CCNA 200-301
Portable Command Guide

All the CCNA 200-301 commands in one compact, portable resource

Fifth Edition

Scott Empson
Contents at a Glance

Introduction xix

Part I: Network Fundamentals
CHAPTER 1 IPv4 Addressing—How It Works 1
CHAPTER 2 How to Subnet IPv4 Addresses 11
CHAPTER 3 Variable Length Subnet Masking (VLSM) 23
CHAPTER 4 Route Summarization 33
CHAPTER 5 IPv6 Addressing—How It Works 39
CHAPTER 6 Cables and Connections 51
CHAPTER 7 The Command-Line Interface 59

Part II: LAN Switching Technologies
CHAPTER 8 Configuring a Switch 67
CHAPTER 9 VLANs 75
CHAPTER 10 VLAN Trunking Protocol and Inter-VLAN Communication 83
CHAPTER 11 Spanning Tree Protocol 97
CHAPTER 12 EtherChannel 111
CHAPTER 13 Cisco Discovery Protocol (CDP) and Link Layer Discovery Protocol (LLDP) 121

Part III: Routing Technologies
CHAPTER 14 Configuring a Cisco Router 125
CHAPTER 15 Static Routing 141
CHAPTER 16 Open Shortest Path First (OSPF) 149

Part IV: IP Services
CHAPTER 17 DHCP 159
CHAPTER 18 Network Address Translation (NAT) 165
CHAPTER 19 Configuring Network Time Protocol (NTP) 175
Part V: Security Fundamentals

CHAPTER 20 Layer Two Security Features 187
CHAPTER 21 Managing Traffic Using Access Control Lists (ACLs) 197
CHAPTER 22 Device Monitoring and Hardening 213

Part VI: Wireless Technologies

CHAPTER 23 Configuring and Securing a WLAN AP 223

Part VII Appendices

APPENDIX A How to Count in Decimal, Binary, and Hexadecimal 251
APPENDIX B How to Convert Between Number Systems 259
APPENDIX C Binary/Hex/Decimal Conversion Chart 267
APPENDIX D Create Your Own Journal Here 275

INDEX 277
Contents

Introduction xix

Part I: Network Fundamentals

CHAPTER 1 IPv4 Addressing—How It Works 1
What Are IPv4 Addresses Used For? 1
What Does an IPv4 Address Look Like? 2
Network and Subnetwork Masks 2
Ways to Write a Network or Subnet Mask 3
Network, Node, and Broadcast Addresses 3
Classes of IPv4 Addresses 4
Network vs. Node (Host) Bits 5
RFC (Private) 1918 Addresses 6
Local vs. Remote Addresses 7
Classless Addressing 7
Lessons Learned 9

CHAPTER 2 How to Subnet IPv4 Addresses 11
Subnetting a Class C Network Using Binary 12
Subnetting a Class B Network Using Binary 15
Binary ANDing 17
So Why AND? 19
Shortcuts in Binary ANDing 20

CHAPTER 3 Variable Length Subnet Masking (VLSM) 23
IP Subnet Zero 23
VLSM Example 24
Step 1: Determine How Many H Bits Will Be Needed to Satisfy the Largest Network 25
Step 2: Pick a Subnet for the Largest Network to Use 25
Step 3: Pick the Next Largest Network to Work With 26
Step 4: Pick the Third Largest Network to Work With 28
Step 5: Determine Network Numbers for Serial Links 30

CHAPTER 4 Route Summarization 33
Example for Understanding Route Summarization 33
Step 1: Summarize Winnipeg’s Routes 34
Step 2: Summarize Calgary’s Routes 35
CHAPTER 5 IPv6 Addressing—How It Works 39
IPv6: A Very Brief Introduction 39
What Does an IPv6 Address Look Like? 40
Reducing the Notation of an IPv6 Address 41
 Rule 1: Omit Leading 0s 41
 Rule 2: Omit All-0s Hextet 42
 Combining Rule 1 and Rule 2 42
Prefix Length Notation 43
IPv6 Address Types 44
 Unicast Addresses 45
 Multicast Addresses 48
 Anycast Addresses 50

CHAPTER 6 Cables and Connections 51
Connecting a Rollover Cable to Your Router or Switch 51
Using a USB Cable to Connect to Your Router or Switch 51
Terminal Settings 52
LAN Connections 53
Serial Cable Types 53
Which Cable to Use? 55
ANSI/TIA Cabling Standards 56
 T568A Versus T568B Cables 57

CHAPTER 7 The Command-Line Interface 59
Shortcuts for Entering Commands 59
Using the ② Key to Complete Commands 60
Console Error Messages 60
Using the Question Mark for Help 60
enable Command 61
exit Command 61
end Command 61
disable Command 61
logout Command 62
Setup Mode 62
Keyboard Help 62
History Commands 63
terminal Commands 64
show Commands 64
Using the Pipe Parameter (|) with the show or more Commands 64
Using the no and default Forms of Commands 66

Part II: LAN Switching Technologies

CHAPTER 8 Configuring a Switch 67
Help Commands 68
Command Modes 68
Verifying Commands 68
Resetting Switch Configuration 69
Setting Host Names 69
Setting Passwords 69
Setting IP Addresses and Default Gateways 70
Setting Interface Descriptions 70
The mdix auto Command 70
Setting Duplex Operation 71
Setting Operation Speed 71
Managing the MAC Address Table 72
Configuration Example 72

CHAPTER 9 VLANs 75
Creating Static VLANs 75
Creating Static VLANs Using VLAN Configuration Mode 75
Assigning Ports to VLANs 76
Using the range Command 76
Configuring a Voice VLAN 76
Configuring Voice and Data with Trust 77
Configuring Voice and Data Without Trust 78
Verifying VLAN Information 78
Saving VLAN Configurations 79
Erasing VLAN Configurations 79
Configuration Example: VLANs 80
2960 Switch 80

CHAPTER 10 VLAN Trunking Protocol and Inter-VLAN Communication 83
Dynamic Trunking Protocol (DTP) 83
Setting the VLAN Encapsulation Type 84
Spanning-Tree Migration Example: PVST+ to Rapid-PVST+
 Access 1 Switch (2960) 108
 Access 2 Switch (2960) 108
 Distribution 1 Switch (3650) 109
 Distribution 2 Switch (3650) 109
 Core Switch (3650) 109

CHAPTER 12 EtherChannel 111

 EtherChannel 111
 Interface Modes in EtherChannel 111
 Default EtherChannel Configuration 112
 Guidelines for Configuring EtherChannel 112
 Configuring Layer 2 EtherChannel 113
 Configuring Layer 3 EtherChannel 114
 Configuring EtherChannel Load Balancing 114
 Configuring LACP Hot-Standby Ports 115
 Monitoring and Verifying EtherChannel 116
 Configuration Example: EtherChannel 117
 DLSwitch (3560 or 9300) 117
 ALSwitch1 (2960 or 9200) 118
 ALSwitch2 (2960 or 9200) 119

CHAPTER 13 Cisco Discovery Protocol (CDP) and Link Layer Discovery Protocol (LLDP) 121

 Cisco Discovery Protocol 121
 Configuring CDP 121
 Verifying and Troubleshooting CDP 122
 CDP Design Tips 122
 Link Layer Discovery Protocol (802.1AB) 123
 Configuring LLDP (802.1AB) 123
 Verifying and Troubleshooting LLDP 124

Part III: Routing Technologies

CHAPTER 14 Configuring a Cisco Router 125

 Router Modes 126
 Entering Global Configuration Mode 126
 Configuring a Router Name 126
 Configuring Passwords 126
 Password Encryption 127
Using Wildcard Masks with OSPF Areas 150
Loopback Interfaces 152
Router ID 152
DR/BDR Elections 153
Timers 153
Verifying OSPFv2 Configurations 153
Troubleshooting OSPFv2 154
Configuration Example: Single-Area OSPF 154
 Austin Router 155
 Houston Router 156
 Galveston Router 157

Part IV: IP Services

CHAPTER 17 DHCP 159
Configuring a DHCP Server on an IOS Router 159
Using Cisco IP Phones with a DHCP Server 160
Verifying and Troubleshooting DHCP Configuration 160
Configuring a DHCP Helper Address 161
Configuring a DHCP Client on a Cisco IOS Software Ethernet Interface 162
Configuration Example: DHCP 162
 Edmonton Router 162
 Gibbons Router 164

CHAPTER 18 Network Address Translation (NAT) 165
Private IP Addresses: RFC 1918 165
Configuring Dynamic NAT: One Private to One Public Address Translation 165
Configuring PAT: Many Private to One Public Address Translation 167
Configuring Static NAT: One Private to One Permanent Public Address Translation 169
Verifying NAT and PAT Configurations 170
Troubleshooting NAT and PAT Configurations 171
Configuration Example: PAT 171
 ISP Router 171
 Company Router 172

CHAPTER 19 Configuring Network Time Protocol (NTP) 175
NTP Configuration 175
NTP Design 176
Securing NTP 177
 Enabling NTP Authentication 177
 Limiting NTP Access with Access Lists 178
Verifying and Troubleshooting NTP 178
Setting the Clock on a Router 179
Using Time Stamps 182
Configuration Example: NTP 182
 Core1 Router 183
 Core2 Router 184
 DLSwitch1 185
 DLSwitch2 185
 ALSwitch1 186
 ALSwitch2 186

Part V: Security Fundamentals

CHAPTER 20 Layer Two Security Features 187
 Setting Passwords on a Switch 187
 Configuring Static MAC Addresses 188
 Configuring Switch Port Security 188
 Configuring Sticky MAC Addresses 189
 Verifying Switch Port Security 189
 Recovering Automatically from Error-Disabled Ports 190
 Verifying Autorecovery of Error-Disabled Ports 190
 Configuring DHCP Snooping 191
 Verifying DHCP Snooping 192
 Configuring Dynamic ARP Inspection (DAI) 193
 Verifying Dynamic ARP Inspection 193
 Configuration Example: Switch Security 194

CHAPTER 21 Managing Traffic Using Access Control Lists (ACLs) 197
 Access List Numbers 197
 Using Wildcard Masks 198
 ACL Keywords 198
 Creating Standard ACLs 198
 Applying Standard ACLs to an Interface 199
 Verifying ACLs 200
 Removing ACLs 200
 Creating Extended ACLs 200
 Applying Extended ACLs to an Interface 201
The established Keyword 201
The log Keyword 202
Creating Named ACLs 203
Using Sequence Numbers in Named ACLs 203
Removing Specific Lines in Named ACLs Using Sequence Numbers 204
Sequence Number Tips 204
Including Comments About Entries in ACLs 205
Restricting Virtual Terminal Access 206
Tips for Configuring ACLs 206
IPv6 ACLs 207
Verifying IPv6 ACLs 207
Configuration Examples: IPv4 ACLs 208
Configuration Examples: IPv6 ACLs 210

CHAPTER 22 Device Monitoring and Hardening 213
Device Monitoring 213
Configuration Backups 213
Implementing Logging 214
 Configuring Syslog 215
 Syslog Message Format 215
 Syslog Severity Levels 216
 Syslog Message Example 216
Device Hardening 217
 Configuring Passwords 217
 Password Encryption 218
 Password Encryption Algorithm Types 218
 Configuring SSH 219
 Verifying SSH 220
 Restricting Virtual Terminal Access 220
 Disabling Unneeded Services 221

Part VI: Wireless Technologies

CHAPTER 23 Configuring and Securing a WLAN AP 223
Initial Setup of a Wireless LAN Controller (WLC) 223
Monitoring the WLC 229
Configuring a VLAN (Dynamic) Interface 230
Configuring a DHCP Scope 234
Configuring a WLAN 237
Contents xv

Defining a RADIUS Server 239
Exploring Management Options 242
Configuring a WLAN Using WPA2 PSK 246

Part VII: Appendices

APPENDIX A How to Count in Decimal, Binary, and Hexadecimal 251
 How to Count in Decimal 251
 How to Count in Binary 253
 How to Count in Hexadecimal 254
 Representing Decimal, Binary, and Hexadecimal Numbers 256

APPENDIX B How to Convert Between Number Systems 259
 How to Convert from Decimal to Binary 259
 How to Convert from Binary to Decimal 260
 How to Convert from Decimal IP Addresses to Binary and from Binary IP Addresses to Decimal 261
 A Bit of Perspective 262
 How to Convert from Hexadecimal to Binary 262
 How to Convert from Binary to Hexadecimal 263
 How to Convert from Decimal to Hexadecimal 264
 How to Convert from Hexadecimal to Decimal 265

APPENDIX C Binary/Hex/Decimal Conversion Chart 267

APPENDIX D Create Your Own Journal Here 275

INDEX 277
About the Author

Scott Empson is an instructor in the Department of Information Systems Technology at the Northern Alberta Institute of Technology in Edmonton, Alberta, Canada, where he has taught for more than 20 years. He teaches technical courses in Cisco routing and switching, along with courses in professional development and leadership. He has a Master of Education degree along with three undergraduate degrees: a Bachelor of Arts, with a major in English; a Bachelor of Education, again with a major in English/language arts; and a Bachelor of Applied Information Systems Technology, with a major in network management. Scott lives in Edmonton, Alberta, with his wife, Trina, and two university-attending-but-still-haven’t-moved-out-yet-but-hope-to-move-out-as-soon-as-possible-after-graduation-so-Dad-can-have-the-TV-room-back children, Zachariah and Shaelyn.

About the Technical Reviewer

Rick McDonald teaches computer and networking courses at the University of Alaska Southeast in Ketchikan, Alaska. He holds a B.A. degree in English and an M.A. degree in Educational Technology from Gonzaga University in Spokane, WA. After several years in the airline industry, Rick returned to full-time teaching. Rick started in the Cisco Academy in North Carolina and taught CCNA and CCNP courses to students and was a CCNA Instructor Trainer. Previous Academy projects include authoring CCNP study guides and technical editing a previous edition of the CCNA 2 and 3 textbook. His current project is developing methods for delivering hands-on training via distance in Alaska using web conferencing and NETLAB tools.
Dedications

As always, this book is dedicated to Trina, Zach, and Shae. Now that you are older and are in university, do you even know what I do when I write these books, or are you just happy that I can afford to take you to Disney again? Or pay for your tuition. Pick one... xxxooo :)

Acknowledgments

Just as it takes many villagers to raise a child, it takes many people to create a book. Without the following, I wouldn’t be able to call myself an author; my title would probably be village idiot. Therefore, I must thank:

The team at Cisco Press. Once again, you amaze me with your professionalism and the ability to make me look good. James, Ellie, Bill, Tonya, and Vaishnavi: Thank you for your continued support and belief in my little engineering journal.

To my technical reviewer, Rick: We finally get to work together! Rick was one of the first people I met when getting involved with Cisco and the Cisco Academy all those years ago (2001?). I first met you in Las Vegas at a Networkers conference. You were brilliant then, and you are brilliant now. Thanks for correcting my mistakes and making me look smarter than I really am.

A special thanks to Mary Beth Ray: You were my first editor with Cisco Press and you were with me for every step over the last 15 years. Thank you for taking a risk on me and my idea. I hope that your post-publishing career is just as exciting and rewarding as your time was with us. I bow to the divine in you. Namaste.

If you like this book, it is all because of them. Any errors in this book are all on me.
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ({{ } }) indicate a required choice within an optional element.
Introduction

Welcome to CCNA 200-301 Portable Command Guide! As most of you know, Cisco has announced a complete revamp and update to its certifications. What you have here is the latest Portable Command Guide as part of these new outcomes and exams. For someone who originally thought that this book would be less than 100 pages in length and limited to the Cisco Networking Academy program for its complete audience, I am continually amazed that my little engineering journal has caught on with such a wide range of people throughout the IT community.

I have long been a fan of what I call the “engineering journal,” a small notebook that can be carried around and that contains little nuggets of information—commands that you forget, the IP addressing scheme of some remote part of the network, little reminders about how to do something you only have to do once or twice a year (but is vital to the integrity and maintenance of your network). This journal has been a constant companion by my side for the past 20 years; I only teach some of these concepts every second or third year, so I constantly need to refresh commands and concepts and learn new commands and ideas as Cisco releases them. My journals are the best way for me to review because they are written in my own words (words that I can understand). At least, I had better understand them because if I can’t, I have only myself to blame.

My first published engineering journal was the CCNA Quick Command Guide; it was organized to match the (then) order of the Cisco Networking Academy program. That book then morphed into the Portable Command Guide, the fifth edition of which you are reading right now. This book is my “industry” edition of the engineering journal. It contains a different logical flow to the topics, one more suited to someone working in the field. Like topics are grouped together: routing protocols, switches, troubleshooting. More complex examples are given. IPv6 has now been integrated directly into the content chapters themselves. IPv6 is not something new that can be introduced in a separate chapter; it is part of network designs all around the globe, and we need to be as comfortable with it as we are with IPv4. The popular “Create Your Own Journal” appendix is still here (blank pages for you to add in your own commands that you need in your specific job). We all recognize the fact that no network administrator’s job can be so easily pigeonholed as to just working with CCNA topics; you all have your own specific jobs and duties assigned to you. That is why you will find those blank pages at the end of the book. Make this book your own; personalize it with what you need to make it more effective. This way your journal will not look like mine.

Private Addressing Used in This Book

This book uses RFC 1918 addressing throughout. Because I do not have permission to use public addresses in my examples, I have done everything with private addressing. Private addressing is perfect for use in a lab environment or in a testing situation because it works exactly like public addressing, with the exception that it cannot be routed across a public network.
Who Should Read This Book

This book is for those people preparing for the CCNA certification exam, whether through self-study, on-the-job training and practice, or study within the Cisco Networking Academy program. There are also some handy hints and tips along the way to make life a bit easier for you in this endeavor. This book is small enough that you will find it easy to carry around with you. Big, heavy textbooks might look impressive on your bookshelf in your office, but can you really carry them around with you when you are working in some server room or equipment closet somewhere?

Optional Sections

A few sections in this book have been marked as optional. These sections cover topics that are not on the CCNA certification exam, but they are valuable topics that should be known by someone at a CCNA level. Some of the optional topics might also be concepts that are covered in the Cisco Networking Academy program courses.

Organization of This Book

This book follows a logical approach to configuring a small to mid-size network. It is an approach that I give to my students when they invariably ask for some sort of outline to plan and then configure a network. Specifically, this approach is as follows:

Part I: Network Fundamentals

- **Chapter 1, “IPv4 Addressing—How It Works”:** An overview of the rules of IPv4 addressing—how it works, what is it used for, and how to correctly write out an IPv4 address
- **Chapter 2, “How to Subnet IPv4 Addresses”:** An overview of how to subnet, examples of subnetting (both a Class B and a Class C address), and using the binary AND operation
- **Chapter 3, “Variable Length Subnet Masking (VLSM)”:** An overview of VLSM, and an example of using VLSM to make your IP plan more efficient
- **Chapter 4, “Route Summarization”:** Using route summarization to make your routing updates more efficient, an example of how to summarize a network, and necessary requirements for summarizing your network
- **Chapter 5, “IPv6 Addressing—How It Works”:** An overview of the rules for working with IPv6 addressing, including how it works, what is it used for, how to correctly write out an IPv6 address, and the different types of IPv6 addresses
- **Chapter 6, “Cables and Connections”:** An overview of how to connect to Cisco devices, which cables to use for which interfaces, and the differences between the TIA/EIA 568A and 568B wiring standards for UTP
- **Chapter 7, “The Command-Line Interface”:** How to navigate through Cisco IOS Software: editing commands, using keyboard shortcuts for commands, and using help commands
Part II: LAN Switching Technologies

- **Chapter 8, “Configuring a Switch”:** Commands to configure Catalyst switches: names, passwords, IP addresses, default gateways, port speed and duplex, and static MAC addresses

- **Chapter 9, “VLANs”:** Configuring static VLANs, troubleshooting VLANs, saving and deleting VLAN information, and configuring voice VLANs with and without trust

- **Chapter 10, “VLAN Trunking Protocol and Inter-VLAN Communication”:** Configuring a VLAN trunk link, configuring VTP, verifying VTP, and configuring inter-VLAN communication using router-on-a-stick, subinterfaces, and SVIs

- **Chapter 11, “Spanning Tree Protocol”:** Verifying STP, setting switch priorities, working with optional features, and enabling Rapid Spanning Tree

- **Chapter 12, “EtherChannel”:** Creating and verifying Layer 2 and Layer 3 EtherChannel groups between switches

- **Chapter 13, “Cisco Discovery Protocol (CDP) and Link Layer Discovery Protocol (LLDP)”:** Customizing and verifying both CDP and LLDP

Part III: Routing Technologies

- **Chapter 14, “Configuring a Cisco Router”:** Commands needed to configure a single router: names, passwords, configuring interfaces, MOTD and login banners, IP host tables, saving and erasing your configurations

- **Chapter 15, “Static Routing”:** Configuring IPv4 and IPv6 static routes in your internetwork

- **Chapter 16, “Open Shortest Path First (OSPF)”:** Configuring and verifying OSPFv2 in single-area designs

Part IV: IP Services

- **Chapter 17, “DHCP”:** Configuring and verifying DHCP on a Cisco IOS router, and using Cisco IP Phones with a DHCP server

- **Chapter 18, “Network Address Translation (NAT)”:** Configuring and verifying NAT and PAT

- **Chapter 19, “Configuring Network Time Protocol (NTP)”:** Configuring and verifying NTP, setting the local clock, and using time stamps

Part V: Security Fundamentals

- **Chapter 20, “Layer Two Security Features”:** Setting passwords, configuring switch port security, using static and sticky MAC addresses, configuring and verifying DHCP snooping, and configuring and verifying Dynamic ARP Inspection (DAI)
Chapter 21, “Managing Traffic Using Access Control Lists (ACLs)”: Configuring standard ACLs, using wildcard masks, creating extended ACLs, creating named ACLs, using sequence numbers in named ACLs, verifying and removing ACLs, and configuring and verifying IPv6 ACLs

Chapter 22, “Device Monitoring and Hardening”: Device monitoring, backups, logging and the use of syslog, syslog message formats, configuring and encrypting passwords, configuring and verifying SSH, restricting virtual terminal access, and disabling unused services

Part VI: Wireless Technologies

Chapter 23, “Configuring and Securing a WLAN AP”: The initial setup for a Wireless LAN Controller, monitoring a WLC, configuring VLANs, DHCP, WLAN, RADIUS servers, other management options, and security on a WLC

Part VII: Appendices

Appendix A, “How to Count in Decimal, Binary, and Hexadecimal”: A refresher on how to count in decimal, and using those rules to count in binary and hexadecimal

Appendix B, “How to Convert Between Number Systems”: Rules to follow when converting between the three numbering systems used most often in IT: decimal, binary, and hexadecimal

Appendix C, “Binary/Hex/Decimal Conversion Chart”: A chart showing numbers 0 through 255 in the three numbering systems of binary, hexadecimal, and decimal

Appendix D, “Create Your Own Journal Here”: Some blank pages for you to add in your own specific commands that might not be in this book

Did I Miss Anything?

I am always interested to hear how my students, and now readers of my books, do on both certification exams and future studies. If you would like to contact me and let me know how this book helped you in your certification goals, please do so. Did I miss anything? Let me know. Contact me at PCG@empson.ca or through the Cisco Press website, http://www.ciscopress.com.
Figure Credits

Figure 6-3, screenshot of PC Settings © Microsoft, 2019.

Figure 23-7, 23 Logging into the WLC Screenshot of Logging into © Microsoft, 2019.

Figure 23-15, screenshot of Interface Address © Microsoft, 2019.

Figure 23-16, screenshot of Interface Address © Microsoft, 2019.

Figure 23-17, screenshot of Success ping message © Microsoft, 2019.

Figure 23-24, screenshot of Saving configuration © Microsoft, 2019.
This page intentionally left blank
This chapter provides information concerning the following topics:

- Example for understanding route summarization
- Route summarization and route flapping
- Requirements for route summarization

Route summarization, or supernetting, is needed to reduce the number of routes that a router advertises to its neighbor. Remember that for every route you advertise, the size of your update grows. It has been said that if there were no route summarization, the Internet backbone would have collapsed from the sheer size of its own routing tables back in 1997!

Routing updates, whether done with a distance-vector protocol or a link-state protocol, grow with the number of routes you need to advertise. In simple terms, a router that needs to advertise ten routes needs ten specific lines in its update packet. The more routes you have to advertise, the bigger the packet. The bigger the packet, the more bandwidth the update takes, reducing the bandwidth available to transfer data. But with route summarization, you can advertise many routes with only one line in an update packet. This reduces the size of the update, allowing you more bandwidth for data transfer.

Also, when a new data flow enters a router, the router must do a lookup in its routing table to determine which interface the traffic must be sent out. The larger the routing tables, the longer this takes, leading to more used router CPU cycles to perform the lookup. Therefore, a second reason for route summarization is that you want to minimize the amount of time and router CPU cycles that are used to route traffic.

NOTE: This example is a very simplified explanation of how routers send updates to each other. For a more in-depth description, I highly recommend you go out and read Jeff Doyle and Jennifer Carroll’s book *Routing TCP/IP, Volume I*, Second Edition (Cisco Press, 2005). This book has been around for many years and is considered by most to be the authority on how the different routing protocols work. If you are considering continuing on in your certification path to try and achieve the CCIE, you need to buy Doyle’s book—and memorize it; it’s that good.

Example for Understanding Route Summarization

Refer to Figure 4-1 to assist you as you go through the following explanation of an example of route summarization.
As you can see from Figure 4-1, Winnipeg, Calgary, and Edmonton each have to advertise internal networks to the main router located in Vancouver. Without route summarization, Vancouver would have to advertise 16 networks to Seattle. You want to use route summarization to reduce the burden on this upstream router.

Step 1: Summarize Winnipeg’s Routes

To do this, you need to look at the routes in binary to see if there are any specific bit patterns that you can use to your advantage. What you are looking for are common bits on the network side of the addresses. Because all of these networks are /24 networks, you want to see which of the first 24 bits are common to all four networks.

172.16.64.0 = 10101100.00010000.01000000.00000000
172.16.65.0 = 10101100.00010000.01000001.00000000
172.16.66.0 = 10101100.00010000.01000010.00000000
172.16.67.0 = 10101100.00010000.01000011.00000000

Common bits: 10101100.00010000.010000xx

You see that the first 22 bits of the four networks are common. Therefore, you can summarize the four routes by using a subnet mask that reflects that the first 22 bits are common. This is a /22 mask, or 255.255.252.0. You are left with the summarized address of

172.16.64/22
This address, when sent to the upstream Vancouver router, will tell Vancouver: “If you have any packets that are addressed to networks that have the first 22 bits in the pattern of 10101100.00010000.010000xx.xxxxxxxx, then send them to me here in Winnipeg.”

By sending one route to Vancouver with this supernetted subnet mask, you have advertised four routes in one line instead of using four lines. Much more efficient!

Step 2: Summarize Calgary’s Routes

For Calgary, you do the same thing that you did for Winnipeg—look for common bit patterns in the routes:

172.16.68.0 = 10101100.00010000.01000100.00000000
172.16.69.0 = 10101100.00010000.01000101.00000000
172.16.70.0 = 10101100.00010000.01000110.00000000
172.16.71.0 = 10101100.00010000.01000111.00000000

Common bits: 10101100.00010000.010001xx

Once again, the first 22 bits are common. The summarized route is therefore

172.16.68.0/22

Step 3: Summarize Edmonton’s Routes

For Edmonton, you do the same thing that you did for Winnipeg and Calgary—look for common bit patterns in the routes:

172.16.72.0 = 10101100.00010000.01001000.00000000
172.16.73.0 = 10101100.00010000.01001001.00000000
172.16.74.0 = 10101100.00010000.01001010.00000000
172.16.75.0 = 10101100.00010000.01001011.00000000
172.16.76.0 = 10101100.00010000.01001100.00000000
172.16.77.0 = 10101100.00010000.01001101.00000000
172.16.78.0 = 10101100.00010000.01001110.00000000
172.16.79.0 = 10101100.00010000.01001111.00000000

Common bits: 10101100.00010000.01001xx

For Edmonton, the first 21 bits are common. The summarized route is therefore

172.16.72.0/21

Figure 4-2 shows what the network looks like, with Winnipeg, Calgary, and Edmonton sending their summarized routes to Vancouver.
Step 4: Summarize Vancouver’s Routes

Yes, you can summarize Vancouver’s routes to Seattle. You continue in the same format as before. Take the routes that Winnipeg, Calgary, and Edmonton sent to Vancouver, and look for common bit patterns:

\[
\begin{align*}
172.16.64.0 &= 10101100.00010000.01000000.00000000 \\
172.16.68.0 &= 10101100.00010000.01000100.00000000 \\
172.16.72.0 &= 10101100.00010000.01001000.00000000 \\
172.16.76.0 &= 10101100.00010000.01001100.00000000 \\
172.16.70.0 &= 10101100.00010000.01001000.00000000 \\
172.16.74.0 &= 10101100.00010000.01001100.00000000 \\
172.16.78.0 &= 10101100.00010000.01001100.00000000 \\
172.16.80.0 &= 10101100.00010000.01001100.00000000 \\
\end{align*}
\]

Common bits: \texttt{10101100.00010000.0100xxxx}
Because there are 20 bits that are common, you can create one summary route for Vancouver to send to Seattle:

172.16.64.0/20

Vancouver has now told Seattle that in one line of a routing update, 16 different networks are being advertised. This is much more efficient than sending 16 lines in a routing update to be processed.

Figure 4-3 shows what the routing updates would look like with route summarization taking place.
Route Summarization and Route Flapping

Another positive aspect of route summarization has to do with route flapping. Route flapping is when a network, for whatever reason (such as interface hardware failure or misconfiguration), goes up and down on a router, causing that router to constantly advertise changes about that network. Route summarization can help insulate upstream neighbors from these problems.

Consider router Edmonton from Figure 4-1. Suppose that network 172.16.74.0/24 goes down. Without route summarization, Edmonton would advertise Vancouver to remove that network. Vancouver would forward that same message upstream to Calgary, Winnipeg, Seattle, and so on. Now assume the network comes back online a few seconds later. Edmonton would have to send another update informing Vancouver of the change. Each time a change needs to be advertised, the router must use CPU resources. If that route were to flap, the routers would constantly have to update their own tables, as well as advertise changes to their neighbors. In a CPU-intensive protocol such as OSPF, the constant hit on the CPU might make a noticeable change to the speed at which network traffic reaches its destination.

Route summarization enables you to avoid this problem. Even though Edmonton would still have to deal with the route constantly going up and down, no one else would notice. Edmonton advertises a single summarized route, 172.16.72.0/21, to Vancouver. Even though one of the networks is going up and down, this does not invalidate the route to the other networks that were summarized. Edmonton will deal with its own route flap, but Vancouver will be unaware of the problem downstream in Edmonton. Summarization can effectively protect or insulate other routers from route flaps.

Requirements for Route Summarization

To create route summarization, there are some necessary requirements:

- Routers need to be running a classless routing protocol, as they carry subnet mask information with them in routing updates. (Examples are RIP v2, OSPF, EIGRP, IS-IS, and BGP.)
- Addresses need to be assigned in a hierarchical fashion for the summarized address to have the same high-order bits. It does no good if Winnipeg has network 172.16.64.0 and 172.16.67.0 while 172.16.65.0 resides in Calgary and 172.16.66.0 is assigned in Edmonton. No summarization could take place from the edge routers to Vancouver.

TIP: Because most networks use NAT and the RFC 10.0.0.0/8 network internally, it is important when creating your network design that you assign network subnets in a way that they can be easily summarized. A little more planning now can save you a lot of grief later.
IPv6: A very brief introduction

What does an IPv6 address look like?

Reducing the notation of an IPv6 address
- Rule 1: Omit leading 0s
- Rule 2: Omit all-0s hextet
- Combining rule 1 and rule 2

Prefix length notation

IPv6 address types
- Unicast addresses
 - Global unicast
 - Link-local
 - Loopback
 - Unspecified
 - Unique local
 - IPv4 embedded
- Multicast addresses
 - Well-known
 - Solicited-node
- Anycast addresses

NOTE: This chapter is meant to be a very high-level overview of IPv6 addressing. For an excellent overview of IPv6, I strongly recommend you read Rick Graziani’s book from Cisco Press: IPv6 Fundamentals: A Straightforward Approach to Understanding IPv6, Second Edition. It is a brilliant read, and Rick is an amazing author. I am also very fortunate to call him a friend.

IPv6: A Very Brief Introduction

When IPv4 became a standard in 1980, its 32-bit address field created a theoretical maximum of approximately 4.29 billion addresses \(2^{32}\). IPv4 was originally conceived as an experiment, and not for a practical implementation, so 4.29 billion was considered to be an inexhaustible amount. But with the growth of the Internet, and the need for individuals and companies to require multiple addresses—your home PC, your cell
phone, your tablet, your PC at work/school, your Internet-aware appliances—you can see that something larger than 32-bit address fields would be required. In 1993, the Internet Engineering Task Force (IETF) formed a working group called the IP Next Generation working group. In 1994 the IETF recommended an address size of 128 bits. While many people think that IPv6 is just a way to create more addresses, there are actually many enhancements that make IPv6 a superior choice to IPv4. Again, I recommend Rick Graziani’s *IPv6 Fundamentals* as a must-have on your bookshelf for working with IPv6.

What Does an IPv6 Address Look Like?

The way that a computer or other digital device sees an IPv6 address and the way humans see an IPv6 address are different. A digital device looks at an IPv6 address as a 128-bit number. But humans have devised a way to convert this 128-bit number into something easier to look at and work with. For humans, an IPv6 address is a 128-bit number that is written as a string of hexadecimal digits. Hexadecimal is a natural fit for IPv6 addresses because any 4 bits can be represented as a single hexadecimal digit. Two hexadecimal digits represent a single byte, or octet (8 bits). The preferred form of an IPv6 address is \texttt{x:x:x:x:x:x:x:x}, where each \texttt{x} is a 16-bit section that can be represented using up to four hexadecimal digits. Each section is separated by a colon (:), as opposed to IPv4 addressing, which uses a period (.) to separate each section. The result is eight 16-bit sections (sometimes called *hextets*) for a total of 128 bits in the address. Figure 5-1 shows this format.

![Format of an IPv6 Address](image)

Each ‘\texttt{x}’ represents up to four hexadecimal digits separated by colons:

```
\texttt{X : X : X : X : X : X : X : X}
```

Every four hexadecimal digits are equivalent to 16 bits (4 bits for each hexadecimal value).

Figure 5-1 Format of an IPv6 Address

Showing all the hexadecimal digits in an IPv6 address is the longest representation of the preferred form. The next section shows you two rules for reducing the notation of an IPv6 address in the preferred format for easier use and readability.
Reducing the Notation of an IPv6 Address

Looking at the longest representation of an IPv6 address can be overwhelming:

- 0000:0000:0000:0000:0000:0000:0000:0000
- 0000:0000:0000:0000:0000:0000:0000:0001
- ff02:0000:0000:0000:0000:0000:0000:0001
- fe80:0000:0000:0000:a299:9bff:fe18:50d1
- 2001:0db8:cafe:0001:0000:0000:0000:0200

There are two rules for reducing the notation.

Rule 1: Omit Leading 0s

Omit any leading 0s in any hextet (a 16-bit section). This rule applies only to leading 0s and not trailing 0s. Table 5-1 shows examples of omitting leading 0s in a hextet:

TABLE 5-1 Examples of Omitting Leading 0s in a Hextet (Leading 0s in bold; spaces retained)

<table>
<thead>
<tr>
<th>Format</th>
<th>IPv6 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0000</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>0: 0: 0: 0: 0: 0: 0: 0</td>
</tr>
<tr>
<td>or</td>
<td>0:0:0:0:0:0:0:0</td>
</tr>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>0: 0: 0: 0: 0: 0: 0: 1</td>
</tr>
<tr>
<td>or</td>
<td>0:0:0:0:0:0:0:1</td>
</tr>
<tr>
<td>Preferred</td>
<td>ff02:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>ff02: 0: 0: 0: 0: 0: 0: 1</td>
</tr>
<tr>
<td>Preferred</td>
<td>2001:0db8:1111:000a:00b0:0000:9000:0200</td>
</tr>
</tbody>
</table>
Rule 2: Omit All-0s Hextet

Use a double colon (::) to represent any single, contiguous string of two or more hextets consisting of all 0s. Table 5-2 shows examples of using the double colon.

TABLE 5-2 Examples of Omitting a Single Contiguous String of All-0s Hextets (0s in Bold Replaced By a Double Colon)

<table>
<thead>
<tr>
<th>Format</th>
<th>IPv6 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0000</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>::</td>
</tr>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>::0001</td>
</tr>
<tr>
<td>Preferred</td>
<td>ff02:0000:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>ff02::0001</td>
</tr>
<tr>
<td>Preferred</td>
<td>2001:0db8:aaaa:0001:0000:0000:0000:0000:0100</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>2001:0db8:aaaa:0001::0100</td>
</tr>
<tr>
<td>Preferred</td>
<td>2001:0db8:0000:0000:abcd:0000:0000:1234</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>2001:0db8::abcd:0000:0000:1234</td>
</tr>
</tbody>
</table>

Only a single contiguous string of all 0s can be represented by a double colon; otherwise the address would be ambiguous. Consider the following example:

2001::abcd::1234

There are many different possible choices for the preferred address:

2001:0000:0000:0000:0000:abcd:0000:1234
2001:0000:0000:0000:abcd:0000:0000:1234
2001:0000:0000:abcd:0000:0000:0000:1234
2001:0000:abcd:0000:0000:0000:0000:1234
2001:0000:abcd:0000:0000:0000:0000:1234

If two double colons are used, you cannot tell which of these addresses is correct.

If you have an address with more than one contiguous string of 0s, where should you place the double colon? RFC 5952 states that the double colon should represent

- The longest string of all-0s hextets.
- If the strings are of equal value, the first string should use the double colon notation.

Combining Rule 1 and Rule 2

You can combine the two rules to reduce an address even further. Table 5-3 shows examples of this.
TABLE 5-3 Examples of Applying Both Rule 1 and Rule 2 (Leading 0s in bold)

<table>
<thead>
<tr>
<th>Format</th>
<th>IPv6 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0000</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>0: 0: 0: 0: 0: 0: 0: 0</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>::</td>
</tr>
<tr>
<td>Compressed</td>
<td>::</td>
</tr>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>0: 0: 0: 0: 0: 0: 0: 1</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>::1</td>
</tr>
<tr>
<td>Compressed</td>
<td>::1</td>
</tr>
<tr>
<td>Preferred</td>
<td>ff02:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>ff02:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>ff02::1</td>
</tr>
<tr>
<td>Compressed</td>
<td>ff02::1</td>
</tr>
<tr>
<td>Preferred</td>
<td>fe80:0000:0000:0000:a299:9bff:fe18:50d1</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>fe80:0000:0000:0000:a299:9bff:fe18:50d1</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>fe80::a299:9bff:fe18:50d1</td>
</tr>
<tr>
<td>Compressed</td>
<td>fe80::a299:9bff:fe18:50d1</td>
</tr>
<tr>
<td>Preferred</td>
<td>2001:0db8:aaaa:0001:0000:0000:0000:200</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>2001:0db8:aaaa:0001:0000:0000:0000:200</td>
</tr>
<tr>
<td>(::) All-0s segments</td>
<td>2001:db8:aaaa::1:200</td>
</tr>
<tr>
<td>Compressed</td>
<td>2001:db8:aaaa::1:200</td>
</tr>
</tbody>
</table>

Prefix Length Notation

In IPv4, the prefix of the address (the network portion) can be represented either by a dotted-decimal netmask (the subnet mask) or through CIDR notation. When we see 192.168.100.0 255.255.255.0 or 192.168.100.0/24, we know that the network portion of the address is the first 24 bits of the address (192.168.100) and that the last 8 bits (.0) are host bits. IPv6 address prefixes are represented in much the same way as IPv4 address prefixes are written in CIDR notation. IPv6 prefixes are represented using the following format:

IPv6-Address/Prefix-Length

The *prefix-length* is a decimal value showing the number of leftmost contiguous bits of the address. It identifies the prefix (the network portion) of the address. In unicast addresses, it is used to separate the prefix portion from the Interface ID. The Interface ID is equivalent to the host portion of an IPv4 address.
Looking at the address

2001:db8:aaaa:1111::100/64

we know that the leftmost 64 bits are the prefix (network portion) and the remaining bits are the Interface ID (host portion). See Figure 5-2.

Each hexadecimal digit is 4 bits; a hextet is a 16-bit segment.

A /64 prefix length results in an Interface ID of 64 bits. This is a common prefix length for most end-user networks. A /64 prefix length gives us 2^{64} or 18 quintillion devices on a single network (or subnet).

There are several more common prefix length examples, as shown in Figure 5-3. All of these examples fall either on a hextet boundary or on a nibble boundary (a multiple of 4 bits). Although prefix lengths do not need to fall on a nibble boundary, most usually do.

IPv6 Address Types

In IPv6, there are three types of addresses: unicast, multicast, and anycast. This section gives a (very) high-level overview of these types.

NOTE: IPv6 does not have a broadcast address. There are other options that exist in IPv6 that deal with this issue, but this is beyond the scope of this book.
IPv6 Addresses

Unicast Addresses

A unicast address uniquely identifies an interface on an IPv6 device. A packet sent to a unicast address is received by the interface that is assigned to that address. Similar to IPv4, a source IPv6 address must be a unicast address.

As shown in Figure 5-4, there are six different types of unicast addresses:

1. **Global unicast**: A routable address in the IPv6 Internet, similar to a public IPv4 address.
2. **Link-local**: Used only to communicate with devices on the same local link.
3. **Loopback**: An address not assigned to any physical interface that can be used for a host to send an IPv6 packet to itself.
4. **Unspecified address**: Used only as a source address and indicates the absence of an IPv6 address.
5. **Unique local**: Similar to a private address in IPv4 (RFC 1918) and not intended to be routable in the IPv6 Internet. However, unlike RFC 1918 addresses, these addresses are not intended to be statefully translated to a global unicast address. Please see Rick Graziani’s book *IPv6 Fundamentals* for a more detailed description of stateful translation.
6. **IPv4 embedded**: An IPv6 address that carries an IPv4 address in the low-order 32 bits of an IPv6 address.

Global Unicast Addresses

Global unicast addresses (GUAs) are globally routable and reachable in the IPv6 Internet. The generic structure of a GUA has three fields:

- **Global Routing Prefix**: The prefix or network portion of the address assigned by the provider, such as an ISP, to the customer site.
- **Subnet ID**: A separate field for allocating subnets within the customer site. Unlike IPv4, it is not necessary to borrow bits from the Interface ID (host portion) to create subnets. The number of bits in the Subnet ID falls between where the Global Routing Prefix ends and the Interface ID begins.

- **Interface ID**: Identifies the interface on the subnet, equivalent to the host portion of an IPv4 address. In most cases, the Interface ID is 64 bits in length.

Figure 5-5 shows the structure of a global unicast address.

![Figure 5-5 Structure of a Global Unicast Address](image)

Link-Local Unicast Addresses

A link-local unicast address is a unicast address that is confined to a single link (a single subnet). Link-local addresses only need to be unique on the link (subnet) and do not need to be unique beyond the link. Therefore, routers do not forward packets with a link-local address.

Figure 5-6 shows the format of a link-local unicast address, which is in the range fe80::/10. Using this prefix and prefix length range results in the range of the first hextet being from fe80 to febf.

![Figure 5-6 Structure of a Link-Local Unicast Address](image)

NOTE: Using a prefix other than fe80 is permitted by RFC 4291, but the addresses should be tested prior to usage.

NOTE: To be an IPv6-enabled device, a device must have an IPv6 link-local address. You do not need to have an IPv6 global unicast address, but you must have a link-local address.

NOTE: Devices dynamically (automatically) create their own link-local IPv6 addresses upon startup. Link-local addresses can be manually configured.
IPv6 Address Types

NOTE: Link-local addresses only need to be unique on the link. It is very likely, and even desirable, to have the same link-local address on different interfaces that are on different links. For example, on a device named Router2, you may want all link-local interfaces to be manually configured to FE80::2, whereas all link-local interfaces on Router3 to be manually configured to FE80::3, and so on.

NOTE: There can be only one link-local address per interface. There can be multiple global unicast addresses per interface.

Loopback Addresses
An IPv6 loopback address is ::1, an all-0s address except for the last bit, which is set to 1. It is equivalent to the IPv4 address block 127.0.0.0/8, most commonly the 127.0.0.1 loopback address. The loopback address can be used by a node to send an IPv6 packet to itself, typically when testing the TCP/IP stack.

Table 5-4 shows the different formats for representing an IPv6 loopback address.

TABLE 5-4 IPv6 Loopback Address Representation

<table>
<thead>
<tr>
<th>Representation</th>
<th>IPv6 Loopback Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0001</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>0:0:0:0:0:0:0:1</td>
</tr>
<tr>
<td>Compressed</td>
<td>::1</td>
</tr>
</tbody>
</table>

NOTE: A loopback address cannot be assigned to a physical interface.

Unspecified Addresses
An unspecified unicast address is an all-0s address (see Table 5-5), used as a source address to indicate the absence of an address.

Table 5-5 shows the different formats for representing an IPv6 unspecified address.

TABLE 5-5 IPv6 Unspecified Address Representation

<table>
<thead>
<tr>
<th>Representation</th>
<th>IPv6 Unspecified Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>0000:0000:0000:0000:0000:0000:0000:0000</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>0:0:0:0:0:0:0:0</td>
</tr>
<tr>
<td>Compressed</td>
<td>::</td>
</tr>
</tbody>
</table>

NOTE: An unspecified address cannot be assigned to a physical interface.

Unique Local Addresses
Figure 5-7 shows the structure of the unique local address (ULA), which is the counterpart of IPv4 private addresses. ULAs are used similarly to global unicast addresses, but are for private use and cannot be routed in the global Internet. ULAs are defined in RFC 4193.

Figure 5-7 shows the different formats for representing an IPv6 unspecified address.
IPv6 Address Types

IPv4 Embedded Addresses

Figure 5-8 shows the structure of IPv4 embedded addresses. They are used to aid in the transition from IPv4 to IPv6. IPv4 embedded addresses carry an IPv4 address in the low-order 32 bits of an IPv6 address.

![IPv4-Mapped IPv6 Address](image)

NOTE: This is a transition technique for moving from IPv4 to IPv6 addressing. This should not be used as a permanent solution. The end goal should always be native end-to-end IPv6 connectivity.

Multicast Addresses

Multicast is a technique in which a device sends a single packet to multiple destinations simultaneously (one-to-many transmission). Multiple destinations can actually be multiple interfaces on the same device, but they are typically different devices.

An IPv6 multicast address defines a group of devices known as a multicast group. IPv6 addresses use the prefix ff00::/8, which is equivalent to the IPv4 multicast address 224.0.0.0/4. A packet sent to a multicast group always has a unicast source address; a multicast address can never be the source address.
Unlike IPv4, there is no broadcast address in IPv6. Instead, IPv6 uses multicast. Table 5-6 shows IPv6 multicast address representation.

TABLE 5-6 IPv6 Multicast Address Representation

<table>
<thead>
<tr>
<th>Representation</th>
<th>IPv6 Multicast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>ff00:0000:0000:0000:0000:0000:0000:0000/8</td>
</tr>
<tr>
<td>Leading 0s omitted</td>
<td>ff00:0:0:0:0:0:0:0/8</td>
</tr>
<tr>
<td>Compressed</td>
<td>ff00::/8</td>
</tr>
</tbody>
</table>

The structure of an IPv6 multicast is shown in Figure 5-9; the first 8 bits are 1-bits (ff) followed by 4 bits for flags and a 4-bit Scope field. The next 112 bits represent the Group ID.

Figure 5-9 IPv6 Multicast Address

Although there are many different types of multicast addresses, this book defines only two of them:

- Well-known multicast addresses
- Solicited-node multicast addresses

Well-Known Multicast Addresses

Well-known multicast addresses have the prefix ff00::/12. Well-known multicast addresses are predefined or reserved multicast addresses for assigned groups of devices. These addresses are equivalent to IPv4 well-known multicast addresses in the range 224.0.0.0 to 239.255.255.255. Some examples of IPv6 well-known multicast addresses include the following:

<table>
<thead>
<tr>
<th>Address</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ff02::1</td>
<td>All IPv6 devices</td>
</tr>
<tr>
<td>ff02::2</td>
<td>All IPv6 routers</td>
</tr>
<tr>
<td>ff02::5</td>
<td>All OSPFv3 routers</td>
</tr>
<tr>
<td>ff02::6</td>
<td>All OSPFv3 DR routers</td>
</tr>
<tr>
<td>ff02::9</td>
<td>All RIPng routers</td>
</tr>
<tr>
<td>ff02:a</td>
<td>All EIGRPv6 routers</td>
</tr>
<tr>
<td>ff02::1:2</td>
<td>All DHCPv6 servers and relay agents</td>
</tr>
</tbody>
</table>
Solicited-Node Multicast Addresses
Solicited-node multicast addresses are used as a more efficient approach to IPv4’s broadcast address. A more detailed description is beyond the scope of this book.

Anycast Addresses
An IPv6 anycast address is an address that can be assigned to more than one interface (typically on different devices). In other words, multiple devices can have the same anycast address. A packet sent to an anycast address is routed to the “nearest” interface having that address, according to the router’s routing table.

Figure 5-10 shows an example of anycast addressing.

![Figure 5-10 Example of Anycast Addressing](image)

NOTE: IPv6 anycast addressing is still somewhat in the experimental stages and beyond the scope of this book.
Symbols
:: (double colon), 42
| (pipe parameter), 64–65
? (question mark), using for help, 60–61
[tab] key, completing commands, 60

Numbers
0 (zero), wildcard masks, 150, 198
1 (one), wildcard masks, 150, 198
232 bit addressing, 7
2xxx/3xxx series (BPDU Guard), Spanning Tree Protocol, 103
9xxx Series (BPDU Guard), Spanning Tree Protocol, 103
802.1AB (Link Layer Discovery Protocol), 123
2960 series switches, 70
secure configuration, 194
2960 switch, VLAN configurations, 80–81
2960/9200 series switches, 70
network topology, 72
9200 series switches, 70

A
AAA (authentication, authorization, and accounting) server, storing passwords, 217
access 1 switch (2960)
PVST+ (Per VLAN Spanning Tree), configuration examples, 107
PVST+ to Rapid-PVST+, migration example, 108
access 2 switch (2960)
PVST+ (Per VLAN Spanning Tree), configuration examples, 107–108
PVST+ to Rapid-PVST+, migration example, 108
access control entry (ACE), 199
access control lists. See ACLs (access control lists)
access lists, limiting NTP access, 178
access number lists, 197
access-class command, 220
access-class keyword, 207
access-group command, 220
access-group keyword, 207
ACE (access control entry), 199
ACLs (access control lists), 197
extended ACLs
applying to interfaces, 201
creating, 200–201
established keyword, 201–202
log keyword, 202
including comments about entries, 205
IPv4 ACLs, configuration examples, 208–210
IPv6 ACLs, 207
configuration examples, 210–211
verifying, 207
keywords, 198
named ACLs
creating, 203
removing specific lines with sequence numbers, 204
sequence numbers, 203–204
removing, 200
restricting virtual terminal access, 205–206
standard ACLs
applying to interfaces, 199–200
creating, 198–199
tips for configuring, 206–207
verifying, 200
wildcard masks, 198
acronyms for time zones, 180–181
AD (administrative distance), 143
floating static routes in IPv4, 143–144
address types, IPv6 addresses
anycast addresses, 50
multicast addresses, 48–49
unicast addresses, 45–48
addresses
broadcast addresses, 3
host addresses, 3
IPv4 addresses. See IPv4 addresses
IPv6 addresses. See IPv6 addresses
local addresses versus remote addresses, IPv4 addresses, 7
loopback addresses, 45, 47
MAC addresses, 2
multicast addresses. See multicast addresses
network addresses, 3
remote addresses versus local addresses, IPv4 addresses, 7
remote ip addresses, mapping local host names to, 134
RFC (private) 1918 addresses, 165
static MAC addresses, configuring, 188
sticky MAC addresses, configuring, 189
unicast addresses. See unicast addresses
unique local addresses, 45
unspecified addresses, 45
well-known multicast addresses, IPv6 addresses, 49
administrative distance (AD), 143
floating static routes in IPv4, 143–144
Advanced Monitor Summary screen, WLC (Wireless LAN Controller), 230
algorithm types, password encryption, 218–219
ALSwitch1 (2960 or 9200), EtherChannel (configuration examples), 118–119
ALSwitch2 (2960 or 9200), EtherChannel (configuration examples), 119–120
ANDing, 17–19
reasons for, 19–20
shortcuts, 20–21
ANSI/TIA cabling standards, 56
any keyword, 198
anycast addresses, IPv6 addresses, 50
appearance of
IPv4 addresses, 2
IPv6 addresses, 40
archive config command, 214
ARP (Address Resolution Protocol), disabling, 221
assigning
IPv4 addresses to fast Ethernet interfaces, 132
IPv4 addresses to gigabit Ethernet interfaces, 132
IPv6 addresses to interfaces, 133
ports to VLANs, 76
authentication, NTP (Network Time Protocol), 177
authentication, authorization, and accounting (AAA) server, storing passwords, 217
Authentication Key Management, 248–249
Auto-MDIX feature, 71
autosensing cable types, switches, 56
B
backup designated router (BDR), OSPF (Open Shortest Path First), 153
backups, configuration backups, 213–214
banners
 login banners, 134
 message-of-the-day banner, 133
BDR (backup designated router), OSPF (Open Shortest Path First), 153
binary, subnetting
 Class B networks, 15–17
 Class C networks, 12–15
Binary ANDing, 17–19
 shortcuts, 20–21
binary math, 11
BOOTP server, disabling, 221
BPDU Guard (2xxx/3xxx Series), Spanning Tree Protocol, 103
BPDU Guard (9xxx Series), Spanning Tree Protocol, 103
broadcast addresses, 3

C
cables
 ANSI/TIA cabling standards, 56
deciding which to use, 55–56
rollover cables, connecting to routers or switches, 51
serial cable types, 53–55
T568A versus T568 B, 57
USB cables, connecting to routers or switches, 51–52
CAM (Content Addressable Memory) table, 188
Catalyst 9xxx series, 67
Catalyst 2960 (L2Switch1), inter-VLAN communication (configuration examples), 92–96
Catalyst 3560 (L3Switch1), inter-VLAN communication (configuration examples), 94–95
Catalyst 3650 (L3Switch1), inter-VLAN communication (configuration examples), 94–95
Catalyst 3750 (L3Switch1), inter-VLAN communication (configuration examples), 94–95
CDP (Cisco Discovery Protocol), 76, 121
 configuring, 121
 design tips, 122
 disabling, 221
 verifying, 122
changing spanning-tree mode, 99
channel-group command, 114
Cisco Discovery Protocol (CDP), 76, 121
 configuring, 121
 design tips, 122
 disabling, 221
 verifying, 122
Cisco IP Phones
 configuring voice and data with trust, 77
 DHCP servers, 160
Class A, IPv4 addresses, 4, 7
Class B
 IPv4 addresses, 5
 subnetting using binary, 15–17
Class C
 IPv4 addresses, 5
 subnetting using binary, 12–15
Class D, IPv4 addresses, 5
Class E, IPv4 addresses, 5, 7
classes of IPv4 addresses, 4–5
 sizing, 5–6
classless addressing, IPv4 addresses, 7–9
clear errdisable interface interface-id vlan, 190
clear ip ospf process, 152
clock rate command, 132
clocks, setting on routers, NTP (Network Time Protocol), 179–182
command modes
 configuring switches, 68
 for setting passwords, 69–70
command-line interface

console error messages, 60
disable command, 61
enable command, 61
defend command, 61
exit command, 61
history commands, 63
keyboard help, 62–63
logout command, 62
pipe parameter (!), 64–65
question mark (?) for help, 60–61
setup mode, 62
shortcuts for entering commands, 59
show commands, 64
[tab] key, 60
terminal commands, 64
commands, 190
access-class, 206, 220
access-group, 206, 220
archive config, 214
begin, 65
channel-group, 114
clear ip ospf process, 152
clear mac address-table, 190
clock rate, 132
command modes, 68
completing with [tab] key, 60
configure terminal, 138
copy running-config startup-config,
79, 214
default ?, 66
default command-name, 66
disable, 61
do, 138
enable, 61
enable password, 127, 217
enable secret password, 127, 217
end, 61
erase startup-config, 69
exec-timeout, 136
exit, 61, 79
forward-time, 102
hello-time, 102
help, 68
history, 63
history size, 64
hostname, 219
interface range, 76
ip access-list resequence, 205
ip forward-helper udp x, 161
ip helper-address, 161
ip name-server, 135
ip route, 142
ipv6 enable, 133
log-adjacency-changes, 150
logging synchronous, 135–136
logout, 62
MAC address table, 72
max-age, 102
mdix auto, 70–71
more, 64
network area, 150
no cdp enable, 122
no cdp run, 122
no ip domain-lookup, 134–135
no ip forward-protocol udp x, 161
no switchport, 88
ntp master, 176
ntp peer, 176
port channel, 114
range, 76
remark, 205
router ospf x, 152
service password-encryption,
217–218
service sequence-numbers global
configuration, 215
service timestamps log datetime
global configuration, 215
setting duplex operation, 71
for setting interface descriptions, 70
setting operation speed, 71–72
shortcuts for entering, 59
show commands, 64
show con?, 60
show interfaces, 68
show interfaces vlanx, 68
show ntp associations, 176
show running-config, 71, 126, 138,
152
show version, 64
show vlan privileged EXEC, 75
spanning-tree portfast default global configuration, 102
spanning-tree portfast disable interface configuration, 102
spanning-tree vlan x root primary, 102
spanning-tree vlan x root secondary, 102
switchport mode access, 76, 84
switchport mode dynamic desirable, 83
switchport mode nonegotiate, 83
switchport mode trunk, 83
switchport trunk encapsulation negotiate, 84
switchport trunk pruning vlan, 86
terminal commands, 64
terminal history size, 64
terminal length x, 64
transport preferred none, 135
username, 217
verifying commands, 68
write, 137
write-memory, 214
comments, including in ACLs, 205
completing commands with [tab] key, 60
configuration backups, 213–214
configuration examples, EtherChannel, 117
configuration mode, EXEC commands (do), 138
configurations
 erasing, routers, 136
 saving, routers, 136
configure terminal command, routers, 138
configuring
 ACLs (access control lists), tips for, 206–207
 CDP (Cisco Discovery Protocol), 121
 DAI (Dynamic ARP Inspection), 193
 DHCP clients, on IOS software ethernet interface, 162
 DHCP helper addresses, 161
 DHCP scope, WLC (Wireless LAN Controller), 234–237
 DHCP servers, on IOS routers, 159–160
 DHCP snooping, 190–192
 Dynamic NAT, 165–167
 EtherChannel
 guidelines for, 112–113
 layer 3 EtherChannel, 114
 inter-VLAN communication, on L3 switches, 88
 IPv4 default routes, 144
 IPv4 static routes, 141–142
 IPv6 default routes, 147
 IPv6 static route configuration, 146–147
 LACP hot-standby ports, EtherChannel, 115–116
 layer 2 EtherChannel, 113
 LLDP (Link Layer Discovery Protocol) (802.1AB), 123
 load balancing, EtherChannel, 114–115
 NTP (Network Time Protocol), 175–176
 OSPF (Open Shortest Path First), 150
 passwords
 device hardening, 217
 for routers, 126–127
 PAT (Public Address Translation), 167–169
 path cost, Spanning Tree Protocol, 101
 port priority, Spanning Tree Protocol, 100–101
 PortFast, Spanning Tree Protocol, 102–103
 root switch, Spanning Tree Protocol, 100
 routers
 router names, 126
 serial interfaces, 132
 secondary root switches, 100
 SSH (Secure Shell), 219–220
static MAC addresses, 188
Static NAT, 169–170
sticky MAC addresses, 189
STP timers for Spanning Tree Protocol, 102
switch port security, 188–189
switch priority of VLANs, Spanning Tree Protocol, 101–102
switches
command modes, 68
examples, 72–74
help commands, 68
MAC address table, 72
mdix auto command, 70–71
resetting switch configuration, 69
setting duplex operation, 71
setting host names, 69
setting interface descriptions, 70
setting operation speed, 71–72
setting passwords, 69–70
setting up IP addresses and default gateways, 70
verifying commands, 68
syslog, 215
VLAN (Dynamic) interface, 230–234
VLANs (virtual LANs)
voice and data with trust, 77
voice and data without trust, 78
voice VLAN, 76
WLANs (wireless LANs), 237–239
with WPA2 PSK, 246–250
confog, 135
connecting
rollover cables to routers or switches, 51
routers or switches, terminal settings, 52
connections, LAN connections, 53
connectors, USB-to-serial connector for laptops, 55
console error messages, 60
Content Addressable Memory (CAM) table, 188

confog, 135
connecting
rollover cables to routers or switches, 51
routers or switches, terminal settings, 52
connections, LAN connections, 53
connectors, USB-to-serial connector for laptops, 55
console error messages, 60
Content Addressable Memory (CAM) table, 188

copy running-config startup-config command, 79, 214
routers, 136
copy running-config tftp command, 136
core switch (3650)
PVST+ (Per VLAN Spanning Tree), configuration examples, 105–106
PVST+ to Rapid-PVST+, migration example, 109
CORP routers, inter-VLAN communication, configuration examples, 90–92
Create Your Wireless Networks Wizard page, WLC (Wireless LAN Controller), 225–226

D
DAI (Dynamic ARP Inspection)
configuring, 193
verifying, 193
dCE cables, 54
serial interfaces, 132
dead interval timer, OSPF (Open Shortest Path First), 153
default ? command, 66
default command-name, 66
default dead interval timer, OSPF (Open Shortest Path First), 153
default EtherChannel configuration, 112
default gateways, configuring switches, 70
default hello timer, OSPF (Open Shortest Path First), 153
delimiting characters, 133–134
deny, ACLs (access control lists), 199
deny ipv6 any any command, 211
design, NTP (Network Time Protocol), 176–177
design tips, CDP (Cisco Discovery Protocol), 122
designated router (DR), OSPF (Open Shortest Path First), 153
detail keyword, 150
device hardening, 217
configuring
SSH (Secure Shell), 219–220
passwords, 217
disabling unneeded services, 221
password encryption, 218
algorithm types, 218–219
restricting virtual terminal access, 220–221
device monitoring, 213
configuration backups, 213–214
logging, 214
syslog
configuring, 215
message example, 216
message format, 215
severity levels, 216
DHCP (Dynamic Host Configuration Protocol)
configuration examples, 162–164
disabling, 221
snooping, configuring, 190–192
DHCP address allocation, 191
DHCP clients, configuring on IOS
software ethernet interface, 162
DHCP helper addresses, configuring, 161
DHCP scope, configuring, 234–237
DHCP servers
Cisco IP Phones, 160
configuring on IOS routers, 159–160
verifying and troubleshooting, 160–161
DHCP snooping
configuring, 190–192
verifying, 192
diameter keyword, 100
Differentiated Services Code Point (DSCP), 77
disable command, 61
disabling unneeded services, 221
distribution 1 switch (3650)
PVST+ (Per VLAN Spanning Tree), configuration examples, 106
PVST+ to Rapid-PVST+, migration example, 109
DLSwitch (3560 or 9300), EtherChannel, configuration examples, 117–118
DNS (Domain Name System), routers, 134–135
DNS name resolution, disabling, 221
do command, routers, 138
dot1q trunking, 84
double colon (::), 42
DR (designated router), OSPF (Open Shortest Path First), 153
DSCP (Differentiated Services Code Point), 77
dst-ip, 114
dst-mac, 114
dst-mixed-ip-port, 114–115
dst-port, 114
DTP (Dynamic Trunking Protocol), 83–84
duplex operations, configuring switches, 71
Dynamic ARP Inspection (DAI)
configuring, 193
verifying, 193
Dynamic Host Configuration Protocol (DHCP)
configuration examples, 162–164
disabling, 221
snooping, configuring, 190–192
Dynamic NAT, 165–167
Dynamic Trunking Protocol (DTP), 83–84
E
enable command, 61
enable password command, 127, 217
enable secret password command, 127, 217
end command, 61
erase startup-config, 69
routers, 136
erasing configurations, routers, 136
VLAN configurations, 79–80
error-disabled ports
recovering automatically from, 190
verifying autorecovery, 190
errors messages, console error messages, 60
established keyword, 201–202
EtherChannel, 111
configuration examples, 117
ALSwith1 (2960 or 9200), 118–119
ALSwith2 (2960 or 9200), 119–120
DLSwith (3560 or 9300), 117–118
configuring
LACP hot-standby ports, 115–116
Layer 2 EtherChannel, 113
Layer 3 EtherChannel, 114
load balancing, 114–115
default configuration, 112
guidelines for configuring, 112–113
interface modes, 111
monitoring, 116
verifying, 116
Ethernet links, 24
examples
DHCP configurations, 162–164
EtherChannel
ALSwith 1 (2960 or 9200), 118–119
ALSwith2 (2960 or 9200), 119–120
DLSwith (3560 or 9300), 117–118
inter-VLAN communication, 89
CORP routers, 90–92
ISP router, 89–90
LSwith2 (Catalyst 2960), 92–96
LSwith1 (Catalyst 3560/3650/3750), 94–95
IPv4 ACLs, 208–210
IPv4 static routes, 144–146
IPv6 ACLs, 210–211
NTP (Network Time Protocol), 182–186
OSPF (Open Shortest Path First), single-area OSPF, 154–157
PAT (Public Address Translation), 171–173
PVST+ (Per VLAN Spanning Tree), 104–105
router configurations, 138–140
routers, 138
switch configurations, 72–74
switch security, 194–196
VLAN configurations, 80–81
EXEC-level mode
configuration mode, do command, 138
routers, 126
exec-timeout, 136
exit, 61
extended, 115
extended ACLs
applying to interfaces, 201
creating, 200–201
established keyword, 201–202
log keyword, 202
extended system ID, enabling, for Spanning Tree Protocol, 103
external routers, inter-VLAN communication, with external routers (router-on-a-stick), 87
IPv4 addresses

G
gigabit Ethernet interfaces, assigning IPv4 addresses, 132
global configuration mode, routers, 126
GUA (global unicast addresses), 45–46
guidelines, for configuring EtherChannel, 112–113

H
hello interval timer, OSPF (Open Shortest Path First), 153
hello-time command, 102
hello-time keyword, 100
help
keyboard help, 62–63
question mark (?), 60–61
help commands, configuring switches, 68
hexadecimal digits, IPv6 addresses, 40
hierarchical addresses, IPv4 addresses, 1
history commands, 63
history size command, 64
host addresses, 3
host bits, 11
host keyword, 198
host names, setting for switches, 69
hostname command, 219
HTTP service, disabling, 221
HTTP-HTTPS Configuration page, 244

I
IEEE Standard 802.1Q (dot1q), 84
IETF (Internet Engineering Task Force), 39–40
illegal characters in host names, 69
implementing logging, 214
implicit deny rule, 211
in keyword, 200
information, verifying for VLANs, 78
interface descriptions, configuring, switches, 70
interface modes,
EtherChannel, 111
routers, 126
interface names, routers, 127–131
interface range command, 76
interfaces, moving between, 131
Internet Engineering Task Force (IETF), 39–40
Inter-Switch Link (ISL), 84
inter-VLAN communication
configuration examples, 89
CORP routers, 90–92
ISP router, 89–90
L2Switch1 (Catalyst 2960), 95–96
L2Switch2 (Catalyst 2960), 92–94
L3Switch1 (Catalyst 3560/3650/3750), 94–95
with external routers (router-on-a-stick), 87
on multilayer switches, through SVI (Switch Virtual Interface), 88
network topology, 89
tips for, 88–89
IOS routers, configuring DHCP servers, 159–160
IOS software ethernet interface, configuring DHCP clients, 162
ip access-list resequence command, 205
IP addresses, configuring switches, 70
ip forward-helper udp x, 161
ip helper-address, 161
ip name-server command, 135
ip ospf process ID area area number command, 151
IP plans, VLSM example, 24–31
IP redirects, disabling, 221
ip route, 141–142
IP source routing, disabling, 221
ip subnet zero, 23
IPv4 ACLs, configuration examples, 208–210
IPv4 addresses, 39–40
appearance of, 2
assigning to fast Ethernet interfaces, 132
broadcast addresses, 3–4
classes of, 4–5
sizing, 5–6
classless addressing, 7–9
floating static routes in IPv4 and administrative distance (AD), 143–144
local versus remote addresses, 7
network addresses, 3–4
network bits versus node (host) bits, 5–6
network masks, 2
writing, 3
node addresses, 3–4
RFC (private) 1918 addresses, 6–7
subnetwork masks, 2
writing, 3
when to use, 1–2
IPv4 embedded addresses, 45
IPv6 addresses, 48
IPv4 static routes
configuration examples, 144–146
configuring, 141–142
verifying, 144
IPv6, 7
floating static routes, 147
IPv6 ACLs, 207
configuration examples, 210–211
verifying, 207
IPv6 addresses, 39–40
address types, 44–45
anycast addresses, 50
multicast addresses, 48–50
unicast addresses, 45–48
appearance of, 40
assigning to interfaces, 133
prefix length notation, 43–44
reducing notation of, 41–43
IPv6 default routes, configuring, 147
ipv6 enable command, 133
IPv6 static route
configuring, 146–147
verifying, 147
ipv6-label, 115
ISL (Inter-Switch Link), 84
ISP router, inter-VLAN communication (configuration examples), 89–90
K
keyboard help, command-line interface, 62–63
keywords
access-class, 207
access-group, 207
any, 198
detail, 150
diameter, 100
established, 201–202
hello-time, 100
host, 198
in, 200
log, 202
log-input, 202
out, 199–200
overload, 168
permanent, 142–143
priority, 101
traffic-filter, 207
voice, 189
L
L2 switchport capability, removing on L3 switches, 88
L2Switch2 (Catalyst 2960), inter-VLAN communication (configuration examples), 92–96
L3 switches
configuring inter-VLAN communication, 88
removing L2 switchport capability, 88
l3-proto, 115
L3Switch1 (Catalyst 3560/3650/3750), inter-VLAN communication (configuration examples), 94–95
LACP hot-standby ports, configuring for EtherChannel, 115–116
LAN connections, 53
Layer 2 EtherChannel, configuring, 113
Layer 3 EtherChannel, configuring, 114
leading bit pattern, 4
limiting NTP access with access lists, 178
line mode, routers, 126
Link Layer Discovery Protocol (LLDP) (802.1AB), 123
configuring, 123
verifying and troubleshooting, 124
link-local unicast addresses, 45–47
LLDP (Link Layer Discovery Protocol) (802.1AB), 123
configuring, 123
verifying and troubleshooting, 124
load balancing, configuring for EtherChannel, 114–115
local addresses versus remote addresses, IPv4 addresses, 7
local host names, mapping to remote IP addresses, 134
log keyword, 202
log-adjacency-changes, 150
logging
implementing, 214
into WLC, 229
logging console, 202
logging synchronous, 135–136
login banners, creating, 134
log-input keyword, 202
logout command, 62
Logs Config page, 245
loopback addresses, 45, 47
loopback interfaces, OSPF (Open Shortest Path First), 152

Management Summary page, WLC (Wireless LAN Controller), 242
mapping local host names to remote IP addresses, 134
max-age command, 102
mdix auto command, configuring switches, 70–71
message-of-the-day banner, 133
messages, syslog, 216
migration example, Spanning Tree Protocol (PVST+ to Rapid-PVST+), 108–109
monitoring
EtherChannel, 116
WLC (Wireless LAN Controller), 229–230
more command, pipe parameter (|), 64–65
MOTD (message-of-the-day) banner, 133
moving between interfaces, 131
MSTP (Multiple Spanning Tree Protocol), 98
multiarea OSPF, 150
multicast addresses, IPv6 addresses, 48–49
solicited-node multicast addresses, 50
well-known multicast addresses, 49
multilayer switches, inter-VLAN communication through SVI (Switch Virtual Interface), 88
Multiple Spanning Tree Protocol (MSTP), 98

N

named ACLs
creating, 203
removing specific lines with sequence numbers, 204
sequence numbers, 203–204
NAT (Network Address Translation)
Dynamic NAT, 165–167
PAT (Public Address Translation), 167–169
configuration examples, 171–173

M

MAC address table, switches, 72
MAC addresses, 2
management options, WLC (Wireless LAN Controller), 242–245
RFC (private) 1918 addresses, 6
Static NAT, 169–170
troubleshooting, 171
verifying, 170
NDP (Neighbor Discovery Protocol), 211
network address spaces, formulas for
subnetting, 12
Network Address Translation (NAT), RFC
(private) 1918 addresses, 6
network addresses, 3
network area command, 150
network bits, 11
versus node (host) bits, IPv4
addresses, 5–6
network masks, IPv4 addresses, 2
writing, 3
Network Time Protocol. See NTP
(Network Time Protocol)
network topology
for 2960 series switch configuration,
72
ACL configurations, 208
DHCP configuration, 162
EtherChannel, 117
inter-VLAN communication, 89
IPv6 static route configuration, 147
NTP (Network Time Protocol), 183
PAT (Public Address Translation),
167, 171
router configurations, 138
single-area OSPF, 155
Static NAT, 169
static route configuration, 145
STP configuration example, 105
switch security, 194
VLAN configurations, 80
no banner login command, 134
no banner motd command, 133
no cdp enable command, 122
no cdp run command, 122
no ip domain-lookup command, 134–135
no ip forward-protocol udp x command,
161
no switchport command, 88
node (host) bits versus network bits, IPv4
addresses, 5–6
node addresses, 3–4
NTP (Network Time Protocol), 175
authentication, 177
configuration examples, 182–186
configuring, 175–176
design, 176–177
disabling, 221
limiting access with access lists, 178
securing, 177
setting clocks on routers, 179–182
single-letter time zone designators,
181–182
time stamps, 182
time zone acronyms, 180–181
verifying and troubleshooting, 178
ntp master command, 176
ntp peer command, 176
NTPv3, 176–177
NTPv4, 176
O
octets, 2
wildcard masks, 151
omitting all-0s hextets, IPv6 addresses, 42
omitting leading 0s, IPv6 addresses, 41
on-board port, 128
Open Shortest Path First. See OSPF
operation speed, configuring, switches,
71–72
OSPF (Open Shortest Path First), 149
collection examples, single-area
OSPF, 154–157
configuring, 150
DR/BDR elections, 153
loopback interfaces, 152
multiarea OSPF, 150
router ID, 152
timers, 153
troubleshooting, version 2, 154
verifying version 2, 153–154
version 2 versus version 3, 149–150
wildcard masks, 150–152
out keyword, 199–200
overload keyword, 168
password backdoor, 127
password encryption
 algorithm types, 218–219
device hardening, 218
routers, 127
passwords
 configuring, 217
 for routers, 126–127
 setting for switches, 69–70
 setting on switches, 187
 storing, 217
 VTP (VLAN Trunking Protocol), 85
PAT (Public Address Translation), 167–169
 configuration examples, 171–173
troubleshooting, 171
 verifying, 170
path cost, configuring for Spanning Tree Protocol, 101
Per VLAN Spanning Tree (PVST+), 97–98
permanent keyword, static routing, 142–143
permit any command, ACLs (access control lists), 199
permit ip any any command, 199
pinouts for different cables, 56
pipe parameter (l), 64–65
pipe parameter (l) options parameter, 65
port channel command, 114
port priority, configuring (Spanning Tree Protocol), 100–101
PortFast, configuring (Spanning Tree Protocol), 102–103
ports
 assigning to VLANs, 76
 error-disabled ports, recovering automatically from, 190
 RJ-45 ports, 52
prefix length notation, IPv6 addresses, 43–44
prefix-length, 43
priority keyword, 101
private IP addresses, RFC (private) 1918 addresses, 165
privilege EXEC modes, 126, 134
protocols
 ARP (Address Resolution Protocol), disabling, 221
 CDP (Cisco Discovery Protocol), 121
 configuring, 121
design tips, 122
 verifying, 122
 DHCP. See DHCP (Dynamic Host Configuration Protocol)
 DTP (Dynamic Trunking Protocol), 83–84
 LLDP (Link Layer Discovery Protocol) (802.1AB), 123
 configuring, 123
 verifying, 124
 MSTP (Multiple Spanning Tree Protocol), 98
 NDP (Neighbor Discovery Protocol), 211
 NTP (Network Time Protocol). See NTP (Network Time Protocol)
 Proxy Address Resolution Protocol (ARP), 221
 Spanning Tree Protocol. See Spanning Tree Protocol (STP)
 RSTP (Running Spanning Tree Protocol), 98
 VTP (VLAN Trunking Protocol), 84–86
 passwords, 85
 pruning, 86
 verifying, 86
 versions, 85–86
Proxy Address Resolution Protocol (ARP), disabling, 221
 pruning, VTP (VLAN Trunking Protocol), 86
Public Address Translation (PAT), 167–169
PVST+ (Per VLAN Spanning Tree), 97–98
 configuration examples, 104–105
access 1 switch (2960), 107
access 2 switch (2960), 107–108
core switch (3650), 105–106
distribution 1 switch (3650), 106
distribution 2 switch (3650), 106
PVST+ to Rapid-PVST+, Spanning-Tree migration example, 108–109

Q
question mark (?) for help, 60–61

R
RADIUS Authentication Servers page, 241
RADIUS servers, WLC (Wireless LAN Controller), 239–241
range command, 76
Rapid PVST+, 98
rebooting WLC (Wireless LAN Controller), 229
recovering automatically from error-disabled ports, 190
recursive lookups, static routing, 142
reducing notation of IPv6 addresses, 41–43
reference clocks, 176
remark command, 205
remote addresses versus local addresses,
IPv4 addresses, 7
remote ip addresses, mapping local host names to, 134
removing
ACLs (access control lists), 200
L2 switchport capability on L3 switches, 88
specific lines from ACLs with sequence numbers, 204
requirements for route summarization, 38
resetting switch configuration, 69
restricting virtual terminal access
ACLs (access control lists), 205–206
device hardening, 220–221
RF Parameter Optimization settings, WLC (Wireless LAN Controller), 227
RFC (private) 1918 addresses, 165
IPv4 addresses, 6–7
RJ45 Gio/o/o, 130
RJ-45 ports, 52
rollover cables, connecting to routers or switches, 51
root switch
configuring (Spanning Tree Protocol), 100
secondary root switches, configuring, 100
route flapping, route summarization, 38
route summarization, 33
examples, 33–37
requirements for, 38
route flapping, 38
router configuration mode, routers, 126
router configurations, network topology, 138
router ID, OSPF (Open Shortest Path First), 152
Router Model 1721, 128
Router Model 1760, 128
Router Model 1841, 128
Router Model 1941/1941W, 130
Router Model 2501, 128
Router Model 2514, 128
Router Model 2610, 128
Router Model 2611, 128
Router Model 2620, 128
Router Model 2621, 128
Router Model 2801, 129
Router Model 2811, 129
Router Model 2901, 130
Router Model 2911, 130
Router Model 4221/4321, 130
router modes, 126
router names, configuring, 126
router ospf x command, 152
router-on-a-stick, inter-VLAN communication, 87
routers
assigning
IPv4 addresses to fast Ethernet interfaces, 132
S

samples, networks needing VLSM address plans, 24
saving
 configurations, routers, 136
 VLAN configurations, 79
secondary root switches, configuring, 100
Secure Shell (SSH)
 configuring, 219–220
 verifying, 220
securing NTP (Network Time Protocol), 177
security, WLANs, 226
Security Policies field, WLANs, 250
sequence numbers
 named ACLs, 203–204
 tips for, 204–205
serial cable (2500 series), 53
serial cable types, 53–55
serial interfaces, configuring, 132
serial links, 24
servers, DHCP servers. See DHCP servers
service password-encryption command, 217–218
service sequence-numbers global configuration command, 215
service timestamps log datetime global configuration command, 215
Set Up Your Controller Wizard page, WLC (Wireless LAN Controller), 225
setup mode, 62
severity levels, syslog, 216
SFP Gio/o/o, 130
shortcuts
 Binary ANDing, 20–21
 for entering commands, 59
show commands, 64
 pipe parameter (|), 64–65
 verifying router configurations, 137–138
show con? command, 60
show errdisable recovery command, 190
show flash command, 64

IPv4 addresses to gigabit Ethernet interfaces, 132
IPv6 addresses to interfaces, 133
clocks, setting (NTP), 179–182
configuration examples, 138
Boston Router, 138–140
configuring
 passwords, 126–127
 router names, 126
 serial interfaces, 132
connecting
 rollover cables, 51
 terminal settings, 52
 USB cables, 51–52
CORP routers, inter-VLAN communication examples, 90–92
DNS (Domain Name System), 134–135
erasing configurations, 136
EXEC commands, in configuration mode, 138
eexec-timeout, 136
global configuration mode, 126
interface names, 127–131
inter-VLAN communication with external routers (router-on-a-stick), 87
IOS routers, configuring DHCP servers on, 159–160
ISP router, inter-VLAN communication examples, 89–90
logging synchronous, 135–136
login banners, creating, 134
mapping local host names to remote ip addresses, 134
message-of-the-day banner, 133
moving between interfaces, 131
password encryption, 127
saving configurations, 136
verifying configurations with show commands, 137–138
write, 137
routing, static routing. See static routing
RSTP (Running Spanning Tree Protocol), 98

IPv4 addresses to gigabit Ethernet interfaces, 132
IPv6 addresses to interfaces, 133
clocks, setting (NTP), 179–182
configuration examples, 138
Boston Router, 138–140
configuring
 passwords, 126–127
 router names, 126
 serial interfaces, 132
connecting
 rollover cables, 51
 terminal settings, 52
 USB cables, 51–52
CORP routers, inter-VLAN communication examples, 90–92
DNS (Domain Name System), 134–135
erasing configurations, 136
EXEC commands, in configuration mode, 138
eexec-timeout, 136
global configuration mode, 126
interface names, 127–131
inter-VLAN communication with external routers (router-on-a-stick), 87
IOS routers, configuring DHCP servers on, 159–160
ISP router, inter-VLAN communication examples, 89–90
logging synchronous, 135–136
login banners, creating, 134
mapping local host names to remote ip addresses, 134
message-of-the-day banner, 133
moving between interfaces, 131
password encryption, 127
saving configurations, 136
verifying configurations with show commands, 137–138
write, 137
routing, static routing. See static routing
RSTP (Running Spanning Tree Protocol), 98
show history command, 64
show interfaces command, 68
show interfaces status err-disabled command, 190
show interfaces vlanx command, 68
show ip interface brief command, 128
show ntp associations command, 176
show running-config command, 71, 126
OSPF (Open Shortest Path First), 152
routers, 138
show version command, 64
show vlan privileged EXEC command, 75
Simplified Setup Start page, WLC (Wireless LAN Controller), 224
single-area OSPF, configuration examples, 154–157
single-letter time zone designators, 181–182
sizing classes of IPv4 addresses, 5–6
slots, 128
smart serial cables, 54
SNMP System Summary page, 242–243
SNMP Trap Controls General Tab, 243
solicited-node multicast addresses, IPv6 addresses, 50
Spanning Tree Protocol (STP)
BPDU Guard (2xxx/3xxx Series), 103
BPDU Guard (9xxx Series), 103
changing spanning-tree mode, 99
configuration example, network topology, 105
configuring
path cost, 101
port priority, 100–101
PortFast, 102–103
root switch, 100
secondary root switches, 100
STP timers, 102
switch priority of VLANs, 101–102
definition, 97–98
enabling, 98
extended system ID, enabling, 103
migration example, PVST+ to Rapid-PVST+, 108–109
PVST+ (Per VLAN Spanning Tree)
access 1 switch (2960), 107
access 2 switch (2960), 107–108
configuration examples, 104–105
core switch (3650), 105–106
distribution 1 switch (3650), 106
distribution 2 switch (3650), 106
troubleshooting, 104
verifying, 104
spanning-tree mode, changing, 99
spanning-tree portfast default global configuration command, 102
spanning-tree portfast disable interface configuration command, 102
spanning-tree vlan x root primary command, 102
spanning-tree vlan x root secondary command, 102
src-dst-ip, 115
src-dst-mac, 115
src-dst-mixed-ip-port, 115
src-ip, 115
src-mac, 114–115
src-port, 115
SSH (Secure Shell)
configuring, 219–220
verifying, 220
standard ACLs
applying to interfaces, 199–200
creating, 198–199
static MAC addresses, configuring, 188
Static NAT, 169–170
static routing
configuration examples, IPv4 static routes, 144–146
configuring
IPv4 default routes, 144
IPv4 static routes, 141–142
IPv6 default routes, 147
IPv6 static route, 146–147
floating static routes in IPv4 and
administrative distance (AD),
143–144
floating static routes in IPv6, 147
permanent keyword, 142–143
recursive lookups, 142
verifying
IPv4 static routes, 144
IPv6 static routes, 147
static VLANs, creating, 75
with VLAN configuration mode,
75–76
sticky MAC addresses, configuring, 189
storing passwords, 217
STP. See Spanning Tree Protocol (STP)
STP configuration example, network
topology, 105
STP timers, configuring (Spanning Tree
Protocol), 102
stratum, 176
subinterface mode, routers, 126
subnetting, 11
Binary ANDing, 17–19
shortcuts, 20–21
Class B networks, using binary,
15–17
Class C network, using binary,
12–15
IP subnet zero, 23
network address spaces, formulas
for, 12
VLSM (variable-length subnet
masking), 23
subnetwork masks, IPv4 addresses, 2
writing, 3
supernetting. See route summarization
SVI (switched virtual interface), inter-
VLAN communication, on multilayer
switches, 88
switch port security
configuring, 188–189
verifying, 189–190
switch priority of VLANs, configuring, for
Spanning Tree Protocol, 101–102
switch security, configuration examples,
194–196
switched virtual interfaces (SVI), inter-
VLAN communication, on multilayer
switches, 88
switches
2960/9200 series switches, 70
autosensing cable types, 56
configuring
command modes, 68
examples, 72–74
help commands, 68
MDIx address table, 72
mdix auto command, 70–71
port security, 188–189
resetting switch configuration,
69
setting duplex operation, 71
setting host names, 69
setting interface descriptions, 70
setting operation speed, 71–72
setting passwords, 69–70
setting up IP addresses and
default gateways, 70
static MAC addresses, 188
sticky MAC addresses, 189
verifying commands, 68
connecting
rollover cables, 51
terminal settings, 52
USB cables, 51–52
DHCP snooping, configuring,
190–192
inter-VLAN communication, on
multilayer switches through
SVI, 88
recovering automatically from
error-disabled ports, 190
root switch, configuring, 100
secondary root switches,
configuring, 100
setting passwords, 187
switch port security, verifying, 189–190
verifying autorecovery of error-disabled ports, 190
switchport mode access command, 76, 84
switchport mode dynamic auto command, 83
switchport mode dynamic desirable command, 83
switchport mode nonegotiate command, 83
switchport mode trunk command, 83
switchport port-security mac-address sticky command, 189
switchport trunk encapsulation negotiate command, 84
switchport trunk pruning vlan command, 86
synchronous logging, 135–136
syslog
 configuring, 215
 message example, 216
 message format, 215
 severity levels, 216
System Configuration Dialog (setup mode), 62

T

T568A versus T568B cables, 57
T568B versus T568A cables, 57
Tech Support > System Resource Information page, 245
Telnet-SSH configuration, 244
terminal commands, 64
terminal settings, connecting, routers or switches, 52
time stamps, NTP (Network Time Protocol), 182
time zone acronyms, 180–181
time zone designators, 181–182
timers, OSPF (Open Shortest Path First), 153
traffic-filter keyword, 207
transparent mode, VLANs, 76
transport preferred none command, 135
troubleshooting
 CDP (Cisco Discovery Protocol), 122
 DHCP configuration, 160–161
 LLDP (Link Layer Discovery Protocol) (802.1AB), 124
 NAT (Network Address Translation), 171
 NTP (Network Time Protocol), 178
 OSPF (Open Shortest Path First), version 2, 154
 PAT (Public Address Translation), 171
 Spanning Tree Protocol, 104
 trust, configuring voice and data VLANs with, 77

U

unicast addresses, IPv6 addresses, 45–48
 global unicast addresses (GUAs), 45–46
 IPv4 embedded addresses, 48
 link-local unicast addresses, 46–47
 loopback addresses, 47
 unique local addresses, 47–48
 unspecified addresses, 47
unicast communication, 1
unique local addresses, 45
IPv6 addresses, 47–48
unneeded services, disabling, 221
unspecified addresses, 45
IPv6 addresses, 47
USB cables, connecting, to routers or switches, 51–52
USB Type A to 5-pin mini type B cable, 55
USB-to-serial connector for laptops, 55
user EXEC mode, 134
user mode, routers, 126
username command, 217
UTP wiring standards, T568A versus T568B, 57
V

V.35 DTE and DCE cables, 54
variable-length subnet masking (VLSM), 23
examples, 24–31
verifying
ACLs (access control lists), 200
autorecovery of error-disabled ports, 190
CDP (Cisco Discovery Protocol), 122
DAI (Dynamic ARP Inspection), 193
DHCP configuration, 160–161
DHCP snooping, 192
EtherChannel, 116
information, VLANs, 78
IPv4 static routes, 144
IPv6 ACLs, 207
IPv6 static route, 147
LLDP (Link Layer Discovery Protocol) (802.1AB), 124
NAT (Network Address Translation) configurations, 170
NTP (Network Time Protocol), 178
OSPF (Open Shortest Path First), version 2, 153–154
PAT (Public Address Translation), 170
router configurations with show commands, 137–138
Spanning Tree Protocol (STP), 104
SSH (Secure Shell), 220
switch port security, 189–190
VTP (VLAN Trunking Protocol), 86
verifying commands, configuring switches, 68
versions of VTP, 85–86
virtual terminal access, restricting, 220–221
in ACLs, 205–206
VLAN (Dynamic) interface, configuring, 230–234
VLAN configuration mode, creating static VLANs, 75–76
VLAN encapsulation type, setting, 84
VLAN Trunking Protocol (VTP), 76, 84–86
passwords, 85
pruning, 86
verifying, 86
VLANs (virtual LANs)
assigning ports to, 76
configuration examples, 80–81
configuring
inter-VLAN communication on L3 switches, 88
voice and data with trust, 77
voice and data without trust, 78
erasing configurations, 79–80
inter-VLAN communication. See inter-VLAN communication with external routers (router-on-a-stick), 87
on multilayer switches through SVI, 88
network topology, configuration examples, 80
range command, 76
saving configurations, 79
static VLANs, creating, 75
with VLAN configuration mode, 75–76
verifying information, 78
voice VLAN, configuring, 76
VLSM (variable-length subnet masking), 23
examples, 24–31
voice and data, configuring
with trust, VLANs, 77
without trust, 78
voice keyword, 189
voice VLAN, configuring, 76
VTP (VLAN Trunking Protocol), 76, 84–86
passwords, 85
pruning, 86
verifying, 86
versions, 85–86
well-known multicast addresses, IPv6 addresses, 49
wildcard masks
 ACLs (access control lists), 198
 OSPF (Open Shortest Path First), 150–152
Wireless LAN Controller. See WLC (Wireless LAN Controller)
WLANs (wireless LANs)
 configuring, 237–239
 with WPA2 PSK, 246–250
 security, 226
WLC (Wireless LAN Controller)
 configuring
 DHCP scope, 234–237
 VLAN (Dynamic) interface, 230–234
WLANs, 237–239
 initial setup, 223–229
 management options, 242–245
 monitoring, 229–230
 RADIUS servers, 239–241
WPA2 PSK, configuring, WLANs, 246–250
write command, routers, 137
write erase command, 137
write memory command, 137
write network command, 137
write-memory command, 214
writing
 network masks, IPv4 addresses, 3
 subnetwork masks, IPv4 addresses, 3