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This book is designed to help us improve mathematics instruction in our
classrooms by becoming more diagnostically oriented. Diagnosis should be
continuous throughout instruction.

Why do our students sometimes learn misconceptions and erroneous
procedures when learning to compute? How important is it to teach paper-and-
pencil computation procedures in our age of calculators and computers? Part
One addresses these questions, and the need for conceptually oriented
instruction.

As we teach our students, we need to be alert to misconceptions and error
patterns they may learn. Part One provides many opportunities to identify
misconceptions and error patterns in student papers and to think about why
these students may have used the procedures they did. You learn what might be
done to help students who are experiencing such difficulties.

In Chapters 2 through 8, student papers are presented so you can study
them and infer what the student was actually thinking and doing when
completing the paper. Then you turn to a page where the difficulty is discussed,
and you have an opportunity to think about instructional activities that may
help the student. Suggested activities are described and you can compare your
ideas with those of the author.

Some papers include a few correct answers even though the student’s
thinking will not always lead to a correct result. When this happens, students
are encouraged to believe that their thinking is correct and their procedure
is satisfactory.
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and Error Patterns

In this age of calculators and computers, do our students actually need to learn
paper-and-pencil procedures? We want our students to understand mathematical
concepts and to compute fluently, but how does this relate to students learning to
do paper-and-pencil procedures when calculators are so readily available?

As we examine these and other questions in this chapter, we will find that
even in our technological age, paper-and-pencil computation is often needed. True,
paper-and-pencil procedures constitute only one alternative for computing—
though it often makes sense to use such procedures. It is also true that while our
students are learning to compute with paper and pencil, their knowledge of basic
facts, numeration concepts, and various principles can be further developed—
knowledge needed for doing other forms of computation.

■ Instruction in Mathematics
Our society is drenched with data. We have long recognized that verbal literacy is
essential to our well-being as a society; now we recognize that quantitative literacy
or numeracy is also essential.

Accordingly, our goals are changing. We want to see instructional programs
enable students to understand and use mathematics in a technological world.

Number and Operations Standard
Instructional programs from prekindergarten through grade 12 should
enable all students to—

• understand numbers, ways of representing numbers, relationships
among numbers, and number systems;

• understand meanings of operations and how they relate to one
another;

• compute fluently and make reasonable estimates.1
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We are not interested in students just doing arithmetic in classrooms; we want to
see the operations of arithmetic applied in real-world contexts where students
observe and organize data. We no longer assume that students must be skillful
with computation before they can actually begin investigating interesting topics
in mathematics.

Instruction in mathematics is moving toward covering fewer topics but in
greater depth and toward making connections between mathematical ideas.
Increasingly, mathematics is being perceived as a science of patterns rather than a
collection of rules. In truth, there are those who characterize algebra as generalized
arithmetic, and there are those who even propose that “. . . the teaching and learn-
ing of arithmetic be conceived as the foundation for algebra.”2

Number and Operations is only one of the five content standards for grades
pre-K through 12 in Principles and Standards for School Mathematics, published in
2000 by the National Council of Teachers of Mathematics (NCTM). But compu-
tation, including the basic facts of arithmetic, is often involved when the other
four content standards are learned and applied: Algebra, Geometry, Measurement,
and Data Analysis and Probability. Moreover, application in every grade of the five
process standards frequently entails the basic facts of arithmetic and computa-
tion: Problem Solving, Reasoning and Proof, Communication, Connections, and
Representation. The basic facts and different methods of computation are very
much a part of standards-based instruction in mathematics today.

The computations of arithmetic are not being ignored. The importance of
computation is made clear in Principles and Standards for School Mathematics.

Knowing basic number combinations—the single-digit addition and multi-
plication pairs and their counterparts for subtraction and division—is
essential. Equally essential is computational fluency—having and using
efficient and accurate methods for computing.3

Number and Operations were later highlighted for grades pre-K through 8 by
NCTM in their Curriculum Focal Points.

■ Computational Fluency
If our students are to have computational fluency, if they are to have and use efficient
and accurate methods for computing, they need conceptual understanding—
“comprehension of mathematical concepts, operations, and relations” and procedural
fluency—“skill in carrying out procedures flexibly, accurately, efficiently, and appro-
priately.” Both are aspects of mathematical proficiency as defined by the Mathematics
Learning Study Committee of the National Research Council.4

Increasingly we need to integrate arithmetic and all of the mathematics we
teach with the world of our students, including their experiences with other sub-
ject areas. In order to solve problems encountered in the world around them, our
students need to know not only how to compute a needed number, but also when
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to compute. In order for them to know when to use specific operations, we need
to emphasize the meanings of operations during instruction.

Furthermore, in order for our students to gain computational fluency, they
need to be able to use different methods of computation in varied problem-solving
situations.

Part of being able to compute fluently means making smart choices about
which tools to use and when. Students should have experiences that help
them learn to choose among mental computation, paper-and-pencil strate-
gies, estimation, and calculator use. The particular context, the question,
and the numbers involved all play roles in those choices.5

If we focus on paper-and-pencil procedures but do not introduce other methods
of computing, our students are apt to believe that the process of computing is lim-
ited to paper-and-pencil procedures.

When students have a problem to solve, there are decisions to be made
before any required computation begins. Consider this part of a conversation over-
heard in a student math group led by Chi. Calculators were available and students
were free to use one if they needed it, but the teacher also encouraged other meth-
ods of exact computation: mental computation and paper-and-pencil procedures.

CHI: We have three word problems to solve. Here’s Problem A. You
are to help the class get ready for art class. There are 45 pounds
of clay for 20 people. How many pounds do you give each person?

RAUL: We need an exact answer. Each person should get the same
amount.

TERRY: I don’t think we need to use the calculator. Each person gets
a little more than two pounds . . . but how much more?

SONJA: That’s easy, just divide 45 by 20. The students proceed to
divide 45 by 20 with paper and pencil.

CHI: Here’s Problem B. Wanda’s scores for three games of darts are
18, 27, and 39. What is her average score?

RAUL: Another exact answer.
CHI: Shall we get the calculator?
SONJA: I can do it in my head.
TERRY: I don’t see how. I’m going to use paper; it’s easy.
SONJA: Round each number up . . . 20 + 30 + 40 is 90 . . . divided by

3 is 30. But we need to subtract: 2 and 3 (that’s 5) and one
more . . . 6 divided by 3 is 2. Two from 30 is 28. Her average
score is 28.

TERRY: That’s what I got, too.

Different methods of computation are listed in Figure 1.1. Because an
approximation is often sufficient, the first decision a student must make is
whether an exact number is needed. In regard to exact computation, paper-and-
pencil procedures constitute only one of the methods of computation available.
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METHODS OF COMPUTATION

nApproximation Exact Computatio
– Mental estimation – Mental computation

– Calculator
– Paper-and-pencil 

FIGURE 1.1 Methods of computation.

The diagram in Figure 1.2 focuses on decisions about the method of compu-
tation to be used for solving a particular problem. The actual teaching of different
methods of computation is addressed in Chapter 10.

Mental estimation

Problem situation
requiring

computation

Use mental
computation Use a calculator

Use a 
paper-and-pencil

procedure

Approximate
answer

adequate

?

Exact answer
required

?

FIGURE 1.2 Decisions about calculation in problem situations
requiring computation.

Source: Based on a chart in Curriculum and Evaluation Standards for
School Mathematics [Reston, VA: National Council of Teachers of
Mathematics, 1989], p. 9.
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When a solution to is needed by a fourth grader, mental
computation is likely the most appropriate method to use. But there are times
when a paper-and-pencil strategy is the most efficient procedure for an individ-
ual. When a calculator is not immediately available and an exact answer is needed
for the sum of two or three multi-digit numbers, it often makes sense to use a
paper-and-pencil procedure.

Because computational procedures are tools for helping us solve problems,
whenever possible the context for teaching different methods of computation
should be a problem-solving situation; we need to keep focused on problem solv-
ing as we teach computation procedures. The goal of instruction in computation
today continues to be computational fluency. Students need to be able to use effi-
cient and accurate methods for computing if they are to enjoy success in most
areas of mathematics.

■ Algorithms
It is common to speak of algorithmic thinking, which uses specific step-by-step pro-
cedures, in contrast to thinking, which is more self-referential and recursive. Polya’s
four-step model for problem solving is an example of algorithmic thinking.6

An algorithm is a step-by-step procedure for accomplishing a task, such as
solving a problem. In this book, the term usually refers to paper-and-pencil pro-
cedures for finding a sum, difference, product, or quotient. The paper-and-pencil
procedures that individuals learn and use differ over time and among cultures. If
a “standard” algorithm is included in your curriculum, remember that curriculum
designers made a choice. If some students have already learned different algo-
rithms (for example, a different way to subtract learned in Mexico or in Europe),
remember that these students’ procedures are quite acceptable if they always pro-
vide the correct number.

Usiskin lists several reasons for teaching various types of algorithms, a few
of which follow. These apply to paper-and-pencil procedures as well as to the
other types of algorithms he discusses.7

• Power. An algorithm applies to a class of problems (e.g., multiplication
with fractions).

• Reliability and accuracy. Done correctly, an algorithm always provides the
correct answer.

• Speed. An algorithm proceeds directly to the answer.
• A record. A paper-and-pencil algorithm provides a record of how the

answer was determined.
• Instruction. Numeration concepts and properties of operations are

applied.

As we teach paper-and-pencil procedures, we need to remember that our
students are learning and applying concepts as they are learning procedures.

300 - 25 = n
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■ Conceptual Learning and 
Procedural Learning

The importance of conceptual learning is stressed by NCTM in Principles and
Standards for School Mathematics. Conceptual learning in mathematics always
focuses on ideas and on generalizations that make connections among ideas. In
contrast, procedural learning focuses on skills and step-by-step procedures.8

Sadly, procedures are sometimes taught without adequately connecting the
steps to mathematical ideas. Both conceptual learning and procedural learning are
necessary, but procedural learning needs to be tied to conceptual learning and to
real-life applications. Procedural learning must be based on concepts already
learned. There is evidence that learning rote procedures before learning concepts
and how they are applied in those procedures actually interferes with later mean-
ingful learning.9

In order for concepts to build on one another, ideas need to be understood
and woven together. As a part of their increasing number sense, our younger
students need to understand principles and concepts associated with whole num-
bers and numerals for whole numbers. Then, students begin to make reasonable
estimates and accurate mental computations.

Students need to understand the meaning of each operation (and not just
do the computations), so they can decide which operation is needed in particular
situations. Otherwise, they do not know which button to push on a calculator or
which paper-and-pencil procedure to use.

Conceptual understanding is so important that some mathematics educa-
tors stress the invention of algorithms by young students; they fear that early
introduction of standard algorithms may be detrimental and not lead to under-
standing important concepts.10 Understanding the concepts and reasoning
involved in an algorithm does lead to a more secure mastery of that procedure. It
is also true that standard algorithms can be taught so that students understand the
concepts and reasoning associated with specific procedures.

Paper-and-pencil procedures that we teach actually involve more than
procedural knowledge; they entail conceptual knowledge as well. Many of the
instructional activities described in this book are included because students need to
understand specific concepts. Our students are not merely mechanical processors;
they are involved conceptually as they learn—even when we teach procedures.

[I]nstruction can emphasize conceptual understanding without sacrificing
skill proficiency . . . understanding does not detract from skill proficiency
and may even enhance it.11

It has long been recognized that instruction should balance conceptual
understanding and skill proficiency. One of the classic publications of mathemat-
ics education is William Brownell’s “Meaning and Skill—Maintaining the
Balance,” published originally in 1956 but reprinted twice by the National
Council of Teachers of Mathematics, once as recently as 2003.12
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It must be recognized that as a student uses a specific paper-and-pencil
procedure over time, it becomes more automatic. The student employs increas-
ingly less conceptual knowledge and more procedural knowledge, a process
researchers sometimes call “proceduralization.”

■ Paper-and-Pencil Procedures Today
Even with calculators and computers available, our students need to acquire skill
with paper-and-pencil procedures. Writing in Educational Leadership, Loveless
and Coughlan conclude:

We would simply like all students to learn how to add, subtract, multi-
ply, and divide using whole numbers, fractions, and decimals—and accu-
rately compute percentages—by the end of 8th grade. Only by mastering
these skills will students have the opportunity to learn higher-level
mathematics.13

NCTM’s Principles and Standards for School Mathematics clearly supports teaching
computation skills:

[S]tudents must become fluent in arithmetic computation—they must
have efficient and accurate methods that are supported by an understand-
ing of numbers and operations. “Standard” algorithms for arithmetic
computation are one means of achieving this fluency.14

Although needed arithmetic computation skills include estimation, mental com-
putation, and using calculators, it is noteworthy that our students also need to
be able to use appropriate paper-and-pencil algorithms when it makes sense to
do so.

Students sometimes learn error patterns as we teach these procedures. We
can teach diagnostically and carefully observe what our students do, looking for
misconceptions and error patterns in their written work.

■ Learning Misconceptions and Error Patterns
All of us, including our students, make mistakes from time to time. Some individ-
uals suggest that if you don’t make mistakes, you are probably not working on
hard enough problems—and that’s a big mistake.

However, there is a difference between the careless mistakes we all make,
and misconceptions about mathematical ideas and procedures. Students learn
concepts, and sometimes they also learn misconceptions—in spite of whatever we
try to teach them. Error patterns in computation often reveal misconceptions our
students have learned.
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The mathematical ideas and procedures (or rules) a student learns may be
correct or they may be full of misconceptions, but the process of learning those
ideas and procedures is basically the same. During experiences with a concept or
a process (or a procedure), a student focuses on whatever the experiences appear
to have in common and connects that information to information already known.

Consider the student whose only school experiences with the number idea
we call five involve manila cards with black dots in the familiar domino pattern
(Figure 1.3a). That student may draw from those experiences a notion of five that
includes many or all of the characteristics his experiences had in common: possi-
bly black on manila paper, round dots, or a specific configuration. One of the
author’s own students, when presenting to her students the configuration associ-
ated with Stern pattern boards (Figure 1.3b) was told, “That’s not five. Five doesn’t
look like that.”

More young students will name as a triangle the shape in Figure 1.3c than
the shape in Figure 1.3d; yet both are triangles. Again, configuration (or even the
orientation of the figure) may be a common characteristic of a child’s limited
range of experiences with triangles.

Dr. Geoffrey Matthews, who organized the Nuffield Mathematics Teaching
Project in England, told about a child who computed correctly one year but
missed half of the problems the next year. As the child learned to compute, he
adopted the rule, “Begin on the side by the piano.” The next school year the child
was in a room with the piano on the other side, and he was understandably con-
fused about where to start computing.

Concept cards, which are often used in learning centers, also illustrate con-
cept formation (Figure 1.4). As a student examines a concept card, he sees a name

a b

dc

FIGURE 1.3 Patterns for five and triangles.
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rhombus

Concept Card

Each of these is a rhombus.

None of these is a rhombus. 

Can you find a rhombus? More than one?

FIGURE 1.4 Concept card for rhombus.

or label, such as rhombus. Examples of a rhombus and non-examples of a rhom-
bus are both shown on the card, and the student must decide what a rhombus is.
Finally, the card provides an opportunity to test out his newly derived definition.

Students often learn erroneous concepts and processes similarly. They look
for commonalities among their initial contacts with an idea or procedure. They
form an abstraction with certain common characteristics, and their concept or
algorithm is formed. The common attributes may be very specific, such as cross-
ing out a digit, placing a digit in front of another, or finding the difference
between two one-digit numbers (regardless of order). Failure to consider enough
examples is one of the errors of inductive learning often cited by those who study
thinking.

Because our students connect new information with what they already
know, it is very important that we assess the preconceptions of our students. Prior
knowledge is not always correct knowledge; misconceptions are common. Even
when our students correctly observe particular characteristics that examples have
in common, they may connect a pattern with a misconception and thereby learn
an erroneous procedure.

When multiplication with fractions is introduced, students often have diffi-
culty believing that correct answers make sense; throughout their previous expe-
riences with factors and products, the product was always at least as great as the
smaller factor. (Actually, the product is noticeably greater than either factor in
most cases.) In the mind of these students, the concept product had come to
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include the idea of a greater number because this was common throughout most
of their experiences with products.

From time to time, an erroneous procedure produces a correct answer.
When it does, use of the error pattern is reinforced. For example, a student may
decide that “rounding whole numbers to the nearest ten” means erasing the units
digit and writing a zero. The student is correct about half of the time!

There are many reasons why students tend to learn patterns of error. It most
certainly is not the intentional result of our instruction. Yet all too often, individ-
ual students do not have all the prerequisite understandings and skills they need
when introduced to new ideas and procedures. When this happens, they may
“grab at straws.” A teacher who introduces paper-and-pencil procedures while a
particular student still needs to work out problems with concrete aids encourages
that student to try to memorize a complex sequence of mechanical acts, thereby
prompting the student to adopt simplistic procedures that can be remembered.
Because incorrect algorithms do not usually result in correct answers, it would
appear that a student receives limited positive reinforcement for continued use of
erroneous procedures. But students sometimes hold tenaciously to incorrect pro-
cedures, even during instruction that confronts their beliefs directly.

Students often invent similar rules when introduced to the sign for equals.
For example, they may decide “The equals sign means ‘the answer turns out
to be.’”

Students who learn erroneous patterns are capable of learning. Typically,
these students have what we might call a learned disability, not a learning disabil-
ity. The rules that children construct are derived from their search for meaning; a
sensible learning process is involved. This is true even for the erroneous rules
they invent, though such rules may involve a distortion or a poor application.
Sometimes students overgeneralize or overspecialize while learning.15

Overgeneralizing
Most of us are prone to overgeneralize on occasion; we “jump to a conclusion”
before we have adequate data at hand. Examples of overgeneralizing abound in
many areas of mathematics learning. Several interesting examples were observed
by project staff at the University of Maryland during their study of misconcep-
tions among secondary school students.16 At the University of Pittsburgh, Mack
studied the development of students’ understanding of fractions during instruc-
tion, and she also observed students overgeneralizing.17

Consider the following examples of overgeneralizing.

• What is a sum? Sometimes students decide that a sum is the number
written on the right side of an equals sign.

4 � 2 � 6
Both are considered sums.

6 � 2 � 4
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• Consider students who believe that all three of these figures are triangles.

Graeber reports an interesting speculation on this situation.

These students may be reasoning from a definition of triangle
position. Extension of this definition to simple closed curves
that are not polygons may lead to this error of including such
shapes in the set of triangles.18

• Sometimes students are exposed to right triangles like these:

And they conclude that a right angle is oriented to the right as well as
measuring 90 degrees.

• The student who believes that 2y means 20 + y may be overgeneralizing
from expressions like .

• Other students always use 10 for regrouping, even when computing with
measurements.

23 = 20 + 3

 a right angle . . . therefore . . . a left angle
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Overspecializing
Other misconceptions and erroneous procedures are generated when a student
overspecializes during the learning process. The resulting procedures are restricted
inappropriately. For example, students know that in order to add or subtract frac-
tions, the fractions must have like denominators. Sometimes students believe that
multiplication and division of fractions require like denominators.

It is quite common for students to restrict their concept of altitude of a triangle
to only that which can be contained within the triangle.

x
2

3

• Students sometimes think of the longest side of a triangle as a hypotenuse.
They assume the Pythagorean Theorem applies even when the triangle is
not a right triangle.19

As we diagnose students who are experiencing difficulty, we need to be alert
for both overgeneralization and overspecialization. We need to probe deeply as we
examine written work—looking for misconceptions and erroneous procedures
that form patterns across examples—and try to find out why specific procedures
were learned.

■ Error Patterns in Computation
As our students learn concepts and computation procedures, many students—
even students who invent their own algorithms—learn error patterns. Sometimes
the words a teacher says are used (inappropriately) by a student when forming an
error pattern. Chapters 2 through 8 include specific examples of error patterns—
systematic procedures and applications of concepts students learn that often do
not provide the correct answer.

Errors can be a positive thing. In many cultures, errors are regarded as an
opportunity to reflect and learn. Furthermore, errors are often viewed as part of
the “messiness” of doing mathematics.

Student's response Correct response
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Rather than warning our students about errors to avoid, we can use errors
as catalysts for learning by approaching errors as problem-solving situations. For
example, a group of students can examine an erroneous procedure and use rea-
soning with concepts they already know to determine why the strategy that was
used does not always produce a correct answer.20

Algorithms incorporating error patterns are sometimes called buggy algo-
rithms. A buggy algorithm includes at least one erroneous step, and the procedure
does not consistently accomplish the intended purpose.

As we teach computation procedures, we need to remember that our
students are not necessarily learning what we think we are teaching; we need to
keep our eyes and ears open to find out what our students are actually learning.
We need to be alert for error patterns!

We can look for patterns as we examine student work, and note the differ-
ent strategies for computing that our students develop. Of course, we observe that
results are correct or incorrect; but we also need to look for evidence that indi-
cates how each student is thinking. One way of getting at that thinking is to encour-
age students to show or describe how they obtained their answers, as can be seen
for six students’ solutions to 25 + 37 in Figure 1.5.

Student 1 Student 2 Student 3

Student 4 Student 5 Student 6

FIGURE 1.5 Six students’ solutions to 25 + 37.

Source: Reproduced from Principles and Standards for School Mathematics [Reston,
VA: National Council of Teachers of Mathematics, 2000) p. 85, by permission of National
Council of Teachers of Mathematics.
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Consider Fred’s paper (Figure 1.6). If we merely determine how many
answers are correct and how many are incorrect, we will not learn why his
answers are not correct. Examine Fred’s paper and note that when multiplication
involves renaming, his answer is often incorrect. Look for a pattern among the
incorrect responses; observe that he seems to be adding his “crutch” and then
multiplying. This can be verified by studying other examples and briefly inter-
viewing Fred.

Because we observed Fred’s error pattern, instruction can be modified as
needed. The algorithm may be reviewed as a written record of multiplying “one
part at a time” (an application of distributing multiplication over addition), or a
modification of the algorithm itself may be suggested so that the “crutch” is
recorded with a small half-space digit written below the line. (See Error Pattern
M-W-2 in Chapter 3.)

Rather than just scoring papers, we need to examine each student’s paper
diagnostically—looking for patterns, hypothesizing possible causes, and verifying
our ideas. As we learn about each student, we will find that a student’s paper is
sometimes a problem or puzzle to be solved.

FIGURE 1.6 Sample student paper.
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FURTHER REFLECTION

Consider the following questions:

1. Distinguish between the meaning of addition and addition computation.
2. For each of the four different methods of computation to be used for

solving a problem, describe a social situation in which it makes sense to
use that particular method.

3. How do the NCTM process standards support teaching of computation
procedures in ways that help students make sense of those procedures?

4. How can you teach computation procedures so that students do not learn
misconceptions and error patterns?
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