Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

Sun Microsystems, Inc., has intellectual property rights relating to implementations of the technology described in this publication. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents, foreign patents, or pending applications. Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Solaris, Java, Juvat, Java Card, NetBeans, and all Sun and Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Watanabe, Scott.
Solaris 10 ZFS essentials / Scott Watanabe.
p. cm.
Includes index.
I. Title.
QA76.9.F5W38 2009
005.74—dc22
2009044423

Copyright © 2010 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054 U.S.A.
All rights reserved.

Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.

For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, December 2009
Preface

Solaris™ 10 ZFS Essentials is part of a new series of books on Solaris system administration. It presents the revolutionary ZFS file system that was introduced in the Solaris 10 release. ZFS is a file system that is elegant in its simplicity and in the ease with which it allows system administrators to manage data and storage. Other books in the series are Solaris™ 10 System Administration Essentials and Solaris™ 10 Security Essentials. The former covers all the breakthrough features of the Solaris 10 operating system in one place, and the latter covers all the features of the Solaris 10 operating system that make it the best choice for meeting the present-day challenges to robust and secure computing.

ZFS offers a dramatic advance in data management with an innovative approach to data integrity, near-zero administration, and a welcome integration of file system and volume management capabilities. The centerpiece of this new architecture is the concept of a virtual storage pool, which decouples the file system from physical storage in the same way that virtual memory abstracts the address space from physical memory, allowing for much more efficient use of storage devices.

In ZFS, storage space is shared dynamically between multiple file systems from a single storage pool and is parceled out of the pool as file systems request it. Physical storage can be added to storage pools dynamically without interrupting services, which provides new levels of flexibility, availability, and performance. And in terms of scalability, ZFS is a 128-bit file system. Its theoretical limits are truly mind-boggling—2,128 bytes of storage and 264 for everything else, including file
systems, snapshots, directory entries, devices, and more. And ZFS implements an improvement on RAID-5 by introducing RAID-Z, which uses parity, striping, and atomic operations to ensure reconstruction of corrupted data. It is ideally suited for managing industry-standard storage servers.

Books in the Solaris System Administration Series

The following sections talk more about the other two books in the series.

Solaris™ 10 System Administration Essentials

Solaris™ 10 System Administration Essentials covers all the breakthrough features of the Solaris 10 operating system in one place. It does so in a straightforward way that makes an enterprise-level operating system accessible to system administrators at all levels.

The book provides a comprehensive overview along with hands-on examples of the key features that have made Solaris the leading UNIX operating system for years, and it covers the significant new features of Solaris 10 that put it far ahead of its competitors, such as Zones, the ZFS file system, Fault Management Architecture, Service Management Facility, and DTrace (the dynamic tracing tool for troubleshooting OS and application problems on production systems in real time).

Solaris™ 10 Security Essentials

Solaris™ 10 Security Essentials covers all the security features and technologies in the Solaris 10 operating system that make it the OS of choice for IT environments that require optimum security.

The book explains the strengths of Solaris operating system security—its scalability and adaptability—in a simple, straightforward way. It explains how security features in Solaris can protect a single-user system with login authentication as well as how those features can protect Internet and intranet configurations.

Intended Audience

The three books in the Solaris System Administration Series can benefit anyone who wants to learn more about the Solaris 10 operating system. They are written to be particularly accessible to system administrators who are new to Solaris, as
well as to people who are perhaps already serving as administrators in companies running Linux, Windows, and other UNIX systems.

If you are not currently a practicing system administrator but want to become one, this series, starting with *Solaris™ 10 System Administration Essentials*, provides an excellent introduction. In fact, most of the examples used in the books are suited to or can be adapted to small learning environments such as a home setup. So, even before you venture into corporate system administration or deploy Solaris 10 in your existing IT installation, these books will help you experiment in a small test environment.

OpenSolaris

In June 2005, Sun Microsystems introduced OpenSolaris, a fully functional Solaris operating system release built from open source. Although the books in this series focus on Solaris 10, they often incorporate aspects of OpenSolaris. Now that Solaris has been open-sourced, its evolution has accelerated even beyond its normally rapid pace. The authors of this series have often found it interesting to introduce features or nuances that are new in OpenSolaris. At the same, many of the enhancements introduced into OpenSolaris are finding their way into Solaris 10. So, whether you are learning Solaris 10 or already have an eye on OpenSolaris, the books in this series are for you.
Managing Storage Pools

ZFS storage pools are the basis of the ZFS system. In this chapter, I cover the basic concepts, configurations, and administrative tasks of ZFS pools. In Chapter 5, I cover advanced configuration topics in ZFS pool administration.

The `zpool` command manages ZFS storage pools. The `zpool` command creates, modifies, and destroys ZFS pools.

Redundant configurations supported in ZFS are mirror (RAID-1), RAID-Z (similar to RAID-5), and RAID-Z2 with a double parity (similar to RAID-6). All traditional RAID-5-like algorithms (RAID-4, RAID-6, RDP, and EVEN-ODD, for example) suffer from a problem known as the **RAID-5 write hole**. If only part of a RAID-5 stripe is written and power is lost before all blocks have made it to disk, the parity will remain out of sync with the data (and is therefore useless) forever, unless a subsequent full-stripe write overwrites it. In RAID-Z, ZFS uses variable-width RAID stripes so that all writes are full-stripe writes. This design is possible only because ZFS integrates file system and device management in such a way that the file system’s metadata has enough information about the underlying data redundancy model to handle variable-width RAID stripes. RAID-Z is the world’s first software-only solution to the RAID-5 write hole.

2.1 ZFS Pool Concepts

ZFS pools are comprised of virtual devices. ZFS abstracts every physical device into a virtual device. A vdev can be a disk, a slice of a disk, a file, or even a logical
volume presented by another volume manager such as Solaris Volume Manager (SVM) or a LUN from a hardware RAID device.

These are the virtual devices types:

- **Dynamic stripe**: A dynamic stripe is a nonredundant configuration of a simple disk or concatenation of disks.

- **Redundant group (mirror, RAID-Z1, or RAID-Z2)**: A mirror can be a two-way or three-way mirror. RAID-Z groups are recommended to have up to nine disks in the group. If there are more, then multiple vdevs are recommended. Two disks minimum are needed for RAID-Z, and three disks at a minimum are needed for RAID-Z2. (Note that RAID-Z and RAID-Z1 are interchangeable terms. With the introduction of the RAID-Z2 feature, the term RAID-Z evolved into RAID-Z1 to differentiate it from RAID-Z2. I use both terms in this book.)

- **Spare**: A spare vdev is for a hot standby disk replacement.

- **Log**: A log vdev is for ZFS Intent Log (ZIL). The ZIL increases the write performance on ZFS. Only dynamic stripe and mirrored vdev configurations are supported for this vdev type.

- **Cache**: A cache vdev is used to speed up random reads from a RAID-Z-configured pool. Its intended use is for read-heavy workloads. There is no redundancy support at this point for this vdev type. If there is a read error, then ZFS will read from the original storage pool.

Log and cache vdevs are used with solid-state disks (SSDs) in the Sun Storage 7000 series in hybrid storage pools (HSPs; see http://blogs.sun.com/ahl/entry/fishworks_launch).

Best-practice guidelines for ZFS pools include the following:

- Mirrored configuration beyond a three-way mirror should not be used. Think about using a RAID-Z configuration instead.

- Use RAID-Z or RAID-Z2 virtual device groups with fewer than ten disks in each vdev.

- Using whole disks is best. ZFS works best with “just a bunch of disks” (JBOD).

- Use slices for vdev groups only for boot disks.

- Use disks of a terabyte or less for boot devices.

- Use matched-capacity disks (mixed geometry is OK) for the best maximum storage results.

- Use matching sizes of vdevs in a ZFS pool. Match the number of disks and redundancy groups in each vdev in a pool for best performance.
Creating adding new vdevs to a ZFS pool is the most unforgiving part about ZFS. Once committed, some operations cannot be undone. The zpool command will warn you, however, if the operation is not what’s expected. There is a force option in zpool to bypass any of the warnings, but it is not recommended that you use the force option unless you are sure you will not need to reverse the operation.

These are the rules for ZFS pools:

- Once a normal (dynamic stripe) vdev is added to a ZFS pool, it cannot be removed.
- Only the special-use vdevs can be removed: spares, log, and cache.
- Disks the same size or larger can be replaced within a vdev.
- Disks can be added to a single disk or mirrored vdev to form a mirror or a three-way mirror.
- New disks cannot be added to an existing RAID-Z or RAID-Z2 vdev configuration.

2.2 Creating a Dynamic Stripe

A dynamic stripe is the most basic pool that can be created. There is no redundancy in this configuration. If any disk fails, then the whole pool is lost. Any pool created with multiple vdevs will dynamically stripe across each vdev or physical device.

You can use the zpool command with the subcommand to create a dynamic stripe. After the create subcommand is the name of the new ZFS pool, dstripe, and the disks that will comprise the pool.

```
# zpool create dstripe c5t0d0 c5t1d0
```

The following listing presents the results of creating the ZFS pool dstripe. On line 2, zpool list is executed to list all the ZFS pools on the system. Line 3 starts a list of the available pools. The command gives you general information about the ZFS pools.

<table>
<thead>
<tr>
<th></th>
<th>NAME</th>
<th>SIZE</th>
<th>USED</th>
<th>AVAIL</th>
<th>CAP</th>
<th>HEALTH</th>
<th>ALTROOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dstripe</td>
<td>234M</td>
<td>75K</td>
<td>234M</td>
<td>0%</td>
<td>ONLINE</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>rpool</td>
<td>15.9G</td>
<td>3.21G</td>
<td>12.7G</td>
<td>20%</td>
<td>ONLINE</td>
<td>-</td>
</tr>
</tbody>
</table>

Next on line 6, zpool status is issued to inquire about the status of the ZFS pools. Starting at line 7, the status of the ZFS pool dstripe is displayed, with a normal status. Reading the config: section of the output starting at line 10, the pool
dstripe is shown as two concatenated disks. Lines 14 and 15 list the vdevs (c5t0d0 and c5t1d0) that belong to the pool dstripe. The second pool listed is made of a single disk called rpool, configured as a dynamic stripe with only a single vdev (c3d0s0). It was created as part of the OS installation process.

```
# zpool status
pool: dstripe
 state: ONLINE
 scrub: none requested
 config:
        NAME        STATE     READ WRITE CKSUM
           dstripe     ONLINE       0     0     0
           c5t0d0    ONLINE       0     0     0
           c5t1d0    ONLINE       0     0     0
errors: No known data errors

pool: rpool
 state: ONLINE
 scrub: none requested
 config:
        NAME        STATE     READ WRITE CKSUM
           rpool       ONLINE       0     0     0
           c3d0s0    ONLINE       0     0     0
errors: No known data errors
```

Figure 2.1 illustrates the resulting dynamic pool with its two vdevs of single nonredundant disks. Any problems with the disks (sector errors or disk failure) may result in the loss of the whole pool or data.

![Figure 2.1 Dynamic stripe pool with two vdevs](image.png)
2.3 Creating a Pool with Mirrored Devices

The following command creates a ZFS mirrored pool called `mpool` with a mirrored vdev. As expected, the new pool `mpool` is about half the capacity of `dstripe`. The pool `dstripe` is a concatenation of two disks of the same capacity, and `mpool` is a mirror of a disk of the same capacity.

The following command line shows how to use the `zpool` command with the subcommand `create` to create a pool with mirrored vdevs. After the `create` subcommand is the name of the new ZFS pool, `mpool`. The `mirror` subcommand will create a mirrored vdev with the disks `c5t2d0` and `c5t3d0`.

```
# zpool create mpool mirror c5t2d0 c5t3d0
```

The following output is the creation of a mirrored ZFS pool called `mpool`. Using the `zpool list` command, you now can see the capacity of the newly created pool on line 5. Notice it is half the capacity of the `dstripe` pool.

```
NAME    SIZE   USED  AVAIL    CAP  HEALTH  ALTROOT
-------- -------- ------ ------- ---- -------
dstripe  234M    75K   234M     0%  ONLINE  -
mpool    117M   73.5K  117M     0%  ONLINE  -
rpool    15.9G   3.21G  12.7G    20%  ONLINE  -
```

Starting at line 20 (in the following part of the listing) is the status information of `mpool`. The disks `c5t2d0` and `c5t3d0` are configured as a mirror vdev, and the mirror is part of `mpool`. This is an important concept in reading the status information of ZFS pools. Notice the indentations on the pool name notations. The first is the name of the ZFS pool. Then at the first indentation of the name are the vdevs that are part of the pool. In the case of a dynamic stripe, this is the physical device. If the pool is created with redundant vdev(s), the first indentation will be `mirror`, `raidz1`, or `raidz2`. Then the next indentation will be the physical devices that comprise the redundant vdev. On lines 13 and 25 are the names `dstripe` and `mpool`, respectively. On lines 14 and 15 are the disks that belong to `dstripe` on the first indentation. On line 25 is the mirror configuration, and the next indented line lists the disks belonging to the mirror configuration. Compare Figures 2.1 and 2.2 for a graphical representation of each pool's configuration.

```
# zpool status
pool: dstripe
state: ONLINE
scrub: none requested
config:
```
Chapter 2 • Managing Storage Pools

Figure 2.2 illustrates the results of creating the ZFS pool mpool with one mirrored vdev.

![Figure 2.2 Pool mpool with a mirrored vdev](image)

The following sequence adds a second mirror vdev to the pool, doubling the size of pool mpool. Notice that after the addition of the second mirror vdev, the dstripe and mpool pools are the same capacity. Line 30 is the mirrored vdev with the physical disks c5t4d0 and c5t5d0 indented.

```
1. # zpool add mpool mirror c5t4d0 c5t5d0
2. # zpool list
3. NAME      SIZE   USED  AVAIL    CAP  HEALTH  ALTROOT
4. dstripe   234M    75K   234M     0%  ONLINE  -
      continues
```
2.4 CREATING A POOL WITH RAID-Z DEVICES

In ZFS you can also create redundant vdevs similar to RAID-5, called RAID-Z. To create a pool with double parity, you would use RAID-Z2 instead.

The following command line will create a ZFS pool named `rzpool` with two RAID-Z1 vdevs, each with four disks:

```
# zpool create rzpool raidz1 c5t6d0 c5t7d0 c5t8d0 c5t9d0 raidz1
c5t10d0 c5t11d0 c5t12d0 c5t13d0
```

The first RAID-Z1 vdev consists of disks c5t6d0, c5t7d0, c5t8d0, and c5t9d0, and the second RAID-Z1 vdev has c5t6d0, c5t7d0, c5t8d0, and c5t9d0 as members.

Figure 2.3 shows the results of adding a second mirrored vdev to ZFS pool `mpool`.

2.4 Creating a Pool with RAID-Z Devices

In ZFS you can also create redundant vdevs similar to RAID-5, called RAID-Z. To create a pool with double parity, you would use RAID-Z2 instead.

The following command line will create a ZFS pool named `rzpool` with two RAID-Z1 vdevs, each with four disks:

```
# zpool create rzpool raidz1 c5t6d0 c5t7d0 c5t8d0 c5t9d0 raidz1
c5t10d0 c5t11d0 c5t12d0 c5t13d0
```

The first RAID-Z1 vdev consists of disks c5t6d0, c5t7d0, c5t8d0, and c5t9d0, and the second RAID-Z1 vdev has c5t6d0, c5t7d0, c5t8d0, and c5t9d0 as members.
The `zpool list` command shows the summary status of the new pool `rzpool`. The output of `zpool status`, on lines 16 and 21, shows the RAID-Z1 virtual devices and physical disk devices that make up each RAID-Z1 virtual device.

```bash
# zpool create rzpool raidz1 c5t6d0 c5t7d0 c5t8d0 c5t9d0
# raidz1 c5t10d0 c5t11d0 c5t12d0 c5t13d0
# zpool list
NAME      SIZE   USED  AVAIL    CAP  HEALTH  ALTROOT
dstripe   234M    75K   234M     0%  ONLINE  -
mpool     234M    78K   234M     0%  ONLINE  -
rrpool    15.9G  3.21G  12.7G    20%  ONLINE  -
rzpool    936M   138K   936M     0%  ONLINE  -
# zpool status
...lines deleted...
pool: rzpool
  state: ONLINE
  scrub: none requested
  config:
  NAME      STATE     READ WRITE CKSUM
  rzpool    ONLINE       0     0     0
  raidz1    ONLINE       0     0     0
  c5t6d0    ONLINE       0     0     0
  c5t7d0    ONLINE       0     0     0
  c5t8d0    ONLINE       0     0     0
  c5t9d0    ONLINE       0     0     0
  raidz1    ONLINE       0     0     0
  c5t10d0   ONLINE       0     0     0
  c5t11d0   ONLINE       0     0     0
  c5t12d0   ONLINE       0     0     0
  c5t13d0   ONLINE       0     0     0
errors: No known data errors
```
Figure 2.4 has two RAID-Z1 vdevs with four physical disks to each vdev. The vdevs are concatenated to form the ZFS pool rzpool.

2.5 Creating a Spare in a Storage Pool

You can add spare vdevs to a pool to increase its reliability and maintain performance. In case of disk failure, ZFS can replace failed disks with spare disks automatically. This gives the administrator time to make repairs without compromising the reliability and performance of the pool. Spares can be shared among multiple pools. The following example adds a spare disk device to the pool mpool. On line 22, the spare vdev is now listed as part of the pool mpool.

```
72x561
Figure 2.4 Pool rzpool using two RAID-Z1 redundant vdevs

2.5 Creating a Spare in a Storage Pool

You can add spare vdevs to a pool to increase its reliability and maintain performance. In case of disk failure, ZFS can replace failed disks with spare disks automatically. This gives the administrator time to make repairs without compromising the reliability and performance of the pool. Spares can be shared among multiple pools. The following example adds a spare disk device to the pool mpool. On line 22, the spare vdev is now listed as part of the pool mpool.

    # zpool add mpool spare c5t14d0
    # zpool list
    NAME  SIZE  USED  AVAIL  CAP  HEALTH  ALTROOT
    dstripe  234M  75K  234M  0%  ONLINE  -
    mpool  234M  84K  234M  0%  ONLINE  -
    rpool  15.9G  3.20G  12.7G  20%  ONLINE  -
    rzpool  936M  141K  936M  0%  ONLINE  -
    # zpool status mpool
    pool: mpool
    state: ONLINE
    scrub: none requested

continues
In Figure 2.5, an additional vdev is added to the ZFS pool mpool. A spare vdev can be shared with multiple ZFS pools. The spares must have at least the same capacity of the smallest disk in the other vdev devices.

```
12 config:
13 NAME STATE READ WRITE CKSUM
14 mpool ONLINE 0 0 0
15 mirror ONLINE 0 0 0
16 c5t2d0 ONLINE 0 0 0
17 c5t3d0 ONLINE 0 0 0
18 mirror ONLINE 0 0 0
19 c5t4d0 ONLINE 0 0 0
20 c5t5d0 ONLINE 0 0 0
21 spares AVAIL
22 c5t14d0 AVAIL
23 errors: No known data errors
```

2.6 Adding a Spare Vdev to a Second Storage Pool

As indicated earlier in the chapter, you can share a spare vdev with other pools on the same system. In the following example, the spare vdev (c5t14d0) disk is shared with ZFS pool rzpool. After you add the spare to the rzpool, the spare disk now
appears in ZFS pools *mpool* and *rzpool*, namely, on lines 16 and 17 and lines 38 and 39.

```
1 # zpool add rzpool spare c5t14d0
2 # zpool status mpool rzpool
3 pool: mpool
4 state: ONLINE
5 scrub: none requested
6 config:
7
8 NAME STATE READ WRITE CKSUM
9 mpool ONLINE 0 0 0
10 mirror ONLINE 0 0 0
11 c5t2d0 ONLINE 0 0 0
12 c5t3d0 ONLINE 0 0 0
13 mirror ONLINE 0 0 0
14 c5t4d0 ONLINE 0 0 0
15 c5t5d0 ONLINE 0 0 0
16 spares
17 c5t14d0 AVAIL
18
19 errors: No known data errors
20
21 pool: rzpool
22 state: ONLINE
23 scrub: none requested
24 config:
25
26 NAME STATE READ WRITE CKSUM
27 rzpool ONLINE 0 0 0
28 raidz1 ONLINE 0 0 0
29 c5t6d0 ONLINE 0 0 0
30 c5t7d0 ONLINE 0 0 0
31 c5t8d0 ONLINE 0 0 0
32 c5t9d0 ONLINE 0 0 0
33 raidz1 ONLINE 0 0 0
34 c5t10d0 ONLINE 0 0 0
35 c5t11d0 ONLINE 0 0 0
36 c5t12d0 ONLINE 0 0 0
37 c5t13d0 ONLINE 0 0 0
38 spares
39 c5t14d0 AVAIL
40
41 errors: No known data errors
```

In Figure 2.6, the spare vdev is shared between the *mpool* and *rzpool* ZFS pools. Each pool can use the spare when needed.

### 2.7 Replacing Bad Devices Automatically

ZFS has the capability to replace a disk in a pool automatically without intervention by the administrator. This feature, known as *autoreplace*, is turned off by default. This feature will allow ZFS to replace a bad disk with a spare from the spares pool, automatically allowing the pool to operate at optimum performance.
This allows the administrator to replace the failed drive at a later time. The manual disk replacement procedure is covered later in this chapter.

If you list the properties of the ZFS pool, you can see that the autoreplace feature is turned off using the `get` subcommand.

```bash
zpool get all mpool
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpool</td>
<td>size</td>
<td>234M</td>
<td>-</td>
</tr>
<tr>
<td>mpool</td>
<td>used</td>
<td>111K</td>
<td>-</td>
</tr>
<tr>
<td>mpool</td>
<td>available</td>
<td>234M</td>
<td>-</td>
</tr>
<tr>
<td>mpool</td>
<td>capacity</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>mpool</td>
<td>altroot</td>
<td>-</td>
<td>default</td>
</tr>
<tr>
<td>mpool</td>
<td>health</td>
<td>DEGRADED</td>
<td>-</td>
</tr>
<tr>
<td>mpool</td>
<td>guid</td>
<td>11612108450022771594</td>
<td>-</td>
</tr>
<tr>
<td>mpool</td>
<td>version</td>
<td>13</td>
<td>default</td>
</tr>
<tr>
<td>mpool</td>
<td>bootfs</td>
<td>-</td>
<td>default</td>
</tr>
<tr>
<td>mpool</td>
<td>delegation</td>
<td>on</td>
<td>default</td>
</tr>
<tr>
<td>mpool</td>
<td>autoreplace</td>
<td>off</td>
<td>default</td>
</tr>
<tr>
<td>mpool</td>
<td>cachefile</td>
<td>-</td>
<td>default</td>
</tr>
<tr>
<td>mpool</td>
<td>failmode</td>
<td>wait</td>
<td>default</td>
</tr>
<tr>
<td>mpool</td>
<td>listsnapshots</td>
<td>off</td>
<td>default</td>
</tr>
</tbody>
</table>

To turn on the autoreplace feature, use the following command line:

```bash
zpool autoreplace=on mpool
```

To simulate a bad device, I shut down the system and removed c5t4d0 from the system. The system now cannot contact the disk and has marked the removed disk as unavailable. With the system rebooted, you can examine the output of the `zpool status` command:
On line 3, the state of the pool has been degraded, and line 4 tells you that the pool can continue in this state. On lines 6 and 7, ZFS tells you what actions you will need to take, and by going to the Web site, a more detailed message tells you how to correct the problem. Line 19 tells you that the spare disk has been resilvered with disk c5t5d0. Line 22 now gives you the new status of the spare disk c5t14d0.

The original definition of **resilver** is the process of restoring a glass mirror with a new silver backing. In ZFS, it is a re-creation of data by copying from one disk to another. In other volume management systems, the process is called **resynchronization**. Continuing the example, you can shut down the system and attach a new disk in the same location of the missing disk. The new disk at location c5t4d0 is automatically resilvered to the mirrored vdev, and the spare disk is put back to an available state.
If the original disk is reattached to the system, ZFS does not handle this case with the same grace. Once the system is booted, the original disk must be detached from the ZFS pool. Next, the spare disk (c5t14d0) must be replaced with the original disk. The last step is to place the spare disk back into the spares group.

```
$ pfexec zpool detach mpool c5t4d0
$ pfexec zpool replace mpool c5t14d0 c5t4d0
$ pfexec zpool add mpool spare c5t14d0
$ zpool status mpool
pool: mpool
 state: ONLINE
 scrub: resilver completed after 0h0m with 0 errors on Mon Apr 6 02:50:25 2009
 config:

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>READ</th>
<th>WRITE</th>
<th>CKSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpool</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mirror</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c5t2d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c5t3d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mirror</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c5t4d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c5t5d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spares</td>
<td>AVAIL</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

2.8 Locating Disks for Replacement

Locating the correct disk for replacement is crucial. If the wrong disk is replaced, it could corrupt the whole ZFS pool. There is a simple process for locating a disk in an array using the `format` command. This technique works best when the disks are relatively quiet and have disk-access LEDs that can be seen while in operation.

If the disk is still accessible to Solaris, follow these steps:

1. Start the `format` command, and select the disk you want to locate by selecting the number before the drive.
2. Type `analyze`, and hit the Enter/Return key.
3. Select read test by typing `read`, and then hit Enter/Return.
4. Look at the array, and find the disk LED with constant access.
5. Once the disk is located, stop the read test by pressing Ctrl+C.
6. To exit the format utility, type `quit` and hit Return, and then type `quit` and hit Return again.
7. Replace the disk according to manufacturer’s instructions.
If the damaged disk is not seen by `format`, try to light up the LEDs of the disks above and below the target number of the damaged disk. For example, if you were looking to find c5t6d0 and it was not seen by the `format` command, you would first locate c5t5d0 by using the `format read test` and then locate c5t7d0 by using the same method. The drive in between should be c5t6d0.

### 2.9 Example of a Misconfigured Pool

The following is an example of a ZFS pool that started as a RAID-Z pool and needed more space. The administrator just added the new disks to the pool. The status output follows.

```bash
$ zpool status -v
pool: mypool
state: ONLINE
status: One or more devices has experienced an error resulting in data corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the entire pool from backup.
see: http://www.sun.com/msg/ZFS-8000-8A
scrub: resilver completed with 0 errors on Tue Nov 18 17:05:10 2008
config:

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>READ</th>
<th>WRITE</th>
<th>CKSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>mypool</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>raidz1</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t0d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t1d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t2d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t3d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t4d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t5d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t9d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t11d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t12d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>c2t10d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2t13d0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spares</td>
<td>AVG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c2t8d0</td>
<td>AVG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

errors: Permanent errors have been detected in the following files:

- mypool/dataset/u01:<0x2a07a>
- mypool/dataset/u01:<0x2da66>
```

c2t9d0, c2t10d0, c2t11d0, c2t12d0, and c2t13d0 are single-disk vdevs. They have no redundancy. The spare vdev will not help because there is nothing to resilver with when one of the single-disk vdevs fails. In this case, ZFS has detected permanent errors in mypool/dataset/u01 and has suggested an action of restoring the files from backup or restoring the whole pool from backup.
The ZFS pool is in danger of a single disk failure that may destroy the whole pool. The only way to get this pool to be redundant is to mirror all the single-vdev drives.

Figure 2.7 represents the ZFS pool mypool. The figure shows five single-disk vdevs with a single RAID-Z vdev. Any damage to the single disks will cause ZFS to lose data, or, worse, the pool will fail.

You can correct this configuration for pool redundancy in two ways:

- If there are enough disks, you can mirror the single-disk vdevs.
- You can back up all the file systems and re-create the pool. Then do a full restore of the file systems.

The procedure to replace a single-disk vdev in the preceding example is to mirror the drive in question and then detach the bad drive. What follows is the command-line procedure:

1. Mirror the drive with bad sector problems:
   
   ```bash
 # zpool replace mypool <baddisk> <gooddisk>
   ```

2. Detach the bad disk:
   
   ```bash
 # zpool detach mypool <baddisk>
   ```

Figure 2.7 The ZFS pool mypool has a single RAID-Z vdev and five single-disk vdevs
Index

A
AD (Active Directory), 78
Administration
delegation of, 3
simplifying systems administrations, 25–26
Arrays, storage arrays in ZFS, 74
Automation, of tasks, 3
autoreplace, 19–22

B
beadm command
boot environment management options, 26
managing boot environment with, 43
upgrading boot environment with, 43–44
Boot disks
creating, 94
mirroring, 62
Boot environment
managing with beadm command, 43
managing with Solaris Live Upgrade, 35
options for managing, 26
patching with Solaris Live Upgrade, 40–42
references, 46
upgrading with beadm command, 43–44
upgrading with pkg image-update command, 44–45
x4500 boot mirror example, 74

C
Cache vdev
overview of, 10
rules for ZFS pools, 11
CD images
managing with VMM, 93
registering with VMM, 97–99
Checksums, 2
CIFS
clients, 75
configuring SMB server in workgroup mode, 78–79
installing server packages from command line, 77
installing server packages with Package Manager, 75–77
overview of, 75
sharing home directories, 79–82
Clients, CIFS, 75
Clone, 3
Command line, installing server packages from, 77
Commands
delegation of, 58
ZFS file system, 7
Compression
enabling, 53–55
ZFS file system and, 2
Create New Virtual Disk Wizard, 94
Create New Virtual Machine, 101–103
crontab command, 89–90

D
Data integrity, benefits of ZFS file system, 2
Datasets, ZFS supported, 3–4
Delegation
of administration, 3
of commands, 58
Descendants, limiting storage size of, 51
Disks
assignments, 106
creating virtual disks with VMM, 93–97
guidelines for ZFS pools, 10
locating correct disk for replacement, 22–23
replacing bad devices automatically, 19–22
root file system disk requirements, 27
rules for ZFS pools, 11
SATA, 94
types of virtual disks, 94
du command, 50
DVD images
managing with VMM, 93
registering with VMM, 97–99
Dynamic stripes
creating, 11–12
overview of, 10
rules for ZFS pools, 11

F
File manager, Nautilus, 83, 85–87
File systems
scheduling Time Slider snapshots per file system, 91
UFS. See UFS (Unix File System)
ZFS. See ZFS file system
Flash, 27
Floppy images, 93

G
gzip command, 53–55

H
Hard disks, 106. See also Disks
hidden property, 56
Home directories
delegation of command, 58
enabling compression on ZFS file system, 53–55
limiting storage size of descendants, 51
managing quotas and reservations, 47–48
managing snapshot directory, 55–57
overview of, 47
quota setting, 48–49
references, 60
refquota setting, 49–51
refreservation setting, 51–53
reservation setting, 51–52
rolling back files systems, 58–59
sharing, 59–60, 79–82

I
Image Packaging System (IPS), 75
Installation
example of interactive installation, 28–30
installing root file system, 26–37
references, 46
IPS (Image Packaging System), 75
ISO images, 93, 97–99

J
JBOD (just a bunch of disks), 10
JumpStart
configuring mirrored root pool, 30
installing root file system, 26–27
Just a bunch of disks (JBOD), 10

L
Lab, creating ZFS lab
creating new virtual machine, 99–103
creating virtual disks with VMM, 93–97
installing OSs on virtual machines, 106–111
installing tools for, 111–118
modifying virtual machine, 103–106
overview of, 93
registering CD image with VMM, 97–99
list subcommand, zpool command, 16
Live Upgrade. See Solaris Live Upgrade
Log vdev
overview of, 10
rules for ZFS pools, 11
Logical unit number (LUN), 74
ls command, 55–56
LUN (logical unit number), 74
lzjb algorithm, 53–55

M
Memory requirements, root file system, 27
Migration, UFR root file system to ZFS root file system, 35–40
mirror subcommand, zpool command, 13
Mirrored disks, 62
Mirrored pools
creating, 13–15
creating mirrored root pool configuration, 30–31
testing mirrored root pool configuration, 31–32
x4500 boot mirror example, 74
x4500 RAID mirrored configuration example, 69–73
mirrors (RAID-Z), 10

N
Nautilus file manager
enabling Nautilus Time Slider, 85–87
overview of, 83
restoring with, 88
NFS (Network File System), 59

O
OpenSolaris SMB server. See SMB server
OSs (operating systems), installing on virtual machines, 106–111

P
Package Manager, 75–77
Patches
benefits of ZFS file system, 2
patching boot environment using Solaris Live Upgrade, 40–42
pkg command
installing server packages from command line, 77
upgrading boot environment, 43–44
Pools
adding spare vdev to second storage pool, 18–19
creating dynamic stripes, 11–12
creating mirrored pools, 13–15
creating pool with RAID-Z devices, 15–17
creating spares in storage pools, 17–18
creating ZFS pool with four RAID-Z2 vdevs, 64
element of misconfigured pool, 23–24
fast and simple storage with ZFS, 6
guidelines for, 10
limiting storage size of descendants, 51
locating correct disk for replacement, 22–23
overview of, 9
as primary storage element, 3–5
quotas and reservations, 47–48
replacing bad devices automatically, 19–22
root pool recommendations, 27–28
rules for, 11
virtual devices types, 10

Q
quota setting, on home directory, 48–49
Quotas
benefits of ZFS file system, 3
managing, 47–48
quota setting, 48–49
refquota setting, 49–51

R
RAID
configurations, 4
ZFS file system options, 2
ZFS supported, 9
RAID-5 write holes, 9
RAID-Z devices
creating pool with, 15–17
creating vdevs, 62
creating ZFS pool with four RAID-Z2 vdevs, 64
X4500 RAID-Z2 configuration example, 61–69
Raw volumes, 2, 3
Redundancy, 2. See also RAID
Redundant groups. See Mirrored pools
refquota setting, 49–51
refreservation setting, 52–53
reservation setting, 51–52
Reservations
managing, 47–48
refreservation setting, 52–53
reservation setting, 51–52
Restores
recovering files from snapshots, 57
restoring from snapshot of root pool, 33–34
Resynchronization, volume management and, 21
rollback subcommand
recovering whole environments from snapshots, 57
rolling back files systems, 58–59
root file (/) system
boot and installation references, 46
creating mirrored configuration, 30–31
creating snapshot of, 32–33
example of interactive installation, 28–30
installing, 26–30
managing boot environment using beadm command, 43
managing boot environment with Solaris Live Upgrade, 35–42
migrating UFR root file system to ZFS root file system, 35–40
overview of, 25
patching boot environment using Solaris Live Upgrade, 40–42
pool recommendations, 27–28
restoring from snapshot, 33–34
sending snapshot to storage, 33
system administration and, 25–26
system requirements, 27
testing mirrored configuration, 31–32
upgrading boot environment using beadm command, 43–44
upgrading boot environment using pkg image-update command, 44–45

S
SATA
controllers, 61–63
disks, 94
Servers, CIFS
configuring SMB server in workgroup mode, 78–79
installing server packages from command line, 77
installing server packages with Package Manager, 75–77
Service Management Facility (SMF)
modifying snapshot schedule, 87–88
overview of, 83
Sharing home directories, 59–60, 79–82
Slices, guidelines for ZFS pools, 10
SMB server
configuring in workgroup mode, 78–79
installing server packages from command line, 77
installing server packages with Package Manager, 75–77
sharing home directories, 79–82
SMF (Service Management Facility)
modifying snapshot schedule, 87–88
overview of, 83
Snapshots
benefits of ZFS file system, 3
creating, 32–33
managing snapshot directory, 55–57
recovering files from, 57
restoring from snapshot of root pool, 33–34
sending snapshot of root pool to storage, 33
Snapshots, Time Slider
basics of, 89
changing number kept, 91
changing period of, 89–91
enabling, 83–85
enabling Nautilus Time Slider, 85–87
modifying schedule, 87–88
scheduling per file system, 91
Solaris Live Upgrade
- installation methods, 26
- managing boot environment with, 35
  - option for managing boot environment, 26
  - patching boot environment using, 40–42

Solid-state disks (SSDs), 10
- Spare vdev
  - adding spare vdev to second storage pool, 18–19
  - creating in storage pools, 17–18
  - overview of, 10
- rules for ZFS pools, 11

SSDs (solid-state disks), 10
- status subcommand, zpool command, 20–21

Storage
- arrays, 74
- pools. See Pools
- virtual disks for, 94

Storage blocks, 51–52
- Stripes, dynamic. See Dynamic stripes

Sun x4500
- boot mirror example, 74
- RAID mirrored configuration example, 69–73
  - RAID-Z2 configuration example, 61–69
- SUNWsmbs package, 75
- SUNWsmbskr package, 75
- svcadm command, 91
- svccfg command, 89–91

SVM (Solaris Volume Manager)
- mirrored boot disks, 62–63, 69
- volume management with, 10

System administration, 25–26

System requirements, 27

T
- tar archive, 56

Time Slider
- basics of snapshots, 89
- changing number of snapshots kept, 91
- changing period of snapshots, 89–91
- enabling Nautilus Time Slider, 85–87
- enabling Time Slider snapshots, 83–85
- modifying snapshot schedule, 87–88
- overview of, 83
- recovering files from snapshots, 57
  - scheduling snapshots per file system, 91

Tools, installing on virtual machines, 111–118

Top-level view, of ZFS file system, 3–5

U

UFS (Unix File System)
- migrating UFS to ZFS root file system, 35–40
- no options for installing, 27
- sharing home directories via NFS, 59
- ufsdump command, 35
- ufsrestore command, 35

Unix File System. See UFS (Unix File System)

Upgrades
- benefits of ZFS file system, 2
- upgrading boot environment using beadm command, 43–44
- upgrading boot environment using pkg image-update command, 44–45

/var directory, 26

V

/var directory
- example of interactive installation, 28, 30
- in ZFS boot environment, 26

vdev (virtual device), 4
- adding spare vdev to second storage pool, 18–19
- creating RAID-Z2 vdevs, 62–63
- types of, 10
- ZFS pools comprised of, 9

Virtual Box
- installing tools on virtual machines, 111–118
- main panel of, 100, 104
- overview of, 93

Virtual devices. See vdev

Virtual disks
- creating, 96–97
- location and size, 96
- types of, 94

Virtual machines. See VMs (virtual machines)

Virtual Media Manager. See VMM (Virtual Media Manager)
visible property, managing directory visibility, 56
VMM (Virtual Media Manager)
  creating virtual disks with, 93–97
  hard disks in, 98
  ISO images in, 98–99
  registering CD image with, 97
  starting from File menu, 94
VMs (virtual machines)
  creating new, 99–103
  installing OSs on, 106–111
  installing tools on, 106–111
  modifying, 103–106
  Virtual Box for, 93
Volumes
  managing, 10
  raw volumes, 2, 3
  resynchronization and, 21
W
  Workgroup mode, configuring SMB server in, 78–79
X
  x4500. See Sun x4500
Z
  zfs command
    function of, 7
  setting snapshot schedule per file system, 91
  ZFS Configuration Guide, 61
  ZFS file system
    advantages of, 2–3
    available in Solaris releases, 1
    commands, 7
    enabling compression on, 53–55
    fast and simple storage with, 6
    overview of, 1–2
    quotas and reservations, 47–48
    rolling back, 58–59
    root file. See root file (/) system
    top-level view of, 3–5
  zfssnap, 89–90
  zpool command, 3
    creating dynamic stripes, 11–12
    creating mirrored pools, 13–15
    function of, 7
    list subcommand, 16
    managing storage pools with, 9
    status subcommand, 20–21
  zpool command, advanced concepts
    overview of, 61
    storage arrays and, 74
    X4500 boot mirror example, 74
    X4500 RAID mirrored configuration example, 69–73
    X4500 RAID-Z2 configuration example, 61–69