OpenACC™ for Programmers
OpenACC™ for Programmers

Concepts and Strategies

Edited by
Sunita Chandrasekaran
Guido Juckeland
To all students, programmers, and computational scientists
hungry for knowledge and discoveries—
may their work make this world a more open, tolerant,
peaceful, livable, and lovable place for all of us,
regardless of gender, origin, race, or belief!
This page intentionally left blank
Contents

Foreword ... xv
Preface .. xxi
Acknowledgments xxiii
About the Contributors xxv

Chapter 1: OpenACC in a Nutshell 1

1.1 OpenACC Syntax 3
 1.1.1 Directives 3
 1.1.2 Clauses 4
 1.1.3 API Routines and Environment Variables 5

1.2 Compute Constructs 6
 1.2.1 Kernels 6
 1.2.2 Parallel 8
 1.2.3 Loop 8
 1.2.4 Routine 9

1.3 The Data Environment 11
 1.3.1 Data Directives 12
 1.3.2 DataClauses 12
 1.3.3 The Cache Directive 13
 1.3.4 Partial Data Transfers 14

1.4 Summary .. 15
CONTENTS

Chapter 2: Loop-Level Parallelism

- 2.1 Kernels Versus Parallel Loops .. 18
- 2.2 Three Levels of Parallelism ... 21
 - 2.2.1 Gang, Worker, and Vector Clauses 22
 - 2.2.2 Mapping Parallelism to Hardware 23
- 2.3 Other Loop Constructs ... 24
 - 2.3.1 Loop Collapse .. 24
 - 2.3.2 Independent Clause ... 25
 - 2.3.3 Seq and Auto Clauses .. 27
 - 2.3.4 Reduction Clause ... 28
- 2.4 Summary ... 30
- 2.5 Exercises .. 31

Chapter 3: Programming Tools for OpenACC

- 3.1 Common Characteristics of Architectures 34
- 3.2 Compiling OpenACC Code ... 35
- 3.3 Performance Analysis of OpenACC Applications 36
 - 3.3.1 Performance Analysis Layers and Terminology 37
 - 3.3.2 Performance Data Acquisition 38
 - 3.3.3 Performance Data Recording and Presentation 39
 - 3.3.4 The OpenACC Profiling Interface 39
 - 3.3.5 Performance Tools with OpenACC Support 41
 - 3.3.6 The NVIDIA Profiler .. 41
 - 3.3.7 The Score-P Tools Infrastructure for Hybrid Applications 44
 - 3.3.8 TAU Performance System 48
CONTENTS

5.2 Restructuring Compilers .. 88
 5.2.1 What Compilers Can Do 88
 5.2.2 What Compilers Can't Do 90
5.3 Compiling OpenACC .. 92
 5.3.1 Code Preparation ... 92
 5.3.2 Scheduling .. 93
 5.3.3 Serial Code ... 94
 5.3.4 User Errors .. 95
5.4 Summary ... 97
5.5 Exercises .. 97

Chapter 6: Best Programming Practices 101
6.1 General Guidelines ... 102
 6.1.1 Maximizing On-Device Computation 103
 6.1.2 Optimizing Data Locality 103
6.2 Maximize On-Device Compute 105
 6.2.1 Atomic Operations 105
 6.2.2 Kernels and Parallel Constructs 106
 6.2.3 Runtime Tuning and the If Clause 107
6.3 Optimize Data Locality 108
 6.3.1 Minimum Data Transfer 109
 6.3.2 Data Reuse and the Present Clause 110
 6.3.3 Unstructured Data Lifetimes 111
 6.3.4 Array Shaping .. 111
6.4 A Representative Example 112
 6.4.1 Background: Thermodynamic Tables 112
 6.4.2 Baseline CPU Implementation 113
CONTENTS

8.1.1 OpenACC .. 138
8.1.2 OpenMP .. 138
8.1.3 CUDA .. 139
8.1.4 OpenCL .. 139
8.1.5 C++ AMP .. 140
8.1.6 Kokkos .. 140
8.1.7 RAJA .. 141
8.1.8 Threading Building Blocks 141
8.1.9 C++17 ... 142
8.1.10 Fortran 2008 .. 142

8.2 Programming Model Components 142
 8.2.1 Parallel Loops ... 143
 8.2.2 Parallel Reductions 145
 8.2.3 Tightly Nested Loops 147
 8.2.4 Hierarchical Parallelism (Non-Tightly Nested Loops) 149
 8.2.5 Task Parallelism ... 151
 8.2.6 Data Allocation .. 152
 8.2.7 Data Transfers .. 153

8.3 A Case Study .. 155
 8.3.1 Serial Implementation 156
 8.3.2 The OpenACC Implementation 157
 8.3.3 The OpenMP Implementation 158
 8.3.4 The CUDA Implementation 159
 8.3.5 The Kokkos Implementation 163
 8.3.6 The TBB Implementation 165
 8.3.7 Some Performance Numbers 167
Chapter 9: OpenACC and Interoperability ... 173
 9.1 Calling Native Device Code from OpenACC .. 174
 9.1.1 Example: Image Filtering Using DFTs .. 174
 9.1.2 The host_data Directive and the use_device Clause 177
 9.1.3 API Routines for Target Platforms ... 180
 9.2 Calling OpenACC from Native Device Code ... 181
 9.3 Advanced Interoperability Topics .. 182
 9.3.1 acc_map_data .. 182
 9.3.2 Calling CUDA Device Routines from OpenACC Kernels 184
 9.4 Summary ... 185
 9.5 Exercises ... 185

Chapter 10: Advanced OpenACC ... 187
 10.1 Asynchronous Operations ... 187
 10.1.1 Asynchronous OpenACC Programming 190
 10.1.2 Software Pipelining ... 195
 10.2 Multidevice Programming ... 204
 10.2.1 Multidevice Pipeline ... 204
 10.2.2 OpenACC and MPI ... 208
 10.3 Summary ... 213
 10.4 Exercises ... 213

Chapter 11: Innovative Research Ideas Using OpenACC, Part I 215
 11.1 Sunway OpenACC .. 215
 11.1.1 The SW26010 Manycore Processor ... 216
CONTENTS

11.1.2 The Memory Model in the Sunway TaihuLight 217
11.1.3 The Execution Model ... 218
11.1.4 Data Management .. 219
11.1.5 Summary ... 223

11.2 Compiler Transformation of Nested Loops for Accelerators 224
 11.2.1 The OpenUH Compiler Infrastructure ... 224
 11.2.2 Loop-Scheduling Transformation .. 226
 11.2.3 Performance Evaluation of Loop Scheduling 230
 11.2.4 Other Research Topics in OpenUH .. 234

Chapter 12: Innovative Research Ideas Using OpenACC, Part II 237
 12.1 A Framework for Directive-Based High-Performance Reconfigurable Computing ... 237
 12.1.1 Introduction .. 238
 12.1.2 Baseline Translation of OpenACC-to-FPGA 239
 12.1.3 OpenACC Extensions and Optimization for Efficient FPGA Programming .. 243
 12.1.4 Evaluation ... 248
 12.1.5 Summary ... 252

 12.2 Programming Accelerated Clusters Using XcalableACC 253
 12.2.1 Introduction to XcalableMP .. 254
 12.2.2 XcalableACC: XcalableMP Meets OpenACC 257
 12.2.3 Omni Compiler Implementation .. 260
 12.2.4 Performance Evaluation on HA-PACS ... 262
 12.2.5 Summary ... 267

Index ... 269
In the previous century, most computers used for scientific and technical programming consisted of one or more general-purpose processors, often called CPUs, each capable of carrying out a diversity of tasks from payroll processing through engineering and scientific calculations. These processors were able to perform arithmetic operations, move data in memory, and branch from one operation to another, all with high efficiency. They served as the computational motor for desktop and personal computers, as well as laptops. Their ability to handle a wide variety of workloads made them equally suitable for word processing, computing an approximation of the value of pi, searching and accessing documents on the web, playing back an audio file, and maintaining many different kinds of data. The evolution of computer processors is a tale of the need for speed: In a drive to build systems that are able to perform more operations on data in any given time, the computer hardware manufacturers have designed increasingly complex processors. The components of a typical CPU include the arithmetic logic unit (ALU), which performs simple arithmetic and logical operations, the control unit (CU), which manages the various components of the computer and gives instructions to the ALU, and cache, the high-speed memory that is used to store a program's instructions and data on which it operates. Most computers today have several levels of cache, from a small amount of very fast memory to larger amounts of slower memory.

Application developers and users are continuously demanding more compute power, whether their goal is to be able to model objects more realistically, analyze more data in a shorter time, or for faster high-resolution displays. The growth in compute power has enabled, for example, significant advances in the ability of weather forecasters to predict our weather for days, even weeks, in the future and for auto manufacturers to produce fuel-efficient vehicles. In order to meet that demand, the computer vendors were able to shrink the size of the different features of a processor in order to configure more transistors, the tiny devices that are actually responsible for performing calculations. But as they got smaller and more densely packed, they also got hotter and hotter. At some point, it became clear that a new approach was needed if faster processing speeds were to be obtained.
FOREWORD

Thus multicore processing systems were born. In such a system, the actual compute logic, or core, of a processor is replicated. Each core will typically have its own ALU and CU but may share one or more levels of cache and other memory with other cores. The cores may be connected in a variety of different ways and will typically share some hardware resources, especially memory. Virtually all of our laptops, desktops, and clusters today are built from multicore processors.

Each of the multiple cores in a processor is capable of independently executing all of the instructions (such as add, multiply, and branch) that are routinely carried out by a traditional, single-core processor. Hence the individual cores may be used to run different programs simultaneously, or they can be used collaboratively to speed up a single application. The actual gain in performance that is observed by an application running on multiple cores in parallel will depend on how well it has exploited the capabilities of the individual cores and how efficiently their interactions have been managed. Challenges abound for the application developer who creates a multicore program. Ideally, each core contributes to the overall outcome continuously. For this to (approximately) happen, the workload needs to be evenly distributed among cores and organized to minimize the time that any core is waiting, possibly because it needs data that is produced on another core. Above all, the programmer must try to avoid nontrivial amounts of sequential code, or regions where only one core is active. This insight is captured in Amdahl’s law, which makes the point that, no matter how fast the parallel parts of a program are, the speedup of the overall computation is bounded by the fraction of code that is sequential. To accomplish this, an application may in some cases need to be redesigned from scratch.

Many other computers are embedded in telephone systems, toys, printers, and other electronic appliances, and increasingly in household objects from washing machines to refrigerators. These are typically special-purpose computing chips that are designed to carry out a certain function or set of functions and have precisely the hardware needed for the job. Oftentimes, those tasks are all that they are able to perform. As the demands for more complex actions grow, some of these appliances today are also based on specialized multicore processors, something that increases the available compute power and the range of applications for which they are well suited.

Although the concept of computer gaming has been around since sometime in the 1960s, game consoles for home use were first introduced a decade later and didn’t take off until the 1980s. Special-purpose chips were designed specifically for them, too. There was, and is, a very large market for gaming devices, and considerable effort has therefore been expended on the creation of processors that are very
efficient at rapidly constructing images for display on a screen or other output device. In the meantime, the graphics processing units (GPUs) created for this marketplace have become very powerful computing devices. Designed to meet a specific purpose, namely to enable computer gaming, they are both specialized and yet capable of running a great variety of games with potentially widely differing content. In other words, they are not general-purpose computers, but neither are they highly tuned for one very specific sequence of instructions. GPUs were designed to support, in particular, the rendering of sequences of images as smoothly and realistically as possible. When a game scene is created in response to player input—a series of images are produced and displayed at high speed—there is a good deal of physics involved. For instance, the motion of grass can be simulated in order to determine how the individual stalks will sway in the (virtual) wind, and shadow effects can be calculated and used to provide a realistic experience. Thus it is not too surprising that hardware designed for games might be suitable for some kinds of technical computing. As we shall shortly see, that is indeed the case.

Very large-scale applications such as those in weather forecasting, chemistry and pharmaceuticals, economics and financing, aeronautics, and digital movies, require significant amounts of compute power. New uses of computing that require exceptional hardware speed are constantly being discovered. The systems that are constructed to enable them are known as high-performance computing (HPC) clusters. They are built from a collection of computers, known as nodes, connected by a high-speed network. The nodes of many, although not all, such systems are built using essentially the same technology as our desktop systems. When multi-core processors entered the desktop and PC markets, they were also configured as nodes of HPC platforms. Virtually all HPC platforms today have multicore nodes.

The developers and operators of HPC systems have been at the forefront of hardware innovation for many decades, and advances made in this area form the backdrop and motivation for the topic of this book. IBM’s Roadrunner (installed at the Department of Energy’s Los Alamos National Laboratory [LANL] in 2008) was the first computing system to achieve 1 petaflop/s (1,000 trillion floating-point calculations per second) sustained performance on a benchmark (the Linpack TOP500) that is widely used to assess a system’s speed on scientific application code. Its nodes were an example of what is often called a hybrid architecture: They not only introduced dual-core processors into the node but also attached Cell processors to the multicore. The idea was that the Cell processor could execute certain portions of the code much faster than the multicore. However, the code for execution on the Cell had to be specifically crafted for it; data had to be transferred from the multicore’s memory to Cell memory and the results then returned. This proved to be difficult to accomplish as a result of the tiny amount of memory available on the Cell.
People at large data centers in industry as well as at public institutions had become concerned about the rising cost of providing computing services, especially the cost of the computers’ electricity consumption. Specialized cores such as the Cell were expected to offer higher computational efficiency on suitable application code at a very reasonable operating cost. Cores with these characteristics were increasingly referred to as accelerators. At LANL they encountered a major challenges with respect to the deployment of accelerators in hybrid nodes. The application code had to be nontrivially modified in order to exploit the Cell technology. Additionally, the cost of transferring data and code had to be amortized by the code speedup.

Titan (installed at the Department of Energy’s Oak Ridge National Laboratory in 2013) was a landmark computing system. At 20 pflop/s (20,000 trillion calculations per second, peak) and with more than 18,000 nodes, it was significantly more powerful than Roadrunner. Its hybrid nodes, each a powerful computing system in its own right, were configured with 16-core AMD processors and an NVIDIA Tesla K20 GPU. Thus graphics processing units had entered the realm of high-performance computing in particular, and of scientific and technical computing in general. The device market had always been concerned with the power consumption of its products, and GPUs promised to deliver particularly high levels of performance with comparatively low power consumption. As with the Cell processor, however, the application programs required modification in order to be able to benefit from the GPUs. Thus the provision of a suitable programming model to facilitate the necessary adaptation was of paramount importance. The programming model that was developed to support Titan’s users is the subject of this book.

Today, we are in an era of innovation with respect to the design of nodes for HPC systems. Many of the fastest machines on the planet have adopted the ideas pioneered by Titan, and hence GPUs are the most common hardware accelerators. Systems are emerging that will employ multiple GPUs in each node, sometimes with very fast data transfer capabilities between them. In other developments, technology has been under construction to enable multicore CPUs to share memory— and hence data—directly with GPUs without data transfers. Although there will still be many challenges related to the efficient use of memory, this advancement will alleviate some of the greatest programming difficulties. Perhaps more importantly, many smaller HPC systems, as well as desktop and laptop systems, now come equipped with GPUs, and their users are successfully exploiting them for scientific and technical computing. GPUs were, of course, designed to serve the gaming industry, and this successful adaptation would have been unthinkable without the success stories that resulted from the Titan installation. They, in turn, would not have been possible without an approachable programming model that meets the needs of the scientific application development community.
Other kinds of node architecture have recently been designed that similarly promise performance, programmability, and power efficiency. In particular, the idea of manycore processing has gained significant traction. A manycore processor is one that is inherently designed for parallel computing. In other words, and in contrast to multicore platforms, it is not designed to support general-purpose, sequential computing needs. As a result, each core may not provide particularly high levels of performance: The overall computational power that they offer is the result of aggregating a large number of the cores and deploying them collaboratively to solve a problem. To accomplish this, some of the architectural complexities of multicore hardware are jettisoned; this frees up space that can be used to add more, simpler cores. By this definition, the GPU actually has a manycore design, although it is usually characterized by its original purpose. Other hardware developers are taking the essential idea behind its design—a large number of cores that are intended to work together and are not expected to support the entire generality of application programs—and using it to create other kinds of manycore hardware, based on a different kind of core and potentially employing different mechanisms to aggregate the many cores. Many such systems have emerged in HPC, and innovations in this area continue.

The biggest problem facing the users of Titan, its successor platforms, and other manycore systems is related to the memory. GPUs, and other manycores, have relatively small amounts of memory per core, and, in most existing platforms, data and code that are stored on the multicore host platform must be copied to the GPU via a relatively slow communications network. Worse, data movement expends high levels of electricity, so it needs to be kept to the minimum necessary. As mentioned, recent innovations take on this problem in order to reduce the complexity of creating code that is efficient in terms of execution speed as well as power consumption. Current trends toward ever more powerful compute nodes in HPC, and thus potentially more powerful parallel desktops and laptops, involve even greater amounts of heterogeneity in the kinds of cores configured, new kinds of memory and memory organization, and new strategies for integrating the components. Although these advances will not lead to greater transparency in the hardware, they are expected to reduce the difficulty of creating efficient code employing accelerators. They will also increase the range of systems for which OpenACC is suitable.

—Dr. Barbara Chapman
Professor of Applied Mathematics and Statistics, and of Computer Science, Stony Brook University
Director of Mathematics and Computer Science, Brookhaven National Laboratory
This page intentionally left blank
Welcome to OpenACC™ for Programmers. This book reflects a collaborative effort from 19 highly established authors, from academia and public research as well as industry. It was the common goal of the authors to assemble a collection of chapters that can be used as a systematic introduction to parallel programming using OpenACC. We designed the chapters to build on one another so that they would be useful in a classroom setting. Hence, it is highly likely that you, dear reader, are a student who signed up for this potentially daunting parallel programming class. Please rest assured that you made the right choice with this class. Compute devices no longer come in nonparallel types, and parallel programming is more important than ever.

How This Book Is Organized

It was our goal to introduce OpenACC as one way to express parallelism in small incremental steps to not overwhelm you. Here is how the book is organized.

• The first three chapters serve as an introduction to the concepts behind OpenACC and the tools for OpenACC development.

• Chapters 4–7 take you through your first real-world OpenACC programs and reveal the magic behind compiling OpenACC programs, thereby introducing additional concepts.

• Chapter 8–10 cover advanced topics, such as alternatives to OpenACC, low-level device interaction, multidevice programming, and task parallelism.

• Chapters 11 and 12 serve as a look into the diverse field of research in OpenACC implementation of potential new language features.
Most chapters contain a few exercises at the end to review the chapter contents. The solutions as well as the code examples used in the chapters are available online at https://github.com/OpenACCUserGroup/openacc_concept_strategies_book. This URL also presents a slide deck for each chapter to help teachers kick-start their classes.

Join OpenACC User Group and Register on Informit.com

Because it has been our pleasure to work with so many friends from the (extended) OpenACC family on this book, we also want to extend an invitation to you to join the OpenACC User Group and become a family member as well. You can find access to all OpenACC resources at https://www.openacc.org.

Register your copy of OpenACC™ for Programmers at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available (you must log in or create a new account). Enter the product ISBN (9780134694283) and click Submit. Once the process is complete, you will find any available bonus content under “Registered Products.” If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.
This book would not have been possible without a multitude of people who are not listed as contributors. The idea of the book was originated by Duncan Poole, the longtime OpenACC president. He wanted to offer not only online material but also really old-fashioned printed material so that students and interested readers can use this book to uncover the magic of parallel programming with OpenACC. When Duncan could not pursue this idea any further, he passed the torch to Sunita and Guido, and the result is now finally in all our hands.

We are eternally grateful to our helpers in keeping the flame going:

- Pat Brooks and Julia Levites from NVIDIA, for bringing us in contact with publishers and answering questions that require inside knowledge

- Laura Lewin and Sheri Replin—our editors—and production manager Rachel Paul and copy editor Betsy Hardinger for guiding us safely through the maze of actually generating a book

- Our chapter reviewers: Mat Colgrove, Rob Faber, Kyle Friedline, Roberto Gomperts, Mark Govett, Andreas Herten, Maxime Hugues, Max Katz, John Larson, Junjie Li, Sanhu Li, Meifeng Lin, Georgios Markomanolis, James Norris, Sergio Pino, Ludwig Schneider, Thomas Schwinge, Anne Severt, and Peter Steinbach

Some chapters would not have been possible without assistants to the contributors. Many thanks to Lingda Li, Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato, Akihiro Tabuchi, and Taisuke Boku!

Have we already thanked our contributors who went with us on this crazy journey, never let us down, and kept delivering content on time?

THANK YOU all.

—Sunita Chandrasekaran and Guido Juckeland
This page intentionally left blank
Randy Allen is director of advanced research in the Embedded Systems Division of Mentor Graphics. His career has spanned research, advanced development, and start-up efforts centered around optimizing application performance. Dr. Allen has consulted on or directly contributed to the development of most HPC compiler efforts. He was the founder of Catalytic, Inc. (focused on compilation of MATLAB for DSPs), as well as a cofounder of Forte Design Systems (high-level synthesis). He has authored or coauthored more than 30 papers on compilers for high-performance computing, simulation, high-level synthesis, and compiler optimization, and he coauthored the book *Optimizing Compilers for Modern Architectures*. Dr. Allen earned his AB summa cum laude in chemistry from Harvard University, and his PhD in mathematical sciences from Rice University.

James Beyer is a software engineer in the NVIDIA GPU software organization. He is currently a cochair of the OpenMP accelerator subcommittee as well as a member of both the OpenMP language committee and the OpenACC technical committee. Prior to joining NVIDIA, James was a member of the Cray compiler optimization team. While at Cray he helped write the original OpenACC specification. He was also a member of the Cray OpenMP and OpenACC runtime teams. He received his PhD in CS/CE from the University of Minnesota.

Sunita Chandrasekaran is an assistant professor and an affiliated faculty with the Center for Bioinformatics & Computational Biology (CBCB) at the University of Delaware. She has coauthored chapters in the books *Programming Models for Parallel Computing*, published by MIT Press, and *Parallel Programming with OpenACC*, published by Elsevier, 2016. Her research areas include exploring high-level programming models and its language extensions, building compiler and runtime implementations and validating and verifying implementations and their conformance to standard specifications. She is a member of the OpenMP, OpenACC, and SPEC HPG communities. Dr. Chandrasekaran earned her PhD in computer science engineering from Nanyang Technological University (NTU), Singapore, for creating a high-level software stack for FPGAs.
Barbara Chapman is a professor of applied mathematics and statistics, and of computer science, at Stony Brook University, where she is also affiliated with the Institute for Advanced Computational Science. She also directs Computer Science and Mathematics Research at the Brookhaven National Laboratory. She has performed research on parallel programming interfaces and the related implementation technology for more than 20 years and has been involved in several efforts to develop community standards for parallel programming, including OpenMP, OpenACC, and OpenSHMEM. Her group created the OpenUH compiler that enabled practical experimentation with proposed extensions and implementation techniques. Dr. Chapman has coauthored more than 200 papers and two books. She obtained a BSc with 1st Class Honours in mathematics from the University of Canterbury, and a PhD in computer science from Queen’s University of Belfast.

Robert Dietrich studied information systems technology at the TU Dresden and graduated in 2009. His focus as a junior researcher and his diploma thesis were about programming of FPGAs in the context of high-performance computing. After graduation, he worked as research associate on the support of hardware accelerators and coprocessors in known performance tools such as Score-P and Vampir. His research interests revolve around programming and analysis of scalable heterogeneous applications.

Lin Gan is a postdoctoral research fellow in the Department of Computer Science and Technology at Tsinghua University, and the assistant director of the National Supercomputing Center in Wuxi. His research interests include HPC solutions to geo-science applications based on hybrid platforms such as CPUs, FPGAs, and GPUs. Gan has a PhD in computer science from Tsinghua University and has been awarded the ACM Gordon Bell Prize (2016), the Tsinghua-Inspur Computational Geosciences Youth Talent Award (2016), and the most significant paper award by FPL 2015.

David Gutzwiller is a software engineer and head of high-performance computing at NUMECA-USA, based in San Francisco, CA. David joined NUMECA in 2009 after completion of a graduate degree in aerospace engineering from the University of Cincinnati. His graduate research was focused on the automated structural design and optimization of turbomachinery components. Since joining NUMECA, David has worked on the adaptation of the FINE/Turbo and FINE/Open CFD solvers for use in a massively parallel, heterogeneous environment. In collaboration with industry users, David has constructed frameworks for intelligently driven design and optimization leveraging leadership supercomputers at scale.
Oscar Hernandez is a staff member of the Computer Science and Mathematics Division at Oak Ridge National Laboratory. He works on the programming environment for the next-generation leadership class machines for NCCS and OLCF. His research focuses on programming languages and compilers, static analysis tools, performance tools integration, and optimization techniques for parallel languages, especially OpenMP and accelerator directives. He represents ORNL at the OpenACC and OpenMP ARB standard organizations and collaborates with the SPEC/HPG effort.

Adrian Jackson is a research architect at EPCC, The University of Edinburgh. He leads the Intel Parallel Computing Centre at EPCC and specializes in optimizing applications on very large resources and novel computing hardware. He is also active in support and training for high-performance computing, leading the HPC Architectures course in EPCC’s MSc program in HPC and running a range of training courses on all aspects of parallel computing around the United Kingdom.

Guido Juckeland just founded the Computational Science Group at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany. He is responsible for designing and implementing end-to-end research IT-workflows together with scientists and IT experts at HZDR. His research focuses on better usability and programmability for hardware accelerators and application performance monitoring as well as optimization. He is the vice-chair of the SPEC High Performance Group (HPG), an active member of the OpenACC technical and marketing committees, and also contributes to the OpenMP tools working group. Guido earned his PhD in computer science from Technische Universität Dresden, Germany, for his work on trace-based performance analysis for hardware accelerators.

Jiri Kraus has more than eight years’ experience in HPC and scientific computing. As a senior developer technology engineer with NVIDIA, he works as a performance expert for GPU HPC applications. At the NVIDIA Julich Applications Lab and the Power Acceleration and Design Center (PADC), Jiri collaborates with developers and scientists from the Julich Supercomputing Centre, the Forschungszentrum Julich, and other institutions in Europe. A primary focus of his work is multi-GPU programming models. Before joining NVIDIA, Jiri worked on the parallelization and optimization of scientific and technical applications for clusters of multicore CPUs and GPUs at Fraunhofer SCAI in St. Augustin. He holds a Diploma in mathematics (minor in computer science) from the University of Cologne, Germany.
Jeff Larkin is a software engineer in NVIDIA’s Developer Technology group, where he specializes in porting and optimizing HPC applications to accelerated computing platforms. Additionally, Jeff is involved in the development and adoption of the OpenMP and OpenACC specifications and has authored many book chapters, blog posts, videos, and seminars to advocate use of directive-based parallel programming. Jeff lives in Knoxville, TN, with his wife and son. Prior to joining NVIDIA, he was a member of the Cray Supercomputing Center of Excellence at Oak Ridge National Laboratory, where he worked with many application development teams including two Gordon Bell prize-winning teams. He has a Master’s degree in computer science from the University of Tennessee, and a Bachelor’s degree in computer science from Furman University.

Jinpil Lee received his master’s and PhD degree in computer science from University of Tsukuba in 2013, under the supervision of Prof. Mitsuhisa Sato. From 2013 to 2015, he was working at KISTI, the national supercomputing center in Korea, as a member of the user support department. Since 2015, he has worked at Riken AICS in Japan as a member of the programming environment research team. He has been doing research on parallel programming models and compilers for modern cluster architectures such as manycore clusters. Currently he is working on developing a programming environment for the next flagship Japanese supercomputer.

Seyong Lee is a computer scientist in the Computer Science and Mathematics Division at Oak Ridge National Laboratory. His research interests include parallel programming and performance optimization in heterogeneous computing environments, program analysis, and optimizing compilers. He received his PhD in electrical and computer engineering from Purdue University, West Lafayette, Indiana. He is a member of the OpenACC Technical Forum, and he has served as a program committee/guest editor/external reviewer for various conferences, journals, and research proposals.

Graham Lopez is a researcher in the Computer Science and Mathematics Division at Oak Ridge National Laboratory, where he works on programming environments preparation with the application readiness teams for the DOE CORAL and Exascale computing projects. Graham has published research in the areas of computational materials science, application acceleration and benchmarking on heterogeneous systems, low-level communication APIs, and programming models. He earned his MS in computer science and PhD in physics from Wake Forest University. Prior to joining ORNL, he was a research scientist at Georgia Institute of Technology, where he worked on application and numerical algorithm optimizations for accelerators.
About the Contributors

Sameer Shende serves as the director of the Performance Research Laboratory at the University of Oregon and the president and director of Paratools, Inc. He has helped develop the TAU Performance System, the Program Database Toolkit (PDT), and the HPCLinux distribution. His research interests include performance instrumentation, measurement and analysis tools, compiler optimizations, and runtime systems for high-performance computing systems.

Xiaonan (Daniel) Tian is a GPU compiler engineer at the PGI Compilers and Tools group at NVIDIA, where he specializes in designing and implementing languages, programming models, and compilers for high-performance computing. Prior to joining NVIDIA, Daniel worked with Dr. Barbara Chapman in her compiler research group at the University of Houston, where he received a PhD degree in computer science. Prior to his work at the University of Houston, Daniel worked on GNU tool-chain porting for a semiconductor company. His research includes computer architectures, directive-based parallel programming models including OpenACC and OpenMP, compiler optimization, and application parallelization and optimization.

Christian Trott is a high-performance computing expert with extensive experience in designing and implementing software for GPU and MIC compute clusters. He earned a Dr. rer. nat. from the University of Technology Ilmenau in theoretical physics focused on computational material research. As of 2015 Christian is a senior member of the technical staff at the Sandia National Laboratories. He is a core developer of the Kokkos programming model, with a large role in advising applications on adopting Kokkos to achieve performance portability for next-generation supercomputers. Additionally, Christian is a regular contributor to numerous scientific software projects including LAMMPS and Trilinos.

John Urbanic is a parallel computing scientist at the Pittsburgh Supercomputing Center, where he spends as much time as possible implementing extremely scalable code on interesting machines. These days that means a lot of MPI, OpenMP, and OpenACC. He now leads the Big Data efforts, which involve such things as graph analytics, machine learning, and interesting file systems. John frequently teaches workshops and classes on all of the above and is most visible as the lead for the NSF XSEDE Monthly Workshop Series, the Summer Boot Camp, and the International HPC Summer School on HPC Challenges in Computational Sciences. John graduated with physics degrees from Carnegie Mellon University (BS) and Pennsylvania State University (MS) and still appreciates working on applications that simulate real physical phenomena. He is an honored recipient of the Gordon Bell Prize but still enjoys working on small embedded systems and real-time applications for various ventures. Away from the keyboard he swaps into a very different alter ego.
Chapter 4

Using OpenACC for Your First Program

John Urbanic, Pittsburgh Supercomputing Center

In this chapter, you’ll parallelize real code. You will start with code that does something useful. Then you’ll consider how you might use OpenACC to speed it up. You will see that reducing data movement is key to achieving significant speedup, and that OpenACC gives you the tools to do so. By the end of the chapter you will be able to call yourself an OpenACC programmer—a fledgling one, perhaps, but on your way. Let’s jump right into it.

4.1 Case Study

You are reading a book about OpenACC programming, so it’s a safe bet the authors are fans of this approach to parallel programming. Although that’s a perfectly sensible thing, it has its dangers. It is tempting for enthusiasts to cherry-pick examples that make it seem as if their favored technology is perfect for everything. Anyone with experience in parallel programming has seen this before. We are determined not to do that here.

Our example is so generically useful that it has many applications, and it is often used to demonstrate programming with other parallel techniques as well, such as the somewhat related OpenMP and the very different MPI. So, rest assured, we haven’t rigged the game.
Another reason we prefer this example is that both the "science" and the numerical method are intuitive. Although we will solve the Laplace equation for steady-state temperature distribution using Jacobi iteration, we don’t expect that you immediately know what that means.

Let’s look at the physical problem. You have a square metal plate. It is initially at zero degrees. This is termed, unsurprisingly, the initial conditions. You will heat two of the edges in an interesting pattern where you heat the lower-right corner (as pictured in Figure 4.1A) to 100 degrees. You control the two heating elements that lead from this corner such that they go steadily to zero degrees at their farthest edge. The other two edges you will hold at zero degrees. These four edges constitute the boundary conditions.

For the metal plate, you would probably guess the ultimate solution should look something like Figure 4.1B.

You have a very hot corner, a very cold corner, and some kind of gradient in between. This is what the ultimate, numerically solved solution should look like.

If you are wondering whether this is degrees centigrade or Fahrenheit, or maybe Kelvin, you are overthinking the problem. If you have a mathematical method or numerical background, you should be interested to know that the equation that governs heat distribution is the Laplace equation:

\[\nabla^2 T = 0 \]

Although this equation has many interesting applications, including electrostatics and fluid flow, and many fascinating mathematical properties, it also has a straightforward and intuitive meaning in this context. It simply means that the value of interest (in our case, temperature) at any point is the average of the neighbor’s
values. This makes sense for temperature; if you have a pebble and you put a cold stone on one side and a hot stone on the other, you’d probably guess that the pebble would come to the average of the two. And in general, you would be right.

4.1.1 SERIAL CODE

Let’s represent the metal plate using a grid, which becomes a typical two-dimensional array in code. The Laplace equation says that every point in the grid should be the average of the neighbors. This is the state you will solve for.

The simulation starting point—the set of initial conditions—is far from this. You have zero everywhere except some big jumps along the edges where the heating elements are. You want to end up with something that resembles the desired solution.

There are many ways you can find this solution, but let’s pick a particularly straightforward one: Jacobi iteration. This method simply says that if you go over your grid and set each element equal to the average of the neighbors, and keep doing this, you will eventually converge on the correct answer. You will know when you have reached the right answer because when you make your averaging pass, the values will already be averaged (the Laplace condition) and so nothing will happen. Of course, these are floating-point numbers, so you will pick some small error, which defines “nothing happening.” In this case, we will say that when no element changes more than one-hundredth of a degree, we are done. If that isn’t good enough for you, you can easily change it and continue to a smaller error.

Your serial algorithm looks like this at the core.

```c
for(i = 1; i <= HEIGHT; i++) {
    for(j = 1; j <= WIDTH; j++) {
        Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
                                 + Temperature_previous[i-1][j]
                                 + Temperature_previous[i][j+1]
                                 + Temperature_previous[i][j-1]);
    }
}
```

Here it is in Fortran:

```fortran
do j=1,width
    do i=1,height
        temperature(i,j) = 0.25* (temperature_previous(i+1,j) &
                                  + temperature_previous(i-1,j) &
                                  + temperature_previous(i,j+1) &
                                  + temperature_previous(i,j-1))
    enddo
endo
do
Note that the C and Fortran code snippets are virtually identical in construction. This will remain true for the entire program.

This nested loop is the guts of the method and in some sense contains all the science of the simulation. You are iterating over your metal plate in both dimensions and setting every interior point equal to the average of the neighbors (i.e., adding together and dividing by 4). You don’t change the very outside elements; those are the heating elements (or boundary conditions). There are a few other items in the main iteration loop as it repeats until convergence. Listing 4.1 shows the C code, and Listing 4.2 shows the Fortran code.

Listing 4.1  C Laplace code main loop

```c
while (worst_dt > TEMP_TOLERANCE) {
 for(i = 1; i <= HEIGHT; i++) {
 for(j = 1; j <= WIDTH; j++) {
 Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
 + Temperature_previous[i-1][j]
 + Temperature_previous[i][j+1]
 + Temperature_previous[i][j-1]);
 }
 }
 worst_dt = 0.0;
 for(i = 1; i <= HEIGHT; i++){
 for(j = 1; j <= WIDTH; j++){
 worst_dt = fmax(fabs(Temperature[i][j] -
 Temperature_previous[i][j]),
 worst_dt);
 Temperature_previous[i][j] = Temperature[i][j];
 }
 }
 if((iteration % 100) == 0) {
 track_progress(iteration);
 }
 iteration++;
}
```
The important addition is that you have a second array that keeps the temperature data from the last iteration. If you tried to use one array, you would find yourself using some updated neighboring elements and some old neighboring elements from the previous iteration as you were updating points in the grid. You need to make sure you use only elements from the last iteration.

While you are doing this nested loop copy to your backup array (and moving all this data around in memory), it’s a good time to look for the worst (most changing) element in the simulation. When the worst element changes only by 0.01 degree, you know you are finished.
It might also be nice to track your progress as you go; it’s much better than staring at a blank screen for the duration. So, every 100 iterations, let’s call a modest output routine.

That is all there is to it for your serial Laplace Solver. Even with the initialization and output code, the full program clocks in at fewer than 100 lines. (See Listing 4.3 for the C code, and Listing 4.4 for Fortran.)

Listing 4.3 Serial Laplace Solver in C

```c
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

#define WIDTH 1000
#define HEIGHT 1000
#define TEMP_TOLERANCE 0.01

double Temperature[HEIGHT+2][WIDTH+2];
double Temperature_previous[HEIGHT+2][WIDTH+2];

void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {
 int i, j;
 int iteration=1;
double worst_dt=100;
struct timeval start_time, stop_time, elapsed_time;

gmtimeofday(&start_time,NULL);
initialize();

while (worst_dt > TEMP_TOLERANCE){
 for(i = 1; i <= HEIGHT; i++)
 for(j = 1; j <= WIDTH; j++) {
 Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j] + Temperature_previous[i-1][j] + Temperature_previous[i][j+1] + Temperature_previous[i][j-1]);
 }

 worst_dt = 0.0;
 for(i = 1; i <= HEIGHT; i++)
 for(j = 1; j <= WIDTH; j++){
 worst_dt = fmax(worst_dt, fabs(Temperature[i][j] - Temperature_previous[i][j]));
 }
}
```
worst_dt);
    Temperature_previous[i][j] = Temperature[i][j];

    if((iteration % 100) == 0) {
        track_progress(iteration);
    }

    iteration++;
}

gmtimeofday(&stop_time,NUL);
timersub(&stop_time, &start_time, &elapsed_time);

printf("\nMax error at iteration %d was %f\n", iteration-1, worst_dt);
printf("\nTotal time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

void initialize() {
    int i,j;

    for(i = 0; i <= HEIGHT+1; i++) {
        for (j = 0; j <= WIDTH+1; j++) {
            Temperature_previous[i][j] = 0.0;
        }
    }

    for(i = 0; i <= HEIGHT+1; i++) {
        Temperature_previous[i][0] = 0.0;
        Temperature_previous[i][WIDTH+1] = (100.0/HEIGHT)*i;
    }

    for(j = 0; j <= WIDTH+1; j++) {
        Temperature_previous[0][j] = 0.0;
        Temperature_previous[HEIGHT+1][j] = (100.0/WIDTH)*j;
    }
}

void track_progress(int iteration) {
    int i;

    printf("--------- Iteration number: %d ----------\n", iteration);
    for(i = HEIGHT-5; i <= HEIGHT; i++) {
        printf("[%d,%d]: %5.2f \n", i, i, Temperature[i][i]);
    }
    printf("\n");
}
Listing 4.4 Fortran version of serial Laplace Solver

program serial
  implicit none

  integer, parameter :: width=1000
  integer, parameter :: height=1000
  double precision, parameter :: temp_tolerance=0.01

  integer :: i, j, iteration=1
  double precision :: worst_dt=100.0
  real :: start_time, stop_time

  double precision, dimension(0:height+1,0:width+1) :: &
    temperature, temperature_previous

  call cpu_time(start_time)

  call initialize(temperature_previous)

  do while ( worst_dt > temp_tolerance )
    do j=1,width
      do i=1,height
        temperature(i,j) = 0.25* (temperature_previous(i+1,j)&
                                  + temperature_previous(i-1,j)&
                                  + temperature_previous(i,j+1)&
                                  + temperature_previous(i,j-1))
      enddo
    enddo
    worst_dt=0.0
    do j=1,width
      do i=1,height
        worst_dt = max( abs(temperature(i,j) – &
                           temperature_previous(i,j)),&
                        worst_dt )
        temperature_previous(i,j) = temperature(i,j)
      enddo
    enddo
    if( mod(iteration,100).eq.0 ) then
      call track_progress(temperature, iteration)
    endif
    iteration = iteration+1
  enddo

  call cpu_time(stop_time)

  print*, 'Max error at iteration ', iteration-1, ' was ', &
  worst_dt
  print*, 'Total time was ',stop_time-start_time, ' seconds.'
end program serial
4.1.2 COMPILING THE CODE

Take a few minutes to make sure you understand the code fully. In addition to the
main loop, you have a small bit of initialization, a timer to aid in optimizing, and a
basic output routine. This code compiles as simply as

pgcc laplace.c

Here it is for the PGI compiler:

pgcc laplace.f90
We use PGI for performance consistency in this chapter. Any other standard compiler would work the same. If you run the resulting executable, you will see something like this:

```
....
---------- Iteration number: 3200 ----------
.... [998,998]: 99.18 [999,999]: 99.56 [1000,1000]: 99.86
---------- Iteration number: 3300 ----------
.... [998,998]: 99.19 [999,999]: 99.56 [1000,1000]: 99.87
```

Max error at iteration 3372 was 0.009995
Total time was 21.344162 seconds.

The output shows that the simulation looped 3,372 times before all the elements stabilized (to within our 0.01 degree tolerance). If you examine the full output, you can see the elements converge from their zero-degree starting point.

The times for both the C and the Fortran version will be very close here and as you progress throughout optimization. Of course, the time will vary depending on the CPU you are using. In this case, we are using an Intel Broadwell running at 3.0 GHz. At the time of this writing, it is a very good processor, so our eventual speedups won’t be compared against a poor serial baseline.

This is the last time you will look at any code outside the main loop. You will henceforth exploit the wonderful ability of OpenACC to allow you to focus on a small portion of your code—be it a single routine, or even a single loop—and ignore the rest. You will return to this point when you are finished.

### 4.2 Creating a Naive Parallel Version

In many other types of parallel programming, you would be wise to stare at your code and plot various approaches and alternative algorithms before you even consider starting to type. With OpenACC, the low effort and quick feedback allow you to dive right in and try some things without much risk of wasted effort.

#### 4.2.1 FIND THE HOT SPOT

Almost always the first thing to do is find the **hot spot**: the point of highest numerical intensity in your code. A profiler like those you’ve read about will quickly locate and
rank these spots. Often, as is the case here, it is obvious where to start. A large loop is a big flag, and you have two of them within the main loop. This is where we focus.

4.2.2 IS IT SAFE TO USE KERNELS?

The biggest hammer in your toolbox is the kernels directive. Refer to Chapter 1 for full details on kernels. Don’t resist the urge to put it in front of some large, nested loop. One nice feature about this directive is that it is safe out of the box; until you start to override its default behavior with additional directives, the compiler will be able to see whether there are any code-breaking dependencies, and it will make sure that the device has access to all the required data.

4.2.3 OPENACC IMPLEMENTATIONS

Let’s charge ahead and put kernels directives in front of the two big loops. The C and Fortran codes become the code shown in Listings 4.5 and 4.6.

Listing 4.5 C Laplace code main loop with kernels directives

```c
while (worst_dt > TEMP_TOLERANCE) {

 #pragma acc kernels
 for(i = 1; i <= HEIGHT; i++) {
 for(j = 1; j <= WIDTH; j++) {
 Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
 + Temperature_previous[i-1][j]
 + Temperature_previous[i][j+1]
 + Temperature_previous[i][j-1]);
 }
 }

 worst_dt = 0.0;

 #pragma acc kernels
 for(i = 1; i <= HEIGHT; i++) {
 for(j = 1; j <= WIDTH; j++) {
 worst_dt = fmax(fabs(Temperature[i][j]-
 Temperature_previous[i][j]),
 worst_dt);
 Temperature_previous[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
}
```
Listing 4.6 Fortran Laplace code main loop with kernels directives

```fortran
do while (worst_dt > temp_tolerance)
 !$acc kernels
 do j=1,width
 do i=1,height
 temperature(i,j) = 0.25*(temperature_previous(i+1,j) &
 + temperature_previous(i-1,j) &
 + temperature_previous(i,j+1) &
 + temperature_previous(i,j-1))
 enddo
 enddo
 !$acc end kernels
 worst_dt=0.0
 !$acc kernels
 do j=1,width
 do i=1,height
 worst_dt = max(abs(temperature(i,j) - &
 temperature_previous(i,j)), &
 worst_dt)
 temperature_previous(i,j) = temperature(i,j)
 enddo
 enddo
 !$acc end kernels
 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif
 iteration = iteration+1
enddo
```

The compilation is also straightforward. All you do is activate the directives using, for example, the PGI compiler, for the C version:

```
pgcc -acc laplace.c
```

Or for the Fortran version:

```
pgf90 -acc laplace.f90
```

If you do this, the executable pops right out and you can be on your way. However, you probably want to verify that your directives actually did something. OpenACC’s defense against compiling a loop with dependencies or other issues is to simply ignore the directives and deliver a “correct,” if unaccelerated, executable. With the PGI compiler, you can request feedback on the C OpenACC compilation by using this:

```
pgcc -acc -Minfo=acc laplace.c
```
Here it is for Fortran:

```
pgf90 -acc -Minfo=acc laplace.f90
```

Similar options are available for other compilers. Among the informative output, you see the “Accelerator kernel generated” message for both of your kernels-enabled loops. You may also notice that a reduction was automatically generated for `worst_dt`. It was nice of the compiler to catch that and generate the reduction automatically. So far so good.

If you run this executable, you will get something like this:

```
. . .
-------- Iteration number: 3200 --------
. . .[998,998]: 99.18 [999,999]: 99.56 [1000,1000]: 99.86
-------- Iteration number: 3300 --------
. . .[998,998]: 99.19 [999,999]: 99.56 [1000,1000]: 99.87
```

Max error at iteration 3372 was 0.009995

```
Total time was 35.258830 seconds.
```

This was executed on an NVIDIA K80, the fastest GPU available at the time of this writing. For our efforts thus far, we have managed to slow down the code by about 70 percent, which is not impressive at all.

### 4.3 Performance of OpenACC Programs

Why did the code slow down? The first suspect that comes to mind for any experienced GPU programmer is data movement. The device-to-host memory bottleneck is usually the culprit for such a disastrous performance as this. That indeed turns out to be the case.

You could choose to use a sophisticated performance analysis tool, but in this case, the problem is so egregious you can probably find enlightenment with something as simple as the PGI environment profiling option:

```
export PGI_ACC_TIME=1
```

If you run the executable again with this option enabled, you will get additional output, including this:

```
Accelerator Kernel Timing data
main NVIDIA devicenum=0
time(us): 11,460,015
```
The problem is not subtle. The line numbers 31 and 41 correspond to your two kernels directives. Each resulted in a lot of data transfers, which ended up using most of the time. Of the total sampled time of 11.4 seconds (everything is in microseconds here), well over 10s was spent in the data transfers, and very little time in the compute region. That is no surprise given that we can see multiple data transfers for every time a kernels construct was actually launched. How did this happen?

Recall that the kernels directive does the safe thing: When in doubt, copy any data used within the kernel to the device at the beginning of the kernels region, and off at the end. This paranoid approach guarantees correct results, but it can be expensive. Let’s see how that worked in Figure 4.2.

What OpenACC has done is to make sure that each time you call a device kernels, any involved data is copied to the device, and at the end of the kernels region, it is all copied back. This is safe but results in two large arrays getting copied back and forth twice for each iteration of the main loop. These are two 1,000 × 1,000 double-precision arrays, so this is (2 arrays) × (1,000 × 1,000 grid points/array) × (8 bytes/grid point) = 16MB of memory copies every iteration.
4.4 AN OPTIMIZED PARALLEL VERSION

Note that we ignore \texttt{worst} \texttt{dt}. In general, the cost of copying an 8-byte scalar (non-array) variable is negligible.

4.4 An Optimized Parallel Version

So far we have marked the parallel regions for acceleration. Now it is time to introduce data regions to optimize data transfers.

4.4.1 Reducing Data Movement

Now that you have identified the problem, you know you must apply some data directives. OpenACC lets you completely control the residency of the data. It has routines to set up data during program initialization, to automatically migrate data going into or out of any region or block of code, and to update at any given point in the code. So don’t worry about what OpenACC can do. Worry about what you want to do.
Pause here and see whether you can come up with a strategy to minimize data movement. What directives does that strategy translate to? Feel free to experiment with the code on your own before reading the answer, which is provided later.

In general, we want the entire simulation to be executed on the device. That is certainly the ideal case and eliminates all the data transfer costs. But most of the time you can’t achieve that objective; the entire problem may not fit in device memory, there may be portions of the code that must execute on the host, or I/O may be required at some point.

But let’s start with that objective in mind. If you load your data onto the device at the beginning of the main loop, when do you next need it on the host? Think the first iteration through as a start: there is no reason for the two big arrays to return to the host between the two kernels. They can stay on the device.

What about worst_dt? It is insignificant in size, so you don’t care what it does as long as it is available when needed, as per the default kernels behavior. Once you start to use data regions, you uncouple the execution from the data regions and could prevent unnecessary data movement. Because there is no real performance gain, you won’t override the default by including it in any data directives. It will continue to be set to 0 on the host, get to a maximum in the second nested loop (actually a reduction from all of the “local maximums” found by each processing element (PE) on the device), and get copied back to the host so that it can be checked as the condition to continue the while loop every iteration. Again, this is all default kernels behavior, so we don’t worry about the details.

After that, you run into the output routine. It isn’t an issue for the first 100 iterations, so let’s ignore it for a moment and continue around the loop for the second iteration. At the start of the second iteration, you would like both big arrays to be on the device. That is just where you left them! So it looks as if you can just keep the data on the device between iterations of the while loop. The obvious data directives would be data copy clauses applied to the while loop.

```c
#pragma acc data copy(Temperature_previous, Temperature)
while (worst_dt > TEMP_TOLERANCE) {
 ...
}
```

This is indeed the key. It will significantly speed up the code, and you will get the right answer at the end.
However, you do need to address the `track_progress()` output routine that gets invoked every 100 iterations. You need for the temperature to be back on the host at that point. Otherwise, the host copy of `temperature` will remain at the initial condition of all zeros until the data copy happens at the termination of the `while` loop, which is the end of the data region. Many programmers encounter this oversight when they apply the `data` directives, run the code to a quick completion in the expected 3,372 iterations, and assume victory, only to notice that all of their printed output has been zeros. Make sure you understand exactly how this happens, because it is a good example of what can occur when we decouple the data and execution regions using `data` directives.

The fix is easy. You just need an `update` at that point.

```c
// C
... if((iteration % 100) == 0) {
 #pragma acc update host(Temperature)
 track_progress(iteration);
} ...
```

```fortran
! Fortran
... if (mod(iteration,100).eq.0) then
 !$acc update host(temperature)
 call track_progress(temperature, iteration)
endif
...
```

It is important to realize that all the tools for convenient data management are already in OpenACC. Once you decide how you want to manage the data conceptually, some combination of `data copy, declare, enter/exit, and update` clauses should allow you to accomplish that as you wish. If you find yourself fighting the scope or blocking of your code to make the directives match your wishes, take a breath and ask yourself whether the other clauses will allow you to accomplish this more naturally.

### 4.4.2 EXTRA CLEVER TWEAKS

There is one more tweak you can apply to the code before you declare victory. If you look a little more carefully at the code, you might notice that you don’t actually need to copy both big arrays into the `while` loop. It happens that `temperature_previous` is the array that is initialized in the initialization routine, and `temperature` uses these values to set itself in the first iteration. So you don’t need to copy it in.
Continuing with that line of thought, you don't need for both arrays to exit the while loop with the final data; one will suffice. Once again, temperature_previous has the correct values so that you can abandon temperature on the device. This means that temperature is really just a temporary array used on the device, and there is no need to copy it in or out. That is exactly what the data create clause is for.

Note that this last optimization is really not very important. The big win was recognizing that you were copying the large arrays needlessly every iteration. You were copying two large arrays into and out of each of the two kernels each loop:

\[(2 \text{ arrays}) \times (\text{in and out}) \times (2 \text{ pairs of loops}) \times (3,372 \text{ iterations}) = 26,976 \text{ copies}\]

Getting rid of all those transfers with a data copy was the big win. Using data create instead of copy for the Temperature array saved one copy in at the beginning of the entire run, and one copy out at the end. It wasn't significant. So don't feel bad if you didn't spot that opportunity.

Likewise, using an update for the track progress routine caused 33 transfers over the course of the run. It was a quick fix for the problem. In comparison to the original 26,876 copies, having 33 remaining is nothing. However now that you are down to one copy in and one copy out for the whole run, it does have an impact on the order of 5 percent of the new and significantly reduced total run time. Given the huge performance improvement you have achieved, you may not care, but for those of you seeking perfection, see Exercise 1 at the end of the chapter.

### 4.4.3 FINAL RESULT

Listing 4.7 shows the final C version of the OpenACC enabled routine, and Listing 4.8 shows the Fortran version.

**Listing 4.7** Final C OpenACC Laplace code main loop

```c
#pragma acc data copy(Temperature_previous), create(Temperature)
while (worst_dt > TEMP_TOLERANCE) {
 #pragma acc kernels
 for(i = 1; i <= HEIGHT; i++) {
 for(j = 1; j <= WIDTH; j++) {
 Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
 + Temperature_previous[i-1][j]
 + Temperature_previous[i][j+1]
 + Temperature_previous[i][j-1]);
 }
 }
 worst_dt = 0.0;
}
```


#pragma acc kernels
for(i = 1; i <= HEIGHT; i++){
  for(j = 1; j <= WIDTH; j++){
    worst_dt = fmax( fabs(Temperature[i][j]-
        Temperature_previous[i][j]),
        worst_dt); 
    Temperature_previous[i][j] = Temperature[i][j];
  }
}
if((iteration % 100) == 0) {
  #pragma acc update host(Temperature)
  track_progress(iteration);
}
iteration++;
}

Listing 4.8 Final Fortran OpenACC Laplace code main loop

!$acc data copy(temperature_previous), create(temperature)
do while ( worst_dt > temp_tolerance )

!$acc kernels
do j=1,width
do i=1,height
  temperature(i,j) =0.25*(temperature_previous(i+1,j)&
    + temperature_previous(i-1,j)&
    + temperature_previous(i,j+1)&
    + temperature_previous(i,j-1))
enddo
enddo
!$acc end kernels
worst_dt=0.0

!$acc kernels
do j=1,width
do i=1,height
  worst_dt = max( abs(temperature(i,j) – &
    temperature_previous(i,j)), &
    worst_dt )
  temperature_previous(i,j) = temperature(i,j)
enddo
enddo
!$acc end kernels
if( mod(iteration,100).eq.0 ) then
  !$acc update host(temperature)
  call track_progress(temperature, iteration)
endif
iteration = iteration+1
enddo
!$acc end data
You compile exactly as before. If you again use the compiler verbose information option (`-Minfo=acc` for PGI), you see that the generated copies are now outside the `while` loop, as intended. Here is the result.

```plaintext
. . .
. . .
---------- Iteration number: 3200 ----------
. . .[998,998]: 99.18 [999,999]: 99.56 [1000,1000]: 99.86
---------- Iteration number: 3300 ----------
. . .[998,998]: 99.19 [999,999]: 99.56 [1000,1000]: 99.87
Max error at iteration 3372 was 0.009995
Total time was 1.054768 seconds.
```

This is much better. Table 4.1 sums it up. With only a handful of directives, you have managed to speed up the serial code more than 20 times. But you had to think about your data migration in order to get there. This is typical of accelerator development.

<table>
<thead>
<tr>
<th>OPTIMIZATION</th>
<th>TIME (SECONDS)</th>
<th>SPEEDUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>kernels directive</td>
<td>35.2</td>
<td>0.60</td>
</tr>
<tr>
<td>data directives</td>
<td>1.05</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Table 4.1 Laplace code performance

To review, you looked for the large loops and placed kernels directives there. Then (prompted by terrible performance) you thought about how the data should really flow between the host and the device. Then you used the appropriate data directives to make that happen. Further performance improvements are possible (see the exercises), but you have achieved the lion’s share of what can be done.

## 4.5 Summary

Here are all the OpenACC advantages you have used in this chapter.

- **Incremental optimization.** You focused on only the loop of interest here. You have not had to deal with whatever is going on in `track_progress()` or any other section of the code. We have not misled you with this approach. It will usually remain true for an 80,000-lines of code program with 1,200 subroutines. You may be able to focus on a single computationally intense section of the code to great effect. That might be 120 lines of code instead of our 20, but it sure beats the need to understand the dusty corners of large chunks of legacy code.
• **Single source.** This code is still entirely valid serial code. If your colleagues down the hall are oblivious to OpenACC, they can still understand the program results by simply ignoring the funny-looking comments (your OpenACC directives)—as can an OpenACC-ignorant compiler. Or a compute platform without accelerators. This isn’t guaranteed to be true; you can utilize the OpenACC API instead of directives, or rearrange your code to make better use of parallel regions; and these types of changes will likely break the pure serial version. But it can be true for many nontrivial cases.

• **High level.** We have managed to avoid any discussion of the hardware specifics of our accelerator. Beyond the acknowledgment that the host-device connection is much slower than the local memory connection on either device, we have not concerned ourselves with the fascinating topic of GPU architecture at all.

• **Efficient.** Without an uber-optimized low-level implementation of this problem using CUDA or OpenCL, you have to take our word on this, but you could not do much better even with those much more tedious approaches. You can exploit the few remaining optimizations using some advanced OpenACC statements. In any event, the gains will be small compared with what you have already achieved.

• **Portable.** This code should run efficiently on any accelerated device. You haven’t had to embed any platform-specific information. This won’t always be true for all algorithms, and you will read more about this later in Chapter 7, “OpenACC and Performance Portability.”

With these advantages in mind, we hope your enthusiasm for OpenACC is growing. At least you can see how easy it is to take a stab at accelerating a code. The low risk should encourage you to attempt this with your applications.

**4.6 Exercises**

1. We noted that the `track_progress` routine introduces a penalty for the periodic array copies that it initiates. However, the output itself is only a small portion of the full array. Can you utilize the `data` directive’s array-shaping options to minimize this superfluous copy (see Section 1.3.4)?

2. The sample problem is small by most measures. But it lends itself easily to scaling. How large a square plate problem can you run on your accelerator? Do so, and compare the speedup relative to the serial code for that case.
3. This code can also be scaled into a 3D version. What is the largest 3D cubic case you can accommodate on your accelerator?

4. We have focused only on the main loop. Could you also use OpenACC directives on the initialize and output routines? What kinds of gains would you expect?

5. If you know OpenMP, you may see an opportunity here to speed up the host (CPU) version of the code and improve the serial performance. Do so, and compare to the speedup achieved with OpenACC.
A

Abstraction
  abstract thinking required for parallelism, 81
  in C++, 137
  in Kokkos, 141
  TBB as C++ abstraction layer, 141
acc_async_noval, 191
acc_async_sync, 181, 191
acc_device, 5, 124
acc_device_default, 206
acc_device_nvidia, 206
acc_deviceptr, 13, 179, 182
acc_get_cuda_stream, 180–181, 194
acc_get_device_type, 205–206
acc_hosteptr, 180
acc_map_data, 182–184
ACC_MULTICORE environment variable, 129–130
acc_notify, 52, 56
ACC_NUM_CORES=8 environment flag, 130
acc_set_cuda_stream, 180–181, 195
acc_set_device, 206–207
acc_set_device_num, 205–206, 209, 212
acc_set_device_type, 124

Acceptors
  affinity, 209
  architectural characteristics, 34
  calling OpenACC from native device code, 182
  compiler transformation of nested loops for, 224
  computational fluid dynamics case study, 114–116
  internode communication, 259
  multidevice programming, 204
  OpenACC support, 177
  PGI compiler generating executable for, 123
  programming accelerated clusters. See XcalableACC (XACC)

Sunway Taihulight memory model, 217–218
  tightly coupled, 261–262
Advanced Institute for Computational Science (AICS). See XcalableACC (XACC)
Affine memories, of accelerator, 124
Affinity, accelerator devices, 209
AICS (Advanced Institute for Computational Science). See XcalableACC (XACC)
Aliasing, compiler limitations, 90–91
align directive, in XMP, 255–256
allgather clause, internode communication in XMP, 256–257
Allinea DDT, for debugging, 52–53
Allocations. See Data allocations
Altera Offline compiler (AOC)$^2$, use as backend compiler, 242
Altera Stratix V GS DS FPGA, 248
Amdahl’s law, 103
AOC$^2$ (Altera Offline compiler), use as backend compiler, 242
API routines
  overview of, 5
  for target platforms, 180–181
Applications
  analysis of OpenACC applications, 36–37
  analyzing performance, 196–198
  analyzing program performance (Laplace Solver), 71–73
  creating program and applying OpenACC to it, 59–61
  HeteroIR code of MM program, 240–241
  viewing runtime behavior of, 36
  viewing temporal evolution of a program, 39
Architectures
  common characteristics, 34
  portability, 123–124
  targeting multiple, 128–130
INDEX

Arithmetic units, coordinating functional units of hardware, 82–83

Arrays
  data clauses, 12–13
  data layout for performance portability, 126
  iterating over multidimensional, 17
  optimization of data locality, 111–112
  programming with XACC directives, 258–259
  reducing to scalar, 86–87
  shaping, 18

async clause
  acc_async_noval, 191
  acc_async_sync, 181, 191
  adding directives to work queues, 191
  making pipelining operation asynchronous, 202–204

Asynchronous operations
  adding directives to work queues, 191
  advanced OpenACC options, 187–190
  making pipelining operation asynchronous, 201–204

Asynchronous programming
  asynchronous work queues, 190–191
  defined, 190
  interoperating with CUDA streams, 194–195
  joining work queues, 193–194
  overview of, 190
  wait directive, 191–192

Asynchronous work queues
  advanced OpenACC options, 190–191
  interoperability with OpenACC, 194–195

atomic directive
  for atomic operations, 105–106
  types of data management directives, 4

Atomic operations, maximize on-device computation, 105–106

auto clause, in loop parallelization, 27–28

Auxiliary induction variable substitution, compiling OpenACC, 93

AXPBY (vector addition)
  CUDA implementation of MiniFE, 159
  OpenACC implementation of MiniFE, 157
  OpenMP implementation of MiniFE, 158
  serial implementation of MiniFE, 156
  TBB implementation of MiniFE, 165

B
  Backslash (\), in directive syntax, 3

Bakery counter, dynamic scheduling of workers, 94–95

Baseline CPU implementation, in CFD case study, 113

Baseline profiling
  analyzing application performance, 196–198
  of asynchronous pipelining operation, 203–204
  as best practice, 101
  of translation of OpenACC to FPGAs, 239–243

bcast directive, communication directives, 259

Benchmarks. See also Baseline profiling
  evaluating loop scheduling performance of OpenUH, 231
  evaluating OpenACC translation to FPGAs, 248
  evaluating XACC performance on HA-PACS using Himeno, 262–264
  evaluating XACC performance on HA-PACS using NPB-CG, 264–267
  research topics in OpenUH, 234

Best practices, programming
  applied to thermodynamic fluid property table, 112–118
  general guidelines, 102–105
  maximize on-device computation, 105–108
  optimize data locality, 108–112
  overview of, 101–102
  summary and exercises, 118–119

bisection function, in CFD solver, 113–114

Block recycling, CUDA implementation of MiniFE, 161

Blocks, of code
  blocking data movement, 200–201
  blocking the computation, 198–199

Bottlenecks, detecting, 37

Boundary conditions, 60

Branches, removing from code section, 95

Bugs
  identifying, 51–53
  user errors in compiling OpenACC, 95–97

Bulldozer multicore
  running OpenACC over, 130–131
  targeting multiple architectures, 129–130

C

C++ AMP
  comparing programming models, 136, 143
  data allocations, 153
  features, 140
  mapping simple loop to parallel loop, 145
  tightly nested loops, 148
INDEX

C/C++
abstractions and templates, 137
array shape specification, 112
async clause example, 191
compiling code for Laplace Solver, 70
creating naive parallel version of Laplace Solver, 69
OpenACC built on top of, 1, 35
optimized version of Laplace Solver, 76–77
using Jacobi iteration to locate Laplace condition, 61–65
wait directive examples, 191–194
XMP code example, 254
C++11, 151–152
C++17
comparing programming models, 136
concept coverage list in comparing programming models, 143
mapping simple loop to parallel loop, 145
programming features, 142
C2R (complex-to-real), Discrete Fourier Transform, 176
cache directive
overview of, 13–14
types of data management directives, 4
Cache, Sunway Taihulight data management, 221
Call-graph profiles, 39, 102–103
Call-path profiles, 39
CFD solver case study. See Computational fluid dynamics (CFD) solver, case study
CG solve. See Conjugate gradient solver (CG solve)
Chief processors, 94–95
Clauses. See also by individual types
categories of, 4–5
data clauses, 12–13
Code
advantages of OpenACC code, 79
blocking data movement, 200–201
blocking the computation, 198–199
calling native device code from OpenACC, 174–181
calling OpenACC from native device code, 181–182
compiling code for Laplace Solver, 67–68
creating naive parallel versions, 68–71
creating serial code for Laplace Solver, 61–67
portability, 125–126
preparation for compiling OpenACC, 92–93
removing all branches in section of, 95
Code editors, spotting syntax errors, 33
collapse keyword, loop directive, 24–25
Complex-to-real (C2R), Discrete Fourier Transform, 176
Compatibility. See Interoperability
Compilers
compiler transformation of nested loops for accelerators, 224
compiling code for Laplace Solver, 67–68, 70–71
compiling code for specific platforms, 123
compiling optimized version of Laplace Solver, 78
directives, 3
identifying bugs, 52
OpenACC supported, 35–36
OpenACC-to-FPGA translation, 242–243
OpenUH. See OpenUH compiler runtime implementation of XACC, 260–262
viewing runtime behavior of applications, 36
what compilers can do, 88–90
what compilers cannot do, 90–91
Compiling OpenACC
applying OpenACC for parallelism, 87–88
challenges of parallelism, 82
code preparation for, 92–93
coordinating functional units of hardware, 82–83
handling reductions, 86–87
mapping loops, 83–85
memory hierarchy, 85–86
overview of, 81
scheduling, 93–94
serial code, 94–95
summary and exercises, 97–99
user errors, 95–97
what compilers can do, 88–90
what compilers cannot do, 90–91
Complexity, benefits of computers, 81
Components, parallel programming, 142–143
Computation
blocking, 198–199
maximization of on-device computation, 103
offloading, 34
Computational fluid dynamics (CFD) solver, case study
acceleration with OpenACC, 114–116
baseline CPU implementation, 113
optimized data locality, 116–117
performance study, 117–118
Computational fluid dynamics (CFD) solver, case study (continued)
profiling, 113–114
thermodynamic tables, 112–113
Compute constructs
directive extension for compute unit replication, 243–245
evaluating OpenACC translation to FPGAs, 250
kernel directive, 6–7
loop directive, 8–9
overview of, 4, 6
parallel directive, 8
routine directive, 9–11
Computers. See also Supercomputers, 81
Computing processing element (CPE)
Sunway Taihulight data management, 219
Sunway Taihulight execution model, 218–219
Sunway Taihulight memory model, 217–218
in SW26010 manycore CPU, 216–217
Conditions, initial and boundary, 60
Conjugate gradient solver (CG solve)
CUDA implementation of MiniFE, 159
implementation of MiniFE, 163
OpenMP implementation of MiniFE, 158
overview of, 155
performance comparisons for MiniFE case, 168–169
temporary vectors required for MiniFE, 156
Constructs, OpenACC, 3
Control flow clauses
checks on user errors, 95
clause categories, 5
copy clause, data clauses, 13, 76, 220, 260
copyin clause, data clauses, 13, 124
copyout clause, data clauses, 124
CORAL benchmark suite, 127–128
CPE. See Computing processing element (CPE)
CPUs. See also Processors
assigning MPI rank to, 209–210
baseline implementation, 113
data layout for performance portability, 126
multicore parallelizations, 127
SW26010 manycore CPU, 216–217
Cray compiler
compiling for specific platforms, 123
OpenACC support, 35–36
create clause, data clauses, 12–13, 76
CUDA
calling CUDA routines from OpenACC, 184–185
comparing programming models, 136, 143
data allocations, 153
data transfers, 154
evaluating loop scheduling performance of OpenUH, 231
evaluating performance of MiniFE case, 167
Fast Fourier Transform (FTT) library, 174
features, 139
hierarchical parallelism (nontightly nested loops), 150
interoperability with OpenACC, 194–195
mapping OpenACC terminology to, 228–229
mapping simple loop to parallel loop, 144
MiniFE solver case study, 159–162
OpenARC support, 242
OpenCL compared with, 139–140
programming NVIDIA GPUs with, 261
streams, 180–181
tightly nested loops, 148
translating OpenACC offload region into CUDA code, 225
D
Data
acquiring performance data, 38–39
blocking data movement, 200–201
clauses, 4, 12–13
events, 40
managing in Sunway Taihulight, 219–222
optimizing locality. See Optimization of data locality
portability, 126
recording and presenting performance data, 39
XACC data distribution, 255–256
Data allocations
alignment and, 179–180
comparing parallel programming models, 152–153
runtime awareness of, 182
data directive
data copy, 76, 220, 260
data create, 76
data distribute, 255–256
enter/exit directives, 4, 111
Laplace code performance, 78
for managing data, 4
reducing data movement, 73–75
shared memory systems and, 124
types of data clauses, 12–13
XACC memory model, 257

Data environment
- cache directive, 13–14
data clauses, 12–13
data directive, 12
overview of, 11

Data-flow analysis, scalar precursor of dependency, 89–90

Data lifetimes
- data environment concepts, 11
  for unstructured data, 111

Data parallelism. See also Parallelism
- comparing programming models, 136
defined, 188

Data regions
- creating optimized parallel version of Laplace Solver, 73–78
  data environment concepts, 11
  in OpenACC memory model, 124
  structured and unstructured, 12

Data reuse
- maximizing, 103
  present clause and, 110–111

Data transfer
- comparing parallel programming models, 153–155
  minimizing, 103–104, 109–110
  OpenMP implementation of MiniFE requiring, 158–159
  runtime implementation of XACC, 261
  Sunway Taihulight data management, 219, 221–222

DDT, debugging using Allinea DDT, 52–53

Debugging, 51–53
- declare clause, data clauses, 4
  delete clause, data clauses, 13

Dependencies
- asynchronous work queues exposing, 190
  comparing dependent and independent tasks, 189–190
  operations as series of, 188
  what compilers can do, 89–90

Descriptive directives, vs. prescriptive, 96–97
- device clauses
  acc_device, 5, 124
  acc_device_default, 206

acc_device_nvidia, 206
acc_deviceptr, 13, 179, 182

Devices
- management functions of API routines, 5
  maximization of on-device computation, 103

DFT (Discrete Fourier Transform), 174–177

Direct memory access (DMA)
- moving data between memories, 124
  MPI with, 211–213
  MPI without, 210–211
  Sunway Taihulight data management, 220
  in SW26010 manycore CPU, 216–217

Directive-based high-performance reconfigurable computing
- baseline translation of OpenACC to FPGAs, 239–243
  evaluating OpenACC translation to FPGAs, 248–252
  OpenACC extensions and optimizations for FPGAs, 243–247
  overview of, 237–239
  summary of OpenACC translation to FPGAs, 252

Directive-based programming models, 1

Directives. See also by individual types
- comparing kernels with parallel, 18–21
  compilers and, 35
  compiling OpenACC, 92
  efficiency of, 96
  internode communication in XMP, 256–257
  OpenACC syntax, 3
  prescriptive vs. descriptive, 96
  programming with XACC directives, 258–259
  types of, 3–4

Discrete Fourier Transform (DFT), 174–177

Discrete memories, types of system memory, 125

distribute directive, data distribution and work mapping in XMP, 255–256

Divergence, checks on user errors, 95

DMA. See Direct memory access (DMA)

Dot product
- CUDA implementation of MiniFE, 159
- OpenACC implementation of MiniFE, 157
- reduction example, 86–87
- serial implementation of MiniFE, 156
- TBB implementation of MiniFE, 166

Dynamic scheduling
- scheduling parallel and vector code, 94
  of workers using bakery counter, 94–95
INDEX

E
EBS (Event-based sampling), supported TAU performance system, 49–50
Efficiency
advantages of OpenACC code, 79
directive strategy and, 96
enqueue, events indicating runtime of device tasks, 41
enter data directive
data lifetimes and, 111
types of data management directives, 4
Environment variables
ACC_MULTICORE, 129–130
OpenACC specification, 3
overview of, 5
Errors, user errors in compiling OpenACC, 95–97
Event-based instruments, data acquisition for performance analysis, 38–39
Event-based sampling (EBS), supported TAU performance system, 49–50
Event callbacks, 40
Event categories, 40
Exascale systems. See also Supercomputers
criteria requirements, 238
Portability as goal in, 122
Execution model
Sunway Taihulight, 218–219
XMP, 255
Execution policy, C++17, 142
exit data directive
data lifetimes and, 111
types of data management directives, 4
Explicit parallelism, XMP support for, 256
Expressions
storing expression value in temporary, 85
symbolic subscript expressions, 90
Extensions
C++ AMP extension of C++, 136, 140
OpenACC extensions and optimizations for FPGAs, 243–247
programming languages, 137
F
Fast Fourier Transforms (FTTs), 174–177
Field-programmable gate arrays (FPGAs)
baseline translation of OpenACC to, 239–243
evaluating OpenACC translation to, 248–252
in high-performance computing, 237–238
OpenACC extensions and optimizations for, 243–247
summary of OpenACC translation to, 252
FIFO (first-in, first out), work queues, 190
Filtering images, using Discrete Fourier Transform, 174–177
First-class concepts
implementation of MiniFE, 164
parallel loops, 143
First-in, first out (FIFO), work queues, 190
firstprivate, variables, 11, 88
Flags, for OpenACC compiler types, 35
Flat function profiles, 39, 102
Floating-point operations (FLOPS), for compute-bound kernels, 123
Fortran
array shape specification, 112
comparing programming models, 136, 143
compiling code for Laplace Solver, 70–71
creating naive parallel version of Laplace Solver, 70
mapping simple loop to parallel loop, 145
OpenACC built on top of, 35
optimized version of Laplace Solver, 77
programming features in Fortran 2008, 142
using Jacobi iteration to locate Laplace condition, 61–63, 66–67
FPGAs. See Field-programmable gate arrays (FPGAs)
FFTs (Fast Fourier Transforms), 174–177
Functional units, coordinating functional units of hardware, 82–83
G
gang clause
levels of parallelism, 21–22
mapping parallelism to hardware, 23–24
overview of, 22–23
Gangs
applying OpenACC for parallelism, 87–88
distributing iterations across, 125–126
principles governing loop performance, 96
scheduling parallel loops, 227–230
GCC\textsuperscript{2}, OpenACC support, 36
generate clause
acc_get_cuda_stream, 180–181, 194
acc_get_device_type, 205–206
Ghost zone, defined, 200
Global view, XMP, 254

gmove directive, internode communication in XMP, 257

GNU compiler, 123

GPUDirect, runtime implementation of XACC, 261–262

GPUs
assigning MPI rank to, 209–210
CUDA support for NVIDIA GPUs, 139
demonstrating portability using OpenACC, 123
evaluating loop scheduling performance of OpenUH, 230
layout for performance portability, 126
mapping parallelism to hardware, 23–24
running OpenACC over NVIDIA K20X GPU, 130–131
targeting multiple architectures, 128–130

HA-PACS
evaluating XACC performance on, 262–267
runtime implementation of XACC, 261

HACC mk microkernel
OpenACC programming model for, 122
overview of, 127–128
targeting multiple architectures, 128–130

Halo, 200

Hardware
coordinating functional units of, 82–83
mapping loops onto parallel hardware, 83–85
mapping parallelism to, 23–24

Hardware description language (HDLs), 239
HeteroIR, 240–241
Hierarchical parallelism (nontightly nested loops), 148–151

High-performance computing (HPC)
field-programmable gate arrays in, 237
framework for directive-based. See Directive-based high-performance reconfigurable computing
MPI in, 208–209
parallel programming models and, 135
portability as goal in, 121

Himeno, evaluating XACC performance on HA-PACS, 262–264

host
acc_hosteptr, 180
host_data directive, 177–180, 211–212

Hot spot
finding, 68–69
identifying, 102–103

HPC. See High-performance computing (HPC)

I
IC (integrated circuit), in FPGAs, 239
IDE (integrated development environment), spotting syntax errors, 33

if clause, maximize on-device computation, 107–108

If conversion, removing all branches in section of code, 95
Images, filtering using Discrete Fourier Transform, 174–177
Incremental acceleration and verification, as best practice, 101, 104

Independence, comparing dependent and independent tasks, 189–190

independent clause, adding to loop directive, 25–27

Initial conditions, 60
Initialization, functions of API routines, 5

Innovation/research
data management in Sunway Taihulight, 219–222
evaluating loop scheduling performance of OpenUH, 230–234
execution model in Sunway Taihulight, 218–219
framework for directive-based HPC. See Directive-based high-performance reconfigurable computing
loop-scheduling transformation in OpenUH, 226–230
memory model in Sunway Taihulight, 217–218
OpenUH compiler infrastructure, 224–225
overview of, 215
programming accelerated clusters. See XcalableACC (XACC)
research topics related to OpenUH, 234–235
summary of Sunway system, 223
Sunway Taihulight, 215–216
SW26010 manycore CPU, 216–217

Instructions, coordinating functional units of hardware, 82–83

int bisection function, in CFD solver, 113–114
int main function, in CFD solver, 113–114

Integrated circuit (IC), in FPGAs, 239
Integrated development environment (IDE), spotting syntax errors, 33
Intermediate representation (IR)
  HeteroIR, 240
  OpenUH infrastructure, 224
Internode communication, XMP, 256–257, 259
Interoperability
  advanced topics, 182–185
  calling native device code from OpenACC, 174–181
  calling OpenACC from native device code, 181–182
  with CUDA streams, 194–195
  overview of, 173
  summary and exercises, 185–186
interpolate method, LookupTable2D class, 113–114
Interthread block parallelism, in CUDA, 139
IR (intermediate representation)
  HeteroIR, 240
  OpenUH infrastructure, 224
Iteration. See Loops

J
Jacobi iteration
  evaluating XACC performance on HA-PACS, 262
  locating Laplace condition, 61–67
  solving Laplace equation for steady-state temperature distribution, 60
K
Kernel configuration bound check elimination, OpenACC extensions and optimizations for FPGAs, 243–244
Kernel launch events, 40
Kernel vectorization, OpenACC extensions and optimizations for FPGAs, 243–244
kernels directive
  analyzing program performance (Laplace Solver), 72–73
  applying to OpenACC case study (Laplace Solver), 69–71
  calling CUDA device routines, 184–185
  evaluating OpenACC translation to FPGAs, 251
  extension for kernel vectorization, 244–245
  kernel loop scheduling, 228–230
  kernel-pipelining transformation, 245–247
  Laplace code performance, 78
mapping parallel regions to hardware, 24
maximize on-device computation, 106–107
overview of, 6–7
parallel directive compared with, 18–21
reduction clause, 28–30
types of compute directives, 4
Knights Landing (KNL), 123–124
  comparing programming models, 136, 143
  data allocations, 153
  data layout for performance portability, 126
  data transfers, 155
  features, 140–141
  hierarchical parallelism (nontightly nested loops), 151
  mapping simple loop to parallel loop, 145
  MiniFE solver case study, 163–165
  parallel reductions, 146
  performance comparisons for MiniFE case, 167
  task parallelism, 151–152
  tightly nested loops, 148

L
Languages. See Programming languages
Laplace Solver case study
  analyzing program performance, 71–73
  compiling code, 67–68, 70–71
  creating naive parallel versions, 68–71
  creating optimized parallel version, 73–78
  creating program and applying OpenACC to it, 59–61
  evaluating loop scheduling performance of OpenUH, 231–233
  solving Laplace equation for steady-state temperature distribution, 60
  summary and exercises, 78–80
  using Jacobi iteration to locate Laplace condition, 61–67
Libraries
  passing device pointers to host libraries, 211–212
  routines in OpenACC specification, 3
Local view, XMP, 254
Locality awareness, research topics in OpenUH, 234
Locality of data, optimizing. See Optimization of data locality
LookupTable2D class, 113–114
loop directive
  adding auto clause to, 27–28
adding independent clause to, 25–27
adding seq clause to, 27
in code generation, 125
collapse keyword, 24–25
combining with parallel for parallelization, 20
data distribution and work mapping in XMP, 255–256
executing loops on MIMD hardware, 87–88
internode communication in XMP, 256–257
levels of parallelism, 21–22
overview of, 8–9
reduction clause, 28–30
runtime implementation of XACC, 260
types of compute directives, 4
work sharing in XMP, 258
Loop parallelization. See also Parallel loops:
Parallelistm
collapse keyword, 24–25
independent clause, 25–27
kernels vs. parallel loops, 18–21
levels of parallelism, 21–23
loop construct options, 24
mapping parallelism to hardware, 23–24
overview of, 17–18
reduction clause, 28–30
seq and auto clauses, 27–28
summary and exercises, 30–31
Loop unrolling, 243–244, 250
Loops
applying to CFD solver. See Computational fluid
dynamics (CFD) solver, case study
creating optimized parallel version of Laplace Solver, 75–78
distributing iterations across gangs, workers, or
vectors, 125–126
evaluating loop scheduling performance of
OpenUH, 230–234
extension for loop unrolling, 244
loop-scheduling transformation in OpenUH, 226–230
mapping to parallel hardware, 83–85
nontightly nested loops (hierarchical
parallelism), 148–151
parallel loops, 143–145
principles governing performance of, 96
symbolic loop bounds and steps creating issues
for compilers, 91
tightly nested loops, 147
using Jacobi iteration to locate Laplace
condition, 61–67
M
Management processing element (MPE)
Sunway Taihulight execution model, 218–219
Sunway Taihulight memory model, 217–218
in SW26010 manycore CPU, 216–217
map, acc_map_data, 182–184
Mapping
loops onto parallel hardware, 83–85
OpenACC terminology to CUDA, 228–229
parallelism to hardware, 23–24
simple loop to parallel loop, 144–145
work in XACC, 255–256
Matrix multiplication (MM)
evaluating loop scheduling performance of
OpenUH, 231–233
in OpenACC, 240
Maximize on-device computation
atomic operations, 105–106
as best practice, 101
kernels and parallel constructs, 106–107
overview of, 103
runtime tuning and if clause, 107–108
Memory
hierarchy in compiling OpenACC, 85–86
management functions of API routines, 5
Memory models
portability, 124–125
Sunway TaihuLight, 217–218
XACC, 257
Message Passing Interface (MPI)
combining OpenACC with, 187
with direct memory access, 211–213
interprocess communication, 37
overview of, 208–210
runtime implementation of XACC, 261–264
without direct memory access, 210–211
MIMD. See Multiple-instruction multiple data (MIMD)
MiniFE solver case study
CUDA implementation, 159–162
implementation, 163–165
OpenACC implementation, 157–158
OpenMP implementation, 158–159
overview of, 155
performance comparisons, 167–169
INDEX

MiniFE solver case study (continued)
  serial implementation, 156–157
  TBB implementation, 165–167
MM (Matrix multiplication)
  evaluating loop scheduling performance of
    OpenUH, 231–233
  in OpenACC, 240
MPE. See Management processing element (MPE)
MPI. See Message Passing Interface (MPI)
Multicore systems
  ACC_MULTICORE environment variable,
    129–130
  OpenACC programming model for, 122
Multidevice programming
  MPI and, 208–210
  MPI with direct memory access, 211–213
  MPI without direct memory access, 210–211
  multidevice pipeline, 204–208
  overview of, 204
Multithreading, performance analysis, 37

N
NAS parallel benchmarks, evaluating XACC performance on HA-PACS, 264–267
Nested loops
  compiler transformation for accelerators, 224
  iterating over multidimensional array, 17
  nontightly nested loops (hierarchical parallelism), 148–151
  offloading computation intensive, 226
  tightly nested loops, 147
  using Jacobi iteration to locate Laplace condition, 61–67
Non-uniform memory access (NUMA), 23–24
  nontightly nested loops (hierarchical parallelism), 150
  notify, acc_notify, 52, 56
NPB-CG kernel, evaluating XACC performance on
  HA-PACS, 264–267
num, ACC_NUM_CORES=8 environment flag, 130
NUMA (non-uniform memory access), 23–24
NVIDIA GPUs
  assigning MPI rank to, 210
  CUDA support, 139
  demonstrating portability using OpenACC, 123–124
  interoperating OpenACC asynchronous work queues with CUDA streams, 194–195
  programming, 261
  running OpenACC over NVIDIA K20X GPU, 130–131
  targeting multiple architectures, 128–130
NVIDIA profilers, 40–43
  nvprof, NVIDIA command-line profiler, 41–43
  nvvp, NVIDIA Visual Profiler, 41–43

O
Oak Ridge Leadership Computing Facility (OLCF), 130
Oak Ridge National Laboratory (ORNL), 237
Offloading
  computation, 34, 226
  performance analysis, 37
  translating OpenACC offload region into CUDA code, 225
OLCF (Oak Ridge Leadership Computing Facility), 130
OMNI compiler
  runtime implementation of XACC, 260–262
  as source-to-source compiler, 259–260
Open Accelerator Research Compiler (Open ARC)
  baseline translation of OpenACC to FPGAs, 240–241
  FPGA prototype system built on, 238
OpenACC, advanced options
  async clause, 191
  asynchronous operations, 187–190
  asynchronous work queues, 190–191
  blocking data movement, 200–201
  blocking the computation, 198–199
  interoperating with CUDA streams, 194–195
  joining work queues, 193–194
  making pipelining operation asynchronous, 201–204
  MPI and, 208–210
  MPI with direct memory access, 211–213
  MPI without direct memory access, 210–211
  multidevice pipeline, 204–208
  multidevice programming, 205
INDEX

overview of, 187
software pipelining, 195–198
summary and exercises, 213
wait clause, 191–192
OpenACC, comparing parallel programming languages
concept coverage list, 143
data allocations, 153
data transfers, 154
features, 138
implementation of MiniFE solver, 157–158
mapping simple loop to parallel loop, 144
multidevice image-filtering code, 206–208
nontightly nested loops (hierarchical parallelism), 150
overview of, 136
parallel reductions, 146
performance comparisons for MiniFE case, 167
tightly nested loops, 147
OpenACC, specification basics
API routines and environment variables, 5
cache directive, 13–14
classes, 4–5
compute constructs, 6
data clauses, 12–13
data directives, 12
data environment, 11
directives, 3–4
kernels, 6–7
loop construct, 8–9
overview of, 1–2
parallel directive, 8
routine directive, 9–11
summary and exercises, 14–15
syntax, 3
OpenCL
comparing programming models, 136
data allocations, 153
data transfers, 155
features, 139–140
mapping simple loop to parallel loop, 145
nontightly nested loops (hierarchical parallelism), 150
OpenARC support, 242
tightly nested loops, 148
OpenMP
comparing programming models, 136
concept coverage list, 143
data allocations, 153
data transfers, 154
features, 138
implementation of MiniFE solver, 158–159
mapping simple loop to parallel loop, 144
multidevice image-filtering code, 206–208
nontightly nested loops (hierarchical parallelism), 150
parallel reductions, 146
performance comparisons for MiniFE case, 167
task parallelism, 151–152
tightly nested loops, 147
OpenUH compiler
evaluating loop scheduling performance, 230–234
infrastructure, 224–225
loop-scheduling transformation, 226–230
research topics, 234–235
Optimization
advantages of OpenACC code, 79
compiling optimized version of Laplace Solver, 75–78
incremental optimization as advantage of OpenACC code, 78
Optimization of data locality
array shaping, 111–112
as best practice, 101
computational fluid dynamics case study, 116–117
data lifetimes for unstructured data, 111
data reuse and present clause, 110–111
locality awareness research in OpenUH, 234
minimum data transfer, 109–110
overview of, 103–105, 108
ORNL (Oak Ridge National Laboratory), 237
P
pack/packin/packout, Sunway Taihulight data management, 221–222
parallel directive
kernels directive compared with, 18–21
mapping parallel regions to hardware, 24
overview of, 8
reduction clause, 28–30
types of compute directives, 4
Parallel loops
combining with reduction, 145–147
Parallel loops (continued)
comparing parallel programming models, 143–145
implementation of MiniFE, 163
loop-scheduling transformation in OpenUH, 226–227
making pipelining operation asynchronous, 202–204
runtime implementation of XACC, 260
TBB implementation of MiniFE, 165
work sharing in XMP, 258
Parallel programming
C++ AMP extension, 140
C++17, 142
case study–MiniFE solver. See MiniFE solver case study
Cuda, 139
data allocations, 152–153
data transfers, 153–155
Fortran, 141
hierarchical parallelism (nontightly nested loops), 148–151
OpenACC, 138
OpenCL, 139–140
OpenMP, 138
overview of, 135
parallel loops, 143–145
parallel reductions, 145–147
programming models, 135–137
RAJA, 141
summary and exercises, 170–171
task parallelism, 151–152
Threading Building Blocks (TBB), 141
tightly nested loops, 147
Parallel reductions
comparing parallel programming models, 145–147
implementation of MiniFE, 164
TBB implementation of MiniFE, 166–167
Parallelism
abstract thinking required for, 81
applying OpenACC for, 87–88
challenges of, 82
effective parallelism, 92
functions of API routines, 5
gang, worker, and vector clauses, 22–23
kernels vs. parallel loops, 18–21
loop-level, 17–18
loop-scheduling transformation in OpenUH, 227–230
mapping to hardware, 23–24
maximize on-device computation, 106–107
multicore parallelizations, 127
principles governing loop performance, 96
scheduling parallel and vector code, 93–94
three levels of, 21–22
XMP support for explicit parallelism, 256
ParaProf profiler, 48–49, 51
Partially shared memories, types of system memory, 125
Partitioned global address space (PGAS) programming model, 142
PathScale compiler, 36
PDT, source analysis tool, 48
PEACH2, 261
Pen, holding processors in, 94–95
PerfExplorer, for profile data mining, 48
Performance
acquiring performance data, 38–39
analysis layers and terminology, 37–38
analysis of OpenACC applications, 36–37
comparisons, 167–169
computational fluid dynamics (CFD) case study, 117–118
evaluating loop scheduling of OpenUH, 230–234
evaluating OpenACC translation to FPGAs, 248–252
evaluating XACC on HA-PACS, 262–267
NVIDIA profiler, 40–43
profiling interface, 39–40
recording and presenting data, 39
Score-P infrastructure, 44–48
TAU system, 48–51
tools supported by OpenACC, 40
PGAS (partitioned global address space) programming model, 142
PGI compiler
analyzing application performance, 196–197
compiling code for Laplace Solver, 67–68, 70–71
compiling optimized version of Laplace Solver, 78
generating executable for accelerator platforms, 123
OpenACC support, 35–36
PGI_ACC_TIME environment variable, 36, 71–73
PGPProf profiler
analyzing application performance, 196–198
making pipelining operation asynchronous, 203–204
timeline for multidevice software pipelined
image filter, 199

Pipelining. See Software pipelining

Portability
advantages of OpenACC code, 79
challenges, 121–123
code generation for, 125–126
data layout for, 126
HACCmk microkernel, 127–128
memory systems and, 124–125
of OpenACC, 1–2
overview of, 121
refactoring code for, 126
running OpenACC over Bulldozer multicore, 130–131
running OpenACC over NVIDIA K20X GPU, 130–131
summary and exercises, 132–134
targeting multiple architectures, 128–130
types of target architectures, 123–124
#pragma acc routine, 115
Prescriptive directives, vs. descriptive, 96

data reuse, 110–111
optimization of data locality, 110–111
overview of, 13

private clause
compiling OpenACC, 92
specifying scalar variables as private, 88
variables, 11
Privatization, simultaneous semantics and, 86

Procedures, uses of routine directive, 9–10

Process parallelization, performance analysis, 37

Processors
baseline CPU implementation, 113
coordinating functional units of hardware, 82–83
holding all but chief processor in a pen, 94–95
mapping parallelism to hardware, 23–24
SW26010 manycore CPU, 216–217
Profiling
analyzing application performance, 196–198
best practices, 102
computational fluid dynamics case study, 113–114
data recording via, 39
interface supported by OpenACC, 39–40
NVIDIA profiler, 40–43
Score-P performance infrastructure, 44–48
TAU performance system, 48–51
tools supported by OpenACC, 40

Program counters, 82–83

Programming
asynchronous programming, 190
best practices. See Best practices, programming
as series of steps, 187

Programming languages
comparing capabilities of, 136
extensions, 137
XMP. See XcalableMP (XMP)

Programming models
C++ AMP extension, 140
C++17, 142
CUDA, 139
Fortran 2008, 142
OpenACC, 138
OPENCL, 139–140
OPENMP, 138
overview of, 135–137
RAJA, 141
Threading Building Blocks (TBB), 141
XACC. See XcalableACC (XACC)

Programming tools
acquiring performance data, 38–39
architectural characteristics, 34
bug identification, 51–53
compilers, 35–36
NVIDIA profiler, 40–43
overview of, 33
performance analysis layers and terminology, 37–38
performance analyzers, 36–37
profiling interface, 39–40
recording and presenting performance data, 39
Score-P performance infrastructure, 44–48
summary and exercises, 53–57
TAU performance system, 48–51
tools supported by OpenACC, 40

Programs. See Applications

Q
Queues. See Work queues
R2C (Real-to-complex), Discrete Fourier Transform, 176
RAJA
  comparing programming models, 136, 143
  features, 141
  mapping simple loop to parallel loop, 145
  parallel reductions, 146
  tightly nested loops, 148
Real-to-complex (R2C), Discrete Fourier Transform, 176
reduction clause
  adding to kernels, parallel, or loop directive, 28–30
  compiling OpenACC, 92–93
  internode communication in XMP, 256–257
Reductions
  communication directives, 259
  parallel reductions. See Parallel reductions
  of vector or array to scalar, 86–87
Refactoring code, for portability, 126
reflect, communication directives, 259
Research. See Innovation/research
Reuse. See Data reuse
routine directive
  acc routine, 115
  overview of, 9–11
  types of compute directives, 4
Routines
  API routines, 5
  API routines for target platforms, 180–181
  calling CUDA device routines from OpenACC kernels, 184–185
  identifying hot spots, 102–103
  querying/setting device type, 205–206
Runtime tuning, maximize on-device computation, 107–108
S
Sampling
  data acquisition for performance analysis, 38
  with TAU performance system, 48
Scalar expansion, simultaneous semantics and, 86
Scalars
  data-flow analysis as precursor of dependency, 89–90
  reducing vector or array to, 86–87
  specifying variables as private, 88
Scheduling
  dynamic scheduling of workers using bakery counter, 94–95
  evaluating loop scheduling performance of OpenUH, 230–234
  loop-scheduling transformation in OpenUH, 226–230
  mapping loops, 83–85
  parallel and vector code, 93–94
Score-P performance infrastructure, 44–48
Scratch pad memory (SPM)
  Sunway Taihulight data management, 219, 221
  Sunway Taihulight execution model, 219
  Sunway Taihulight memory model, 217–218
  in SW26010 manycore CPU, 216–217
Semantics
  parallel hardware, 83–84
  simultaneous, 84
seq clause
  adding to loop directive, 27–28
  for sequential execution of loop, 9
Sequential loops
  adding seq clause to loop directive, 27–28
  executing, 9
  vs. simultaneous or parallel loops, 87
Serial code
  compiling OpenACC, 94–95
  implementation of MiniFE solver, 156–157
  using Jacobi iteration to locate Laplace condition, 61–67
Serialization, of tasks, 190
set clause
  acc_set_cuda_stream, 180–181, 195
  acc_set_device, 206–207
  acc_set_device_num, 205–206, 209, 212
  acc_set_device_type, 124
Shadow elements, arrays, 258
Shared memories
  C++17, 142
  HACCmk microkernel, 127–128
  OpenMP, 138
  types of system memory, 125
Shut down, functions of API routines, 5
SIMD (Single-instruction multiple-data), 83
SIMT (Single-instruction multiple-thread), 83
Simultaneous semantics, 84
Single-instruction multiple-data (SIMD), 83
Single-instruction multiple-thread (SIMT), 83
Single-program multiple-data (SPMD), 255
Single source, advantages of OpenACC code, 79
SMs (Streaming multiprocessors), 83
Software pipelining
evaluating OpenACC translation to FPGAs, 251
kernel-pipelining transformation, 245–247
making pipelining operation asynchronous, 201–204
multidevice pipeline, 204–208
overview of, 195–198
timeline for multidevice software pipelined
image filter, 199
Source-to-source code translation, in XACC, 259–260
Sparse matrix vector multiplication (SPMV)
CUDA implementation of MiniFE, 162
implementation of MiniFE, 164–165
OpenACC implementation of MiniFE, 157–158
OpenMP implementation of MiniFE, 159
performance comparisons for MiniFE case, 168
serial implementation of MiniFE, 156–157
SPM. See Scratch pad memory (SPM)
SPMD (Single-program multiple-data), 255
SPMV. See Sparse matrix vector multiplication (SPMV)
Static scheduling, 94
Storage model, Sunway Taihulight memory model, 218
Streaming multiprocessors (SMs), 83
Streams
CUDA, 180–181
OpenACC interoperating with CUDA streams, 194–195
Strength reduction, compiling OpenACC, 93
Structured data
data lifetimes for, 111
types of data directives, 12
Subarrays, optimization of data locality, 112
Sunway Taihulight
data management in, 219–222
execution model in, 218–219
memory model, 217–218
overview of, 215–216
summary of, 223
SW26010 manycore CPU, 216–217
Supercomputers. See also Sunway Taihulight
criteria requirements, 238
multiple compute nodes, 253
portability as goal in, 122
SW26010 manycore CPU, 216–217
swap/swapin/swapout, Sunway Taihulight data
management, 221–222
Switches, in compiler interpretative of directives, 35
SYCL, layout for performance portability, 126
Symbolic loop bounds and steps, what compilers
cannot do, 91
Symbolic subscript expressions, what compilers
cannot do, 90
Synchronization
comparing synchronous and asynchronous
tasks, 189–190
of work queues, 191
Synchronization directives, 4
Syntax
API routines and environment variables, 5
classes, 4–5
directives, 3–4
overview of, 3
spotting errors, 33
System memory, 125
T
Task parallelism. See also Parallelism
comparing dependent and independent tasks, 189–190
comparing programming models, 136, 151–152
defined, 188
functions of API routines, 5
TAU performance system, 48–51
TAUdb, performance data management, 48
tau_exec, activating TAU performance
measurement, 49
TBB. See Threading Building Blocks (TBB)
TCA (Tightly coupled accelerators), 261–262
Templates
C++, 137
XMP execution model, 255
Temporaries, storing expression value in, 85
Tests, runtime tuning and if clause, 107–108
Thermodynamic tables, 112–113
Thread parallelism, comparing programming
models, 136
Thread safety, refactoring for, 105–106
Threading Building Blocks (TBB)
comparing programming models, 143
data allocations, 153
INDEX

Threading Building Blocks (TBB) (continued)
features, 141
mapping simple loop to parallel loop, 145
MiniFE solver case study, 165–167
nontightly nested loops (hierarchical parallelism), 151
parallel reductions, 147
performance comparisons for MiniFE case, 167
task parallelism, 151–152
tightly nested loops, 148
Tightly coupled accelerators (TCA), 261–262
Tightly nested loops, in programming models, 147
Timelines, viewing temporal evolution of a program, 39
TotalView, debugging using, 52–53
Tracing
data recording via, 39
generating with Score-P, 44–46
Vampir trace visualization, 47–48

U
Unstructured data
data lifetimes for, 111
types of data directives, 12
update directive
data update, 4
interoperating OpenACC asynchronous work queues with CUDA streams, 194–195
make pipelining operation asynchronous, 202–204
use in blocking data movement, 200–201
using with MPI routines, 210–211
USE DEVICE clause, 177–180
User errors, compiling OpenACC, 95–97

V
Vampir, trace visualization, 47–48
Variables
auxiliary induction variable substitution, 93
data clauses, 12–13
private and firstprivate, 11
specifying scalar variables as private, 88
Vector addition. See AXPBY (vector addition)
vector clause
levels of parallelism, 21–22
mapping parallelism to hardware, 23–24

overview of, 22–23
Vectors
directive extension for kernel vectorization, 244–245
distributing iterations across, 125–126
reducing vector or array to scalar, 86–87
scheduling parallel and vector code, 93–94
scheduling parallel loops, 227–230
temporary vectors required for MiniFE, 156
Verification, incremental acceleration and verification, 104

W
wait directive
events indicating runtime of device tasks, 41
joining work queues, 193–194
types of synchronization directives, 4
using with asynchronous operations, 191–192
using with MPI routines, 210–212
while loop, creating optimized parallel version of Laplace Solver, 75–78
WHIRL, OpenUH infrastructure, 224
Work distribution clauses, 4
Work mapping, XACC, 255–256
Work queues
advanced OpenACC options, 190–191
interoperating OpenACC asynchronous work queues with CUDA streams, 194–195
joining, 193–194
worker clause
levels of parallelism, 21–22
mapping parallelism to hardware, 23–24
overview of, 22–23
Workers
applying OpenACC for parallelism, 87–88
distributing iterations across, 125–126
evaluating OpenACC translation to FPGAs, 248–249
principles governing loop performance, 96
scheduling parallel loops, 227–230

X
x86_64 multicore, demonstrating portability using OpenACC, 123–124
XcalableACC (XACC)
evaluating performance on HA-PACS, 262–267
implementation of OMNI compiler, 260–262
memory model, 257
overview of, 253
programming with XACC directives, 258–259
source-to-source code translation, 259–260
summary, 267

XcalableMP (XMP)
data distribution and work mapping, 255–256
execution model in, 255
internode communication, 256–257
overview of, 253–254
Xeon E5-2698, 230
Xeon Phi KNL, 123–124