
10
Object-
Oriented
Programming:
Polymorphism

O B J E C T I V E S
In this chapter you’ll learn:

■ The concept of polymorphism.

■ To use overridden methods to effect polymorphism.

■ To distinguish between abstract and concrete classes.

■ To declare abstract methods to create abstract classes.

■ How polymorphism makes systems extensible and
maintainable.

■ To determine an object’s type at execution time.

■ To declare and implement interfaces.

One Ring to rule them all,
One Ring to find them,
One Ring to bring them all
and in the darkness bind
them.
—John Ronald Reuel Tolkien

General propositions do not
decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing
stature doesn’t think in a
vacuum. Even his most
abstract ideas are, to some
extent, conditioned by
what is or is not known
in the time when he lives.
—Alfred North Whitehead

Why art thou cast down,
O my soul?
—Psalms 42:5

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.1 Introduction 337

O
u

tl
in

e

10.1 Introduction
We now continue our study of object-oriented programming by explaining and demon-
strating polymorphism with inheritance hierarchies. Polymorphism enables us to “program
in the general” rather than “program in the specific.” In particular, polymorphism enables
us to write programs that process objects that share the same superclass in a class hierarchy
as if they are all objects of the superclass; this can simplify programming.

Consider the following example of polymorphism. Suppose we create a program that
simulates the movement of several types of animals for a biological study. Classes Fish,
Frog and Bird represent the three types of animals under investigation. Imagine that each
of these classes extends superclass Animal, which contains a method move and maintains
an animal’s current location as x-y coordinates. Each subclass implements method move.
Our program maintains an array of references to objects of the various Animal subclasses.

10.1 Introduction
10.2 Polymorphism Examples
10.3 Demonstrating Polymorphic Behavior
10.4 Abstract Classes and Methods
10.5 Case Study: Payroll System Using Polymorphism

10.5.1 Creating Abstract Superclass Employee
10.5.2 Creating Concrete Subclass SalariedEmployee
10.5.3 Creating Concrete Subclass HourlyEmployee
10.5.4 Creating Concrete Subclass CommissionEmployee
10.5.5 Creating Indirect Concrete Subclass BasePlusCommissionEmployee
10.5.6 Demonstrating Polymorphic Processing, Operator instanceof and

Downcasting
10.5.7 Summary of the Allowed Assignments Between Superclass and Subclass

Variables
10.6 final Methods and Classes
10.7 Case Study: Creating and Using Interfaces

10.7.1 Developing a Payable Hierarchy
10.7.2 Declaring Interface Payable
10.7.3 Creating Class Invoice
10.7.4 Modifying Class Employee to Implement Interface Payable
10.7.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
10.7.6 Using Interface Payable to Process Invoices and Employees

Polymorphically
10.7.7 Declaring Constants with Interfaces
10.7.8 Common Interfaces of the Java API

10.8 (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM
System

10.9 Wrap-Up

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

338 Chapter 10 Object-Oriented Programming: Polymorphism

To simulate the animals’ movements, the program sends each object the same message
once per second—namely, move. However, each specific type of Animal responds to a move
message in a unique way—a Fish might swim three feet, a Frog might jump five feet and
a Bird might fly ten feet. The program issues the same message (i.e., move) to each animal
object generically, but each object knows how to modify its x-y coordinates appropriately
for its specific type of movement. Relying on each object to know how to “do the right
thing” (i.e., do what is appropriate for that type of object) in response to the same method
call is the key concept of polymorphism. The same message (in this case, move) sent to a
variety of objects has “many forms” of results—hence the term polymorphism.

With polymorphism, we can design and implement systems that are easily exten-
sible—new classes can be added with little or no modification to the general portions of
the program, as long as the new classes are part of the inheritance hierarchy that the pro-
gram processes generically. The only parts of a program that must be altered to accommo-
date new classes are those that require direct knowledge of the new classes that the
programmer adds to the hierarchy. For example, if we extend class Animal to create class
Tortoise (which might respond to a move message by crawling one inch), we need to write
only the Tortoise class and the part of the simulation that instantiates a Tortoise object.
The portions of the simulation that process each Animal generically can remain the same.

This chapter has several parts. First, we discuss common examples of polymorphism.
We then provide an example demonstrating polymorphic behavior. We’ll use superclass
references to manipulate both superclass objects and subclass objects polymorphically.

We then present a case study that revisits the employee hierarchy of Section 9.4.5. We
develop a simple payroll application that polymorphically calculates the weekly pay of sev-
eral different types of employees using each employee’s earnings method. Though the
earnings of each type of employee are calculated in a specific way, polymorphism allows
us to process the employees “in the general.” In the case study, we enlarge the hierarchy to
include two new classes—SalariedEmployee (for people paid a fixed weekly salary) and
HourlyEmployee (for people paid an hourly salary and so-called time-and-a-half for over-
time). We declare a common set of functionality for all the classes in the updated hierarchy
in a so-called abstract class, Employee, from which classes SalariedEmployee, HourlyEm-
ployee and CommissionEmployee inherit directly and class BasePlusCommission-

Employee4 inherits indirectly. As you’ll soon see, when we invoke each employee’s
earnings method off a superclass Employee reference, the correct earnings calculation is
performed due to Java’s polymorphic capabilities.

Occasionally, when performing polymorphic processing, we need to program “in the
specific.” Our Employee case study demonstrates that a program can determine the type
of an object at execution time and act on that object accordingly. In the case study, we use
these capabilities to determine whether a particular employee object is a BasePlus-
CommissionEmployee. If so, we increase that employee’s base salary by 10%.

Next, the chapter introduces interfaces. An interface describes methods that can be
called on an object, but does not provide concrete method implementations. You can
declare classes that implement (i.e., provide concrete implementations for the methods of)
one or more interfaces. Each interface method must be declared in all the classes that imple-
ment the interface. Once a class implements an interface, all objects of that class have an is-
a relationship with the interface type, and all objects of the class are guaranteed to provide
the functionality described by the interface. This is true of all subclasses of that class as well.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.2 Polymorphism Examples 339

Interfaces are particularly useful for assigning common functionality to possibly unre-
lated classes. This allows objects of unrelated classes to be processed polymorphically—
objects of classes that implement the same interface can respond to the same method calls.
To demonstrate creating and using interfaces, we modify our payroll application to create
a general accounts payable application that can calculate payments due for company
employees and invoice amounts to be billed for purchased goods. As you’ll see, interfaces
enable polymorphic capabilities similar to those possible with inheritance.

10.2 Polymorphism Examples
Let’s consider several other examples of polymorphism. If class Rectangle is derived from
class Quadrilateral, then a Rectangle object is a more specific version of a Quadrilat-
eral object. Any operation (e.g., calculating the perimeter or the area) that can be per-
formed on a Quadrilateral object can also be performed on a Rectangle object. These
operations can also be performed on other Quadrilaterals, such as Squares, Parallelo-
grams and Trapezoids. The polymorphism occurs when a program invokes a method
through a superclass variable—at execution time, the correct subclass version of the meth-
od is called, based on the type of the reference stored in the superclass variable. You’ll see
a simple code example that illustrates this process in Section 10.3.

As another example, suppose we design a video game that manipulates objects of
classes Martian, Venusian, Plutonian, SpaceShip and LaserBeam. Imagine that each class
inherits from the common superclass called SpaceObject, which contains method draw.
Each subclass implements this method. A screen-manager program maintains a collection
(e.g., a SpaceObject array) of references to objects of the various classes. To refresh the
screen, the screen manager periodically sends each object the same message—namely,
draw. However, each object responds in a unique way. For example, a Martian object
might draw itself in red with green eyes and the appropriate number of antennae. A Space-
Ship object might draw itself as a bright silver flying saucer. A LaserBeam object might
draw itself as a bright red beam across the screen. Again, the same message (in this case,
draw) sent to a variety of objects has “many forms” of results.

A screen manager might use polymorphism to facilitate adding new classes to a system
with minimal modifications to the system’s code. Suppose that we want to add Mercurian
objects to our video game. To do so, we must build a class Mercurian that extends Space-
Object and provides its own draw method implementation. When objects of class Mercu-
rian appear in the SpaceObject collection, the screen manager code invokes method
draw, exactly as it does for every other object in the collection, regardless of its type. So the
new Mercurian objects simply “plug right in” without any modification of the screen
manager code. Thus, without modifying the system (other than to build new classes and
modify the code that creates new objects), programmers can use polymorphism to conve-
niently include additional types that were not envisioned when the system was created.

With polymorphism, the same method name and signature can be used to cause dif-
ferent actions to occur, depending on the type of object on which the method is invoked.
This gives the programmer tremendous expressive capability.

Software Engineering Observation 10.1
Polymorphism enables programmers to deal in generalities and let the execution-time
environment handle the specifics. Programmers can command objects to behave in manners

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

340 Chapter 10 Object-Oriented Programming: Polymorphism

appropriate to those objects, without knowing the types of the objects (as long as the objects belong
to the same inheritance hierarchy). 10.1

Software Engineering Observation 10.2
Polymorphism promotes extensibility: Software that invokes polymorphic behavior is independent
of the object types to which messages are sent. New object types that can respond to existing method
calls can be incorporated into a system without requiring modification of the base system. Only
client code that instantiates new objects must be modified to accommodate new types. 10.2

10.3 Demonstrating Polymorphic Behavior
Section 9.4 created a commission employee class hierarchy, in which class BasePlusCom-
missionEmployee inherited from class CommissionEmployee. The examples in that section
manipulated CommissionEmployee and BasePlusCommissionEmployee objects by using
references to them to invoke their methods—we aimed superclass references at superclass
objects and subclass references at subclass objects. These assignments are natural and
straightforward—superclass references are intended to refer to superclass objects, and sub-
class references are intended to refer to subclass objects. However, as you’ll soon see, other
assignments are possible.

In the next example, we aim a superclass reference at a subclass object. We then show
how invoking a method on a subclass object via a superclass reference invokes the subclass
functionality—the type of the actual referenced object, not the type of the reference, deter-
mines which method is called. This example demonstrates the key concept that an object
of a subclass can be treated as an object of its superclass. This enables various interesting
manipulations. A program can create an array of superclass references that refer to objects
of many subclass types. This is allowed because each subclass object is an object of its
superclass. For instance, we can assign the reference of a BasePlusCommissionEmployee
object to a superclass CommissionEmployee variable because a BasePlusCommissionEm-
ployee is a CommissionEmployee—we can treat a BasePlusCommissionEmployee as a
CommissionEmployee.

As you’ll learn later in the chapter, we cannot treat a superclass object as a subclass
object because a superclass object is not an object of any of its subclasses. For example, we
cannot assign the reference of a CommissionEmployee object to a subclass BasePlusCom-
missionEmployee variable because a CommissionEmployee is not a BasePlusCommission-
Employee—a CommissionEmployee does not have a baseSalary instance variable and does
not have methods setBaseSalary and getBaseSalary. The is-a relationship applies only
from a subclass to its direct (and indirect) superclasses, and not vice versa.

The Java compiler does allow the assignment of a superclass reference to a subclass
variable if we explicitly cast the superclass reference to the subclass type—a technique we
discuss in detail in Section 10.5. Why would we ever want to perform such an assignment?
A superclass reference can be used to invoke only the methods declared in the superclass—
attempting to invoke subclass-only methods through a superclass reference results in com-
pilation errors. If a program needs to perform a subclass-specific operation on a subclass
object referenced by a superclass variable, the program must first cast the superclass refer-
ence to a subclass reference through a technique known as downcasting. This enables the
program to invoke subclass methods that are not in the superclass. We show a concrete
example of downcasting in Section 10.5.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.3 Demonstrating Polymorphic Behavior 341

The example in Fig. 10.1 demonstrates three ways to use superclass and subclass vari-
ables to store references to superclass and subclass objects. The first two are straightfor-
ward—as in Section 9.4, we assign a superclass reference to a superclass variable, and we
assign a subclass reference to a subclass variable. Then we demonstrate the relationship
between subclasses and superclasses (i.e., the is-a relationship) by assigning a subclass ref-
erence to a superclass variable. [Note: This program uses classes CommissionEmployee3 and
BasePlusCommissionEmployee4 from Fig. 9.12 and Fig. 9.13, respectively.]

In Fig. 10.1, lines 10–11 create a CommissionEmployee3 object and assign its refer-
ence to a CommissionEmployee3 variable. Lines 14–16 create a BasePlusCommission-
Employee4 object and assign its reference to a BasePlusCommissionEmployee4 variable.
These assignments are natural—for example, a CommissionEmployee3 variable’s primary
purpose is to hold a reference to a CommissionEmployee3 object. Lines 19–21 use reference

1 // Fig. 10.1: PolymorphismTest.java
2 // Assigning superclass and subclass references to superclass and
3 // subclass variables.
4
5 public class PolymorphismTest
6 {
7 public static void main(String args[])
8 {
9

10
11
12
13
14
15
16
17
18 // invoke toString on superclass object using superclass variable
19 System.out.printf("%s %s:\n\n%s\n\n",
20 "Call CommissionEmployee3's toString with superclass reference ",
21 "to superclass object",);
22
23 // invoke toString on subclass object using subclass variable
24 System.out.printf("%s %s:\n\n%s\n\n",
25 "Call BasePlusCommissionEmployee4's toString with subclass",
26 "reference to subclass object",
27);
28
29 // invoke toString on subclass object using superclass variable
30
31
32 System.out.printf("%s %s:\n\n%s\n",
33 "Call BasePlusCommissionEmployee4's toString with superclass",
34 "reference to subclass object",);
35 } // end main
36 } // end class PolymorphismTest

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 1 of 2.)

// assign superclass reference to superclass variable
CommissionEmployee3 commissionEmployee = new CommissionEmployee3(
 "Sue", "Jones", "222-22-2222", 10000, .06);

// assign subclass reference to subclass variable
BasePlusCommissionEmployee4 basePlusCommissionEmployee =
 new BasePlusCommissionEmployee4(
 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

commissionEmployee.toString()

basePlusCommissionEmployee.toString()

CommissionEmployee3 commissionEmployee2 =
 basePlusCommissionEmployee;

commissionEmployee2.toString()

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

342 Chapter 10 Object-Oriented Programming: Polymorphism

commissionEmployee to invoke toString explicitly. Because commissionEmployee refers
to a CommissionEmployee3 object, superclass CommissionEmployee3’s version of toString
is called. Similarly, lines 24–27 use basePlusCommissionEmployee to invoke toString
explicitly on the BasePlusCommissionEmployee4 object. This invokes subclass BasePlus-
CommissionEmployee4’s version of toString.

Lines 30–31 then assign the reference to subclass object basePlusCommissionEm-
ployee to a superclass CommissionEmployee3 variable, which lines 32–34 use to invoke
method toString. When a superclass variable contains a reference to a subclass object, and
that reference is used to call a method, the subclass version of the method is called. Hence,
commissionEmployee2.toString() in line 34 actually calls class BasePlusCommission-
Employee4’s toString method. The Java compiler allows this “crossover” because an
object of a subclass is an object of its superclass (but not vice versa). When the compiler
encounters a method call made through a variable, the compiler determines if the method
can be called by checking the variable’s class type. If that class contains the proper method
declaration (or inherits one), the call is compiled. At execution time, the type of the object
to which the variable refers determines the actual method to use.

10.4 Abstract Classes and Methods
When we think of a class type, we assume that programs will create objects of that type.
In some cases, however, it is useful to declare classes for which the programmer never in-

Call CommissionEmployee3's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Call BasePlusCommissionEmployee4's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Call BasePlusCommissionEmployee4's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 2 of 2.)

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.4 Abstract Classes and Methods 343

tends to instantiate objects. Such classes are called abstract classes. Because they are used
only as superclasses in inheritance hierarchies, we refer to them as abstract superclasses.
These classes cannot be used to instantiate objects, because, as we’ll soon see, abstract class-
es are incomplete. Subclasses must declare the “missing pieces.” We demonstrate abstract
classes in Section 10.5.

An abstract class’s purpose is to provide an appropriate superclass from which other
classes can inherit and thus share a common design. In the Shape hierarchy of Fig. 9.3, for
example, subclasses inherit the notion of what it means to be a Shape—common attributes
such as location, color and borderThickness, and behaviors such as draw, move, resize
and changeColor. Classes that can be used to instantiate objects are called concrete classes.
Such classes provide implementations of every method they declare (some of the imple-
mentations can be inherited). For example, we could derive concrete classes Circle,
Square and Triangle from abstract superclass TwoDimensionalShape. Similarly, we could
derive concrete classes Sphere, Cube and Tetrahedron from abstract superclass ThreeDi-
mensionalShape. Abstract superclasses are too general to create real objects—they specify
only what is common among subclasses. We need to be more specific before we can create
objects. For example, if you send the draw message to abstract class TwoDimensionalShape,
it knows that two-dimensional shapes should be drawable, but it does not know what spe-
cific shape to draw, so it cannot implement a real draw method. Concrete classes provide
the specifics that make it reasonable to instantiate objects.

Not all inheritance hierarchies contain abstract classes. However, programmers often
write client code that uses only abstract superclass types to reduce client code’s dependen-
cies on a range of specific subclass types. For example, a programmer can write a method
with a parameter of an abstract superclass type. When called, such a method can be passed
an object of any concrete class that directly or indirectly extends the superclass specified as
the parameter’s type.

Abstract classes sometimes constitute several levels of the hierarchy. For example, the
Shape hierarchy of Fig. 9.3 begins with abstract class Shape. On the next level of the hier-
archy are two more abstract classes, TwoDimensionalShape and ThreeDimensionalShape.
The next level of the hierarchy declares concrete classes for TwoDimensionalShapes
(Circle, Square and Triangle) and for ThreeDimensionalShapes (Sphere, Cube and
Tetrahedron).

You make a class abstract by declaring it with keyword abstract. An abstract class
normally contains one or more abstract methods. An abstract method is one with keyword
abstract in its declaration, as in

public abstract void draw(); // abstract method

Abstract methods do not provide implementations. A class that contains any abstract
methods must be declared as an abstract class even if that class contains some concrete
(nonabstract) methods. Each concrete subclass of an abstract superclass also must provide
concrete implementations of each of the superclass’s abstract methods. Constructors and
static methods cannot be declared abstract. Constructors are not inherited, so an
abstract constructor could never be implemented. Though static methods are inher-
ited, they are not associated with particular objects of the classes that declare the static
methods. Since abstract methods are meant to be overridden so they can process objects
based on their types, it would not make sense to declare a static method as abstract.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

344 Chapter 10 Object-Oriented Programming: Polymorphism

Software Engineering Observation 10.3
An abstract class declares common attributes and behaviors of the various classes in a class
hierarchy. An abstract class typically contains one or more abstract methods that subclasses must
override if the subclasses are to be concrete. The instance variables and concrete methods of an
abstract class are subject to the normal rules of inheritance. 10.3

Common Programming Error 10.1
Attempting to instantiate an object of an abstract class is a compilation error. 10.1

Common Programming Error 10.2
Failure to implement a superclass’s abstract methods in a subclass is a compilation error unless
the subclass is also declared abstract. 10.2

Although we cannot instantiate objects of abstract superclasses, you’ll soon see that we
can use abstract superclasses to declare variables that can hold references to objects of any
concrete class derived from those abstract superclasses. Programs typically use such vari-
ables to manipulate subclass objects polymorphically. We also can use abstract superclass
names to invoke static methods declared in those abstract superclasses.

Consider another application of polymorphism. A drawing program needs to display
many shapes, including new shape types that the programmer will add to the system after
writing the drawing program. The drawing program might need to display shapes, such as
Circles, Triangles, Rectangles or others, that derive from abstract superclass Shape. The
drawing program uses Shape variables to manage the objects that are displayed. To draw any
object in this inheritance hierarchy, the drawing program uses a superclass Shape variable
containing a reference to the subclass object to invoke the object’s draw method. This
method is declared abstract in superclass Shape, so each concrete subclass must implement
method draw in a manner specific to that shape. Each object in the Shape inheritance hier-
archy knows how to draw itself. The drawing program does not have to worry about the type
of each object or whether the drawing program has ever encountered objects of that type.

Polymorphism is particularly effective for implementing so-called layered software
systems. In operating systems, for example, each type of physical device could operate
quite differently from the others. Even so, commands to read or write data from and to
devices may have a certain uniformity. For each device, the operating system uses a piece
of software called a device driver to control all communication between the system and the
device. The write message sent to a device-driver object needs to be interpreted specifically
in the context of that driver and how it manipulates devices of a specific type. However,
the write call itself really is no different from the write to any other device in the system:
Place some number of bytes from memory onto that device. An object-oriented operating
system might use an abstract superclass to provide an “interface” appropriate for all device
drivers. Then, through inheritance from that abstract superclass, subclasses are formed
that all behave similarly. The device-driver methods are declared as abstract methods in
the abstract superclass. The implementations of these abstract methods are provided in the
subclasses that correspond to the specific types of device drivers. New devices are always
being developed, and often long after the operating system has been released. When you
buy a new device, it comes with a device driver provided by the device vendor. The device
is immediately operational after you connect it to your computer and install the driver.
This is another elegant example of how polymorphism makes systems extensible.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 345

It is common in object-oriented programming to declare an iterator class that can tra-
verse all the objects in a collection, such as an array (Chapter 7) or an ArrayList
(Chapter 16, Collections). For example, a program can print an ArrayList of objects by
creating an iterator object and using it to obtain the next list element each time the iterator
is called. Iterators often are used in polymorphic programming to traverse a collection that
contains references to objects from various levels of a hierarchy. (Chapter 16 presents a
thorough treatment of ArrayList, iterators and “generics” capabilities.) An ArrayList of
objects of class TwoDimensionalShape, for example, could contain objects from subclasses
Square, Circle, Triangle and so on. Calling method draw for each TwoDimension-
alShape object off a TwoDimensionalShape variable would polymorphically draw each
object correctly on the screen.

10.5 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee-BasePlusCommissionEmployee hierar-
chy that we explored throughout Section 9.4. Now we use an abstract method and poly-
morphism to perform payroll calculations based on the type of employee. We create an
enhanced employee hierarchy to solve the following problem:

A company pays its employees on a weekly basis. The employees are of four types: Sala-
ried employees are paid a fixed weekly salary regardless of the number of hours worked,
hourly employees are paid by the hour and receive overtime pay for all hours worked in
excess of 40 hours, commission employees are paid a percentage of their sales and sala-
ried-commission employees receive a base salary plus a percentage of their sales. For the
current pay period, the company has decided to reward salaried-commission employees
by adding 10% to their base salaries. The company wants to implement a Java appli-
cation that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that extend Employee are SalariedEmployee, CommissionEmployee and Hourly-
Employee. Class BasePlusCommissionEmployee—which extends CommissionEmployee—
represents the last employee type. The UML class diagram in Fig. 10.2 shows the inheri-
tance hierarchy for our polymorphic employee-payroll application. Note that abstract class
Employee is italicized, as per the convention of the UML.

Fig. 10.2 | Employee hierarchy UML class diagram.

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

346 Chapter 10 Object-Oriented Programming: Polymorphism

Abstract superclass Employee declares the “interface” to the hierarchy—that is, the set
of methods that a program can invoke on all Employee objects. We use the term “interface”
here in a general sense to refer to the various ways programs can communicate with objects
of any Employee subclass. Be careful not to confuse the general notion of an “interface” to
something with the formal notion of a Java interface, the subject of Section 10.7. Each
employee, regardless of the way his or her earnings are calculated, has a first name, a last
name and a social security number, so private instance variables firstName, lastName
and socialSecurityNumber appear in abstract superclass Employee.

Software Engineering Observation 10.4
A subclass can inherit “interface” or “implementation” from a superclass. Hierarchies designed
for implementation inheritance tend to have their functionality high in the hierarchy—each
new subclass inherits one or more methods that were implemented in a superclass, and the
subclass uses the superclass implementations. Hierarchies designed for interface inheritance
tend to have their functionality lower in the hierarchy—a superclass specifies one or more
abstract methods that must be declared for each concrete class in the hierarchy, and the
individual subclasses override these methods to provide subclass-specific implementations. 10.4

The following sections implement the Employee class hierarchy. Each of the first four
sections implements one of the concrete classes. The last section implements a test pro-
gram that builds objects of all these classes and processes those objects polymorphically.

10.5.1 Creating Abstract Superclass Employee
Class Employee (Fig. 10.4) provides methods earnings and toString, in addition to the
get and set methods that manipulate Employee’s instance variables. An earnings method
certainly applies generically to all employees. But each earnings calculation depends on the
employee’s class. So we declare earnings as abstract in superclass Employee because a de-
fault implementation does not make sense for that method—there is not enough informa-
tion to determine what amount earnings should return. Each subclass overrides earnings
with an appropriate implementation. To calculate an employee’s earnings, the program as-
signs a reference to the employee’s object to a superclass Employee variable, then invokes
the earnings method on that variable. We maintain an array of Employee variables, each
of which holds a reference to an Employee object (of course, there cannot be Employee ob-
jects because Employee is an abstract class—because of inheritance, however, all objects of
all subclasses of Employee may nevertheless be thought of as Employee objects). The pro-
gram iterates through the array and calls method earnings for each Employee object. Java
processes these method calls polymorphically. Including earnings as an abstract method
in Employee forces every direct subclass of Employee to override earnings in order to be-
come a concrete class. This enables the designer of the class hierarchy to demand that each
concrete subclass provide an appropriate pay calculation.

Method toString in class Employee returns a String containing the first name, last
name and social security number of the employee. As we’ll see, each subclass of Employee
overrides method toString to create a string representation of an object of that class that
contains the employee’s type (e.g., "salaried employee:") followed by the rest of the
employee’s information.

The diagram in Fig. 10.3 shows each of the five classes in the hierarchy down the left
side and methods earnings and toString across the top. For each class, the diagram

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 347

shows the desired results of each method. [Note: We do not list superclass Employee’s get
and set methods because they are not overridden in any of the subclasses—each of these
methods is inherited and used “as is” by each of the subclasses.]

Let us consider class Employee’s declaration (Fig. 10.4). The class includes a con-
structor that takes the first name, last name and social security number as arguments (lines
11–16); get methods that return the first name, last name and social security number (lines
25–28, 37–40 and 49–52, respectively); set methods that set the first name, last name and
social security number (lines 19–22, 31–34 and 43–46, respectively); method toString
(lines 55–59), which returns the string representation of Employee; and abstract method
earnings (line 62), which will be implemented by subclasses. Note that the Employee con-
structor does not validate the social security number in this example. Normally, such val-
idation should be provided.

Why did we decide to declare earnings as an abstract method? It simply does not
make sense to provide an implementation of this method in class Employee. We cannot
calculate the earnings for a general Employee—we first must know the specific Employee
type to determine the appropriate earnings calculation. By declaring this method
abstract, we indicate that each concrete subclass must provide an appropriate earnings
implementation and that a program will be able to use superclass Employee variables to
invoke method earnings polymorphically for any type of Employee.

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

weeklySalary

abstract

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

toStringearnings

if hours <= 40
 wage * hours
else if hours > 40
 40 * wage +
 (hours - 40) *
 wage * 1.5

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklysalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base salaried commission employee:
 firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

348 Chapter 10 Object-Oriented Programming: Polymorphism

1 // Fig. 10.4: Employee.java
2 // Employee abstract superclass.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first;
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last;
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41
42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53

Fig. 10.4 | Employee abstract superclass. (Part 1 of 2.)

public abstract class Employee

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 349

10.5.2 Creating Concrete Subclass SalariedEmployee
Class SalariedEmployee (Fig. 10.5) extends class Employee (line 4) and overrides earn-
ings (lines 29–32), which makes SalariedEmployee a concrete class. The class includes a
constructor (lines 9–14) that takes a first name, a last name, a social security number and
a weekly salary as arguments; a set method to assign a new nonnegative value to instance
variable weeklySalary (lines 17–20); a get method to return weeklySalary’s value (lines
23–26); a method earnings (lines 29–32) to calculate a SalariedEmployee’s earnings;
and a method toString (lines 35–39), which returns a String including the employee’s
type, namely, "salaried employee: " followed by employee-specific information pro-
duced by superclass Employee’s toString method and SalariedEmployee’s getWeekly-
Salary method. Class SalariedEmployee’s constructor passes the first name, last name
and social security number to the Employee constructor (line 12) to initialize the private
instance variables not inherited from the superclass. Method earnings overrides abstract
method earnings in Employee to provide a concrete implementation that returns the Sal-
ariedEmployee’s weekly salary. If we do not implement earnings, class SalariedEmploy-
ee must be declared abstract—otherwise, a compilation error occurs (and, of course, we
want SalariedEmployee here to be a concrete class).

54 // return String representation of Employee object
55 public String toString()
56 {
57 return String.format("%s %s\nsocial security number: %s",
58 getFirstName(), getLastName(), getSocialSecurityNumber());
59 } // end method toString
60
61
62
63 } // end abstract class Employee

1 // Fig. 10.5: SalariedEmployee.java
2 // SalariedEmployee class extends Employee.
3
4
5 {
6 private double weeklySalary;
7
8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15

Fig. 10.5 | SalariedEmployee class derived from Employee. (Part 1 of 2.)

Fig. 10.4 | Employee abstract superclass. (Part 2 of 2.)

// abstract method overridden by subclasses
public abstract double earnings(); // no implementation here

public class SalariedEmployee extends Employee

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

350 Chapter 10 Object-Oriented Programming: Polymorphism

Method toString (lines 35–39) of class SalariedEmployee overrides Employee
method toString. If class SalariedEmployee did not override toString, SalariedEm-
ployee would have inherited the Employee version of toString. In that case, SalariedEm-
ployee’s toString method would simply return the employee’s full name and social
security number, which does not adequately represent a SalariedEmployee. To produce
a complete string representation of a SalariedEmployee, the subclass’s toString method
returns "salaried employee: " followed by the superclass Employee-specific information
(i.e., first name, last name and social security number) obtained by invoking the super-
class’s toString method (line 38)—this is a nice example of code reuse. The string repre-
sentation of a SalariedEmployee also contains the employee’s weekly salary obtained by
invoking the class’s getWeeklySalary method.

10.5.3 Creating Concrete Subclass HourlyEmployee
Class HourlyEmployee (Fig. 10.6) also extends Employee (line 4). The class includes a con-
structor (lines 10–16) that takes as arguments a first name, a last name, a social security
number, an hourly wage and the number of hours worked. Lines 19–22 and 31–35 declare
set methods that assign new values to instance variables wage and hours, respectively.
Method setWage (lines 19–22) ensures that wage is nonnegative, and method setHours
(lines 31–35) ensures that hours is between 0 and 168 (the total number of hours in a week)
inclusive. Class HourlyEmployee also includes get methods (lines 25–28 and 38–41) to re-
turn the values of wage and hours, respectively; a method earnings (lines 44–50) to calcu-
late an HourlyEmployee’s earnings; and a method toString (lines 53–58), which returns

16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21
22 // return salary
23 public double getWeeklySalary()
24 {
25 return weeklySalary;
26 } // end method getWeeklySalary
27
28
29
30
31
32
33
34
35
36
37
38
39
40 } // end class SalariedEmployee

Fig. 10.5 | SalariedEmployee class derived from Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
public double earnings()
{
 return getWeeklySalary();
} // end method earnings

// return String representation of SalariedEmployee object
public String toString()
{
 return String.format("salaried employee: %s\n%s: $%,.2f",
 super.toString(), "weekly salary", getWeeklySalary());
} // end method toString

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 351

the employee’s type, namely, "hourly employee: " and Employee-specific information.
Note that the HourlyEmployee constructor, like the SalariedEmployee constructor, passes
the first name, last name and social security number to the superclass Employee constructor
(line 13) to initialize the private instance variables. In addition, method toString calls su-
perclass method toString (line 56) to obtain the Employee-specific information (i.e., first
name, last name and social security number)—this is another nice example of code reuse.

1 // Fig. 10.6: HourlyEmployee.java
2 // HourlyEmployee class extends Employee.
3
4
5 {
6 private double wage; // wage per hour
7 private double hours; // hours worked for week
8
9 // five-argument constructor

10 public HourlyEmployee(String first, String last, String ssn,
11 double hourlyWage, double hoursWorked)
12 {
13 super(first, last, ssn);
14 setWage(hourlyWage); // validate hourly wage
15 setHours(hoursWorked); // validate hours worked
16 } // end five-argument HourlyEmployee constructor
17
18 // set wage
19 public void setWage(double hourlyWage)
20 {
21 wage = (hourlyWage < 0.0) ? 0.0 : hourlyWage;
22 } // end method setWage
23
24 // return wage
25 public double getWage()
26 {
27 return wage;
28 } // end method getWage
29
30 // set hours worked
31 public void setHours(double hoursWorked)
32 {
33 hours = ((hoursWorked >= 0.0) && (hoursWorked <= 168.0)) ?
34 hoursWorked : 0.0;
35 } // end method setHours
36
37 // return hours worked
38 public double getHours()
39 {
40 return hours;
41 } // end method getHours
42
43
44
45

Fig. 10.6 | HourlyEmployee class derived from Employee. (Part 1 of 2.)

public class HourlyEmployee extends Employee

// calculate earnings; override abstract method earnings in Employee
public double earnings()
{

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

352 Chapter 10 Object-Oriented Programming: Polymorphism

10.5.4 Creating Concrete Subclass CommissionEmployee
Class CommissionEmployee (Fig. 10.7) extends class Employee (line 4). The class includes
a constructor (lines 10–16) that takes a first name, a last name, a social security number,
a sales amount and a commission rate; set methods (lines 19–22 and 31–34) to assign new
values to instance variables commissionRate and grossSales, respectively; get methods
(lines 25–28 and 37–40) that retrieve the values of these instance variables; method earn-
ings (lines 43–46) to calculate a CommissionEmployee’s earnings; and method toString
(lines 49–55), which returns the employee’s type, namely, "commission employee: " and
Employee-specific information. The constructor also passes the first name, last name and
social security number to Employee’s constructor (line 13) to initialize Employee’s private
instance variables. Method toString calls superclass method toString (line 52) to obtain
the Employee-specific information (i.e., first name, last name and social security number).

46
47
48
49
50
51
52
53
54
55
56
57
58
59 } // end class HourlyEmployee

1 // Fig. 10.7: CommissionEmployee.java
2 // CommissionEmployee class extends Employee.
3
4
5 {
6 private double grossSales; // gross weekly sales
7 private double commissionRate; // commission percentage
8
9 // five-argument constructor

10 public CommissionEmployee(String first, String last, String ssn,
11 double sales, double rate)
12 {
13 super(first, last, ssn);
14 setGrossSales(sales);
15 setCommissionRate(rate);
16 } // end five-argument CommissionEmployee constructor
17

Fig. 10.7 | CommissionEmployee class derived from Employee. (Part 1 of 2.)

Fig. 10.6 | HourlyEmployee class derived from Employee. (Part 2 of 2.)

 if (getHours() <= 40) // no overtime
 return getWage() * getHours();
 else
 return 40 * getWage() + (gethours() - 40) * getWage() * 1.5;
} // end method earnings

// return String representation of HourlyEmployee object
public String toString()
{
 return String.format("hourly employee: %s\n%s: $%,.2f; %s: %,.2f",
 super.toString(), "hourly wage", getWage(),
 "hours worked", getHours());
} // end method toString

public class CommissionEmployee extends Employee

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 353

10.5.5 Creating Indirect Concrete Subclass
BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 10.8) extends class CommissionEmployee (line
4) and therefore is an indirect subclass of class Employee. Class BasePlusCommission-
Employee has a constructor (lines 9–14) that takes as arguments a first name, a last name,
a social security number, a sales amount, a commission rate and a base salary. It then passes
the first name, last name, social security number, sales amount and commission rate to the
CommissionEmployee constructor (line 12) to initialize the inherited members. Base-
PlusCommissionEmployee also contains a set method (lines 17–20) to assign a new value
to instance variable baseSalary and a get method (lines 23–26) to return baseSalary’s

18 // set commission rate
19 public void setCommissionRate(double rate)
20 {
21 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
22 } // end method setCommissionRate
23
24 // return commission rate
25 public double getCommissionRate()
26 {
27 return commissionRate;
28 } // end method getCommissionRate
29
30 // set gross sales amount
31 public void setGrossSales(double sales)
32 {
33 grossSales = (sales < 0.0) ? 0.0 : sales;
34 } // end method setGrossSales
35
36 // return gross sales amount
37 public double getGrossSales()
38 {
39 return grossSales;
40 } // end method getGrossSales
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 } // end class CommissionEmployee

Fig. 10.7 | CommissionEmployee class derived from Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
public double earnings()
{
 return getCommissionRate() * getGrossSales();
} // end method earnings

// return String representation of CommissionEmployee object
public String toString()
{
 return String.format("%s: %s\n%s: $%,.2f; %s: %.2f",
 "commission employee", super.toString(),
 "gross sales", getGrossSales(),
 "commission rate", getCommissionRate());
} // end method toString

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

354 Chapter 10 Object-Oriented Programming: Polymorphism

value. Method earnings (lines 29–32) calculates a BasePlusCommissionEmployee’s earn-
ings. Note that line 31 in method earnings calls superclass CommissionEmployee’s earn-
ings method to calculate the commission-based portion of the employee’s earnings. This
is a nice example of code reuse. BasePlusCommissionEmployee’s toString method (lines
35–40) creates a string representation of a BasePlusCommissionEmployee that contains
"base-salaried", followed by the String obtained by invoking superclass Commission-
Employee’s toString method (another example of code reuse), then the base salary. The
result is a String beginning with "base-salaried commission employee" followed by the
rest of the BasePlusCommissionEmployee’s information. Recall that CommissionEmploy-
ee’s toString obtains the employee’s first name, last name and social security number by
invoking the toString method of its superclass (i.e., Employee)—yet another example of
code reuse. Note that BasePlusCommissionEmployee’s toString initiates a chain of meth-
od calls that span all three levels of the Employee hierarchy.

1 // Fig. 10.8: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class extends CommissionEmployee.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)
11 {
12 super(first, last, ssn, sales, rate);
13 setBaseSalary(salary); // validate and store base salary
14 } // end six-argument BasePlusCommissionEmployee constructor
15
16 // set base salary
17 public void setBaseSalary(double salary)
18 {
19 baseSalary = (salary < 0.0) ? 0.0 : salary; // non-negative
20 } // end method setBaseSalary
21
22 // return base salary
23 public double getBaseSalary()
24 {
25 return baseSalary;
26 } // end method getBaseSalary
27
28
29
30
31
32
33
34
35
36

Fig. 10.8 | BasePlusCommissionEmployee derives from CommissionEmployee. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

// calculate earnings; override method earnings in CommissionEmployee
public double earnings()
{
 return getBaseSalary() + super.earnings();
} // end method earnings

// return String representation of BasePlusCommissionEmployee object
public String toString()
{

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 355

10.5.6 Demonstrating Polymorphic Processing, Operator instanceof
and Downcasting
To test our Employee hierarchy, the application in Fig. 10.9 creates an object of each of
the four concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and
BasePlusCommissionEmployee. The program manipulates these objects, first via variables
of each object’s own type, then polymorphically, using an array of Employee variables.
While processing the objects polymorphically, the program increases the base salary of
each BasePlusCommissionEmployee by 10% (this, of course, requires determining the ob-
ject’s type at execution time). Finally, the program polymorphically determines and out-
puts the type of each object in the Employee array. Lines 9–18 create objects of each of the
four concrete Employee subclasses. Lines 22–30 output the string representation and earn-
ings of each of these objects. Note that each object’s toString method is called implicitly
by printf when the object is output as a String with the %s format specifier.

37
38
39
40
41 } // end class BasePlusCommissionEmployee

1 // Fig. 10.9: PayrollSystemTest.java
2 // Employee hierarchy test program.
3
4 public class PayrollSystemTest
5 {
6 public static void main(String args[])
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20 System.out.println("Employees processed individually:\n");
21
22 System.out.printf("%s\n%s: $%,.2f\n\n",
23 salariedEmployee, "earned", salariedEmployee.earnings());
24 System.out.printf("%s\n%s: $%,.2f\n\n",
25 hourlyEmployee, "earned", hourlyEmployee.earnings());
26 System.out.printf("%s\n%s: $%,.2f\n\n",
27 commissionEmployee, "earned", commissionEmployee.earnings());

Fig. 10.9 | Employee class hierarchy test program. (Part 1 of 3.)

Fig. 10.8 | BasePlusCommissionEmployee derives from CommissionEmployee. (Part 2 of 2.)

 return String.format("%s %s; %s: $%,.2f",
 "base-salaried", super.toString(),
 "base salary", getBaseSalary());
} // end method toString

// create subclass objects
SalariedEmployee salariedEmployee =
 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
HourlyEmployee hourlyEmployee =
 new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
CommissionEmployee commissionEmployee =
 new CommissionEmployee(
 "Sue", "Jones", "333-33-3333", 10000, .06);
BasePlusCommissionEmployee basePlusCommissionEmployee =
 new BasePlusCommissionEmployee(
 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

356 Chapter 10 Object-Oriented Programming: Polymorphism

28 System.out.printf("%s\n%s: $%,.2f\n\n",
29 basePlusCommissionEmployee,
30 "earned", basePlusCommissionEmployee.earnings());
31
32 // create four-element Employee array
33
34
35
36
37
38
39
40
41 System.out.println("Employees processed polymorphically:\n");
42
43 // generically process each element in array employees
44 for (Employee currentEmployee : employees)
45 {
46 System.out.println(); // invokes toString
47
48 // determine whether element is a BasePlusCommissionEmployee
49 if ()
50 {
51 // downcast Employee reference to
52 // BasePlusCommissionEmployee reference
53 BasePlusCommissionEmployee employee =
54 ;
55
56 double oldBaseSalary = employee.getBaseSalary();
57 employee.setBaseSalary(1.10 * oldBaseSalary);
58 System.out.printf(
59 "new base salary with 10%% increase is: $%,.2f\n",
60 employee.getBaseSalary());
61 } // end if
62
63 System.out.printf(
64 "earned $%,.2f\n\n",);
65 } // end for
66
67
68
69
70
71 } // end main
72 } // end class PayrollSystemTest

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

Fig. 10.9 | Employee class hierarchy test program. (Part 2 of 3.)

Employee employees[] = new Employee[4];

// initialize array with Employees
employees[0] = salariedEmployee;
employees[1] = hourlyEmployee;
employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

currentEmployee

currentEmployee instanceof BasePlusCommissionEmployee

(BasePlusCommissionEmployee) currentEmployee

currentEmployee.earnings()

// get type name of each object in employees array
for (int j = 0; j < employees.length; j++)
 System.out.printf("Employee %d is a %s\n", j,
 employees[j].getClass().getName());

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 357

Line 33 declares employees and assigns it an array of four Employee variables. Line 36
assigns the reference to a SalariedEmployee object to employees[0]. Line 37 assigns the
reference to an HourlyEmployee object to employees[1]. Line 38 assigns the reference
to a CommissionEmployee object to employees[2]. Line 39 assigns the reference to a
BasePlusCommissionEmployee object to employee[3]. Each assignment is allowed,
because a SalariedEmployee is an Employee, an HourlyEmployee is an Employee, a Com-
missionEmployee is an Employee and a BasePlusCommissionEmployee is an Employee.
Therefore, we can assign the references of SalariedEmployee, HourlyEmployee, Commis-
sionEmployee and BasePlusCommissionEmployee objects to superclass Employee vari-
ables, even though Employee is an abstract class.

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04;

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 10.9 | Employee class hierarchy test program. (Part 3 of 3.)

earned: $500.00

base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

358 Chapter 10 Object-Oriented Programming: Polymorphism

Lines 44–65 iterate through array employees and invoke methods toString and
earnings with Employee control variable currentEmployee. The output illustrates that
the appropriate methods for each class are indeed invoked. All calls to method toString
and earnings are resolved at execution time, based on the type of the object to which cur-
rentEmployee refers. This process is known as dynamic binding or late binding. For
example, line 46 implicitly invokes method toString of the object to which currentEm-
ployee refers. As a result of dynamic binding, Java decides which class’s toString method
to call at execution time rather than at compile time. Note that only the methods of class
Employee can be called via an Employee variable (and Employee, of course, includes the
methods of class Object). (Section 9.7 discusses the set of methods that all classes inherit
from class Object.) A superclass reference can be used to invoke only methods of the
superclass (and the superclass can invoke overridden versions of these in the subclass).

We perform special processing on BasePlusCommissionEmployee objects—as we
encounter these objects, we increase their base salary by 10%. When processing objects
polymorphically, we typically do not need to worry about the “specifics,” but to adjust the
base salary, we do have to determine the specific type of Employee object at execution time.
Line 49 uses the instanceof operator to determine whether a particular Employee object’s
type is BasePlusCommissionEmployee. The condition in line 49 is true if the object refer-
enced by currentEmployee is a BasePlusCommissionEmployee. This would also be true
for any object of a BasePlusCommissionEmployee subclass because of the is-a relationship
a subclass has with its superclass. Lines 53–54 downcast currentEmployee from type
Employee to type BasePlusCommissionEmployee—this cast is allowed only if the object
has an is-a relationship with BasePlusCommissionEmployee. The condition at line 49
ensures that this is the case. This cast is required if we are to invoke subclass BasePlusCom-
missionEmployee methods getBaseSalary and setBaseSalary on the current Employee
object—as you’ll see momentarily, attempting to invoke a subclass-only method directly
on a superclass reference is a compilation error.

Common Programming Error 10.3
Assigning a superclass variable to a subclass variable (without an explicit cast) is a compilation
error. 10.3

Software Engineering Observation 10.5
If at execution time the reference of a subclass object has been assigned to a variable of one of its
direct or indirect superclasses, it is acceptable to cast the reference stored in that superclass variable
back to a reference of the subclass type. Before performing such a cast, use the instanceof operator
to ensure that the object is indeed an object of an appropriate subclass type. 10.5

Common Programming Error 10.4
When downcasting an object, a ClassCastException occurs if at execution time the object does
not have an is-a relationship with the type specified in the cast operator. An object can be cast
only to its own type or to the type of one of its superclasses. 10.4

If the instanceof expression in line 49 is true, the body of the if statement (lines
49–61) performs the special processing required for the BasePlusCommissionEmployee
object. Using BasePlusCommissionEmployee variable employee, lines 56 and 57 invoke
subclass-only methods getBaseSalary and setBaseSalary to retrieve and update the
employee’s base salary with the 10% raise.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.5 Case Study: Payroll System Using Polymorphism 359

Lines 63–64 invoke method earnings on currentEmployee, which calls the appro-
priate subclass object’s earnings method polymorphically. As you can see, obtaining the
earnings of the SalariedEmployee, HourlyEmployee and CommissionEmployee polymor-
phically in lines 63–64 produces the same result as obtaining these employees’ earnings
individually in lines 22–27. However, the earnings amount obtained for the Base-
PlusCommissionEmployee in lines 63–64 is higher than that obtained in lines 28–30, due
to the 10% increase in its base salary.

Lines 68–70 display each employee’s type as a string. Every object in Java knows its own
class and can access this information through the getClass method, which all classes inherit
from class Object. The getClass method returns an object of type Class (from package
java.lang), which contains information about the object’s type, including its class name.
Line 70 invokes the getClass method on the object to get its runtime class (i.e., a Class
object that represents the object’s type). Then method getName is invoked on the object
returned by getClass to get the class’s name. To learn more about class Class, see its online
documentation at java.sun.com/javase/6/docs/api/java/lang/Class.html.

In the previous example, we avoided several compilation errors by downcasting an
Employee variable to a BasePlusCommissionEmployee variable in lines 53–54. If you
remove the cast operator (BasePlusCommissionEmployee) from line 54 and attempt to
assign Employee variable currentEmployee directly to BasePlusCommissionEmployee
variable employee, you’ll receive an “incompatible types” compilation error. This error
indicates that the attempt to assign the reference of superclass object commissionEmployee
to subclass variable basePlusCommissionEmployee is not allowed. The compiler prevents
this assignment because a CommissionEmployee is not a BasePlusCommissionEmployee—
the is-a relationship applies only between the subclass and its superclasses, not vice versa.

Similarly, if lines 56, 57 and 60 used superclass variable currentEmployee, rather
than subclass variable employee, to invoke subclass-only methods getBaseSalary and
setBaseSalary, we would receive a “cannot find symbol” compilation error on each of
these lines. Attempting to invoke subclass-only methods on a superclass reference is not
allowed. While lines 56, 57 and 60 execute only if instanceof in line 49 returns true to
indicate that currentEmployee has been assigned a reference to a BasePlusCommission-
Employee object, we cannot attempt to invoke subclass BasePlusCommissionEmployee
methods getBaseSalary and setBaseSalary on superclass Employee reference current-
Employee. The compiler would generate errors in lines 56, 57 and 60, because getBase-
Salary and setBaseSalary are not superclass methods and cannot be invoked on a
superclass variable. Although the actual method that is called depends on the object’s type
at execution time, a variable can be used to invoke only those methods that are members
of that variable’s type, which the compiler verifies. Using a superclass Employee variable,
we can invoke only methods found in class Employee—earnings, toString and
Employee’s get and set methods.

10.5.7 Summary of the Allowed Assignments Between Superclass and
Subclass Variables
Now that you have seen a complete application that processes diverse subclass objects poly-
morphically, we summarize what you can and cannot do with superclass and subclass ob-
jects and variables. Although a subclass object also is a superclass object, the two objects are
nevertheless different. As discussed previously, subclass objects can be treated as if they are

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

360 Chapter 10 Object-Oriented Programming: Polymorphism

superclass objects. But because the subclass can have additional subclass-only members, as-
signing a superclass reference to a subclass variable is not allowed without an explicit cast—
such an assignment would leave the subclass members undefined for the superclass object.

In the current section and in Section 10.3 and Chapter 9, we have discussed four ways
to assign superclass and subclass references to variables of superclass and subclass types:

1. Assigning a superclass reference to a superclass variable is straightforward.

2. Assigning a subclass reference to a subclass variable is straightforward.

3. Assigning a subclass reference to a superclass variable is safe, because the subclass
object is an object of its superclass. However, this reference can be used to refer
only to superclass members. If this code refers to subclass-only members through
the superclass variable, the compiler reports errors.

4. Attempting to assign a superclass reference to a subclass variable is a compilation
error. To avoid this error, the superclass reference must be cast to a subclass type
explicitly. At execution time, if the object to which the reference refers is not a
subclass object, an exception will occur. (For more on exception handling, see
Chapter 13.) The instanceof operator can be used to ensure that such a cast is
performed only if the object is a subclass object.

10.6 final Methods and Classes
We saw in Section 6.10 that variables can be declared final to indicate that they cannot
be modified after they are initialized—such variables represent constant values. It is also
possible to declare methods, method parameters and classes with the final modifier.

A method that is declared final in a superclass cannot be overridden in a subclass.
Methods that are declared private are implicitly final, because it is impossible to over-
ride them in a subclass. Methods that are declared static are also implicitly final. A
final method’s declaration can never change, so all subclasses use the same method imple-
mentation, and calls to final methods are resolved at compile time—this is known as
static binding. Since the compiler knows that final methods cannot be overridden, it can
optimize programs by removing calls to final methods and replacing them with the
expanded code of their declarations at each method call location—a technique known as
inlining the code.

Performance Tip 10.1
The compiler can decide to inline a final method call and will do so for small, simple final
methods. Inlining does not violate encapsulation or information hiding, but does improve per-
formance because it eliminates the overhead of making a method call. 10.1

A class that is declared final cannot be a superclass (i.e., a class cannot extend a final
class). All methods in a final class are implicitly final. Class String is an example of a
final class. This class cannot be extended, so programs that use Strings can rely on the
functionality of String objects as specified in the Java API. Making the class final also
prevents programmers from creating subclasses that might bypass security restrictions. For
more information on final classes and methods, visit java.sun.com/docs/books/
tutorial/java/IandI/final.html. This site contains additional insights into using
final classes to improve the security of a system.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.7 Case Study: Creating and Using Interfaces 361

Common Programming Error 10.5
Attempting to declare a subclass of a final class is a compilation error. 10.5

Software Engineering Observation 10.6
In the Java API, the vast majority of classes are not declared final. This enables inheritance and
polymorphism—the fundamental capabilities of object-oriented programming. However, in
some cases, it is important to declare classes final—typically for security reasons. 10.6

10.7 Case Study: Creating and Using Interfaces
Our next example (Figs. 10.11–10.13) reexamines the payroll system of Section 10.5.
Suppose that the company involved wishes to perform several accounting operations in a
single accounts payable application—in addition to calculating the earnings that must be
paid to each employee, the company must also calculate the payment due on each of sev-
eral invoices (i.e., bills for goods purchased). Though applied to unrelated things (i.e., em-
ployees and invoices), both operations have to do with obtaining some kind of payment
amount. For an employee, the payment refers to the employee’s earnings. For an invoice,
the payment refers to the total cost of the goods listed on the invoice. Can we calculate
such different things as the payments due for employees and invoices in a single applica-
tion polymorphically? Does Java offer a capability that requires that unrelated classes im-
plement a set of common methods (e.g., a method that calculates a payment amount)?
Java interfaces offer exactly this capability.

Interfaces define and standardize the ways in which things such as people and systems
can interact with one another. For example, the controls on a radio serve as an interface
between radio users and a radio’s internal components. The controls allow users to per-
form only a limited set of operations (e.g., changing the station, adjusting the volume,
choosing between AM and FM), and different radios may implement the controls in dif-
ferent ways (e.g., using push buttons, dials, voice commands). The interface specifies what
operations a radio must permit users to perform but does not specify how the operations
are performed. Similarly, the interface between a driver and a car with a manual transmis-
sion includes the steering wheel, the gear shift, the clutch pedal, the gas pedal and the
brake pedal. This same interface is found in nearly all manual transmission cars, enabling
someone who knows how to drive one particular manual transmission car to drive just
about any manual transmission car. The components of each individual car may look dif-
ferent, but their general purpose is the same—to allow people to drive the car.

Software objects also communicate via interfaces. A Java interface describes a set of
methods that can be called on an object, to tell the object to perform some task or return
some piece of information, for example. The next example introduces an interface named
Payable to describe the functionality of any object that must be capable of being paid and
thus must offer a method to determine the proper payment amount due. An interface dec-
laration begins with the keyword interface and contains only constants and abstract
methods. Unlike classes, all interface members must be public, and interfaces may not
specify any implementation details, such as concrete method declarations and instance
variables. So all methods declared in an interface are implicitly public abstract methods
and all fields are implicitly public, static and final.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

362 Chapter 10 Object-Oriented Programming: Polymorphism

Good Programming Practice 10.1
According to Chapter 9 of the Java Language Specification, it is proper style to declare an in-
terface’s methods without keywords public and abstract because they are redundant in inter-
face method declarations. Similarly, constants should be declared without keywords public,
static and final because they, too, are redundant. 10.1

To use an interface, a concrete class must specify that it implements the interface and
must declare each method in the interface with the signature specified in the interface dec-
laration. A class that does not implement all the methods of the interface is an abstract class
and must be declared abstract. Implementing an interface is like signing a contract with
the compiler that states, “I will declare all the methods specified by the interface or I will
declare my class abstract.”

Common Programming Error 10.6
Failing to implement any method of an interface in a concrete class that implements the inter-
face results in a compilation error indicating that the class must be declared abstract. 10.6

An interface is typically used when disparate (i.e., unrelated) classes need to share
common methods and constants. This allows objects of unrelated classes to be processed
polymorphically—objects of classes that implement the same interface can respond to the
same method calls. You can create an interface that describes the desired functionality, then
implement this interface in any classes that require that functionality. For example, in the
accounts payable application developed in this section, we implement interface Payable in
any class that must be able to calculate a payment amount (e.g., Employee, Invoice).

An interface is often used in place of an abstract class when there is no default imple-
mentation to inherit—that is, no fields and no default method implementations. Inter-
faces are typically public types, so they are normally declared in files by themselves with
the same name as the interface and the .java file-name extension.

10.7.1 Developing a Payable Hierarchy
To build an application that can determine payments for employees and invoices alike, we
first create interface Payable, which contains method getPaymentAmount that returns a
double amount that must be paid for an object of any class that implements the interface.
Method getPaymentAmount is a general purpose version of method earnings of the Em-
ployee hierarchy—method earnings calculates a payment amount specifically for an Em-
ployee, while getPaymentAmount can be applied to a broad range of unrelated objects.
After declaring interface Payable, we introduce class Invoice, which implements inter-
face Payable. We then modify class Employee such that it also implements interface Pay-
able. Finally, we update Employee subclass SalariedEmployee to “fit” into the Payable
hierarchy (i.e., we rename SalariedEmployee method earnings as getPaymentAmount).

Good Programming Practice 10.2
When declaring a method in an interface, choose a method name that describes the method’s pur-
pose in a general manner, because the method may be implemented by many unrelated classes. 10.2

Classes Invoice and Employee both represent things for which the company must be
able to calculate a payment amount. Both classes implement Payable, so a program can
invoke method getPaymentAmount on Invoice objects and Employee objects alike. As

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.7 Case Study: Creating and Using Interfaces 363

we’ll soon see, this enables the polymorphic processing of Invoices and Employees
required for our company’s accounts payable application.

The UML class diagram in Fig. 10.10 shows the hierarchy used in our accounts pay-
able application. The hierarchy begins with interface Payable. The UML distinguishes an
interface from other classes by placing the word “interface” in guillemets (« and ») above
the interface name. The UML expresses the relationship between a class and an interface
through a relationship known as a realization. A class is said to “realize,” or implement,
the methods of an interface. A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the interface. The diagram in
Fig. 10.10 indicates that classes Invoice and Employee each realize (i.e., implement) inter-
face Payable. Note that, as in the class diagram of Fig. 10.2, class Employee appears in
italics, indicating that it is an abstract class. Concrete class SalariedEmployee extends
Employee and inherits its superclass’s realization relationship with interface Payable.

10.7.2 Declaring Interface Payable
The declaration of interface Payable begins in Fig. 10.11 at line 4. Interface Payable con-
tains public abstract method getPaymentAmount (line 6). Note that the method is not
explicitly declared public or abstract. Interface methods must be public and abstract,
so they do not need to be declared as such. Interface Payable has only one method—inter-
faces can have any number of methods. (We’ll see later in the book the notion of “tagging
interfaces”—these actually have no methods. In fact, a tagging interface contains no con-
stant values, either—it simply contains an empty interface declaration.) In addition, meth-
od getPaymentAmount has no parameters, but interface methods can have parameters.

Fig. 10.10 | Payable interface hierarchy UML class diagram.

1 // Fig. 10.11: Payable.java
2 // Payable interface declaration.
3
4
5
6
7

Fig. 10.11 | Payable interface declaration.

Invoice Employee

SalariedEmployee

«interface»
Payable

public interface Payable
{
 double getPaymentAmount(); // calculate payment; no implementation
} // end interface Payable

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

364 Chapter 10 Object-Oriented Programming: Polymorphism

10.7.3 Creating Class Invoice
We now create class Invoice (Fig. 10.12) to represent a simple invoice that contains bill-
ing information for only one kind of part. The class declares private instance variables
partNumber, partDescription, quantity and pricePerItem (in lines 6–9) that indicate
the part number, a description of the part, the quantity of the part ordered and the price
per item. Class Invoice also contains a constructor (lines 12–19), get and set methods
(lines 22–67) that manipulate the class’s instance variables and a toString method (lines
70–75) that returns a string representation of an Invoice object. Note that methods set-
Quantity (lines 46–49) and setPricePerItem (lines 58–61) ensure that quantity and
pricePerItem obtain only nonnegative values.

1 // Fig. 10.12: Invoice.java
2 // Invoice class implements Payable.
3
4
5 {
6 private String partNumber;
7 private String partDescription;
8 private int quantity;
9 private double pricePerItem;

10
11 // four-argument constructor
12 public Invoice(String part, String description, int count,
13 double price)
14 {
15 partNumber = part;
16 partDescription = description;
17 setQuantity(count); // validate and store quantity
18 setPricePerItem(price); // validate and store price per item
19 } // end four-argument Invoice constructor
20
21 // set part number
22 public void setPartNumber(String part)
23 {
24 partNumber = part;
25 } // end method setPartNumber
26
27 // get part number
28 public String getPartNumber()
29 {
30 return partNumber;
31 } // end method getPartNumber
32
33 // set description
34 public void setPartDescription(String description)
35 {
36 partDescription = description;
37 } // end method setPartDescription
38

Fig. 10.12 | Invoice class that implements Payable. (Part 1 of 2.)

public class Invoice implements Payable

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.7 Case Study: Creating and Using Interfaces 365

Line 4 of Fig. 10.12 indicates that class Invoice implements interface Payable. Like
all classes, class Invoice also implicitly extends Object. Java does not allow subclasses to
inherit from more than one superclass, but it does allow a class to inherit from a superclass
and implement more than one interface. In fact, a class can implement as many interfaces
as it needs, in addition to extending one other class. To implement more than one inter-

39 // get description
40 public String getPartDescription()
41 {
42 return partDescription;
43 } // end method getPartDescription
44
45 // set quantity
46 public void setQuantity(int count)
47 {
48 quantity = (count < 0) ? 0 : count; // quantity cannot be negative
49 } // end method setQuantity
50
51 // get quantity
52 public int getQuantity()
53 {
54 return quantity;
55 } // end method getQuantity
56
57 // set price per item
58 public void setPricePerItem(double price)
59 {
60 pricePerItem = (price < 0.0) ? 0.0 : price; // validate price
61 } // end method setPricePerItem
62
63 // get price per item
64 public double getPricePerItem()
65 {
66 return pricePerItem;
67 } // end method getPricePerItem
68
69 // return String representation of Invoice object
70 public String toString()
71 {
72 return String.format("%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",
73 "invoice", "part number", getPartNumber(), getPartDescription(),
74 "quantity", getQuantity(), "price per item", getPricePerItem());
75 } // end method toString
76
77
78
79
80
81
82 } // end class Invoice

Fig. 10.12 | Invoice class that implements Payable. (Part 2 of 2.)

// method required to carry out contract with interface Payable
public double getPaymentAmount()
{
 return getQuantity() * getPricePerItem(); // calculate total cost
} // end method getPaymentAmount

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

366 Chapter 10 Object-Oriented Programming: Polymorphism

face, use a comma-separated list of interface names after keyword implements in the class
declaration, as in:

public class ClassName extends SuperclassName implements FirstInterface,
 SecondInterface, …

All objects of a class that implement multiple interfaces have the is-a relationship with each
implemented interface type.

Class Invoice implements the one method in interface Payable. Method
getPaymentAmount is declared in lines 78–81. The method calculates the total payment
required to pay the invoice. The method multiplies the values of quantity and pricePer-
Item (obtained through the appropriate get methods) and returns the result (line 80). This
method satisfies the implementation requirement for this method in interface Payable—
we have fulfilled the interface contract with the compiler.

10.7.4 Modifying Class Employee to Implement Interface Payable
We now modify class Employee such that it implements interface Payable. Figure 10.13
contains the modified Employee class. This class declaration is identical to that of Fig. 10.4
with only two exceptions. First, line 4 of Fig. 10.13 indicates that class Employee now im-
plements interface Payable. Second, since Employee now implements interface Payable,
we must rename earnings to getPaymentAmount throughout the Employee hierarchy. As
with method earnings in the version of class Employee in Fig. 10.4, however, it does not
make sense to implement method getPaymentAmount in class Employee because we cannot
calculate the earnings payment owed to a general Employee—first we must know the spe-
cific type of Employee. In Fig. 10.4, we declared method earnings as abstract for this
reason, and as a result class Employee had to be declared abstract. This forced each Em-
ployee subclass to override earnings with a concrete implementation.

1 // Fig. 10.13: Employee.java
2 // Employee abstract superclass implements Payable.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {

Fig. 10.13 | Employee class that implements Payable. (Part 1 of 2.)

public abstract class Employee implements Payable

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.7 Case Study: Creating and Using Interfaces 367

In Fig. 10.13, we handle this situation differently. Recall that when a class implements
an interface, the class makes a contract with the compiler stating either that the class will
implement each of the methods in the interface or that the class will be declared abstract.
If the latter option is chosen, we do not need to declare the interface methods as abstract
in the abstract class—they are already implicitly declared as such in the interface. Any con-
crete subclass of the abstract class must implement the interface methods to fulfill the super-
class’s contract with the compiler. If the subclass does not do so, it too must be declared

21 firstName = first;
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last;
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41
42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 public String toString()
56 {
57 return String.format("%s %s\nsocial security number: %s",
58 getFirstName(), getLastName(), getSocialSecurityNumber());
59 } // end method toString
60
61
62
63 } // end abstract class Employee

Fig. 10.13 | Employee class that implements Payable. (Part 2 of 2.)

// Note: We do not implement Payable method getPaymentAmount here so
// this class must be declared abstract to avoid a compilation error.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

368 Chapter 10 Object-Oriented Programming: Polymorphism

abstract. As indicated by the comments in lines 61–62, class Employee of Fig. 10.13 does
not implement method getPaymentAmount, so the class is declared abstract. Each direct
Employee subclass inherits the superclass’s contract to implement method getPaymentAm-
ount and thus must implement this method to become a concrete class for which objects can
be instantiated. A class that extends one of Employee’s concrete subclasses will inherit an
implementation of getPaymentAmount and thus will also be a concrete class.

10.7.5 Modifying Class SalariedEmployee for Use in the Payable
Hierarchy
Figure 10.14 contains a modified version of class SalariedEmployee that extends Employ-
ee and fulfills superclass Employee’s contract to implement method getPaymentAmount of
interface Payable. This version of SalariedEmployee is identical to that of Fig. 10.5 with
the exception that the version here implements method getPaymentAmount (lines 30–33)
instead of method earnings. The two methods contain the same functionality but have
different names. Recall that the Payable version of the method has a more general name
to be applicable to possibly disparate classes. The remaining Employee subclasses (e.g.,
HourlyEmployee, CommissionEmployee and BasePlusCommissionEmployee) also must be
modified to contain method getPaymentAmount in place of earnings to reflect the fact
that Employee now implements Payable. We leave these modifications as an exercise and
use only SalariedEmployee in our test program in this section.

1 // Fig. 10.14: SalariedEmployee.java
2 // SalariedEmployee class extends Employee, which implements Payable.
3
4 public class SalariedEmployee extends Employee
5 {
6 private double weeklySalary;
7
8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21
22 // return salary
23 public double getWeeklySalary()
24 {
25 return weeklySalary;
26 } // end method getWeeklySalary

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 1 of 2.)

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.7 Case Study: Creating and Using Interfaces 369

When a class implements an interface, the same is-a relationship provided by inheri-
tance applies. For example, class Employee implements Payable, so we can say that an
Employee is a Payable. In fact, objects of any classes that extend Employee are also Payable
objects. SalariedEmployee objects, for instance, are Payable objects. As with inheritance
relationships, an object of a class that implements an interface may be thought of as an
object of the interface type. Objects of any subclasses of the class that implements the
interface can also be thought of as objects of the interface type. Thus, just as we can assign
the reference of a SalariedEmployee object to a superclass Employee variable, we can
assign the reference of a SalariedEmployee object to an interface Payable variable.
Invoice implements Payable, so an Invoice object also is a Payable object, and we can
assign the reference of an Invoice object to a Payable variable.

Software Engineering Observation 10.7
Inheritance and interfaces are similar in their implementation of the is-a relationship. An object
of a class that implements an interface may be thought of as an object of that interface type. An
object of any subclasses of a class that implements an interface also can be thought of as an object
of the interface type. 10.7

Software Engineering Observation 10.8
The is-a relationship that exists between superclasses and subclasses, and between interfaces and
the classes that implement them, holds when passing an object to a method. When a method
parameter receives a variable of a superclass or interface type, the method processes the object
received as an argument polymorphically. 10.8

Software Engineering Observation 10.9
Using a superclass reference, we can polymorphically invoke any method specified in the
superclass declaration (and in class Object). Using an interface reference, we can
polymorphically invoke any method specified in the interface declaration (and in class Object—
because a variable of an interface type must refer to an object to call methods, and all objects
contain the methods of class Object). 10.9

27
28
29
30
31
32
33
34
35 // return String representation of SalariedEmployee object
36 public String toString()
37 {
38 return String.format("salaried employee: %s\n%s: $%,.2f",
39 super.toString(), "weekly salary", getWeeklySalary());
40 } // end method toString
41 } // end class SalariedEmployee

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 2 of 2.)

// calculate earnings; implement interface Payable method that was
// abstract in superclass Employee
public double getPaymentAmount()
{
 return getWeeklySalary();
} // end method getPaymentAmount

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

370 Chapter 10 Object-Oriented Programming: Polymorphism

10.7.6 Using Interface Payable to Process Invoices and Employees
Polymorphically
PayableInterfaceTest (Fig. 10.15) illustrates that interface Payable can be used to pro-
cess a set of Invoices and Employees polymorphically in a single application. Line 9 de-
clares payableObjects and assigns it an array of four Payable variables. Lines 12–13
assign the references of Invoice objects to the first two elements of payableObjects. Lines
14–17 then assign the references of SalariedEmployee objects to the remaining two ele-
ments of payableObjects. These assignments are allowed because an Invoice is a Pay-
able, a SalariedEmployee is an Employee and an Employee is a Payable. Lines 23–29 use
the enhanced for statement to polymorphically process each Payable object in payab-
leObjects, printing the object as a String, along with the payment amount due. Note
that line 27 invokes method toString off a Payable interface reference, even though to-
String is not declared in interface Payable—all references (including those of interface
types) refer to objects that extend Object and therefore have a toString method. (Note
that toString also can be invoked implicitly here.) Line 28 invokes Payable method get-
PaymentAmount to obtain the payment amount for each object in payableObjects, regard-
less of the actual type of the object. The output reveals that the method calls in lines 27–
28 invoke the appropriate class’s implementation of methods toString and getPayment-
Amount. For instance, when currentEmployee refers to an Invoice during the first itera-
tion of the for loop, class Invoice’s toString and getPaymentAmount execute.

Software Engineering Observation 10.10
All methods of class Object can be called by using a reference of an interface type. A reference
refers to an object, and all objects inherit the methods of class Object. 10.10

1 // Fig. 10.15: PayableInterfaceTest.java
2 // Tests interface Payable.
3
4 public class PayableInterfaceTest
5 {
6 public static void main(String args[])
7 {
8 // create four-element Payable array
9

10
11 // populate array with objects that implement Payable
12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);
13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);
14 payableObjects[2] =
15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
16 payableObjects[3] =
17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);
18
19 System.out.println(
20 "Invoices and Employees processed polymorphically:\n");
21

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 1 of 2.)

Payable payableObjects[] = new Payable[4];

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.7 Case Study: Creating and Using Interfaces 371

10.7.7 Declaring Constants with Interfaces
As we mentioned an interface can declare constants. The constants are implicitly public,
static and final—again, these keywords are not required in the interface declaration.
One popular use of an interface is to declare a set of constants that can be used in many
class declarations. Consider interface Constants:

public interface Constants
{
 int ONE = 1;
 int TWO = 2;
 int THREE = 3;
}

A class can use these constants by importing the interface, then referring to each constant
as Constants.ONE, Constants.TWO and Constants.THREE. Note that a class can refer to
the imported constants with just their names (i.e., ONE, TWO and THREE) if it uses a static
import declaration (presented in Section 8.12) to import the interface.

22 // generically process each element in array payableObjects
23 for (Payable currentPayable : payableObjects)
24 {
25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%s \n%s: $%,.2f\n\n",
27 ,
28 "payment due",);
29 } // end for
30 } // end main
31 } // end class PayableInterfaceTest

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

invoice:
part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 2 of 2.)

currentPayable.toString()
currentPayable.getPaymentAmount()

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

372 Chapter 10 Object-Oriented Programming: Polymorphism

Software Engineering Observation 10.11
As of Java SE 5.0, it became a better programming practice to create sets of constants as
enumerations with keyword enum. See Section 6.10 for an introduction to enum and Section 8.9
for additional enum details. 10.11

10.7.8 Common Interfaces of the Java API
In this section, we overview several common interfaces found in the Java API. The power
and flexibility of interfaces is used frequently throughout the Java API. These interfaces
are implemented and used in the same manner as the interfaces you create (e.g., interface
Payable in Section 10.7.2). As you’ll see throughout this book, the Java API’s interfaces
enable you to use your own classes within the frameworks provided by Java, such as com-
paring objects of your own types and creating tasks that can execute concurrently with oth-
er tasks in the same program. Figure 10.16 presents a brief overview of a few of the more
popular interfaces of the Java API.

Interface Description

Comparable As you learned in Chapter 2, Java contains several comparison operators
(e.g., <, <=, >, >=, ==, !=) that allow you to compare primitive values.
However, these operators cannot be used to compare the contents of
objects. Interface Comparable is used to allow objects of a class that
implements the interface to be compared to one another. The interface
contains one method, compareTo, that compares the object that calls the
method to the object passed as an argument to the method. Classes must
implement compareTo such that it returns a value indicating whether the
object on which it is invoked is less than (negative integer return value),
equal to (0 return value) or greater than (positive integer return value)
the object passed as an argument, using any criteria specified by the pro-
grammer. For example, if class Employee implements Comparable, its
compareTo method could compare Employee objects by their earnings
amounts. Interface Comparable is commonly used for ordering objects in
a collection such as an array. We use Comparable in Chapter 15, Gener-
ics, and Chapter 16, Collections.

Serializable An interface used to identify classes whose objects can be written to (i.e.,
serialized) or read from (i.e., deserialized) some type of storage (e.g., file
on disk, database field) or transmitted across a network. We use Serial-
izable in Chapter 14, Files and Streams, and Chapter 19, Networking.

Runnable Implemented by any class for which objects of that class should be able
to execute in parallel using a technique called multithreading (discussed
in Chapter 18, Multithreading). The interface contains one method,
run, which describes the behavior of an object when executed.

GUI event-listener
interfaces

You work with graphical user interfaces (GUIs) every day. For example,
in your web browser, you might type in a text field the address of a web-
site to visit, or you might click a button to return to the previous site you

Fig. 10.16 | Common interfaces of the Java API. (Part 1 of 2.)

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.8 Incorporating Inheritance into the ATM System 373

10.8 (Optional) Software Engineering Case Study:
Incorporating Inheritance into the ATM System
We now revisit our ATM system design to see how it might benefit from inheritance. To
apply inheritance, we first look for commonality among classes in the system. We create
an inheritance hierarchy to model similar (yet not identical) classes in a more elegant and
efficient manner. We then modify our class diagram to incorporate the new inheritance
relationships. Finally, we demonstrate how our updated design is translated into Java code.

In Section 3.9, we encountered the problem of representing a financial transaction in
the system. Rather than create one class to represent all transaction types, we decided to
create three individual transaction classes—BalanceInquiry, Withdrawal and Deposit—
to represent the transactions that the ATM system can perform. Figure 10.17 shows the
attributes and operations of classes BalanceInquiry, Withdrawal and Deposit. Note that
these classes have one attribute (accountNumber) and one operation (execute) in
common. Each class requires attribute accountNumber to specify the account to which the

visited. When you type a website address or click a button in the web
browser, the browser must respond to your interaction and perform the
desired task for you. Your interaction is known as an event, and the code
that the browser uses to respond to an event is known as an event han-
dler. In Chapter 11, GUI Components: Part 1, and Chapter 17, GUI
Components: Part 2, you’ll learn how to build Java GUIs and how to
build event handlers to respond to user interactions. The event handlers
are declared in classes that implement an appropriate event-listener inter-
face. Each event-listener interface specifies one or more methods that
must be implemented to respond to user interactions.

SwingConstants Contains constants used in GUI programming to position GUI elements
on the screen. We explore GUI programming in Chapters 11 and 17.

Fig. 10.17 | Attributes and operations of classes BalanceInquiry, Withdrawal and
Deposit.

Interface Description

Fig. 10.16 | Common interfaces of the Java API. (Part 2 of 2.)

BalanceInquiry

- accountNumber : Integer

Withdrawal

- accountNumber : Integer
- amount : Double

Deposit

- accountNumber : Integer
- amount : Double

+ execute()

+ execute() + execute()

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

374 Chapter 10 Object-Oriented Programming: Polymorphism

transaction applies. Each class contains operation execute, which the ATM invokes to per-
form the transaction. Clearly, BalanceInquiry, Withdrawal and Deposit represent types
of transactions. Figure 10.17 reveals commonality among the transaction classes, so using
inheritance to factor out the common features seems appropriate for designing classes Bal-
anceInquiry, Withdrawal and Deposit. We place the common functionality in a super-
class, Transaction, that classes BalanceInquiry, Withdrawal and Deposit extend.

The UML specifies a relationship called a generalization to model inheritance.
Figure 10.18 is the class diagram that models the generalization of superclass Transaction
and subclasses BalanceInquiry, Withdrawal and Deposit. The arrows with triangular
hollow arrowheads indicate that classes BalanceInquiry, Withdrawal and Deposit extend
class Transaction. Class Transaction is said to be a generalization of classes BalanceIn-
quiry, Withdrawal and Deposit. Class BalanceInquiry, Withdrawal and Deposit are
said to be specializations of class Transaction.

 Classes BalanceInquiry, Withdrawal and Deposit share integer attribute account-
Number, so we factor out this common attribute and place it in superclass Transaction.
We no longer list accountNumber in the second compartment of each subclass, because the
three subclasses inherit this attribute from Transaction. Recall, however, that subclasses
cannot access private attributes of a superclass. We therefore include public method
getAccountNumber in class Transaction. Each subclass will inherit this method, enabling
the subclass to access its accountNumber as needed to execute a transaction.

According to Fig. 10.17, classes BalanceInquiry, Withdrawal and Deposit also share
operation execute, so we decided that superclass Transaction should contain public
method execute. However, it does not make sense to implement execute in class Trans-
action, because the functionality that this method provides depends on the type of the
actual transaction. We therefore declare method execute as abstract in superclass Trans-
action. Any class that contains at least one abstract method must also be declared
abstract. This forces any subclass of Transaction that must be a concrete class (i.e., Bal-
anceInquiry, Withdrawal and Deposit) to implement method execute. The UML
requires that we place abstract class names (and abstract methods) in italics, so Transac-
tion and its method execute appear in italics in Fig. 10.18. Note that method execute
is not italicized in subclasses BalanceInquiry, Withdrawal and Deposit. Each subclass
overrides superclass Transaction’s execute method with a concrete implementation that
performs the steps appropriate for completing that type of transaction. Note that
Fig. 10.18 includes operation execute in the third compartment of classes BalanceIn-
quiry, Withdrawal and Deposit, because each class has a different concrete implementa-
tion of the overridden method.

Incorporating inheritance provides the ATM with an elegant way to execute all transac-
tions “in the general.” For example, suppose a user chooses to perform a balance inquiry.
The ATM sets a Transaction reference to a new object of class BalanceInquiry. When the
ATM uses its Transaction reference to invoke method execute, BalanceInquiry’s version
of execute is called.

This polymorphic approach also makes the system easily extensible. Should we wish
to create a new transaction type (e.g., funds transfer or bill payment), we would just create
an additional Transaction subclass that overrides the execute method with a version of
the method appropriate for executing the new transaction type. We would need to make
only minimal changes to the system code to allow users to choose the new transaction type

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.8 Incorporating Inheritance into the ATM System 375

from the main menu and for the ATM to instantiate and execute objects of the new subclass.
The ATM could execute transactions of the new type using the current code, because it exe-
cutes all transactions polymorphically using a general Transaction reference.

An abstract class like Transaction is one for which the programmer never intends to
instantiate objects. An abstract class simply declares common attributes and behaviors of
its subclasses in an inheritance hierarchy. Class Transaction defines the concept of what
it means to be a transaction that has an account number and executes. You may wonder
why we bother to include abstract method execute in class Transaction if it lacks a con-
crete implementation. Conceptually, we include this method because it corresponds to the
defining behavior of all transactions—executing. Technically, we must include method
execute in superclass Transaction so that the ATM (or any other class) can polymorphic-
ally invoke each subclass’s overridden version of this method through a Transaction ref-
erence. Also, from a software engineering perspective, including an abstract method in a
superclass forces the implementor of the subclasses to override that method with concrete
implementations in the subclasses, or else the subclasses, too, will be abstract, preventing
objects of those subclasses from being instantiated.

Subclasses BalanceInquiry, Withdrawal and Deposit inherit attribute account-
Number from superclass Transaction, but classes Withdrawal and Deposit contain the
additional attribute amount that distinguishes them from class BalanceInquiry. Classes
Withdrawal and Deposit require this additional attribute to store the amount of money
that the user wishes to withdraw or deposit. Class BalanceInquiry has no need for such
an attribute and requires only an account number to execute. Even though two of the three
Transaction subclasses share this attribute, we do not place it in superclass Transac-
tion—we place only features common to all the subclasses in the superclass, otherwise
subclasses could inherit attributes (and methods) that they do not need and should not
have.

Figure 10.19 presents an updated class diagram of our model that incorporates inher-
itance and introduces class Transaction. We model an association between class ATM and
class Transaction to show that the ATM, at any given moment is either executing a trans-

Fig. 10.18 | Class diagram modeling generalization of superclass Transaction and
subclasses BalanceInquiry, Withdrawal and Deposit. Note that abstract class names (e.g.,
Transaction) and method names (e.g., execute in class Transaction) appear in italics.

Transaction

– accountNumber : Integer

BalanceInquiry

+ getAccountNumber()
+ execute()

+ execute()

Withdrawal

+ execute()

– amount : Double

Deposit

+ execute()

– amount : Double

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

376 Chapter 10 Object-Oriented Programming: Polymorphism

action or it is not (i.e., zero or one objects of type Transaction exist in the system at a
time). Because a Withdrawal is a type of Transaction, we no longer draw an association
line directly between class ATM and class Withdrawal. Subclass Withdrawal inherits super-
class Transaction’s association with class ATM. Subclasses BalanceInquiry and Deposit
inherit this association, too, so the previously omitted associations between ATM and classes
BalanceInquiry and Deposit no longer exist either.

 We also add an association between class Transaction and the BankDatabase
(Fig. 10.19). All Transactions require a reference to the BankDatabase so they can access
and modify account information. Because each Transaction subclass inherits this refer-
ence, we no longer model the association between class Withdrawal and the BankData-
base. Similarly, the previously omitted associations between the BankDatabase and classes
BalanceInquiry and Deposit no longer exist.

We show an association between class Transaction and the Screen. All Transac-
tions display output to the user via the Screen. Thus, we no longer include the association
previously modeled between Withdrawal and the Screen, although Withdrawal still par-
ticipates in associations with the CashDispenser and the Keypad. Our class diagram incor-
porating inheritance also models Deposit and BalanceInquiry. We show associations
between Deposit and both the DepositSlot and the Keypad. Note that class BalanceIn-

Fig. 10.19 | Class diagram of the ATM system (incorporating inheritance). Note that
abstract class names (e.g., Transaction) appear in italics.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

11

1

0..1

0..11
0..1

0..1 0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Transaction

BalanceInquiry

Withdrawal
DepositSlot

ATM

CashDispenser

Screen

Deposit

Account

BankDatabase

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.8 Incorporating Inheritance into the ATM System 377

quiry takes part in no associations other than those inherited from class Transaction—a
BalanceInquiry needs to interact only with the BankDatabase and with the Screen.

The class diagram of Fig. 8.21 showed attributes and operations with visibility
markers. Now we present a modified class diagram that incorporates inheritance in
Fig. 10.20. This abbreviated diagram does not show inheritance relationships, but instead
shows the attributes and methods after we have employed inheritance in our system. To
save space, as we did in Fig. 4.16, we do not include those attributes shown by associations
in Fig. 10.19—we do, however, include them in the Java implementation in Appendix H.
We also omit all operation parameters, as we did in Fig. 8.21—incorporating inheritance
does not affect the parameters already modeled in Figs. 6.27–6.30.

Fig. 10.20 | Class diagram with attributes and operations (incorporating inheritance). Note
that abstract class names (e.g., Transaction) and method names (e.g., execute in class
Transaction) appear in italics.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad
Withdrawal

– amount : Double

BankDatabase

Deposit

– amount : Double

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

Account

– accountNumber : Integer
– pin : Integer
– availableBalance : Double
– totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

+ execute()

Transaction

– accountNumber : Integer

+ getAccountNumber()
+ execute()

+ execute()

+ displayMessage()

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer

+ execute()

+ isEnvelopeReceived() : Boolean

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

378 Chapter 10 Object-Oriented Programming: Polymorphism

Software Engineering Observation 10.12
A complete class diagram shows all the associations among classes and all the attributes and
operations for each class. When the number of class attributes, methods and associations is
substantial, a good practice that promotes readability is to divide this information between two
class diagrams—one focusing on associations and the other on attributes and methods. 10.12

Implementing the ATM System Design (Incorporating Inheritance)
In Section 8.18, we began implementing the ATM system design. We now modify our
implementation to incorporate inheritance, using class Withdrawal as an example.

1. If a class A is a generalization of class B, then class B extends class A in the class
declaration. For example, abstract superclass Transaction is a generalization of
class Withdrawal. Figure 10.21 contains the shell of class Withdrawal containing
the appropriate class declaration.

2. If class A is an abstract class and class B is a subclass of class A, then class B must im-
plement the abstract methods of class A if class B is to be a concrete class. For exam-
ple, class Transaction contains abstract method execute, so class Withdrawal
must implement this method if we want to instantiate a Withdrawal object.
Figure 10.22 is the Java code for class Withdrawal from Fig. 10.19 and Fig. 10.20.
Class Withdrawal inherits field accountNumber from superclass Transaction, so
Withdrawal does not need to declare this field. Class Withdrawal also inherits ref-
erences to the Screen and the BankDatabase from its superclass Transaction, so
we do not include these references in our code. Figure 10.20 specifies attribute
amount and operation execute for class Withdrawal. Line 6 of Fig. 10.22 declares
a field for attribute amount. Lines 16–18 declare the shell of a method for operation
execute. Recall that subclass Withdrawal must provide a concrete implementation
of the abstract method execute in superclass Transaction. The keypad and
cashDispenser references (lines 7–8) are fields derived from Withdrawal’s associ-
ations in Fig. 10.19. [Note: The constructor in the complete working version of
this class will initialize these references to actual objects.]

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal extends Transaction
3 {
4 } // end class Withdrawal

Fig. 10.21 | Java code for shell of class Withdrawal.

1 // Withdrawal.java
2 // Generated using the class diagrams in Fig. 10.21 and Fig. 10.22
3 public class Withdrawal extends Transaction
4 {
5 // attributes
6 private double amount; // amount to withdraw
7 private Keypad keypad; // reference to keypad
8 private CashDispenser cashDispenser; // reference to cash dispenser

Fig. 10.22 | Java code for class Withdrawal based on Figs. 10.19 and 10.20. (Part 1 of 2.)

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

10.8 Incorporating Inheritance into the ATM System 379

Software Engineering Observation 10.13
Several UML modeling tools convert UML-based designs into Java code and can speed the
implementation process considerably. For more information on these tools, refer to the web
resources listed at the end of Section 2.8. 10.13

Congratulations on completing the design portion of the case study! We completely
implement the ATM system in 670 lines of Java code in Appendix H. We recommend
that you carefully read the code and its description. The code is abundantly commented
and precisely follows the design with which you are now familiar. The accompanying
description is carefully written to guide your understanding of the implementation based
on the UML design. Mastering this code is a wonderful culminating accomplishment after
studying Chapters 1–8.

Software Engineering Case Study Self-Review Exercises
10.1 The UML uses an arrow with a to indicate a generalization relationship.

a) solid filled arrowhead
b) triangular hollow arrowhead
c) diamond-shaped hollow arrowhead
d) stick arrowhead

10.2 State whether the following statement is true or false, and if false, explain why: The UML
requires that we underline abstract class names and method names.

10.3 Write Java code to begin implementing the design for class Transaction specified in
Figs. 10.19 and 10.20. Be sure to include private reference-type attributes based on class Transac-
tion’s associations. Also be sure to include public get methods that provide access to any of these
private attributes that the subclasses require to perform their tasks.

Answers to Software Engineering Case Study Self-Review Exercises
10.1 b.

10.2 False. The UML requires that we italicize abstract class names and method names.

10.3 The design for class Transaction yields the code in Fig. 10.23. The bodies of the class con-
structor and methods will be completed in Appendix H. When fully implemented, methods
getScreen and getBankDatabase will return superclass Transaction’s private reference attributes
screen and bankDatabase, respectively. These methods allow the Transaction subclasses to access
the ATM’s screen and interact with the bank’s database.

9
10 // no-argument constructor
11 public Withdrawal()
12 {
13 } // end no-argument Withdrawal constructor
14
15 // method overriding execute
16 public void execute()
17 {
18 } // end method execute
19 } // end class Withdrawal

Fig. 10.22 | Java code for class Withdrawal based on Figs. 10.19 and 10.20. (Part 2 of 2.)

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

380 Chapter 10 Object-Oriented Programming: Polymorphism

10.9 Wrap-Up
This chapter introduced polymorphism—the ability to process objects that share the same
superclass in a class hierarchy as if they are all objects of the superclass. The chapter dis-
cussed how polymorphism makes systems extensible and maintainable, then demonstrated
how to use overridden methods to effect polymorphic behavior. We introduced abstract
classes, which allow programmers to provide an appropriate superclass from which other
classes can inherit. You learned that an abstract class can declare abstract methods that each
subclass must implement to become a concrete class and that a program can use variables
of an abstract class to invoke the subclasses’ implementations of abstract methods poly-
morphically. You also learned how to determine an object’s type at execution time. Final-
ly, the chapter discussed declaring and implementing an interface as another way to
achieve polymorphic behavior.

You should now be familiar with classes, objects, encapsulation, inheritance, inter-
faces and polymorphism—the most essential aspects of object-oriented programming. In
the next chapter, we take a deeper look at graphical user interfaces (GUIs).

1 // Abstract class Transaction represents an ATM transaction
2 public abstract class Transaction
3 {
4 // attributes
5 private int accountNumber; // indicates account involved
6 private Screen screen; // ATM’s screen
7 private BankDatabase bankDatabase; // account info database
8
9 // no-argument constructor invoked by subclasses using super()

10 public Transaction()
11 {
12 } // end no-argument Transaction constructor
13
14 // return account number
15 public int getAccountNumber()
16 {
17 } // end method getAccountNumber
18
19 // return reference to screen
20 public Screen getScreen()
21 {
22 } // end method getScreen
23
24 // return reference to bank database
25 public BankDatabase getBankDatabase()
26 {
27 } // end method getBankDatabase
28
29 // abstract method overridden by subclasses
30 public abstract void execute();
31 } // end class Transaction

Fig. 10.23 | Java code for class Transaction based on Figs. 10.19 and 10.20.

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

