Introductory Chemical Engineering
Thermodynamics, Second Edition
The Prentice Hall International Series in the Physical and Chemical Engineering Sciences had its auspicious beginning in 1956 under the direction of Neal R. Amundsen. The series comprises the most widely adopted college textbooks and supplements for chemical engineering education. Books in this series are written by the foremost educators and researchers in the field of chemical engineering.

Visit informit.com/ph/physandchem for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect
Introductory Chemical Engineering
Thermodynamics, Second Edition

J. Richard Elliott
Carl T. Lira
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file.

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

Text printed in the United States at Hamilton in Castleton, New York.
First printing, February 2012
CONTENTS

PREFACE xvii
 Notes to Students xviii
 Acknowledgments xviii

ABOUT THE AUTHORS xix

GLOSSARY xxi

NOTATION xxv

UNIT I FIRST AND SECOND LAWS 1

CHAPTER 1 BASIC CONCEPTS 3
 1.1 Introduction 5
 1.2 The Molecular Nature of Energy, Temperature, and Pressure 6
 Example 1.1 The energy derived from intermolecular potentials 12
 Example 1.2 Intermolecular potentials for mixtures 14
 1.3 The Molecular Nature of Entropy 15
 1.4 Basic Concepts 15
 1.5 Real Fluids and Tabulated Properties 22
 Example 1.3 Introduction to steam tables 25
 Example 1.4 Interpolation 27
 Example 1.5 Double interpolation 27
 Example 1.6 Double interpolation using different tables 28
 Example 1.7 Double interpolation using Excel 29
 Example 1.8 Quality calculations 31
 Example 1.9 Constant volume cooling 32
 1.6 Summary 33
 1.7 Practice Problems 34
CHAPTER 2 THE ENERGY BALANCE

2.1 Expansion/Contraction Work
2.2 Shaft Work
2.3 Work Associated with Flow
2.4 Lost Work versus Reversibility
 Example 2.1 Isothermal reversible compression of an ideal gas
2.5 Heat Flow
2.6 Path Properties and State Properties
 Example 2.2 Work as a path function
2.7 The Closed-System Energy Balance
 Example 2.3 Internal energy and heat
2.8 The Open-System, Steady-State Balance
 Example 2.4 Pump work for compressing H\textsubscript{2}O
2.9 The Complete Energy Balance
2.10 Internal Energy, Enthalpy, and Heat Capacities
 Example 2.5 Enthalpy change of an ideal gas: Integrating C\textsubscript{p}/g(T)
 Example 2.6 Enthalpy of compressed liquid
 Example 2.7 Adiabatic compression of an ideal gas in a piston/cylinder
2.11 Reference States
 Example 2.8 Acetone enthalpy using various reference states
2.12 Kinetic and Potential Energy
 Example 2.9 Comparing changes in kinetic energy, potential energy, internal energy, and enthalpy
 Example 2.10 Transformation of kinetic energy into enthalpy
2.13 Energy Balances for Process Equipment
2.14 Strategies for Solving Process Thermodynamics Problems
2.15 Closed and Steady-State Open Systems
 Example 2.11 Adiabatic, reversible expansion of an ideal gas
 Example 2.12 Continuous adiabatic, reversible compression of an ideal gas
 Example 2.13 Continuous, isothermal, reversible compression of an ideal gas
 Example 2.14 Heat loss from a turbine
2.16 Unsteady-State Open Systems
 Example 2.15 Adiabatic expansion of an ideal gas from a leaky tank
 Example 2.16 Adiabatically filling a tank with an ideal gas
 Example 2.17 Adiabatic expansion of steam from a leaky tank
2.17 Details of Terms in the Energy Balance
2.18 Summary
2.19 Practice Problems
2.20 Homework Problems

CHAPTER 3 ENERGY BALANCES FOR COMPOSITE SYSTEMS

3.1 Heat Engines and Heat Pumps – The Carnot Cycle
 Example 3.1 Analyzing heat pumps for housing
3.2 Distillation Columns
 Example 3.2 Start-up for a distillation column
3.3 Introduction to Mixture Properties
3.4 Ideal Gas Mixture Properties
3.5 Mixture Properties for Ideal Solutions 106
 \textit{Example 3.3} Condensation of a vapor stream 107
3.6 Energy Balance for Reacting Systems 109
 \textit{Example 3.4} Stoichiometry and the reaction coordinate 110
 \textit{Example 3.5} Using the reaction coordinates for simultaneous reactions 111
 \textit{Example 3.6} Reactor energy balances 116
3.7 Reactions in Biological Systems 119
3.8 Summary 121
3.9 Practice Problems 122
3.10 Homework Problems 122

\section*{CHAPTER 4 ENTROPY 129}

4.1 The Concept of Entropy 130
4.2 The Microscopic View of Entropy 132
 \textit{Example 4.1} Entropy change and “lost work” in a gas expansion 137
 \textit{Example 4.2} Stirling’s approximation in the Einstein solid 141
4.3 The Macroscopic View of Entropy 142
 \textit{Example 4.3} Adiabatic, reversible expansion of steam 144
 \textit{Example 4.4} A Carnot cycle based on steam 145
 \textit{Example 4.5} Ideal gas entropy changes in an adiabatic, reversible expansion 149
 \textit{Example 4.6} Ideal gas entropy change: Integrating $C_p \delta s(T)$ 151
 \textit{Example 4.7} Entropy generation and “lost work” 151
 \textit{Example 4.8} Entropy generation in a temperature gradient 152
4.4 The Entropy Balance 153
 \textit{Example 4.9} Entropy balances for steady-state composite systems 155
4.5 Internal Reversibility 158
4.6 Entropy Balances for Process Equipment 159
 \textit{Example 4.10} Entropy generation by quenching 159
 \textit{Example 4.11} Entropy in a heat exchanger 160
 \textit{Example 4.12} Isentropic expansion in a nozzle 162
4.7 Turbine, Compressor, and Pump Efficiency 164
4.8 Visualizing Energy and Entropy Changes 165
4.9 Turbine Calculations 166
 \textit{Example 4.13} Various cases of turbine outlet conditions 168
 \textit{Example 4.14} Turbine efficiency calculation 171
 \textit{Example 4.15} Turbine inlet calculation given efficiency and outlet 172
4.10 Pumps and Compressors 173
 \textit{Example 4.16} Isothermal reversible compression of steam 173
 \textit{Example 4.17} Compression of R134a using P-H chart 174
4.11 Strategies for Applying the Entropy Balance 175
4.12 Optimum Work and Heat Transfer 177
 \textit{Example 4.18} Minimum heat and work of purification 180
4.13 The Irreversibility of Biological Life 181
4.14 Unsteady-State Open Systems 182
 \textit{Example 4.19} Entropy change in a leaky tank 182
 \textit{Example 4.20} An ideal gas leaking through a turbine (unsteady state) 183
4.15 The Entropy Balance in Brief 185
4.16 Summary 185
4.17 Practice Problems 187
Example 7.1 Application of the generalized charts
Example 7.2 Application of the virial equation
Example 7.3 Peng-Robinson solution by hand calculation
Example 7.4 The Peng-Robinson equation for molar volume
Example 7.5 Application of the Peng-Robinson equation
Example 7.6 Derivatives of the Peng-Robinson equation
Example 7.7 Critical parameters for the van der Waals equation
Example 7.8 Estimating molecular size
Example 7.9 Characterizing molecular interactions
Example 7.10 Computing molecular collisions in 2D
Example 7.11 Equations of state from trends in molecular simulations
Example 7.12 Deriving your own equation of state
Example 7.13 Enthalpy and entropy from the Peng-Robinson equation
Example 7.14 Liquefaction revisited
Example 7.15 Adiabatically filling a tank with propane

CHAPTER 8 DEPARTURE FUNCTIONS
Example 8.1 Internal energy departure from the van der Waals equation
Example 8.2 Real entropy in a combustion engine
Example 8.3 Compression of methane using the virial equation
Example 8.4 Computing enthalpy and entropy departures from the Peng-Robinson equation
Example 8.5 Enthalpy departure for the Peng-Robinson equation
Example 8.6 Gibbs departure for the Peng-Robinson equation
Example 8.7 U and S departure for the Peng-Robinson equation
Example 8.8 Enthalpy and entropy from the Peng-Robinson equation
Example 8.9 Liquefaction revisited
Example 8.10 Adiabatically filling a tank with propane

Example 8.11 Characterizing molecular interactions
Example 8.12 Computing molecular collisions in 2D

Example 8.13 Equations of state from trends in molecular simulations
Example 8.14 Deriving your own equation of state
Example 8.15 Liquefaction revisited
Example 8.16 Enthalpy and entropy from the Peng-Robinson equation
Example 8.17 Liquefaction revisited
Example 8.18 Adiabatically filling a tank with propane

8.8 Reference States
Example 8.8 Enthalpy and entropy from the Peng-Robinson equation
Example 8.9 Liquefaction revisited
Example 8.10 Adiabatically filling a tank with propane

8.9 Generalized Charts for the Enthalpy Departure
Example 8.11 Characterizing molecular interactions
Example 8.12 Computing molecular collisions in 2D

8.10 Summary
8.11 Practice Problems
8.12 Homework Problems
Example 11.1 Gibbs excess energy for system 2-propanol + water 414

11.2 Calculations Using Activity Coefficients 416

Example 11.2 VLE predictions from the Margules equation 417

Example 11.3 Gibbs excess characterization by matching the bubble point 418

Example 11.4 Predicting the Margules parameter with the MAB model 423

11.3 Deriving Modified Raoult’s Law 423

11.4 Excess Properties 426

11.5 Modified Raoult’s Law and Excess Gibbs Energy 427

11.6 Redlich-Kister and the Two-Parameter Margules Models 429

Example 11.5 Fitting one measurement with the two-parameter Margules equation 430

Example 11.6 Dew pressure using the two-parameter Margules equation 431

11.7 Activity Coefficients at Special Compositions 432

Example 11.7 Azeotrope fitting with bubble-temperature calculations 433

11.8 Preliminary Indications of VLLE 434

11.9 Fitting Activity Models to Multiple Data 435

Example 11.8 Fitting parameters using nonlinear least squares 436

11.10 Relations for Partial Molar Properties 439

Example 11.9 Heats of mixing with the Margules two-parameter model 441

11.11 Distillation and Relative Volatility of Nonideal Solutions 442

Example 11.10 Suspecting an azeotrope 442

11.12 Lewis-Randall Rule and Henry’s Law 443

Example 11.11 Solubility of CO2 by Henry’s Law 446

Example 11.12 Henry’s constant for CO2 with the MAB/SCVP+ model 448

11.13 Osmotic Pressure 449

Example 11.13 Osmotic pressure of BSA 451

Example 11.14 Osmotic pressure and electroporation of E. coli 453

11.14 Summary 454

11.15 Practice Problems 455

11.16 Homework Problems 455

CHAPTER 12 VAN DER WAALS ACTIVITY MODELS 465

12.1 The van der Waals Perspective for Mixtures 466

12.2 The van Laar Model 469

Example 12.1 Infinite dilution activity coefficients from the van Laar theory 471

12.3 Scatchard-Hildebrand Theory 471

Example 12.2 VLE predictions using the Scatchard-Hildebrand theory 473

12.4 The Flory-Huggins Model 474

Example 12.3 Deriving activity models involving volume fractions 475

Example 12.4 Scatchard-Hildebrand versus van Laar theory for methanol + benzene 476

Example 12.5 Polymer mixing 478

12.5 MOSCED and SSCED Theories 479

Example 12.6 Predicting VLE with the SSCED model 482

12.6 Molecular Perspective and VLE Predictions 483

12.7 Multicomponent Extensions of van der Waals’ Models 486

Example 12.7 Multicomponent VLE using the SSCED model 487

Example 12.8 Entrainer selection for gasohol production 490

12.8 Flory-Huggins and van der Waals Theories 491

12.9 Summary 492

12.10 Practice Problems 494
12.11 Homework Problems

CHAPTER 13 LOCAL COMPOSITION ACTIVITY MODELS

Example 13.1 VLE prediction using UNIFAC activity coefficients

13.1 Local Composition Theory

Example 13.2 Local compositions in a two-dimensional lattice

13.2 Wilson’s Equation

Example 13.3 Application of Wilson’s equation to VLE

13.3 NRTL

13.4 UNIQUAC

Example 13.4 Combinatorial contribution to the activity coefficient

13.5 UNIFAC

Example 13.5 Calculation of group mole fractions

Example 13.6 Detailed calculations of activity coefficients via UNIFAC

13.6 COSMO-RS Methods

Example 13.7 Calculation of activity coefficients using COSMO-RS/SAC

13.7 The Molecular Basis of Solution Models

13.8 Summary

13.9 Important Equations

13.10 Practice Problems

13.11 Homework Problems

CHAPTER 14 LIQUID-LIQUID AND SOLID-LIQUID PHASE EQUILIBRIA

Example 14.1 Simple vapor-liquid-liquid equilibrium (VLLE) calculations

Example 14.2 LLE predictions using Flory-Huggins theory: Polymer mixing

14.1 The Onset of Liquid-Liquid Instability

14.2 Stability and Excess Gibbs Energy

14.3 Binary LLE by Graphing the Gibbs Energy of Mixing

Example 14.3 LLE predictions by graphing

14.4 LLE Using Activities

Example 14.4 The binary LLE algorithm using MAB and SSCED models

14.5 VLLE with Immiscible Components

Example 14.5 Steam distillation

14.6 Binary Phase Diagrams

14.7 Plotting Ternary LLE Data

14.8 Critical Points in Binary Liquid Mixtures

Example 14.6 Liquid-liquid critical point of the Margules one-parameter model

Example 14.7 Liquid-liquid critical point of the Flory-Huggins model

14.9 Numerical Procedures for Binary, Ternary LLE

14.10 Solid-Liquid Equilibria

Example 14.8 Variation of solid solubility with temperature

Example 14.9 Eutectic behavior of chloronitrobenzenes

Example 14.10 Eutectic behavior of benzene + phenol

Example 14.11 Precipitation by adding antisolvent

Example 14.12 Wax precipitation

14.11 Summary

14.12 Practice Problems

14.13 Homework Problems
CHAPTER 15 PHASE EQUILIBRIA IN MIXTURES
BY AN EQUATION OF STATE

15.1 Mixing Rules for Equations of State

Example 15.1 The virial equation for vapor mixtures

15.2 Fugacity and Chemical Potential from an EOS

Example 15.2 K-values from the Peng-Robinson equation

15.3 Differentiation of Mixing Rules

Example 15.3 Fugacity coefficient from the virial equation

Example 15.4 Fugacity coefficient from the van der Waals equation

Example 15.5 Fugacity coefficient from the Peng-Robinson equation

15.4 VLE Calculations by an Equation of State

Example 15.6 Bubble-point pressure from the Peng-Robinson equation

Example 15.7 Isothermal flash using the Peng-Robinson equation

Example 15.8 Phase diagram for azeotropic methanol + benzene

Example 15.9 Phase diagram for nitrogen + methane

Example 15.10 Ethane + heptane phase envelopes

15.5 Strategies for Applying VLE Routines

15.6 Summary

15.7 Practice Problems

15.8 Homework Problems

CHAPTER 16 ADVANCED PHASE DIAGRAMS

16.1 Phase Behavior Sections of 3D Objects

16.2 Classification of Binary Phase Behavior

16.3 Residue Curves

16.4 Practice Problems

16.5 Homework Problems

UNIT IV REACTION EQUILIBRIA

CHAPTER 17 REACTION EQUILIBRIA

17.1 Introduction

Example 17.1 Computing the reaction coordinate

17.2 Reaction Equilibrium Constraint

17.3 The Equilibrium Constant

17.4 The Standard State Gibbs Energy of Reaction

Example 17.2 Calculation of standard state Gibbs energy of reaction

17.5 Effects of Pressure, Inerts, and Feed Ratios

Example 17.3 Butadiene production in the presence of inerts

17.6 Determining the Spontaneity of Reactions

17.7 Temperature Dependence of K_a

Example 17.4 Equilibrium constant as a function of temperature

17.8 Shortcut Estimation of Temperature Effects

Example 17.5 Application of the shortcut van’t Hoff equation

17.9 Visualizing Multiple Equilibrium Constants

17.10 Solving Equilibria for Multiple Reactions

Example 17.6 Simultaneous reactions that can be solved by hand

Example 17.7 Solving multireaction equilibria with Excel
17.11 Driving Reactions by Chemical Coupling 662
 Example 17.8 Chemical coupling to induce conversion 663
17.12 Energy Balances for Reactions 664
 Example 17.9 Adiabatic reaction in an ammonia reactor 665
17.13 Liquid Components in Reactions 667
 Example 17.10 Oligomerization of lactic acid 668
17.14 Solid Components in Reactions 669
 Example 17.11 Thermal decomposition of methane 670
17.15 Rate Perspectives in Reaction Equilibria 671
17.16 Entropy Generation via Reactions 672
17.17 Gibbs Minimization 673
 Example 17.12 Butadiene by Gibbs minimization 673
 Example 17.13 Direct minimization of the Gibbs energy with Excel 675
 Example 17.14 Pressure effects for Gibbs energy minimization 676
17.18 Reaction Modeling with Limited Data 677
17.19 Simultaneous Reaction and VLE 677
 Example 17.15 The solvent methanol process 677
 Example 17.16 NO₂ absorption 681
17.20 Summary 683
17.21 Practice Problems 684
17.22 Homework Problems 686

CHAPTER 18 ELECTROLYTE SOLUTIONS 693
18.1 Introduction to Electrolyte Solutions 693
18.2 Colligative Properties 695
 Example 18.1 Freezing point depression 695
 Example 18.2 Example of osmotic pressure 696
 Example 18.3 Example of boiling point elevation 697
18.3 Speciation and the Dissociation Constant 697
18.4 Concentration Scales and Standard States 699
18.5 The Definition of pH 701
18.6 Thermodynamic Network for Electrolyte Equilibria 702
18.7 Perspectives on Speciation 703
18.8 Acids and Bases 704
 Example 18.4 Dissociation of fluconazole 709
18.9 Sillén Diagram Solution Method 712
 Example 18.5 Sillén diagram for HOAc and NaOAc 713
 Example 18.6 Phosphate salt and strong acid 717
 Example 18.7 Distribution of species in glycine solution 721
18.10 Applications 723
 Example 18.8 Dissociation and solubility of fluconazole 726
18.11 Redox Reactions 727
 Example 18.9 Alkaline dry-cell battery 730
18.12 Biological Reactions 731
 Example 18.10 ATP hydrolysis 737
 Example 18.11 Biological fuel cell 738
18.13 Nonideal Electrolyte Solutions: Background 739
18.14 Overview of Model Development 740
18.15 The Extended Debye-Hückel Activity Model 742
18.16 Gibbs Energies for Electrolytes 743
18.17 Transformed Biological Gibbs Energies and Apparent Equilibrium Constants 745
 Example 18.12 Gibbs energy of formation for ATP 748
18.18 Coupled Multireaction and Phase Equilibria 749
 Example 18.13 Chlorine + water electrolyte solutions 750
18.19 Mean Ionic Activity Coefficients 753
18.20 Extending Activity Calculations to High Concentrations 755
18.21 Summary 755
18.22 Supplement 1: Interconversion of Concentration Scales 757
18.23 Supplement 2: Relation of Apparent Chemical Potential to Species Potentials 758
18.24 Supplement 3: Standard States 759
18.25 Supplement 4: Conversion of Equilibrium Constants 760
18.26 Practice Problems 761
18.27 Homework Problems 761

CHAPTER 19 MOLECULAR ASSOCIATION AND SOLVATION 767
19.1 Introducing the Chemical Contribution 768
19.2 Equilibrium Criteria 772
19.3 Balance Equations for Binary Systems 775
19.4 Ideal Chemical Theory for Binary Systems 776
 Example 19.1 Compressibility factors in associating/solvating systems 777
 Example 19.2 Dimerization of carboxylic acids 778
 Example 19.3 Activity coefficients in a solvated system 779
19.5 Chemical-Physical Theory 779
19.6 Wertheim’s Theory for Complex Mixtures 782
 Example 19.4 The chemical contribution to the equation of state 788
19.7 Mass Balances for Chain Association 792
 Example 19.5 Molecules of H₂O in a 100 ml beaker 793
19.8 The Chemical Contribution to the Fugacity Coefficient and Compressibility Factor 793
19.9 Wertheim’s Theory of Polymerization 795
 Example 19.6 Complex fugacity for the van der Waals model 796
 Example 19.7 More complex fugacity for the van der Waals model 798
19.10 Statistical Associating Fluid Theory (The SAFT Model) 799
 Example 19.8 The SAFT model 800
19.11 Fitting the Constants for an Associating Equation of State 802
19.12 Summary 804
19.13 Practice Problems 806
19.14 Homework Problems 806

APPENDIX A SUMMARY OF COMPUTER PROGRAMS 811
A.1 Programs for Pure Component Properties 811
A.2 Programs for Mixture Phase Equilibria 812
A.3 Reaction Equilibria 813
A.4 Notes on Excel Spreadsheets 813
A.5 Notes on MATLAB 814
A.6 Disclaimer 815
APPENDIX B MATHEMATICS 817
B.1 Important Relations 817
B.2 Solutions to Cubic Equations 822
B.3 The Dirac Delta Function 825
 Example B.1 The hard-sphere equation of state 828
 Example B.2 The square-well equation of state 829

APPENDIX C STRATEGIES FOR SOLVING VLE PROBLEMS 831
C.1 Modified Raoult’s Law Methods 832
C.2 EOS Methods 835
C.3 Activity Coefficient (Gamma-Phi) Methods 838

APPENDIX D MODELS FOR PROCESS SIMULATORS 839
D.1 Overview 839
D.2 Equations of State 839
D.3 Solution Models 840
D.4 Hybrid Models 840
D.5 Recommended Decision Tree 841

APPENDIX E THERMODYNAMIC PROPERTIES 843
E.1 Thermochemical Data 843
E.2 Latent Heats 846
E.3 Antoine Constants 847
E.4 Henry’s Constant with Water as Solvent 847
E.5 Dielectric Constant for Water 848
E.6 Dissociation Constants of Polyprotic Acids 849
E.7 Standard Reduction Potentials 849
E.8 Biochemical Data 852
E.9 Properties of Water 854
E.10 Pressure-Enthalpy Diagram for Methane 865
E.11 Pressure-Enthalpy Diagram for Propane 866
E.12 Pressure-Enthalpy Diagram for R134a (1,1,1,2-Tetrafluoroethane) 867

INDEX 869
PREFACE

“No happy phrase of ours is ever quite original with us; there is nothing of our own in it except some slight change born of our temperament, character, environment, teachings and associations.”

Mark Twain

This textbook is designed for chemical engineering students from the sophomore level to the first year of graduate school. The approach blends molecular perspective with principles of thermodynamics to build intuitive reasoning regarding the behavior of species in chemical engineering processes and formulations. The molecular perspective is represented by descriptions encompassing: the relation of kinetic energy to temperature; the origin and consequences of intermolecular potentials; molecular acidity and basicity; methods used to incorporate molecular properties into molecular simulations; and the impact of molecular properties on macroscopic energy and entropy. This text is distinctive in making molecular perspectives accessible at the introductory level and connecting properties with practical implications.

This second edition offers enhanced coverage of biological, pharmaceutical, and electrolyte applications including osmotic pressure, solid solubility, and coupled reactions. Throughout the text, topics are organized to implement hierarchical instruction with increasing levels of detail. Content requiring deeper levels of theory is clearly delineated in separate sections and chapters. Less complex empirical model approaches have been moved forward to provide introductory practice with concepts and to provide motivation for understanding models more fully. The approach also provides more instructor flexibility in selecting topics to cover. Learning objectives have been clearly stated for each chapter along with chapter summaries including “important equations” to enhance student focus. Every chapter includes practice problems with complete solutions available online, as well as numerous homework problems. Online supplements include practice tests spanning many years, coursecasts describing difficult concepts or how to use computational tools, ConceptTests to quickly check comprehension, and objective lists that can be customized for greater detail. We also recommend the related resources available at the www.learncheme.com.
Unique features of the text include the level of pedagogical development of excess function models and electrolytes. For mixture models, the key assumptions and derivation steps are presented, stimulating readers to consider how the molecular phenomena are represented. For electrolytes and biological systems, the text makes connections between pH and speciation and provides tools for rapidly estimating concentrations of dissociated species. We emphasize speciation and problem solving in this introduction, instead of focusing on advanced theories of electrolyte activity. The material is written at an intermediate level to bridge students from the introductions in chemistry to the more complex models of electrolytes provided by process simulators.

We have created a number of homework problems with many variants, intending that different parts can be assigned to different classes or groups, not intending that each student work all parts.

NOTES TO STUDENTS

Thermodynamics is full of terminology and defined properties. Please note that the textbook provides a glossary and a summary of notation just before Unit I. Also consider the index a resource.

We consider the examples to be an integral part of the text, and we use them to illustrate important points. Examples are often cross-referenced and are therefore listed in the table of contents. We enclose important equations in boxes and we use special notation by equation numbers: (*) means that the equation assumes temperature-independent heat capacity; (ig) means the equation is limited to ideal gases. We include margin notes to highlight important concepts or supplemental information.

Computer programs facilitate the solutions to homework problems, but they should not be used to replace an understanding of the material. Computers are tools for calculating, not for thinking. To evaluate your understanding, we recommend that you know how to solve the problem by hand calculations. If you do not understand the formulas in the programs it is a good indication that you need to do more studying before using the program so that the structure of the program makes sense. It is also helpful to rework example problems from the text using the software.

ACKNOWLEDGMENTS

As the above quote from Mark Twain alludes, we are indebted to many others, from informal hallway conversations at meetings, to e-mail messages with suggestions and errata, to classroom testing. In many cases, we are merely the conveyors of others’ suggestions. In particular, for the first edition, Dave Hart, Joan Brennecke, Mike Matthews, Bruce Poling, Ross Taylor, and Mark Thies worked with early versions of the text. We have benefited from classroom testing of the second edition by Margot Vigeant, Victor Vasquez, and Joan Brennecke. We have benefited from reviews by Keith Johnston, Ram Gupta, John O’Connell, Mike Greenfield (electrolytes), Andre Anderko (electrolytes), and Paul Mathias (electrolytes). We have adapted some example problems developed by John O’Connell at the NSF BioEMB Workshop, San Jose, CA, 2010. CTL would like to thank Ryoko Yamasaki for her work in typing many parts of the first edition manuscript and problem solutions. CTL also thanks family members Gail, Nicolas, and Adrienne for their patience, as many family sacrifices helped make this book possible. JRE thanks family members Guliz, Serra, and Eileen for their similar forbearance. We acknowledge Dan Friend and NIST, Boulder, for contributions to the steam tables and thermodynamic charts. Lastly, we acknowledge the influences of the many authors of previous thermodynamics texts. We hope we have done justice to this distinguished tradition, while simultaneously bringing deeper insight to a broader audience.
ABOUT THE AUTHORS

J. Richard Elliott is Professor of Chemical Engineering at the University of Akron in Ohio. He has taught courses ranging from freshman tools to senior process design as well as thermodynamics at every level. His research interests include: thermodynamics of polymer solutions and hydrogen bonding using molecular simulations and perturbation theory; thermodynamics of supercritical fluids and hydrocarbon processing; biorefining pretreatments; and experimental phase equilibrium measurements. He has worked with the NIST lab in Boulder and ChemStations in Houston. He holds a Ph.D. in chemical engineering from Pennsylvania State University.

jelliott@uakron.edu

Carl T. Lira is Associate Professor in the Department of Chemical Engineering and Materials Science at Michigan State University. He teaches thermodynamics at all levels, chemical kinetics, and material and energy balances. His research accomplishments include experimental measurements and modeling for liquid metals, supercritical fluids, adsorptive separations, and liquid-vapor, solid-liquid, and liquid-liquid phase equilibria. Currently, Professor Lira specializes in the study of thermodynamic properties of bio-derived fuels and chemicals via experiments and molecular simulations, and he collaborates in the MSU Reactive Distillation Facility. He has been recognized with the Amoco Excellence in Teaching Award, and multiple presentations of the MSU Withrow Teaching Excellence Award. He holds a B.S. from Kansas State University, and an M.S. and Ph.D. from the University of Illinois, Champaign-Urbana, all in chemical engineering.

lira@egr.msu.edu
GLOSSARY

Adiabatic—condition of zero heat interaction at system boundaries.

Association—description of complex formation where all molecules in the complex are of the same type.

Azeotrope—mixture which does not change composition upon vapor-liquid phase change.

Barotropy—the state of a fluid in which surfaces of constant density (or temperature) are coincident with surfaces of constant pressure.

Binodal—condition of binary phase equilibrium.

Dead state—a description of the state of the system when it is in equilibrium with the surroundings, and no work can be obtained by interactions with the surroundings.

Diathermal—heat conducting, and without thermal resistance, but impermeable to mass.

Efficiency—see isentropic efficiency, thermal efficiency, thermodynamic efficiency.

EOS—Equation of state.

Fugacity—characterizes the escaping tendency of a component, defined mathematically.

Heteroazeotrope—mixture that is not completely miscible in all proportions in the liquid phase and like an azeotrope cannot be separated by simple distillation. The heteroazeotropic vapor condenses to two liquid phases, each with a different composition than the vapor. Upon partial or total vaporization, the original vapor composition is reproduced.

Infinite dilution—description of a state where a component’s composition approaches zero.

Irreversible—a process which generates entropy.

Isenthalpic—condition of constant enthalpy.

Isentropic—condition of constant entropy.

Isentropic efficiency—ratio characterizing actual work relative to ideal work for an isentropic process with the same inlet (or initial) state and the same outlet (or final) pressure. See also thermodynamic efficiency, thermal efficiency.

Isobaric—condition of constant pressure.
Glossary

Isochore—condition of constant volume. See *isosteric*.

Isopiestic—constant or equal pressure.

Isopycnic—condition of equal or constant density.

Isolated—A system that has no interactions of any kind with the surroundings (e.g. mass, heat, and work interactions) is said to be isolated.

Isosteric—condition of constant density. See *isochore*.

Isothermal—condition of constant temperature.

LLE—liquid-liquid equilibria.

Master equation—$U(V,T)$.

Measurable properties—variables from the set \(\{P, V, T, C_P, C_V\} \) and derivatives involving only \(\{P, V, T\} \).

Metastable—signifies existence of a state which is non-equilibrium, but not unstable, e.g., superheated vapor, subcooled liquid, which may persist until a disturbance creates movement of the system towards equilibrium.

Nozzle—a specially designed device which nearly reversibly converts internal energy to kinetic energy. See *throttling*.

Polytropic exponent—The exponent \(n \) in the expression \(PV^n = \text{constant} \).

Quality—the mass fraction of a vapor/liquid mixture that is vapor.

rdf—radical distribution function.

Reference state—a state for a pure substance at a specified \((T,P) \) and type of phase \((S,L,V) \). The reference state is invariant to the system \((P,T) \) throughout an entire thermodynamic problem. A problem may have various standard states, but only one reference state. See also *standard state*.

Sensible heat changes—heat effects accompanied by a temperature change.

Specific heat—another term for \(C_P \) or \(C_V \) with units per mass.

Specific property—an intensive property per unit mass.

SLE—solid-liquid equilibria.

Solvation—description of complex formation where the molecules involved are of a different type.

Spinodal—condition of instability, beyond which metastability is impossible.

Standard conditions—273.15 K and 0.1 MPa (IUPAC), *standard temperature and pressure*.

Standard state—a state for a pure substance at a specified \((T,P) \) and type of phase \((S,L,V) \). The standard state \(T \) is always at the \(T \) of interest for a given calculation within a problem. As the \(T \) of the system changes, the standard state \(T \) changes. The standard state \(P \) may be a fixed \(P \) or may be the \(P \) of the system. Gibbs energies and chemical potentials are commonly calculated relative to the standard state. For reacting systems, enthalpies and Gibbs energies of formation are commonly tabulated at a fixed pressure of 1 bar and 298.15 K. A temperature correction must be applied to calculate the standard state value at the temperature of interest. A problem may have various standard states, but only one reference state. See also *reference state*.

State of aggregation—solid, liquid, or gas.
Steady-state—open flow system with no accumulation of mass and where state variables do not change with time inside system boundaries.

STP—standard temperature and pressure, 273.15 K and 1 atm. Also referred to as standard conditions.

Subcooled—description of a state where the temperature is below the saturation temperature for the system pressure, e.g., subcooled vapor is metastable or unstable, subcooled liquid is stable relative to the bubble-point temperature; superheated vapor is stable, superheated liquid is metastable or unstable relative to the dew-point temperature; subcooled liquid is metastable or unstable relative to the fusion temperature.

Superheated—description of a state where the temperature is above the saturation temperature for the system pressure. See subcooled.

Thermal efficiency—the ratio or work obtained to the heat input to a heat engine. No engine may have a higher thermal efficiency than a Carnot engine.

Thermodynamic efficiency—ratio characterizing actual work relative to reversible work obtainable for exactly the same change in state variables for a process. The heat transfer for the reversible process will differ from the actual heat transfer. See also isentropic efficiency, thermal efficiency.

Throttling—a pressure drop without significant change in kinetic energy across a valve, orifice, porous plug, or restriction, which is generally irreversible. See nozzle.

Unstable—a state that violates thermodynamic stability, and cannot persist. See also metastable, spinodal.

VLE—vapor-liquid equilibrium.

Wet steam—a mixture of water vapor and liquid.
NOTATION

General Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Activity, or dimensional equation of state parameter or energetic parameter, or heat capacity or other constant</td>
</tr>
<tr>
<td>A</td>
<td>Intensive Helmholtz energy, or dimensionless constant for equation of state, or Antoine, Margules, or other constant</td>
</tr>
<tr>
<td>b</td>
<td>Dimensional equation of state parameter or heat capacity or other constant</td>
</tr>
<tr>
<td>B</td>
<td>Virial coefficient, or dimensionless constant for other equation of state, or Antoine or other constant</td>
</tr>
<tr>
<td>C, c,...</td>
<td>Constants, c is a shape factor for the ESD equation of state</td>
</tr>
<tr>
<td>(C_p)</td>
<td>Intensive constant pressure heat capacity</td>
</tr>
<tr>
<td>(C_V)</td>
<td>Intensive constant volume heat capacity</td>
</tr>
<tr>
<td>(F)</td>
<td>Feed</td>
</tr>
<tr>
<td>(f)</td>
<td>Pure fluid fugacity</td>
</tr>
<tr>
<td>(f_i)</td>
<td>Fugacity of component in mixture</td>
</tr>
<tr>
<td>(G)</td>
<td>Intensive Gibbs energy</td>
</tr>
<tr>
<td>(g)</td>
<td>Gravitational constant (9.8066 m/s(^2)) or radial distribution function</td>
</tr>
<tr>
<td>(g_c)</td>
<td>Gravitational conversion factor (1 kg-m/N-s(^2)) ((32.174[(1b_m_ft)/s^2]/1b_f))</td>
</tr>
<tr>
<td>(H)</td>
<td>Intensive enthalpy</td>
</tr>
<tr>
<td>(K_a)</td>
<td>Reaction equilibrium constant</td>
</tr>
<tr>
<td>(k)</td>
<td>Boltzmann’s constant = (R/N_A)</td>
</tr>
<tr>
<td>(k_{ij})</td>
<td>Binary interaction coefficient (Eqn. 1.8, 15.9)</td>
</tr>
<tr>
<td>(K)</td>
<td>Distribution coefficient (vapor-liquid, liquid-liquid, etc.)</td>
</tr>
<tr>
<td>(M)</td>
<td>Generic property or molarity when used as units</td>
</tr>
<tr>
<td>(M_w)</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>(m)</td>
<td>Mass (energy balances), molality (electrolytes)</td>
</tr>
<tr>
<td>(N)</td>
<td>Number of molecules</td>
</tr>
<tr>
<td>(n)</td>
<td>Number of moles</td>
</tr>
<tr>
<td>(N_A)</td>
<td>Avogadro’s number = 6.0221 E 23 mol(^{-1})</td>
</tr>
<tr>
<td>(P)</td>
<td>Pressure</td>
</tr>
</tbody>
</table>
Notation

- Q: Extensive heat transfer across system boundary
- Q: Intensive heat transfer across system boundary
- q: Quality (mass\% vapor)
- R: Gas constant $(8.31446 \text{ cm}^3\text{-MPa}/\text{mole-K})$
- S: Intensive entropy
- T: Temperature
- U: Intensive internal energy
- u: Pair potential energy function
- V: Intensive volume
- W: Extensive work done at boundary
- W: Intensive work done at boundary
- Z: Compressibility factor
- z: Height

Greek Symbols

- α: Isobaric coefficient of thermal expansion, also Peng-Robinson equation of state parameter, and also an ESD equation of state variable
- β: $1/kT$, where k is Boltzmann’s constant and T is temperature.
- ε: Potential energy parameter
- η: Thermal η, compressor or pump C, turbine or expander E, efficiency, or reduced density, $\eta_p = b/V$
- γ: C_p/C_V
- γ_i: Activity coefficient
- κ_T: Isothermal compressibility
- κ_S: Isentropic compressibility
- κ: Parameter for Peng-Robinson equation of state
- λ: Universal free volume fraction
- μ_i: Chemical potential for a component in a mixture
- ω: Acentric factor
- ϕ: Pure fluid fugacity coefficient
- ϕ_i: Component fugacity coefficient in a mixture
- Φ: Osmotic coefficient or electric potential
- Φ_i: Volume fraction of component i
- ρ: Intensive density
- σ: Molecular diameter
- ξ: Reaction coordinate

Operators

- Δ: Denotes change: (1) for a closed system, denotes (final state – initial state); (2) for an open steady-state system, denotes (outlet state – inlet state)
- \ln: Natural logarithm (base e)
- \log: Common logarithm (base 10)
- ∂: Partial differential
- Π: Cumulative product operator
- Σ: Cumulative summation

Special Notation

- ig: Equation applies to ideal gas only
- \ast: Equation assumes heat capacity is temperature-independent.
- \hat{H}_i: Partial molar property as in \hat{H}_i
- \hat{U}: Extensive property as in \hat{U}
- \hat{U}: Mixture property as in \hat{U}
Notation

[≡] Specifies units for variable
≡ Equivalence or definition
≈ Approximately equal to

Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Property at normal boiling point temperature</td>
</tr>
<tr>
<td>EC</td>
<td>Expansion/contraction work</td>
</tr>
<tr>
<td>f</td>
<td>Denotes property for formation of molecule from atoms in their naturally occurring pure molecular form</td>
</tr>
<tr>
<td>gen</td>
<td>Generated entropy</td>
</tr>
<tr>
<td>i</td>
<td>Component in a mixture</td>
</tr>
<tr>
<td>m</td>
<td>Property at melting point</td>
</tr>
<tr>
<td>mix</td>
<td>Used with Δ to denote property change on mixing</td>
</tr>
<tr>
<td>r</td>
<td>Property reduced by critical constant</td>
</tr>
<tr>
<td>R</td>
<td>Reference state</td>
</tr>
<tr>
<td>S</td>
<td>Shaft work</td>
</tr>
</tbody>
</table>

Superscripts

<table>
<thead>
<tr>
<th>Superscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>Infinite dilution</td>
</tr>
<tr>
<td>□</td>
<td>Molality standard state</td>
</tr>
<tr>
<td>o</td>
<td>Standard state (usually pure)</td>
</tr>
</tbody>
</table>

* Henry’s law (rational) standard state
E Excess property for a mixture
f Property at final state
fus Fusion (melting) process
i Property at initial state
α, β Denotes phase of interest
ig Ideal gas property
in Property at inlet (open system)
is Ideal solution property
L Liquid phase
out Property at outlet (open system)
S Solid phase
sat Saturation property
V Vapor phase
vap Vaporization process
“Aside from the logical and mathematical sciences, there are three great branches of natural science which stand apart by reason of the variety of far reaching deductions drawn from a small number of primary postulates. They are mechanics, electromagnetics, and thermodynamics.

These sciences are monuments to the power of the human mind; and their intensive study is amply repaid by the aesthetic and intellectual satisfaction derived from a recognition of order and simplicity which have been discovered among the most complex of natural phenomena... Yet the greatest development of applied thermodynamics is still to come. It has been predicted that the era into which we are passing will be known as the chemical age; but the fullest employment of chemical science in meeting the various needs of society can be made only through the constant use of the methods of thermodynamics.”

Lewis and Randall (1923)

Lewis and Randall eloquently summarized the broad significance of thermodynamics as long ago as 1923. They went on to describe a number of the miraculous scientific developments of the time and the relevant roles of thermodynamics. Historically, thermodynamics has guided the development of steam engines, refrigerators, nuclear power plants, and rocket nozzles, to name just a few. The principles remain important today in the refinement of alternative refrigerants, heat pumps, and improved turbines, and also in technological advances including computer chips, superconductors, advanced materials, fermentations, biological cycles, and bioengineered pharmaceuticals. These latter-day “miracles” might appear to have little to do with power generation and refrigeration cycles at first thought. Nevertheless, as Lewis and Randall point out, the implications of the postulates of thermodynamics are far-reaching and will continue to be important in the development of even newer technologies. Much of modern thermodynamics focuses on characterization of the properties of mixtures, as their constituents partition into stable phases or inhomogeneous domains, and react. The capacity of thermodynamics to bring “quantitative precision in place of the old, vague ideas”1 is as germane today as it was then.

Before overwhelming you with the details that comprise thermodynamics, we outline a few “primary postulates” as clearly as possible and put them into the context of what we will refer to as classical equilibrium thermodynamics. In casual terms, our primary premises can be expressed as follows:

1. You can’t get something for nothing. (Energy is conserved.)
2. Maintaining order requires work. (Entropy generation leads to lost work.)

Occasionally, it may seem that we are discussing principles that are much more sophisticated. But the fact is that all of our discussions can be reduced to these fundamental principles. The first principle is a casual statement of the first law of thermodynamics (conservation of energy) which will be introduced in Chapters 2 and 3. The second principle is a casual statement of the second law of thermodynamics (entropy balance) which will be introduced in Chapter 4. When you find yourself in the midst of a difficult problem, it may be helpful to remember the underlying principles. We will see that coupling these two principles with some slightly sophisticated reasoning (mathematics included) leads to many clear and reliable insights about a wide range of subjects from energy crises to high-tech materials, from environmental remediation to biosynthesis. The bad news is that the level of sophistication required is not likely to be instantly assimilated by the average student. The good news is that many students have passed this way before, and the proper trail is about as well marked as one might hope.

There is less-than-universal agreement on what comprises “thermodynamics.” If we simply take the word apart, “thermo” sounds like “thermal,” which ought to have something to do with heat, temperature, or energy. “Dynamics” ought to have something to do with movement. And if we could just leave the identification of thermodynamics as the study of “energy movements,” it would be sufficient for the purposes of this text. Unfortunately, such a definition would not clarify what distinguishes thermodynamics from, say, transport phenomena or kinetics, so we should spend some time clarifying the definition of thermodynamics in this way before moving on to the definitions of temperature, heat, energy, and so on.

The definition of thermodynamics as the study of energy movements has evolved considerably to include classical equilibrium thermodynamics, quantum thermodynamics, statistical thermodynamics, and irreversible thermodynamics as well as nonequilibrium thermodynamics. Classical thermodynamics has the general connotation of referring to the implications of constraints related to multivariable calculus as developed by J.W. Gibbs. We spend a significant effort applying these insights in developing generalized equations for the thermodynamic properties of pure substances. Statistical thermodynamics focuses on the idea that knowing the precise states of 10^{23} atoms is not practical and prescribes ways of computing the average properties of interest based on very limited measurements. We touch on this principle in our introduction to entropy, in our kinetic theory and molecular dynamics, and in the formulation of the internal energy relative to the intermolecular potential energy. We generally refrain from detailed formulation of all the statistical averages, however, maintaining the focus on simple concepts of molecular interactions. Irreversible thermodynamics and nonequilibrium thermodynamics emphasize the ways that local concentrations of atoms and energy evolve over periods of time. At this point, it becomes clear that such a broad characterization of thermodynamics would overlap with transport phenomena and kinetics in a way that would begin to be confusing at the introductory level. Nevertheless, these fields of study represent legitimate subtopics within the general realm of thermodynamics.

2. The term “lost work” refers to the loss of capability to perform useful work, and is discussed in more detail in Sections 2.4 on page 42, 4.2 on page 132, and 4.3 on page 142.
1.1 INTRODUCTION

These considerations should give you some idea of the potential range of applications possible within the general study of thermodynamics. This text will try to find a happy medium. One general unifying principle about the perspective offered by thermodynamics is that there are certain properties that are invariant with respect to time. For example, the process of diffusion may indicate some changes in the system with time, but the diffusion coefficient is a property which only depends on a temperature, density, and composition profile. A thermodynamicist would consider the diffusion process as something straightforward given the diffusion coefficient, and focus on understanding the diffusion coefficient. A transport specialist would just estimate the diffusion coefficient as best as he could and get on with it. A kineticist would want to know how fast the diffusion was relative to other processes involved. In more down-to-earth terms, if we were touring about the countryside, the thermodynamicists would want to know where we were going, the transport specialists would want to know how long it takes to get there, and the kineticists would want to know how fast the fuel was running out.

In thermodynamics we utilize a few basic concepts: energy, entropy, and equilibrium. The ways in which these are related to one another and to temperature, pressure, and density are best understood in terms of the connections provided by molecular mechanisms. These connections, in turn, can be summarized by the thermodynamic model (e.g., ideal gas), our quantitative description of the substance. Showing how energy and entropy couple with molecular characteristics to impact chemical process applications is the primary goal of this text. These insights should stick with you long after you have forgotten how to estimate any particular thermodynamic property, a heat capacity or activity coefficient, for example. We will see how assuming a thermodynamic model and applying the rules of thermodynamics leads to precise and extremely general insights relevant to many applications. A general theme throughout the text (and arguably throughout engineering) is: observe, predict, test, and evaluate. The prediction phase usually involves a model equation. Testing and evaluation expose limitations of the prospective model, which leads to a new cycle of observation, prediction... We terminate this hierarchy at an introductory level, but it never really ends. Extending this hierarchy is the source of innovation that must serve you for the next 50 years.

Chapter Objectives: You Should Be Able to...

1. Explain the definitions and relations between temperature, molecular kinetic energy, molecular potential energy and macroscopic internal energy, including the role of intermolecular potential energy and how it is modeled. Explain why the ideal gas internal energy depends only on temperature.
2. Explain the molecular origin of pressure.
3. Apply the vocabulary of thermodynamics with words such as the following: work, quality, interpolation, sink/reservoir, absolute temperature, open/closed system, intensive/extensive property, subcooled, saturated, superheated.
4. Explain the advantages and limitations of the ideal gas model.
5. Sketch and interpret paths on a $P-V$ diagram.
6. Perform steam table computations like quality determination, double interpolation.
1.2 THE MOLECULAR NATURE OF ENERGY, TEMPERATURE, AND PRESSURE

Energy is a term that applies to many aspects of a system. Its formal definition is in terms of the capability to perform work. We will not quantify the potential for work until the next chapter, but you should have some concept of work from your course in introductory physics. Energy may take the form of kinetic energy or potential energy, and it may refer to energy of a macroscopic or a molecular scale.

Energy is the sum total of all capacity for doing work that is associated with matter: kinetic, potential, submolecular (i.e., molecular rearrangements by reaction), or subatomic (e.g., ionization, fission).

Kinetic energy is the energy associated with motion of a system. Motion can be classified as translational, rotational, or vibrational.

Temperature is related to the “hotness” of a substance, but is fundamentally related to the kinetic energy of the constitutive atoms.

Potential energy is the energy associated with a system due to its position in a force field.

In the study of “energy movements,” we will continually ask, “How much energy is here now, and how much is there?” In the process, we need to establish a point for beginning our calculations. According to the definition above, we might intuitively represent zero internal energy by a perfect vacuum. But then, knowing the internal energy of a single proton inside the vacuum would require knowing how much energy it takes to make a proton from nothing. Since this is not entirely practical, this intuitive choice is not a good engineering choice usually. This is essentially the line of reasoning that gives rise to the convention of calculating energy changes relative to a reference state. Thus, there is no absolute reference point that is always the most convenient; there are only changes in energy from one state to another. We select reference conditions that are relevant throughout any particular process of interest. Depending on the complexity of the calculation, reference conditions may vary from, say, defining the enthalpy (to be defined later) of liquid water to be zero at 0.01°C (as in the steam tables) to setting it equal to zero for the molecular hydrogen and oxygen at 1 bar and 298.15 K (as in the heat of reaction), depending on the situation. Since this text focuses on changes in kinetic energy, potential energy, and energies of reaction, we need not specify reference states any more fundamental than the elements, and thus we do not consider subatomic particles.

Kinetic Energy and Temperature

Kinetic energy is commonly introduced in detail during introductory physics as \(\frac{1}{2}mv^2 \), where \(m \) is the mass of the object and \(v \) is the object velocity. Atomic species that make up solids are frozen in localized positions, but they are continuously vibrating with kinetic energy. Fluids such as liquids and gases are not frozen into fixed positions and move through space with kinetic energy and collide with one another.

The most reliable definition of temperature is that it is a numerical scale for uniquely ordering the “hotness” of a series of objects. However, this “hotness” is coupled to the molecular kinetic energy of the constituent molecules in a fundamental way. The relation between kinetic energy and temperature is surprisingly direct. When we touch a hot object, the kinetic energy of the object is transferred to our hand via the atoms vibrating at the surface. Temperature is proportional to the

average molecular kinetic energy. The expression is easiest to use in engineering on a molar basis. For a monatomic substance

\[T = \frac{M_w}{3R} \langle v^2 \rangle \quad \text{(for 3D)} \]

\[T_{2D} = \frac{M_w}{2R} \langle v^2 \rangle \quad \text{(for 2D) monatomic fluid.} \]

where <> brackets denote an average, and \(M_w \) is the molecular weight. We use a subscript for the temperature of 2D motion to avoid confusion with the more common 3D motion. The differences between 2D and 3D temperature are explained on page 22. For a polyatomic molecule, the temperature is coupled to the average velocity of the individual atoms, but some of the motion of the bonded atoms results in vibrations and rotations rather than a direct translation of the center of mass and thus it is not directly related to the velocity of the center of mass. (See Section 7.10 on page 276.)

Eqn. 1.1 is applicable to any classical monatomic system, including liquids and solids. This means that for a pure system of a monatomic ideal gas in thermal equilibrium with a liquid, the average velocities of the molecules are independent of the phase in which they reside. We can infer this behavior by envisioning gas atoms exchanging energy with the solid container walls and then the solid exchanging energy with the liquid. At equilibrium, all exchanges of energy must reach the same kinetic energy distribution. The liquid molecular environment is different from the gas molecular environment because liquid molecules are confined to move primarily within a much more crowded environment where the potential energies are more significant. When a molecule’s kinetic energy is insufficient to escape the potential energy (we discuss the potential energy next) due to molecular attractiveness, the atoms simply collide with a higher frequency in their local environment. What happens if the temperature is raised such that the liquid molecules can escape the potential energies of the neighbors? We call this phenomenon “boiling.” Now you can begin to understand what temperature is and how it relates to other important thermodynamic properties.

We are guaranteed that a universal scale of temperature can be developed because of the zeroth law of thermodynamics: If two objects are in equilibrium with a third, then they are in equilibrium with one another as we discussed in the previous paragraph. The zeroth law is a law in the sense that it is a fact of experience that must be regarded as an empirical fact of nature. The significance of the zeroth law is that we can calibrate the temperature of any new object by equilibrating it with objects of known temperature. Temperature is therefore an empirical scale that requires calibration according to specific standards. The Celsius and Fahrenheit scales are in everyday use. The conversions are:

\[(T \text{ in } ^\circ \text{C}) = \frac{5}{9}((T \text{ in } ^\circ \text{F}) - 32) \]

When we perform thermodynamic calculations, we must usually use absolute temperature in Kelvin or Rankine. These scales are related by

\[(T \text{ in K}) = (T \text{ in } ^\circ \text{C}) + 273.15 \]

\[(T \text{ in } ^\circ \text{R}) = (T \text{ in } ^\circ \text{F}) + 459.67 \]

\[(T \text{ in R}) = 1.8 \cdot (T \text{ in K}) \]

The absolute temperature scale has the advantage that the temperature can never be less than absolute zero. This observation is easily understood from the kinetic perspective. The kinetic
energy cannot be less than zero; if the atoms are moving, their kinetic energy must be greater than zero.

Potential Energy

Solids and liquids exist due to the intermolecular potential energy (molecular “stickiness”) of atoms. If molecules were not “sticky” all matter would be gases or solids. Thus, the principles of molecular potential energy are important for developing a molecular perspective on the nature of liquids, solids, and non-ideal gases. Potential energy is associated with the “work” of moving a system some distance through a force field. On the macroscopic scale, we are well aware of the effect of gravity. As an example, the Earth and the moon are two spherical bodies which are attracted by a force which varies as r^{-2}. The potential energy represents the work of moving the two bodies closer together or farther apart, which is simply the integral of the force over distance. (The force is the negative derivative of potential with respect to distance.) Thus, the potential function varies as r^{-1}. Potential energies are similar at the microscopic level except that the forces vary with position according to different laws. The gravitational attraction between two individual atoms is insignificant because the masses are so small. Rather, the important forces are due to the nature of the atomic orbitals. For a rigorous description, the origin of the intermolecular potential is traced back to the solution of Schrödinger’s quantum mechanics for the motions of electrons around nuclei. However, we do not need to perform quantum mechanics to understand the principles.

Intermolecular Potential Energy

Atoms are composed of dense nuclei of positive charge with electron densities of negative charge built around the nucleus in shells. The outermost shell is referred to as the valence shell. Electron density often tends to concentrate in lobes in the valence orbitals for common elements like C, N, O, F, S, and Cl. These lobes may be occupied by bonded atoms that are coordinated in specific geometries, such as the tetrahedron in CH$_4$, or they may be occupied by unbonded electron pairs that fill out the valence as in NH$_3$ or H$_2$O, or they may be widely “shared” as in a resonance or aromatic structure. These elements (H, C, N, O, F, S, Cl) and some noble gases like He, Ne, and Ar provide virtually all of the building blocks for the molecules to be considered in this text.

By considering the implications of atomic structure and atomic collisions, it is possible to develop the following subclassifications of intermolecular forces:

1. Electrostatic forces between charged particles (ions) and between permanent dipoles, quadrupoles, and higher multipoles.
2. Induction forces between a permanent dipole (or quadrupole) and an induced dipole.
3. Forces of attraction (dispersion forces) due to the polarizability of electron clouds and repulsion due to prohibited overlap.
4. Specific (chemical) forces leading to association and complex formation, especially evident in the case of hydrogen bonding.

Attractive forces are quantified by negative numerical values, and repulsive forces will be characterized by positive numerical values. To a first approximation, these forces can be characterized by a spherically averaged model of the intermolecular potential (aka. “potential” model). The potential, $u(r)$, is the work (integral of force over distance) of bringing two molecules from infinite distance to a specific distance, r. When atoms are far apart (as in a low-pressure gas), they do not sense one another and interaction energy approaches zero. When the atoms are within about two diameters, they attract, resulting in a negative energy of interaction. Because they have finite
size, as they are brought closer, they resist overlap. Thus, at very close distances, the forces are repulsive and create very large positive potential energies. These intuitive features are illustrated graphically in Fig. 1.1. The discussion below provides a brief background on why these forces exist and how they vary with distance.

Electrostatic Forces

The force between two point charges described by Coulomb’s Law is very similar to the law of gravitation and should be familiar from elementary courses in chemistry and physics,

\[F \propto \frac{q_i q_j}{r^2} \]

where \(q_i \) and \(q_j \) are the charges, and \(r \) is the separation of centers. Upon integration, \(u = \int Fdr \), the potential energy is proportional to inverse distance,

\[u \propto \frac{q_i q_j}{r} \quad \text{(1.2)} \]

If all molecules were perfectly spherical and rigid, the only way that these electrostatic interactions could come into play is through the presence of ions. But a molecule like \(\text{NH}_3 \) is not perfectly spherical. \(\text{NH}_3 \) has three protons on one side and a lobe of electron density in the unbonded valence shell electron pair. This permanent asymmetric distribution of charge density is modeled mathematically with a dipole (+ and − charge separation) on the \(\text{NH}_3 \) molecule. This means that ammonia molecules lined up with the electrons facing one another repel while molecules lined up with the electrons facing the protons will attract. Since electrostatic energy drops off as \(r^{-1} \), one might expect that the impact of these forces would be long-range. Fortunately, with the close proximity of the positive charge to the negative charge in a molecule like \(\text{NH}_3 \), the charges tend to cancel one another as the molecule spins and tumbles about through a fluid. This spinning and tumbling makes it reasonable to consider a spherical average of the intermolecular energy as a function of distance that may be constructed by averaging over all orientations between the molecules at each distance. In a large collection of molecules randomly distributed relative to one another, this averaging approach gives rise to many cancellations, and the net impact is approximately

\[u_{\text{dipole–dipole}} \propto \frac{-\varepsilon_{\text{dipole}}}{r^6 kT} \quad \text{(1.3)} \]

where \(k = \frac{R}{N_A} \) is Boltzmann’s constant, related to the gas constant, \(R \), and Avogadro’s number, \(N_A \). This surprisingly simple result is responsible for a large part of the attractive energy between polar molecules. This energy is attractive because the molecules tend to spend somewhat more time lined up attractively than repulsively, and the \(r^{-6} \) power arises from the averaging that occurs as the molecules tumble and the attractive forces decrease with separation. A key feature of dipole-dipole forces is the temperature dependence.

4. The dipole is a model of the charge distribution on the molecule, and it is thus an approximate description of the charge distribution.
Induction Forces

When a molecule with a permanent dipole approaches a molecule with no dipole, the positive charge of the dipolar molecule will tend to pull electron density away from the nonpolar molecule and “induce” a dipole moment into the nonpolar molecule. The magnitude of this effect depends on the strength of the dipole and how tightly the orbitals of the nonpolar molecule constrain the electrons spatially in an electric field, characterized by the “polarizability.” For example, the pi bonding in benzene makes it fairly polarizable. A similar consideration of the spherical averaging described in relation to electrostatic forces results again in a dependence of r^{-6} as approximately

$$u_{in} \propto \frac{-\varepsilon_{in}}{r^6} \tag{1.4}$$

Disperse Attraction Forces (Dispersion Forces)

When two nonpolar molecules approach, they may also induce dipoles into one another owing to fluctuating distributions of electrons. Their dependence on radial distance may be analyzed and gives the form for the attractive forces:

$$u_{disp}^{att} \propto \frac{-\varepsilon_{att}}{r^6} \tag{1.5}$$

Note that dipole-dipole, induction, and dispersion forces all vary as r^{-6}.

Repulsive Forces

The forces become repulsive rapidly as radial distance decreases, and quickly outweighs the attractive force as the atoms are forced into the same space. A common empirical equation is

$$u_{disp}^{rep} \propto \frac{\varepsilon_{rep}}{r^{12}} \tag{1.6}$$

Engineering Potential Models

Based on the forms of these electrostatic, induction, and dispersion forces, it should be easy to appreciate the form of the Lennard-Jones potential in Fig. 1.1. Other approximate models of the potential function are possible, such as the square-well potential or the Sutherland potential also shown in Fig. 1.1. These simplified potential models are accurate enough for many applications.

The key features of all of these potential models are the representation of the size of the molecule by the parameter σ and the attractive strength (i.e. “stickiness”) by the parameter ε. We can gain considerable insight about the thermodynamics of fluids by intuitively reasoning about the relatively simple effects of size and stickiness. For example, if we represent molecules by lumping together all the atomic sites, a large molecule like buckminsterfullerene (solid at room temperature) would have a larger value for σ and ε than would methane (gas at room temperature). Water and methane are about the same size, but their difference in boiling temperature indicates a large difference in their stickiness. Considering the molecular perspective, it should become apparent that water

5. The polarizability is the linear proportionality constant in a model of how easily a dipole is “induced” when the molecule is placed in an electric field.
Section 1.2 The Molecular Nature of Energy, Temperature, and Pressure

The Lennard-Jones potential.

\[u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \]

Note that \(\varepsilon > 0 \) is the depth of the well, and \(\sigma \) is the distance where \(u(r) = 0 \).

The square-well potential for \(\lambda = 1.5 \).

\[u(r) = \begin{cases}
\infty & \text{if } r \leq \sigma \\
-\varepsilon & \text{if } \sigma < r \leq \lambda \sigma \\
0 & \text{if } r > \lambda \sigma
\end{cases} \]

The Sutherland potential.

\[u(r) = \begin{cases}
\infty & \text{if } r \leq \sigma \\
-\varepsilon \left(\frac{\sigma}{r} \right)^6 & \text{if } r > \sigma
\end{cases} \]

Figure 1.1 Schematics of three engineering models for pair potentials on a dimensionless basis.

has a higher boiling temperature because it sticks to itself more strongly than does methane. With these simple insights, you should be able to understand the molecular basis for many macroscopic phenomena. Example 1.1 illustrates several computations for intermolecular potential energy.
Unit I First and Second Laws

When we sum the potential energy for a collection of molecules, we often call the sum **configurational energy** to differentiate quantity from the potential energy which is commonly used when discussing atoms or sites.

Note that we would need a more complicated potential model to represent the shape of the molecule. Typically, molecules of different shapes are represented by binding together several

Example 1.1 The energy derived from intermolecular potentials

We can develop further appreciation for internal energy by computing the intermolecular potential energy for a well-defined system of molecules. Assume the Lennard-Jones potential model with $\sigma = 0.36$ nm and $\varepsilon = 1.38 \times 10^{-21}$ J:

(a) Compute the potential energy for two molecules located at positions (0,0) and (0, 0.4 nm).

(b) Suppose a third molecule was located at (0.5,0). Compute the potential energy for the system.

(c) To develop a very crude insight on the methods of averaging, we can think of the average potential energy as defining an average distance between the molecules. As the volume expands, the average distance between molecules increases and the magnitude of the average potential energy decreases in accordance with the Lennard-Jones model. For the potential energy from (b), compute the average distance, $<r>$, that corresponds to the average potential energy for this system of molecules.

(d) Suppose the volume of the system in (c) expands by a factor of two. How would that affect the average distance, $<r>$, and what would you estimate as the new intermolecular energy?

(e) Assume approximately four molecules can fit around a central molecule in a liquid before it is too crowded and another layer starts to build up. Assuming the Lennard-Jones energy is practically zero beyond the first layer (i.e. ignore all but the first layer), and the average distance between the central molecule and its four neighbors is $<r> = 0.55$ nm, estimate the intermolecular energy around one single molecule and that for one mole of similar molecules.

Solution:

(a) The distance is $r_{12} = \sqrt{(0 - 0)^2 + (0.4 - 0)^2} = 0.4$ nm.

$$u(r_{12}) = 4(1.38 \times 10^{-21})[(0.36/0.4)^{12} - (0.36/0.4)^6] = -1.375 \times 10^{-21}$$

(b) The distance $r_{13} = \sqrt{(0.5 - 0)^2 + (0.5 - 0)^2} = 0.5$. So $u(r_{13}) = -0.662 \times 10^{-21}$.

But wait, there's more! $r_{23} = \sqrt{(0.5 - 0)^2 + (0 - 0.4)^2} = 0.6403$. So, $u(r_{23}) = -0.169 \times 10^{-21}$. The total intermolecular energy is: $-(1.375+0.662+0.169)(1 \times 10^{-21}) = -2.206 \times 10^{-21}$J.

(c) The average intermolecular energy for these three pairs is:

$$<u> = -2.206 \times 10^{-21}/3 = -0.735 \times 10^{-21}.$$

Matching this value of $<u>$ by using a solver to adjust $<r>$ in the Lennard-Jones model gives $<r> = 0.4895$ nm.

(d) Volume is related to the cubic of length. Expanding the volume by a factor of 2 changes the r-coordinates by a factor of $2^{1/3}$. So, $<r> = 0.4895(2^{1/3}) = 0.6167$, and $<u> = -0.210 \times 10^{-21}$J.

(e) For $<r> = 0.55$, $<u(r)> = -0.400 \times 10^{-21}$J and $u_1 = 4(-0.400 \times 10^{-21}) = -1.600 \times 10^{-21}$ per atom. For Avogadro’s number of such molecules, the summed intermolecular energy becomes $u_N = N_A <u> = (602.22 \times 10^{21})(-1.600 \times 10^{-21}) = -963$ J/mole.
potentials like those above with each potential site representing one molecular segment. For example, \(n\)-butane could be represented by four Lennard-Jones sites that have their relative centers located at distances corresponding to the bond-lengths in \(n\)-butane. The potential between two butane molecules would then be the sum of the potentials between each of the individual Lennard-Jones sites on the different molecules. In similar fashion, potential models for very complex molecules can be constructed.

Potentials in Mixtures

Our discussion of intermolecular potentials has focused on describing single molecules, but it is actually more interesting to contemplate the potential models for different molecules that are mixed together. Note that the square-well model provides a simple way for us to consider only the potential energy of the closest neighbors. We can use the square-well potential as the basis for this analysis and focus simply on the size \((\sigma_{ij})\) and stickiness \((\varepsilon_{ij})\) of each potential model, where the subscript \(ij\) indicates an interaction of molecule \(i\) with molecule \(j\). Commonly, we assume that \(\lambda = 1.5\) in discussions of the square-well potential, unless otherwise specified. For example, \(\varepsilon_{11}\) would be the stickiness of molecule 1 to itself, and \(\varepsilon_{12}\) would be its stickiness to a molecule of type 2 and \(\varepsilon_{21} = \varepsilon_{12}\). We often calculate the interactions of dissimilar molecules by using combining rules that relate the interaction to the parameters of the sites. Commonly we use combining rules developed by Lorentz and Bertholet. The size parameter for interaction between different molecules is reasonably well represented by

\[
\sigma_{12} = (\sigma_{11} + \sigma_{22})/2
\]

This rule simply states that the distance between two touching molecules is equal to the radius of the first one plus the radius of the second one. The estimation of the stickiness parameter for interaction between different molecules requires more empirical reasoning. It is conventional to estimate the stickiness by a geometric mean, but to permit flexibility to adjust the approximate rule by adding an adjustable constant that can be refined using experimental measurements, or sometimes using theories like quantum mechanical simulation. For historical reasons, this constant is typically referred to as “\(k_{ij}\)” or the binary interaction parameter, and defined through the following rule:

\[
\varepsilon_{12} = (\varepsilon_{11} \varepsilon_{22})^{1/2}(1 - k_{12})
\]

The default value is \(k_{12} = 0\).

Specific (Chemical) Forces Like Hydrogen Bonding

What happens when the strength of interaction between two molecules is so strong at certain orientations that it does not make sense to spherically average over it? Hydrogen bonding is an example of such an interaction, as you probably know from an introductory chemistry or biology course. For instance, it would not make sense to spherically average when two atoms preferentially interact in a specific orientation. But, if they were covalently bonded, we would call that a chemical reaction and handle it in a different way. An interesting problem arises when the strength of interaction is too strong to be treated entirely by spherically averaging and too weak to be treated as a normal chemical reaction which forms permanent stable chemical species. Clearly, this problem is difficult and it would be tempting to try to ignore it. In fact, most of this course will deal with theories that treat only what can be derived by spherically averaging. But it should be kept in mind that these specific forces are responsible for some rather important properties, especially in the form of hydrogen bonding. Since many systems are aqueous or contain amides or alcohols, ignoring hydro-
gen bonding entirely would substantially undermine the accuracy of our conceptual foundation. Furthermore, the concept of favorable energetic interactions between acids and bases can lend broad insights into the mysteries of chemical formulations. As an engineering approach, we can make large adjustments to the spherical nature of these forces such that we can often approximate them with a single characteristic constant to obtain a workable engineering model. Example 1.2 illustrates the concept of combining rules that pervades the entirety of mixture thermodynamics.

Example 1.2 Intermolecular potentials for mixtures

Methane (CH$_4$) has fewer atoms than benzene (C$_6$H$_6$), so it is smaller. Roughly, the diameter of methane is 0.36 nm and that of benzene is 0.52 nm. Similarly, methane’s boiling temperature is lower so its stickiness must be smaller in magnitude. A crude approximation is $\varepsilon/k = T_c/1.25$, where T_c is the critical temperature listed on the back flap. Not knowing what to assume for k_{12}, we may consider three possibilities: $k_{12} = 0$, $k_{12} < 0$, $k_{12} > 0$. To illustrate, sketch on the same pair of axes the potential models for methane and benzene, assuming that the k_{12} parameter is given by: (a) $k_{12} = 0$ (b) $k_{12} = -0.2$ (c) $k_{12} = +0.2$. In each case, describe in words what is represented by each numerical value (e.g., favorable interactions, or unfavorable interactions...)

Assume the square-well potential with $\lambda = 1.5$.

Solution: Following the suggested estimation formula, $\varepsilon/k = 190.6/1.25 = 152.5$ for methane and $562.2/1.25 = 449.8$ for benzene. Applying Eqns. 1.7 and Eqn. 1.8, we obtain Fig. 1.2 where $k_{12} = 0.0$ refers to case (a); -0.2 refers to the well location for case (b); and $+0.2$ refers to case (c).

![Figure 1.2 Sketch of intermolecular square-well potential models for a mixture of methane and benzene for $\lambda = 1.5$ as explained in Example 1.1.](image)

Description of the interactions:

Case (a) corresponds to the molecular interactions being relatively neutral towards one another. This is the default assumption (i.e. $k_{12} = 0$). This would be the best description of methane + benzene (among these three choices) because both are nonpolar.

Case (b) corresponds to extremely favorable interactions, as indicated by the deep attractive well and strongly exothermic interaction. An Lewis acid might interact with a Lewis base in this way.

Case (c) corresponds to unfavorable interactions. The interactions are not zero exactly, so the molecules do attract one another, but the well for the 1-2 interactions is not as deep as expected from the 1-1 and 1-2 interactions. The molecules greatly prefer their own company. A mixture with this type of interaction may lead to liquid-liquid splitting, like oil and water.
Internal Energy

We have taken considerable time to develop the molecular aspects of kinetic and potential energy. These molecular properties are of great importance, but for large-scale macroscopic process system calculations, these microscopic energies are combined and we consider kinetic and configurational energy collectively as the internal energy of the system, which is given the symbol U. It may be somewhat confusing that kinetic and potential energy exist on the macroscopic level and the microscopic level. The potential energy (gravitational potential energy) and kinetic energy of the center of mass of the system are accounted for separately. The internal energy is a function of the temperature and density (the latter for non-ideal gases) of the system, and it does not usually change if the entire system is placed on, say, an airplane where the kinetic and potential energy of the center of mass differ considerably from a stationary position on the ground. This is the convention followed throughout the remainder of Unit I. In Units II and III, we reexamine the molecular potentials as to how they affect the bulk fluid properties. Thus, throughout the remainder of Unit I, when we refer to kinetic and potential energy of a body of fluid as a system, we are referring to the kinetic energy of the center of mass of the system and the gravitational potential energy of the center of mass of the system.

1.3 **THE MOLECULAR NATURE OF ENTROPY**

To be fair to both of the central concepts of thermodynamics, we must mention entropy at this point, in parallel with the mention of energy. Unfortunately, there is no simple analogy that can be drawn for entropy like that for potential energy using the gravitational forces between the Earth and moon. The study of entropy is fairly specific to the study of thermodynamics.

What we can say at this point is that entropy has been conceived to account for losses in the prospect of performing useful work. The energy can take on many forms and be completely accounted for without contemplating how much energy has been “wasted” by converting work into something like warm water. To picture how much work this would take, imagine yourself stirring water in a bathtub until the temperature rises by 5°C. Entropy accounts for this kind of wastefulness. It turns out that the generation of such waste can be directly related to the degree of disorder involved in conducting our process. Thus, generation of disorder results in lost work. Furthermore, work that is lost by not maintaining order cannot be converted into useful work. To see the difference between energy and entropy, consider the following example. Oxygen and nitrogen are mixed as ideal gases at room temperature and pressure. How much energy is involved in the mixing process? How much (energy) work must be exerted to separate them again? To completely answer the first question we must understand the ideal gas mixture more completely (Chapter 4). We note that ideal gases are point masses with no potential energy to affect the mixing. Thus, the answer to the first question is that no energy is involved. For the answer to the second question regarding work to separate them, however, we must acknowledge that a considerable effort would be involved. The minimum amount required can be calculated as we will show in Chapter 4. To avoid introducing too many concepts at one time, we defer the quantitative development of the topic until Chapter 4.

1.4 **BASIC CONCEPTS**

The System

A system is that portion of the universe which we have chosen to study.
A **closed system** is one in which no mass crosses the system boundaries.

An **open system** is one in which mass crosses the system boundaries. The system may gain or lose mass or simply have some mass pass through it.

An **isolated system** is one devoid of interactions of any kind with the surroundings (including mass exchange, heat, and work interactions).

System boundaries are established at the beginning of a problem, and simplification of balance equations depends on whether the system is open or closed. *Therefore, the system boundaries should be clearly identified. If the system boundaries are changed, the simplification of the mass and energy balance equations should be performed again, because different balance terms are likely to be necessary.* These guidelines become more apparent in Chapter 2. In many textbooks, especially those dealing with fluid mechanics, the system is called the **control volume**. The two terms are synonymous.

Equilibrium

A system is in equilibrium when there is no driving force for a change of intensive variables within the system. The system is “relaxed” relative to all forces and potentials.

An isolated system moves spontaneously to an equilibrium state. In the equilibrium state there are no longer any driving forces for spontaneous change of intensive variables.

The Mass Balance

Presumably, students in this course are familiar with mass balances from an introductory course in material and energy balances. The relevant relation is simply:

\[
\begin{bmatrix}
\text{rate of mass accumulation within}\n\text{system boundaries}
\end{bmatrix}
= \begin{bmatrix}
\text{rate of mass flow}\n\text{into system}
\end{bmatrix}
- \begin{bmatrix}
\text{rate of mass flow}\n\text{out of system}
\end{bmatrix}
\]

\[
\dot{m} = \sum_{\text{inlets}} \dot{m}^{\text{in}} - \sum_{\text{outlets}} \dot{m}^{\text{out}}
\]

where \(\dot{m} = \frac{dm}{dt} \), \(\dot{m}^{\text{in}} \) and \(\dot{m}^{\text{out}} \) are the *absolute values* of mass flow rates entering and leaving, respectively.

We may also write

\[
dm = \sum_{\text{inlets}} dm^{\text{in}} - \sum_{\text{outlets}} dm^{\text{out}}
\]

6. We qualify this criterion for the purposes of chemical engineering that there is no driving force for “meaningful” change because most of our systems are technically metastable (in a state of local equilibrium). For example, considering air expansion in a piston/cylinder expansion, we neglect the potential corrosion of the piston/cylinder by air oxidation when we state the system has reached mechanical equilibrium.
where mass differentials dm^{in} and dm^{out} are always positive. When all the flows of mass are analyzed in detail for several subsystems coupled together, this simple equation may not seem to fully portray the complexity of the application. The general study of thermodynamics is similar in that regard. A number of simple relations like this one are coupled together in a way that requires some training to understand. In the absence of chemical reactions, we may also write a mole balance by replacing mass with moles in the balance.

Heat – Sinks and Reservoirs

Heat is energy in transit between the source from which the energy is coming and a destination toward which the energy is going. When developing thermodynamic concepts, we frequently assume that our system transfers heat to/from a reservoir or sink. A heat reservoir is an infinitely large source or destination of heat transfer. The reservoir is assumed to be so large that the heat transfer does not affect the temperature of the reservoir. A sink is a special name sometimes used for a reservoir which can accept heat without a change in temperature. The assumption of constant temperature makes it easier to concentrate on the thermodynamic behavior of the system while making a reasonable assumption about the part of the universe assigned to be the reservoir.

The mechanics of heat transfer are also easy to picture conceptually from the molecular kinetics perspective. In heat conduction, faster-moving molecules collide with slower ones, exchanging kinetic energy and equilibrating the temperatures. In this manner, we can imagine heat being transferred from the hot surface to the center of a pizza in an oven until the center of the pizza is cooked. In heat convection, packets of hot mass are circulated and mixed, accelerating the equilibration process. Heat convection is important in getting the heat from the oven flame to the surface of the pizza. Heat radiation, the remaining mode of heat transfer, occurs by an entirely different mechanism having to do with waves of electromagnetic energy emitted from a hot body that are absorbed by a cooler body. Radiative heat transfer is typically discussed in detail during courses devoted to heat transfer.

Work

Work is a familiar term from physics. We know that work is a force acting through a distance. There are several ways forces may interact with the system which all fit under this category, including pumps, turbines, agitators, and pistons/cylinders. We will discuss the details of how we calculate work and determine its impact on the system in the next chapter.

Density

Density is a measure of the quantity per unit volume and may be expressed on a molar basis (molar density) or a mass basis (mass density). In some situations, it is expressed as the number of particles per unit volume (number density).

Intensive Properties

Intensive properties are those properties which are independent of the size of the system. For example, in a system at equilibrium without internal rigid/insulating walls, the temperature and pressure are uniform throughout the system and are therefore intensive properties. *Specific properties* are the total property divided by the mass and are intensive. For example, the molar volume ([≡] length3/mole), mass density ([≡] mass/length3), and specific internal energy ([≡] energy/mass) are intensive properties. In this text, intensive properties are not underlined.
Extensive Properties

Extensive properties depend on the size of the system, for example the volume ([\(\equiv \)] length\(^3\)) and energy ([\(\equiv \)] energy). Extensive properties are underlined; for example, \(U = nU \), where \(n \) is the number of moles and \(U \) is molar internal energy.

States and State Properties – The Phase Rule

Two **state variables** are necessary to specify the state of a *single-phase* pure fluid, that is, two from the set \(P, V, T, U \). Other state variables to be defined later in the text which also fit in this category are molar enthalpy, molar entropy, molar Helmholtz energy, and molar Gibbs energy. **State variables must be intensive properties.** As an example, specifying \(P \) and \(T \) permits you to find the specific internal energy and specific volume of steam. Note, however, that you need to specify only one variable, the temperature or the pressure, if you want to find the properties of saturated vapor or liquid. This reduction in the needed specifications is referred to as a reduction in the “**degrees of freedom.**” As another example in a ternary, two-phase system, the temperature and the mole fractions of two of the components of the lower phase are state variables (the third component is implicit in summing the mole fractions to unity), but the total number of moles of a certain component is not a state variable because it is extensive. In this example, the pressure and mole fractions of the upper phase may be calculated once the temperature and lower-phase mole fractions have been specified. The number of state variables needed to completely specify the state of a system is given by the Gibbs phase rule for a non-reactive system,\(^7\):

\[
F = C - P + 2
\]

where \(F \) is the number of state variables that can be varied while \(P \) phases exist in a system where \(C \) is the number of components (\(F \) is also known as the number of degrees of freedom). More details on the Gibbs phase rule are given in Chapter 16.

Steady-State Open Systems

The term **steady state** is used to refer to open systems in which the inlet and outlet mass flow rates are invariant with time and there is no mass accumulation. In addition, steady state requires that state variables at all locations are invariant with respect to time. Note that state variables may vary with position. Steady state does not require the system to be at equilibrium. For example, in a heat exchanger operating at steady state with a hot and cold stream, each stream has a temperature gradient along its length, and there is always a driving force for heat transfer from the hotter stream to the colder stream. Section 2.13 describes this process in more detail.

The Ideal Gas Law

The **ideal gas** is a “model” fluid where the molecules have no attractive potential energy and no size (and thus, no repulsive potential energy). Properties of the ideal gas are calculated from the ideal gas model:

\[
P V = nRT
\]

(ig) 1.12

Note that scientists who first developed this formula empirically termed it a “law” and the name has persisted, but it should be more appropriately considered a “model.” In the terminology we develop, it is also an **equation of state**, relating the \(P-V-T \) properties of the ideal gas law to one

\(^7\). For a reactive system, \(C \) is replaced with the number of distinct species minus the number of independent reactions.
another as shown in Eqn. 1.12 and Fig. 1.3. We know that real molecules have potential energy of attraction and repulsion. Due to the lack of repulsive forces, ideal gas particles can “pass through” one another. Ideal gas molecules are sometimes called “point masses” to communicate this behavior. While the assumptions may seem extreme, we know experimentally that the ideal gas model represents many compounds, such as air, nitrogen, oxygen, and even water vapor at temperatures and pressures near ambient conditions. Use of this model simplifies calculations while the concepts of the energy and entropy balances are developed throughout Unit I. This does not imply that the ideal gas model is applicable to all vapors at all conditions, even for air, oxygen, and nitrogen. Analysis using more complex fluid models is delayed until Unit II. We rely on thermodynamic charts and tables until Unit II to obtain properties for gases that may not be considered ideal gases.

Because kinetic energy is the only form of energy for an ideal gas, the internal energy of a monatomic ideal gas is given by summing the kinetic energy of the atoms and then relating this to temperature (c.f. Eqn. 1.1):

\[
U_{ig} = \frac{N m \langle v^2 \rangle}{2} = \frac{n N_A m \langle v^2 \rangle}{2} = \frac{n M_w \langle v^2 \rangle}{2} = \frac{3}{2} nRT = \frac{3}{2} NkT \quad \text{(monatomic ideal gas)} \quad (ig) 1.13
\]

The proportionality constant between temperature and internal energy is known as the ideal gas heat capacity at constant volume, denoted \(C_V \). Eqn 1.13 shows that \(C_V = 1.5R \) for a monatomic ideal gas. If you refer to the tables of constant pressure heat capacities (\(C_P \)) on the back flap of the
text and note that \(C_p = C_V + R \) for an ideal gas, you may be surprised by how accurate this ultrasimplified theory actually is for species like helium, neon, and argon at 298 K.

While the equality in Eqn. 1.13 is valid for monatomic fluids only, the functionality \(U^\text{ig} = U^\text{ig}(T) \) is universal for all ideal gases. For more multi-atom molecules, the heat capacity depends on temperature because vibrations hold some energy in a manner that depends on temperature. However, the observation that \(U^\text{ig} = U^\text{ig}(T) \) is true for any ideal gas, not only for ultrasimplified, monatomic ideal gases. We build on this relation in Chapters 6–8, where we show how to compute changes in energy for any fluid at any temperature and density by systematically correcting the relatively simple ideal gas result. Let us explore more completely the assumptions of the ideal gas law by investigating the molecular origins of pressure.

Pressure

Pressure is the force exerted per unit area. We will be concerned primarily with the pressure exerted by the molecules of fluids upon the walls of their containers. Briefly, when molecules collide with the container walls, they must change momentum. The change in momentum creates a force on the wall. As temperature increases, the particles have more kinetic energy (and momentum) when they collide, so the pressure increases. We can understand this more fully with an ultrasimplified analysis of kinetic theory as it relates to the ideal gas law.

Suppose we have two hard spherical molecules in a container that are bouncing back and forth with 1D velocity in the \(x \)-direction only and not contacting one another. We wish to quantify the forces acting on each wall. Since the particles are colliding only with the walls at \(A_1 \) and \(A_2 \) in our idealized motion, these are the only walls we need to consider. Let us assume that particles bounce off the wall with the same speed which they had before striking the wall, but in the opposite direction (a perfectly elastic collision where the wall is perfectly rigid and absorbs no momentum).

Thus, the kinetic energy of the particles is fixed. If \(\hat{v} \) is the initial velocity of the particle (recall that \(\hat{v} \) is a vector quantity and notation \(v \) represents a scalar) before it strikes a wall, the change in velocity due to striking the wall is \(-2\hat{v}\). The change in velocity of the particle indicates the presence of interacting forces between the wall and the particle. If we quantify the force necessary to change the velocity of the particle, we will also quantify the forces of the particle on the wall by Newton’s third principle. To quantify the force, we may apply Newton’s second principle stated in terms of momentum: The *time rate of change of the momentum of a particle is equal to the resultant force acting on the particle and is in the direction of the resultant force.*

8. We will formally define heat capacity and relations for \(C_p \) and \(C_V \) in Chapter 2.
The application of this formula directly is somewhat problematic since the change in direction is instantaneous, and it might seem that the time scale is important. This can be avoided by determining the time-averaged force, F_{avg}, exerted on the wall during time Δt,

$$
\int_{t_1}^{t_f} F dt = F_{\text{avg}} \Delta t = \int_{t_1}^{t_f} \frac{d\hat{p}}{dt} dt = \Delta \hat{p}
$$

where $\Delta \hat{p}$ is the total change in momentum during time Δt. The momentum change for each collision is $\Delta \hat{p} = -2m\hat{v}$ where m is the mass per particle. Collision frequency can be related easily to the velocity. Each particle will collide with the wall every Δt seconds, where $\Delta t = \frac{2L}{v}$, where L is the distance between A_1 and A_2. The average force is then

$$
\hat{F}_{\text{avg}} = \frac{\Delta \hat{p}}{\Delta t} = -2m\hat{v} \frac{v}{2L}
$$

where \hat{v} is the velocity before the collision with the wall. Pressure is the force per unit area, and the area of a wall is L^2, thus

$$
P = \frac{m}{L^3}(v_1^2 + v_2^2) \quad \text{(1D ideal gas motion)}
$$

where the subscripts denote the particles. If you are astute, you will recognize L^3 as the volume of the box and the kinetic energy which we have shown earlier to relate to the temperature.

If the particle motions are generalized to motion in arbitrary directions, collisions with additional walls in the analysis does not complicate the problem dramatically because each component of the velocity may be evaluated independently. To illustrate, consider a particle bouncing around the centers of four walls in a horizontal plane. From the top view, the trajectory would appear as below:

For the same velocity as the first case, the force of each collision would be reduced because the particle strikes merely a glancing blow. The time of collisions between walls is now dependent on the component of velocity perpendicular to the walls. We have chosen a special case to illustrate here, where the box is square and the particle impacts at a 45° angle in the center of each wall. The x-component of the force can be related to the magnitude of the velocity by noting that $v_x = v_y$, such that $v = (v_x^2 + v_y^2)^{1/2} = \ldots$

9. See an introductory physics text for further discussion of time-averaged force.
The time between collisions with wall A_1 would be $4L/(v_2^{1/2})$. The formula for the average force in two dimensions then becomes:

$$F_{avg,A_1} = -2mv_x\frac{v_x\sqrt{2}}{4L} = -2mv\frac{v\sqrt{2}}{4L} = -2mv\frac{v}{2L} = \frac{mv^2}{L}$$

and the pressure due to two particles that do not collide with one another in two dimensions becomes:

$$P = \frac{m}{2L^3}(v_1^2 + v_2^2) \quad (2D \text{ motion})$$

(More complicated impact angles and locations will provide the same results but require more tedious derivations.) The extension to three dimensions is more difficult to visualize, but comparing Eqn. 1.17 to Eqn. 1.19, you should not be surprised to learn that the pressure in three dimensions is:

$$P = \frac{m}{3L^3}(v_1^2 + (v_2)^2) = \frac{m}{3L^3}(v_1^2 + v_2^2) \quad (3D \text{ motion})$$

We see a relation developing between P and kinetic energy. When we insert the relation between temperature and kinetic energy (Eqn. 1.1) into Eqn. 1.20 we find that the ideal gas law results for a spherical (monatomic) molecule in 3D,

$$PV = \left(\frac{m}{3L^3}\sum_{i} v_i^2\right)N = \frac{N\hbar}{3}m\langle v^2 \rangle = \frac{nN_A}{3}\langle v^2 \rangle = \frac{nM_w}{3}\langle v^2 \rangle = nRT \quad (3D \text{ motion})$$

where m is the mass per particle and M_w is the molecular weight. A similar derivation with Eqn. 1.19 gives the results for motions restricted to 2D,

$$PV = \left(\frac{m}{2L^2}\sum_{i} v_i^2\right)N = \frac{nN_A m}{2}\langle v^2 \rangle = \frac{nM_w}{2}\langle v^2 \rangle = nRT_{2D} \quad (2D \text{ motion})$$

1.5 REAL FLUIDS AND TABULATED PROPERTIES

The thermodynamic behavior of real fluids differs from the behavior of ideal gases in most cases. Real fluids condense, evaporate, freeze, and melt. Characterization of the volume changes and energy changes of these processes is an important skill for the chemical engineer. Many real fluids do behave as if they are ideal gases at typical process conditions. $P-V$ behavior of a very common real fluid (i.e., water) and an ideal gas can be compared in Figs. 1.3 and 1.4. Application of the

10. This is a pressure $[=]$ force/area where motion is in 2-D and forces are in only two dimensions. In an alternative perspective molecules would only exist in a 2D plane. Then the divisor should be $2L^2$ and we multiply by area L^2, and $P_{2D} [=] \text{MPa-m, } P_{2D}L^2 = nRT$.

Check your units when using this equation. $1J = 1\text{kg-m}^2/\text{s}^2$.

A 3D steam diagram is available as a MATLAB file called PVT.m. The diagram can be rotated to view the 2-D projections.
ideal gas law simplifies many process calculations for common gases; for example, air at room temperature and pressures below 10 bars. However, you must always remember that the ideal gas law is an approximation (sometimes an excellent approximation) that must be applied carefully to any fluid. The behaviors are presented along *isotherms* (lines of constant temperature) and the deviations from the ideal gas law for water are obvious. Water is one of the most common substances that we work with, and water vapor behaves nearly as an ideal gas at 100°C ($P_{\text{sat}} = 0.1014$ MPa), where experimentally the vapor volume is 1.6718 m³/kg (30,092 cm³/mol) and by the ideal gas law we may calculate $V = RT/P = 8.314 \cdot 373.15 / 0.1014 = 30,595$ cm³/mol. However, the state is the normal boiling point, and we are well aware that a liquid phase can co-exist at this state. This is because there is another density of water at these conditions that is also stable.\(^{11}\)

We will frequently find it convenient to work mathematically in terms of molar density or mass density, which is inversely related to molar volume or mass volume, $\rho = 1/V$. Plotting the isotherms in terms of density yields a P-ρ diagram that qualitatively looks like the mirror image of the P-V diagram. Density is convenient to use because it always stays finite as $P \rightarrow 0$, whereas V diverges. Examples of P-ρ diagrams are shown in Fig. 7.1 on page 254.

The conditions where two phases coexist are called *saturation conditions*. The terms “saturation pressure” and “saturation temperature” are used to refer to the state. The volume (or density) is called the saturated volume (or saturated density). Saturation conditions are shown in Fig. 1.4 as the “hump” on the diagram. The hump is called the *phase envelope*. Two phases coexist when the system conditions result in a state inside or on the envelope. The horizontal lines inside the curves are called *tie lines* that show the two volumes (saturated liquid and saturated vapor) that can coexist. The curve labeled “Sat’d Liquid” is also called the *bubble line*, since it represents conditions where boiling (bubbles) can occur in the liquid. The curve labeled “Sat’d Vapor” is also called a

\[^{11}\] This stability is determined by the Gibbs energy and we will defer proof until Chapter 9.
dew line, since it is the condition where droplets (dew) can occur in the vapor. Therefore, saturation is a term that can refer to either bubble or dew conditions. When the total volume of a system results in a system state on the saturated vapor line, only an infinitesimal quantity of liquid exists, and the state is indicated by the term “saturated vapor.” Likewise, when a system state is on the saturated liquid line, only an infinitesimal quantity of vapor exists, and the state is indicated by the term “saturated liquid.” When the total volume of the system results in a system in between the saturation vapor and saturation liquid volumes, the system will have vapor and liquid phases coexisting, each phase occupying a finite fraction of the overall system. Note that each isotherm has a unique saturation pressure. This pressure is known as the saturation pressure or vapor pressure. Although the vapor pressure is often used to characterize a pure liquid’s bubble point, recognize that it also represents the dew point for the pure vapor.

Following an isotherm from the right side of the diagram along a path of decreasing volume, the isotherm starts in the vapor region, and the pressure rises as the vapor is isothermally compressed. As the volume reaches the saturation curve at the vapor pressure, a liquid phase begins to form. Notice that further volume decreases do not result in a pressure change until the system reaches the saturated liquid volume, after which further decreases in volume require extremely large pressure changes. Therefore, liquids are often treated as incompressible even though the isotherms really do have a finite rather than infinite slope. The accuracy of the incompressible assumption varies with the particular application.

As we work problems involving processes, we need to use properties such as the internal energy of a fluid. Properties such as these are available for many common fluids in terms of a table or chart. For steam, both tables and charts are commonly used, and in this section we introduce the steam tables available in Appendix E. An online supplement is available to visualize the $P-V$ and $P-T$ representations in MATLAB permitting the user to interactively rotate the surface.

Steam Tables

When dealing with water, some conventions have developed for referring to the states which can be confusing if the terms are not clearly understood. Steam refers to a vapor state, and saturated steam is vapor at the dew point. For water, in the two-phase region, the term “wet steam” is used to indicate a vapor + liquid system.

Steam properties are divided into four tables. The first table presents saturation conditions indexed by temperature. This table is most convenient to use when the temperature is known. Each row lists the corresponding saturation values for pressure (vapor pressure), internal energy, volume, and two other properties we will use later in the text: enthalpy and entropy. Special columns represent the internal energy, enthalpy, and entropy of vaporization. These properties are tabulated for convenience, although they can be easily calculated by the difference between the saturated vapor value and the saturated liquid value. Notice that the vaporization values decrease as the saturation temperature and pressure increase. The vapor and liquid phases are becoming more similar as the saturation curve is followed to higher temperatures and pressures. At the critical point, the phases become identical. Notice in Fig. 1.4 that the two phases become identical at the highest temperature and pressure on the saturation curve, so this is the critical point. For a pure fluid, the critical temperature is the temperature at which vapor and liquid phases are identical on the saturation curve, and is given the notation T_c. The pressure at which this occurs is called the critical pressure, and is given the symbol P_c. A fluid above the critical temperature is often called supercritical.

12. Calculation of these properties requires mastery of several fundamental concepts as well as application of calculus and will be deferred. We calculate energies for ideal gas in Chapter 2 and for real fluids in Chapter 8.
The second steam table organizes saturation properties indexed by pressure, so it is easiest to use when the pressure is known. Like the temperature table, vaporization values are presented. The table duplicates the saturated temperature table, that is, plotting the saturated volumes from the two tables would result in the same curves. The third steam table is the largest portion of the steam tables, consisting of superheated steam values. Superheated steam is vapor above its saturation temperature at the given pressure. The adjective “superheated” specifies that the vapor is above the saturation temperature at the system pressure. The adjective is usually used only where necessary for clarity. The difference between the system temperature and the saturation temperature, \(T - T^{sat} \), is termed the *degrees of superheat*. The superheated steam tables are indexed by pressure and temperature. The saturation temperature is provided at the top of each pressure table so that the superheat may be quickly determined without referring to the saturation tables.

The fourth steam table has liquid-phase property values at temperatures below the critical temperature and above each corresponding vapor pressure. Liquid at these states is sometimes called *subcooled liquid* to indicate that the temperature is below the saturation temperature for the specified pressure. Another common way to describe these states is to identify the system as *compressed liquid*, which indicates that the pressure is above the saturation pressure at the specified temperature. The adjectives “subcooled” and “compressed” are usually only used where necessary for clarity. Notice by scanning the table that pressure has a small effect on the volume and internal energy of liquid water. By looking at the saturation conditions together with the general behavior of Fig. 1.4 in our minds, we can determine the *state of aggregation* (vapor, liquid, or mixture) for a particular state.

Example 1.3 Introduction to steam tables

For the following states, specify if water exists as vapor, liquid, or a mixture: (a) 110°C and 0.12 MPa; (b) 200°C and 2 MPa; (c) 0.8926 MPa and 175°C.

Solution:
(a) Looking at the saturation temperature table, the saturation pressure at 110°C is 0.143 MPa. Below this pressure, water is vapor (steam).
(b) From the saturation temperature table, the saturation pressure is 1.5549 MPa; therefore, water is liquid.
(c) This is a saturation state listed in the saturation temperature table. The water exists as saturated liquid, saturated vapor, or a mixture.

Linear Interpolation

Since the information in the steam tables is tabular, we must interpolate to find values at states that are not listed. To interpolate, we assume the property we desire (e.g., volume, internal energy) varies linearly with the independent variables specified (e.g., pressure, temperature). The assumption of linearity is almost always an approximation, but is a close estimate if the interval of the calculation is small. Suppose we seek the value of volume, \(V \), at pressure, \(P \), and temperature, \(T \), but the steam tables have only values of volume at \(P_1 \) and \(P_2 \) which straddle the desired pressure value as shown in Fig. 1.5. The two points represent values available in the tables and the solid line represents the true behavior. The dotted line represents a linear fit to the tabulated points.
If we fit a linear segment to the tabulated points, the equation form is \(y = mx + b \), where \(y \) is the dependent variable (volume in this case), \(x \) is the independent variable (pressure in this case), \(m \) is the slope \(m = \frac{\Delta y}{\Delta x} = \frac{(V_2 - V_1)}{(P_2 - P_1)} \), and \(b \) is the intercept. We can interpolate to find \(V \) without directly determining the intercept. Since the point we desire to calculate is also on the line with slope \(m \), it also satisfies the equation \(m = \frac{\Delta y}{\Delta x} = \frac{(V - V_1)}{(P - P_1)} \). We can equate the two expressions for \(m \) to find the interpolated value of \(V \) at \(P \).

There are two quick ways to think about the interpolation. First, since the interpolation is linear, the fractional change in \(V \) relative to the volume interval is equal to the fractional change in \(P \) relative to the pressure interval. In terms of variables:

\[
\frac{V - V_1}{V_2 - V_1} = \frac{P - P_1}{P_2 - P_1}
\]

For example, \((V - V_1)\) is 10% of the volume interval \((V_2 - V_1)\), when \((P - P_1)\) is 10% of \((P_2 - P_1)\). We can rearrange this expression to find:

\[
V = V_1 + \frac{P - P_1}{P_2 - P_1}(V_2 - V_1)
\]

If we consider state “1” as the base state, we can think of this expression in words as

\[V = \text{base } V + \text{(fractional change in } P) \cdot \text{(volume interval size)} \]

Another way to think of Eqn. 1.23 is by arranging it as:

\[
V = V_1 + \frac{V_2 - V_1}{P_2 - P_1}(P - P_1)
\]

which in words is

\[V = \text{base } V + \text{slope } \cdot \text{(change in } P \text{ from base state)} \]
Note that subscripts for 1 and 2 can be interchanged in any of the formulas if desired, provided that all subscripts are interchanged. In general, interpolation can be performed for any generic property \(M \) such that (modifying Eqn. 1.23)

\[
M = M_1 + \frac{x-x_1}{x_2-x_1}(M_2-M_1)
\]

where \(M \) represents the property of interest (e.g., \(V \)) and \(x \) is the property you know (e.g., \(P \)).

Example 1.4 Interpolation

Find the volume and internal energy for water at: (a) 5 MPa and 325°C and (b) 5 MPa and 269°C.

Solution:

(a) Looking at the superheated steam table at 5 MPa, we find the saturation temperature in the column heading as 263.9°C; therefore, the state is superheated. Values are available at 300°C and 350°C. Since we are halfway in the temperature interval, by interpolation the desired \(U \) and \(V \) will also be halfway in their respective intervals (which may be found by the average values):

\[
U = \frac{(2699.0 + 2809.5)}{2} = 2754.3 \text{ kJ/kg}
\]

\[
V = \frac{(0.0453 + 0.0520)}{2} = 0.0487 \text{ m}^3/\text{kg}
\]

(b) For this state, we are between the saturation temperature (263.9°C) and 300°C, and we apply the interpolation formula:

\[
U = 2597.0 + \frac{269 - 263.9}{300 - 263.9}(2699.0 - 2597.0) = 2611.4 \text{ kJ/kg}
\]

\[
V = 0.0394 + \frac{269 - 263.9}{300 - 263.9}(0.0453 - 0.0394) = 0.0402 \text{ m}^3/\text{kg}
\]

Double Interpolation

Occasionally, we must perform double or multiple interpolation to find values. The following example illustrates these techniques.

Example 1.5 Double interpolation

For water at 160°C and 0.12 MPa, find the internal energy.

Solution: By looking at the saturation tables at 160°C, water is below the saturation pressure, and will exist as superheated vapor, but superheated values at 0.12 MPa are not tabulated in the superheated table. If we tabulate the available values, we find
We may either interpolate the first and third columns to find the values at 160°C, followed by an interpolation in the second row at 160°C, or interpolate the first and third rows, followed by the second column. The values found by the two techniques will not be identical because of the non-linearities of the properties we are interpolating. Generally, the more precise interpolation should be done first, which is over the smaller change in U, which is the pressure interpolation. The pressure increment is 20% of the pressure interval $[(0.12 - 0.1)/(0.2 - 0.1)]$; therefore, interpolating in the first row,

$$U = 2582.9 + 0.2 \cdot (2577.1 - 2582.9) = 2581.7 \text{ kJ/kg}$$

and in the third row,

$$U = 2658.2 + 0.2 \cdot (2654.6 - 2658.2) = 2657.5 \text{ kJ/kg}$$

and then interpolating between these values, using the value at 150°C as the base value,

$$U = 2581.7 + 0.2 \cdot (2657.5 - 2581.7) = 2596.9 \text{ kJ/kg}$$

The final results are tabulated in the boldface cells in the following table:

<table>
<thead>
<tr>
<th></th>
<th>0.1 MPa</th>
<th>0.12 MPa</th>
<th>0.2 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>150°C</td>
<td>2582.9</td>
<td></td>
<td>2577.1</td>
</tr>
<tr>
<td>160°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200°C</td>
<td>2658.2</td>
<td></td>
<td>2654.6</td>
</tr>
</tbody>
</table>

We also may need to interpolate between values in different tables, like the saturated tables and superheated tables. This is also straightforward as shown in the following example.

Example 1.6 Double interpolation using different tables

Find the internal energy for water at 0.12 MPa and 110°C.

Solution: We found in Example 1.3 on page 25 that this is a superheated state. From the superheated table we can interpolate to find the internal energy at 110°C and 0.1 MPa:

$$U = 2506.2 + 0.2 \cdot (2582.9 - 2506.2) = 2521.5 \text{ kJ/kg}$$
Computer-Aided Interpolation

Occasionally, interpolation must be performed when the T and P are both unknown. Computers or spreadsheets can be helpful as shown in the next example.

Example 1.7 Double interpolation using Excel

Steam undergoes a series of state changes and is at a final state where $U = 2650 \text{ kJ/kg}$ and $V = 0.185 \text{ m}^3/\text{kg}$. Find the T and P.

Solution: Scanning the steam tables, the final state is in the range $1.0 \text{ MPa} < P < 1.2 \text{ MPa}$, $200°C < T < 250°C$. The final state requires a double interpolation using U and V. One easy method is to set up the table in Excel. In each of the tables below, the pressure interpolation is performed first in the top and bottom rows, dependent on the pressure variable in the top of the center column, which can be set at any intermediate pressure to start. The temperature interpolation is then entered in the center cell of each table using the temperature variable. The formulas in both tables reference a common temperature variable cell and a common pressure variable cell. Solver is started and T and P are adjusted to make $U = 2650 \text{ kJ/kg}$ subject to the constraint $V = 0.185 \text{ m}^3/\text{kg}$. (See Appendix A for Solver instructions.) The converged result is shown at $T = 219.6°C$ and $P = 1.17 \text{ MPa}$.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>$P = 1 \text{ MPa}$</th>
<th>$P = 1.2 \text{ MPa}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 200°C$</td>
<td>2622.2</td>
<td>2614.539</td>
</tr>
<tr>
<td>$T = 219.4486791$</td>
<td>2650</td>
<td>2650</td>
</tr>
<tr>
<td>$T = 250°C$</td>
<td>2710.4</td>
<td>2705.705</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V (m3/kg)</th>
<th>$P = 1 \text{ MPa}$</th>
<th>$P = 1.2 \text{ MPa}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 200°C$</td>
<td>0.2060</td>
<td>0.175768</td>
</tr>
<tr>
<td>$T = 250°C$</td>
<td>0.2327</td>
<td>0.199502</td>
</tr>
</tbody>
</table>

Extrapolation

Occasionally, the values we seek are not conveniently between points in the table and we can apply the “interpolation” formulas to extrapolate as shown in Fig. 1.6. In this case, T lies outside the interval. Extrapolation is much less certain than interpolation since we frequently do not know “what
curve lies beyond” that we may miss by linear approximation. The formulas used for extrapolation
are identical to those used for interpolation. With the steam tables, extrapolation is generally not
necessary at normal process conditions and should be avoided if possible.

Phase Equilibrium and Quality

Along the saturation curve in Fig. 1.4 on page 23, there is just one degree of freedom \(F = C - P + 2 \)
\(= 1 - 2 + 2 = 1 \). If we seek saturation, we may choose either a \(T^{sat} \) or a \(P^{sat} \), and the other is deter-
mined. The vapor pressure increases rapidly with temperature as shown in Fig. 1.7. A plot of \(\ln P^{sat} \)
versus \(1/T^{sat} \) is nearly linear and over large intervals, so for accurate interpolations, vapor pres-
sure data should be converted to this form before interpolation. However, the steam tables used

![Figure 1.6](image1.png)

Figure 1.6 Illustration of linear extrapolation.

![Figure 1.7](image2.png)

Figure 1.7 \(P-T \) representation of real fluid behavior. Note that only vapor and liquid behavior is shown in Fig. 1.4 on page 23.
with this text have small enough intervals that direct interpolation can be applied to \(P_{\text{sat}} \) and \(T_{\text{sat}} \) without appreciable error.

The saturation volume values of the steam tables were used to generate the phase diagram of Fig. 1.4 on page 23. Note that as the critical point is approached, the saturation vapor and liquid values approach one another. The same occurs for internal energy and two properties that will be used in upcoming chapters, enthalpy, \(H \), and entropy, \(S \). When a mixture of two phases exists, we must characterize the fraction that is vapor, since the vapor and liquid property values differ significantly.

The mass percentage that is vapor is called the quality and given the symbol \(q \). The properties \(V, U, H, \) and \(S \), may be represented with a generic variable \(M \). The overall value of the state variable \(M \) is

\[
M = (1 - q) M^L + q M^V
\]

which may be rearranged as

\[
M = M^L + q (M^V - M^L)
\]

but \((M^V - M^L) \) is just \(\Delta M^{\text{vap}} \) and for internal energy, enthalpy, and entropy, it is tabulated in columns of the saturation tables. The value of overall \(M \) is

\[
M = M^L + q \Delta M^{\text{vap}}
\]

Look carefully at Eqn. 1.27 in comparison with Eqn. 1.25; it may be helpful to recognize a quality calculation as an interpolation between saturated liquid and saturated vapor. Two examples help demonstrate the importance of quality calculations.

Example 1.8 Quality calculations

Two kg of water coexists as vapor and liquid at 280°C in a 0.05 m³ rigid container. What is the pressure, quality, and overall internal energy of the mixture?

Solution: The overall mass volume is \(V = 0.05 \text{ m}^3/2 \text{ kg} = 0.025 \text{ m}^3/\text{kg} \). From the saturation temperature table, the pressure is 6.417 MPa. Using the saturation volumes at this condition to find \(q \).

\[
0.025 = 0.001333 + q (0.0302 - 0.0013) \text{ m}^3/\text{kg}
\]

which leads to \(q = 0.82 \). The overall internal energy is

\[
U = 1228.33 + 0.82 \cdot 1358.1 = 2342 \text{ kJ/kg}
\]
Example 1.9 Constant volume cooling

Steam is initially contained in a rigid cylinder at $P = 30$ MPa and $V = 10^{2.498}\text{cm}^3/\text{mole}$. The cylinder is allowed to cool to 300°C. What is the pressure, quality, and overall internal energy of the final mixture?

Solution: The overall mass volume is $V = 10^{2.498}\text{cm}^3\cdot\text{mole}^{-1} \cdot 10^{-6}(\text{m}^3/\text{cm}^3)/(18.02\text{E-3kg/mole}) = 0.01747\text{m}^3/\text{kg}$. From the superheated steam table at 30 MPa, the initial temperature is 900°C. When the cylinder is cooled to 300°C, the path is shown in Fig. 1.8 below. You should notice that there is no pressure in the superheated steam tables that provides a volume of $V = 0.01747\text{m}^3/\text{kg}$. Look hard, they are all too large. (Imagine yourself looking for this on a test when you are in a hurry.) Now look in the saturated steam tables at 300°C. Notice that the saturated vapor volume is 0.0217 m3/kg. Since that is higher than the desired volume, but it is the lowest vapor volume at this temperature, we must conclude that our condition is somewhere between the saturated liquid and the saturated vapor at a pressure of 8.588 MPa. (When you are in a hurry, it is advisable to check the saturated tables first.) Using the saturation volumes at 300°C condition to find q.

$$0.01747 = 0.001404 + q (0.0217 - 0.001404) \text{m}^3/\text{kg}$$

which leads to $q = (0.01747 - 0.001404)/(0.0217 - 0.001404) = 0.792$. The overall internal energy is

$$U = 1332.95 + 0.792 \cdot 1230.67 = 2308 \text{kJ/kg}$$

![Figure 1.8 P-V-T behavior of water illustrating a quality calculation.](image)
1.6 SUMMARY

Years from now you may have some difficulty recalling the details presented in this text. On the other hand, the two basic premises outlined in this introductory section are so fundamental to technically educated people that you really should commit them to long-term memory as soon as possible. Formally, we may state our two basic premises as the first and second “laws” of thermodynamics.¹³

First Law: Overall energy is conserved (you can’t get something for nothing).

Second Law: Overall entropy changes are greater than or equal to zero (generation of disorder results in lost work).

The first law is further developed in Chapters 2 and 3. The concepts of entropy and the second law are developed in Chapter 4 and process applications in Chapter 5. The exact relationship between the two basic premises and these two laws may not become apparent until some time later in this text, but you should begin to absorb and contemplate these fundamentals now. There are times when the endeavor to apply these simple laws seems daunting, but the answer appears simple in retrospect, once obtained. By practicing adaptation of the basic principles to many specific problems, you slowly grasp the appropriate connection between the basic premises and finding the details. Try not to be distracted by the vocabulary or the tedious notation that goes into keeping all the coupled systems classified in textbook fashion. Keep in mind that other students have passed through this and found the detailed analysis to be worth the effort.

Important Equations

The content of this chapter is primarily about laying down the fundamental concepts more than deriving equations. Nevertheless, three concepts that we refer to repeatedly can be expressed by equations. Of course, the ideal gas law is important, but an implication of it that may be new is:

\[
T = \frac{M_w}{3R} \langle v^2 \rangle \quad \text{(for monatomic molecules in 3D)}
\]

This equation conveys that temperature is closely related to molecular kinetic energy. Although derived with the ideal gas assumption, it turns out to be true for real fluids as well. Every time you alter the temperature, you should think about the implications for molecular kinetic energy. Another important equation relates to deviations from the ideal gas law:

\[
u(r) = \begin{cases}
\infty & \text{if } r \leq \sigma \\
-\varepsilon & \text{if } \sigma < r \leq \lambda \sigma \\
0 & \text{if } r > \lambda \sigma
\end{cases}
\]

This is the square well potential model, the simplest characterization of how real molecules attract and repel. As you add energy to the system, real fluids may absorb that energy by moving molecules from inside the square well to outside, converting potential energy into kinetic energy without altering the temperature as an ideal gas would. A simple example is boiling. Ideal gases cannot

¹³ There is also a third law of thermodynamics, as discussed by Denbigh, K., 1981. The Principles of Chemical Equilibrium, London: Cambridge University Press, p. 416. The third law is of less direct interest in this introductory text, however.
boil, but real fluids can. This interplay between kinetic energy, temperature, and potential energy pervades many discussions throughout the text.

Finally, we can write a generic equation that symbolizes the procedure for interpolation:

\[M = M_1 + \frac{x - x_1}{x_2 - x_1} (M_2 - M_1) \]

A similar equation is used for quality calculations which can be viewed as an interpolation between saturated liquid and saturated vapor. Throughout Unit I, we refer extensively to the steam tables and interpolation to account for deviations from the ideal gas law.

Test Yourself

1. Draw a sketch of the force model implied by the square-well potential, indicating the position(s) where the force between two atoms is zero and the positions where it is nonzero.
2. Explain in words how the pressure of a fluid against the walls of its container is related to the velocity of the molecules.
3. What is it about molecules that requires us to add heat to convert liquids to gases?
4. If the kinetic energy of pure liquid and vapor molecules at phase equilibrium must be the same, and the internal energy of a system is the sum of the kinetic and potential energies, what does this say about the intensive internal energy of a liquid phase compared with the intensive internal energy of the gas phase?
5. Explain the terms “energy,” “potential energy,” “kinetic energy,” and “internal energy.”
6. How is the internal energy of a substance related to the intermolecular pair potentials of the molecules?
7. Are \(T \) and \(P \) intensive properties? Name two intensive properties and two extensive properties.
8. How many degrees of freedom exist when a pure substance coexists as a liquid and gas?
9. Can an ideal gas condense? Can real fluids that follow the ideal gas law condense?
10. Give examples of bubble, dew, saturation, and superheated conditions. Explain what is meant when wet steam has a quality of 25%.
11. Create and solve a problem that requires double interpolation.

1.7 PRACTICE PROBLEMS

P1.1 Estimate the average speed (mph) of hydrogen molecules at 200 K and 3 bars. (ANS. 3532)

P1.2 Estimate the entropy (J/g-K) of steam at 27.5MPa and 425°C. (ANS. 5.1847)
1.8 HOMEWORK PROBLEMS

Note: Some of the steam table homework problems involve enthalpy, \(H \), which is defined for convenience using properties discussed in this chapter, \(H = U + PV \). The enthalpy calculations can be performed by reading the tabulated enthalpy values from the tables in an analogous manner used for internal energy. We expect that students will be introduced to this property in course lectures in parallel with the homework problems that utilize \(H \).

1.1 In each of the following, sketch your estimates of the intermolecular potentials between the given molecules and their mixture on the same pair of axes.

(a) Chloroform is about 20\% larger than acetone and about 10\% stickier, but chloroform and acetone stick to one another much more strongly than they stick to themselves.

(b) You have probably heard that “oil and water don’t mix.” What does that mean in molecular terms? Let’s assume that oil can be characterized as benzene and that benzene is four times larger than water, but water is 10\% stickier than benzene. If the \(\varepsilon_{12} \) parameter is practically zero, that would represent that the benzene and water stick to themselves more strongly than to one another. Sketch this.

1.2 For each of the states below, calculate the number of moles of ideal gas held in a three liter container.

(a) \(T = 673 \text{ K}, P = 2 \text{ MPa} \)

(b) \(T = 500 \text{ K}, P = 0.7 \text{ MPa} \)

(c) \(T = 450 \text{ K}, P = 1.5 \text{ MPa} \)

1.3 A 5 \text{ m}^3 outdoor gas storage tank warms from 10°C to 40°C on a sunny day. If the initial pressure was 0.12 MPa at 10°C, what is the pressure at 40°C, and how many moles of gas are in the tank? Use the ideal gas law.

1.4 An automobile tire has a pressure of 255 kPa (gauge) in the summer when the tire temperature after driving is 50°C. What is the wintertime pressure of the same tire at 0°C if the volume of the tire is considered the same and there are no leaks in the tire?

1.5 A 5 \text{ m}^3 gas storage tank contains methane. The initial temperature and pressure are \(P = 1 \text{ bar}, T = 18\text{°C} \). Using the ideal gas law, calculate the \(P \) following each of the successive steps.

(a) 1 \text{ m}^3 (at standard conditions) is withdrawn isothermally.

(b) The sun warms the tank to 40°C.

(c) 1.2 \text{ m}^3 (at standard conditions) is added to the tank and the final temperature is 35°C.

(d) The tank cools overnight to 18°C.

1.6 Calculate the mass density of the following gases at 298 K and 1 bar.

(a) Nitrogen

(b) Oxygen

(c) Air (use average molecular weight)

(d) CO\(_2\)

(e) Argon
1.7 Calculate the mass of air (in kg) that is contained in a classroom that is 12m x 7m x 3m at 293 K and 0.1 MPa.

1.8 Five grams of the specified pure solvent is placed in a variable volume piston. What is the volume of the pure system when 50% and 75% have been evaporated at: (i) 30°C, (ii) 50°C? Use the Antoine equation (Appendix E) to relate the saturation temperature and saturation pressure. Use the ideal gas law to model the vapor phase. Show that the volume of the system occupied by liquid is negligible compared to the volume occupied by vapor.

(a) Hexane ($\rho_f = 0.66 \text{ g/cm}^3$)
(b) Benzene ($\rho_f = 0.88 \text{ g/cm}^3$)
(c) Ethanol ($\rho_f = 0.79 \text{ g/cm}^3$)
(d) Water without using the steam tables ($\rho_f = 1 \text{ g/cm}^3$)
(e) Water using the steam tables

1.9 A gasoline spill is approximately 4 liters of liquid. What volume of vapor is created at 1 bar and 293 K when the liquid evaporates? The density of regular gasoline can be estimated by treating it as pure isooctane (2,2,4-trimethylpentane $\rho_f = 0.692 \text{ g/cm}^3$) at 298 K and 1 bar.

1.10 The gross lifting force of a balloon is given by $(\rho_{\text{air}} - \rho_{\text{gas}}) V_{\text{balloon}}$. What is the gross lifting force (in kg) of a hot air balloon of volume 1.5E6 L, if the balloon contains gas at 100°C and 1 atm? The hot gas is assumed to have an average molecular weight of 32 due to carbon dioxide from combustion. The surrounding air has an average molecular weight of 29 and is at 25°C and 1 atm.

1.11 LPG is a useful fuel in rural locations without natural gas pipelines. A leak during the filling of a tank can be extremely dangerous because the vapor is denser than air and drifts to low elevations before dispersing, creating an explosion hazard. What volume of vapor is created by a leak of 40L of LPG? Model the liquid before leaking as propane with $\rho_f = 0.24 \text{ g/cm}^3$. What is the mass density of pure vapor propane after depressurization to 293 K and 1 bar? Compare with the mass density of air at the same conditions.

1.12 The gas phase reaction $A \rightarrow 2R$ is conducted in a 0.1 m3 spherical tank. The initial temperature and pressure in the tank are 0.05 MPa and 400 K. After species A is 50% reacted, the temperature has fallen to 350 K. What is the pressure in the vessel?

1.13 A gas stream entering an absorber is 20 mol% CO$_2$ and 80 mol% air. The flowrate is 1 m3/min at 1 bar and 360 K. When the gas stream exits the absorber, 98% of the incoming CO$_2$ has been absorbed into a flowing liquid amine stream.

(a) What are the gas stream mass flowrates on the inlet and outlets in g/min?
(b) What is the volumetric flowrate on the gas outlet of the absorber if the stream is at 320 K and 1 bar?

1.14 A permeation membrane separates an inlet air stream, F, (79 mol% N$_2$, 21 mol% O$_2$), into a permeate stream, M, and a reject stream, J. The inlet stream conditions are 293 K, 0.5 MPa, and 2 mol/min; the conditions for both outlet streams are 293 K and 0.1 MPa. If the permeate stream is 50 mol% O$_2$, and the reject stream is 13 mol% O$_2$, what are the volumetric flowrates (L/min) of the two outlet streams?
1.15 (a) What size vessel holds 2 kg water at 80°C such that 70% is vapor? What are the pressure and internal energy?

(b) A 1.6 m3 vessel holds 2 kg water at 0.2 MPa. What are the quality, temperature, and internal energy?

1.16 For water at each of the following states, determine the internal energy and enthalpy using the steam tables.

<table>
<thead>
<tr>
<th></th>
<th>T(°C)</th>
<th>P(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>(b)</td>
<td>550</td>
<td>6.25</td>
</tr>
<tr>
<td>(c)</td>
<td>475</td>
<td>7.5</td>
</tr>
<tr>
<td>(d)</td>
<td>180</td>
<td>0.7</td>
</tr>
</tbody>
</table>

1.17 Determine the temperature, volume, and quality for one kg water under the following conditions:

(a) $U = 3000$ kJ/kg, $P = 0.3$ MPa
(b) $U = 2900$ kJ/kg, $P = 1.7$ MPa
(c) $U = 2500$ kJ/kg, $P = 0.3$ MPa
(d) $U = 350$ kJ/kg, $P = 0.03$ MPa

1.18 Two kg of water exist initially as a vapor and liquid at 90°C in a rigid container of volume 2.42 m3.

(a) At what pressure is the system?
(b) What is the quality of the system?
(c) The temperature of the container is raised to 100°C. What is the quality of the system, and what is the pressure? What are ΔH and ΔU at this point relative to the initial state?
(d) As the temperature is increased, at what temperature and pressure does the container contain only saturated vapor? What is ΔH and ΔU at this point relative to the initial state?
(e) Make a qualitative sketch of parts (a) through (d) on a $P-V$ diagram, showing the phase envelope.

1.19 Three kg of saturated liquid water are to be evaporated at 60°C.

(a) At what pressure will this occur at equilibrium?
(b) What is the initial volume?
(c) What is the system volume when 2 kg have been evaporated? At this point, what is ΔU relative to the initial state?
(d) What are ΔH and ΔU relative to the initial state for the process when all three kg have been evaporated?
(e) Make a qualitative sketch of parts (b) through (d) on a $P-V$ diagram, showing the phase envelope.
INDEX

A
absolute temperature, 7
acentric factor, 254
acid, 704
acidity parameter, 421
activity, 428, 646, 667, 669, 739
 coefficient, 413, 425, 428, 759
 pressure dependence, 440
 rational, 759
 temperature dependence, 441
 unsymmetric convention, 446
adiabat, 150
adiabatic, xxi, 46, 74, 148
 reaction temperature, 664, 813
adiabatic compressibility, 246, 249
adiabatic flash, 372, 380
aggregation
 state, 25
Amagat’s law, 106
amino acid, 719
anabolic reaction, 182, 734
anode, 727
anti-solvent, 570
Antoine equation, 62, 342, 847
 See also vapor pressure
apparent
 basis, 699
 mole fraction, 772
 moles, 792, 793
approach temperature, 100
association, xxi, 767
athermal, 477
ATP, 734
auxiliary property, 227
availability, 177, 672, 732

Avogadro’s number, xxv, 9
azeotrope, xxi, 393, 394, 418, 442, 473, 616, 630
 double, 432

B
Bancroft point, 432, 497
barotropy, xxi
basicity parameter, 421
binary interaction parameter, 13, 468, 580, 582
binary vapor cycle, 211
binding polynomial, 733
binodal, xxi
biological systems, 119
blood, 453
boiler, 70, 201
boilup ratio, 101
Boltzmann’s constant, 9
bottoms, 101
bottoms product, 101
boundaries, 74, 85
Boyle temperature, 292
bubble line, 23, 371, 394
bubble point
 pressure, 371, 376, 413, 416, 417, 586, 594, 832, 835
 temperature, 371, 378, 381, 500, 549, 835
buffer, 723

C
C-mole, 732
carbohydrate, 119
carboxylic acid, 627
carboxylic acid, ideal gas deviations, 424, 769
Carnahan-Starling, See equation of state
Carnot cycle, 96, 144, 158, 199
Carnot heat pump, 99
Carnot, Sadi, 96
cascade refrigeration or cascade vapor cycle, 211
catabolic reaction, 182, 734
cathode, 727
cell (battery), 727
chain rule, 231
Chao-Seader model, 447
charge balance, 698, 704
charge-transfer complexes, 770
chemical potential, 398, 400, 427, 582, 739
 ideal gas component, 402
Chemical Safety Board, 389
chemical-physical theory, 779
Clapeyron equation, 337, 338
Clausius, Rudolf, 130, 131, 233
Clausius-Clapeyron equation, 62, 337, 338
closed system, 16
coefficient of performance, 99, 158
coefficient of thermal expansion, 236
cohesive energy density, 472
coke formation, 670
colligative property, 453, 695
combinatorial contribution, 132, 506
combining rule, 13, 580, 582
compressed liquid, 25, 54, 55, 60
compressibility
 See also adiabatic compressibility, isothermal compressibility
compressibility factor, 253
compressor, 73, 163, 173
 multistage, 174
concentration gradient, 44
concurrent, 70
condenser, 70
configurational energy, 12, 132, 282
configurational entropy, 132
conjugate acid, 705, 709
conjugate base, 705, 708
conjugate pairs, 228
consistency
 thermodynamic, 440, 441
constant molar overflow, 101
contraction/expansion work, 86
 See also expansion/contraction work
control volume, 16
covenience property, 227
conversion, 110, 644
COP, 99
copolymer, 479
corresponding states, 253, 580
COSMO-RS, 520
countercurrent, 70
cricondenbar, 601
cricondentherm, 601
critical locus, 601, 614
critical point, 24, 253, 261, 262, 270, 599, 602, 614, 824
critical pressure, 24, 253
critical temperature, 24, 253
cubic equation, 260
 solutions, 265, 822
D
dead state, xxi, 178
deaerator, 206
Debye, 142
Debye-Hückel, 741
degree of reduction, 731
degrees of freedom, 18, 30, 59, 241, 370
degrees of superheat, 25
delta notation, 53
density, 17
density functional theory, 521
dependence from Henry’s law, 444
dependence from Raoult’s law, 394, 444
dew line, 24, 371, 394
dew point, 372, 812
 pressure, 377, 833, 836
 temperature, 371, 378, 381, 488, 833, 837
diathermal, xxi, 46
dielectric constant, 741, 848
differentiation, 820
diffusion, 5, 44, 176
 coefficient, 5
dipole, 8, 9
dispersion force, 10
distillate, 101
distillation column, 101
DNA, 719, 725
double interpolation, 27
downcomer, 102
Dulong and Petit, 59
duty, 101, 209
E
economizer, 211
efficiency, xxi
 thermal, 96
 turbine and compressor, 164
Einstein solid model, 139, 240
Einstein, Albert, 139, 239
electrolyte, 693, 813
electroneutrality, 704
electrostatic force, 9
elementary reaction, 671
endergonic, 652, 662, 728
endothermic, 112, 119, 427, 667
energy, 6
 configurational, 12, 282
 of fusion, 63
 of vaporization, 24, 62
See also potential energy, kinetic energy, internal energy
energy balance, 39
 closed-system, 48
 complete, 56
 hints, 74
 reaction, 113
 reactions, 664
 steady-state, 51
energy equation, 283
energy of mixing, 105, 106
engines, 214
enthalpy, 31, 35, 52, 57, 227
 excess, See enthalpy of mixing, excess enthalpy
 of formation, 113, 843
 of fusion, 63, 148, 559, 846
 of mixing, 105, 106, 107, 113, 427
 of reaction (standard state), 112
 of vaporization, 24, 62, 101, 846
See also latent heat
entity, electrolyte, 699
entrainer, 486, 490
entropy, 5, 31, 129
 and heat capacity, 150, 229, 242
 combinatorial, 512
 configurational, 132
 excess, See excess entropy
 generation, 142, 164, 672
 ideal gas mixture, 139
 ideal solution, 139
 macroscopic, 142
 microscopic, 132
 of fusion, 148, 559
 of mixing, 105, 138, 401, 402
 of vaporization, 24, 148
 thermal, 132, 139
entropy balance, 153
 hints, 185
Environmental Protection Agency, 386
enzyme, 719
EOS, xxi, 260
EPA, 386
equal area rule, 357
equation of state, 18, 74, 235, 251, 347, 351, 353, 579
 Benedict-Webb-Rubin, 260
 Carnahan-Starling, 280, 294, 357
 cubic solution, 263
 ESD, 280, 295, 327, 357, 802
HR-SAFT, 800
Lee-Kesler, 260, 293
MCSL, 800
PC-SAFT, 327, 800
Redlich-Kwong, 325, 357
SAFT, 799, 800
Scott, 280, 294
Soave-Redlich-Kwong, 294, 327
stable roots, 268
van der Waals, 261, 271, 280, 355, 591
virial, 258, 288, 313, 347, 580, 590, 813
equilibrium, 5
 criteria
 chemical reaction, 644, 813
 liquid-liquid, 540
 liquid-vapor, 336, 399, 401
 Raoult’s law, 404
definition, 16
 liquid-liquid, 539, 614, 624
 liquid-liquid-vapor, 540, 614
 solid-liquid-vapor, 624
equilibrium constant, 646
 ideal gases, 642
ESD, See equation of state
Euler’s reciprocity relation, 233
eutectic, 561, 562, 627
exact differential, 232
Excel, 813
excess
 enthalpy, 426, 440
 entropy, 440
 Gibbs energy, 413, 427, 440
 properties, 426
 volume, 426, 440, 581
exergonic, 652, 662, 728
exergy, 177
exergy, See availability
exothermic, 112, 119, 427
exothermic reaction, 655, 666
expander, 72
 See also turbine
 expansion rule, 231
 expansion/contraction work, 40, 86
extensive properties, 18, 398
extent of reaction, 110
extractive distillation, 392, 490
extrapolation, linear, 29
F
FAD, 735
Faraday’s constant, 728
fat, 119
feedwater preheater, 205
Fenske equation, 393
first law of thermodynamics, 4, 39
flash, 371
 adiabatic, 372
 drum, 378
 isothermal, 372, 378, 546, 596, 812, 834, 838
 multicomponent, 381
 point, 389, 535
flavin adenine dinucleotide, 735
Flory equation, 474, 491, 506, 510, 514
Flory-Huggins theory, 474, 491, 541
force
 frictional, 86
 from potential energy, 8
formal concentration, 699
Fourier’s law, 157
free energies, 228
free volume, 475
friction, 43
friction factor, 68
fugacity, xxi, 268, 344, 400, 804
 coefficient, 345, 425, 583, 585
 component by EOS, 584
 ideal gas component, 403
 ideal gas pure, 347
 liquid, 351
 liquid component, 425
 solid, 353
fundamental property relation, 226
fusion, 63, 559

G
gamma-phi method, 425
gas constant, 9
geneneralized correlation, 256, 323
Gibbs energy, 178, 228, 268
 excess, See excess Gibbs energy
 of a mixture, 427
 of formation, 647, 843
 of fusion, 558
 of mixing, 105, 403, 428
 of reaction (standard state), 647
Gibbs phase rule, 18, 229, 370, 617
Gibbs, J.W., 178
Gibbs-Duhem equation, 439, 440, 755
Gibbs-Helmholtz relation, 441, 653, 746
global warming factor, 497
gradient
 concentration, 44
 pressure, 44
 temperature, 44
 velocity, 44
Grayson-Streed model, 447
group contributions, 511

H
hard-sphere fluid, 285
head space, 387
heat, 6, 17, 46
 of formation (standard state), 112
 of fusion, See latent heat, enthalpy of fusion
 of mixing, 107, 115, 427
 of reaction, 60, 111
 of reaction (standard state), 112
 of vaporization, See latent heat, enthalpy of vaporization
 sign convention, 53
heat capacity, 19, 57, 235, 244, 269, 843
 and entropy, 149, 240, 242
heat conduction, 17, 157, 176
heat convection, 17
heat engine, 157
 See also Carnot cycle
heat exchanger, 70, 160
heat radiation, 17
heavy key, 392, 487
Helmholtz energy, 179, 228, 309, 584
Helmholtz energy of mixing, 105
Helmholtz, Hermann, 179
Henderson-Hasselbalch, 724
Henry’s law, 376, 443, 457, 535, 610, 740, 749
 standard state, 759
Hess’s law, 111, 119, 648
heteroazeotrope, xxi, 550, 616, 630, 633
Hilsch vortex tube, 195
Hooke’s law, 139
human blood, 453
hydrate inhibitor, 603
hydration, 694
hydrogen bonding, 8, 466, 501, 533, 550, 603, 769
hydronium, 704
hydrophilic, 421
hydrophobic, 421
hydrophobic effect, 485
hypertonic, 453
hypertonic, 453
Index

873

integration, 820
intensive, 17
internal energy, 15, 57, 226
 ideal gas, 19
interpolation, 25
 double, 27
interstage cooling, 174, 211
ion pair, 704
ion pair chromatography, 704
irreversible, xxi, 43, 74, 86, 142
isenthalpic, xxi
isentropic, xxi, 143, 148
isentropic efficiency, xxi
isobaric, xxi, 46, 147
isobaric coefficient of thermal expansion, 236
isochore, xxii, 46, 147
isochoric, 274
isoelectric point, 724
isolated, xxii, 74
 system, 16, 50
isopiestic, xxii
isopleth, 601
isopycnic, xxii
isosteric, xxii
isotherm, 23, 264
isothermal, xxii, 46, 147
 compressibility, 236, 253, 824
 flash, 372, 834, 838
isotonic, 453
IUPAC, 728

J
Jacobian, 242, 244
Joule-Thomson coefficient, 212, 236, 245
Joule-Thomson expansion, 68

K
Kamlet-Taft acidity/basicity, 421, 771
kinetic energy, 6, 22, 43, 66, 69
K-ratio, 372, 586
 LLE, 545
 modified Raoult’s law, 425
 Raoult’s law, 376
 shortcut, 376
 SLE, 566

L
latent heat, 60, 846
laws
 See Raoult’s law, Henry’s law
 See zeroth law, first law, second law, third law
Le Châtelier, Henry, 649
Le Châtelier’s principle, 649, 699
Lee-Kesler, See equation of state
Legendre transformation, 228, 244, 398, 745
leveling effect, 705
lever rule, 372, 543, 551, 571, 630
Lewis, G.N., 3, 355
Lewis-Randall rule, 404, 443, 739
LFL, lower flammability limit, 389
light key, 392, 487
Linde liquefaction, 212, 320
linear extrapolation, 29
liquefaction, 212, 320
LLE, xxii, 539
local composition, 501
Lorentz and Bertholet combining rule, 13
lost work, 15, 42, 137, 142, 164, 178
low pressure steam, 172

M
M, as a generic property, 31, 303, 398, 426
MAB, Margules acid-base model, 421
Margules, 435, 812, 813
 acid-base characterization, 421
 one-parameter, 414, 484, 509, 542
 two-parameter, 430
mass balance, 16
master equation, xxii
matrix, 817
maximum boiling azeotrope, 397
maximum pressure azeotrope, 394
Maxwell’s relations, 233
McCabe-Thiele analysis, 391
McMillan-Mayer framework, 450
mean ionic activity coefficients, 753
mean molality, 753
measurable properties, xxii, 229, 235
metastable, xxii, 269
 See also unstable, equation of state
 (stable roots)
micelle, 691
microstate, 132
minimum boiling azeotrope, 394
minimum pressure azeotrope, 397
mixing rule, 466, 580, 840
 differentiation, 588
 molecular basis, 466
mixture
 combining rule, 13
 modified Raoult’s law, 412, 427
molal standard state, 759, 849
molality, 700
molecular asymmetry, 619
molecular simulation, 276
Mollier diagram, 166
monomer, 772
MOSCED, 480
mutual solubilities, 423, 540, 544

N
NAD, 735
negative deviations, 413, 444
Nernst equation, 728
Newton-Raphson, 265
nicotinamide adenine dinucleotide, 735
nominal, 699
noncondensable, 387, 487
normal boiling temperature, 61
normalization, 488, 595, 833
nozzle, xxii, 69, 74, 162
NRTL model, 508

O
one-root region, 264
open system, 16, 51
osmotic coefficient, 742
osmotic pressure, 449, 743, 755
osmotic virial coefficient, 451
overall
molar volume, enthalpy, etc., 31
mole fraction, 371
overall property, 31
overhead product, 101
oxidation, 727
oxidation state, 729

P
packing fraction, 273
packing, column, 102
parameter
binary interaction, 13, 582
cross, 467
parity plot, 578
partial condenser, 101, 378
partial molar
excess volume, 426
Gibbs energy, 398, 400, 427
properties, 398
volume, 398, 426
partial pressure, 403, 424
path properties, 46
PC-SAFT, See equation of state
Peng-Robinson, See equation of state
permutations, 135
pH, 701
phase behavior classes, 617
phase envelope, 23, 370, 601, 617
photosynthesis, 182
pl, 724
Pitzer correlation, 256, 323, 349
Plait point, 552
pMg, 736
polytropic, xxii
positive deviations, 413, 444
potential
energy, 8, 66
hard sphere, 277
Lennard-Jones, 10
square-well, 10, 274, 829
Sutherland, 10
potential energy, 6
Poynting correction, 350, 353, 425, 667, 669
Prausnitz-Shair, 447
preheater, 205
pressure, 20
bubble, See bubble-point pressure
dew, See dew-point pressure
equation, 283
gradient, 44
reduced
reference, 63
See also reference state
probability, 133, 467
process simulators, 839
properties
convenience, 227
measurable, 229
protein, 119, 719
protein engineering, 479
proton condition, 706
pseudoisomer, 736
pump, 73, 163, 173, 202
 purge gas, 387
P-x-y diagram, 370

Q
quadratic equation, 817
quadratic mixing rule, 467
quadrupole, 8
quality, xxii, 30, 167, 336

R
Rackett equation, 351
radial distribution function, 284, 828
Rankine cycle, 200
Raoult, François-Marie, 376, 695
Raoult’s law, 405, 443
modified, 412, 427
negative deviations, 394, 444, 781
positive deviations, 394, 444, 781
rdf, See radial distribution function
reaction
coordinate, 110, 643
elementary, 671
reboiler, 101
reciprocity relation, Euler, 233
rectifying section, 101
Redlich-Kister activity coefficient model, 429
Redlich-Kwong, See equation of state, 325
redox reactions, 727
reduced, 254
pressure, See pressure, reduced
temperature, See temperature, reduced
reduction, 727
reference state, xxii, 6, 63, 112, 113, 314, 318, 652
reflux, 101
ratio, 101, 393
refrigerant choice, 210
refrigeration, 208
regular solution theory, 468
See also van Laar, Scatchard-Hildebrand theory
relative volatility, 392, 394, 456, 490
repulsive force, 10
reservoir, 17
residual contribution, 506
residue curve, 630, 813
retrograde condensation, 601
reverse osmosis, 449
reversible, 42, 74, 142
internally, 158
work, 41
roots
See quadratic, cubic
three- and one-root regions, 264
rotational energy, 43, 59
rules of thumb
plotting on logarithmic coordinates, 712
S
SAFT, See equation of state
salting in, out, 725
saturated
liquid, 23
steam, 24
saturation, 23
pressure, 23
temperature, 23
scalar, 20
Scatchard-Hildebrand, 471, 812
Schrödinger equation, 8
Scott, See equation of state
second law of thermodynamics, 4, 130, 131, 143
sensible heat, xxii, 60, 111
separation of variables, 75, 77
separatrices, 631
separatrix, 631, 635
shortcut distillation calculation, 393, 442, 630
sign convention
heat and work, 53
mass balance, 16
work, 40
simple system, 131, 226
sink, 17
SLE, xxii, 556
Soave, See equation of state
solubility, 540, 560, 726
parameter, 472, 621
solubility product, 726
solvation, xxii, 521, 694, 767
speciation, 697
specific heat, xxii
specific property, xxii, 17
spinodal, xxii, 269, 553
split, 392
SSCED model, 482
stability check, 358
stable roots, 268
stage, separation, 102
standard conditions, xxii
standard hydrogen electrode, 728
standard state, xxii, 112, 425, 428, 645
Gibbs energy of reaction, 648
heat of formation, 112
heat of reaction, 111
Henry’s law, 759
molal, 759, 849
state, 18
of aggregation, xxii, 25, 60, 63, 113, 318
property, 46
reference, 63, 318
variable, 18
statistical thermodynamics, 59
steady-state, xxiii, 18, 74
energy balance, 51
steam properties, 811
steam tables, 24, 854
steam trap, 92
Stirling’s approximation, 136
stoichiometric coefficient, 109
stoichiometric number, 109
stoichiometry, 109
STP, xxiii
strategy
problem-solving, 74, 165, 177, 179, 373
stripping section, 101
strong acid, 704
strong base, 704
strong electrolyte, 694
subcooled, xxiii, 25
supercritical, 24, 376
superficial basis, 699
superheated, xxiii, 25
superheater, 71, 201
surface fraction, 510
surfactant, 691
sweep gas, 387
system, 15
closed, 16
isolated, 16
open, 16
point, 713
simple, 131, 226

T
temperature, 6, 254
absolute, 7
bubble, See bubble-point temperature
dew, See dew-point temperature
gradient, 44
reduced, 253
reference, 63, 115
See also reference state
state variable, 18
thermal efficiency, xxiii, 97
thermodynamic efficiency, xxiii
third law of thermodynamics, 33, 63, 728
three-root region, 264
throttle, xxiii, 68, 74, 162
tie line, 23, 371, 551
ton of refrigeration capacity, 209
total condenser, 101
trays, 102
triple product rule, 231, 246
true concentrations, 699
true mole fraction, 772
true moles, 792, 793
turbine, 72, 163, 166
 multistage, 172
two-fluid theory, 504
T-x-y diagram, 370

U
UCST, 552
UFL, 390
UNIFAC, 500, 514, 529, 562, 812
UNIQUAC, 509, 529, 812
unstable, xxiii, 268
unsteady-state, 74
unsymmetric convention
 activity coefficients, 446
 upper critical solution temperature, 550
 upper flammability limit, 390

V
valve, 68, 162
 See also throttle

van der Waals, 253, 261, 469
 area, 511
 equation, See equation of state
 loop, 352
 volume, 511
van Laar, 468, 470, 471, 474, 476, 812
van’t Hoff, 469, 653, 746
van’t Hoff equation, 653
 shortcut, 655
vapor pressure, 24, 62, 254, 342, 353, 357, 376, 400
 shortcut, 339
 See also Antoine equation
vector, 20
velocity gradient, 44
virial coefficient
 See equation of state, virial
viscosity, 43
viscous dissipation, 43
VLE, xxiii, 372
VLLE, 434, 540, 548, 550
VOC, 387
volatile organic compounds, 387
voltage, 727
volume
 saturated liquid, 351
 van der Waals, 511
volume fraction, 472, 510
volume of mixing, 105, 106

W
wax, 564, 813
weak acid, 704
weak base, 704
weak electrolyte, 694
wet steam, xxiii, 24
Wilson equation, 505, 513
work, 15
 expansion/contraction, 40
 flow, 41
 maximum, 164
 minimum, 164
 optimum, 158, 177
 pump, 55, 202
 shaft, 41, 54, 214
 sign convention, 40

X
x-y plot, 376, 419

Z
Z, compressibility factor, 253
zeroth law of thermodynamics, 7
zwitterion, 721