint, in this case one new feature to develop and one defect to fix.

Figure 11.17 Sprint record: main tab

Table 11.3 describes the suggested fields of the Activity record type.

Table 11.3 Activity Suggested Fields

Field Name Field Type Comments

Headline Short_String

Description Multiline_String

ActivityType Short_String Closed choice list of work items/activity types

continues

342 Chapter 11 Managing Agile Projects

Field Name Field Type Comments

Priority Short_String

Owner Reference Reference to the user who is the solution provider

DueDate Date_Time Optional

ResolutionDescription Multiline_String

ActualDate Date_Time Optional

EstimatedEffort Integer Estimated effort in hours to deliver the request;
mandatory in the analysis

ActualEffort Integer Actual effort in hours (optional)

UnitTest Short_String Unit test name; may be an automated script name

Figure 11.18 is a screen shot of the Activity record main tab, with several of the fields listed
in Table 11.3.

Table 11.3 Activity Suggested Fields (Continued)

Figure 11.18 Activity record: main tab

Figure 11.19 displays the Activities tab in a Sprint record. The team has created five activi-
ties of different types, to realize the two requests that are shown in the Requests field.

11.4 Realization with ClearQuest 343

We have seen in this section the record types and the fields that construct the Scrum schema.

11.4.2 Understanding the Workflows of Each Record Type
After creating the three state-based records types and the fields in each one, we need to define the
state machine for each record type. In the next section we describe the workflow for each record type.

11.4.2.1 Request

The workflow for the Request record type depends a lot on the organization, the stakeholders,
and the regulations enforced. We propose the flow shown in Figure 11.20.

Figure 11.19 Activities and Requests related to a sprint

New

Analyzed

InSprint Delivered

 Figure 11.20 The Request record type workflow

344 Chapter 11 Managing Agile Projects

The Request is submitted to the New state and analyzed to identify feasibility, effort, prior-
ity, possible impacts, risks, and so on. After it is analyzed and priority is given by the stakehold-
ers, it can be picked by a team to be developed in a sprint. At the end of the sprint during the
Retrospective (review meeting) the deliverables are evaluated. If the deliverables are found to
meet the stakeholder request and have the desired quality, the Request can be moved to the Deliv-
ered state.

In some cases a Request can be moved from the New state directly to the InSprint state,
for example, in the case of a defect or a request submitted by the team. In either case the Request
must get a priority value by the stakeholder.

11.4.2.2 Activity

The workflow for the Activity record type is similar to the CMBaseActivity record type of the
UCM package. We suggest that this record type be integrated with your version control system.
If you are using ClearCase, add the UCM package to the schema and enable the Activity record
type to the UCM package. The Request and the Sprint record types should not be UCM-enabled
because artifact changes are controlled with the Activity record.

The state machine includes four consecutive states: Waiting, Ready, Active, and Complete
(see Figure 11.21).

Waiting Ready CompleteActive

Figure 11.21 The Activity record type workflow

11.4.2.3 Sprint

The Sprint record type is used for project management as explained in the previous section. Dur-
ing the sprint planning meeting (or before) the record is created and its state is Submitted. When
the sprint starts (the sprint iteration start date is reached), the team performs the action StartSprint
which moves the record to the state InSprint. When the sprint ends (the sprint iteration end date is
reached) and during the sprint Retrospective meeting the team performs the action Close, which
moves the record to the state Closed. So the Sprint record type has three consecutive states: Sub-
mitted, InSprint, and Closed (see Figure 11.22).

Submitted InSprint Closed
StartSprint Close

Figure 11.22 The Sprint record type workflow

11.4 Realization with ClearQuest 345

In this section we have described the suggested workflow for each of the record types that
construct the Scrum schema.

11.4.3 Understanding Metrics in Agile Development
We discussed metrics in detail in Chapter 9, “Metrics and Governance”; we include here just a
few words on metrics in Agile projects. Metrics measure data of direct business value to the orga-
nization. In the repetitive cycles of Agile projects, improvement can bring value, and to improve
we need to measure. Working with ClearQuest, we can measure by means of charts and reports
provided by the tool.

Figure 11.23 is a screen shot of the ClearQuest client displaying some typical queries and
charts for Scrum projects in the workspace. The executed chart shows Planned Effort, and it dis-
plays the estimated effort of requests in each iteration.

Figure 11.23 Planned Effort for Iteration chart

The “classic” release burndown charts and velocity charts cannot be created with the Clear-
Quest chart wizard, but you can create reports and distribution charts that display the closed
activities per iteration, or the actual/estimated effort of activities in an iteration, which will pro-
vide similar information. Also, using tools such as Rational Insight will allow you to present
burndown and velocity charts.

346 Chapter 11 Managing Agile Projects

Creating the “Total Effort per Iteration” Chart Use the ClearQuest Windows client to
create a new chart. For record type select Sprint, and for chart type select Distribution
Chart. In the Vertical Axis (Y) select the field Activities.ActualEffort (this is an Integer field);
in the Function select Sum. This will sum the effort of all the activities in each iteration. In
the Horizontal Axis (X) select the field Iteration.Name.

11.5 Agile with the ALM Schema
Companies that have decided to adopt the CQ-ALM (ClearQuest Application Lifecycle Manage-
ment) schema on an enterprise-wide basis may still need to deal with projects and teams that are
using an Agile development method. Those companies may ask if they need an additional schema
for these teams. Our answer is that they do not; they can use the ALM schema. We shall explain
how they can configure an ALM project in an Agile way. We assume that you are familiar to
some degree with the CQ-ALM and the ALM terminology. Section 12.4, “ClearCase, ClearQuest
ALM, Build Forge Integrated Solution Architecture,” in Chapter 12, “Sample Applications and
Solutions,” includes additional discussion and examples of the CQ-ALM schema.

The ALM schema includes three work management state-based record types: Request,
Task, and Activity. The Request record is similar to the one described in the previous sections. A
Task record is created when the request is approved for development. Priority behavior is manda-
tory and you should add a field of type Integer for the estimated effort unless you are using CQ-
ALM 1.1 where this field is already provided. Approving the request means that it was analyzed
by both the technical and the business teams, and it was prioritized by the product owner or the
stakeholders. The product backlog is a list of tasks generated by a query that displays all the
opened tasks of a given project sorted by priority.

The ALM schema defines project phases and iterations. Agile projects do not use phases,
so the ClearQuest admin can create a single phase record and name it with a dummy name such
as Iteration or Sprint. The next step is to create iteration records with the numeric values of the
iteration. For example, create iteration records and label them with 1, 2, and so forth. Using
numeric values is only a suggestion; you can use any method, such as week in the year. When
using the system, you will have Iteration 1, Iteration 2, or Sprint 1, Sprint 2, and so forth.

Figure 11.24 shows an ALMTask record assigned to Sprint 2.
Another differentiator between our Agile schema and the ALM schema is the use of roles.

Agile projects usually adopt the whole team practice; the skills of the whole team are what mat-
ters and team members’ roles are less relevant. So we suggest creating a Role Label record for
each team, using names like Team-A, Team-B, and so forth. In the Members tab add the team
members to the Members field and the team leader to the Primary field. If relevant to your project
add additional role labels such as TeamLeader or ScrumMaster (see Figure 11.25).

In the Scrum schema described in the previous sections we used a record type called Sprint.
Do we need to create such a record type in the ALM schema? The answer is no.

11.5 Agile with the ALM Schema 347

Figure 11.24 ALMTask record assigned to sprint (iteration)

Figure 11.25 ALMRole record assigned to an Agile team

348 Chapter 11 Managing Agile Projects

A sprint is a team effort for a given iteration. What we need to do is to link the Request,
Task, and Activity to the team and the iteration (see Figure 11.26). Among the many possible
solutions we shall mention three:

• Add a field called Sprint to each of the Request, Task, and Activity record types. The
team will fill in a value that uniquely identifies the sprint. The field value should be
automatically copied when a child record is created. Although this solution is simple, it
requires a schema change.

• The second solution uses existing fields. The Task record already has the field Iteration
that references the ALMiteration record that has fields such as start_date, end_date, sta-
tus_label, description, and others. The Activity and the Request record types have refer-
ences to Task, so for each record we can find the iteration that the record was assigned
to. We also need to relate the record to the team working on it; this is done using the
ALMRole record as previously explained.

• The third solution is similar to the second one. We previously explained that we gave
the phase a dummy value, so instead of using a dummy value we can set the phase name
to be the team name. Now we have for the iteration a meaningful value that is the team
name and the iteration name. The user will see in the Iteration field Team-A 1, Team-A 2,
and so on, which identify the sprint numbers for Team-A.

Figure 11.26 ALMTask record assigned to a team

11.5 Agile with the ALM Schema 349

The team (field Roles) in Figure 11.26 is automatically selected when the task type is
selected. This is defined by creating an ALMWorkConfiguration record with the following fields:
Project, Record Type, Type Label, Roles.

The three solutions allow you to create queries to see the sprint status, cumulative effort,
status of each activity, defects reported against a specific sprint, and other sprint queries, charts,
and reports as required.

During the sprint planning meeting the team creates one or more activities for each task.
Each activity is assigned to a team member. The number of child activities that will be created
per task and the types of those activities can be defined and set by each team in the ALMWork-
Configuration record. This is a powerful and useful feature of the ALM schema.

In the Sprint Review Meeting, if the team found the tested deliverables to have the required
quality, the team can Complete (an action) the Activated (a state) Tasks. Now the stakeholder can
Accept (an action) the related Requests to release the deliverables and to Close the sprint (see
Figure 11.27).

Figure 11.27 ALMRequest solution is accepted by the requestor

The ALMRequest record is accepted by the requestor (stakeholder) after the ALMTask is
completed with resolution code Completed.

350 Chapter 11 Managing Agile Projects

11.6 Resources
11.6.1 Materials by Scott Ambler
Ambler, Scott, “Agile Modeling—Effective Practices for Modeling and Documentation,” www.
agilemodeling.com, 2007 (accessed February 23, 2011).

Ambler, Scott, “Scott Ambler’s Articles and Other Writings,” www.ambysoft.com/onlineWrit-
ings.html, 1997–2011 (accessed February 23, 2011).

This page provides links to books and Web-based writings.

Ambler, Scott, “The Agile System Development Life Cycle (SDLC),” www.ambysoft.com/
essays/agileLifecycle.html, 2005–2010 (accessed February 23, 2011).

11.6.2 DeveloperWorks Articles
Pampino, Carolyn, and Robert Pierce, “Application Lifecycle Management with Rational Clear-
Quest 7.1.0.0,” IBM developerWorks, www.ibm.com/developerworks/rational/library/edge/08/
mar08/pampino-pierce/, 2008 (accessed February 23, 2011).

Ellingsworth, Millard, and Thomas Starz, “Scrum Project Management with IBM Rational Team
Concert Version 2,” IBM developerWorks, www.ibm.com/developerworks/rational/library/09/
scrumprojectmanagementteamconcert-1/index.html, 2009 (accessed February 23, 2011).

Lee, Kevin A., “Agile SCM and the IBM Rational Toolset,” IBM developerWorks, www.ibm.com/
developerworks/rational/library/jun06/lee/index.html?S_TACT=105AGX15&S_CMP=EDU,
2006 (accessed February 23, 2011).

11.6.3 Other Information
“Agile Alliance,” www.agilealliance.org/, 2011 (accessed February 23, 2011).

“OpenUP,” http://epf.eclipse.org/wikis/openup, 2011 (accessed February 23, 2011).

“Scrum Alliance,” www.scrumalliance.org/, 2011 (accessed February 23, 2011).

Wells, Don, “Extreme Programming: A Gentle Introduction,” www.extremeprogramming.org,
2009 (accessed February 23, 2011).

Wikipedia, “Lean Software Development,” http://en.wikipedia.org/wiki/Lean_software_devel-
opment, 2009 (accessed February 23, 2011).

Schwaber, Ken, and Mike Beedle, Agile Software Development with Scrum (Upper Saddle River,
NJ: Prentice Hall, 2002).

www.agilemodeling.com
www.agilemodeling.com
www.ambysoft.com/onlineWritings.html
www.ambysoft.com/onlineWritings.html
www.ambysoft.com/essays/agileLifecycle.html
www.ambysoft.com/essays/agileLifecycle.html
www.ibm.com/developerworks/rational/library/edge/08/mar08/pampino-pierce/
www.ibm.com/developerworks/rational/library/edge/08/mar08/pampino-pierce/
www.ibm.com/developerworks/rational/library/09/scrumprojectmanagementteamconcert-1/index.html
www.ibm.com/developerworks/rational/library/09/scrumprojectmanagementteamconcert-1/index.html
www.ibm.com/developerworks/rational/library/jun06/lee/index.html?S_TACT=105AGX15&S_CMP=EDU
www.ibm.com/developerworks/rational/library/jun06/lee/index.html?S_TACT=105AGX15&S_CMP=EDU
www.agilealliance.org/
http://epf.eclipse.org/wikis/openup
www.extremeprogramming.org
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Lean_software_development
www.scrumalliance.org/

11.7 Summary 351

11.7 Summary
In this chapter we started with a short explanation of Agile principles and continued with a some-
what more detailed description of the Scrum method. We later explained how Scrum is realized in
Rational Team Concert using the provided Scrum process template.

We continued with an explanation of how to create a ClearQuest schema to manage Agile
projects and specifically Scrum projects. It is important to mention that the proposed solution can
be modified and adapted to each company or project. The same principles can be applied to extend
existing schemas. Some examples of metrics derived with ClearQuest charts are explained.

The ClearQuest schema described will be available to download from the IBM developer-
Works site. The schema serves as a skeleton and does not pretend to be a complete solution. Use
it as a basis for your schema; add fields and hooks to create rules and to automate operations.

In the last section we explained how organizations that use the built-in CQ-ALM schema
can configure an ALM project to support Agile teams. We proposed several solutions that require
only minimal modifications or no modifications to the schema.

This page intentionally left blank

Index

A
A (active) state type, UCM, 54
Access control

compared with permissions, 3
governance and, 288–289
hook providing security in ClearQuest, 128
roles in, 127, 144–145, 379
rules governing, 11
workflow rules, 46

Accessing records, 114–115
Action hooks, ClearQuest, compared with Jazz

Operation Access Control. See also Hooks,
Access Control

behavior or extensions, 3
Commit hook. See Hooks, Commit
Initialization hook. See Hooks, Initialization
Notification hook. See Hooks, Notification
Validation hook. See Hooks, Validation

Actions
comparing ClearQuest action with Jazz

action, 2
customizing work items, 15
dedicated, 70–76
in Jazz workflow, 67
hooks. See Action hooks
reassignment, 70
roles in automation of, 127
rules governing, 11
workflow rules, 46

ActiveX
applets, 12
integration with ClearQuest and, 171–172
supported in BASIC not Perl, 261

Activities
describing ClearQuest data objects for Agile

process, 338
subclasses of, 5–6
workflows in activity diagrams, 44

Activity record type

in ALM schema, 346, 348
suggested fields for, 341–343
workflows of, 344

ACWP (actual cost of work performed), 280
Administrative activities, 5
Administrators

dependent integration of IBM administrator
with ClearQuest, 158

implementing roles with ClearQuest groups,
133

performance benchmarking by Web
administrators, 200

training, 206
Agile development

in ALM schema, 346–349
applying Agile practices to requirements, 28
in ClearQuest. See ClearQuest, Agile schema in
defining, 325–326
in Jazz. See RTC (Rational Team Concert),

Scrum process in
overview of, 325
resources for, 350
Scrum framework for, 326–329
summary, 351
use of graphs in metrics strategy, 281

Agreement, getting regarding requirements, 28
ALM (Application Lifecycle Management)

schema. See also C/ALM (Collaborative ALM)
Agile development in, 346–349
common schema in development, 222
creating task to fix defect, 370–371
governance in, 297–298
in integrated solution architecture, 367–373
periodic releases in, 371–372
process control in, 297
resources for, 195, 383
roles in, 140–141, 298
security context in, 297–298
workflows in, 65–66

388 Index

ALMActivity, 5, 65, 140, 370
ALMRequest, 348–349
ALMRole

comparing Agile and ALM schema, 347
overview of, 140–141
stateless record types in ALM security, 298

ALMRoleLabel
overview of, 140
stateless record types in ALM security, 298

ALMTask, 347–348
Amount of effort. See Effort required
AMStateTypes, 53
Analysis

data providing information for, 81
in workflow item lifecycle, 50

Analysis & Design discipline
choosing database, 32–33
defining client types, 29–30
defining data fields, 35
defining infrastructure architecture, 30–32
defining workflow, 35
design patterns in, 36–40
designing user interface (forms), 36
overview of, 29
resources, 40
reviewing/signing off on design models, 40
schema high-level design in ClearQuest, 33–34
summary, 40–41

Applets, performing background operations, 12
Applications/solutions

ClearQuest example. See ClearQuest, example
solution

external impacts and, 89
installing during deployment, 202
integrated. See Integrated solution architecture

(ClearCase, ALM, and Build Forge)
Jazz-based C/ALM, 354–356
resources for, 382–383
summary, 384–385

Approval tracking, Jazz, 2
AppScan, integration of RQM and RTLM with,

185–187
Architecture

defining infrastructure architecture, 30–32
for integrated solution. See Integrated solution

architecture (ClearCase, ALM, and Build Forge)
JIA (Jazz Integration Architecture), 192–193, 355

Areas
defined, 130
role implementation and, 133–136
user roles in different areas, 131

Asset reuse, 191
Assign action, notification and, 58
Assignees, assigning solution providers, 91
Assignment

auto-assignment, 145–149, 273–274
issues/typical problems addressed by roles,

128–129
members to test tasks, 311–312
reassignment, 70
roles in, 127

Association, by field label in Eclipse Designer, 109
Attachments

data, 100–103
HasAttachment hook, 120–121
Limit Attachment size hook, 121–122
to work items, 11

Auto-assignment, of roles, 145–149, 273–274
Auto-change state, 58–59
Automation

in ClearQuest governance, 290
in governance, 288
in Jazz-based C/ALM solution, 354
roles in, 127
setting choices based on Multiple role,

146–147
setting Responsible based on role object,

147–149
setting Responsible based on Single role,

145–146
Single roles and, 130

B
Back Reference field, in object relations, 110–113
Balking pattern, 36
Baselines

fixing defects and, 370–371
periodic releases and, 371–372

BASIC
choosing scripting language and, 261
creating new ClearQuest integrations, 167–172
storing hooks externally, 249–250
use of session variables, 240

Index 389

BCWP (budgeted cost of work performed), 280
Benchmarking, performance, 200
Bill of materials (BOM), in preparing for

deployment, 201
BIRT (Business Intelligence and Reporting Tools)

as metrics tool, 286
resources for, 303–304

Blocking assignment, 129
BOM (bill of materials), in preparing for

deployment, 201
Budgeted cost of work performed (BCWP), 280
Build engines, RTC integrations, 190–191
Build Forge

continuous build and validation process,
369–370

dependent integration with ClearQuest,
161–162

in integrated solution architecture, 367–373
RQM integrations, 187

Build reports, in metrics strategy, 284
Build work items, 6
Builds

continuous build and validation process,
369–370

subflow for build approval, 76–78
Burndown charts, releases and, 345
Business Intelligence and Reporting Tools (BIRT)

as metrics tool, 286
resources for, 303–304

Business rules, 378–379
Buttons, enabling button hooks in Web

development, 274–275

C
C/ALM (Collaborative ALM)

Jazz-based, 354–356
overview of, 353–354
reports, 304–305
resources for, 383

C (complete) state type, UCM, 54
Caching choice lists, 267–268
Capability Maturity Model Integration (CMMI),

83, 103
Cardinality, roles in Jazz, 130
Categories

customizing test work items, 318

organizing test information using, 320–321
setting permissions for test customization,

321–322
CCRC (ClearCase Remote Client), 172
Change management

defining change process, 207–208
process diagram, 47–48
roles in, 131
RUP (Rational Unified Process) applied to,

21–22
system elements, 28–29
Unified Change Management. See UCM

(Unified Change Management)
Change requests

activities for breaking down into smaller
elements, 5

documenting in change management database,
28–29

roles in, 131
types of changes and, 4

Change_State actions, ClearQuest
overview of, 56
subflow for gathering more information, 69

Chart wizard, 285
Charts

comparing ClearQuest and Jazz customization
areas, 17

in metrics strategy, 281
Child Control pattern

design, 38
implementing, 38, 229–231

Child records, creating from parent record, 123–126
Choice list, Clear Quest

allowed actions list, 150
caching, 267–268
compared with Jazz Enumeration, 3
creating multiple lists, 268
creating tree-like lists, 268–270
defining requiredness, 361
hard-coded data in, 272–273
hooks, 114, 144, 150, 236-238, 270-271
improving performance of long lists, 265
populating based on role objects, 147–148
populating based on roles, 146–147
recalculating/invalidating, 265–267
in solution example, 358–360
for user-defined roles, 150

390 Index

Classification of work items
activities, 5–6
change requests, 4
overview of, 4
project-related work items, 6–7
test elements, 6

ClearCase
ActiveX controls in establishing integration

with, 171–172
CM API and, 172–175
in integrated solution architecture, 367–373
integrating with ClearQuest, 156–157
in managing release promotion, 375
UCM work projects and, 368–369
working on test artifacts, 372–373

ClearCase Bridge
ClearCase Connector compared with, 188–190
connecting to RTC, 188

ClearCase Connector
compared with ClearCase Bridge, 188–190
RTC integrations, 188

ClearCase Remote Client (CCRC), 172
ClearQuest

ALM schema. See ALM (Application Lifecycle
Management) schema

comparing ClearQuest and Jazz terminology,
2–3

comparing customization elements and terms
with Jazz, 15–17

customizing record types, 18–19
databases supported by, 32–33
design patterns built into, 36
implementation tasks, 198
implementing roles with ClearQuest groups,

132–133
integrations. See Integration, ClearQuest
representation of data in, 117–118
schema high-level design in, 33–34
scripts for data representation in ClearQuest,

120
setting up customizations during deployment,

203–204
setting up environment during deployment,

202–203
ClearQuest, Agile schema in

metrics, 345
overview of, 337–339

requesting required data for, 339–340
suggested fields for Activity record type,

341–343
suggested fields for Sprint record type, 340–341
workflows in, 343–345

ClearQuest Bridge, 180–183
ClearQuest Connector

integration at data-level, 154
Jazz integration with ClearQuest, 177–180
RTC integrations, 188–190

ClearQuest Designer
comparing Eclipse and Windows versions of,

18–19
moving user databases, 214–216
user-defined fields in, 357–358
viewing database properties, 213–214
Windows version, 213

ClearQuest, example solution
defining choice lists, 358–360
defining requiredness, 360–363
SLAs (Service Level Agreements) in, 363–367
user-defined fields, 356–358

ClearQuest, governance in
electronic signatures in, 295–296
monitoring in, 297
permissions in, 290–293
process control and automation in, 290
security context in, 294–295

ClearQuest Maintenance tool
creating test environment with, 214
QATest, 212

ClearQuest MultiSite (CQMS), 253–254
ClearQuest to Project Tracker integration, 158–159
ClearQuest Test Management (CQTM)

overview of, 6
RQM replacing, 307
state-based record types in tests, 309

ClearQuest Tool Mentor
creating test environment with ClearQuest

tools, 214–216
creating test environment with database vendor

tools, 212–214
importing records with references, 208–210
importing updates, 210–211
overview of, 208

ClearVision Subversion, ClearQuest integration
with, 176

Index 391

Clients
CCRC (ClearCase Remote Client), 172
defining client types, 29–30
Eclipse. See Eclipse client
interactions with resources on server, 173
representation of data in ClearQuest and,

117–118
Web clients, 119, 252, 276

Cloning hook, for creating parent from child
record, 123–126

Closing pattern
implementing in ClearQuest, 223–224
implementing in Jazz, 224–225
overview of, 37
suggested fields, 222–223

Closure stage, in workflow item lifecycle, 51
CM (Configuration Management) API, creating

new ClearQuest integrations, 172–175
CMMI (Capability Maturity Model Integration),

83, 103
Code generation, list of RTC integrations by

category, 191
Code reuse, 105
Collaboration

in Jazz-based C/ALM solution, 354
list of RTC integrations by category, 191

Collaborative ALM. See C/ALM (Collaborative
ALM)

Comma-separated value (CSV) format, importing
and, 204

Communication diagrams, workflows in, 44
Communication Manager (CM) API, creating new

ClearQuest integrations, 172–175
Components

internal impacts on, 88
in promotion process, 376–379
relationships in integrated solution architecture,

368
Convert Full_Name to Login_Name hook,

122–123
Corrective actions

assigning solution providers, 91
data related to, 82
documenting, 92
prioritization of, 91

CQ-ALM schema. See ALM (Application
Lifecycle Management) schema

CQ CM API JNI (Desktop) provider, 172–173
CQ CM API WAN (Network) provider, 172
CQMS (ClearQuest MultiSite), 253–254
CQTM (ClearQuest Test Management)

overview of, 6
RQM replacing, 307
state-based record types in tests, 309

Crystal reports, as metrics tool, 285–286
CSV (comma-separated value) format, importing

and, 204
Custom Section wizard, 319
Customer role, in defect and change management,

131
Customizing test work items, in RQM

default work items, 317–318
execution states, 322–323
organizing test information using categories,

320–321
overview of, 316–317
setting permissions for customization, 321–322
testing specific work items, 318–320

Customizing work items
ClearQuest record types, 18–19
comparing ClearQuest and Jazz customization

elements and terms, 15–17
elements that can be customized, 14
Jazz work items, 17–18
overview of, 13–14

D
Dashboards

comparing ClearQuest and Jazz customization
areas, 17

creating monitoring viewlets, 300
in RTC Scrum process, 336–337

Data
accessing records, 114–115
attachments, 100–103
Back Reference field, 110–113
Convert Full_Name to Login_Name hook,

122–123
corrective actions, 91–92
creating parent from child record, 123–126
customizing work items, 14
defining fields, 35
description of work items, 83–86

392 Index

Data (continued)
environment information, 87–88
external impacts, 89–91
hard-coded data in hooks, 272–274
HasAttachment hook, 120–121
history of work items, 96–98
import/export, 163–164
importing initial data during deployment,

204–206
integration at data-level, 154
integration in Jazz-based C/ALM solution, 354
internal impacts, 88–89
Limit Attachment size hook, 121–122
links, 115–116
location information, 86–87
metrics, 284
multiple relationships, 108–109
object relations, 106
ownership of work items, 99
purposes of accumulating, 81–83
quality assurance and, 103–104
references to unique keys and, 113
referencing objects, 114
replacing unique keys, 115
representation in ClearQuest, 117–118
representation in Jazz, 118–119
requestor information, 98–99
scripts for data representation, 120
single relationships, 106–107
state-based objects, 105
stateless objects, 105–106
storing in fields, 7
summary, 126
test artifacts in RQM, 308
test-related, 95–96
time-related, 92–94

Data Hierarchy pattern
implementing, 233
overview of, 39

Data warehouse, in Jazz repository, 303–304
Database servers, in infrastructure architecture, 30
Database vendor tools, for creating test

environment, 212–214
Databases

change management database, 28–29
choosing type in Analysis & Design, 32–33
determining number to create, 33

hook for performing lookup on external, 171
moving, 214–216
system test and database size, 200
test configuration for, 251
viewing properties of, 213–214

Dead End pattern
design of, 39
implementing in ClearQuest, 231
implementing in Jazz, 232

Debugging
BASIC utilities for, 261
using MsgBox() function, 255–256
using OutputDebugString() method,

256–258
using tracing information, 258–260

Decision stage, in workflow item lifecycle, 50–51
Dedicated actions, in subflow for gathering more

information, 70–76
Default work items, 317–318
Defects

change requests due to, 4
creating task to fix, 370–371
default work items in Jazz, 317
key roles in defect and change management, 131
quality assurance and, 103
reporting, 200, 316
test artifacts in RQM, 308–309
tracking, 191

Defect_Validation hook, 147–149
Deferring stage, in workflow item lifecycle, 52
Deleting stage, in workflow item lifecycle, 52
Demilitarized zones (DMZs), defining

infrastructure architecture, 30
Dependent integrations, ClearQuest, 158–162
Deployment discipline

following up on system adoption, 207
importing initial data, 204–206
installation phase, 202
overview of, 201
preparation phase, 201
setting up environment, 202–203
training phase, 206

Deployment plan, 201
Description field, for work items, 84
Descriptive data, 83–86
Design. See Analysis & Design discipline
Design models, reviewing/signing off on, 40

Index 393

Design patterns
in Analysis & Design, 36–40
implementing Child Control pattern, 229–231
implementing Closing pattern, 222–225
implementing Data Hierarchy pattern, 233
implementing Dead End pattern, 231–232
implementing Parent Control pattern, 226–229
implementing Superuser Modification pattern,

233–234
implementing Triage pattern, 224–225

Designing forms and tabs, 243–245
Developer Taskboard, in RTC Scrum process, 336
Developers

data providing historical information for, 81
defining client types, 30
testing releases, 250–252
work on activities in integrated solution,

368–369
Development

being prepared for future requirements, 277
Child Control pattern, 229–231
choosing scripting language, 261
Closing pattern, 222–225
coding hooks for parallel development, 241
with common schema (ALM), 222
comparing/merging schema versions, 245–249
CQMS (ClearQuest MultiSite) issues, 253–254
Data Hierarchy pattern, 233
Dead End pattern, 231–232
dealing with long selection lists, 265–270
debugging using MsgBox() function, 255–256
debugging using OutputDebugString()

method, 256–258
debugging using tracing information, 258–260
designing forms and tabs, 243–245
developer testing, 250–252
exporting/importing schema portions, 237–238
hard-coded data and, 272–274
list of RTC integrations by category, 191
naming conventions, 262–263
organizing global scripts by subject, 262
overview of, 221
packages, 238–239
parallel development, 240–241
Parent Control pattern, 226–229
promoting release to production, 252–253
record types in parallel development, 241–243

releasing versions to production, 250
resources for, 277–278
session variables in, 239–240
storing hooks externally, 249–250
storing old_id field for future import, 264
summary, 278
Superuser Modification pattern, 233–234
system testing, 252
Triage pattern, 224–225
understanding when stateless record type is

required, 261
unique keys and, 261–262
updating dynamic lists, 271–272
Web-related considerations, 274–276
writing reusable code, 234–237

Diagrams. See also Graphics
defining and documenting requirements, 25
entity relationships. See ERD (entity

relationship diagram)
in high-level design, 34
process diagram in change management, 47–48
state transition, 45–46
states, 47
workflows in activity diagrams, 44

Disciplines
Analysis & Design. See Analysis & Design

discipline
ClearQuest Tool Mentor and. See ClearQuest

Tool Mentor
Deployment. See Deployment
Implementation, 197–199
Jazz Tool Mentor and, 217–219
Maintenance, 207–208
overview of, 197
Requirements. See Requirements discipline
resources for, 220
summary, 220
Testing, 199–200

DMZs (demilitarized zones), defining
infrastructure architecture, 30

Documentation
changes affecting, 90
of corrective actions, 92
gathering initial, 23
of requirements, 25–28

DOORS, RQM integrations, 185
Duplicating stage, in workflow item lifecycle, 52–53

394 Index

Dynamic change state, 60–61
Dynamic lists

adding to choice lists, 273
updating, 271–272

Dynamic workflow
moving automatically between states, 57–59
overview of, 56
record types in, 56
single record type having multiple state

machines for each issue type, 59–61
single record type having state machine for

each issue, 61–65
state transition and, 56–57

E
E-mail notification. See Notification
E-mail Reader service, example of ClearQuest

integration, 164–167
Eclipse client

creating process template using, 217–219
creating project using process template,

217–219
customizing work items, 17
import/export tool in, 163–164, 208
setting permissions for test customization,

321–322
Eclipse Designer

association by field label, 109
comparing/merging schema versions, 241,

245–249
comparing with Windows version of

ClearQuest Designer, 18–19
exporting forms with, 244–245
supporting parallel development, 241

Editor presentations, Jazz, 2
Effort required

estimating in requirements gathering, 27–28
storing in work tasks, 93–94

Electronic signatures
in access control and security, 289
in ClearQuest governance, 295–296

Elements, work item
applets, 12
attachments, 11
customizing work items and, 14
data, 7

links to other work items, 11–12
overview of, 7
pictures or graphics, 12
presentation forms, 7–9
roles, 13
rules, 11
workflows, 9–10

Enhancements
change requests due to, 4
test artifacts in RQM, 309

Entities, defining data fields, 35
Entity relationship diagram. See ERD (entity

relationship diagram)
Enumeration, Jazz, 3
Environment

creating test environment with ClearQuest
tools, 214–216

creating test environment with database vendor
tools, 212–214

data related to, 82
fields related to system configuration, 87–88
setting up during deployment, 202–203

ERD (entity relationship diagram)
creating record types in ClearQuest, 198
creating work item types in Jazz, 199
in high-level design, 34

Errors, fixing import. See also Defects, 205–206
Estimation of man-hours, in requirements

gathering, 27–28
ETL (extract, transform, load), Insight tool for, 287
Excel, importing record from, 168
Execution states, in RQM test process, 322–323
Export. See Import/export
External impacts

applications and, 89
data related to, 82
documentation affected by changes in, 90–91
training materials impacted by changes, 91
users and, 89

Extract, transform, load (ETL), Insight tool for, 287

F
Features, change requests for adding, 4
Field behaviors, ClearQuest, 3
Field hooks

choice list. See Hooks, choice list

Index 395

default value. See Hooks, default value
permission. See Hooks, permission
value changed. See Hooks, value changed
validation. See Hooks, validation

Fields, ClearQuest
category fields for organizing information,

320–321
compared with Jazz Work item attribute, 2
customizing edit permission, 15
defining, 35
mapping record fields during import, 210
permissions, 289, 291–292
storing data in, 7
storing test data in, 95–96
time-related, 94
user-defined, 356–358

Fields, making Web forms with dependent fields,
275

Firewalls, 30–32
Forms, ClearQuest

compared with Jazz Editor presentations, 2
designing, 243–245
Presentation forms, 7–9
representation of data in ClearQuest, 117–118
user-defined fields in, 357

Forms, Jazz. See Editor presentations
Forms, making Web forms with dependent fields,

275
Functional requirements, listing, 27
Functional Tester. See RFT (Rational Functional

Tester)
Functionality packages, 238

G
GDD (Globally Distributed Development),

253–254
Glossary, in defining and documenting

requirements, 25
Governance

in ALM, 298
in ALM schema, 297
in ClearQuest, 290
electronic signatures, 295–296
monitoring and, 289
monitoring in ClearQuest, 297
monitoring in RTC, 300

overview of, 287–288
permissions and, 288–289
permissions in ClearQuest, 290–293
permissions in RTC, 299
process control and automation and, 288
process control in ALM, 297
process control in ClearQuest, 290
process control in RTC, 299
reports, 366
resources for, 301–302
roles in ALM, 298
in RTC, 298
security context in ALM, 297–298
security context in ClearQuest, 294–295
summary, 305

Graphical user interface (GUI), designing forms
and tabs and, 243–245

Graphics. See also Diagrams
defining and documenting requirements, 25
in metrics strategy, 280–281
presentation insertions, 12

Group box, ClearQuest, 2
Groups, ClearQuest

implementing roles with, 131–133
query listing members for access control,

144–145
GUI control, ClearQuest, 2
GUI (graphical user interface), designing forms

and tabs and, 243–245

H
Hard-coded data, 272–274
Hardware, location information for, 87
HasAttachment hook, 120–121
Headline field, in work item description, 83–84
Hide data, customizing work items, 15
Histograms, in metrics strategy, 280–281
History

data and, 83
reasons for saving history of work items, 96–98

History view, in Eclipse Designer, 245–246
Hooks

access control, 128, 144–145
Action hooks, in ClearQuest, 3
automation implemented with, 381–382
button hooks in Web development, 274–275

396 Index

Hooks (continued)
Choice List hook, 114, 144, 150, 236–238,

270–271
cloning hook for creating parent from child

record, 123–126
code reuse with, 234–237
coding hooks for parallel development, 241
Commit hook, 230
Convert Full_Name to Login_Name hook,

122–123
default value, 266
external storage in Perl not BASIC, 261
hard-coded data in, 272–274
HasAttachment hook, 120–121
initialization, 64, 70–72, 224, 235
Limit Attachment size hook, 121–122
for lookup on external database, 171
notification hook, 58, 60, 62
organizing global scripts by subject, 262
permission, 293–294, 364
storing externally, 249–250
validation, 33, 76–78, 147–149, 228
value changed, 73–75, 84, 135, 266–267

HP Mercury Test Director and Quality Center, 176

I
IBM Administrator, dependent integration with

ClearQuest, 158
IBM PureCoverage, 157
IBM Purify, 157
IBM Quantify, 158
IBM Rational Build Forge. See Build Forge
IBM Rational ClearCase. See ClearCase
IBM Rational ClearQuest. See ClearQuest
IBM Rational DOORS, 185
IBM Rational Requirements Composer. See

Requirements Composer
IBM RequisitePro. See RequisitePro
IBM RTC. See RTC (Rational Team Concert)
IBM TeamTest, 159
IBM Tivoli. See Tivoli
IBM Unified Change Management (UCM). See

UCM (Unified Change Management)
Icons, in Jazz workflow, 68
IDEs (Integrated development environments), list

of RTC integrations by category, 191

Idioms. See Design patterns, implementing
Implementation discipline

ClearQuest tasks, 198
Jazz tasks, 199
purpose of, 197–198

Import/export
creating new ClearQuest integrations, 163–164
fixing import errors, 205–206
importing data during deployment, 204–205
importing records with references, 208–210
importing updates, 210–211
Process Template, 217–219
schema portions, 237–238
validating imported data, 206

Import tool, ClearQuest, 205
Independent integrations, ClearQuest, 156–158
Individual level metrics, for productivity and

efficiency, 280
Information gathering subflow, 69–76
Infrastructure, defining infrastructure architecture,

30–32
Initialization pattern, ClearQuest, 36
Insight tool

for metrics, 287
release burndown and velocity charts, 345

Installation phase, of deployment, 202
Integrated development environments (IDEs), list

of RTC integrations by category, 191
Integrated solution architecture (ClearCase, ALM,

and Build Forge)
component relationships in, 368
continuous build and validation process, 369–370
creating task to fix defect, 370–371
developer work on activities in, 368–369
overview of, 367
periodic releases, 371–372
working on test artifacts, 372–373

Integration, ClearQuest
built-in, 156
CM API and, 172–175
creating new, 162
dependent, 158–162
E-mail Reader service example, 164–167
import/export and, 163–164
independent, 156–158
OSLC REST API and, 175–176
overview of, 155–156

Index 397

Perl and BASIC API and, 167–172
resources for, 195–196
summary, 196
third-party offerings, 176–177
Web services and XML and, 176

Integration, introduction to, 153–155
Integration, Jazz

build engines, 190–191
Build Forge, 187
building new integrations, 192
ClearCase Connector, 188
ClearQuest Bridge, 180–183
ClearQuest Connector, 177–180, 188–190
IBM Rational DOORS, 185
JIA (Jazz Integration Architecture), 192–193, 355
list of RTC integrations by category, 191–192
overview of, 177
Rational test automation tools, 185–187
RequisitePro to RQM, 183–185, 310
resources for, 195
REST API and, 193–195
RQM (Rational Quality Manager) and, 177
RTC (Rational Team Concert) and, 187–188
STAF (Software Testing Automation

Framework), 187
summary, 196
SVN (Subversion), 190

Integration packages, 238
Internal impacts

on components, 88
data related to, 82
on releases, 88–89

Interviews, in requirements gathering, 23–24
Issues, data in description of, 81
Iterations

in ALM schema, 346
describing ClearQuest data objects for Agile

process, 338
planned effort for, 345–346
in RTC Scrum process, 332–334

J
Java APIs, 172–175
Jazz. See also RTC (Rational Team Concert)

Agile, Realization in RTC, 332–339
C/ALM (Collaborative ALM) and, 354–356

comparing ClearQuest and Jazz terminology,
2–3

comparing customization elements and terms
with ClearQuest, 15–17

customizing work items, 17–18
databases supported by, 33
governance and. See RTC (Rational Team

Concert) governance
implementation tasks, 199
integrations. See Integration, Jazz
monitoring with Jazz, 302
process control with Jazz, 301
permission with Jazz, 301
report resources, 302–303
representation of data in, 118–119
roles in, 142–143
setting up customizations during deployment,

204
setting up environment during deployment,

202–203
types of links to Jazz work items, 115–116
workflow, 66–68

Jazz Foundation Services, in C/ALM solution, 355
Jazz Integration Architecture (JIA)

building new Jazz integrations, 192–193
in Jazz-based C/ALM solution, 355

Jazz Tool Mentor
creating project using process template,

217–219
overview of, 217

JIA (Jazz Integration Architecture)
building new Jazz integrations, 192–193
in Jazz-based C/ALM solution, 355

L
License servers, defining infrastructure

architecture, 30–31
Limit Attachment size hook, 121–122
Links

to attachment files (CQ), 101–102
types of (Jazz), 115–116
to work items, 11–12

List View, Back Reference field and, 110
Lists

choice lists. See Choice list, Clear Quest
dynamic lists. See Dynamic lists

398 Index

Location information
in describing physical artifacts involved in

change, 86–87
locating items/components that must be

changed, 82
Login name, converting full name to, 122–123
Lookups, hook for performing lookup on external

database, 171

M
Maintaining requirements, 28–29
Maintenance discipline

defining change process, 207–208
improving maintainability, 208
ongoing support, 208
overview of, 207

Manage Section wizard, 318
Management (decision makers)

benefits of integration to, 154
data providing information for managers, 81
getting agreement regarding requirements, 28

Manual Tester, RQM replacing, 307
Mastership, in multisite environment

addressing changes to, 253–254
testing, 254

MCIF (Measured Capability Improvement
Framework), 287, 301

Members, 311–312
Metrics

BIRT (Business Intelligence and Reporting
Tools), 286

categorizing by levels, 280
ClearQuest, creating Agile schema in, 345
Crystal reports, 285–286
data supporting, 284
Insight tool for, 287
overview of, 279–280
Publishing Engine for document generation,

287
Report Server for managing ClearQuest

reports, 286–287
resources for, 301–302
strategy for, 280–284
summary, 305
tools for, 284–285
units for time-related data, 94

Microsoft Visual Source Safe, integration with
ClearQuest, 161

Modeling. See also UML (Unified Modeling
Language)

list of RTC integrations by category, 191
promotion process, 379–382

Monitoring
in ClearQuest, 297
in governance generally, 289
in Jazz, 300

MsgBox() function, debugging with, 255–256
Multiple relationships, object relations in

ClearQuest, 106, 108–109
Multiple roles

implementing implicitly, 134
overview of, 130
setting choices based on, 146–147

N
Naming conventions, in schema development,

262–263
New session, notification hook, 58
Notification pattern, 36
Notifications

Assign action and, 58
customizing work items, 16
in debugging, 256
roles in, 127
rules governing, 11
setting environment, 202
SLAs and, 365–366

Not_Resolved state type, 54

O
Objects

relations. See Relationships
state-based, 105
stateless, 104–106
test artifacts, 308–309

old_id field, storing for future reference, 264
Ongoing support, in maintenance discipline, 208
Open Service for Lifecycle Collaboration.

See OSLC (Open Service for Lifecycle
Collaboration)

Open Unified Process (OpenUP), 45

Index 399

OpenUP (Open Unified Process), 45
Operating systems (OSs), environment

information and, 87–88
Operation behavior or extensions, Jazz, 3
Organization level metrics, for productivity and

efficiency, 280
OSLC (Open Service for Lifecycle Collaboration)

building new Jazz integrations, 193–195
in Jazz-based C/ALM solution, 355
REST API compliance with, 175–176

OSs (operating systems), environment information
and, 87–88

OutputDebugString() method, debugging with,
256–258

Ownership
assigning solution providers in process of

taking corrective actions, 91
data, 99
defined, 130
misassignment of, 128–129
unassigned changes and, 128

P
Packages (in ClearQuest)

creating, 239
enabling for editing, 239
overview of, 238–239
types of, 238

packageutil, creating packages with, 239
Parallel development

coding hooks for, 241
designing forms and tabs, 243–245
overview of, 240–241
record types in, 241–243
storing hooks externally and, 249–250

Parent/Child control, 110–112
Parent Control pattern

design of, 38
implementing, 226–229

Parent records, creating from child record, 123–126
Performance benchmarking, by Web

administrators, 200
Performance Tester. See RPT (Rational

Performance Tester)
Perl

choosing scripting language and, 261

Convert Full_Name to Login_Name hook,
122–123

creating new ClearQuest integrations, 167–172
HasAttachment hook, 120–121
Limit Attachment size hook, 121–122
storing hooks externally, 249–250
use of session variables, 240

Permissions
in ClearQuest, 290–293
in governance, 288–289
in Jazz, 299
Jazz permissions compared with ClearQuest

Access control, 3
roles and, 13, 142–143
for test customization, 321–322
workflow rules, 46

Petri nets, modeling workflows with, 43
Pictures, as presentation insert, 12
Plans, Jazz, 2
Postponing stage, in workflow item lifecycle, 52
Preconditions, Jazz, 3
Preparation phase, of deployment, 201
Presentation

customizing work items, 15
Jazz Presentation compared with ClearQuest

GUI control, 2
representation of data, 118

Presentation forms, 7–9
Prioritization

of corrective actions, 91
in requirements gathering, 27

Process Configuration, customizing work items,
317

Process control
in ALM schema, 297
in ClearQuest, 290
in governance, 288
in Jazz, 299

Process entities, in promotion request system,
377–378

Process lifecycle
managing release promotion and, 374–375
promotion requests and, 379

Process Template, Jazz
compared with ClearQuest Schema, 2
creating new project area with imported

template, 219

400 Index

Process Template, Jazz (continued)
exporting, 217–218
generating, 217
importing, 218–219

Processes
components in promotion process, 376–379
integration at process-level, 154
representation in workflows, 45–49
rules in promotion process model, 379–381
WBM (WebSphere Business Modeler), 47–48

Product backlog
describing ClearQuest data objects for Agile

process, 338
ranking Jazz stories in, 330–331
showing Jazz iterations in, 331–332

Project level metrics, for productivity and
efficiency, 280

Project management, list of RTC integrations by
category, 192

Projects
classification of project-related work items, 6–7
work projects in ClearCase, 368–369

Promotion process
model for promotion process, 379–382
overview of, 374
process components, 376–379
solutions, 375
status assessment, 374–375

Promotion work items, 6
Publishing Engine, for document generation, 287
PureCoverage, integration with ClearQuest, 157
Purify, integration with ClearQuest, 157

Q
Quality assurance

benefits of integration to, 154
data related to, 83, 103–104

Quality indicators, in reports, 284
Quality management, list of RTC integrations by

category, 192
Quality Manager. See RQM (Rational Quality

Manager)
Quantify, integration with ClearQuest, 158
Queries, comparing ClearQuest and Jazz

customization areas, 17
Query wizard, 285

Questionnaires, in requirements gathering, 24–25
Quick Information section, Jazz, 2

R
R (ready) state type, UCM, 54
Ranking stories, in RTC Scrum process, 330–331
Rational AppScan, integration of RQM and RTLM

with, 185–187
Rational Build Forge. See Build Forge
Rational ClearCase. See ClearCase
Rational ClearQuest. See ClearQuest
Rational CM API. See CM (Configuration

Management) API
Rational DOORS, 185
Rational Functional Tester (RFT)

automating test scripts with, 315
integration of RQM and RTLM with, 185–187

Rational Insight tool. See Insight tool
Rational Performance Tester (RPT)

integration of RQM and RTLM with, 185–187
test simulation with, 200

Rational Publishing Engine, for document
generation, 287

Rational Quality Manager. See RQM (Rational
Quality Manager)

Rational Requirements Composer (RRC). See
Requirements Composer

Rational RequisitePro. See RequisitePro
Rational Team Concert Eclipse client. See Eclipse

client
Rational Team Concert (RTC). See RTC (Rational

Team Concert)
Rational test automation tools, 185–187
Rational Test Lab Manager. See RTLM (Rational

Test Lab Manager)
Rational Unified Process (RUP). See RUP

(Rational Unified Process)
Rational University, 206
Reassign action, 70
Recalculate Choice list property, 265–267
Record forms, representation of data in

ClearQuest, 117
Record type family, ClearQuest, 2
Record types, ClearQuest

compared with Jazz Work item type, 2
creating parent record from child record, 123–126

Index 401

customizing, 18–19
in dynamic workflow, 56
in parallel development, 241–243
single record type having multiple state

machines for each issue type, 59–61
single record type having state machine for

each issue, 61–65
stateful, 56
stateless, 104–106
user-defined roles and, 137–138
using roles stateless record type with static

roles, 136–137
Records

accessing via referencing, 114–115
importing updates to existing, 210–211
importing with references, 208–210
mapping fields during import, 210
with more than one field as unique key, 261–262
permissions for access control and security, 289
Security Context and, 293
test artifacts in RQM, 308

Reference_List
Back Reference field and, 110–113
types of object relations in ClearQuest, 106,

108–109
References

importing records with references, 208–210
to objects, 114
pointing to unique keys, 113
types of object relations in ClearQuest,

106–107
Rejecting stage, in workflow item lifecycle, 52
Relationships

accessing records, 114–115
Back Reference field in object relations,

110–113
links, 115–116
multiple, 108–109
overview of, 106
references to unique keys and, 113
referencing objects, 114
replacing unique keys, 115
single, 106–107
between test artifacts, 308–309

Release work items, 6
Releases

burndown and velocity charts, 345

developer testing, 250–252
internal impacts on, 88–89
managing promotion process, 374
model for promotion process, 379–382
overview of, 250
periodic, 371–372
process components, 376–379
promoting to production, 252–253
solutions, 375
status assessment, 374–375
system testing, 252

Reloading records, notification hook for, 58
Reopening stage, in workflow item lifecycle,

51–52
Report Server, for managing ClearQuest reports,

286–287
Reports

comparing ClearQuest and Jazz customization
areas, 17

defects, 316
in metrics strategy, 281
test defects, 316

Representation of data
in ClearQuest, 117–118
in Jazz, 118–119
scripts in ClearQuest, 120

Request record type
in ALM schema, 346, 348–349
describing data objects for Agile process, 338
suggested fields for, 339–340
workflows of, 343–344

Requestor information, 98–99
Requirements Composer (RRC)

documenting requirements, 25–26
Requirements discipline

Agile practices applied to, 28
analyzing requirements in establishing test

strategy, 310
default work items in Jazz, 317
defining and documenting, 25–28
gathering initial documentation, 23
getting agreement regarding, 28
interviews for gathering, 23–24
maintaining, 28–29
overview of, 23
questionnaires for gathering, 24–25
resources, 40

402 Index

Requirements discipline (continued)
section of test plan, 311
summary, 40–41
test artifacts in RQM, 308–309
verifying test case coverage of, 315

Requirements management, list of RTC
integrations by category, 192

RequisitePro
analyzing requirements in establishing test

strategy, 310
dependent integration with ClearQuest, 159
documenting requirements, 25
managing release promotion and, 375
RQM integrations, 183–185

Reserved names, in schema development, 263
Resolution pattern, 40
Resolution stage, in workflow item lifecycle, 51
Resolution states, 53–55
Resolutions

effort required for, 93
in Jazz workflow, 67

Resolved state type, 54
Resources

client interactions with resources on servers,
173

enhancements in Jazz version 2.0, 19
Responsible

defined, 130
setting based on role object, 147–149
setting based on Single role, 145
unassigned changes and, 128

REST API
building new Jazz integrations, 193–195
creating new ClearQuest integrations, 175–176

Results, test artifacts in RQM, 308
Reusable assets

code reuse, 105, 234–237
exporting/importing schema portions, 237–238
list of RTC integrations by category, 191
overview of, 234
packages, 238–239

Review, of test plan, 313
RFT (Rational Functional Tester)

automating test scripts with, 315
integration of RQM and RTLM with, 185–187

Risk work items, 6
Role-based access control, 379

Roles
in access control hook, 144–145
in ALM governance, 298
in ALM schema, 140–141
areas and groups and, 131
auto-assignment of, 145–149, 273–274
change request process and, 131
comparing Agile and ALM schema, 346–347
customizing work items, 16
defined, 130
implementing implicitly, 133–136
implementing with groups, 132–133
issues/typical problems addressed by, 128–129
in Jazz, 142–143
in Jazz governance, 299
organizing questionnaires by, 25
overview of, 127
in process model, 376–377
in Scrum process, 334–335
security and, 139
stateless record type and, 136–137
summary, 151
terminology related to and types of, 130
user-defined, 137–139, 150
users activities and, 13
workflow rules, 46

RPT (Rational Performance Tester)
integration of RQM and RTLM with, 185–187
test simulation with, 200

RQM (Rational Quality Manager)
Build Forge integration with, 187
ClearQuest Bridge, 180–183
ClearQuest Connector, 177–180
combining with DOORs in Jazz integrations,

185
combining with RequisitePro in Jazz

integrations, 183–185
creating dashboard viewlets for monitoring,

300
customizing work items, 17
databases supported by, 33
integration at data-level, 154
integration with ClearQuest, 163, 180–183
integration with Rational test automation tools,

185–187
integration with STAF, 187
integrations, 177

Index 403

roles in, 142
setting up Jazz environment during

deployment, 203
test entities and relationships, 307–310
test plan and test case objects in, 6
testing work items. See Testing work items, in

RQM
what it is, 307

RTC (Rational Team Concert)
as ALM tool, 7
Build engines, 190–191
ClearCase Connector, 188
ClearQuest integration with, 188–190
customizing work items, 17
databases supported by, 33
dependent integration with ClearQuest, 163
implementing Closing pattern, 224–225
integrations, 187–188
Jazz integration with ClearQuest, 180–183
listing integrations by category, 191–192
representation of data in Jazz, 118–119
roles in, 142
setting permissions for test customization,

321–322
setting up Jazz environment during

deployment, 203
support for customization from Web clients, 119
SVN (Subversion) used for source control, 190

RTC (Rational Team Concert) governance
monitoring in, 300
overview of, 298
permissions in, 299
process control in, 299

RTC (Rational Team Concert), Scrum process in
dashboards, 336–337
Developer Taskboard, 336
iterations and sprint planning, 332–334
Scrum roles, 334–335
setting up multiple teams for multiple releases,

331–332
stories, 330–331

RTLM (Rational Test Lab Manager)
based on RQM, 307
built-in integrations, 177
integration at tools-level, 154

Rules
customizing work items, 16

governing change process, 11
workflow definition, 46

RUP (Rational Unified Process)
applying to change management, 21–22
definition of roles, 127
workflows in software development, 44–45

S
SCCB (Software Change Control Board), 131
Scenarios, in Jazz-based C/ALM solution, 355
Schedules, test artifacts in RQM, 308
Schema packages, 238
Schemas

ClearQuest schema compared with Jazz
Process Template, 2

comparing/merging schema versions, 245–249
componentizing, 241–243
exporting/importing schema portions, 237–238
high-level design in ClearQuest, 33–34
upgrading, 253
use in development, 222

Scripts
choosing scripting language, 261
cloning hook for creating parent from child

record, 123–126
Convert Full_Name to Login_Name hook,

122–123
for data representation, 120
for executing tests in RQM, 315–316
function Defect_AccessControl, 132
function Defect_Validation, 145, 147
function GetLoginfromFullName, 123
function SetRequiredness, 362
HasAttachment hook, 120–121
import script, 169–171
Limit Attachment size hook, 121–122
organizing global scripts by subject, 262
sub allowedactions_ChoiceList, 150
sub ALMActivity_Validation, 77
sub AssignApprover, 78
sub attachments_ValueChanged, 120
sub Bug_Initialization, 223
sub ChildrenStatus, 228
sub ChoiceList, 236
sub Comp_ChoiceList, 269
sub comp_level2_ChoiceList, 270

404 Index

Scripts (continued)
sub Defect_Commit, 229
sub Defect_Initialization, 234
sub Defect_Notification, 58
sub Defect_Validation, 227
sub EnhancementRequest_Initialization,

71–72
sub feature_CloneParentCR, 124
sub getEntityURL, 256
sub GetLoginfromFullName, 122
sub GetNextRole, 273
sub Issue_Initialization, 64
sub Issue_Notification, 60, 62
sub keywords_ValueChanged, 271
sub Limit_Attachment, 121
sub note_entry_ValueChanged, 75
sub Populate_list, 360
sub project_ValueChanged, 266
sub resolution_ChoiceList, 273
sub responsible_ChoiceList, 146
sub SetLog, 73
sub ucm_view_Permission, 292
sub userfieldvalue_2_ChoiceList, 267
test artifacts in RQM, 308

Scrum
dashboards, 336–337
Developer Taskboard, 336
framework for Agile development, 326–329
iterations and sprint planning, 332–334
Realization with ClearQuest, 339–348
roles, 334–335
setting up multiple teams for multiple releases,

331–332
stories, 330–331

Section, Jazz
compared with ClearQuest Group box, 2
customizing test work items, 318–320
representation of data and, 118
setting permissions for test customization,

321–322
Security

Access_Control hook in ClearQuest, 128
defining infrastructure architecture, 31
governance and, 288–289
roles and, 139

Security Context feature, ClearQuest
in ALM schema, 297–298

in ClearQuest governance, 293–295
overview of, 139
records and, 293

Security testing, list of RTC integrations, 192
Selection lists. See Choice list, Clear Quest
Sequence diagrams, workflows in, 44
Servers

client interactions with resources on, 173
defining client types, 30–31
installing during deployment, 202
for managing ClearQuest reports, 286–287

Service Level Agreements. See SLAs (Service
Level Agreements)

Service Request Manager (SRM), 154, 172
Session variables, 239–240
Single relationships, types of object relations in

ClearQuest, 106–107
Single roles

implementing implicitly, 134
overview of, 130
setting Responsible based on, 145–146

SLAs (Service Level Agreements)
activating rules, 365
background and examples, 363–364
defining rules, 364–365
external program for, 366–367
governance reports, 366
notifications, 365–366
overview of, 363
resources for, 383

SME (subject matter expert), 208
Software

internal impacts on components, 88
location information, 87

Software Change Control Board (SCCB), 131
Software development processes

OpenUP (Open Unified Process), 45
RUP (Rational Unified Process), 44–45

Software Testing Automation Framework (STAF),
187

Solution providers
assigning in process of taking corrective

actions, 91
data providing information for, 81
key roles in defect and change management,

131
Solutions, in promotion process, 375

Index 405

Sprint record type
suggested fields for, 340–341
workflows of, 344–345

Sprints
in ALM schema, 348–349
describing ClearQuest data objects for Agile

process, 338
in Scrum process, 332–334

SQL query
listing group members for access control,

144–145
listing in SLA, 368–369

SRM (Service Request Manager), 154, 172
STAF (Software Testing Automation Framework),

187
Stages, of workflow, 50–53
Stakeholders

getting agreement regarding requirements, 28
interviews for gathering requirements from,

23–24
key roles in defect and change management,

131
questionnaires for gathering requirements

from, 24–25
State-based objects, 105
State group, Jazz, 2
State pattern, 36
State transition

diagramming, 45–46
in dynamic workflow, 56–57
moving automatically between states, 57–59
test artifact state transition constraints, 312

State transition matrix, ClearQuest
compared with Jazz Workflow, 2
creating, 49
workflow design with, 9

State transition tables, 9
State type, ClearQuest

compared with Jazz State group, 2
workflow and, 53–56

Stateful record types
ALM Security Context and, 297
overview of, 56

Stateless objects, 105–106
Stateless record types

ALM schema roles, 140

ALM Security Context and, 297
importing, 205
overview of, 104–106
understanding when they are required, 261
user-defined roles and, 137–139
using roles stateless record type with static

roles, 136–137
States

auto-change, 58–59
comparing ClearQuest state with Jazz state, 2
customizing test execution states, 322–323
diagramming, 47
dynamic change state, 60–61
in Jazz workflow, 66–67
workflow rules, 46

Static roles, 136
Status assessment, in promotion process, 374–375
Steps to Reproduce field, in work item description,

85
Stories, in Scrum process, 330–331
Storyboards

defining and documenting requirements, 26
for functional requirements, 27

Subflows
for build approval, 76–78
deviation needed to gather more information,

69–76
overview of, 68–69

Subject matter expert (SME), 208
Submission stage, in workflow item lifecycle, 50
Submit forms, representation of data in

ClearQuest, 117
Subversion (SVN), 190
Superuser Modification pattern

design of, 39–40
implementing, 233–234

Supplementary specifications, in requirements
gathering, 27

Support, in maintenance discipline, 208
SVN (Subversion), 190
System

access permissions in ClearQuest, 290–291
defining scope of in requirements gathering,

26–27
following up on adoption, 207
tests, 200, 252

406 Index

T
Tabs

comparing ClearQuest with Jazz, 2
designing, 243–245
representation of data in Jazz, 118

Task-Quality, default work items in Jazz, 317
Task record type, in ALM schema, 346, 348
Task-Review, default work items in Jazz, 317
Tasks

activity subclasses, 5
assigning members to, 311–312
creating task to fix defect, 370–371
default work items in Jazz, 317

Team Concert. See RTC (Rational Team Concert)
Team level metrics, for productivity and efficiency,

280
Teams

describing ClearQuest data objects for Agile
process, 338

in Scrum process, 331–332
TeamTest, integration with ClearQuest, 159
Telelogic Harmony, 44–45
Termination dates, for actions, 92–93
Test Case field, in work item description, 85–86
Test cases

associating with requirements and verifying
coverage, 315

categories for organizing information in,
320–321

creating and associating with test plan, 314
creating scripts for executing, 315–316
creating suite of, 316
customizing test work items, 316
test artifacts in RQM, 308–309

Test elements, in work item classification, 6
Test environment

creating with ClearQuest tools, 214–216
creating with database vendor tools, 212–214
promoting release to production, 252–253
storing hooks externally, 250

Test Lab Manager. See RTLM (Rational Test Lab
Manager)

Test plan
assigning members to tasks, 311–312
categories for organizing information in,

320–321
creating, 311

creating test cases and associating with test
plan, 314

customizing test work items, 316
reviewing, 313
test artifacts in RQM, 308–309

Test suite
creating, 316
test artifacts in RQM, 308–309

Testers
data providing historical information for, 81
in test process, 312–318

Testing stage, in workflow item lifecycle, 51
Testing work items, in RQM

analyzing requirements and establishing test
strategy, 310

assigning members to test plan tasks, 311–312
creating scripts for executing test cases,

315–316
creating suite of test cases, 316
creating test cases and associating with test

plan, 314
creating test plan, 311
customizing test execution states, 322–323
customizing test work items, 316–317
default work items, 317–318
executing tests, 316
organizing test information using categories,

320–321
reporting defects found during testing, 316
reviewing test plan, 313
setting permissions for test customization,

321–322
summary, 324
testing specific work items, 318–320
verifying test case coverage of requirements,

315
TestManager, RQM replacing, 307
Tests/testing

data related to, 82–83
developers in, 250–252
effort required for, 93
fields for test data, 95–96
integration of RQM and RTLM with test

automation tools, 185–187
key roles in defect and change management, 131
overview of Testing discipline, 199–200
system testing, 252

Index 407

working on test artifacts for integrated solution,
372–373

Third-party integrations, with ClearQuest, 176–177
Time-related data

amount of effort required, 93–94
overview of, 82
termination dates, 92–93

Tivoli
SRM (Service Request Manager), 154, 172
TPM (Tivoli Provisioning Manager), 163

Tools, for metrics
BIRT (Business Intelligence and Reporting

Tools), 286
Crystal reports, 285–286
overview of, 284–285
rational Insight tool for, 287
Rational Publishing Engine for document

generation, 287
Report Server for managing ClearQuest

reports, 286–287
Tools, integration at tools-level, 154
TPM (Tivoli Provisioning Manager), 163
Tracing information, debugging with, 258–260
Training materials, external impacts on, 91
Training phase, in deployment discipline, 206
Transitions. See also State transition, 67
Transparency, in Jazz-based C/ALM solution, 354
Triage pattern

design of, 37–38
implementing in ClearQuest, 224–225
implementing in Jazz, 225

TSRM (Tivoli Service Request Manager). See
SRM (Service Request Manager)

U
UCM (Unified Change Management)

integration with ClearQuest, 160–161
periodic releases, 371–372
state types and, 53–55
work projects in ClearCase, 368–369
working on test artifacts, 372–373

UML (Unified Modeling Language)
in high-level design, 34
modeling workflows with, 43
workflow design with, 9

workflows in, 44
Unified Process. See RUP (Rational Unified

Process)
Unique keys

dealing with records with more than one field
as unique key, 261–262

references to, 113–115
replacing, 115

Units of work
measuring time-related data, 94
time measurements, 284

Updates
dynamic lists, 271–272
importing, 210–211

User acceptance testing, in release process, 252
User-defined fields

in ClearQuest solution, 356–358
defining requiredness, 361–362

User-defined roles
ChoiceList hook for, 150
overview of, 137–139

User interface
defining, 36
designing forms and tabs, 243–245

Users
benefits of integration to, 154
business rules, 378–379
defining client types, 30
external impacts and, 89
following up on system adoption, 207
getting agreement regarding requirements, 28
ongoing support, 208
permissions for access control and security,

288–289
roles, 13
roles in different areas, 131
training, 206

User's privileges, ClearQuest, 3

V
Validation

continuous build and validation process,
369–370

hook. See Hoocks, validation
of imported data, 206

408 Index

Velocity charts, releases and, 345
Version control, list of RTC integrations by

category, 192
VersionOne, ClearQuest integration with, 177
Visual Source Safe, ClearQuest integration with,

161
Vocabulary control, glossary in defining and

documenting requirements, 25

W
W (waiting) state type, UCM, 54
WBM (WebSphere Business Modeler), 47–48
Web administrators, performance benchmarking

by, 200
Web clients

limitations of, 276
support for customization from, 119
testing releases with, 252

Web-related development considerations
enabling button hooks, 274–275
limitations of Web clients, 276
making forms with dependent fields, 275
overview of, 274

Web servers, defining infrastructure architecture, 30
Web services, ClearQuest integration with, 176
WebSphere Business Modeler (WBM), 47–48
Windows version, of ClearQuest Designer, 18–19,

213
Work item attribute, Jazz, 2, 7
Work item type category, Jazz, 2
Work item type, Jazz, 2
Work items

classification of. See Classification of work items

comparing ClearQuest and Jazz terminology,
2–3

customizing. See Customizing work items
defined, 1
elements. See Elements, work item
summary, 20
in test process. See Testing work items, in

RQM
what's new in 2.0 work items, 19

Workflows
in ALM schema, 65–66
in clearQuest, creating Agile schema in,

343–345
customizing work items, 15
defining, 35
dynamic. See Dynamic workflow
Jazz, 66–68
Jazz workflow compared with ClearQuest State

transition matrix, 2
overview of, 9–10, 43
process representation, 45–49
software development processes, 44–45
stages in, 50–53
state types, 53–56
subflows. See Subflows
summary, 78–79

Workspace Versioning and Configuration
Management (WVCM), 172–173

WVCM (Workspace Versioning and Configuration
Management), 172–173

X
XML, ClearQuest integration with, 176

This page intentionally left blank

This could be the best advice you
get all day

➢ Select from hundreds of technical deliverables
➢ Purchase bound hardcopy Redbooks publications
➢ Sign up for our workshops
➢ Keep informed by subscribing to our weekly newsletter
➢ See how you can become a published author

We can also develop deliverables for your business. To find out how we can work

together, send a note today to: redbooks@us.ibm.com

See a sample of what we have to offer

Get free downloads

See how easy it is ...
ibm.com/redbooks

The IBM® International Technical Support Organization (ITSO) develops and

delivers high-quality technical materials and education for IT and business

professionals.

These value-add deliverables are IBM Redbooks® publications, Redpapers™

and workshops that can help you implement and use IBM products and

solutions on today’s leading platforms and operating environments.

	Contents
	Preface
	Acknowledgments
	About the Authors
	Chapter 11 Managing Agile Projects
	11.1 Defining Agile Development
	11.2 Agile and Scrum in a Nutshell
	11.3 Realization with Rational Team Concert
	11.4 Realization with ClearQuest
	11.4.1 Required Data
	11.4.2 Understanding the Workflows of Each Record Type
	11.4.3 Understanding Metrics in Agile Development

	11.5 Agile with the ALM Schema
	11.6 Resources
	11.6.1 Materials
	11.6.2 DeveloperWorks Articles
	11.6.3 Other Information

	11.7 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

