Data Analytics with Spark Using Python
The Pearson Addison-Wesley Data and Analytics Series provides readers with practical knowledge for solving problems and answering questions with data. Titles in this series primarily focus on three areas:

1. **Infrastructure**: how to store, move, and manage data
2. **Algorithms**: how to mine intelligence or make predictions based on data
3. **Visualizations**: how to represent data and insights in a meaningful and compelling way

The series aims to tie all three of these areas together to help the reader build end-to-end systems for fighting spam; making recommendations; building personalization; detecting trends, patterns, or problems; and gaining insight from the data exhaust of systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.
Contents at a Glance

Preface xi
Introduction 1

I: Spark Foundations
1 Introducing Big Data, Hadoop, and Spark 5
2 Deploying Spark 27
3 Understanding the Spark Cluster Architecture 45
4 Learning Spark Programming Basics 59

II: Beyond the Basics
5 Advanced Programming Using the Spark Core API 111
6 SQL and NoSQL Programming with Spark 161
7 Stream Processing and Messaging Using Spark 209
8 Introduction to Data Science and Machine Learning Using Spark 243

Index 281
Table of Contents

Preface xi
Introduction 1

I: Spark Foundations

1 Introducing Big Data, Hadoop, and Spark 5
- Introduction to Big Data, Distributed Computing, and Hadoop 5
 - A Brief History of Big Data and Hadoop 6
 - Hadoop Explained 7
- Introduction to Apache Spark 13
 - Apache Spark Background 13
 - Uses for Spark 14
 - Programming Interfaces to Spark 14
 - Submission Types for Spark Programs 14
 - Input/Output Types for Spark Applications 16
 - The Spark RDD 16
 - Spark and Hadoop 16
- Functional Programming Using Python 17
 - Data Structures Used in Functional Python Programming 17
 - Python Object Serialization 20
 - Python Functional Programming Basics 23
- Summary 25

2 Deploying Spark 27
- Spark Deployment Modes 27
 - Local Mode 28
 - Spark Standalone 28
 - Spark on YARN 29
 - Spark on Mesos 30
- Preparing to Install Spark 30
- Getting Spark 31
- Installing Spark on Linux or Mac OS X 32
- Installing Spark on Windows 34
- Exploring the Spark Installation 36
- Deploying a Multi-Node Spark Standalone Cluster 37
Deploying Spark in the Cloud 39
 Amazon Web Services (AWS) 39
 Google Cloud Platform (GCP) 41
 Databricks 42
Summary 43

3 Understanding the Spark Cluster Architecture 45
Anatomy of a Spark Application 45
 Spark Driver 46
 Spark Workers and Executors 49
 The Spark Master and Cluster Manager 51
Spark Applications Using the Standalone Scheduler 53
 Spark Applications Running on YARN 53
Deployment Modes for Spark Applications Running on YARN 53
 Client Mode 54
 Cluster Mode 55
 Local Mode Revisited 56
Summary 57

4 Learning Spark Programming Basics 59
Introduction to RDDs 59
 Loading Data into RDDs 61
 Creating an RDD from a File or Files 61
 Methods for Creating RDDs from a Text File or Files 63
 Creating an RDD from an Object File 66
 Creating an RDD from a Data Source 66
 Creating RDDs from JSON Files 69
 Creating an RDD Programmatically 71
 Operations on RDDs 72
 Key RDD Concepts 72
 Basic RDD Transformations 77
 Basic RDD Actions 81
 Transformations on PairRDDs 85
 MapReduce and Word Count Exercise 92
 Join Transformations 95
 Joining Datasets in Spark 100
 Transformations on Sets 103
 Transformations on Numeric RDDs 105
Summary 108
II: Beyond the Basics

5 Advanced Programming Using the Spark Core API 111
 Shared Variables in Spark 111
 Broadcast Variables 112
 Accumulators 116
 Exercise: Using Broadcast Variables and Accumulators 119
 Partitioning Data in Spark 120
 Partitioning Overview 120
 Controlling Partitions 121
 Repartitioning Functions 123
 Partition-Specific or Partition-Aware API Methods 125
 RDD Storage Options 127
 RDD Lineage Revisited 127
 RDD Storage Options 128
 RDD Caching 131
 Persisting RDDs 131
 Choosing When to Persist or Cache RDDs 134
 Checkpointing RDDs 134
 Exercise: Checkpointing RDDs 136
 Processing RDDs with External Programs 138
 Data Sampling with Spark 139
 Understanding Spark Application and Cluster Configuration 141
 Spark Environment Variables 141
 Spark Configuration Properties 145
 Optimizing Spark 148
 Filter Early, Filter Often 149
 Optimizing Associative Operations 149
 Understanding the Impact of Functions and Closures 151
 Considerations for Collecting Data 152
 Configuration Parameters for Tuning and Optimizing Applications 152
 Avoiding Inefficient Partitioning 153
 Diagnosing Application Performance Issues 155
 Summary 159

6 SQL and NoSQL Programming with Spark 161
 Introduction to Spark SQL 161
 Introduction to Hive 162
 Spark SQL Architecture 166
Preface

Spark is at the heart of the disruptive Big Data and open source software revolution. The interest in and use of Spark have grown exponentially, with no signs of abating. This book will prepare you, step by step, for a prosperous career in the Big Data analytics field.

Focus of the Book

This book focuses on the fundamentals of the Spark project, starting from the core and working outward into Spark’s various extensions, related or subprojects, and the broader ecosystem of open source technologies such as Hadoop, Kafka, Cassandra, and more.

Although the foundational understanding of Spark concepts covered in this book—including the runtime, cluster and application architecture—are language independent and agnostic, the majority of the programming examples and exercises in this book are written in Python. The Python API for Spark (PySpark) provides an intuitive programming environment for data analysts, data engineers, and data scientists alike, offering developers the flexibility and extensibility of Python with the distributed processing power and scalability of Spark.

The scope of this book is quite broad, covering aspects of Spark from core Spark programming to Spark SQL, Spark Streaming, machine learning, and more. This book provides a good introduction and overview for each topic—enough of a platform for you to build upon any particular area or discipline within the Spark project.

Who Should Read This Book

This book is intended for data analysts and engineers looking to enter the Big Data space or consolidate their knowledge in this area. The demand for engineers with skills in Big Data and its preeminent processing framework, Spark, is exceptionally high at present. This book aims to prepare readers for this growing employment market and arm them with the skills employers are looking for.

Python experience is useful but not strictly necessary for readers of this book as Python is quite intuitive for anyone with any programming experience whatsoever. A good working knowledge of data analysis and manipulation would also be helpful. This book is especially well suited to data warehouse professionals interested in expanding their careers into the Big Data area.

How to Use This Book

This book is structured into two parts and eight chapters. Part I, “Spark Foundations,” includes four chapters designed to build a solid understanding of what Spark is, how to deploy Spark, and how to use Spark for basic data processing operations:

- Chapter 1, “Introducing Big Data, Hadoop and Spark,” provides a good overview of the Big Data ecosystem, including the genesis and evolution of the Spark project. Key properties of the Spark project are discussed, including what Spark is and how it is used, as well as how Spark relates to the Hadoop project.
- Chapter 2, “Deploying Spark,” demonstrates how to deploy a Spark cluster, including the various Spark cluster deployment modes and the different ways you can leverage Spark.
Chapter 3, “Understanding the Spark Cluster Architecture,” discusses how Spark clusters and applications operate, providing a solid understanding of exactly how Spark works.

Chapter 4, “Learning Spark Programming Basics,” focuses on the basic programming building blocks of Spark using the Resilient Distributed Dataset (RDD) API.

Part II, “Beyond the Basics,” includes the final four chapters, which extend beyond the Spark core into its uses with SQL and NoSQL systems, streaming applications, and data science and machine learning:

- Chapter 5, “Advanced Programming Using the Spark Core API,” covers advanced constructs used to extend, accelerate, and optimize Spark routines, including different shared variables and RDD storage and partitioning concepts and implementations.
- Chapter 6, “SQL and NoSQL Programming with Spark,” discusses Spark’s integration into the vast SQL landscape as well as its integration with non-relational stores.
- Chapter 7, “Stream Processing and Messaging Using Spark,” introduces the Spark streaming project and the fundamental DStream object. It also covers Spark’s use with popular messaging systems such as Apache Kafka.
- Chapter 8, “Introduction to Data Science and Machine Learning Using Spark,” provides an introduction to predictive modeling using Spark with R as well as the Spark MLlib subproject used to implement machine learning with Spark.

Book Conventions

Key terms or concepts are highlighted in italic. Code, object, and file references are displayed in a monospaced font.

Step-by-step exercises are provided to consolidate each topic.

Accompanying Code and Data for the Exercises

Sample data and source code for each of the exercises in this book is available at http://sparkusingpython.com. You can also view or clone the GitHub repository for this book at https://github.com/sparktraining/spark_using_python.

Register This Book

Register your copy of Data Analytics with Spark Using Python on the InformIT site for convenient access to updates and/or corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN (9780134846019) and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow that link to access any available bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.
About the Author

Jeffrey Aven is an independent Big Data, open source software and cloud computing professional based out of Melbourne, Australia. Jeffrey is a highly regarded consultant and instructor and has authored several other books including *Teach Yourself Apache Spark in 24 Hours* and *Teach Yourself Hadoop in 24 Hours*.
This page intentionally left blank
Understanding the Spark Cluster Architecture

It is not the beauty of a building you should look at; it’s the construction of the foundation that will stand the test of time.

David Allan Coe, American songwriter

In This Chapter:

- Detailed overview of the Spark application and cluster components
- Spark resource schedulers and Cluster Managers
- How Spark applications are scheduled on YARN clusters
- Spark deployment modes

Before you begin your journey as a Spark programmer, you should have a solid understanding of the Spark application architecture and how applications are executed on a Spark cluster. This chapter closely examines the components of a Spark application, looks at how these components work together, and looks at how Spark applications run on Standalone and YARN clusters.

Anatomy of a Spark Application

A Spark application contains several components, all of which exist whether you’re running Spark on a single machine or across a cluster of hundreds or thousands of nodes.

Each component has a specific role in executing a Spark program. Some of these roles, such as the client components, are passive during execution; other roles are active in the execution of the program, including components executing computation functions.
Chapter 3 Understanding the Spark Cluster Architecture

The components of a Spark application are the Driver, the Master, the Cluster Manager, and the Executor(s), which run on worker nodes, or Workers. Figure 3.1 shows all the Spark components in the context of a Spark Standalone application. You will learn more about each component and its function in more detail later in this chapter.

![Figure 3.1 Spark Standalone cluster application components.](image)

All Spark components, including the Driver, Master, and Executor processes, run in Java virtual machines (JVMs). A JVM is a cross-platform runtime engine that can execute instructions compiled into Java bytecode. Scala, which Spark is written in, compiles into bytecode and runs on JVMs.

It is important to distinguish between Spark’s runtime application components and the locations and node types on which they run. These components run in different places using different deployment modes, so don’t think of these components in physical node or instance terms. For instance, when running Spark on YARN, there would be several variations of Figure 3.1. However, all the components pictured are still involved in the application and have the same roles.

Spark Driver

The life of a Spark application starts and finishes with the Spark Driver. The Driver is the process that clients use to submit applications in Spark. The Driver is also responsible for planning and coordinating the execution of the Spark program and returning status and/or results (data) to the client. The Driver can physically reside on a client or on a node in the cluster, as you will see later.

SparkSession

The Spark Driver is responsible for creating the SparkSession. The SparkSession object represents a connection to a Spark cluster. The SparkSession is instantiated at the beginning of a Spark application, including the interactive shells, and is used for the entirety of the program.
Prior to Spark 2.0, entry points for Spark applications included the SparkContext, used for Spark core applications; the SQLContext and HiveContext, used with Spark SQL applications; and the StreamingContext, used for Spark Streaming applications. The SparkSession object introduced in Spark 2.0 combines all these objects into a single entry point that can be used for all Spark applications.

Through its SparkContext and SparkConf child objects, the SparkSession object contains all the runtime configuration properties set by the user, including configuration properties such as the Master, application name, number of Executors, and more. Figure 3.2 shows the SparkSession object and some of its configuration properties within a `pyspark` shell.

![SparkSession shell](image)

Figure 3.2 SparkSession properties.

SparkSession Name

The object name for the SparkSession instance is arbitrary. By default, the SparkSession instantiation in the Spark interactive shells is named `spark`. For consistency, you always instantiate the SparkSession as `spark`; however, the name is up to the developer’s discretion.

Listing 3.1 demonstrates how to create a SparkSession within a non-interactive Spark application, such as a program submitted using spark-submit.

```python
from pyspark.sql import SparkSession
spark = SparkSession.builder \
  .master("spark://sparkmaster:7077") \
  .appName("My Spark Application") \
  
```

Listing 3.1 Creating a SparkSession
Application Planning

One of the main functions of the Driver is to plan the application. The Driver takes the application processing input and plans the execution of the program. The Driver takes all the requested transformations (data manipulation operations) and actions (requests for output or prompts to execute programs) and creates a directed acyclic graph (DAG) of nodes, each representing a transformational or computational step.

Directed Acyclic Graph (DAG)

A DAG is a mathematical construct that is commonly used in computer science to represent dataflows and their dependencies. DAGs contain vertices, or nodes, and edges. Vertices in a dataflow context are steps in the process flow. Edges in a DAG connect vertices to one another in a directed orientation and in such a way that it is impossible to have circular references.

A Spark application DAG consists of tasks and stages. A task is the smallest unit of schedulable work in a Spark program. A stage is a set of tasks that can be run together. Stages are dependent upon one another; in other words, there are stage dependencies.

In a process scheduling sense, DAGs are not unique to Spark. For instance, they are used in other Big Data ecosystem projects, such as Tez, Drill, and Presto for scheduling. DAGs are fundamental to Spark, so it is worth being familiar with the concept.

Application Orchestration

The Driver also coordinates the running of stages and tasks defined in the DAG. Key driver activities involved in the scheduling and running of tasks include the following:

- Keeping track of available resources to execute tasks
- Scheduling tasks to run “close” to the data where possible (the concept of data locality)

Other Functions

In addition to planning and orchestrating the execution of a Spark program, the Driver is also responsible for returning the results from an application. These could be return codes or data in the case of an action that requests data to be returned to the client (for example, an interactive query).

The Driver also serves the application UI on port 4040, as shown in Figure 3.3. This UI is created automatically; it is independent of the code submitted or how it was submitted (that is, interactive using `pyspark` or non-interactive using `spark-submit`).

```python
.config("spark.submit.deployMode", "client") \.getOrCreate()
numlines = spark.sparkContext.textFile("file:///opt/spark/licenses") \.count()
print("The total number of lines is " + str(numlines))
```
If subsequent applications launch on the same host, successive ports are used for the application UI (for example, 4041, 4042, and so on).

Spark Workers and Executors

Spark Executors are the processes on which Spark DAG tasks run. Executors reserve CPU and memory resources on slave nodes, or Workers, in a Spark cluster. An Executor is dedicated to a specific Spark application and terminated when the application completes. A Spark program normally consists of many Executors, often working in parallel.

Typically, a Worker node—which hosts the Executor process—has a finite or fixed number of Executors allocated at any point in time. Therefore, a cluster—being a known number of nodes—has a finite number of Executors available to run at any given time. If an application requires Executors in excess of the physical capacity of the cluster, they are scheduled to start as other Executors complete and release their resources.

As mentioned earlier in this chapter, JVMs host Spark Executors. The JVM for an Executor is allocated a heap, which is a dedicated memory space in which to store and manage objects.
The amount of memory committed to the JVM heap for an Executor is set by the property `spark.executor.memory` or as the `--executor-memory` argument to the `pyspark`, `spark-shell`, or `spark-submit` commands.

Executors store output data from tasks in memory or on disk. It is important to note that Workers and Executors are aware only of the tasks allocated to them, whereas the Driver is responsible for understanding the complete set of tasks and the respective dependencies that comprise an application.

By using the Spark application UI on port 404x of the Driver host, you can inspect Executors for the application, as shown in Figure 3.4.

For Spark Standalone cluster deployments, a worker node exposes a user interface on port 8081, as shown in Figure 3.5.
Anatomy of a Spark Application

The Spark Master and Cluster Manager

The Spark Driver plans and coordinates the set of tasks required to run a Spark application. The tasks themselves run in Executors, which are hosted on Worker nodes. The Master and the Cluster Manager are the central processes that monitor, reserve, and allocate the distributed cluster resources (or containers, in the case of YARN or Mesos) on which the Executors run. The Master and the Cluster Manager can be separate processes, or they can combine into one process, as is the case when running Spark in Standalone mode.

Spark Master

The Spark Master is the process that requests resources in the cluster and makes them available to the Spark Driver. In all deployment modes, the Master negotiates resources or containers with Worker nodes or slave nodes and tracks their status and monitors their progress.

When running Spark in Standalone mode, the Spark Master process serves a web UI on port 8080 on the Master host, as shown in Figure 3.6.
It is important to distinguish the runtime functions of the Driver and the Master. The name Master may be inferred to mean that this process is governing the execution of the application—but this is not the case. The Master simply requests resources and makes those resources available to the Driver. Although the Master monitors the status and health of these resources, it is not involved in the execution of the application and the coordination of its tasks and stages. That is the job of the Driver.

Cluster Manager

The Cluster Manager is the process responsible for monitoring the Worker nodes and reserving resources on these nodes upon request by the Master. The Master then makes these cluster resources available to the Driver in the form of Executors.
As discussed earlier, the Cluster Manager can be separate from the Master process. This is the case when running Spark on Mesos or YARN. In the case of Spark running in Standalone mode, the Master process also performs the functions of the Cluster Manager. Effectively, it acts as its own Cluster Manager.

A good example of the Cluster Manager function is the YARN ResourceManager process for Spark applications running on Hadoop clusters. The ResourceManager schedules, allocates, and monitors the health of containers running on YARN NodeManagers. Spark applications then use these containers to host Executor processes, as well as the Master process if the application is running in cluster mode; we will look at this shortly.

Spark Applications Using the Standalone Scheduler

In Chapter 2, “Deploying Spark,” you learned about the Standalone scheduler as a deployment option for Spark. You also deployed a fully functional multi-node Spark Standalone cluster in one of the exercises in Chapter 2. As discussed earlier, in a Spark cluster running in Standalone mode, the Spark Master process performs the Cluster Manager function as well, governing available resources on the cluster and granting them to the Master process for use in a Spark application.

Spark Applications Running on YARN

As discussed previously, Hadoop is a very popular and common deployment platform for Spark. Some industry pundits believe that Spark will soon supplant MapReduce as the primary processing platform for applications in Hadoop. Spark applications on YARN share the same runtime architecture but have some slight differences in implementation.

ResourceManager as the Cluster Manager

In contrast to the Standalone scheduler, the Cluster Manager in a YARN cluster is the YARN ResourceManager. The ResourceManager monitors resource usage and availability across all nodes in a cluster. Clients submit Spark applications to the YARN ResourceManager. The ResourceManager allocates the first container for the application, a special container called the ApplicationMaster.

ApplicationMaster as the Spark Master

The ApplicationMaster is the Spark Master process. As the Master process does in other cluster deployments, the ApplicationMaster negotiates resources between the application Driver and the Cluster Manager (or ResourceManager in this case); it then makes these resources (containers) available to the Driver for use as Executors to run tasks and store data for the application. The ApplicationMaster remains for the lifetime of the application.

Deployment Modes for Spark Applications Running on YARN

Two deployment modes can be used when submitting Spark applications to a YARN cluster: Client mode and Cluster mode. Let’s look at them now.
Client Mode

In Client mode, the Driver process runs on the client submitting the application. It is essentially unmanaged; if the Driver host fails, the application fails. Client mode is supported for both interactive shell sessions (pyspark, spark-shell, and so on) and non-interactive application submission (spark-submit). Listing 3.2 shows how to start a pyspark session using the Client deployment mode.

Listing 3.2 YARN Client Deployment Mode

```bash
$SPARK_HOME/bin/pyspark \
--master yarn-client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1

# OR
$SPARK_HOME/bin/pyspark \
--master yarn \
--deploy-mode client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
```

Figure 3.7 provides an overview of a Spark application running on YARN in Client mode.
Deployment Modes for Spark Applications Running on YARN

The steps shown in Figure 3.7 are described here:

1. The client submits a Spark application to the Cluster Manager (the YARN ResourceManager). The Driver process, SparkSession, and SparkContext are created and run on the client.

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application.

3. The ApplicationMaster requests containers to be used for Executors from the ResourceManager. With the containers assigned, the Executors spawn.

4. The Driver, located on the client, then communicates with the Executors to marshal processing of tasks and stages of the Spark program. The Driver returns the progress, results, and status to the client.

The Client deployment mode is the simplest mode to use. However, it lacks the resiliency required for most production applications.

Cluster Mode

In contrast to the Client deployment mode, with a Spark application running in YARN Cluster mode, the Driver itself runs on the cluster as a subprocess of the ApplicationMaster. This provides resiliency: If the ApplicationMaster process hosting the Driver fails, it can be re-instantiated on another node in the cluster.

Listing 3.3 shows how to submit an application by using `spark-submit` and the YARN Cluster deployment mode. Because the Driver is an asynchronous process running in the cluster, Cluster mode is not supported for the interactive shell applications (`pyspark` and `spark-shell`).

Listing 3.3 YARN Cluster Deployment Mode

```
$SPARK_HOME/bin/spark-submit \
   --master yarn-cluster \
   --num-executors 1 \
   --driver-memory 512m \
   --executor-memory 512m \
   --executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000
# OR
$SPARK_HOME/bin/spark-submit \
   --master yarn \
   --deploy-mode cluster \
   --num-executors 1 \
   --driver-memory 512m \
   --executor-memory 512m \
   --executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000
```
Figure 3.8 provides an overview of a Spark application running on YARN in Cluster mode.

![Figure 3.8 Spark application running in YARN Cluster mode.](image)

The steps shown in Figure 3.8 are described here:

1. The client, a user process that invokes `spark-submit`, submits a Spark application to the Cluster Manager (the YARN ResourceManager).

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application. The Driver process is created on the same cluster node.

3. The ApplicationMaster requests containers for Executors from the ResourceManager. Executors are spawned within the containers allocated to the ApplicationMaster by the ResourceManager. The Driver then communicates with the Executors to marshal processing of tasks and stages of the Spark program.

4. The Driver, running on a node in the cluster, returns progress, results, and status to the client.

The Spark application web UI, as shown previously, is available from the ApplicationMaster host in the cluster; a link to this user interface is available from the YARN ResourceManager UI.

Local Mode Revisited

In Local mode, the Driver, the Master, and the Executor all run in a single JVM. As discussed earlier in this chapter, this is useful for development, unit testing, and debugging, but it has
limited use for running production applications because it is not distributed and does not scale. Furthermore, failed tasks in a Spark application running in Local mode are not re-executed by default. You can override this behavior, however.

When running Spark in Local mode, the application UI is available at http://localhost:4040. The Master and Worker UIs are not available when running in Local mode.

Summary

In this chapter, you have learned about the Spark runtime application and cluster architecture, the components of a Spark application, and the functions of these components. The components of a Spark application include the Driver, Master, Cluster Manager, and Executors. The Driver is the process that the client interacts with when launching a Spark application, either through one of the interactive shells or through the `spark-submit` script. The Driver is responsible for creating the SparkSession object (the entry point for any Spark application) and planning an application by creating a DAG consisting of tasks and stages. The Driver communicates with a Master, which in turn communicates with a Cluster Manager to allocate application runtime resources (containers) on which Executors will run. Executors are specific to a given application and run all tasks for the application; they also store output data from completed tasks. Spark's runtime architecture is essentially the same regardless of the cluster resource scheduler used (Standalone, YARN, Mesos, and so on).

Now that we have explored Spark's cluster architecture, it's time to put the concepts into action starting in the next chapter.
Symbols

<- (assignment) operator, 244
: (colon), 19
{ } (curly braces), 19
() (parentheses), 19
[] (square brackets), 19
0MQ (ZeroMQ), 228
7-Zip, 34

A

accumulator() method, 117
accumulators, 116–117
 accumulator() method, 117
 custom, 117–118
 DStreams, 216
 sample exercise, 119–120
 uses for, 118
 value() method, 117
actions, 48, 81
 collect(), 82, 128, 152
 count(), 81, 128
 defined, 59, 60
 example of, 72
 first(), 83
 fold(), 84–85
 foreach(), 85
 reduce(), 84
 take(), 82, 152
 takeSample(), 152
 top(), 82–83
ActiveMQ, 228
addInPlace() function, 118
aggregateByKey() function, 150
algorithmic functions, 184
allocation, dynamic, 153
ALS (Alternating Least Squares) technique

Spark ML, 272–273
Spark MLlib, 266

Amaterasu, 148

Amazon Kinesis, 237

Analytics, 237
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
Spark support for, 239
Streams
createStream() method, 239–240
defined, 237–238

Amazon Redshift, 237
Amazon S3, 237

Amazon Software License (ASL), 239
Amazon SQS (Simple Queue Service), 228
Amazon Web Services. See AWS (Amazon Web Services), Spark deployment on

Ambari for Hortonworks, 148
Analytics, Amazon Kinesis, 237

Anderson, Edgar, 251

%angular (AngularJS) interpreter, 279
anonymous functions, 23–24
Apache Amaterasu, 148
Apache Cassandra, 201–204
Apache Hive, 8, 40
accessing, 164
CLI (command-line interface), 164
data model
complex types, 176
primitive types, 175–176
datatypes, 164–165
HCatalog, 164
HiveServer2, 164
metastore, 163–164
objects, 163–164
overview of, 162
tables
creating DataFrames from, 170–171
writing DataFrame output to, 188

Apache Kafka
architecture, 229–230
createDirectStream() method, 232–234
KafkaUtil, 232
sample application, 234–237
Spark support for, 230–232

Apache Lucene, 6
Apache Mesos, 30
Apache Parquet
file compression, 174
overview of, 173
Apache Pig, 8, 40, 164
Apache Software Foundation (ASF), 6
Apache Solr, 206
Apache Zeppelin
interpreters, 279
notebooks, 278–279
Apache ZooKeeper, 230, 234–237

APs (application programming interfaces)
ConsumerConnector, 231
SimpleConsumer, 231
append output mode, 226

ApplicationMasters
overview of, 11–12
as Spark Master, 53

applications
application UI, 48–49
architecture, 45–46
Cluster Managers, 52–53
Driver, 46–49
Executors, 49–51
illustrated, 46
Masters, 51–52
Standalone scheduler, 53
Workers, 49–51
YARN (Yet Another Resource Negotiator), 53–57

Bay Area Bike Share exercise, 100–103
checkpointing exercise, 136–138
external
accessing Spark SQL with, 194
processing RDDs with, 138–139
optimizing, 152–153
dynamic allocation, 153
parallelism, 152–153
performance issues, 155–159
orchestration, 48
planning, 48
scheduling, 10–13
Spark Streaming exercise, 218–219
Spark with Kafka exercise, 234–237
WordCount exercise, 92–95
architecture
 Apache Kafka, 229–230
 Spark clusters, 45–46
 Cluster Managers, 52–53
 Driver, 46–48
 Executors, 49–51
 illustrated, 46
 Masters, 51–52
 Standalone scheduler, 53
 Workers, 49–51
 YARN (Yet Another Resource Negotiator), 53–57
 Spark SQL, 166–167
 extensions, 166, 167
 SparkSession entry point, 167–168
 Spark Streaming, 210–211
 ARRAY datatype, 165
 arrays
 Hive, 165
 R language, 245
 Spark primitive type, 176
 ArrayType, 176
 ASF (Apache Software Foundation), 6
 ASL (Amazon Software License), 239
 assignment operator (<-), 244
 associative operations, optimizing, 149–150
 average-word-length folder (GitHub), 120
 Avro, 17, 229
 awaitTermination() method, 211
 AWS (Amazon Web Services), Spark deployment on, 39
 EC2 (Elastic Compute Cloud), 39
 EMR (Elastic MapReduce), 40–41
 GCP (Google Cloud Platform), 41
 B
 batch submissions, 16, 251
 Bay Area Bike Share exercise, 100–103
 Bayes' theorem, 266
 beeline shell
 overview of, 193
 sample exercise, 194–195
 Beeswax, 164
 Berners-Lee, Tim, 161
 Big Data, history of, 6–7. See also Hadoop
 BIGINT datatype, 165
 bin/ directory, 36
 BINARY datatype, 165
 BinaryType, 176
 bisecting k-means, 273
 bloom filters, 199
 BOOLEAN datatype, 165
 Boolean types
 DataFrame API, 176
 Hive, 165
 BooleanType, 176
 boto3 library, 205
 broadcast() method, 112–113
 broadcast variables, 112
 broadcast() method, 112–113
 DStreams, 216
 sample exercise, 119–120
 unpersist() method, 114–116
 value() method, 113
 brokers (Kafka), 229
 built-in DataFrame functions, 183–184
 ByteType, 175
 BZIP2 format, 62
 C
 c() function, 246
 cache() method, 74, 187, 215
 cacheTable() method, 187
 caching
 DataFrames, 187
 DStreams, 215
 RDDs (Resilient Distributed Datasets)
 example of, 131
 when to use, 134
 Cafarella, Mike, 6
 call_func function, 25
 cartesian() function, 99–100
 Cassandra, 7, 201–204
 Cassandra Query Language (CQL), 202
 CDH (Cloudera Distribution of Hadoop), 32
 cell_contents function, 25
 cells (HBase), updating, 199
 Character datatype, 245
 character functions, 249
 checkpoint() method, 135, 215
 checkpointing, 134–135
 checkpoint() method, 135, 215
 DStreams, 214–215
 getCheckpointFile() method, 136
checkpointing

isCheckpointed() method, 136
sample exercise, 136–138
setCheckpointDir() method, 135
checkpointing folder (GitHub), 138
child RDDs (Resilient Distributed Datasets), 74–75
CLA (contributor license agreement), 6
classes. See also objects
CoGroupedRDD, 76
DataFrameReader, 224
DataFrames, 76
DoubleRDD, 76
HadoopRDD, 76
HashPartitioner, 121
JdbcRDD, 77
KafkaUtils, 232
NewHadoopRDD, 76
PairRDD, 76
PartitionPruningRDD, 77
SchemaRDD, 76
SequenceFileRDD, 76
ShuffledRDD, 77
SparkSession, 167–168
UnionRDD, 77
clearCache() method, 187
Client deployment mode, 28–29, 53–55
Client Library (Kinesis), 238–239
closures, 24–25, 151–152
cloud, Spark deployment in, 39
AWS (Amazon Web Services), 39–41
Databricks, 42–43
Cloud Dataproc, 41
Cloudera Distribution of Hadoop (CDH), 32
Cloudera Manager, 148
cluster architecture, 8, 45–46
application clustering, 260–261
Cluster deployment mode, 28–29, 55–56, 143–144
Cluster Managers, 52–53
clustering keys, 202
Driver, 46–49
Executors, 49–51
illustrated, 46
k-means
Spark ML, 273–274
Spark MLlib, 269–270
Masters, 51–52
multi-node standalone clusters, 37–39
nodes, 8
Spark ML, 273–274
Standalone scheduler, 53
Workers, 49–51
YARN (Yet Another Resource Negotiator), 53–57
Cluster deployment mode, 28–29, 55–56, 143–144
Cluster Managers, 52–53, 142
cmp() method, 20
cogroup() function, 98–99
CoGroupedRDD, 76
collaborative filtering
defined, 260
Spark ML, 272–273
Spark MLlib, 262
collect() action, 82, 128, 152
collection of data, optimizing, 152
collections, 157–158, 202
colon (·), 19
columnar storage, 166, 173
columns() method, 179
combineByKey() function, 150
combiners, 150
commands
cqlsh, 202
easy_install, 200
java -version, 33, 34
library, 249
matrix, 247
pip, 200
pyspark, 30
R CMD INSTALL, 249
read, 248
sparkR, 250
spark-shell, 30
spark-submit, 16, 30, 55–56, 192
vget, 33
comma-separated value files. See CSV (comma-separated value) files

complete output mode, 227
complex types, 176
compression, file, 61
cont/ directory, 37
configuration, Spark. See Spark configuration
console sinks, 226
ConsumerConnector API, 231
consumers (Kafka), 229
containers, 11
contributor license agreement (CLA), 6
Core API. See RDDs (Resilient Distributed Datasets)
Couchbase, 206
CouchDB, 206
count() action, 81, 128
cPickle module, 22
CQL (Cassandra Query Language), 202
cqlsh utility, 202
CRAN, 249
CREATE TABLE statement, 165
createDataFrame() method, 169, 252
createDirectStream() method, 232–234
createRDD() method, 233
createStream() method, 239–240
cross joins, 99–100
CSV (comma-separated value) files
creating data frames from, 252
writing DataFrame output to, 188–191
csv() method, 189–190
curly braces ({}), 19
custom accumulators, 117–118
Cutting, Doug, 6

d
daemon environment variables, 144
DAGs (directed acyclic graphs), 48, 127
data collection, optimizing, 152
data/ directory, 37
data frames (R), 247–248. See also DataFrames
creating, 251–253
defined, 245
data locality, 7, 62–63
Data Manipulation Language (DML), 161
data mining, SparkR and, 254–255
data model (Hive)
complex types, 176
primitive types, 175–176
data sampling, 139
sample() function, 140
takeSample() function, 140–141
data science, with R language, 14, 244.
See also machine learning
data frames, creating, 247–248, 251–253
data structures, 245–247
datatypes, 245
functions, 248–249
packages, 248–249
SparkR, 243
accessing, 250–251
data frames, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio with, 257–258
data sinks, 225
console sinks, 226
file sinks, 225–226
memory sinks, 226
data sources
creating RDDs from, 66–69
Structured Streaming, 224
file sources, 224–225
socket sources, 225
data structures
Python
dicts, 19–20
lists, 18
sets, 18
tuples, 18–19
R language, 245–247
Databricks, Spark deployment on, 42–43
Databricks File System (DBFS), 43
DataFrameReader, 224, 274
DataFrames, 76
caching, 187
complex types, 176
converting to RDDs, 175
creating
from existing RDDs, 169
from flat files, 172–175
from Hive tables, 170–171
from JSON objects, 171–172
defined, 168–169
metadata, 179
multiple
grouping, 187
joining, 185–186
ordering, 186–187
operations
built-in functions, 183–184
cache(), 187
cacheTable(), 187
clearCache(), 187
columns(), 179
createDataFrame(), 169
csv(), 189–190
distinct(), 182–183
drop(), 181
dtypes(), 179
explain(), 183
filter(), 181
groupBy(), 187
intersect(), 186
join(), 185–186
json(), 171–172
orc(), 174–175
orderBy(), 186–187
parquet(), 173–174, 190–191
persist(), 187
printSchema(), 176
rdd(), 175
sample(), 183
sampleBy(), 183
saveAsTable(), 188
select(), 180–181
show(), 180
sql(), 170
subtract(), 186
table(), 170–171
text(), 173
udf(), 184–185
 unpersist(), 187
output, saving
to files, 188–191
to Hive tables, 188
persistence, 187
primitive types, 175–176
repartitioning, 187
schemas
 defining, 178
 inferring, 176
DataFrameWriter, 274
DataNode process, 8–9
datasets. See also RDDs (Resilient Distributed Datasets)
datasets package, 251
golf/weather, 262–263
Movielens, 267–269
mtcars, 251–252
splitting, 263–264
DataStax Enterprise, 203
datatypes
 DataFrame data model
 complex types, 176
 primitive types, 175–176
 Hive, 164–165
 R language, 245
DATE datatype, 165
date datatypes
 Hive, 165
 Spark primitive, 176
date functions, 184
DateType, 176
DBFS (Databricks File System), 43
dbutils library, 43
decision trees, 262–266, 271–272
DecisionTree.trainClassifier() function, 265
declarative referential integrity (DRI), 163
deep learning, 41
def keyword, 23
DEFLATE compression method, 62
DenseVector object, 271
dependencies, stage, 48
deployment, Spark. See Spark deployment
deployment modes
 Client, 28–29, 53–55
 Cluster, 28–29, 55–56
 Local, 28, 56–57
 on Mesos, 30
 Spark Standalone, 28–29
diagrams, Venn, 103
dicts (dictionaries), 19–20
environment variables

directives, local, 28
directories, Spark installation, 36–37
disabling IPv6, 35
discretized streams. See DStreams
DynamoDB, 204–206
dtypes() method, 179
dynamic allocation, 153

documentation
Amazon Kinesis, 240
Node.js, 250
directed acyclic graphs (DAGs), 48, 127
disabling IPv6, 35
DoubleRDD, 76
DoubleType, 176
document stores, 197

drop() method, 181
drop_duplicates() method, 182
drop_table statement, 165

DStreams, 211–212
DStream, checkpoint() method, 215
streamingContext.checkpoint() method, 215
output operations, 216–218
foreachRDD() method, 217–218
pprint() method, 216
saveAsTextFiles() method, 217
sources, 212
socketTextStream() method, 212–213
textFileStream() method, 213
transformations, 213–214

EMR (Elastic MapReduce)
EC2 (Elastic Compute Cloud), Spark deployment on, 39
Edison, Thomas, 27
Elasticsearch, 206

DRIs (declarative referential integrity), 163
Drivers, 46
application orchestration, 48
application planning, 48
application UI, 48–49
SparkSession, 46–48
drop() method, 181
DROP TABLE statement, 165
double datatypes
Hive, 165
Spark primitive type, 176

DML (Data Manipulation Language), 161
disabling IPv6, 35
discretized streams. See DStreams
documentation
Amazon Kinesis, 240
RDDs (Resilient Distributed Datasets), 77
SparkR, 250
DOUBLE datatype, 165
double datatypes
Hive, 165
Spark primitive type, 176

EDIFACT (Electronic Data Interchange for Administration, Finance and Trade)
EDIFACT (Electronic Data Interchange for Administration, Finance and Trade) implementation
EMR (Elastic MapReduce)
EC2 (Elastic Compute Cloud), Spark deployment on, 39
Edison, Thomas, 27
Elasticsearch, 206

ENHANCEMENTS (extension points), 251

EDS (Enterprise Message Service)
edgerouter (EDS), 228

DRI (declarative referential integrity), 163
Drivers, 46
application orchestration, 48
application planning, 48
application UI, 48–49
SparkSession, 46–48
drop() method, 181
DROP TABLE statement, 165
drop_duplicates() method, 182
DStreams, 211–212
broadcast variables and accumulators, 216
caching and persistence, 215
lineage and checkpointing, 214–215
DStream.checkpoint() method, 215
streamingContext.checkpoint() method, 215
output operations, 216–218
foreachRDD() method, 217–218
pprint() method, 216
saveAsTextFiles() method, 217
sources, 212
socketTextStream() method, 212–213
textFileStream() method, 213
transformations, 213–214
dtypes() method, 179
dynamic allocation, 153
DynamoDB, 204–206

documentation
Amazon Kinesis, 240
Node.js, 250
directive, local, 28
directives, local, 28
directories, Spark installation, 36–37
disabling IPv6, 35
discretized streams. See DStreams
DynamoDB, 204–206
dtypes() method, 179
dynamic allocation, 153
DynamoDB, 204–206
- SPARK_YARN_DIST_FILES, 143
- SPARK_YARN_QUEUE, 143
- SPARKR_DRIVER_R, 142
- YARN_CONF_DIR, 142
- Errors, searching log files for, 61
- Estimator objects, 274
- Evaluation, lazy, 73
- Event processing, See Spark Streaming examples/directory, 37
- Execution, lazy, 73
- Executors (Spark), 49–51
- Explain() function, 183
- Extensions, Spark SQL, 166
- External applications, accessing Spark SQL with, 194
- External programs, processing RDDs with, 138
 - Pipe() method, 138–139
 - Potential problems with, 138
- Extraction, features, 261
- Fault tolerance, RDDs (Resilient Distributed Datasets), 76
- Features
 - Defined, 261
 - Extraction, 261
- File sinks, 225–226
- File sources (Structured Streaming), 224–225
- File systems
 - DBFS (Databricks File System), 43
 - HDFS (Hadoop Distributed File System), 7–8. See also HBase
 - Blocks, 8–9
 - As data source for Spark, 17
 - Defined, 7–8
 - Metadata, 9
 - Processes, 8–9
 - Read operations, 9–10
 - Write operations, 9–10
 - Schemes and URI structures, 63
- FileNotFoundException, 63
- Files
 - Compression, 61
 - Creating data frames from, 172–175, 252
 - Creating RDDs from, 61
 - Data locality, 62–63
- File compression, 61
- JSON files, 69–70
- Object files, 66
- Text files, 63–66
- Hadoop.dll, 34
- Log, searching, 61
- Log4j.properties, 136
- Log4j.properties.erroronly, 136
- Looping_test.py, 137
- ORC (Optimized Row Columnar), 173
 - Saving RDDs as, 217
 - Shakespeare.txt, 219
 - Spark-defaults.conf, 38
 - Spark-env.sh, 38
 - Spark-streaming-kafka-assembly.jar file, 232
 - Stop-word-list.csv, 119
 - Winutils.exe, 34
 - Writing DataFrame output to, 188–191
- Filter() function, 24, 79, 122, 153, 181
- Filtering
 - Bloom filters, 199
 - Collaborative
 - Defined, 260
 - Spark ML, 272–273
 - Spark MLlib, 266–267
 - DataFrames, 181
 - Optimization and, 149
- Fine-grained transformations, 72
- Firehose, Amazon Kinesis, 237
- First() action, 83
- Fit() method, 274
- Flags, storage-level, 129–130
- Flat files, DataFrames created from, 172–175
 - Orc() method, 174–175
 - Parquet() method, 173–174
 - Text() method, 173
- FlatMap() function, 24, 78, 182
- FlatMapValues() function, 87–89
- FLOAT datatype, 165
- FloatType, 176
- Flume, 8
- Fold() action, 84–85
- FoldByKey() function, 91, 150
- Folders, GitHub
 - Average-word-length, 120
 - Checkpointing, 138
<table>
<thead>
<tr>
<th>Function/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallelize(), 71</td>
</tr>
<tr>
<td>parquet(), 173–174, 190–191, 253</td>
</tr>
<tr>
<td>partitionBy(), 123</td>
</tr>
<tr>
<td>persist(), 73–74, 132, 187, 215</td>
</tr>
<tr>
<td>pickleFile(), 22</td>
</tr>
<tr>
<td>.pipe(), 138–139</td>
</tr>
<tr>
<td>print(), 216</td>
</tr>
<tr>
<td>predict(), 256, 266, 266</td>
</tr>
<tr>
<td>printSchema(), 176</td>
</tr>
<tr>
<td>quit(), 36</td>
</tr>
<tr>
<td>randomSplit(), 263–264</td>
</tr>
<tr>
<td>range(), 71–72</td>
</tr>
<tr>
<td>rdd(), 175</td>
</tr>
<tr>
<td>read(), 67</td>
</tr>
<tr>
<td>readStream(), 224</td>
</tr>
<tr>
<td>reduce(), 84</td>
</tr>
<tr>
<td>reduceByKey(), 24, 90, 149–150</td>
</tr>
<tr>
<td>reduceByKeyAndWindow(), 223</td>
</tr>
<tr>
<td>repartition(), 123–124, 154</td>
</tr>
<tr>
<td>repartitionAndSortWithinPartitions(), 124–125</td>
</tr>
<tr>
<td>ret_message(), 25</td>
</tr>
<tr>
<td>rightOuterJoin(), 97</td>
</tr>
<tr>
<td>sample(), 140, 183</td>
</tr>
<tr>
<td>sampleBy(), 183</td>
</tr>
<tr>
<td>save(), 268</td>
</tr>
<tr>
<td>saveAsPickleFile(), 22</td>
</tr>
<tr>
<td>saveAsTable(), 188</td>
</tr>
<tr>
<td>saveAsTextFile(), 17</td>
</tr>
<tr>
<td>saveAsTextFiles(), 217</td>
</tr>
<tr>
<td>select(), 180–181, 183</td>
</tr>
<tr>
<td>sequenceFile(), 66</td>
</tr>
<tr>
<td>session(), 253</td>
</tr>
<tr>
<td>setCheckpointDir(), 135</td>
</tr>
<tr>
<td>show(), 180</td>
</tr>
<tr>
<td>socketTextStream(), 212–213, 225</td>
</tr>
<tr>
<td>sortBy(), 81</td>
</tr>
<tr>
<td>sortByKey(), 91–92</td>
</tr>
<tr>
<td>sql(), 170, 253</td>
</tr>
<tr>
<td>start(), 211</td>
</tr>
<tr>
<td>stats(), 108</td>
</tr>
<tr>
<td>stdev(), 107</td>
</tr>
<tr>
<td>stop(), 211</td>
</tr>
<tr>
<td>subtract(), 104–105, 186</td>
</tr>
<tr>
<td>subtractByKey(), 105</td>
</tr>
<tr>
<td>sum(), 107</td>
</tr>
<tr>
<td>summary(), 255–256</td>
</tr>
<tr>
<td>table(), 170–171, 248</td>
</tr>
<tr>
<td>take(), 82, 152</td>
</tr>
<tr>
<td>takeSample(), 140–141, 152</td>
</tr>
<tr>
<td>text(), 173</td>
</tr>
<tr>
<td>textStyle(), 17, 63–64</td>
</tr>
<tr>
<td>textFileStream(), 213</td>
</tr>
<tr>
<td>toDebugString(), 128</td>
</tr>
<tr>
<td>top(), 82–83</td>
</tr>
<tr>
<td>train(), 266</td>
</tr>
<tr>
<td>trainClassifier(), 265</td>
</tr>
<tr>
<td>transform(), 274</td>
</tr>
<tr>
<td>treeAggregate(), 150</td>
</tr>
<tr>
<td>treeReduce(), 150</td>
</tr>
<tr>
<td>tuple(), 19</td>
</tr>
<tr>
<td>udf(), 184–185</td>
</tr>
<tr>
<td>union(), 104</td>
</tr>
<tr>
<td>unpersist(), 114–116, 132–134, 187</td>
</tr>
<tr>
<td>updateStateByKey(), 220–221</td>
</tr>
<tr>
<td>value(), 113, 117</td>
</tr>
<tr>
<td>values(), 20, 86</td>
</tr>
<tr>
<td>variance(), 107</td>
</tr>
<tr>
<td>wholeTextFiles(), 64–66, 76</td>
</tr>
<tr>
<td>window(), 222–223</td>
</tr>
<tr>
<td>writeStream(), 227</td>
</tr>
<tr>
<td>zero(), 118</td>
</tr>
</tbody>
</table>

G

- **Gaussian mixture model (GMM)**, 273
- **GCP (Google Cloud Platform)**, Spark deployment on, 41
- **generate_message function**, 25
- **getCheckpointFile() method**, 136
- **getStorageLevel() function**, 130
- **GitHub folders**
 - average-word-length, 120
 - checkpointing, 138
 - joining-datasets, 103
 - recommendation-engine, 269
 - streaming-wordcount, 219
- **glm() function**, 255
- **glm() method**, 126
- **GMM (Gaussian mixture model)**, 273
- **golf dataset**, 262–263
- **Google Cloud Platform (GCP)**, Spark deployment on, 41
Google whitepapers
“The Google File System”, 6
“MapReduce: Simplified Data Processing on Large Clusters”, 6, 13
graph stores, 197
groupBy() function, 80, 187
groupByKey() function, 89, 149
grouping DataFrames, 187
GZIP format, 62

H
HaaS (Hadoop-as-a-Service), 40
Hadoop, 7. See also HBase
CDH (Cloudera Distribution of Hadoop), 32
core components of, 7–8
data locality, 7
development of, 6–7
“ecosystem” projects, 8
environment variables, 142–143
HaaS (Hadoop-as-a-Service), 40
HDFS (Hadoop Distributed File System) blocks, 8–9
as data source for Spark, 17
defined, 7–8
metadata, 9
processes, 8–10
read operations, 9–10
write operations, 9–10
HDP (Hortonworks Data Platform), 32
HUE (Hadoop User Experience), 164
installation, 34
MapReduce, 13
schema-on-read system, 7
shared nothing approach, 7
YARN (Yet Another Resource Negotiator), 7–8
application scheduling with, 10–13
ApplicationMaster, 11–12
NodeManagers, 10–12
as resource scheduler for Spark, 17
ResourceManager, 10–12
Spark jobs, submitting, 30
Spark on, 28–29
HADOOP_CONF_DIR environment variable, 142
HADOOP_HOME environment variable, 35, 142
hadoop.dll, 34
hadoopFile() method, 66
HadoopRDD, 76
HappyBase Python package, 200
hashing functions, 184
HashPartitioner class, 121
HBase defined, 197
HappyBase Python package, 200
HFile objects, 199
overview of, 7, 197–200
sample exercise, 200–201
Scala API, 200
sparsity, 199
tables, scanning, 198
HCatalog, 164
HDFS (Hadoop Distributed File System). See also HBase
blocks, 8–9
as data source for Spark, 17
defined, 7–8
metadata, 9
processes
DataNode, 8–9
NameNode, 9
read operations, 9–10
write operations, 9–10
HDP (Hortonworks Data Platform), 32
HFile objects, 199
higher-order functions, 24
Hive accessing, 164
CLI (command-line interface), 164
data model
complex types, 176
primitive types, 175–176
datatypes, 164–165
HCatalog, 164
HiveServer2, 164
metastore, 163–164
objects, 163–164
overview of, 8, 40, 162
tables
creating data frames from, 170–171,
253
writing DataFrame output to, 188
HIVE_CONF_DIR environment variable, 143
HiveContext, 47
Hopper, Grace Murray, 5
Hortonworks Data Platform (HDP), 32
HUE (Hadoop User Experience), 164

Java Development Kit. See JDK
(Java Development Kit), installing
Java Message Service (JMS), 228
java -version command, 33, 34
Java Virtual Machine (JVM), 13, 46
JAVA_HOME environment variable, 142
JavaScript Object Notation. See JSON
(JavaScript Object Notation)
JDBC (Java Database Connectivity), 43, 67
JDBC/ODBC interface, 192
JdbcRDD, 77
jdbc() method, 68–69
JDK (Java Development Kit), installing
on Linux or Mac OS X, 33
on Windows, 34
JMS (Java Message Service), 228
jobs (Spark), submitting
in Local mode, 28
to Mesos cluster, 30
to standalone cluster, 29
to YARN cluster, 30
join() function, 96–97, 185–186
join operations
Bay Area Bike Share exercise, 100–103
cartesian(), 99–100
cogroup(), 98–99
DataFrames, 185–186
defined, 95
fullOuterJoin(), 98
join(), 96–97, 185–186
leftOuterJoin(), 97
optimizing, 97
rightOuterJoin(), 97
types of, 95–96
JoiningDatasets folder (GitHub), 103
JSON (JavaScript Object Notation), 20–21
creating DataFrames from, 171–172
defined, 69–70, 171–172
files, creating RDDs from, 69–70
json package, 20–21
Jupyter (IPython) notebooks, 275–277
json() method, 69–70, 171–172
Jupyter (IPython), 275–277
JVM (Java Virtual Machine), 13, 46

Kafka
architecture, 229–230
createDirectStream() method, 232–234
KafkaUtils, 232
sample application, 234–237
Spark support for, 230–232
KafkaUtils class, 232
KCL (Kinesis Client Library), 238–239
kernels, Jupyter, 277
keyBy() function, 86–87
Keynes, John Maynard, 243
keys (Cassandra), 202
keys() function, 20, 86
keyspaces, 202
key/value stores, 19, 197
Kinesis, 237
Analytics, 237
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
Spark support for, 239
Streams
createStream() method, 239–240
defined, 237–238
k-means clustering
Spark ML, 273–274
Spark MLlib, 269–270
KMeans package, 270
KPL (Kinesis Producer Library), 238

L
LabeledPoint objects, 264–265
lambda syntax, 23–24
latent Dirichlet allocation (LDA), 273
lazy evaluation, 73
LDA (latent Dirichlet allocation), 273
learning
deep, 41
machine. See machine learning
supervised, 254
unsupervised, 254
left outer joins
defined, 96
leftOuterJoin() transformation, 97
leftOuterJoin() function, 97
len() method, 20
levels, storage
choosing, 131
table of, 128–129
libraries
boto3, 205
dbutils, 43
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
LIBSVM (library for support vector machines), 274
NumPy, 264
Pandas, 264
R, 249
library() function, 249
LIBSVM (library for support vector machines), 274
licenses, contributor, 6
licenses/ directory, 37
lineage
DStreams, 214–215
DataStream.checkpoint() method, 215
StreamingContext.checkpoint() method, 215
RDDs (Resilient Distributed Datasets), 74–75, 127–128
linear regression, SparkR and, 255–256
Linux, Spark installation on, 32–34
lists, 18, 19
load() function, 268
loading data into RDDs (Resilient Distributed Datasets), 61
Local deployment mode, 28, 56–57
local directive, 28
locality, data, 7, 62–63
log files, searching for errors, 61
log4j.properties file, 136
log4j.properties.erroronly file, 136
Logical datatype, 245
LongType, 175
longwords.collect() action, 128
longwords.count() action, 128
lookup() method, 126
looping_test.py file, 137
Lucene, 6

M
Mac OS X, Spark installation on, 32–34
machine learning, 259
classification
decision trees, 262–266, 271–272
defined, 259–260
Naive Bayes, 266
Spark ML, 271–273
Spark MLLib, 262
clustering, 260–261
k-means, 269–270, 273–274
Spark ML, 273–274
collaborative filtering
defined, 260
Spark MLLib, 266–267
feature extraction, 261
pipelines, 274–275
Spark ML
classification, 271–272
clustering, 273–274
collaborative filtering, 272–273
pipelines, 274–275
Spark MLLib
classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application, 266–267
MAP datatype, 165
map() function, 18, 24, 77–78, 182
mapPartitions() method, 126–127
MapR Converged Data Platform, 32
MapReduce
GCP (Google Cloud Platform), 41
Spark deployment on, 40–41
WordCount exercise, 92–95
“MapReduce: Simplified Data Processing on Large Clusters” (whitepaper), 6, 13
MapType, 176
mapValues() function, 87
Masters, 38, 51–52
master/slave model, 8
math functions, 184
matrices, 245–247
matrix command, 247
matrix factorization, 266
MatrixFactorizationModel.load() function, 268
max() transformation, 106
%md (Markdown) interpreter, 279
mean() transformation, 106
Memcached, 206
memory sinks, 226
MEMORY_AND_DISK constant, 129, 130
MEMORY_AND_DISK_2 constant, 130
MEMORY_AND_DISK_SER constant, 130
MEMORY_AND_DISK_SER* constant, 129
MEMORY_AND_DISK_SER_2 constant, 130
MEMORY_ONLY constant, 129, 130
MEMORY_ONLY_2 constant, 130
MEMORY_ONLY_SER constant, 130
MEMORY_ONLY_SER* constant, 129
MEMORY_ONLY_SER_2 constant, 130
Mesos, 30
message-oriented middleware (MOM), 228
messaging systems, Spark with, 228
Amazon Kinesis, 237
Analytics, 237
crateStream() method, 239–240
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
Kinesis Streams, 237–238
KPL (Kinesis Producer Library), 238
Spark support for, 239
Apache Kafka
architecture, 229–230
crateDirectStream() method, 232–234
KafkaUtils, 232
sample application, 234–237
Spark support for, 230–232
MOM (message-oriented middleware), 228
metadata, 9
columns() method, 179
dtypes() method, 179
operations, 179
metastores
configuration, 35
Hive, 163–164
methods. See functions and methods
Microsoft Message Queuing (MSMQ), 228
min() transformation, 105–106
MLlib
classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application, 266–267
model.save() function, 268
modules
cPickle, 22
pickle, 22
urllib2, 119
Optimized Row Columnar (ORC) files

MOM (message-oriented middleware), 228
MongoDB, 206
movie recommender application, 266–267
Movielens dataset, 267–269
MSMQ (Microsoft Message Queuing), 228
mtcars dataset, 251–252
multi-node standalone clusters, 37–39
multiple DataFrames
 grouping, 187
 joining, 185–186
 ordering, 186–187

Naive Bayes, 266
NaiveBayes package, 266
named functions, 23–24
NameNode process, 9
names, SparkSession, 47
narrow operations, 74
neural networks, 41
NewHadoopRDD, 76
NodeManagers, 10–12
nodes, 8
 DAGs (directed acyclic graphs) of, 48
 quorum of, 230
non-interactive submission, 16
non-splittable compression formats, 62
NoSQL systems, 7, 195–196
 Apache Cassandra, 201–204
 characteristics of, 196
 DynamoDB, 204–206
 HBase
 defined, 197
 HappyBase Python package, 200
 overview of, 197–200
 sample exercise, 200–201
 Scala API, 200
 types of, 196–197
notebooks, 275
 Apache Zeppelin, 278–279
 Jupyter (IPython), 275–277
Numeric datatype, 245
numeric value operations, 105–106, 249
 max(), 106
 mean(), 106
 min(), 105–106
 stats(), 108

object files
 creating RDDs from, 66
 defined, 66
objectFile() method, 66
objects. See also classes; DataFrames
 DenseVector, 271
 DStreams, 211–212
 broadcast variables and accumulators, 216
 caching and persistence, 215
 lineage and checkpointing, 214–215
 output operations, 216–218
 sources, 212–213
 transformations, 213–214
 Estimator, 274
 HFile, 199
 Hive, 163–164
 HiveContext, 47
 JSON (JavaScript Object Notation),
 creating DataFrames from, 171–172
 LabeledPoint, 264–265
 Pipeline, 274
 Row, 271
 SparkConf, 47
 SparkContext, 47, 211
 SparkSession, 47, 211, 250
 SparseVector, 271
 SQLContext, 47
 StreamingContext, 47, 211
 StructField, 178
 Transformer, 274
observations (R), 252
OFF_HEAP constant, 130
OFF_HEAP storage level, 129
operations. See also functions and methods
 narrow, 74
 wide, 75
operators, assignment (<-), 244
Optimized Row Columnar (ORC) files, 173
optimizing Spark

applications, 152–153
dynamic allocation, 153
parallelism, 152–153
performance issues, 155–159
associative operations, 149–150
data collection, 152
filtering, 149
functions and closures, 151–152
join operations, 97
partitions, 153–155
ORC (Optimized Row Columnar) files, 173
orc() method, 174–175
ORCFile format, Spark support for, 17
orderBy() function, 186–187
outer joins
defined, 96
transformations
fullOuterJoin(), 98
leftOuterJoin(), 97
rightOuterJoin(), 97
output modes (Spark Streaming), 226–227
output operations, DStreams, 216–218
foreachRDD() method, 217–218
pprint() method, 216
saveAsTextFiles() method, 217
output sinks, 225
console sinks, 226
file sinks, 225–226
memory sinks, 226
outputMode() method, 227

PaaS (Platform-as-a-Service), 39
packages
datasets, 251
defined, 20–21
HappyBase, 200
json, 20–21
KMeans, 270
NaiveBayes, 266
pyspark-cassandra, 203
R language, 248–249
PairRDDs
defined, 76
transformations, 85–92
flatMapValues(), 87–89
foldByKey(), 91
groupByKey(), 89
keyBy(), 86–87
keys(), 86
mapValues(), 87
reduceByKey(), 90
sortByKey(), 91–92
values(), 86
Pandas, 264
ParallelCollectionRDD, 77
parallelism, optimizing, 152–153
parallelize() method, 71
parent RDDs (Resilient Distributed Datasets), 74–75
parentheses (), 19
Parquet
file compression, 174
overview of, 173
parquet() method, 173–174, 190–191
Partial DAG execution (PDE), 166
partitionBy() function, 123
PartitionPruningRDD, 77
partitions, 120
Apache Kafka, 229
API methods
foreachPartition(), 125–126
glom(), 126
lookup(), 126
mapPartitions(), 126–127
controlling, 121–122
keys, 202
optimal number of, 123
optimizing, 153–155
overview of, 120–121
repartitioning functions
coalesce(), 124
partitionBy(), 123
repartition(), 123–124
repartitionAndSortWithinPartitions(), 124–125
statistics, 166
PDE (Partial DAG execution), 166
persist() method, 73–74, 132, 187, 215
persistence
DataFrames, 187
DStreams, 215
RDDs (Resilient Distributed Datasets), 73–74, 131–132
persist() method, 132
unpersist() method, 132–134
when to use, 134
Pi Estimator, 33, 38
Pickle, 22
pickleFile() method, 22
Pig, 8, 40, 164
pip command, 200
pipe() method, 138–139
pipelines, Spark ML, 274–275
planning applications, 48
Platform-as-a-Service (PaaS), 39
populating RDDs (Resilient Distributed
Datasets), 61
pprint() method, 216
precedence, Spark configuration properties, 148
predict() function, 256, 266, 266
predictive analytics, SparkR and, 253–254
predictive modeling, SparkR and, 254–255
Presto, 40
primary keys, 202
primitive types, 175–176
printSchema() method, 176
probability functions, 249
processes
 DataNode, 8–9
 NameNode, 9
Producer Library (Kinesis), 238
producers (Kafka), 229
programming (Spark)
 PySpark shell, 15
 RDD (Resilient Distributed Dataset), 16
 Scala shell, 15
Standalone scheduler
 multi-node standalone clusters, 37–39
 Standalone deployment mode, 28–29
submission types
 interactive, 15
 non-interactive, 16
Workers, 38
programming interfaces, 14
properties
 RDDs (Resilient Distributed Datasets), 60
 Spark configuration
 configuration management, 148
 precedence, 148
 setting, 145–147
 table of, 145
 pyspark command, 30
 PySpark shell, 15, 53–54
 PYSPARK_DRIVER_PYTHON environment
variable, 142
 PYSPARK_PYTHON environment variable, 142
 pyspark-cassandra package, 203
 pyspark.mllib.clustering.KMeans package, 270
Python, 17. See also functions and methods
data structures
 dicts, 19–20
 lists, 18
 sets, 18
 tuples, 18–19
docstrings, 183
functions
 anonymous functions, 23–24
 closures, 24–25
 higher-order functions, 24
 lambda syntax, 23–24
 named functions, 23–24
HappyBase package, 200
installation, 34
libraries
 boto3, 205
 NumPy, 264
 Pandas, 264
modules
 cPickle, 22
 pickle, 22
 urllib2, 119
 PySpark shell, 15, 53–54
serialization
 JSON (JavaScript Object Notation),
 20–21
 Pickle, 22
python/ directory, 37
%python interpreter, 279
PythonRDD, 77
quit() method, 36
quorum of nodes, 230
R CMD INSTALL command, 249
R/ directory, 37
R language, 244. See also functions and methods; methods
batch mode, 251
data frames
 creating, 247–248, 251–253
defined, 245
data structures, 245–247
datasets
golf/weather, 262–263
MovieLens, 267–269
mtcars, 251–252
splitting, 263–264
datatypes, 245
functions, 248–249
history of, 244
packages, 248–249, 251
SparkR, 243
 accessing, 250–251
data frames, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio with, 257–258
RabbitMQ, 228
randomSplit() function, 263–264
range() method, 71–72
rdd() method, 175
RDDs (Resilient Distributed Datasets), 111
 actions, 81
 collect(), 82
count(), 81
defined, 59, 60
example of, 72
first(), 83
fold(), 84–85
foreach(), 85
reduce(), 84
take(), 82
top(), 82–83
caching
 example of, 131
 when to use, 134
checkpointing, 134–135
 checkpoint() method, 135
getCheckpointFile() method, 136
isCheckpointed() method, 136
sample exercise, 136–138
setCheckpointDir() method, 135
converting DataFrames to, 175
creating
 from data sources, 66–69
 from files, 61–63
 from JSON files, 69–70
 from object files, 66
 programatically, 71–72
 from text files, 63–66
data sampling, 139
 sample() function, 140
takeSample() function, 140–141
DataFrames created from, 169
defined, 16
documentation for, 77
explained, 59–61
fault tolerance, 76
join operations
 Bay Area Bike Share exercise, 100–103
cartesian(), 99–100
cogroup(), 98–99
defined, 95
fullOuterJoin(), 98
join(), 96–97
leftOuterJoin(), 97
optimizing, 97
rightOuterJoin(), 98
types of, 95–96
lazy evaluation, 73
lineage, 74–75, 127–128
loading data into, 61
MapReduce
 GCP (Google Cloud Platform), 41
 Spark deployment on, 40–41
WordCount exercise, 92–95
numeric value operations, 105–106
 max(), 106
 mean(), 106
 min(), 105–106
 stats(), 108
 stdev(), 107
 sum(), 107
 variance(), 107
PairRDDs
defined, 76
transformations, 85–92
example of, 72
filter(), 79
fine-grained, 72
flatMap(), 78
flatMapValues(), 87–89
foldByKey(), 91
fullOuterJoin(), 98
groupBy(), 80
groupByKey(), 89
intersection(), 104
join(), 96–97
keyBy(), 86–87
keys(), 86
leftOuterJoin(), 97
map(), 77–78
mapValues(), 87
max(), 106
mean(), 106
min(), 105–106
reduceByKey(), 90
rightOuterJoin(), 97
sortBy(), 81
sortByKey(), 91–92
stats(), 108
stdev(), 107
subtract(), 104–105
subtractByKey(), 105
sum(), 107
union(), 104
values(), 86
variance(), 107
types of, 76–77
read command, 248
read.csv(), 248
read.df(), 252
read.fwf(), 248
read.jdbc(), 68–69
read.json(), 69–70, 171–172, 253
read.parquet(), 253
read.table(), 248
read() method, 67
read operations (HDFS), 9–10
readStream() method, 224
receivers (Kafka), 231
recommendation-engine folder (GitHub), 269
recommender application, 266–267
Redis, 206
Redshift, 237
reduce() action, 84
reduceByKey() function, 24, 90, 149–150
reduceByKeyAndWindow() method, 223
reflection, 176
region servers, 199
regions, 199
regression, linear, 255–256
repartition() method, 123–124, 154
repartitionAndSortWithinPartitions() method, 124–125
repartitioning
 DataFrames, 187
 RDDs (Resilient Distributed Datasets)
 coalesce(), 124
 partitionBy(), 123
 repartition(), 123–124
 repartitionAndSortWithinPartitions(), 124–125
Resilient Distributed Datasets. See RDDs (Resilient Distributed Datasets)
ResourceManagers, 10–12, 53
Result Tables, 225
ret_message() function, 25
RiaK, 206
right outer joins
 defined, 96
 rightOuterJoin() transformation, 97
rightOuterJoin() function, 97
Row objects, 271
RStudio, SparkR and, 257–258

S
S3, 237
SaaS (Software-as-a-Service), 39
sample() function, 140, 183
sampleBy() function, 183
sampling data, 139
 sample() function, 140
 takeSample() function, 140–141
save() function, 268
saveAsPickleFile() method, 22
saveAsTable() method, 188
saveAsTextFile() function, 17
saveAsTextFiles() method, 217
saving DataFrame output
 to files, 188–191
 to Hive tables, 188
sbin/ directory, 37
Scala, 13, 14, 15, 31, 200
scanning HBase tables, 198
scheduler. See Standalone scheduler
scheduling applications, 10–13
schema-on-read systems, 7
schema-on-write systems, 7
SchemaRDD, 76
schemas, DataFrame, 252–253
 defining, 178
 infering, 176
schemes, filesystem, 63
Scikit-learn project, 274
searching, log files for errors, 61
secondary indexes
 Apache Cassandra, 202
 DynamoDB, 204
select() method, 180–181, 183
sequenceFile() method, 66
SequenceFileRDD, 76
serialization
 JSON (JavaScript Object Notation), 20–21
 Pickle, 22
servers
 region servers, 199
 Spark History Server, 158–159
 Thrift JDBC/ODBC, 192, 194–195
session() function, 253
set operations, 103
 intersection(), 104
 subtract(), 104–105
 subtractByKey(), 105
 union(), 104
setCheckpointDir() method, 135
%sh (Shell commands) interpreter, 279
Shakespeare text-streaming application, 218–219
shared variables, 111
 accumulators, 116–117
 accumulator() method, 117
 custom, 117–118
 uses for, 118
 value() method, 117
 broadcast variables, 112
 broadcast() method, 112–113
 unpersist() method, 114–116
 value() method, 113
 sample exercise, 119–120
Spark configuration

- Executors, 49–51
- Illustrated, 46
- Masters, 51–52
- Standalone scheduler, 53
- Workers, 49–51
- YARN (Yet Another Resource Negotiator), 53–57

Spark environment variables, 141–142
- Defaults, 147
- HADOOP_CONF_DIR, 142
- HADOOP_HOME, 142
- HIVE_CONF_DIR, 143
- JAVA_HOME, 142
- PYSPARK_DRIVER_PYTHON, 142
- PYSPARK_PYTHON, 142
- SPARK_CLASSPATH, 144
- SPARK_DAEMON_MEMORY, 144
- SPARK_DRIVER_MEMORY, 143
- SPARK_EXECUTOR_CORES, 143
- SPARK_EXECUTOR_INSTANCES, 143
- SPARK_EXECUTOR_MEMORY, 143
- SPARK_HOME, 142
- SPARK_LOCAL_IP, 144
- SPARK_MASTER_IP, 144
- SPARK_MASTER_OPTS, 144
- SPARK_MASTER_PORT, 144
- SPARK_MASTER_WEBUI_PORT, 144
- SPARK_PUBLIC_DNS, 144
- SPARK_WORKER_CORES, 144
- SPARK_WORKER_DIR, 144
- SPARK_WORKER_INSTANCES, 144
- SPARK_WORKER_MEMORY, 144
- SPARK_WORKER_OPTS, 144
- SPARK_WORKER_PORT, 144
- SPARK_WORKER_WEBUI_PORT, 144
- SPARK_YARN_APP_NAME, 143
- SPARK_YARN_DIST_ARCHIVES, 143
- SPARK_YARN_DIST_FILES, 143
- SPARK_YARN_QUEUE, 143
- SPARKR_DRIVER_R, 142
- YARN_CONF_DIR, 142

Spark optimizing, 148
- Applications, 152–153, 155–159
- Associative operations, 149–150
- Data collection, 152
- Filtering, 149
- Functions and closures, 151–152
- Partitions, 153–155

Shells
- beeline
 - Overview of, 193
 - Sample exercise, 194–195
- PySpark, 15, 53–54
- Scala, 15
- sparkR, 250
- spark-sql, 191

Spark cluster architecture, 45–46
- Cluster Managers, 52–53
- Driver, 46–49

ShortType, 175

Show() method, 180

ShuffledRD, 77

shuffling, 73, 156–157

Simple Queue Service (SQS), 228

SimpleConsumer API, 231

sinks, data, 225
- Console sinks, 226
- File sinks, 225–226
- Memory sinks, 226

sliding window operations, 221
- reduceByKeyAndWindow() method, 223
- window() method, 222–223

SMALLINT datatype, 165

Snappy, 62

socket sources (Structured Streaming), 225

socketTextStream() method, 212–213, 225

Software-as-a-Service (SaaS), 39

Solr, 206

sortBy() function, 81

sortByKey() function, 91–92

sources
- DStream, 212, 213
- socketTextStream() method, 212–213
- textFileStream() method, 213
- Structured Streaming, 224
- File sources, 224–225
- Socket sources, 225

Spark, overview of, 13, 257–258

Hadoop and
- HDFS (Hadoop Distributed File System), 17
- YARN (Yet Another Resource Negotiator), 17

history of, 13

input/output types, 16

programming interfaces, 14

uses for, 14

Spark cluster architecture, 45–46
- Cluster Managers, 52–53
- Driver, 46–49
properties
 configuration management, 148
 precedence, 148
 setting, 145–147
 table of, 145

Spark Core API. See RDDs (Resilient Distributed Datasets)

Spark deployment, 27
 in the cloud, 39
 AWS (Amazon Web Services), 39–41
 Databricks, 42–43
 installation directory contents, 36–37
 on Linux or Mac OS X, 32–34
 Masters, 38
 modes
 Client, 28–29, 53–55
 Cluster, 28–29, 55–56
 Local, 28, 56–57
 on Mesos, 30
 Spark Standalone, 28–29
 multi-node standalone clusters, 37–39
 preparation for, 30–31
 releases, downloading, 31–32
 requirements for, 31
 on Windows, 34–36

Spark History Server, 158–159

%spark interpreter, 279

Spark ML
 classification, 271–272
 clustering, 273–274
 collaborative filtering, 272–273
 pipelines, 274–275

Spark MLlib
 classification, 262
 clustering, 269–270
 collaborative filtering, 266–267
 movie recommender application, 266–267

Spark SQL, 161. See also DataFrames
 accessing, 191
 beeline shell, 193, 194–195
 external applications, 194
 sample exercise, 194–195
 spark-sql shell, 191
 Thrift JDBC/ODBC server, 192, 194–195
 architecture, 166–167
 extensions, 166
 high-level architecture, 167
 SparkSession entry point, 167–168

HBase
 HFile objects, 199
 sparsity, 199

Hive
 accessing, 164
 CLI (command-line interface), 164
 datatypes, 164–165
 HCatalog, 164
 HiveServer2, 164
 metastore, 163–164
 objects, 163–164
 overview of, 162
 writing DataFrame output to, 188

NoSQL systems, 195–196
 Apache Cassandra, 201–204
 characteristics of, 196
 DynamoDB, 204–206
 HBase, 196–201
 types of, 196–197
 reflection, 176

Spark Streaming, 209–210
 architecture, 210–211
 DataFrames
 basic operations, 180–183
 metadata operations, 179
 DStreams, 211–212
 broadcasting variables and accumulators, 216
 caching and persistence, 215
 lineage and checkpointing, 214–215
 output operations, 216–218
 sources, 212–213
 transformations, 213–214
 goals of, 210
 messaging systems, 228
 Amazon Kinesis, 237–240
 Apache Kafka, 229–237
 output modes, 226–227
 sample application, 218–219
 sliding window operations, 221
 reduceByKeyAndWindow() method, 223
 window() method, 222–223
 state operations, 219–221
 Structured Streaming, 223–224
 data sinks, 225–226
 data sources, 224–225
 structured streaming operations, 227–228
Standalone deployment mode (Spark) 303

SPARK_CLASSPATH environment variable, 144
SPARK_DAEMON_MEMORY environment variable, 144
SPARK_DRIVER_MEMORY environment variable, 143
SPARK_EXECUTOR_CORES environment variable, 143
SPARK_EXECUTOR_INSTANCES environment variable, 143
SPARK_EXECUTOR_MEMORY environment variable, 143
SPARK_HOME directory, 36–37
SPARK_HOME environment variable, 33, 142
SPARK_LOCAL_IP environment variable, 144
SPARK_MASTER_IP environment variable, 144
SPARK_MASTER_OPTS environment variable, 144
SPARK_MASTER_PORT environment variable, 144
SPARK_MASTER_WEBUI_PORT environment variable, 144
SPARK_PUBLIC_DNS environment variable, 144
SPARK_WORKER_CORES environment variable, 144
SPARK_WORKER_DIR environment variable, 144
SPARK_WORKER_INSTANCES environment variable, 144
SPARK_WORKER_MEMORY environment variable, 144
SPARK_YARN_APP_NAME environment variable, 143
SPARK_YARN_DIST_ARCHIVES environment variable, 143
SPARK_YARN_DIST_FILES environment variable, 143
SPARK_YARN_QUEUE environment variable, 143
spark.broadcast.blockSize option, 114
spark.broadcast.compress option, 114
spark.broadcast.factory option, 114
spark.broadcast.port option, 114
SparkConf, 47
SparkContext, 47, 211
spark.default.parallelism property, 121
spark-defaults.conf file, 38
spark.driver.extraClassPath property, 145–147
spark.driver.extraJavaOptions property, 145–147
spark.driver.memory property, 145–147
spark.dynamicAllocation.enabled property, 145–147
spark-env.sh file, 38
spark.executor.cores property, 145–147
spark.executor.extraClassPath property, 145–147
spark.executor.extraJavaOptions property, 145–147
spark.executor.memory property, 145–147
spark-hbase-connector, 201
spark-master property, 145–147
%spark.pyspark interpreter, 279
SparkR, 243, 250
accessing, 250–251
data frames, creating, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio and, 257–258
SPARKR_DRIVER_R environment variable, 142
sparkR.session() function, 253
SparkSession, 46–48, 167–168, 211, 250
spark-shell command, 30
%spark.sql interpreter, 279
spark-sql shell, 191
spark-streaming-kafka-assembly.jar file, 232
spark-submit command, 16, 30, 55–56, 192
SparseVector object, 271
sparsity, HBase support for, 199
splittable compression formats, 62
splitting datasets, 263–264
SQL (Structured Query Language).
See Spark SQL
sql() function, 170, 253
SQLContext, 47
Sqoop, 8
SQS (Simple Queue Service), 228
square brackets ([]), 19
stages
defined, 48
dependencies, 48
Standalone deployment mode (Spark), 28–29
Standalone scheduler, 53
 daemon environment variables, 144
 multi-node standalone clusters, 37–39
 Standalone deployment mode, 28–29
 start() method, 211
 state operations (Spark Streaming), 219–221
 statements
 CREATE TABLE, 165
 DROP TABLE, 165
 UPDATE, 163
 statistical functions, 184, 249
 statistics, partition, 166
 stats() transformation, 108
 stdev() transformation, 107
 stop() method, 211
 stop-word-list.csv file, 119
 storage, 173
 columnar, 166
 getStorageLevel() function, 130
 storage levels
 choosing, 131
 table of, 128–129
 storage-level flags, 129–130
 StorageClass constructor, 129
 storage-level flags, 129–130
 stream processing. See Spark Streaming
 StreamingContext, 47, 211, 215
 streaming-wordcount folder, 219
 STRING datatype, 165
 string datatypes
 Hive, 165
 Spark primitive type, 176
 string functions, 184
 StringType, 176
 STRUCT datatype, 165
 struct datatypes
 Hive, 165
 Spark primitive type, 176
 StructField objects, 178
 StructType, 176, 178
 Structured Query Language. See Spark SQL
 Structured Streaming, 223–224
 data sinks, 225
 console sinks, 226
 file sinks, 225–226
 memory sinks, 226
 file sources, 224
 socket sources, 225
 operations, 227–228
 structures, data. See data structures
 submitting Spark jobs
 interactive, 15
 in Local mode, 28
 to Mesos cluster, 30
 non-interactive, 16
 to standalone cluster, 29
 to YARN cluster, 30
 subtract() function, 104–105, 186
 subtractByKey() transformation, 105
 sum() transformation, 107
 summary() function, 255–256
 supervised learning, 254
 table() function, 170–171
 tables
 Cassandra, 202
 DynamoDB, 204
 HBase, 198
 Hive
 creating data frames from, 170–171, 253
 writing DataFrame output to, 188
 tablets, 199
 take() action, 82, 152
 takeSample() function, 140–141, 152
 tasks
 defined, 48
 optimizing execution of, 156–157
 Tensor Processing Units (TPUs), 41
 TensorFlow, 41
 Term Frequency-Inverse Document Frequency (TF-IDF), 92, 261
 testing
 multi-node standalone clusters, 38
 Spark installation
 on Linux or Mac OS X, 33
 on Windows, 35
 text files
 creating RDDs from, 63
 textFile() method, 63–64
 wholeTextFiles() method, 64–66
 saving RDDs as, 217
text() method, 173
textFile() method, 17, 63–64
Tez, 173
TF-IDF (Term Frequency-Inverse Document Frequency), 92, 261
Thrift JDBC/ODBC server
 overview of, 192
 sample exercise, 194–195
TIBCO EMS (Enterprise Message Service), 228
TIMESTAMP datatype, 165
timestamp types
 Hive, 165
 Spark primitive, 176
TimestampType, 176
TINYINT datatype, 165
toDebugString() function, 128
Toffler, Alvin, 111
top() action, 82–83
Torvalds, Linus, 59
TPUs (Tensor Processing Units), 41
train() method, 266
trainClassifier() function, 265
transform() method, 274
transformations, 48, 77
 cartesian(), 99–100
 coarse-grained, 72
cogroup(), 98–99
defined, 59
distinct(), 79–80
cartesian(), 99–100
cogroup(), 98–99
defined, 59
distinct(), 79–80
DStreams, 213–214
example of, 72
filter(), 79
grouped(), 72
flatMap(), 78
flatMapValues(), 87–89
foldByKey(), 91
cartesian(), 99–100
cogroup(), 98–99
defined, 59
distinct(), 79–80
DStreams, 213–214
example of, 72
filter(), 79
grouped(), 72
flatMap(), 78
flatMapValues(), 87–89
foldByKey(), 91
fullOuterJoin(), 98
groupBy(), 80
groupByKey(), 89
intersection(), 104
join(), 96–97
keyBy(), 86–87
keys(), 86
leftOuterJoin(), 97
map(), 77–78
mapValues(), 87
max(), 106
mean(), 106
min(), 105–106
reduceByKey(), 90
rightOuterJoin(), 97
sortBy(), 81
sortByKey(), 91–92
stats(), 108
stdev(), 107
subtract(), 104–105
subtractByKey(), 105
sum(), 107
union(), 104
values(), 86
variance(), 107
Transformer objects, 274
treeAggregate() function, 150
treeReduce() function, 150
tuple() function, 19
tuples, 18–19

U
udf() method, 184–185
UDFs (user-defined functions), 184–185
union() transformation, 104
UnionRDD, 77
update output mode, 227
UPDATE statement, 163
updateStateByKey() method, 220–221
uriictory2 Python module, 119
URI structures, 63
TINT_dtype, 176
timestamp types
 Hive, 165
 Spark primitive, 176
timestamp types
 Hive, 165
 Spark primitive, 176
timestamp types
 Hive, 165
 Spark primitive, 176
Tensor Processing Units, 41
train() method, 266
trainClassifier() function, 265
transform() method, 274
transformations, 48, 77
cartesian(), 99–100
cogroup(), 98–99
defined, 59
distinct(), 79–80
DStreams, 213–214
distinct()
windowing functions, 184
windows, sliding window operations, 221
 reduceByKeyAndWindow() method, 223
window() method, 222–223
Windows, Spark installation on, 34–36
winutils.exe, 34
WordCount exercise, 92–95
Workers, 38, 49–51
write operations (HDFS), 9–10
write-ahead logs (WALs), 229
write.csv() method, 189–190
write.parquet() method, 190–191
writeStream() method, 227
writing DataFrame output
to files, 188–191
to Hive tables, 188

X–Y

Yahoo!, 6
YARN (Yet Another Resource Negotiator), 7–8
 application scheduling with, 10–13
 ApplicationMaster, 11–12
 applications running on, 53–57
 ApplicationMaster, 53
 deployment modes, 53–57
 ResourceManager, 53
 environment variables, 143
 NodeManagers, 10–12
 as resource scheduler for Spark, 17
 ResourceManager, 10–12
 Spark jobs, submitting, 30
 Spark on, 28–29
 yarn/ directory, 37
YARN_CONF_DIR environment variable, 142
Yet Another Resource Negotiator, See YARN
(Yet Another Resource Negotiator)

Z

Zaharia, Matei, 13
Zeppelin, 40–41
 interpreters, 279
 notebooks, 278–279
zero() function, 118
ZeroMQ (ØMQ), 228
ZIP format, 62
ZooKeeper, 230, 234–237