
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134597195
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134597195
https://plusone.google.com/share?url=http://www.informit.com/title/9780134597195
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134597195
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134597195/Free-Sample-Chapter

Expert Hadoop®
Administration

Expert Hadoop®
Administration

Managing, Tuning, and Securing
Spark, YARN, and HDFS

Sam R. Alapati

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016954056

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-459719-5
ISBN-10: 0-13-459719-2

1 16

http://www.pearsoned.com/permissions/

To my cousin, Alapati Srinath, whom I consider my

own brother. Thank you, Srinath, for your kindness, affection, and above all,

graciousness, all of which have meant a lot to me over the years.

This page intentionally left blank

Contents

Foreword xxvii

Preface xxix

Acknowledgments xxxv

About the Author xxxvii

I Introduction to Hadoop—Architecture and Hadoop
Clusters 1

1 Introduction to Hadoop and Its Environment 3
Hadoop—An Introduction 4

Unique Features of Hadoop 5
Big Data and Hadoop 5
A Typical Scenario for Using Hadoop 7
Traditional Database Systems 7
Data Lake 9
Big Data, Data Science and Hadoop 11

Cluster Computing and Hadoop Clusters 12
Cluster Computing 12
Hadoop Clusters 13

Hadoop Components and the Hadoop Ecosphere 15
What Do Hadoop Administrators Do? 18

Hadoop Administration—A New Paradigm 18
What You Need to Know to Administer Hadoop 20
The Hadoop Administrator’s Toolset 21

Key Differences between Hadoop 1 and Hadoop 2 21
Architectural Differences 22
High-Availability Features 22
Multiple Processing Engines 23
Separation of Processing and Scheduling 23
Resource Allocation in Hadoop 1 and Hadoop 2 24

Distributed Data Processing: MapReduce and Spark,
Hive and Pig 24

MapReduce 24
Apache Spark 25
Apache Hive 26
Apache Pig 26

viii Contents

Data Integration: Apache Sqoop, Apache Flume and
Apache Kafka 27
Key Areas of Hadoop Administration 28

Managing the Cluster Storage 28
Allocating the Cluster Resources 28
Scheduling Jobs 29
Securing Hadoop Data 30

Summary 31

2 An Introduction to the Architecture of Hadoop 33
Distributed Computing and Hadoop 33
Hadoop Architecture 34

A Hadoop Cluster 35
Master and Worker Nodes 36
Hadoop Services 36

Data Storage—The Hadoop Distributed File System 37
HDFS Unique Features 37
HDFS Architecture 38
The HDFS File System 40
NameNode Operations 43

Data Processing with YARN, the Hadoop Operating
System 48

Architecture of YARN 49
How the ApplicationMaster Works with the
ResourceManager to Allocate Resources 53

Summary 57

3 Creating and Configuring a Simple Hadoop
Cluster 59
Hadoop Distributions and Installation Types 60

Hadoop Distributions 60
Hadoop Installation Types 61

Setting Up a Pseudo-Distributed Hadoop Cluster 62
Meeting the Operating System Requirements 63
Modifying Kernel Parameters 64
Setting Up SSH 68
Java Requirements 69
Installing the Hadoop Software 70

ixContents

Creating the Necessary Hadoop Users 70
Creating the Necessary Directories 71

Performing the Initial Hadoop Configuration 71
Environment Configuration Files 73
Read-Only Default Configuration Files 74
Site-Specific Configuration Files 74
Other Hadoop-Related Configuration Files 74
Precedence among the Configuration Files 76
Variable Expansion and Configuration
Parameters 78
Configuring the Hadoop Daemons Environment 79
Configuring Core Hadoop Properties (with the
core-site.xml File) 81
Configuring MapReduce (with the mapred-site.xml
File) 82
Configuring YARN (with the yarn-site.xml File) 83

Operating the New Hadoop Cluster 86
Formatting the Distributed File System 86
Setting the Environment Variables 87
Starting the HDFS and YARN Services 87
Verifying the Service Startup 89
Shutting Down the Services 90

Summary 90

4 Planning for and Creating a Fully Distributed
Cluster 91
Planning Your Hadoop Cluster 92

General Cluster Planning Considerations 92
Server Form Factors 94
Criteria for Choosing the Nodes 94

Going from a Single Rack to Multiple Racks 95
Sizing a Hadoop Cluster 96
General Principles Governing the Choice of CPU,
Memory and Storage 96
Special Treatment for the Master Nodes 99
Recommendations for Sizing the Servers 100
Growing a Cluster 101
Guidelines for Large Clusters 101

x Contents

Creating a Multinode Cluster 102
How the Test Cluster Is Set Up 102

Modifying the Hadoop Configuration 106
Changing the HDFS Configuration (hdfs-site.xml
file) 106
Changing the YARN Configuration 109
Changing the MapReduce Configuration 113

Starting Up the Cluster 114
Starting Up and Shutting Down the Cluster with
Scripts 116
Performing a Quick Check of the New Cluster’s
File System 118

Configuring Hadoop Services, Web Interfaces and
Ports 119

Service Configuration and Web Interfaces 119
Setting Port Numbers for Hadoop Services 122
Hadoop Clients 124

Summary 126

II Hadoop Application Frameworks 127

5 Running Applications in a Cluster—The MapReduce
Framework (and Hive and Pig) 129
The MapReduce Framework 129

The MapReduce Model 130
How MapReduce Works 131
MapReduce Job Processing 133
A Simple MapReduce Program 135
Understanding Hadoop’s Job Processing—Running a
WordCount Program 136
MapReduce Input and Output Directories 137
How Hadoop Shows You the Job Details 137
Hadoop Streaming 139

Apache Hive 141
Hive Data Organization 142
Working with Hive Tables 142
Loading Data into Hive 142
Querying with Hive 143

xiContents

Apache Pig 144
Pig Execution Modes 144
A Simple Pig Example 145

Summary 145

6 Running Applications in a Cluster—The Spark
Framework 147
What Is Spark? 148
Why Spark? 149

Speed 149
Ease of Use and Accessibility 151
General-Purpose Framework 152
Spark and Hadoop 153

The Spark Stack 153
Installing Spark 155

Spark Examples 157
Key Spark Files and Directories 157
Compiling the Spark Binaries 157
Reducing Spark’s Verbosity 158

Spark Run Modes 158
Local Mode 158
Cluster Mode 158

Understanding the Cluster Managers 159
The Standalone Cluster Manager 159
Spark on Apache Mesos 161
Spark on YARN 162
How YARN and Spark Work Together 163
Setting Up Spark on a Hadoop Cluster 163

Spark and Data Access 164
Loading Data from the Linux File System 164
Loading Data from HDFS 164
Loading Data from a Relational Database 166

Summary 167

7 Running Spark Applications 169
The Spark Programming Model 169

Spark Programming and RDDs 169
Programming Spark 172

xii Contents

Spark Applications 173
Basics of RDDs 174
Creating an RDD 174
RDD Operations 176
RDD Persistence 179

Architecture of a Spark Application 179
Spark Terminology 180
Components of a Spark Application 180

Running Spark Applications Interactively 181
Spark Shell and Spark Applications 181
A Bit about the Spark Shell 182
Using the Spark Shell 182
Overview of Spark Cluster Execution 185

Creating and Submitting Spark Applications 185
Building the Spark Application 186
Running an Application in the Standalone Spark
Cluster 186
Using spark-submit to Execute Applications 187
Running Spark Applications on Mesos 189
Running Spark Applications in a YARN-Managed
Hadoop Cluster 189
Using the JDBC/ODBC Server 191

Configuring Spark Applications 192
Spark Configuration Properties 192
Specifying Configuration when Running
spark-submit 193

Monitoring Spark Applications 194
Handling Streaming Data with Spark Streaming 194

How Spark Streaming Works 195
A Spark Streaming Example—WordCount
Again! 197

Using Spark SQL for Handling Structured Data 198
DataFrames 198
HiveContext and SQLContext 198
Working with Spark SQL 199
Creating DataFrames 200

Summary 201

xiiiContents

III Managing and Protecting Hadoop Data and High
Availability 203

8 The Role of the NameNode and How HDFS
Works 205
HDFS—The Interaction between the NameNode and the
DataNodes 205

Interaction between the Clients and HDFS 206
NameNode and DataNode Communications 207

Rack Awareness and Topology 209
How to Configure Rack Awareness in Your
Cluster 210
Finding Your Cluster’s Rack Information 210

HDFS Data Replication 212
HDFS Data Organization and Data Blocks 213
Data Replication 213
Block and Replica States 216

How Clients Read and Write HDFS Data 218
How Clients Read HDFS Data 219
How Clients Write Data to HDFS 220

Understanding HDFS Recovery Processes 224
Generation Stamp 224
Lease Recovery 224
Block Recovery 226
Pipeline Recovery 226

Centralized Cache Management in HDFS 227
Hadoop and OS Page Caching 228
The Key Principles Behind Centralized Cache
Management 228
How Centralized Cache Management Works 229
Configuring Caching 229
Cache Directives 230
Cache Pools 230
Using the Cache 231

Hadoop Archival Storage, SSD and Memory
(Heterogeneous Storage) 232

Performance Characteristics of Storage Types 233
The Need for Heterogeneous HDFS Storage 233

xiv Contents

Changes in the Storage Architecture 234
Storage Preferences for Files 235
Setting Up Archival Storage 235
Managing Storage Policies 239
Moving Data Around 239
Implementing Archival Storage 240

Summary 241

9 HDFS Commands, HDFS Permissions and HDFS
Storage 243
Managing HDFS through the HDFS Shell
Commands 243

Using the hdfs dfs Utility to Manage HDFS 245
Listing HDFS Files and Directories 247
Creating an HDFS Directory 249
Removing HDFS Files and Directories 249
Changing File and Directory Ownership and
Groups 250

Using the dfsadmin Utility to Perform HDFS
Operations 251

The dfsadmin –report Command 252
Managing HDFS Permissions and Users 255

HDFS File Permissions 255
HDFS Users and Super Users 257

Managing HDFS Storage 260
Checking HDFS Disk Usage 260
Allocating HDFS Space Quotas 263

Rebalancing HDFS Data 267
Reasons for HDFS Data Imbalance 268
Running the Balancer Tool to Balance HDFS
Data 268
Using hdfs dfsadmin to Make Things Easier 271
When to Run the Balancer 273

Reclaiming HDFS Space 274
Removing Files and Directories 274
Decreasing the Replication Factor 274

Summary 276

xvContents

10 Data Protection, File Formats and Accessing
HDFS 277
Safeguarding Data 278

Using HDFS Trash to Prevent Accidental Data
Deletion 278
Using HDFS Snapshots to Protect Important
Data 280
Ensuring Data Integrity with File System
Checks 284

Data Compression 289
Common Compression Formats 290
Evaluating the Various Compression Schemes 291
Compression at Various Stages for
MapReduce 291
Compression for Spark 295
Data Serialization 295

Hadoop File Formats 295
Criteria for Determining the Right File Format 296
File Formats Supported by Hadoop 298
The Ideal File Format 302
The Hadoop Small Files Problem and Merging
Files 303
Using a Federated NameNode to Overcome the Small
Files Problem 304
Using Hadoop Archives to Manage Many Small
Files 304
Handling the Performance Impact of Small
Files 307

Using Hadoop WebHDFS and HttpFS 308
WebHDFS—The Hadoop REST API 308
Using the WebHDFS API 309
Understanding the WebHDFS Commands 310
Using HttpFS Gateway to Access HDFS from Behind a
Firewall 313

Summary 315

11 NameNode Operations, High Availability and
Federation 317
Understanding NameNode Operations 318

HDFS Metadata 319

xvi Contents

The NameNode Startup Process 321
How the NameNode and the DataNodes Work
Together 322

The Checkpointing Process 323
Secondary, Checkpoint, Backup and Standby
Nodes 324
Configuring the Checkpointing Frequency 325
Managing Checkpoint Performance 327
The Mechanics of Checkpointing 327

NameNode Safe Mode Operations 329
Automatic Safe Mode Operations 329
Placing the NameNode in Safe Mode 330
How the NameNode Transitions Through Safe
Mode 331
Backing Up and Recovering the NameNode
Metadata 332

Configuring HDFS High Availability 334
NameNode HA Architecture (QJM) 335
Setting Up an HDFS HA Quorum Cluster 337
Deploying the High-Availability NameNodes 342
Managing an HA NameNode Setup 345
HA Manual and Automatic Failover 346

HDFS Federation 349
Architecture of a Federated NameNode 350

Summary 351

IV Moving Data, Allocating Resources, Scheduling
Jobs and Security 353

12 Moving Data Into and Out of Hadoop 355
Introduction to Hadoop Data Transfer Tools 355
Loading Data into HDFS from the Command Line 356

Using the -cat Command to Dump a File’s
Contents 356
Testing HDFS Files 357
Copying and Moving Files from and to HDFS 358
Using the -get Command to Move Files 359

xviiContents

Moving Files from and to HDFS 360
Using the -tail and head Commands 360

Copying HDFS Data between Clusters with DistCp 361
How to Use the DistCp Command to Move
Data 361
DistCp Options 363

Ingesting Data from Relational Databases with
Sqoop 365

Sqoop Architecture 366
Deploying Sqoop 367
Using Sqoop to Move Data 368
Importing Data with Sqoop 368
Importing Data into Hive 379
Exporting Data with Sqoop 381

Ingesting Data from External Sources with Flume 388
Flume Architecture in a Nutshell 389
Configuring the Flume Agent 391
A Simple Flume Example 392
Using Flume to Move Data to HDFS 394
A More Complex Flume Example 395

Ingesting Data with Kafka 398
Benefits Offered by Kafka 398
How Kafka Works 399
Setting Up an Apache Kafka Cluster 401
Integrating Kafka with Hadoop and Storm 404

Summary 406

13 Resource Allocation in
a Hadoop Cluster 407
Resource Allocation in Hadoop 407

Managing Cluster Workloads 408
Hadoop’s Resource Schedulers 409

The FIFO Scheduler 410
The Capacity Scheduler 411

Queues and Subqueues 412
How the Cluster Allocates Resources 418
Preempting Applications 421

xviii Contents

Enabling the Capacity Scheduler 422
A Typical Capacity Scheduler 422

The Fair Scheduler 426
Queues 427
Configuring the Fair Scheduler 428
How Jobs Are Placed into Queues 430
Application Preemption in the Fair Scheduler 431
Security and Resource Pools 432
A Sample fair-scheduler.xml File 432
Submitting Jobs to the Scheduler 434
Moving Applications between Queues 434
Monitoring the Fair Scheduler 434

Comparing the Capacity Scheduler and the Fair
Scheduler 435

Similarities between the Two Schedulers 435
Differences between the Two Schedulers 435

Summary 436

14 Working with Oozie to Manage Job Workflows 437
Using Apache Oozie to Schedule Jobs 437
Oozie Architecture 439

The Oozie Server 439
The Oozie Client 440
The Oozie Database 440

Deploying Oozie in Your Cluster 441
Installing and Configuring Oozie 442
Configuring Hadoop for Oozie 444

Understanding Oozie Workflows 446
Workflows, Control Flow, and Nodes 446
Defining the Workflows with the workflow.xml
File 447

How Oozie Runs an Action 449
Configuring the Action Nodes 449

Creating an Oozie Workflow 454
Configuring the Control Nodes 456
Configuring the Job 460

Running an Oozie Workflow Job 461
Specifying the Job Properties 461

xixContents

Deploying Oozie Jobs 463
Creating Dynamic Workflows 463

Oozie Coordinators 464
Time-Based Coordinators 465
Data-Based Coordinators 467
Time-and-Data-Based Coordinators 469
Submitting the Oozie Coordinator from the Command
Line 469

Managing and Administering Oozie 470
Common Oozie Commands and How to Run
Them 471
Troubleshooting Oozie 473
Oozie cron Scheduling and Oozie Service Level
Agreements 474

Summary 475

15 Securing Hadoop 477
Hadoop Security—An Overview 478

Authentication, Authorization and Accounting 480
Hadoop Authentication with Kerberos 481

Kerberos and How It Works 482
The Kerberos Authentication Process 483
Kerberos Trusts 484
A Special Principal 485
Adding Kerberos Authorization to your Cluster 486
Setting Up Kerberos for Hadoop 490
Securing a Hadoop Cluster with Kerberos 495
How Kerberos Authenticates Users and
Services 501
Managing a Kerberized Hadoop Cluster 501

Hadoop Authorization 505
HDFS Permissions 505
Service Level Authorization 510
Role-Based Authorization with Apache Sentry 512

Auditing Hadoop 518
Auditing HDFS Operations 519
Auditing YARN Operations 519

xx Contents

Securing Hadoop Data 520
HDFS Transparent Encryption 520
Encrypting Data in Transition 523

Other Hadoop-Related Security Initiatives 524
Securing a Hadoop Infrastructure with Apache Knox
Gateway 524
Apache Ranger for Security Administration 525

Summary 525

V Monitoring, Optimization and
Troubleshooting 527

16 Managing Jobs, Using Hue and Performing Routine
Tasks 529
Using the YARN Commands to Manage Hadoop
Jobs 530

Viewing YARN Applications 531
Checking the Status of an Application 532
Killing a Running Application 532
Checking the Status of the Nodes 533
Checking YARN Queues 533
Getting the Application Logs 533
Yarn Administrative Commands 534

Decommissioning and Recommissioning Nodes 535
Including and Excluding Hosts 536
Decommissioning DataNodes and
NodeManagers 537
Recommissioning Nodes 539
Things to Remember about Decommissioning and
Recommissioning 539
Adding a New DataNode and/or a
NodeManager 540

ResourceManager High Availability 541
ResourceManager High-Availability
Architecture 541
Setting Up ResourceManager High Availability 542
ResourceManager Failover 543
Using the ResourceManager High-Availability
Commands 545

xxiContents

Performing Common Management Tasks 545
Moving the NameNode to a Different Host 545
Managing High-Availability NameNodes 546
Using a Shutdown/Startup Script to Manage your
Cluster 546
Balancing HDFS 546
Balancing the Storage on the DataNodes 547

Managing the MySQL Database 548
Configuring a MySQL Database 548
Configuring MySQL High Availability 549

Backing Up Important Cluster Data 551
Backing Up HDFS Metadata 552
Backing Up the Metastore Databases 553

Using Hue to Administer Your Cluster 553
Allowing Your Users to Use Hue 554
Installing Hue 556
Configuring Your Cluster to Work with Hue 557
Managing Hue 561
Working with Hue 561

Implementing Specialized HDFS Features 562
Deploying HDFS and YARN in a Multihomed
Network 562
Short-Circuit Local Reads 563
Mountable HDFS 564
Using an NFS Gateway for Mounting HDFS to a Local
File System 566

Summary 567

17 Monitoring, Metrics and Hadoop Logging 569
Monitoring Linux Servers 570

Basics of Linux System Monitoring 570
Monitoring Tools for Linux Systems 572

Hadoop Metrics 576
Hadoop Metric Types 577
Using the Hadoop Metrics 578
Capturing Metrics to a File System 578

Using Ganglia for Monitoring 579
Ganglia Architecture 580

xxii Contents

Setting Up the Ganglia and Hadoop Integration 580
Setting Up the Hadoop Metrics 582

Understanding Hadoop Logging 582
Hadoop Log Messages 583
Daemon and Application Logs and How to View
Them 584
How Application Logging Works 585
How Hadoop Uses HDFS Staging Directories and Local
Directories During a Job Run 587
How the NodeManager Uses the Local
Directories 588
Storing Job Logs in HDFS through Log
Aggregation 592
Working with the Hadoop Daemon Logs 597

Using Hadoop’s Web UIs for Monitoring 599
Monitoring Jobs with the ResourceManager
Web UI 599
The JobHistoryServer Web UI 606
Monitoring with the NameNode Web UI 608

Monitoring Other Hadoop Components 609
Monitoring Hive 609
Monitoring Spark 610

Summary 610

18 Tuning the Cluster Resources, Optimizing MapReduce
Jobs and Benchmarking 611
How to Allocate YARN Memory and CPU 612

Allocating Memory 612
Configuring the Number of CPU Cores 620
Relationship between Memory and CPU Vcores 621

Configuring Efficient Performance 621
Speculative Execution 621
Reducing the I/O Load on the System 624

Tuning Map and Reduce Tasks—What the Administrator
Can Do 625

Tuning the Map Tasks 626
Input and Output 627
Tuning the Reduce Tasks 630
Tuning the MapReduce Shuffle Process 632

xxiiiContents

Optimizing Pig and Hive Jobs 635
Optimizing Hive Jobs 635
Optimizing Pig Jobs 637

Benchmarking Your Cluster 638
Using TestDFSIO for Testing I/O Performance 638
Benchmarking with TeraSort 640
Using Hadoop’s Rumen and GridMix for
Benchmarking 643

Hadoop Counters 647
File System Counters 649
Job Counters 649
MapReduce Framework Counters 650
Custom Java Counters 651
Limiting the Number of Counters 651

Optimizing MapReduce 652
Map-Only versus Map and Reduce Jobs 652
How Combiners Improve MapReduce
Performance 652
Using a Partitioner to Improve Performance 654
Compressing Data During the MapReduce
Process 654
Too Many Mappers or Reducers? 655

Summary 658

19 Configuring and Tuning Apache Spark
on YARN 659
Configuring Resource Allocation for Spark
on YARN 659

Allocating CPU 660
Allocating Memory 660
How Resources are Allocated to Spark 660
Limits on the Resource Allocation to Spark
Applications 661
Allocating Resources to the Driver 663
Configuring Resources for the Executors 666
How Spark Uses its Memory 670
Things to Remember 672
Cluster or Client Mode? 674
Configuring Spark-Related Network Parameters 676

xxiv Contents

Dynamic Resource Allocation when Running Spark on
YARN 676

Dynamic and Static Resource Allocation 676
How Spark Manages Dynamic Resource
Allocation 677
Enabling Dynamic Resource Allocation 677

Storage Formats and Compressing Data 678
Storage Formats 679
File Sizes 680
Compression 680

Monitoring Spark Applications 681
Using the Spark Web UI to Understand
Performance 682
Spark System and the Metrics REST API 684
The Spark History Server on YARN 684
Tracking Jobs from the Command Line 686

Tuning Garbage Collection 686
The Mechanics of Garbage Collection 687
How to Collect GC Statistics 687

Tuning Spark Streaming Applications 688
Reducing Batch Processing Time 688
Setting the Right Batch Interval 689
Tuning Memory and Garbage Collection 689

Summary 689

20 Optimizing Spark Applications 691
Revisiting the Spark Execution Model 692

The Spark Execution Model 692
Shuffle Operations and How to Minimize Them 694

A WordCount Example to Our Rescue Again 695
Impact of a Shuffle Operation 696
Configuring the Shuffle Parameters 697

Partitioning and Parallelism (Number of Tasks) 703
Level of Parallelism 704
Problems with Too Few Tasks 706
Setting the Default Number of Partitions 706
How to Increase the Number of Partitions 707
Using the Repartition and Coalesce Operators to
Change the Number of Partitions in an RDD 708

xxvContents

Two Types of Partitioners 709
Data Partitioning and How It Can Avoid a
Shuffle 709

Optimizing Data Serialization and Compression 710
Data Serialization 710
Configuring Compression 711

Understanding Spark’s SQL Query Optimizer 712
Understanding the Optimizer Steps 712
Spark’s Speculative Execution Feature 714
The Importance of Data Locality 715

Caching Data 717
Fault-Tolerance Due to Caching 718
How to Specify Caching 718

Summary 723

21 Troubleshooting Hadoop—A Sampler 725
Space-Related Issues 725

Dealing with a 100 Percent Full Linux File
System 726
HDFS Space Issues 727
Local and Log Directories Out of Free Space 727
Disk Volume Failure Toleration 729

Handling YARN Jobs That Are Stuck 731
JVM Memory-Allocation and Garbage-Collection
Strategies 732

Understanding JVM Garbage Collection 732
Optimizing Garbage Collection 733
Analyzing Memory Usage 734
Out of Memory Errors 734
ApplicationMaster Memory Issues 735

Handling Different Types of Failures 737
Handling Daemon Failures 737
Starting Failures for Hadoop Daemons 737
Task and Job Failures 738

Troubleshooting Spark Jobs 739
Spark’s Fault Tolerance Mechanism 740
Killing Spark Jobs 740
Maximum Attempts for a Job 740
Maximum Failures per Job 740

xxvi Contents

Debugging Spark Applications 740
Viewing Logs with Log Aggregation 740
Viewing Logs When Log Aggregation Is Not
Enabled 741
Reviewing the Launch Environment 741

Summary 742

22 Installing VirtualBox and Linux and Cloning the Virtual
Machines 743
Installing Oracle VirtualBox 744
Installing Oracle Enterprise Linux 745
Cloning the Linux Server 745

Index 747

Foreword

Apache Hadoop 2 and the upcoming 3 were a major step forward in moving beyond
the paradigm of MapReduce. At the core of this is the new YARN (Yet Another
Resource Negotiator) processing framework for creating APIs and processing engines
on top of Hadoop and HDFS, including the original MapReduce paradigm. Hadoop 2 is
a significant upgrade to Hadoop 1, requiring updates to how a cluster is set up, managed
and administered. This book provides everything a developer, operator or administrator
would need to manage a production Hadoop 2 cluster of any size.

While Hadoop 2 and 3 at the core are HDFS and YARN, there are many other projects
that are included in a typical production Hadoop cluster. For example, Hive, Pig, Spark,
Flume and Kafka are often paired with the core Hadoop infrastructure to provide addi-
tional functionality and features. This book includes coverage of many of these complemen-
tary projects with introductory materials good for developers and administrators alike.

Sam Alapati is the principal Hadoop administrator at Sabre Holdings and has been
working with production Hadoop clusters for the last six years. He’s uniquely qualif ied
to cover the administration of production clusters and has pulled everything together
in this single resource. The depth of experience that Sam brings to this book has enabled
him to write much more than a simple introduction to Hadoop and Spark. While it does
provide that introductory material, it will be the go-to resource for administrators looking
to spec, size, expand and secure their production Hadoop clusters.

—Paul Dix, Series Editor

This page intentionally left blank

Preface

Apache Hadoop is a popular open-source software framework for storing and process-
ing large sets of data on a platform consisting of clusters of commodity hardware. The
main idea behind Hadoop is to move computation to the data, instead of the traditional
way of moving data to computation. Scalability lies at the heart of Hadoop, and one of
the big reasons for its considerable popularity in the big data world we live in today is
its extreme cost effectiveness owing to the use of commodity servers and open-source
software.

I started working on this book in the fall of 2014. Hadoop 2 had come out a few months
earlier, and there were numerous interesting changes in the Hadoop architecture in the
new release. There was one very good book on administering generic (without the use
of a third-party vendor’s tools) Hadoop clusters (Hadoop Operations by Eric Sammer), but,
over time, it became outdated in several areas (it was published in 2012). Tom White’s
book Hadoop: The Definitive Guide of course is wonderful, and it contains several useful
discussions pertaining to Hadoop administration, but it’s a book more geared toward
developers and architects than cluster administrators. I decided to write this book to provide
Hadoop users a comprehensive guide to administering, securing, and optimizing their
Hadoop clusters.

As I progressed with the book, Spark became the most important processing framework
for Hadoop. I therefore added four chapters to discuss the architecture of Spark, the nature
of Spark applications and how to manage and optimize Spark jobs running in a Hadoop
cluster.

In this book, I explain how to manage, optimize, and secure Hadoop environments
by working directly with the Hadoop configuration files. You may wonder if you really
need to learn how to administer Hadoop from the ground level up. Like many of the
people that manage Hadoop environments, I use third-party Hadoop distributions
such as Cloudera and Hortonworks. Of course, using a tool such as Cloudera Manager or
Apache Ambari to manage a Hadoop cluster makes your life really easy. However, I realized
that in order to master Hadoop environments, and to get the most out of your Hadoop
cluster, you must understand what actually happens behind the scenes when you work with
a management tool to administer your cluster. This is possible only if you learn how to
build a cluster from scratch and learn how to configure it for various purposes—high
availability, performance, security, encryption—as you go along.

Hadoop comes with a large number of configurable properties. In order to take advan-
tage of Hadoop’s powerful capabilities, you must understand the critical performance,
security, high-availability and other configuration parameters and know how to tune

xxx Preface

them. To this end, I’ve explained all of the key administration-related Hadoop config-
uration properties in this book, along with plenty of examples, so you can configure,
secure, and optimize your cluster with confidence.

Hadoop is an exciting area to work in, with its interactions with software that fall under
the umbrella of the “Hadoop ecosphere.” In this book, my main focus is on core Hadoop
itself, specifically on HDFS, the Hadoop distributed file system, and YARN, the processing
framework of Hadoop. I do discuss several members of the Hadoop—ecosphere, such as
Apache Sqoop, Apache Flume and Apache Spark—but the emphasis is mostly on how to
manage the Hadoop infrastructure itself. To this end, I spend quite a bit of time discussing
the architecture of both HDFS and YARN in this book.

Who This Book Is For
I wrote this book with the Hadoop administrator in mind. However, you do not need
to be a full-time Hadoop administrator to benefit from this book. If you’re a big data
architect, developer, or analyst, there are several things in this book that’ll prove to be
of use to you.

How This Book Is Structured and What It Covers
This book is divided into 5 parts, spread over 21 chapters. Following is a chapter-by-
chapter summary of what this book covers.

Part I: Introduction to Hadoop—Architecture and Hadoop Clusters

 n Chapter 1, “Introduction to Hadoop and Its Environment,” introduces you to
Hadoop and big data in general. You learn how Hadoop differs from traditional
databases and about the concept of a data lake. You also learn where Hadoop
fits in with big data and data science. It also introduces the concept of a Hadoop
cluster.

The chapter outlines the roles of the key Hadoop components and members of
the Hadoop ecosphere, such as ZooKeeper, Apache Sqoop, Apache Flume and
Apache Kafka.

Although Hadoop 1 belongs to history now, it offers a convenient means of tracing
the evolution of Hadoop to its current incarnation, especially how it separates process-
ing and scheduling and allows multiple processing engines beyond just MapReduce.
I therefore review the key differences between Hadoop 1 and Hadoop 2 to put things
in perspective and to help you understand where Hadoop might be headed.

This chapter provides a very brief introduction to MapReduce and Apache Spark,
the two main computational frameworks for Hadoop, as well Pig and Hive. The
chapter also describes popular Hadoop data ingestion frameworks such as Apache
Flume and Apache Kafka. The chapter wraps up with a review of the main areas

xxxiPreface

of focus for Hadoop administrators, such as resource allocation, job scheduling,
performance tuning and security.

 n Chapter 2, “An Introduction to the Architecture of Hadoop,” introduces the
architecture of Hadoop and explains how HDFS supports data storage and YARN,
the other main component of Hadoop, provides the data processing capability.

 n Chapter 3, “Creating and Configuring a Simple Hadoop Cluster,” explains, step
by step, how to create and configure a single node, pseudo-distributed cluster.
While you can’t do a whole lot of big data processing with a single node cluster,
I do this so you learn the installation procedures without worrying about setting
up multiple nodes right at the beginning. Everything you learn in this chapter
carries over to the installation and configuring of a “real,” multinode Hadoop
cluster.

 n Chapter 4, “Planning for and Creating a Fully Distributed Cluster,” explains how
to plan for a Hadoop cluster and how to size one. I show you the step-by-step
procedures involved in creating a multinode Hadoop cluster.

Once you learn how to create a Hadoop cluster, you need to know how to modify
the default Hadoop configuration. Hadoop comes with a large number of configu-
rable properties for all its capabilities, such as storage, processing, resource allocation
and security.

One of the key functions of a Hadoop administrator is to know how to configure,
tune and optimize their cluster by setting the correct values for a large number
of configuration properties. This chapter shows you how you get started with
the configuration of Hadoop. You’ll also learn about how to configure Hadoop
services, its web interfaces and the various Hadoop ports.

Part II: Hadoop Application Frameworks

 n Chapter 5, “Running Applications in a Cluster—The MapReduce Framework (and
Hive and Pig),” explains the main concepts of MapReduce, which for many years
was the only major processing framework available in Hadoop. With Hadoop 2,
MapReduce isn’t the only processing framework but is still used heavily in many
Hadoop environments. The chapter shows the well-known WordCount program
and how to run it in MapReduce.

The chapter also introduces you to Apache Hive and Apache Pig, two popular
data processing frameworks in many Hadoop shops.

 n Chapter 6, “Running Applications in a Cluster—The Spark Framework,” intro-
duces Apache Spark, which is poised to take over from MapReduce as Hadoop’s
main processing framework. This chapter focuses on the architecture and installation
of Spark, as well as how to load data into Spark from various sources.

 n Chapter 7, “Running Spark Applications,” explains what Spark resilient distributed
datasets (RDDs) are and shows how to work with them. This chapter also shows

xxxii Preface

you how to run Spark jobs interactively, through the spark-submit command.
You also learn the various ways to configure Spark applications and how to monitor
Spark applications.

This chapter also introduces Spark Streaming, for handling streaming data, and
Spark SQL, for handling structured data.

Part III: Managing and Protecting Hadoop Data and High Availability

 n Chapter 8, “The Role of the NameNode and How HDFS Works,” is a deep dive
into how the NameNode and the DataNodes interact. You also learn how to
configure rack awareness in your cluster.

Data replication is the calling card of HDFS, and you’ll learn about how HDFS
organizes its data and how data replication works. You’ll also learn how clients
read data from HDFS and write data to HDFS. Finally, this chapter explains the
HDFS recovery processes.

Centralized cache management in HDFS offers key benefits, and this chapter
explains the concepts of centralized cache management, as well as how to config-
ure caching and manage it.

 n Chapter 9, “HDFS Commands, HDFS Permissions and HDFS Storage,” is about
managing HDFS storage with HDFS shell commands. You’ll also learn about the
dfsadmin utility, a key ally in managing HDFS. The chapter also shows how to
manage HDFS file permissions and create HDFS users.

As a Hadoop administrator, one of your key tasks is to manage HDFS storage.
The chapter shows how to check HDFS usage and how to allocate space quotas to
HDFS users. The chapter also discusses when and how to rebalance HDFS data,
as well as how you can reclaim HDFS space.

 n Chapter 10, “Data Protection, File Formats and Accessing HDFS,” focuses on
safeguarding Hadoop data. In addition, the chapter discusses the compression
of data and various Hadoop file formats. Finally, the chapter shows you how to
access HDFS data through HTTP, using WebHDFS and HttpFS.

 n Chapter 11, “NameNode Operations, High Availability and Federation,” starts
off with a detailed explanation of NameNode operations. You’ll also learn about
the checkpointing process and how to configure it. The chapter explains how the
NameNode enters and leaves the safe mode of operations. You’ll also learn how to
back up the NameNode metadata, which is absolutely critical for the functioning
of a Hadoop cluster.

The chapter explains how to configure HDFS high availability through setting up
a Standby NameNode.

xxxiiiPreface

Part IV: Moving Data, Allocating Resources, Scheduling Jobs and Security

 n In Chapter 12, “Moving Data Into and Out of Hadoop,” you’ll learn how to move
data through built-in HDFS file system commands, as well as through the DistCp
utility, which enables you to move data between Hadoop clusters.

The chapter shows you how to move data between a Hadoop cluster and a rela-
tional database through the Sqoop utility. You’ll also learn how to ingest data
from various external sources through Apache Flume and Apache Kafka.

 n Chapter 13, “Resource Allocation in a Hadoop Cluster,” explains the topic of
resource allocation in a Hadoop cluster. You’ll learn how to configure resource allo-
cation among users and groups through the two main Hadoop built-in schedulers—
the Capacity Scheduler and the Fair Scheduler.

 n Chapter 14, “Working with Oozie and Hue to Manage Job Workf lows,” shows you
how to use two very important components of a typical Hadoop environment—
Apache Oozie and Apache Hue—to configure jobs and manage them, as well
as to access HDFS, and to work with Hive, Pig, Impala and other processing
frameworks.

 n Chapter 15, “Securing Hadoop,” is about securing Hadoop environments. The
main thrust of this chapter is the setting up of authorization through Kerberos, an
open-source security framework used widely in Hadoop environments. You’ll
also learn how to set up role-based authentication through Apache Sentry.

This chapter also shows you how to audit Hadoop and YARN operations and how
to secure Hadoop data through Hadoop’s HDFS Transparent Encryption feature.

Part V: Monitoring, Optimization and Troubleshooting

 n Chapter 16, “Managing Jobs, Using Hue and Performing Routine Tasks,” shows
you how to use the yarn command to monitor and manage jobs. The chapter
explains how to perform various routine management tasks such as decommis-
sioning and recommissioning nodes.

The chapter also shows how to set up ResourceManager high availability.
 n Chapter 17, “Monitoring, Metrics and Hadoop Logging,” introduces Hadoop

metrics and how to make the most of them. There’s a brief review of how to use
Ganglia to monitor Hadoop. The chapter discusses the basics of Linux system
monitoring.

The chapter reviews the most frequently used Hadoop web UIs to monitor
your cluster. Hadoop logging is an important and complex topic, and the chap-
ter shows you how to view various Hadoop-related logs and how to administer
logging.

 n Chapter 18, “Tuning the Cluster Resources, Optimizing MapReduce Jobs and
Benchmarking,” shows how to benchmark the performance of a Hadoop cluster
with the TeraSort and the TestDFSIO testing tools.

xxxiv Preface

The chapter’s main focus is on configuring a cluster for optimal performance
through setting memory and storage parameters in an efficient manner. The chapter
shows how to tune the performance of MapReduce jobs, as well as offers pointers
for optimizing Hive and Pig jobs.

 n Chapter 19, “Configuring and Tuning Apache Spark on YARN,” and the next chapter
are dedicated to the configuration and tuning of Apache Spark running on YARN.
The chapter also shows how to configure resources for Spark and how to monitor
Spark applications.

 n Chapter 20, “Optimizing Spark Applications,” discusses the Spark execution model
in detail. The chapter explains key aspects of Spark performance such as partitioning,
parallelism, data serialization, compression and caching. You’ll learn about shuff le
operations and how to minimize them.

 n Chapter 21, “Troubleshooting Hadoop—A Sampler,” is a brief review of Hadoop
troubleshooting. It discusses space- and memory-related issues, such as JVM garage
collection strategies, and common failures that occur in a Hadoop cluster.

Hadoop is an exciting environment to work in, with new processing frameworks
and tools coming on board continuously, keeping you on your toes all the time. It’s,
indeed, quite an exhilarating journey! I’ve thoroughly enjoyed writing this book, just
as I do administering Hadoop clusters. I hope you enjoy reading and using the book as
much as I’ve enjoyed writing it!

Register your copy of Expert Hadoop® Administration at informit.com for convenient
access to downloads, updates, and corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an account.
Enter the product ISBN (9780134597195) and click Submit. Once the process is
complete, you will find any available bonus content under “Registered Products.”

Acknowledgments

Writing a book is always the work of a team, of which the author is but one of the
members. I’d like to acknowledge the immense help provided during the writing of
this book by various people, starting with Debra Williams Cauley, executive editor at
Addison- Wesley, who oversaw the writing and production of this book. Debra is prob-
ably the hardest working and most earnest editor I’ve worked with, and her dedication
to the project and the sense of urgency with which she managed everything has had a
huge inf luence on the way I approached this project, especially towards the later parts
of the project.

I owe an immense debt to Chris Zahn for his astute editing of the book, while being
enormously kind and graceful throughout the arduous process. Chris’s encouragement and
support has helped me immensely while writing this book, and the book has gained
immeasurably from his skillful editing and his sharp eye for details, without losing the
big picture. I’ve learned quite a few things about correct style and conventions from going
over Chris’s edits. It’s quite unlikely that any major stylistic errors remain after Chris
straightened things out, but if they do, you know who to blame!

I’ve been quite fortunate to have four great reviewers go through the chapters, all of
them seasoned professionals from Hortonworks. Anubhav Awasthi, big data consul-
tant, went through all the chapters, caught several errors, and made several important
suggestions that helped me improve the book. Karthik Varakantham, system architect,
reviewed the book, corrected several stylistic and technical points and made a number
of highly useful suggestions. Kannappan Natarasan, senior consultant, reviewed several
of the early chapters and provided an overview of how the chapters looked, as well as
suggestions to improve the book. Ron Lee, platform engineering architect, made several
great suggestions, especially regarding Chapter 15, as well as Chapters 16 through 21.
Ron helped me improve the book considerably based on his detailed comments, stemming
from his extensive in-the-trenches experience with Hadoop environments.

Earlier on, both Marina Stephens and John Guthrie reviewed and commented in great
detail on several chapters in this book. I was able to improve the style as well as the technical
content following these reviews. Thank you, Marina and John, for all of your painstaking
work, for the many errors you caught, and for all your suggestions that have led me to
improve the clarity of a number of topics!

I work as a big data administrator at Sabre, where I’m fortunate to work together with
several amazing team members and great managers. I first of all thank Zeelani Shaik,
my manager, for his unfailing courtesy, kindness, understanding and encouragement
at work. Amjad Saeed was instrumental in bringing me to Sabre, and his cheerfulness,

xxxvi Acknowledgments

kindness and grace have always been a source of great pleasure to me. Zul Sidi, vice
president for the Enterprise Data and Analytics (EDA) group, is a tremendous leader
for the entire team, motivating us and setting a great example by the way he performs
his own job. Zul’s openness to suggestions for improving the way we do things and his
constant encouragement and support has helped me and other members of the EDA team
achieve numerous significant objectives for our customers during the short time he has
been here.

I also owe a round of thanks to Sujoe Bose for his kindness and help, as well as to
Senthil Selvaraj for his help when he worked with me at Sabre. I’ve learned a lot about
Hadoop from Sadu Hegde, and I thank him for helping me get started at Sabre. Mallik
Dontula has always been a source of wisdom regarding all matters concerning Hadoop
and big data, and I’ve benefited from his valuable help and suggestions on several occa-
sions. Chris Morris and Larry Pritchett have both been not only good friends, but also
truly great professionals, and I’ve benefited immensely from working with them. I’d also
like to thank Aaron Patenaude for his generosity, and his great help with anything I’ve
ever asked of him. I would like to thank my friends Winfield Geng, for his unstinting
help whenever I requested it, and Bob Newman, who is conscientious and keeps us on
our toes, for his advice and help. I would like to thank both Mohammed Hossain and
Andrew Ahmad for their friendship and help. I'd be remiss if I don’t acknowledge the
great support from my friend and colleague Vinay Shetty, who is not only amazingly
good at his job, but also very helpful while working together. I certainly owe many thanks
over the past two years to Linda Phipps, for all the things she helped me with, always
with great cheer! Lance Tripp was the person who encouraged me to seek the position
I currently hold at Sabre. Since I love my job, I must say a big thank you to Lance for his
smart recruiting!

Writing a book always means you basically disappear from the home front, although
the physical signs of your existence abound. I appreciate the love and kindness of my
wife, Valerie, and the affection of my children, Nina, Nicholas and Shannon, who’ve
always supported my writing and research endeavors. Thank you as well to Dale, Shawn
and Keith, who always remain close to me. I also appreciate the affection and kindness
of the Dixon family: Stephanie Dixon, as well as Clarence and Elaine, who have always
been supportive of everything I’ve done. The kindness and affection of my brothers Hari
and Bujji, my sisters-in-law Aruna and Vanaja, my nieces Aparna and Soumya, and my
nephew Teja means everything to me, so thank you to all of you! Special thanks to my
nephew Ashwin and his wife SreeVidya, whose kind hospitality during my stay in San Jose
during a Hadoop conference helped me develop several key ideas I discuss in this book.

About the Author

Sam R. Alapati is a principal Hadoop administrator at Sabre, headquartered in Southlake,
Texas, where he works with multiple Hadoop clusters on a daily basis. As part of his
responsibilities as the point person for all Hadoop administration–related work for the
Enterprise Data Analytics (EDA) group at Sabre, Sam manages and optimizes multiple
critical data science and data analysis related Hadoop job f lows. Sam is also an expert
Oracle Database administrator, and his vast knowledge of relational databases and SQL
contributes to his success in working with Hadoop-related projects. Sam’s accomplish-
ments in the database and middleware area include the publication of 18 well-received
books over the past 14 years, mostly on Oracle Database administration and Oracle
Weblogic Server. Sam is also the author of a forthcoming book titled Modern Linux
Administration (O’Reilly, 2017). Sam’s experience dealing with numerous configuration,
architecture and performance-related Hadoop issues over the years led him to the realiza-
tion that many working Hadoop administrators and developers would appreciate having
a handy reference, such as this book, to turn to when creating, managing, securing and
optimizing their Hadoop infrastructure.

This page intentionally left blank

III
Managing and

Protecting Hadoop
Data and High

Availability

This page intentionally left blank

9
HDFS Commands,

HDFS Permissions and
HDFS Storage

This chapter covers the following:

 n Working with HDFS
 n Using HDFS shell commands
 n Managing HDFS permissions and users
 n Managing HDFS storage (including rebalancing of data)
 n Granting users permissions and quotas

Working with HDFS is one of the most common tasks for someone administering a
Hadoop cluster. Although you can access HDFS in multiple ways, the command line is
the most common way to administer HDFS storage.

Managing HDFS users by granting them appropriate permissions and allocating HDFS
space quotas to users are some of the common user-related administrative tasks you’ll
perform on a regular basis. The chapter shows how HDFS permissions work and how
to grant and revoke space quotas on HDFS directories.

Besides the management of users and their HDFS space quotas, there are other aspects
of HDFS that you need to manage. This chapter also shows how to perform maintenance
tasks such as periodically balancing the HDFS data to distribute it evenly across the cluster,
as well as how to gain additional space in HDFS when necessary.

Managing HDFS through the HDFS Shell Commands
You can access HDFS in various ways:

 n From the command line using simple Linux-like file system commands, as well as
through a web interface, called WebHDFS

 n Using the HttpFS gateway to access HDFS from behind a firewall

244 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

 n Through Hue’s File Browser (and Cloudera Manager and Ambari, if you’re using
Cloudera, or Hortonwork’s Hadoop distributions)

Figure 9.1 summarizes the various ways in which you can access HDFS. Although
you have multiple ways to access HDFS, it’s a good bet that you’ll often be working
from the command line to manage your HDFS files and directories. You can access the
HDFS file system from the command line with the hdfs dfs file system commands.

File Systems other than HDFS

It’s important to keep in mind that HDFS file systems are only one way that Hadoop
implements a file system. There are several other Java implementations of file
systems that work with Hadoop. These include local file systems (file), WebHDFS
(WebHDFS), HAR (Hadoop archive files), View (viewfs), S3 (s3a) and others. For each
file system, Hadoop uses a different URI scheme for the file system instance in order
to connect with it. For example, you list the files in the local system by using the file
URI scheme, as shown here:

$ hdfs dfs –ls file:///

This will get you a listing of files stored on the local Linux file system.

Web Interface
http://hadoop1.50070/dfsheath.jsp

WebHDFS

HttpFS

Hue

Use the REST API, which doesn't
need any installation.

Use an independent service that
exposes a REST API on
top of HDFS.

Use Hue's
Job Browser.

Use the command
line.

Use Hadoop's web interface.

Java API

Command Line Examples:
hdfs dfs -mkdir /user/sam
hdfs dfs -cat /user/sam/text.txt
hdfs dfsadmin -report

Figure 9.1 The many ways in which you can access HDFS

http://www.hadoop1.50070/dfsheath.jsp

245Managing HDFS through the HDFS Shell Commands

Using the hdfs dfs Utility to Manage HDFS
You use the hdfs dfs utility to issue HDFS commands in Hadoop. Here’s the usage of
this command:

hdfs dfs [GENERIC_OPTIONS] [COMMAND_OPTIONS]

Using the hdfs dfs utility, you can run file system commands on the file system
supported in Hadoop, which happens to be HDFS.

You can use two types of HDFS shell commands:

 n The first set of shell commands are very similar to common Linux file system
commands such as ls, mkdir and so on.

 n The second set of HDFS shell commands are specific to HDFS, such as the
command that lets you set the file replication factor.

You can access the HDFS file system from the command line, over the web, or through
application code. HDFS file system commands are in many cases quite similar to famil-
iar Linux file system commands. For example, the command hdfs dfs –cat /path/to/
hdfs/file works the same as a Linux cat command, by printing the output of a file
onto the screen.

Internally HDFS uses a pretty sophisticated algorithm for its file system reads and
writes, in order to support both reliability and high throughput. For example, when you
issue a simple put command that writes a file to an HDFS directory, Hadoop will need
to write that data fast to three nodes (by default).

You can access the HDFS shell by typing hdfs dfs <command> at the command line.
You specify actions with subcommands that are prefixed with a minus (-) sign, as in
dfs –cat for displaying a file’s contents.

You may view all available HDFS commands by simply invoking the hdfs dfs
command with no options, as shown here:

$ hdfs dfs
Usage: hadoop fs [generic options]
 [-appendToFile <localsrc> ... <dst>]
 [-cat [-ignoreCrc] <src> ...]

Figure 9.2 shows all the available HDFS dfs commands.
However, it’s the hdfs dfs –help command that’s truly useful to a beginner and even

quite a few “experts”—this command clearly explains all the hdfs dfs commands.
Figure 9.3 shows how the help utility clearly explains the various file copy options that
you can use with the hdfs dfs command.

Note

Several Linux file and directory commands have analogs in HDFS. These include the famil-
iar ls, cp and mv commands. However, a big difference between Linux file and HDFS file
system commands is that there are no directory-location-related commands in HDFS. For
example, there’s no HDFS pwd command or cd command.

246 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

Figure 9.2 The hdfs dfs commands.

Figure 9.3 How the hdfs dfs –help command helps you understand
the syntax of the various options of the hdfs dfs command

247Managing HDFS through the HDFS Shell Commands

In the following sections, I show you how to

 n List HDFS files and directories
 n Use the HDFS STAT command
 n Create an HDFS directory
 n Remove HDFS files and directories
 n Change file and directory ownership
 n Change HDFS file permissions

Listing HDFS Files and Directories
As with regular Linux file systems, use the ls command to list HDFS files. You can
specify various options with the ls command, as shown here:

$ hdfs dfs -usage ls
Usage: hadoop fs [generic options] -ls [-d] [-h] [-R] [<path> ...]
bash-4.2$
Here's what the options stand for:
-d: Directories are listed as plain files.
-h: Format file sizes in a human-readable fashion (eg 64.0m instead of 67108864).
-R: Recursively list subdirectories encountered.
-t: Sort output by modification time (most recent first).
-S: Sort output by file size.
-r: Reverse the sort order.
-u: Use access time rather than modification time for display and sorting.

Listing Both Files and Directories
If the target of the ls command is a file, it shows the statistics for the file, and if it’s a
directory, it lists the contents of that directory. You can use the following command to
get a directory listing of the HDFS root directory:

$ hdfs dfs –ls /
Found 8 items
drwxr-xr-x - hdfs hdfs 0 2013-12-11 09:09 /data
drwxr-xr-x - hdfs supergroup 0 2015-05-04 13:22 /lost+found
drwxrwxrwt - hdfs hdfs 0 2015-05-20 07:49 /tmp
drwxr-xr-x - hdfs supergroup 0 2015-05-07 14:38 /user
...
#

For example, the following command shows all files within a directory ordered by
filenames:

$ hdfs dfs -ls /user/hadoop/testdir1

Alternately, you can specify the HDFS URI when listing files:

$ hdfs dfs –ls hdfs://<hostname>:9000/user/hdfs/dir1/

You can also specify multiple files or directories with the ls command:

$ hdfs dfs -ls /user/hadoop/testdir1 /user/hadoop/testdir2

248 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

Listing Just Directories
You can view information that pertains just to directories by passing the –d option:

$ hdfs dfs -ls -d /user/alapati
drwxr-xr-x - hdfs supergroup 0 2015-05-20 12:27 /user/alapati
$

The following two ls command examples show file information:

$ hdfs dfs –ls /user/hadoop/testdir1/test1.txt
$ hdfs dfs –ls /hdfs://<hostname>:9000/user/hadoop/dir1/

Note that when you list HDFS files, each file will show its replication factor. In this
case, the file test1.txt has a replication factor of 3 (the default replication factor).

$ hdfs dfs -ls /user/alapati/
-rw-r--r-- 3 hdfs supergroup 12 2016-05-24 15:44 /user/alapati/test.txt

Using the hdfs stat Command to Get Details about a File
Although the hdfs dfs –ls command lets you get the file information you need, there
are times when you need specific bits of information from HDFS. When you run the
hdfs dfs –ls command, it returns the complete path of the file. When you want to see only
the base name, you can use the hdfs –stat command to view only specific details of a file.

You can format the hdfs –stat command with the following options:
%b Size of file in bytes
%F Will return "file", "directory", or "symlink" depending on the type of inode
%g Group name
%n Filename
%o HDFS Block size in bytes (128MB by default)
%r Replication factor
%u Username of owner
%y Formatted mtime of inode
%Y UNIX Epoch mtime of inode

In the following example, I show how to confirm if a file or directory exists.
hdfs dfs -stat "%n" /user/alapati/messages
messages

If you run the hdfs –stat command against a directory, it tells you that the name you
specify is indeed a directory.
$ hdfs dfs -stat "%b %F %g %n %o %r %u %y %Y" /user/alapati/test2222
0 directory supergroup test2222 0 0 hdfs 2015-08-24 20:44:11 1432500251198
$

The following examples show how you can view different types of information with
the hdfs dfs –stat command when compared to the hdfs dfs –ls command. Note
that I specify all the -stat command options here.

$ hdfs dfs -ls /user/alapati/test2222/true.txt
-rw-r--r-- 2 hdfs supergroup 12 2015-08-24 15:44 /user/alapati/test2222/
true.txt
$

$ hdfs dfs -stat "%b %F %g %n %o %r %u %y %Y" /user/alapati/test2222/true.txt
12 regular file supergroup true.txt 268435456 2 hdfs 2015-05-24 20:44:11 1432500251189
$

249Managing HDFS through the HDFS Shell Commands

I’d be remiss if I didn’t add that you can also access HDFS through Hue’s Job Browser,
as shown in Figure 9.4.

Creating an HDFS Directory
Creating an HDFS directory is similar to how you create a directory in the Linux file system.
Issue the mkdir command to create an HDFS directory. This command takes path URIs
as arguments to create one or more directories, as shown here:

$ hdfs dfs -mkdir /user/hadoop/dir1 /user/hadoop/dir2

The directory /user/hadoop must already exist for this command to succeed.
Here’s another example that shows how to create a directory by specifying a directory

with a URI.

$ hdfs dfs –mkdir hdfs://nn1.example.com/user/hadoop/dir

If you want to create parent directories along the path, specify the –p option, with the hdfs
dfs -mkdir command, just as you would do with its cousin, the Linux mkdir command.

$ hdfs dfs -mkdir –p /user/hadoop/dir1

In this command, by specifying the –p option, I create both the parent directory
hadoop and its subdirectory dir1 with a single mkdir command.

Removing HDFS Files and Directories
HDFS file and directory removal commands work similar to the analogous commands
in the Linux file system. The rm command with the –R option removes a directory and
everything under that directory in a recursive fashion. Here’s an example.

$ hdfs dfs -rm -R /user/alapati
15/05/05 12:59:54 INFO fs.TrashPolicyDefault: Namenode trash configuration:
Deletion interval = 1440 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://hadoop01-ns/user/alapati' to trash at: hdfs://hadoop01-ns/user/
hdfs/.Trash/Current
$

Figure 9.4 Hue’s File Browser, showing how you can access HDFS from Hue

250 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

I issued an rm –R command, and I can verify that the directory I want to remove is
indeed gone from HDFS. However, the output of the rm –R command shows that the
directory is still saved for me in case I need it—in HDFS’s trash directory. The trash
directory serves as a built-in safety mechanism that protects you against accidental file
and directory removals. If you haven’t already enabled trash, please do so ASAP!

Even when you enable trash, sometimes the trash interval is set too low, so make
sure that you configure the fs.trash.interval parameter in the hdfs-site.xml file
appropriately. For example, setting this parameter to 14,400 means Hadoop will retain
the deleted items in trash for a period of ten days.

You can view the deleted HDFS files currently in the trash directory by issuing the
following command:

$ hdfs dfs –ls /user/sam/.Trash

You can use the –rmdir option to remove an empty directory:

$ hdfs dfs –rmdir /user/alapati/testdir

If the directory you wish to remove isn’t empty, use the -rm –R option as shown earlier.
If you’ve configured HDFS trash, any files or directories that you delete are moved

to the trash directory and retained in there for the length of time you’ve configured for
the trash directory. On some occasions, such as when a directory fills up beyond the space
quota you assigned for it, you may want to permanently delete files immediately. You can
do so by issuing the dfs –rm command with the –skipTrash option:

$ hdfs dfs –rm /user/alapati/test –skipTrash

The –skipTrash option will bypass the HDFS trash facility and immediately delete
the specified files or directories.

You can empty the trash directory with the expunge command:

$ hdfs dfs –expunge

All files in trash that are older than the configured time interval are deleted when you
issue the expunge command.

Changing File and Directory Ownership and Groups
You can change the owner and group names with the –chown command, as shown here:

$ hdfs dfs –chown sam:produsers /data/customers/names.txt

You must be a super user to modify the ownership of files and directories.
HDFS file permissions work very similar to the way you modify file and directory

permissions in Linux. Figure 9.5 shows how to issue the familiar chmod, chown and
chgrp commands in HDFS.

Figure 9.5 Changing file mode, ownership and group with HDFS commands

251Using the dfsadmin Utility to Perform HDFS Operations

Changing Groups
You can change just the group of a user with the chgrp command, as shown here:

$ sudo –u hdfs hdfs dfs –chgrp marketing /users/sales/markets.txt

Changing HDFS File Permissions
You can use the chmod command to change the permissions of a file or directory. You
can use standard Linux file permissions. Here’s the general syntax for using the chmod
command:

hdfs dfs –chmod [-R] <mode> <file/dir>

You must be a super user or the owner of a file or directory to change its permissions.
With the chgrp, chmod and chown commands you can specify the –R option to make

recursive changes through the directory structure you specify.
In this section, I’m using HDFS commands from the command line to view and

manipulate HDFS files and directories. However, there’s an even easier way to access
HDFS, and that’s through Hue, the web-based interface, which is extremely easy to use
and which lets you perform HDFS operations through a GUI. Hue comes with a File
Browser application that lets you list and create files and directories, download and
upload files from HDFS and copy/move files. You can also use Hue’s File Browser to
view the output of your MapReduce jobs, Hive queries and Pig scripts.

While the hdfs dfs utility lets you manage the HDFS files and directories, the
hdfs dfsadmin utility lets you perform key HDFS administrative tasks. In the next
section, you'll learn how to work with the dfsadmin utility to manage your cluster.

Using the dfsadmin Utility to Perform HDFS
Operations
The hdfs dfsadmin command lets you administer HDFS from the command line.
While the hdfs dfs commands you learned about in the previous section help you
manage HDFS files and directories, the dfsadmin command is useful for performing
general HDFS-specific administrative tasks. It’s a good idea to become familiar with
all the options that are available for the dfsadmin utility by issuing the following
command:

$ hdfs dfsadmin -help
hdfs dfsadmin performs DFS administrative commands.
Note: Administrative commands can only be run with superuser permission.
The full syntax is:
hdfs dfsadmin
 [-report [-live] [-dead] [-decommissioning]]
 [-safemode <enter | leave | get | wait>]
 [-saveNamespace]
...
$

252 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

Note

You’ve already seen a couple of the dfsadmin administrative commands in action (such
as dfsadmin -report and dfsadmin -printTopology) in earlier chapters. This book
explains the rest of the dfsadmin commands in the appropriate context in various
chapters.

If you issue the dfsadmin command with no options, it will list all the options that
you can specify with the command. The dfsadmin –help command is highly useful,
since it not only lists the command options, but also shows you what they are for and
their syntax as well. Figure 9.6 shows a portion of the dfsadmin –help command.

There are several useful dfsadmin command options. In the next few sections, let’s
look at the following command options (other sections of this chapter and other chapters
will discuss several other command options).

 n dfsadmin –report

 n dfsadmin –refreshNodes

 n dfsadmin -metasave

The dfsadmin –report Command
The dfsadmin tool helps you examine the HDFS cluster status. The dfsadmin –report
command produces useful output that shows basic statistics of the cluster, including the

Figure 9.6 The dfsadmin –help command reveals
useful information for each dfsadmin command.

253Using the dfsadmin Utility to Perform HDFS Operations

status of the DataNodes and NameNode, the configured disk capacity and the health of
the data blocks. Here’s a sample dfsadmin –report command:

$ hdfs dfsadmin -report

Configured Capacity: 2068027170816000 (1.84 PB) #A
Present Capacity: 2068027170816000 (1.84 PB)
DFS Remaining: 562576619120381 (511.66 TB) #A
DFS Used: 1505450551695619 (1.34 PB) #B
DFS Used%: 72.80% #B
Under replicated blocks: 1 #C
Blocks with corrupt replicas: 0
Missing blocks: 1
Missing blocks (with replication factor 1): 9 #C

Live datanodes (54): #D

Name: 10.192.0.78:50010 (hadoop02.localhost) #E
Hostname: hadoop02.localhost.com
Rack: /rack3 #E
Decommission Status : Normal #F
Configured Capacity: 46015524438016 (41.85 TB) #G
DFS Used: 33107988033048 (30.11 TB)
Non DFS Used: 0 (0 B)
DFS Remaining: 12907536404968 (11.74 TB)
DFS Used%: 71.95%
DFS Remaining%: 28.05% #G
Configured Cache Capacity: 4294967296 (4 GB) #H
Cache Used: 0 (0 B)
Cache Remaining: 4294967296 (4 GB)
Cache Used%: 0.00%
Cache Remaining%: 100.00% #H
Xceivers: 71
Last contact: Fri May 01 15:15:59 CDT 2015

...

Notes

#A Configured capacity for HDFS in this cluster

#B HDFS used storage statistics

#C Shows if there are any under-replicated, corrupt or missing blocks

#D Shows how many DataNodes in the cluster are alive and available

#E The hostname and rack name

#F Status of the DataNode (decommissioned or not)

#G Configured and used capacity for this DataNode

#H Cache usage statistics (if configured)

Note

You can view the same information as that shown by the dfsadmin –report command on
the NameNode web status page, which is at http://<namenode IP>:50070/dfshealth.jsp.

254 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

The dfsadmin –report command shows HDFS details for the entire cluster, as well
as separately for each node in the cluster. The output of the DFS command shows the
following at the cluster and the individual DataNode levels:

 n A summary of the HDFS storage allocation, including information about the
configured, used and remaining space

 n If you’ve configured centralized HDFS caching, the used and remaining percent-
ages of cache

 n Missing, corrupted and under-replicated blocks

As you’ll learn later in this book, the dfsadmin –report command’s output helps
greatly in examining how balanced the HDFS data is, as well as helps you find out the
extent of HDFS corruption (if it exists).

The dfsadmin –refreshNodes Command
The dfsadmin –refreshNodes command updates the NameNode with the list of
DataNodes that are allowed to connect to the NameNode.

The NameNode reads the hostnames of the DataNode from the files pointed to by the
dfs.hosts and the dfs.hosts.exclude configuration parameters in the hdfs-site.xml
file. The dfs.hosts file lists all the hosts that are allowed to register with the NameNode.
Any entries in the dfs.hosts.exclude file point to DataNodes that need to be decommis-
sioned (you finalize the decommissioning after all the replicas from the node that is being
decommissioned are replicated to other DataNodes).

The dfsadmin –metasave Command
The dfsadmin –metasave command provides more information than that provided by
the dfsadmin –report command. This command gets you various block-related pieces
of information such as:

 n Total number of blocks
 n Blocks waiting for replication
 n Blocks that are currently being replicated

Here’s how you run the dfsadmin –metasave command:

$ sudo -u hdfs hdfs dfsadmin -metasave test.txt
Created metasave file test.txt in the log directory of namenode hadoop1
.localhost.com/10.192.2.21:8020
Created metasave file test.txt in the log directory of namenode hadoop02
.localhost.com/10.192.2.22:8020
$

When you run the dfsadmin –metasave command, it creates a file in the /var/log/
hadoop-hdfs directory on the server where you executed the command. The output
file will contain the following information regarding the blocks:

58 files and directories, 17 blocks = 75 total
Live Datanodes: 1
Dead Datanodes: 0

255Managing HDFS Permissions and Users

Metasave: Blocks waiting for replication: 0
Mis-replicated blocks that have been postponed:
Metasave: Blocks being replicated: 0
Metasave: Blocks 0 waiting deletion from 0 datanodes.
Metasave: Number of datanodes: 1
127.0.0.1:50010 IN 247241674752(230.26 GB) 323584(316 KB) 0% 220983930880(205.81 GB)
Sat May 30 18:52:49 PDT 2015

Managing HDFS Permissions and Users
HDFS as a file system is somewhat similar to the POSIX file system in terms of the file
permissions it requires. However, HDFS doesn’t have the concept of users and groups
as in the other file systems. It’s important to understand the nature of the HDFS super
user and how to manage the granting of permissions to users. You also need to learn
how to set up users so they’re ready to read data and write to the HDFS file system.

In the following sections, I explain these topics:

 n HDFS file permissions
 n Creating HDFS users

HDFS File Permissions
In a Linux system, you create OS users and make them members of an existing oper-
ating system group. In Hadoop, you associate a directory with an owner and a group.
You need not actually “create” either the users or the groups. Rather, you use the concept
of users and groups to set file and directory permissions. The following sections show how
file and directory permissions work in HDFS.

HDFS Permission Checking
The HDFS configuration parameter dfs.permissions.enabled in the hdfs-site.xml
file determines whether permission checking is enabled in HDFS:

<property>
<name>dfs.permissions.enabled</name>
<value>true</value>
</property>

The default value of the parameter is true, meaning permission checking is enabled.
If you set this parameter to false, you turn HDFS permission checking off. Obviously,
you can do this in a development environment to overcome frequent permission-related
error messages, but in a production cluster, you need to keep it at its default setting.

HDFS File and Directory Permissions
HDFS uses a symbolic notation (r, w) to denote the read and write permissions, just as
a Linux operating system does.

 n When a client accesses a directory, if the client is the same as the directory’s
owner, Hadoop tests the owner’s permissions.

 n If the group matches the directory’s group, then Hadoop tests the user’s group
permissions.

256 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

 n If neither the owner nor the group names match, Hadoop tests the “other” per-
mission of the directory.

 n If none of the permissions checks succeed, the client’s request is denied.

Although there’s an execute (x) permission for a file, it’s ignored for files, and as far
as directories go, the execute permission implies that you can access the subdirectories
of that directory. Unlike in the underlying Linux operating system, Hadoop has nothing
like the UIDs (User IDs) or GIDs (Group IDs) to identify users and groups. HDFS simply
stores users and groups of a directory or file as strings.

A user can write to an HDFS directory only if that user has the correct permissions.
In this example, the Linux root user tries to copy a file to a user’s HDFS directory and
fails due to lack of permissions.

[root@hadoop01]# hdfs dfs -put test.txt /user/alapati/test2222/
put: Permission denied: user=root, access=WRITE, inode="/user/alapati/
test2222":hdfs:supergroup:drwxr-xr-x
[root@hadoop01]#

Permission Denied Errors in HDFS
You may receive the permission denied error when you’re issuing an HDFS command
from the command line, as in the previous example, or even when you’re trying to
browse the HDFS file system through the NameNode web page. For example, you may
receive the following error when you try to browse files through the web UI.

Permission denied: user=alapati, access=READ_EXECUTE, inode="/user":hadoop:hdfs:drwx.------

In this case, you need to change the access privileges on the HDFS directory /user,
after logging in as the user hdfs, from the command line:

$ hdfs dfs –chmod –R 755 /user

Running administrative commands as the root user or any other non-privileged
(from the perspective of Hadoop) user will result in errors. If you run the Hadoop file
system checking command fsck as the root user, you’ll get the following error:

$ su root
$ hdfs fsck /
...
FSCK ended at Sun May 29 14:46:27 CDT 2016 in 39473 milliseconds
Permission denied: user=root, access=READ_EXECUTE, inode="/lost+found/user":hdfs:supergroup:drwxr--r--

Fsck on path '/' FAILED
#

The FAILED result you get from running the fsck command here doesn’t mean the
file system is corrupt! It simply means that you failed to execute the fsck command.
A similar thing happens when you run the dfsadmin –report command as any user
other than the HDFS super user, hdfs:

$ hdfs dfsadmin –report

report: Access denied for user root. Superuser privilege is required
#

257Managing HDFS Permissions and Users

In both the cases described here, the right thing to do is to either log in as the user hdfs
and execute the commands, or if you have the sudo privileges to the hdfs user account,
run the commands as follows:

$ sudo –u hdfs hdfs fsck /
$ sudo –u hdfs hdfs dfsadmin –report

Using Access Control Lists (ACLs) to control permissions

 Unlike the regular Linux or UNIX permissions mode, Access Control Lists (ACLs) let you
define permissions for some of a group’s members. For example, you can grant or deny
write permissions on a file only to specific users or groups. ACLs are disabled by
default, but you can enable them by configuring the NameNode appropriately with the
dfs.namenode.acls.enabled configuration parameter.

Chapter 15, “Securing Hadoop,” which deals with Hadoop security, discusses ACLs in
more detail.

HDFS Users and Super Users
Typically, database administrators create users in their databases, with each user having
specific privileges and/or roles that enable them to perform various actions in the database.
In the context of Hadoop, creating a user is kind of a misnomer, as HDFS really doesn’t
have anything that lets you create user identities as you would on Linux systems. It also
doesn’t enable you to create any groups.

In the default mode of authentication, called simple authentication, Hadoop relies on
the underlying operating system to determine client identities. If you set up a Kerberized
system (a system that has been set up to authenticate connections through Kerberos),
then Kerberos will determine the client identities. Chapter 15 shows how to set up
Kerberos for user authentication.

Note that you don’t need to create an operating system account on the underlying
Linux system for your HDFS users to be able to access and use HDFS. It’s a good prac-
tice to create OS accounts for all Hadoop users who’ll be using the local file system on
the gateway servers for their Hadoop-related work.

Creating HDFS (and Hadoop) Users
In order to enable new users to use your Hadoop cluster, follow these general steps.

1. Create an OS account on the Linux system from which you want to let a user execute
Hadoop jobs. Before creating the user, you may have to create the group as well:

$ group add analysts
$ useradd –g analysts alapati
$ passwd alapati

Here, analysts is an OS group I’ve created for a set of users. The passwd command
lets me set a password for the user.

258 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

2. Make sure that you’ve set the permissions on the Hadoop temp directory you’ve
specified in the core-site.xml file, so all Hadoop users can access it:

<property>
 <name>hadoop.tmp.dir</name>
 <value>/tmp/hadoop-$(user.name)</value>
</property>

3. If the file permissions on the HDFS temp directory aren’t 777, make them so:

$ hdfs –dfs –chmod –R 777 //tmp/hadoop-alapati

4. In order to “create” a new HDFS user, you need to create a directory under the /user
directory. This directory will serve as the HDFS “home” directory for the user.

$ hdfs dfs -mkdir /user/alapati

5. By default, when you create a directory or a file, the owner is the user that creates
the directory (or file) and the group is the group of that user, as shown here.

sudo -u hdfs
hdfs dfs -ls /user
Found 135 items
drwxr-xr-x - hdfs supergroup 0 2016-05-28 08:18 /user/alapati
....

In this case, I used the hdfs account to create the directory, so the owner is hdfs
and the group is supergroup. Change the ownership of the directory, since you
don’t want to use the default owner/group (hdfs/supergroup) for this directory.

$ su hdfs
$ hdfs dfs –chown –R alapati:analysts
$ hdfs dfs –ls /user/
$ drwxr-xr-x - alapati analysts 0 2016-04-27 12:40 /user/alapati

6. You can check the new directory structure for the user with the following command:

$ hdfs dfs –ls /user/alapati

User alapati can now store the output of his MapReduce and other jobs under that
user's home directory in HDFS.

7. Refresh the user and group mappings to let the NameNode know about the new user:

$ hdfs dfsadmin -refreshUserToGroupMappings

8. Set a space quota for the new directory you’ve created:

$ hdfs dfsadmin -setSpaceQuota 30g /user/alapati

The new user can now log into the gateway servers and execute his or her Hadoop jobs
and store data in HDFS.

User Identities
Hadoop supports two modes of operation—simple and Kerberos—to determine user
identities. The simple mode of operation is the default. You specify the mode of operation
with the hadoop.security.authentication property in the hdfs-site.xml file.

259Managing HDFS Permissions and Users

When operating in a non-Kerberos (or non-Kerberized) cluster, the host operating
system determines the client identities. In a Kerberized cluster, user identities are based
on the user’s Kerberos credentials, as explained in Chapter 15. Users determine their
current Kerberos principal through the kinit utility, and the Kerberos principal is then
mapped to an HDFS username.

The HDFS Super User
Since Hadoop doesn’t have the concept of a user identity, there’s no fixed super user
for Hadoop. The system super user for Hadoop is simply the operating system user that
starts the NameNode. The HDFS super user doesn’t have to be the root user of the
NameNode host. If you wish, you can allocate a set of users to a separate super user
group.

You can make a set of users members of a super user group by setting the dfs
.permissions.supergroup configuration parameter in the hdfs-site.xml file, as shown here.

<property>
 <name>dfs.permissions.superusergroup</name>
 <value>supergroup</value>
</property>

In this example, supergroup is the name of the group of super users in the cluster.
The following example shows that the user hdfs belongs to the group supergroup:

hdfs dfs -ls /
Found 7 items
drwxr-xr-x - hdfs hdfs 0 2014-06-25 16:39 /data
drwxr-xr-x - hdfs supergroup 0 2015-05-05 15:46 /system
drwxrwxrwt - hdfs hdfs 0 2015-05-09 09:33 /tmp
drwxr-xr-x - hdfs supergroup 0 2015-05-05 13:20 /user
...
#

A lot of the administrative HDFS commands need to be run as the “hdfs” OS user,
which is the default HDFS super user. If you run these commands as any other user,
including the root user in a Linux system, you’ll get the following error:

Access denied for user root. Superuser privilege is required.

The root user in Linux is indeed a super user but only for the local file system. It’s user
hdfs who’s king when it comes to the HDFS file system. You can perform administration-
related HDFS commands only as the hdfs user or by sudoing to that user. You can use
the Linux sudo command to use the privileged administrative commands, as shown in
the following example.

$ sudo –u hdfs hdfs dfs –rm /user/test/test.txt

In this example, the OS user was granted sudo privileges to the HDFS account and
thus is able to run HDFS file commands as the HDFS super user hdfs.

260 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

Managing HDFS Storage
You deal with very large amounts of data in a Hadoop cluster, often ranging over multiple
petabytes. However, your cluster is also going to use a lot of that space, sometimes with
several terabytes of data arriving daily. This section shows you how to check for used
and free space in your cluster, and manage HDFS space quotas. The following section
shows how to balance HDFS data across the cluster.

The following subsections show how to

 n Check HDFS disk usage (used and free space)
 n Allocate HDFS space quotas

Checking HDFS Disk Usage
Throughout this book, I show how to use various HDFS commands in their appropriate
contexts. Here, let’s review some HDFS space and file related commands. You can view the
help facility for any individual HDFS file command by issuing the following command first:

$ hdfs dfs –usage

Let’s review some of the most useful file system commands that let you check the HDFS
usage in your cluster. The following sections explain how to

 n Use the df command to check free space in HDFS
 n Use the du command to check space usage
 n Use the dfsadmin command to check free and used space

Finding Free Space with the df Command
You can check the free space in an HDFS directory with a couple of commands. The -df
command shows the configured capacity, available free space and used space of a file
system in HDFS.

hdfs dfs -df
Filesystem Size Used Available Use%
hdfs://hadoop01-ns 2068027170816000 1591361508626924 476665662189076 77%
#

You can specify the –h option with the df command for more readable and concise output:

hdfs dfs -df -h
Filesystem Size Used Available Use%
hdfs://hadoop01-ns 1.8 P 1.4 P 433.5 T 77%
#

The df –h command shows that this cluster’s currently configured HDFS storage is
1.8PB, of which 1.4PB have been used so far.

Finding the Used Space with the du Command
You can view the size of the files and directories in a specific directory with the du
command. The command will show you the space (in bytes) used by the files that match

261Managing HDFS Storage

the file pattern you specify. If it’s a file, you’ll get the length of the file. The usage of
the du command is as follows:

$ hdfs dfs –du URI

 Here’s an example:

$ hdfs dfs -du /user/alapati
67545099068 67545099068 /user/alapati/.Trash
212190509 328843053 /user/alapati/.staging
26159 78477 /user/alapati/catalyst
3291761247 6275115145 /user/alapati/hive
$

You can view the used storage in the entire HDFS file system with the following
command:

$ hdfs dfs -du /
414032717599186 883032417554123 /data
0 0 /home
0 0 /lost+found
111738 335214 /schema
1829104769791 5401313868645 /tmp
325747953341360 690430023788615 /user
$

The following command uses the –h option to get more readable output:

$ hdfs dfs -du -h /
353.4 T 733.6 T /data
0 0 /home
0 0 /lost+found
109.1 K 327.4 K /schema
2.1 T 6.1 T /tmp
277.3 T 570.9 T /user
$

Note the following about the output of the du –h command shown here:

 n The first column shows the actual size (raw size) of the files that users have
placed in the various HDFS directories.

 n The second column shows the actual space consumed by those files in HDFS.

The values shown in the second column are much higher than the values shown
in the first column. Why? The reason is that the second column’s value is derived by
multiplying the size of each file in a directory by its replication factor, to arrive at the
actual space occupied by that file.

As you can see, directories such as /schema and /tmp reveal that the replication
factor for all f iles in these two directories is three. However, not all f iles in the /data
and the /user directories are being replicated three times. If they were, the second
column’s value for these two file systems would also be three times the value of its f irst
column.

262 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

If you sum up the sizes in the second column of the dfs –du command, you’ll find that
it’s identical to that shown by the Used column of the dfs -df command, as shown here:

$ hdfs dfs -df -h /
Filesystem Size Used Available Use%
hdfs://hadoop01-ns 553.8 T 409.3 T 143.1 T 74%
$

Getting a Summary of Used Space with the du -s Command
The du –s command lets you summarize the used space in all files instead of giving
individual file sizes as the du command does.

$ hdfs dfs -du -s -h /
131.0 T 391.1 T /
$

How to Check Whether Hadoop Can Use More Storage Space
If you’re under severe space pressure and you can’t add additional DataNodes right away,
you can see if there’s additional space left on the local file system that you can commandeer
for HDFS use immediately. In Chapter 3, I showed how to configure the HDFS storage
directories by specifying multiple disks or volumes with the dfs.data.dir configura-
tion parameter in the hdfs-site.xml file. Here’s an example:

<property>
<name>df.data.dir</name>
<value>/u01/hadoop/data,/u02/hadoop/data,/u03/hadoop/data</value>
</property>

There’s another configuration parameter you can specify in the same file, named
dfs.datanode.du.reserved, which determines how much space Hadoop can use from
each disk you list as a value for the dfs.data.dir parameter. The dfs.datanode.du.reserved
parameter specifies the space reserved for non-HDFS use per DataNode. Hadoop can use
all data in a disk above this limit, leaving the rest for non-HDFS uses. Here’s how you
set the dfs.datanode.du.reserved configuration property:

<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
<description>Reserved space in bytes per volume. Always leave this much space
free for non-dfs use.
</description>
</property>

In this example, the dfs.datanode.du.reserved parameter is set to 10GB (the value is
specified in bytes). HDFS will keep storing data in the data directories you assigned
to it with the dfs.data.dir parameter, until the Linux file system reaches a free space
of 10GB on a node. By default, this parameter is set to 10GB. You may consider lowering
the value for the dfs.datanode.du.reserved parameter if you think there’s plenty
of unused space lying around on the local f ile system on the disks configured for
Hadoop’s use.

263Managing HDFS Storage

Storage Statistics from the dfsadmin Command
You’ve seen how you can get storage statistics for the entire cluster, as well as for each
individual node, by running the dfsadmin –report command. The Used, Available
and Use% statistics from the dfs –du command match the disk storage statistics from
the dfsadmin –report command, as shown here:

bash-3.2$ hdfs dfs -df -h /
Filesystem Size Used Available Use%
hdfs://hadoop01-ns 1.8 P 1.5 P 269.6 T 85%

In the following example, the top portion of the output generated by the dfsadmin
–report command shows the cluster’s storage capacity:

bash-3.2$ hdfs dfsadmin -report
Configured Capacity: 2068027170816000 (1.84 PB)
Present Capacity: 2067978866301041 (1.84 PB)
DFS Remaining: 296412818768806 (269.59 TB)
DFS Used: 1771566047532235 (1.57 PB)
DFS Used%: 85.67%
...

You can see that both the dfs –du command and the dfsadmin –report command
show identical information regarding the used and available HDFS space.

Testing for Files
You can check whether a certain HDFS file path exists and whether that path is a directory
or a file with the test command:

$ hdfs dfs –test –e /users/alapati/test

This command uses the –e option to check whether the specified path exists.
You can create a file of zero length with the touchz command, which is identical to

the Linux touch command:

$ hdfs dfs -touchz /user/alapati/test3.txt

Allocating HDFS Space Quotas
You can configure quotas on HDFS directories, thus allowing you to limit how much
HDFS space users or applications can consume. HDFS space allocations don’t have a direct
connection to the space allocations on the underlying Linux file system. Hadoop lets
you actually set two types of quotas:

 n Space quotas: Allow you to set a ceiling on the amount of space used for an
individual directory

 n Name quotas: Let you specify the maximum number of file and directory
names in the tree rooted at a directory

The following sections cover

 n Setting name quotas
 n Setting space quotas

264 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

 n Checking name and space quotas
 n Clearing name and space quotas

Setting Name Quotas
You can set a limit on the number of files and directory names in any directory by
specifying a name quota. If the user tries to create files or directories that go beyond
the specified numerical quota, the file/directory creation will fail. Use the dfsadmin
command –setQuota to set the HDFS name quota for a directory. Here’s the syntax
for this command:

$ hdfs dfsadmin –setQuota <max_number> <directory>

For example, you can set the maximum number of files that can be used by a user
under a specific directory by doing this:

$ hdfs dfsadmin –setQuota 100000 /user/alapati

This command sets a limit on the number of files user alapati can create under that
user’s home directory, which is /user/alapati. If you grant user alapati privileges on other
directories, of course, the user can create files in those directories, and those files won’t
count against the name quota you set on the user’s home directory. In other words, name
quotas (and space quotas) aren’t user specific—rather, they are directory specific.

Warning

If you create a user’s home directory but fail to grant the user a space quota, the user has
unlimited storage in HDFS. Not good!

Setting Space Quotas on HDFS Directories
A space quota lets you set a limit on the storage assigned to a specific directory under
HDFS. This quota is the number of bytes that can be used by all files in a directory.
Once the directory uses up its assigned space quota, users and applications can’t create
files in the directory.

Note

HDFS space quotas are based on limits on HDFS storage that can be used by a directory—
and not by a user.

A space quota sets a hard limit on the amount of disk space that can be consumed by
all files within an HDFS directory tree. You can restrict a user’s space consumption by
setting limits on the user’s home directory or other directories that the user shares with
other users. If you don’t set a space quota on a directory it means that the disk space
quota is unlimited for that directory—it can potentially use the entire HDFS.

Hadoop checks disk space quotas recursively, starting at a given directory and traversing
up to the root. The quota on any directory is the minimum of the following:

 n Directory space quota
 n Parent space quota

265Managing HDFS Storage

 n Grandparent space quota
 n Root space quota

Managing HDFS Space Quotas
It’s important to understand that in HDFS, there must be enough quota space to accom-
modate an entire block. If the user has, let’s say, 200MB free in their allocated quota,
they can’t create a new file, regardless of the file size, if the HDFS block size happens to
be 256MB. You can set the HDFS space quota for a user by executing the setSpace-
Quota command. Here’s the syntax:

$ hdfs dfsadmin –setSpaceQuota <N> <dirname>...<dirname>

The space quota you set acts as the ceiling on the total size of all files in a directory.
You can set the space quota in bytes (b), megabytes (m), gigabytes (g), terabytes (t) and
even petabytes (by specifying p—yes, this is big data!). And here’s an example that shows
how to set a user’s space quota to 60GB:

$ hdfs dfsadmin -setSpaceQuota 60G /user/alapati

You can set quotas on multiple directories at a time, as shown here:

$ hdfs dfsadmin -setSpaceQuota 10g /user/alapati /test/alapati

This command sets a quota of 10GB on two directories—/user/alapati and /test/alapati.
Both the directories must already exist. If they do not, you can create them with the
dfs –mkdir command.

Caution

The space quota includes all replicated data. If you set the quota at 30GB for a user, that
user can exhaust her quota by storing 10GB of actual data in her HDFS directory (using the
default replication factor of three, HDFS stores 10 X 3= 30GB of data).

You use the same command, -setSpaceQuota, both for setting the initial limits and
modifying them later on. When you create an HDFS directory, by default, it has no space
quota until you formally set one.

You can remove the space quota for any directory by issuing the –clrSpaceQuota
command, as shown here:

$ dfsadmin –clrSpaceQuota /user/alapati

If you remove the space quota for a user’s directory, that user can, theoretically
speaking, use up all the space you have in HDFS. As with the –setSpaceQuota com-
mand, you can specify multiple directories in the –clrSpaceQuota command.

Things to Remember about Hadoop Space Quotas
Both the Hadoop block size you choose and the replication factor in force are key
determinants of how a user’s space quota works. Let’s suppose that you grant a new
user a space quota of 30GB and the user has more than 500MB still free. If the user

266 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

tries to load a 500MB file into one of his directories, the attempt will fail with an error
similar to the following, even though the directory had a bit over 500MB of free space.

org.apache.hadoop.hdfs.protocol.DSQuotaExceededException: The DiskSpace quota
 of /user/alapati is exceeded: quota = 32212254720 B = 30 GB but
 diskspace consumed = 32697410316 B = 30.45 GB

In this case, the user had enough free space to load a 500MB file but still received
the error indicating that the file system quota for the user was exceeded. This is so
because the HDFS block size was 128MB, and so the file needed 4 blocks in this case.
Hadoop tried to replicate the file three times since the default replication factor was
three and so was looking for 128*12=1556MB of space, which clearly was over the
space quota left for this user.

Note

The disk space quota is deducted based not only on the size of the file you want to store in
HDFS but also the number of replicas. If you’ve configured a replication factor of three and
the file is 500MB in size, three block replicas are needed, and therefore, the total quota
consumed by the file will be 1,500MB, not 500MB.

The administrator can reduce the space quota for a directory to a level below the
combined disk space usage under a directory tree. In this case, the directory is left in an
indefinite quota violation state until the administrator or the user removes some files
from the directory. The user can continue to use the files in the overfull directory but,
of course, can’t store any new files there since their quota is violated.

Checking Current Space Quotas
You can check the size of a user’s HDFS space quota by using the dfs –count –q command
as shown in Figure 9.7.

When you issue a dfs –count –q command, you’ll see eight different columns in
the output. This is what each of the columns stands for:

 n QUOTA: Limit on the files and directories
 n REMAINING_QUOTA: Remaining number of files and directories in

the quota that can be created by this user
 n SPACE_QUOTA: Space quota granted to this user
 n REMAINING_SPACE_QUOTA: Space quota remaining for this user
 n DIR_COUNT: The number of directories
 n FILE_COUNT: The number of files
 n CONTENT_SIZE: The file sizes
 n PATH_NAME: The path for the directories

The -count –q command shows that the space quota for user bdaldr is about 100TB.
Of this, the user has about 67 TB left as free space.

267Rebalancing HDFS Data

Clearing Current Space Quotas
You can clear the current space quota for a user by issuing the clrSpaceQuota com-
mand as shown here:

$ hdfs dfsadmin -clrSpaceQuota

Here’s an example showing how to clear the space quota for a user:

$ hdfs dfsadmin -clrSpaceQuota /user/alapati
$ hdfs dfs -count -q /user/alapati
 none inf none inf 2
0 0 /user/alapati
$

The user still can use HDFS to read files but won’t be able to create any files in that
user’s HDFS “home” directory. If the user has sufficient privileges, however, she can
create files in other HDFS directories. It’s a good practice to set HDFS quotas on a per-
user basis. You must also set quotas for data directories on a per-project basis.

Rebalancing HDFS Data
Over time, the data in the HDFS storage can become skewed, in the sense that some of
the DataNodes may have more data blocks compared to the rest of the cluster’s nodes.
In cases of extreme skew, the read and write activity is overly busy on the nodes with
more data, and the sparsely populated nodes remain underutilized.

HDFS data also gets unbalanced when you add new nodes to your cluster. Hadoop
doesn’t automatically move existing data around to even out the data distribution among
a cluster’s DataNodes. It simply starts using the new DataNode for storing fresh data.

Note

It’s a good practice to run the HDFS balancer regularly in a cluster.

 Hadoop doesn’t seek to achieve a fully balanced cluster. This state of affairs is quite
hard to achieve in a cluster with continuous data f lows. Instead, Hadoop is satisfied
when the space usage on each DataNode is with within a certain percentage of space
used by the other DataNodes. In addition, it also makes use of a threshold size to give
you f lexibility with the balancing of data.

Hadoop makes available a useful tool, called the balancer, to let you rebalance a
cluster’s block distribution so all DataNodes store roughly equal amounts of data.

Figure 9.7 How to check a user’s current space usage
in HDFS against their assigned storage limits

268 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

The following sections cover

 n Reasons for an unbalanced HDFS
 n Using Hadoop’s balancer tool
 n Setting the proper threshold value
 n When to run the balancer
 n Making the balancer run faster

Reasons for HDFS Data Imbalance
There’s no guarantee that HDFS will automatically distribute data evenly among the
DataNodes in a cluster. For example, when you add a new node to the cluster, all new
blocks could be allocated to that node, thus making the data distribution lopsided.
When the NameNode allocates data blocks to the nodes, it considers the following criteria
to determine which DataNodes get the new blocks.

 n Uniformly distributing data across the cluster’s DataNodes
 n Keeping one of the replicas of a data block on the node that’s writing the block
 n Placing one of the replicas on the same rack as the node writing the block, to

minimize cross-rack network I/O
 n Spreading the block replicas across racks to support redundancy and survive the

loss of an entire rack

Hadoop considers a cluster balanced when the percentage of space in a given DataNode
is a little bit above or below the average percentage of space used by the DataNodes in
that cluster. What this “little bit” is, is defined by the parameter threshold size.

Running the Balancer Tool to Balance HDFS Data
The aforementioned HDFS balancer is a tool provided by Hadoop to balance the data
spread across the DataNodes in a cluster by moving data blocks from the over-utilized
to the under-utilized DataNodes. Figure 9.8 shows the idea behind the balancer tool.
Initially Rack 1 and Rack 2 have data blocks. The new rack, Rack 3, has no data
initially—only newly added data will be placed there. This means adding nodes leads
to an unbalanced cluster. Data is moved from the nodes with data to the new nodes,
which have no data until you move data over to them from the current DataNodes or
wait for new data to come in. When you run the balancer, Hadoop moves data blocks
from their existing locations to the nodes that have more free space, all nodes will
have roughly the same amount of used space.

You can run the balancer manually from the command line by invoking the balancer
command. The start-balancer.sh command invokes the balancer. You can also

269Rebalancing HDFS Data

run it by issuing the command hdfs –balancer. Here’s the usage of the balancer
command:

$ hdfs balancer --help
Usage: java Balancer
 [-policy <policy>] the balancing policy: datanode or blockpool
 [-threshold <threshold>] Percentage of disk capacity
 [-exclude [-f <hosts-file> | comma-separated list of hosts]] Excludes
the specified datanodes.
 [-include [-f <hosts-file> | comma-separated list of hosts]] Includes
only the specified datanodes.

The threshold parameter denotes the percentage deviation of HDFS usage of each
DataNode from the cluster’s average DFS utilization ratio. Exceeding this threshold in
either way (higher or lower) would mean that the node will be rebalanced.

The default DataNode policy is to balance storage at the DataNode level. The balancer
doesn’t balance data among individual volumes of the DataNode, however. The alternative
blockpool policy applies only to a federated HDFS service.

Setting the Proper Threshold Value for the Balancer
You can run the balancer command without any parameters, as shown here:

$ sudo –u hdfs hdfs balancer

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

Rack 1 Now
Has Data

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

Rack 2 Now
Has Data

New DataNode
with No

Data Blocks

New DataNode
with No

Data Blocks

New DataNode
with No

Data Blocks

New DataNode
with No

Data Blocks

New DataNode
with No

Data Blocks

New DataNode
with No

Data Blocks

Rack 3 Has
No Data

Figure 9.8 How the balancer moves data blocks to the under-
utilized nodes from the over-utilized nodes

270 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

This balancer command uses the default threshold of 10 percent. This means that the
balancer will balance data by moving blocks from over-utilized to under-utilized nodes,
until each DataNode’s disk usage differs by no more than plus or minus 10 percent of
the average disk usage in the cluster.

Sometimes, you may wish to set the threshold to a different level—for example, when
free space in the cluster is getting low and you want to keep the used storage levels on the
individual DataNodes within a smaller range than the default of plus or minus 10 percent.
You can do so by specifying the threshold parameter, as shown here:

$ hdfs balancer –threshold 5

Tip

How long the balancer will run depends on the size of the cluster and how unbalanced
the data is. When you run the balancer for the very first time, or you schedule it infre-
quently, as well as when you run it after adding a set of DataNodes, it will run for a very
long time—often several days.

The amount of data moved around during rebalancing depends on the value of the
threshold parameter. If you use the default value of 10 and the average DFS usage across
the cluster is, for example, 70 percent, the balancer will ensure that that each DataNode’s
DFS usage lies somewhere between 60 and 80 percent of that DataNode's storage capacity,
once the balancing of the HDFS data is completed.

When you run the balancer, it looks at two key HDFS usage values in your cluster:

 n Average DFS used percentage: The average DFS used percentage in the cluster
can be derived by performing the following computation:

Average DFS Used = DFS Used * 100/Present Capacity

 n A Node’s used DFS percentage: This measure shows the percentage of DFS used
per node.

The balancer will balance a DataNode only if the difference between a DataNode’s
used DFS percentage and the average DFS used (by the cluster) is greater than the
threshold value. Otherwise, it won’t rebalance the cluster.

As noted previously, if you run the balancer without specifying a threshold value, it’ll
use the default value of 10 as the threshold. In our case, it won’t perform any balancing,
ending up as shown here (assuming all the DataNodes have a similar DFS usage as that
of Node10):

$ hdfs balancer
15/05/04 12:56:36 INFO balancer.Balancer: namenodes = [hdfs://hadoop01-ns]
15/05/04 12:56:36 INFO balancer.Balancer: parameters = Balancer
.Parameters[BalancingPolicy.Node, threshold=10.0, number of nodes to be excluded = 0,
number of nodes to be included = 0]
Time Stamp Iteration# Bytes Already Moved Bytes Left To Move
Bytes Being Moved
,,,

271Rebalancing HDFS Data

The cluster is balanced. Exiting...
May 4, 2015 12:56:37 PM Balancing took 1.47 seconds
$

The balancer ran, but it wound things up pretty quickly, because it found that all
nodes in the cluster have a usage that’s within the threshold value—the cluster is already
balanced!

In our case, for balancing to occur, you must specify a threshold value that’s <=2.
Here’s one way to run it:

$ nohup su hdfs –c "hdfs balancer –threshold 2" > /tmp/balancer.log/stdout.log
2>/tmp/balancer.log/stderr.log &

Specifying nohup and & will run the job in the background and get back control of
the shell. Since a balancer job can run for quite a long time in a cluster, it’s a good idea
to run it in this way.

Using hdfs dfsadmin to Make Things Easier
In our example, we used a single node, Node10, to check that node’s DFS used percent-
age. We then figured out that we must set the threshold to a value that is <= 2 based on
this node’s DFS used percentage. But you can’t run the balancer on a specific node. So,
how do you determine the threshold value when you have a larger number of nodes?
It’s easy. Just pick the lowest DFS used percentage of a node in the entire cluster. You
don’t have to spend a lot of time figuring out the DFS used percentages for each node. Use
the hdfs dfsadmin –report command to find out everything you need in order to
figure out the right threshold value.

In this example, there are 50 nodes in the cluster. I can run the dfsadmin command
as follows, capturing the output in a file, since the command will print out the DFS
usage reports for each node separately.

[root@hadoop01]# sudo -u hdfs hdfs dfsadmin -report > /tmp/dfsadmin.out

Look at the very top of the command’s output (in the file dfsadmin.out), where you’ll
find the DFS used statistics for the entire cluster:

Configured Capacity: 608922615386112 (553.81 TB)
Present Capacity: 607364914327552 (552.40 TB)
DFS Remaining: 166697481228288 (151.61 TB)
DFS Used: 440667433099264 (400.78 TB)

DFS Used%: 72.55%

The smaller the value of the threshold parameter, the more work the balancer will need
to perform and the more balanced the cluster will be. However, there’s a catch here: If
you have a heavily used cluster with numerous writes and deletes of data, the cluster may
never reach a fully balanced state, and the balancer will be merely moving around data
from one node to another.

When you start the balancer, you’ll see the following type of output. Note how
the balancer determines how many nodes are overutilized or underutilized. It’ll move
data from the overutilized nodes to the rest of the cluster nodes. It also determines

272 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

the actual amount of data that needs to be moved around to balance the cluster’s data
distribution.
30/05/2016 10:02:26 INFO balancer.Balancer: 4 over-utilized: #A
[10.192.0.55:50010:DISK, 10.192.0.24:50010:DISK, 10.192.0.54:50010:DISK,
10.192.0.25:50010:DISK]
30/05/2016 10:02:26 INFO balancer.Balancer: Need to move 8.05 TB to make the
cluster balanced. #A
30/05/2016 09:07:21 INFO Balancer: Decided to move 10 GB bytes from #B
10.192.0.55:50010:DISK to 10.192.0.116:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Decided to move 10 GB bytes from
10.192.0.25:50010:DISK to 10.192.0.115:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Decided to move 10 GB bytes from
10.192.0.24:50010:DISK to 10.192.0.118:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Decided to move 10 GB bytes from
10.192.0.54:50010:DISK to 10.192.0.110:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Will move 40 GB in this iteration
30/05/2016 09:07:22 INFO balancer.Dispatcher: Successfully moved
blk_1155910122_1099683676641 with size=17370340 from 10.192.0.54:50010:DISK to
10.192.0.110:50010:DISK through 10.192.0.54:50010 #B

May 30, 2016 10:34:10 PM Balancing took 14.56153333333334 minutes #C
$

Notes

#A Points out the four DataNodes that are currently overutilized. Their HDFS usage
percentage is higher than the average HDFS usage for the cluster.

#B Shows how the balancer moves the data from overutilized to under-
utilized DataNodes.

#C Shows the completion of the balancing once the data is evenly spread
across all DataNodes.

Tip

To keep the balancer from running for a very long time, specify a higher threshold first and
then drop the threshold to a lower value the next time you run the balancer.

Iterative Movement of Blocks

The goal of the balancer is to move data from the overutilized nodes to the underutilized
nodes, thus balancing the DFS usage across the cluster. When you start the balancer, it
starts by moving some data from nodes whose DFS usage is higher than the threshold
and moves that data to nodes whose DFS usage is below the threshold. The balancer
is rack aware and thus will generate minimal inter-rack traffic. The balancer works in an
iterative fashion, moving a certain amount of data per iteration as the output of the
balancer run shows (e.g., “Will move 40GB in this iteration”).

273Rebalancing HDFS Data

When to Run the Balancer
A couple of guidelines as to when to run the balancer are appropriate. In a large cluster, run
the balancer regularly. You can schedule a cron job to perform the balancing, instead of
manually running it yourself. If a scheduled balancer job is still running when the next
job needs to start, no harm’s done, as the second balancer job won’t start.

It’s a good idea to run the balancer right after adding new nodes to the cluster. When
you add a large number of nodes at once and run the balancer afterwards, it’ll take quite
a while to complete its work.

Making the Balancer Run Faster
Ideally you must run the balancer during periods when the cluster is being lightly utilized,
but the overhead is usually not high. You can adjust the bandwidth of the balancer to
determine the number of bytes per second that each DataNode in the cluster can use
to rebalance its data.

The default value for the bandwidth is 10MB per second and you can raise it to make
the balancer complete its work faster. You can raise the bandwidth up to about 10 percent
of your network speed without any noticeable impact on the cluster’s workload. You can
set the network bandwidth used by the balancer with the help of the hdfs dfsadmin
command, as shown here:

$ hdfs dfsadmin -setBalancerBandwidth <bandwidth in bytes per second>

The –setBalancerBandwidth option enables you to change the network bandwidth
consumed by each DataNode in your cluster during an HDFS block balancing operation.
The bandwidth you specify here is the maximum number of bytes per second that will
be used by each DataNode in the cluster. If you’re using a shell script to invoke the balancer
periodically, you can specify the bandwidth option in the script before invoking the bal-
ancer. Here’s an example showing how to change the bandwidth to 20MB.

$ hdfs dfsadmin -setBalancerBandwidth 20971520
Balancer bandwidth is set to 20971520 for hadoop01.localhost/10.192.0.22:8020
Balancer bandwidth is set to 20971520 for hadoop01.localhost/10.192.0.51:8020
$

Make sure that you have adequate bandwidth before increasing the bandwidth. You
can find out the speed of your NIC card by issuing the following command:

$ ethtool eth0
...
Speed: 1000Mb/s
Duplex: Full
...
$

In this example, the network has a speed of 1,000MB per second, so it’s safe to set
the balancer bandwidth to about 10 percent of it, which is 100MB per second.

274 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

When the balancer runs for a long time, you can schedule it to run with different
bandwidths during peak and off peak times. You can run it with a low bandwidth during
peak times and run it with a higher bandwidth during periods when the cluster is less
busy. For example, during peak times, you can schedule a cron job such as the following
for the balancer (bandwidth of 10MB):

$ su hdfs -c 'hdfs dfsadmin -setBalancerBandwidth 10485760'
$ nohup su hdfs -c 'hdfs balancer' > /tmp/balancerstderr.log 2>
/tmp/balancerstdout.log &

You can at the same time schedule a different cronjob to run at off-peak times, with
a higher (20MB) setting for the bandwidth parameter:

$ su hdfs -c 'hdfs dfsadmin setBalancerBandwidth 20971520>'
$ nohup su hdfs -c 'hdfs balancer' > /tmp/balancerstderr.log 2>
/tmp/balancerstdout.log &

Only one balancer job can run at a time. When the second (off-peak) job starts, it stops
the first balancer job and starts a new balancer job with the higher bandwidth setting.

Reclaiming HDFS Space
Oftentimes you can conserve HDFS storage space by reclaiming used space where you
can. There are two ways in which you can reclaim space allocated to HDFS files:

 n You can remove the files or directories once you’re done processing them.
 n You can reduce the replication factor for a file.

Removing files works well with the raw data files you load into HDFS for processing,
and the reduction of the replication factor is a good strategy for handling older and
less-critical HDFS files.

Removing Files and Directories
Periodic removal of unnecessary data is an operational best practice. Often, data needs
to be retained only for a specific period of time. You can stretch your storage resources
by removing any files that are just sitting in HDFS and eating up valuable space.

Decreasing the Replication Factor
You can configure the replication factor at the cluster level by setting the dfs.replication
parameter in the hdfs-site.xml file, as explained in Chapter 4, “Planning for and Creating
a Fully Distributed Cluster.” The setting you configure with the dfs.replication
parameter sets a global replication factor for the entire cluster.

It’s important to understand that while you can set the replication factor at the clus-
ter level, you can modify the replication factor for any existing file, with the –setRep
command. This offers great f lexibility, as you can set the replication factor based on

275Reclaiming HDFS Space

the importance and usage of data. For example, you can lower the replication factor
for historical data and raise the replication factor for “hot” data, so more nodes can
process the data.

You can change the global replication factor anytime by configuring the dfs.replication
parameter. Hadoop will either add or remove replicas across the cluster based on whether
you increase or decrease the global replication factor.

Note how this behavior is different from how the fs.block.size parameter works.
The fs.block.size parameter sets the block size for the cluster. When you change the
value of this parameter, it won’t change the block size of files already in HDFS. It’ll use
the new block size only for new files that are stored in HDFS.

Applications can also specify the replication factor on a per-file basis. You can change
the replication factor for a file anytime with the hdfs dfs –setRep option. You can change
the replication factor for a single file with this command:

$ hdfs dfs –setRep –w 2 /data/test/test.txt

You can change the replication factor for all files in a directory by adding the –R option
as shown here:

$ hdfs dfs –setRep –w 2 –R /data/test

You can reduce the amount of HDFS space occupied by a file by simply reducing the
file’s replication factor. When you reduce the replication factor using the hdfs dfs –setrep
option, the NameNode sends the information about the excess replicas to the DataNodes,
which will remove the corresponding blocks from HDFS.

Here’s an example showing how to reduce the replication factor from the default
level of 3 to 2:

1. Issue the following command to check the current replication factor for the file.

$ hdfs dfs -ls /user/hive/warehouse/customer/year=2016/month=12/day=31
-rw-r--r-- 3 alapati analysts 60226324 2016-02-01 01:07
/user/hive/warehouse/customer/year=2015/month=01/day=31/
CustRecord-20150131_040_28049_20150131235718-000001-0.avro

The number 3 next to the file permission list indicates the replication factor for
this file.

2. Change the replication factor from 3 to 2 with the following command:

$ hdfs dfs -setrep -R -w 2
/user/hive/warehouse/customer/year=2015/month=12

You can check to make sure that the replication factor has been changed to 2 from 3.

$ hdfs dfs -ls /user/hive/warehouse/shoprecord/year=2016/month=01/day=31
-rw-r--r-- 2 alapati analysts 60226324 2016-02-01 01:07
/user/hive/warehouse/customer/year=2015/month=01/day=31/CustRecord-
20160131_040_28049_20160131235718-000001-0.avro

276 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage

3. Optionally, you can also add the –w f lag with this command, to wait for the rep-
lication to complete, but this takes a long time for some files. You can see that the
replication factor has changed to 2 for the file.

$ hdfs dfs -ls
/user/hive/warehouse/customer/year=2016/month=01/day=31
-rw-r--r-- 2 alapati analysts 60226324 2015-02-01 01:07
/user/hive/warehouse/customer/year=2015/month=01/day=31/
ShoppingRecord-20160131_040_28049_20160131235718-000001-0.avro

In the example here, I changed the replication factor for a file. If you specify a
directory instead of a file, the setrep command will recursively change the replication
factor for all files that are under the directory name you specify.

Although I discussed reducing the replication factor as a way to conserve storage, for
important data, you can also try increasing the replication factor. You can also set a higher
replication factor for data that’s in demand (hot data).

Summary
Here’s what you learned in this chapter:

 n The hdfs dfs command is your ally in performing day-to-day work with
HDFS files and directories

 n The hdfs dfsadmin command is highly useful for checking the status of the
DataNodes and the way HDFS data is spread across the DataNodes

 n By granting space and file quotas, you can control HDFS usage.
 n RThe hdfs du and hdfs df commands are handy for finding out how your

cluster is using its storage
 n Balancing your cluster’s data on a regular basis provides computational benefits

by evenly spreading HDFS data across all the nodes of your Hadoop cluster.

| (pipe symbol)
piping data into HDFS files, 360
reviewing files, 359

- (minus sign), in dfs subcommands, 245
* (asterisk), wildcard when copying multiple

files, 358
256-byte encryption, enabling/disabling, 490

A
Acceptance filters, 496
“Access denied for user root” message, 259
Accounting. See Auditing.
Accumulators, 702–703
acl_file parameter, 490
ACLs (access control lists). See also

Authorization.
authorization, 507–509
blocking, 512
configuring service level authorization,

510–511
permissions, 257, 507–509
specifying for UPNs, 490

Action nodes, Oozie workf lows
configuring, 449–454
description, 438, 448
fs actions, 454
for Hive jobs, 451–452
for MapReduce jobs, 450–451
for Pig, 452–453
Shell actions, 453
types of, 449–450. See also specific types.

Actions. See also RDD (resilient distributed
dataset), actions.

Sentry authorization, 513
Spark programming, 170

Active NameNode
checkpointing with a secondary

NameNode, 328
HA (high availability), 335, 336–337,

345–346
monitoring with ZKFC, 335

Active NameNode failover
fencing mechanism, 340–341
role of the JournalNodes, 336

AD (Active Directory)
integrating with Hadoop, 504–505
Kerberized clusters, setting up one-way

trust, 503–504
addDirective attribute, 230
addPool attribute, 230
addprinc command, 492–493
admin command, 472
Administration, key areas of

allocating cluster resources, 28–29
authentication, 30
authorization, 30
Capacity Scheduler, 29
cronning jobs, 29–30, 474
default security, 30
DRF (Dominant Resource Fairness), 28–29
FairScheduler, 28–29
Kerberos, 30
Knox, 31
managing cluster capacity, 28–29
managing cluster storage, 28
Oozie workf lows, 29–30
Ranger, 31
scheduling jobs, 29–30
securing data, 30–31
Sentry, 30

Administrative protocols, 511
Administrators

skills required, 20–21
toolset, 21

Administrators, duties of
assisting developers, 19
backups, 20
disaster recovery, 20
installation and upgrades, 19
overview, 18–19
performance tuning and optimization, 20

Advanced execution engine, Spark, 150–151

Index

748 Index

Agent nodes, 389. See also Flume agents.
Agents. See Flume agents.
aggregateByKey operator, 702
Aggregating data. See Log aggregation.
Alerting and monitoring. See Monitoring.
Alerting tool, 582
Allocating YARN memory

configuring MapReduce memory, 615–617
configuring YARN memory, 613–615
overview, 612–613

Allocation files, Fair Scheduler, 428
allocations.xml file, configuring Fair

Scheduler, 75
allowSnapshot command, 281
ALL_SSD, storage policies, 237
All-to-all operations, 695
Amazon Elastic MapReduce (EMR), 307
Amazon Simple Storage Service (S3), 165
Amazon Web Services, Hadoop distribution,

60
Ambari, 570, 576
ANY, data locality level, 715
Apache products. See specific products.
application command, 531
Application logs

creating, 590–592
definition, 584
HDFS directories, 585
log aggregation, 585, 592
logging levels, 591–592
NodeManager local directories, 585
NodeManager log directories, 585–586
retention duration, setting, 592
storing, 585–586
storing in HDFS. See Log aggregation.
viewing, 584–585, 596–597

Application preemption, Fair Scheduler,
431–432

applicationattempt command, 532
ApplicationMaster

allocating resources, 53–56
vs. ApplicationsManager, 51
configuring MapReduce memory, 617–618
crashes, troubleshooting, 738
in Hadoop clusters, 36
JobHistoryServer, 54

main functions, 52–53
memory issues, troubleshooting, 735–736
YARN, 52–56

Applications. See also Jobs.
in Hadoop clusters, coordinating execution

of, 36. See also Hive; MapReduce
framework; Pig.

limiting number of, 420–421
moving between queues, Fair Scheduler, 434
preempting, 421–422
Spark. See Spark applications.
status, checking, 532
YARN. See YARN commands for

managing applications.
ApplicationsManager, 51
apt-get utility, 63
Architecture

fully distributed clusters, 93
fully distributed clusters, single rack to

multiple racks, 95–96
Ganglia, 580
Hadoop clusters, 35
HDFS transparent encryption, 521
YARN, 49–50

Architecture, Hadoop 2
computation and storage, 34–35
redundancy of data, 34

Architecture, HDFS
DataNodes, 38–39
master nodes, 38–39
NameNodes, 38–39
worker nodes, 38–39

Archival disk-bound storage, 236
Archival storage

cold data, 232, 233–234
on DataNodes, 240–241
on each DataNode, 240–241
fallback storage media, 235
frozen data, 232, 233–234
heterogeneous HDFS storage, 233–234
hot data, 232, 233–234
implementing, 240–241
Mover tool, 240
moving data around, 239–240
storage architecture, 234–235
storage preferences for files, 235

749Index

storage types, performance characteristics,
233

warm data, 232, 233–234
Archival storage, setting up

ALL_SSD, storage policies, 237
archival disk-bound storage, 236
ARCHIVE storage type, 236
cold data, storage policies, 237
configuring multiple storage tiers, 235–236
DISK storage type, 236
f lash storage, storage policies, 237
hot data, storage policies, 237
in-memory storage, 237
Lazy_Persist, storage policies, 237
ONE_SSD, storage policies, 237
RAM_DISK storage type, 237
SSD storage type, 237
standard disk-based storage, 236
storage types, 236–239
temporary data, storage policies, 237
warm data, storage policies, 237

Archival storage, storage policies
architecture, 238
listing, 238
managing, 239
specifying, 239
summary of, 237

ARCHIVE storage type, 236
argument element, 453
AS (Authentication Service), Kerberos, 482–483
Assisting developers, administrator duties, 19
Asterisk (*), wildcard when copying multiple

files, 358
Auditing

definition, 478
HDFS operations, 519
log files, 519–520
overview, 481, 518–519
YARN operations, 519

Authenticating
users, Kerberized clusters, 502
users and services, 501

Authentication. See also Kerberos; Sentry.
administration, 30
vs. authorization, 505
default mode, 257

definition, 480
overview, 480
user identity, 480

Authentication process, Kerberos, 480,
483–484

Authentication server, Kerberos, 483
Authorization. See also ACLs (access control

lists).
administration, 30
vs. authentication, 505
definition, 481
overview, 481
permissions, 507

Authorization, HDFS permissions
ACLs (access control lists), 507–509
changing file permissions, 507
checking permissions, 507
configuring, 506
configuring super users, 506
extended attributes, 509–510
overview, 505–506
raw namespace, 509–510
security namespace, 509–510
simple security mode, 505–506
system namespace, 509–510
user namespace, 509–510

Authorization, Sentry
actions, 513
configuring Hive, 516–517
configuring the server for Hive, 515–516
executing Hive queries, 517
groups, 513, 514
Hive authorization, 514–516
key concepts, 513
objects, 513
overview, 513
policies, 513, 517
policy administration examples, 517–518
policy engine, 513
policy providers, 513
privilege models, 514
privileges, 513, 514
roles, 514, 518–519
Sentry policy file, 514
Sentry service, 514
users, 513

750 Index

Authorization, service level authorization
ACLs, blocking, 512. See also banned.users

parameter.
administrative protocols, 511
client protocols, 511
configuring with ACLs, 510–511
controlling HDFS administrative access,

511
enabling, 510
refreshing SLA configurations, 511
reporting task progress, 511
user whitelist, 511

Automated deployment tools, 63
Automatic failover, 347–348
Average DFS Used Percentage, 270–271
Avro description, 17
Avro files

benefits of, 301–302
description, 301–302, 679–680
loading data from relational databases to

HDFS, 373
structured format, 290

Avro format, in HDFS, 42

B
Backup and recovery. See also Fault tolerance.

NameNode operations, safe mode,
332–334

work preserving recovery, 739
Backup and recovery, backups. See also

Snapshots; Trash directory.
administrator duties, 20
fetchimage command, 552–553
HDFS metadata, 552–553
metastore databases, 553

Backup and recovery, recovery. See also Fault
tolerance.

block recovery, 226
close stage, 227
data streaming stage, 227
disaster recovery, 20. See also Snapshots.
GS (Generation Stamp), 224
lease recovery, 224–225
pipeline recovery, 226–227
pipeline setup stage, 227
RUR (Replica Under Recovery) replica

state, 216

UNDER_RECOVERY block state, 218–219
work preserving recovery, 739

Backup Node, checkpointing, 324–325
balancer command, 269
Balancer tool, 267, 268–271
Bandwidth, monitoring, 572
banned.users parameter, 498. See also ACLs

(access control lists), blocking.
Batch intervals, 195, 689
Batch processing time, reducing, 688–689
Beeline, 192, 517
Beeswax, configuring, 560
Benchmarking clusters. See also Hadoop

metrics.
Folder, 643–644
generating job traces, 643–644
with GridMix, 644–646
with HiBench, 642–643
overview, 638
read tests, 640
with Rumen, 643–644
scaling trace runtime, 643–644
TeraSort, 640–643
with TeraSort, 640–643
testing I/O performance, 638–640
tiny jobs, 646
Trace Builder, 643–644
uberized jobs, 646
write tests, 639

Benchmarks, TeraSort, 642
BI (business intelligence), 10, 191, 198
Bigtop, Hadoop distribution, 60
Binary formats

description, 298
in HDFS, 42
loading data from relational databases to

HDFS, 373
Blade servers on fully distributed clusters,

single rack to multiple racks, 97
Block access tokens, 501
Block locations, printing, 287
“Block MISSING” messages, 287–288
Block recovery, 226
Block replication, setting, 107–108
Block reports

generating, 287
NameNode operations, 322

751Index

Block size
client HDFS, determining, 222
default, 213
setting, 107

Block states, data replication, 218–219
Block Storage Service, 350
blocks option, 287
Breaking up large workloads, cluster

computing, 12
Broadcast variables, 672, 702–703
Brokers, Kafka, 400, 402
Bucketing Hive jobs, 635
Bundle jobs, Oozie workf lows, 439
Bundles, Oozie, 473
Business data, traditional database systems,

7–8
Business intelligence (BI), 10, 191, 198
Bypassing the trash directory, 280
bzip2 format, 290, 291

C
Cache directives, 228, 230–231
cache() method, 718
Cache pools, 228, 230–231
Cache status, displaying, 684
cacheadmin command line interface, 229, 230
Caching RDD data

cache() method, 718
checking the cache, 721
DISK_ONLY storage level, 719
fault tolerance, 718
lineage information, 718
MEMORY_AND_DISK storage level, 719
MEMORY_AND_DISK_SER storage

level, 719
MEMORY_ONLY storage level, 719
MEMORY_ONLY_SER storage level, 719
optimizing, 717–723
overview, 717–718
persist() method, 719–721
in serialized format, 722
setting storage levels, 720–721, 721–722

Caching Spark tables, 723
Call center data, definition, 6
Capacity and elasticity, tradeoffs, 419
Capacity guarantees, Capacity Scheduler,

412, 414

Capacity Scheduler. See also Fair Scheduler;
Oozie.

administration, 29
capacity guarantee, 412
configuring, 75
description, 409, 411–412
enabling, 422
vs. Fair Scheduler, 435–436
fair share preemption, 421–422
maximum capacity, 412
minimum share preemption, 421–422
preempting applications, 421–422

Capacity Scheduler, allocating resources
capacity and elasticity, tradeoffs, 419
number of applications, limiting, 420–421
overview, 418
user capabilities, limiting, 419–420

Capacity Scheduler, examples
administering queues, 424–425
code sample, 422–424
modifying queue configuration, 424
resource limits, setting, 423–424

Capacity Scheduler, queues
administering, 424–425
capacity guarantees, 414
configuring capacity, 417
creating, example, 413–414
diagram, 418
elasticity, 414
hierarchical, 414, 416
importance of, 409–410
leaf, 414
modifying configuration, 424
overview, 412
queue element, 415
resource limits, setting, 423–424
setting up, 415–416

Capacity Scheduler, subqueues. See also
Hierarchical queues; Leaf queues.

configuring, 414
creating, 413–414
diagram, 418
setting up, 415–416

capacity-scheduler.xml file, configuring
Capacity Scheduler, 75

capture-output element, 453
case statements, Oozie workf lows, 460

752 Index

Cassandra, 150, 152, 171, 200, 391, 400
cat command, 356–357
Catalog, description, 17
cd command, 245
Centralized cache management

cache directives, 228, 230–231
cache pools, 228, 230–231
configuring caching, 229
functional description, 229
Hadoop, and OS page caching, 228
key principles, 228
overview, 227–228
short-circuit local reads, 231–232

Channel selectors, 390
Channels, 389–390
check-column parameter, 378–379
checkHealth command, 349, 535
Checkpoint node, checkpointing, 324
Checkpointing

extra edit logs, 326
failure, consequences of, 326
metadata files, 36
overview, 323
performance, 327
with a Secondary NameNode, 328–329
with a Standby NameNode, 327–328

Checkpointing, configuring
backup node, 324–325
checkpoint node, 324
frequency, 325–327
“replaying edit logs” message, 326
Secondary NameNodes, 324
Standby NameNode, 325

Checkpoints, NameNode operations, 319
Chef, 569
chgrp command, 250–251
chmod command, 251
Chokepoints, preventing, 395
chown command, 250–251
Chukwa, 576
CLI (command line interface)

cacheadmin, 229, 230
fully distributed clusters, 104–105
managing HDFS. See dfsadmin utility.

Clickstream data, definition, 6
Client mode

vs. cluster mode, 674–676
Spark applications, 186–187, 189, 190

Client protocols, 511
Client server, Oozie architecture

description, 440
installing, 445–446

Clients
Hadoop, modifying ports in fully

distributed clusters, 124–126
YARN, 49

Clients, HDFS
block size, determining, 222
client interactions, 206
default behavior, settings for, 191
reading HDFS data, 219–220
replication factor, determining, 222
write considerations, 223–224
writing HDFS data, 221–224

Cloning, Linux servers, 745–746
Close stage, 227
Cloudera, Hadoop distribution, 60
Cloudera Manager, 434
clrQuota command, 346
clrSpaceQuota command, 346
Cluster capacity, managing, 28–29
Cluster computing. See also Hadoop clusters.

breaking up large workloads, 12
data redundancy, 12–13
description, 12
DFS (distributed file system), 13
embarrassingly parallel algorithms, 12
hardware racks, 12
tasks, 13

Cluster managers, Spark applications, 180
Cluster mode

vs. client mode, 674–676
Spark, 158–159, 186–187, 189, 190–191

Clusters
administering with Hue. See Hue,

administering a cluster.
rack information, finding, 210–211, 212
redundancy, rack awareness, 209–210
resources, allocating, 28–29
shutdown/startup scripts, 546
storage, managing, 28
usage, displaying, 530

coalesce operator, 708–709
Code generation, Spark SQL query

optimizer, 713–714
Codecs, 293–294

753Index

cogroup operator, 702
Cold data

archival storage, 232, 233–234
storage policies, 237

collect(0) operation, 720
Collecting data. See Flume; Log aggregation.
Collector nodes, 389
Combiners, optimizing MapReduce, 652–654
Command line interface (CLI)

cacheadmin, 229, 230
fully distributed clusters, 104–105
managing HDFS. See dfsadmin utility.

Commands. See also specific commands.
executing remotely, 63
Oozie, 471
YARN. See YARN commands.

Commands, help for
dfsadmin utility, 251–252
file commands, 260
hdfs dfs utility, 245–247
HDFS storage, 260
managing HDFS with hdfs dfs utility,

245–247
spark-submit script, 187–188
Sqoop, 368
YARN commands, 530

Commit log abstraction, 399
COMMITTED block state, 218–219
Common, in the Hadoop ecosphere, 15
Compactness, Spark, 152
COMPLETE block state, 218–219
Completed jobs, monitoring with web UIs,

604–606, 606–607
Compression. See Data compression.
Computation and storage, Hadoop 2

architecture, 34–35
$CONDITIONS parameter, 376
Configuration files, precedence among, 76–78
Configuration parameters

monitoring, 682
variable expansion, 78–79

Configuring
authorization, 506
Beeswax, 560
caching, 229
capacity, queues, 417
control nodes, 456–460
decision control nodes, 459–460

desktop features, 559
end control nodes, 456
error nodes, 458–459
Fair Scheduler, 428–430
fork control nodes, 456–457
Hadoop, 557–560
Hadoop daemons, 79–81
Hadoop for Oozie, 444–446
Hadoop metrics, 75
Hadoop-specific environment, 80
HDFS storage directories, 262
HDFS transparent encryption, 522
Hive for Sentry, 516–517
Hue, 558–559
join control nodes, 456–457
KDC (Key Distribution Center), 489–490
Kerberos, 487–489
kill nodes, 458–459
KMS (Key Management Server), 522
log retention, 594–595
MapReduce. See Modifying fully

distributed clusters, MapReduce
configuration.

multiple archival storage tiers, 235–236
MySQL databases, 445, 548–549
ok control nodes, 458–459
Oozie, 560
Oozie action nodes, 449–454
Oozie workf low jobs, 460–461
permissions, 506
queues, Capacity Scheduler, 424
queues, Fair Scheduler, 429–430
rack awareness, 210
Sentry server for Hive, 515–516
shuff le parameters, 697
start control nodes, 456
subqueues, Capacity Scheduler, 414
super user permissions, 506
super users, 506
trash directory, 278–279
YARN, 559–560
YARN memory, 613–615
ZooKeeper, 560

Configuring clusters. See also Installing
pseudo-distributed clusters; Modifying
fully distributed clusters; Planning fully
distributed clusters.

basic HDFS parameters, 81

754 Index

Configuring clusters (continued)
Capacity Scheduler, 75
configuration parameters, variable

expansion, 78–79
core Hadoop properties, 81
data block replication factor, changing, 85
data storage, 73–74
DataNode storage location, specifying, 85
default user name, 81
environment configuration, 73–74
Fair Scheduler, 75
file system, base temporary directory, 81
Hadoop daemons environment, 79–81
Hadoop metrics, 75
Hadoop-related configuration, 74–76
Hadoop-specific environment, 80
HDFS, 85–86
HDFS, base temporary directory, 81
HDFS daemons, setting up, 73–74
heap size, adjusting for the simple cluster,

80–81
including/excluding hosts, 75
initial Hadoop configuration, 71–72
job processing, 73–74
logging, 75
mapred environment, 80
MapReduce, 82–83
NameNode metadata file location,

specifying, 85
NameNode service, file system, host, and

port information, 81
NameNode URI, specifying, 85
precedence among configuration files,

76–78
read-only default configuration, 74
single-node. See Configuring pseudo-

distributed Hadoop clusters.
site-specific configuration, 74
Standby NameNode metadata file location,

specifying, 85
trash retention interval, setting, 81
YARN, configuring, 83–86
YARN daemons, setting up, 73–74
YARN environment, 80

Configuring MapReduce, mapreduce shuff le,
83–84

Configuring MapReduce, memory
ApplicationMaster, 617–618
for containers, 614
JVM heap size, 616–617
for map and reduce tasks, 615–616
memory-related configuration properties,

618–620
NodeManager, 617–618
ratio of physical memory to virtual, 617
virtual memory for map and reduce tasks,

617
Configuring pseudo-distributed Hadoop

clusters, 74
Configuring Spark applications

configuration properties, 192–193
local file storage, specifying, 193
memory allocation, specifying, 193
spark.executor.memory property, 193
sparklocal.dir property, 193
with spark-submit script, 193–194

Connectivity, checking, 68
Connectors, Sqoop, 367
Consumers, Kafka, 400, 403
Containers

configuring MapReduce memory, 614
YARN, 50

Context switches, monitoring, 571, 575
Control nodes

configuring, 456–460
Oozie workf lows, 446–447, 456–460

Coordinator jobs, Oozie workf lows, 438–439
Coordinator status, checking, 472
Coordinators. See Oozie.
copyFromLocal command, 358
Copying

data between hosts, 63
files from snapshots, 283
fsimage files, controlling transfer speed, 327

copyToLocal command, 359
core-site.xml file

core Hadoop properties, configuring, 81–82
default file system name, setting, 191
fs.defaultFS, 81
fs.trash.checkpoint.interval parameter,

278–279
fs.trash.interval parameter, 278

755Index

hadoop.security.authorization property, 510
trash feature, configuring, 278

core-site.xml file, configuration parameters,
497–498

Counters. See Hadoop counters.
cp command, HDFS analog, 245
CPU

configuring virtual cores, 620–621
fully distributed clusters, single rack to

multiple racks, 96–99
relationship between memory and virtual

cores, 621
CPU usage

monitoring, 570–573
Spark on YARN, configuring resource

allocation, 660
CPU_MILLISECONDS counter, 650
create command, 491
createSnapshot command, 281–282
Creating

application logs, 590–592
Capacity Scheduler queues, 413–414
Capacity Scheduler subqueues, 413–414
DataFrames, 198, 200–201
directories, 71, 249, 312
files, WebHDFS API, 312
fsimage files. See Checkpointing.
Hadoop clusters. See Installing Hadoop

clusters.
Hadoop users, 70–71
HAR files, 305–306
Kerberos databases, 491
map/reduce containers, 590
queues, Capacity Scheduler, 413–414
snapshots, 281–282
SparkContext objects, 182
Sqoop jobs, 377
topics, Kafka clusters, 403
user accounts, 554–556

Creating fully distributed clusters. See also
Modifying fully distributed clusters.

command line interface, 104–105
/etc/hosts file, editing, 105–106
overview, 102
passwordless SSH, configuring, 105
pdsh utility, installing, 102–106
setting up the test cluster, 102–106

Creating RDDs
from existing RDDs, 170
new, 178
subsets of other RDDs, 178
from text files, 175

cron scheduling. See also Time-based
scheduling.

administration, 29–30
Oozie, 474

Crowbar, 63
CSV files, 679
curl tool, 63, 310–311
Custom Java counters, 651

D
Daemon failures, troubleshooting, 737
Daemon logs

definition, 584
deleting log files, 598
location for, specifying, 597–598
log level, setting, 598–599
rotating log files, 598

DAG (directed acyclic graph), Spark
execution model, 693

DAG page, 684
Dashboard, Oozie, 555
Data access, with Spark, 164–166
Data at rest, encrypting, 520
Data block replication factor, changing, 85
Data blocks, data replication, 213
Data compression

codecs, 293–294
data serialization, 295
enabling, 293–294
file formats, 297
file sizes, 680
MapReduce, 133, 291–294
optimizing, 711–712
optimizing MapReduce, 654–655
optimizing shuff le operations, 697–698
overview, 289–290
SerDe module, 295
Spark, 295
stages of MapReduce, 292–293
table data, 373–374
tuning map tasks, 628
uses for, 681

756 Index

Data compression, common formats
Avro files, 679–680
bzip2, 290, 291
comparison of, 291
CSV files, 679
gzip, 290, 291
JSON files, 679
list of, 290
LZO, 290, 291
most common, 297
Parquet files, 680
SequenceFiles, 679
Snappy, 290, 291

Data consistency model, HDFS, 38
Data directories, specifying, 108
Data formats. See also File formats.

HDFS, 42
most common, 297

Data formats, compression
Avro files, 679–680
bzip2, 290, 291
CSV files, 679
gzip, 290, 291
JSON files, 679
LZO, 290, 291
Parquet files, 680
SequenceFiles, 679
Snappy, 290, 291

Data in transit, encrypting, 520, 523–524
Data ingestion. See also Flume; Kafka.

data science component, 11
parallelizing, 688

Data integration
Flume, 27
Kafka, 27
overview, 27–28

Data lakes, 9–11
Data locality

Spark SQL query optimizer, 715–716
tuning map tasks, 626–627

Data mining. See Data science.
Data modeling, data science component, 11
Data organization

data replication, 213
Hive, 142

Data processing
Hadoop ecosphere, 16
parallelizing, 689

Data redundancy. See Redundancy of data.
Data replicas, distributing, 211
Data replication

block states, 218–219
data blocks, 213
data organization, 213
default block size, 213
distributing data replicas, 211
fault tolerance, 43
finalizing an upgrade, 217
functional description, 213–214
HDFS data block storage in the Linux

file system, 217
HDFS replication factor, 214–215
overview, 43
replica states, 216

Data replication factors
decreasing, 274–275
default value, 85
determining, 222
effects on space quotas, 265–266

Data science
components of, 11
definition, 11

Data serialization, 295, 710–711
Data storage. See also HDFS (Hadoop

Distributed File system).
amount, single rack to multiple racks, 96
in a central location. See Data lakes.
configuring Hadoop clusters, 73–74
Hadoop ecosphere, 15

Data streaming stage, 227
Data transfer tools, 355–356
Data types, 6
Data wrangling, data science component, 11
Database systems, traditional, 7–9
Data-based Oozie coordinators, 467–469
DataFrames. See Spark SQL, DataFrames.
DATA_LOCAL _MAPS counter, 649
DataNode web interface, fully distributed

clusters, 120–121
DataNodes

archival storage, 240–241. See also Archival
storage.

balancing. See Rebalancing HDFS data.
communication with NameNodes, 207–208
extending clusters, 101
function of, 40

757Index

in Hadoop clusters, 36
HDFS, 38–39, 44
large cluster guidelines, 101–102
NameNode operations, 322–323
network traffic issues, 97–98
no longer alive, 207–208, 213–214
periodic heartbeats, 207–208, 213–214
planning for fully distributed clusters,

100–101
relation to NameNodes, 44
securing, 500
starting, 87–88
storage location, specifying, 85
YARN, 49

Debugging Spark applications, from the
command line, 686

Debugging Spark applications, viewing logs.
See also Troubleshooting Spark jobs.

from HDFS, 741
with log aggregation, 740–741
reviewing the launch environment, 741
from the Spark web UI, 741
without log aggregation, 741

decision, configuring, 459–460
decision control nodes, Oozie workf lows,

438, 446–447
Decommissioning nodes. See Nodes,

decommissioning and recommissioning.
Default context metrics, 577
default rule, 430
Default user name, configuring Hadoop

clusters, 81
defaultQueueSchedulingPolicy, 430–431
Delegation tokens, 501
DELETE operation, 308, 312–313
delete option, 286, 289
deleteSnapshot command, 282, 283
Deleting

daemon logs, 598
files, 278–279. See also Trash directory.
log files, 598
snapshots, 281–282
SPNs (service principal names), 493

Dell Crowbar, 63
delprinc command, 493
Deploying

HA (high availability), 342–345
a high availability cluster, 544

Oozie workf low jobs, 463
Sqoop, 367

Deploying, Oozie
configuring Hadoop for Oozie,

444–446
installing Oozie, 441–442
installing Oozie server, 442–444
MySQL database, configuring, 445
overview, 441–442
workf low jobs, 463

Desktop features, configuring, 559
df command, 260
DFS (distributed file system), 13
DFS metrics, 577
dfs -setRep option, 275
dfs utility

checking space quotas, 266
count q command, 266
createSnapshot command, 281–282
deleteSnapshot command, 282, 283
snapshots, creating/deleting, 282

dfsadmin commands, HA (high availability),
346

dfsadmin utility
allowSnapshot command, 281
checking for free space, 260
clearing space quotas, 265, 267
clrQuota command, 346
clrSpaceQuota command, 265, 267, 346
disallowSnapshot command, 281
examining HDFS cluster status, 252–255
fetchimage command, 320
help command, 251–252
metasave command, 254
name quotas, specifying, 264
printTopology command, 211
rack awareness, 211–212
refreshNodes command, 254
setQuota command, 264, 346
setSpaceQuota command, 265, 346
setting space quotas, 265
snapshots, enabling/disabling, 281
updating NameNodes, 254

dfsadmin utility, report command
“Access denied...” message, 256–257
calculating threshold values, 271–272
overview, 252–254

dfs.block.size parameter, 107

758 Index

dfs.client.read.shortcircuit.streams.cache.
expiry.ms parameter, 564

dfs.client.read.shortcircuit.streams.cache.size
parameter, 564

dfs.data.dir parameter, 262
dfs.datanode.available-space-volume-

choosing-policy.balanced-
spacepreference-fraction property, 548

dfs.datanode.available-space-volume-
choosing-policy.balanced-spacethreshold
property, 548

dfs.datanode.data.dir parameter, 85, 108,
235–236

dfs.datanode.du.reserved parameter, 107
dfs.datanode.du.reserved parameter, setting,

730
dfs.datanode.fsdataset.volume.choosing.policy

property, 548
dfs.datanode.kerberos.principal parameter, 499
dfs.datanode.keytab.file parameter, 500
dfs.datanode.reserved parameter, 262
dfs.ha.fencing.methods attribute, 340–341
dfs.image.transfer.bandwidthPerSec

parameter, 327
dfs.image.transfer.timeout parameter, 327
dfs.journalnode.kerberos.keytab.file

parameter, 499
dfs.namenode.checkpoint.dir parameter, 85
dfs.namenode.checkpoint.period parameter,

325
dfs.namenode.checkpoint.txns parameter, 325
dfs.name.node.dir parameter, 108
dfs.namenode.http-bind-host parameter, 124,

563
dfs.namenode.https-bind.host parameter, 124,

563
dfs.namenode.kerberos.internal.spnego.

principal parameter, 499
dfs.namenode.kerberos.principal parameter,

499
dfs.namenode.keytab.file, 499
dfs.namenode.max.extra.edits.segments.

retained parameter, 327
dfs.namenode.name.dir parameter, 85–87
dfs.namenode.num.extra.edits.retained

parameter, 326
dfs.namenode.rpc,bind-host parameter, 563

dfs.namenode.rpc.bind-host parameter, 124
dfs.namenode.servicerpc-bind.host

parameter, 124, 563
dfs.permissions.enabled parameter, 255, 506
dfs.permissions.supergroup parameter, 259
dfs.permissions.superusergroup parameter, 108
dfs.replication parameter, 107–108
dfs.secondary.namenode.kerberos.internal.

spnego.principal parameter, 499
dfs.secondary.namenode.kerberos.principal

parameter, 499
dfs.secondary.namenode.keytab.file, 500
dfs.storage.policy.enabled parameter, 235
dfs.web.authentication.kerberos.keytab

parameter, 499
dfs.web.authentication.kerberos.principal

parameter, 499
dfw.replication parameter, 275
dict_file parameter, 490
direct parameter, 382
Directed acyclic graph (DAG), Spark

execution model, 693
Directories. See also Files and directories.

creating in WebHDFS, 312
renaming, 283
snapshottable, removing, 283

Directory quotas, checking, 313
Directory specific space quotas, 264
disallowSnapshot command, 281
Disaster recovery, administrator duties, 20.

See also Backup and recovery; Snapshots.
Discretized Stream (DStream), 196, 688
Disk configuration for fully distributed

clusters, single rack to multiple racks,
97–98

Disk failure risk, fully distributed clusters, 98
Disk I/O, optimizing shuff le operations,

696–697
Disk sizing for fully distributed clusters,

single rack to multiple racks, 97–98
Disk speed, testing, 65
Disk storage, monitoring, 571–572
DISK storage type, 236
Disk usage, checking, 260
Disk volume failure toleration,

troubleshooting, 729–730
Disk-based archival storage, 236

759Index

DISK_ONLY storage level, 719
DistCp

default behavior, 364
description, 356
moving data between clusters, 361–363
moving data within a cluster, 363
overwriting target files, 364–365
potential problem, 356
updating target files, 364–365

distcp command
example, 362–363
moving data between clusters, 361–363
moving data within a cluster, 361–363
options, 363–364. See also specific options.
overwrite option, 364–365
syntax, 361
update option, 364–365

distinct transformation, 178
Distributed computing, fault tolerance

requirements, 33
Distributed data processing

Hive, 26
HiveQL, 26
MapReduce, 24–25
Pig, 26
Spark, 25–26

Distributed file system (DFS), 13
Distributing data replicas, rack awareness, 211
DNS, checking, 65–66
Double RDDs, 179
Downloading, fsimage files, 320–321
DRF (Dominant Resource Fairness)

scheduler, 28–29, 426. See also Fair
Scheduler.

Drivers
Spark applications, 180
Sqoop, 367
standalone cluster manager, 159

Drivers, Spark on YARN
in client mode, 664–665
in cluster mode, 665–666
duties, 663–664

Dry runs, Oozie, 472
ds.replication parameter, 85
dstat command, 576
DStream (Discretized Stream), 196, 688
du command, 260–262

du -h command, 261
du -s command, 262
Dumping a file’s contents, 356–357
Duplicate RDDs, filtering out, 178
Dynamic resource allocation, 667, 676–678
Dynamic resource allocation, enabling,

677–678
Dynamic workf lows, 463–464

E
Ease of use, Spark, 151–152
Edge servers, 13
Edit logs

definition, 318
extra, 326
overview, 320–321

Elasticity, queues, 414
Elasticsearch. See ELK (Elasticsearch/

Logstash/Kibana).
ELK (Elasticsearch/Logstash/Kibana), 27
Email data, definition, 6
Embarrassingly parallel algorithms, 12
Emptying the trash directory, 250
EMR (Amazon Elastic MapReduce), 307
Enabling, trash directory, 278
Encrypting, HDFS, 523
Encryption

256-byte encryption, enabling/disabling,
490

data at rest, 520
data in transit, 520, 523–524
HDFS data transfer protocol, 524

Encryption, HDFS transparent
architecture, 521
configuring encryption, 522
configuring KMS, 522
dedicated server, 521
encrypting HDFS, 523
encryption zones, 521
functional description, 521
KMS (Key Management Server), 521

Encryption zones, 521
end control nodes

configuring, 456
Oozie workf lows, 438, 446–447, 448, 456

Environment configuration, configuring
Hadoop clusters, 73–74

760 Index

Environment tab, web UI, 682
Environment variables, setting, 87
env-var element, 453
error nodes, configuring, 458–459
/etc/hosts file, editing, 105–106
Events, 390
Exec, 394
exec element, 453
Execute (x) permission, 506
Executing, Spark applications, 187–189
Executing remote commands, 63
-executor-cores f lag, 661
Executors. See Spark executors.
export command, 382–383
Exporting data. See Sqoop, exporting data.
expunge command, 250, 279
Extended attributes, 509–510
Extending clusters, single rack to multiple

racks, 101
extJS, 440, 443
Extracting configuration files, 581

F
Failed jobs, monitoring with web UIs,

601–602
“Failed to find any kerberos tgt” message, 502
Failover. See HA (high availability), failover.
failover command

manual failover, 348–349, 545–546
YARN, 535

Fair Scheduler. See also Capacity Scheduler;
DRF (Dominant Resource Fairness)
scheduler; Oozie.

allocation files, 428
application preemption, 431–432
vs. Capacity Scheduler, 435–436
configuring, 428–430
configuring Hadoop clusters, 75
description, 409
fair-scheduler.xml file, example, 432–434
monitoring, 434
overview, 426–427
preemption, 409
priorities, 409
queues, 409–410
security, 432

Fair Scheduler, queues
configuring, 429–430

leaf queues, 428
moving applications between, 434
overview, 427–428
rules for placing jobs into, 430–431
scheduling policy, configuring, 431
submitting jobs to, 434

Fair share preemption, Capacity Scheduler,
421–422

FairScheduler, 28–29
fair-scheduler.xml file

configuring queues in the Fair Scheduler,
429–430

example, 432–434
Fallback storage media, archival storage, 235
Fault tolerance. See also Rack awareness;

Recovery process.
caching RDD data, 718
data replication, 43
HDFS, 37–38
Spark jobs, troubleshooting, 740

Federated NameNodes
architecture, small files problem, 304
description, 349–350

Federation. See Federated NameNodes.
Fedora Linux, package manager for, 63
Fencing, configuring, 340–341
fetchimage command, 320, 552–553
FIFO (first-in, first-out) scheduler, 409,

410–411
File formats. See also Data formats.

changing, 302
compatibility with processing tools, 297
compression capability, 297
file size, 297
f lexibility, 296
overview, 295–296
performance, 297
selecting, 296–297
splittability, 297

File sizes
choosing a file format, 297
data compression, 680

File system checks. See also fsck command.
block locations, printing, 287
“block MISSING” messages, 287–288
block reports, generating, 287
detecting data corruption, 285–288
fully distributed clusters, 118

761Index

removing corrupt files, 286
under-replicated files, 289
unrecoverable files, 288–289

File system counters, 649
File system organization, HDFS, 42
FILE_BYTES_READ counter, 649
FILE_BYTES_WRITTEN counter, 649
Filecrush project, 307
filecrusher utility, 306
Files

archival storage preferences for, 235
dumping contents of, 356–357
sending and getting, 63
small. See Small files.
testing for, 357

Files and directories. See also HDFS storage,
files and directories; Linux file and
directory commands.

change directory, 245
copying, 245
listing files, 244–245
moving, 245
permissions for. See HDFS permissions.
print working directory, 245
setting space quota limits on directories,

264–266
File system in Userspace (FUSE), 564–566
filter() operation, 200
filter(function) transformation, 178
Filtering

DataFrame rows, 200
duplicate RDDs, 178
lists of applications, 531–532

FINALIZED replica state, 216
Finalizing a data replication upgrade, 217
Firewall, turning off, 67
First-in, first-out (FIFO) scheduler, 409,

410–411
Flash storage, storage policies, 237
f latMap, transformation, 178
Flink, 25
Flume. See also Log aggregation.

architecture, 389–391
channel selectors, 390
channels, 389–390
collector nodes, 389
description, 17

events, 390
examples, 392–394, 395–398
intercepts, 390
key components, 389–390
memory channels, 392
moving data to HDFS, 394–395
overview, 388–389
preventing chokepoints, 395
sink processors, 390
sinks, 389–390, 395
sources, 389–390, 395

Flume agents
agent nodes, 389
configuring, 391–392, 396–398
definition, 389
description, 390–391

Folder utility, 643–644
Fork actions, Oozie workf lows, 448
fork control nodes

configuring, 456–457
Oozie workf lows, 438, 446–447, 448,

456–457
Formats. See Data formats; File formats.
Fraud detection, advantages of Hadoop, 9
free command, 573
Free form import, 375–376
fromSnapshot parameter, 282–283
Frozen data, archival storage, 232, 233–234
fs actions, Oozie action nodes, 454
fs.block.size parameter, 275
fsck command. See also File system checks.

blocks option, 287
delete option, 286, 289
detecting data corruption, 285–288
FAILED error, 256
file system check, 118
file system check options, 288
vs. Linux fsck command, 284
list-corruptfileblocks option, 286
locations option, 287
move option, 288–289
options, summary of, 288. See also specific

options.
rack awareness, 211
removing corrupt files, 286

fs.defaultFs parameter, 81
fs.default.name parameter, 85

762 Index

fsimage files. See also Snapshots.
copying, controlling transfer speed, 327
definition, 318
downloading, 320–321
importance of updating, 323–324
location, specifying, 108
loss or corruption, 319
overview, 320–321
viewing contents of, 321

fs.trash.checkpoint.interval parameter, 278–279
fs.trash.interval parameter, 81, 278
FTP protocol, enabling, 63
Full garbage collection, 687
Fully distributed clusters, description, 61–62.

See also Creating fully distributed clusters;
Modifying fully distributed clusters;
Planning fully distributed clusters.

FUSE (File system in Userspace), 564–566

G
Ganglia, installing, 580–581. See also

Monitoring with Ganglia.
Garbage collection . See GC (garbage collection).
Gateway machines, fully distributed clusters,

119
GC (garbage collection)

collecting statistics about, 687–688
Full GC, 687
for the JVM (Java Virtual Machine). See

JVM garbage collection.
mechanics of, 687
Minor GC, 687
monitoring with web UIs, 684, 685
Old Generation, 687
optimizing shuff le operations, 697
tuning, 686–689
Young Generation, 687

GC_TIME_MILLIS counter, 650
generate option, 645
Generation Stamp (GS), 224
Generations, JVM garbage collection,

732–733
Geographic data, definition, 6
get command, 359–360
GET operation, 308
getconf command, 333–334
getMerge command, 360

getServiceState command, 349, 535, 545
Getting, files, 63
gmetad daemon, 580–581
gmond daemon, 580–581
Graphs, Spark, 155
GraphX, 155
GridMix, benchmarking clusters, 644–646
gridmix command, 645
gridmix.compression-emulation.enable

parameter, 645
gridmix.job-submission.policy parameter, 645
gridmix.job.type parameter, 645
gridmix.output.directory parameter, 645
Group metrics, 577
groupBy operation, 200
groupByKey operator, 700–702
Grouping DataFrame data, 200
Groups, Sentry authorization, 513, 514
Growth patterns of fully distributed clusters,

single rack to multiple racks, 96
GS (Generation Stamp), 224
gweb process, 580
gzip format, 290, 291

H
H option, 310
HA (high availability)

functional description, 336–337
Hadoop 2 vs. Hadoop 1, 22
MySQL databases, 549–551
Standby NameNode, 46–47

HA (high availability), configuring
JournalNodes, role of, 336
overview, 335
QJM (Quorum Journal Manager), 335
ZooKeeper as a coordinator, 335

HA (high availability), failover
attributes, configuring, 340–341
automatic, configuring, 347–348
manual, 348–349, 545–546
NameNode health, checking, 349
NameNode status, displaying, 349
ResourceManager, 543–544
transitioning node status, 349
ZKFC (ZKFailoverController), 347–348

HA (high availability), NameNode setup
deploying, 342–345

763Index

dfsadmin commands, 346
managing, 345–346
Standby NameNode, query errors, 346
testing, 345

HA (high availability), ResourceManager
architecture, 541–542
commands, 545
current state, getting, 545
current state, transitioning, 545
deploying a high availability cluster, 544
failover, 543–544
failover command, 545
getServiceState command, 545
Restart feature, 543
setting up, 542–543
transitionToStandby command, 545

HA (high availability) quorum cluster
failover attributes, configuring, 340–341
fencing, configuring, 340–341
logical NameNode ID, 337
logical nameservice, 337
name and address, configuring, 338–340

haadmin commands, 348–349
Hadoop

block sizes, effects on space quotas,
265–266

configuring, 557–560
daemons, configuring, 79–81
distributions, 60–61
integrating with Kafka, 404–406

Hadoop 2
architecture. See Architecture, Hadoop 2.
common uses for, 6
components of. See Hadoop ecosphere.
ease of adoption, 12
handling large datasets, 11
key success factors, 8–9
scale up architecture vs. scale out, 8
unique features, 5
user identities, determining, 258–259

Hadoop 2 vs. Hadoop 1
applications supported, 23
architectural differences, 22
high availability features. See HA (high

availability).
multiple processing engines, 23
resource allocation, 24

separation of processing and scheduling, 23
YARN, 21–22

Hadoop Archives (HAR)
caveats, 306
file types, 305
.har file extension, 305
HAR files, creating, 305–306
HAR files, reading, 306
managing small f iles, 304–306
overview, 304–306

Hadoop clusters. See also Cluster computing.
allocating resources, 36
ApplicationMaster, 36
architecture, 13–14, 35
checkpointing the metadata file, 36
components of, 13
configuring. See Configuring clusters.
coordinating application execution, 36
creating. See Installing Hadoop clusters.
DataNodes service, 36
definition, 13
edge servers, 13
Hadoop services, 36
HDFS services, 36
HDFS storage metadata, 36
master nodes, 36
NameNode service, 36
NodeManager, 37
operating. See Operating Hadoop clusters.
ResourceManager, 36
Secondary NameNode service, 36
Standby NameNode service, 36
worker nodes, 36
YARN (Yet Another Resource

Negotiator) services, 36–37
Hadoop counters. See also Benchmarking

clusters; Hadoop metrics.
custom Java counters, 651
file system counters, 649
job counters, 649–650
limiting the number of, 651–652
MapReduce framework counters, 650–651
overview, 647–648

Hadoop counters, key counters
CPU_MILLISECONDS, 650
DATA_LOCAL _MAPS, 649
FILE_BYTES_READ, 649

764 Index

Hadoop counters, key counters (continued)
FILE_BYTES_WRITTEN, 649
GC_TIME_MILLIS, 650
HDFS_BYTES_READ, 649
HDFS_BYTES_WRITTEN, 649
MAP_INPUT_RECORDS, 650
MAP_OUTPUT_RECORDS, 650
MILLIS_MAPS, 650
MILLIS_REDUCES, 650
NUM_KILLED_MAPS, 649
NUM_KILLED_REDUCES, 649
PHYSICAL_MEMORY_BYTES, 650
REDUCE_SHUFFLE_BYTES, 650
SPILLED_RECORDS, 650
TOTAL_LAUNCHED_MAPS, 649
TOTAL_LAUNCHED_REDUCES, 649

Hadoop daemon starting failures,
troubleshooting, 737–738

Hadoop Distributed File system (HDFS). See
HDFS (Hadoop Distributed File system).

Hadoop ecosphere
Avro, 17
base utilities, 15
Catalog, 17
Common, 15
coordinating distributed applications. See

ZooKeeper.
data processing, 16
data storage, 15
diagram of, 16
Flume, 17
HBase, 17
HDFS (Hadoop Distributed File system), 15
Hive, 17
Hue, 17
Kafka, 17
Mahout, 17
management tools, 16. See also Ambari.
managing resources, 15
MapReduce, 15
monitoring tools, 16
Oozie, 17
operating system, 15
Pig, 17
scheduling jobs, 15
Sqoop, 17
Storm, 17

summary of components, 17
Tez, 17
YARN, 15
ZooKeeper, 17

Hadoop metrics. See also Benchmarking
clusters; Hadoop counters; Monitoring.

capturing to a file system, 578–579
configuring, 75
default context, 577
DFS, 577
group, 577
JVM, 577
overview, 576
RPC, 577
sinks, 578–579
sources, 578–579
types of, 577
user, 577
uses for, 578
YARN, 577

Hadoop Process Definition Language
(hPDL), 447

Hadoop services, in Hadoop clusters, 36
Hadoop Streaming

definition, 139–140
functional description, 140
Java classes, 140

Hadoop web interfaces, fully distributed
clusters, 120

HADOOP_CLASSPATH environment
variable, 73

HADOOP_CONF_DIR environment
variable, 163

hadoop.encryption.key.provider.path
parameter, 522

hadoop.encryption.key.provider.url
parameter, 522

hadoop-env.sh file, 79
HADOOP_HEAPSIZE environment

variable, 73
hadoop.http.staticuser, setting default user

name, 81
HADOOP_LOG_DIR environment

variable, 73
HADOOP_LOG_DIR parameter, 597
hadoop-metrics.properties file, configuring

Hadoop metrics, 75

765Index

HADOOP_PID_DIR environment variable,
73

Hadoop-related configuration, 74–76
hadoop.rpc.protection parameter, 497–498
hadoop.security.authentication parameter,

497–498
hadoop.security.authentication property,

258–259
hadoop.security.authorization parameter,

497–498
hadoop.security.auth_to_local parameter,

495–498
hadoop.security.group.mapping parameter, 496
Hadoop-specific environment, configuring, 80
hadoop.tmp.dir, 81
HAR (Hadoop Archive)

caveats, 306
file types, 305
.har file extension, 305
HAR files, creating, 305–306
HAR files, reading, 306
managing small f iles, 304–306
overview, 304–306

.har file extension, 305
HAR file system, 244
HAR files, 305–306
hard limit settings, 67–68
Hardware racks, 12. See also Planning fully

distributed clusters, single rack to
multiple racks.

HashPartitioner partitions, 709
HBase, 17
HCatalog, 558
HDFS (Hadoop Distributed File system)

accessing from behind a firewall. See
HttpFS gateway.

administrative access, service level
authorization, 511

alternate file systems, 244
architecture. See Architecture, HDFS.
Avro format, 42
base temporary directory, configuring, 81
binary formats, 42
cache management. See Centralized cache

management.
client interactions. See Clients, HDFS.
cluster status, examining, 252–255

configuring for fully distributed clusters,
HDFS configuration, modifying fully
distributed clusters

configuring Hadoop clusters, 85–86
daemons, configuring in Hadoop clusters,

73–74
data block storage in the Linux file system,

217
data consistency model, 38
data formats, 42
data replication. See Data replication.
data transfer protocol, 524
DataNode services, starting, 87–88
DataNodes, 44
distributed synchronization and group

services. See ZooKeeper.
fault tolerance, 37–38. See also Recovery

process.
federation. See Federated NameNodes.
file system organization, 42
formatting, 86–87
in Hadoop clusters, 36
Hadoop ecosphere, 15
handling large datasets, 37
high availability. See HA (high

availability).
loading data into. See Loading data.
managing. See Managing HDFS.
metadata, 319–321. See also NameNodes.
metadata, backing up, 552–553
mountable file systems, 564–566
in a multihomed network, 124, 562–563
NameNode operations, 43–48
NameNodes, communication with

DataNodes, 207–208
NameNodes, starting, 87–88
NFSv3 gateway, configuring, 566–567
operations, auditing, 519
parameters, configuring Hadoop clusters, 81
permissions. See Authorization, HDFS

permissions.
ports, modifying in fully distributed

clusters, 123–124
reading, 219–220
remote communication. See HttpFS

gateway; WebHDFS.
replication factor, 214–215

766 Index

HDFS (continued)
Secondary NameNodes, 46–47, 87–88
SequenceFile format, 42
services, starting, 87–88
short-circuit local reads, 563–564
space issues, troubleshooting, 727
special features, 562–567
storage metadata in Hadoop clusters, 36
storage usage, monitoring with web UIs,

608–609
storing data, 40–42
streaming access to data, 38
transparent encryption. See Encryption,

HDFS transparent.
unbalanced data. See Rebalancing HDFS

data.
unique features, 37–38
write considerations, 223–224
writing data, 221–224
writing to an HDFS file, 42–43

hdfs dfs utility. See Managing HDFS with
hdfs dfs utility.

hdfs dfsadmin command, 118
HDFS files

concatenating, 360
description, 206
listing, 247, 248
piping data into, 360
viewing first and last portions of, 360

HDFS permissions
ACLs (access control lists), 256
checking, 255
default authentication mode, 257
enabling new users, 257–258
Kerberized systems, 257
overview, 255
Permission denied errors, 256
r (read), 255–256
super users, designating, 259
user identities, 258–259
w (write), 255–256
x (execute), 256

HDFS storage
additional space, checking for, 262
checking disk usage, 260
decreasing the replication factor, 274–275

df command, 260
dfs -setRep option, 275
dfsadmin command, 260
dfw.replication parameter, 275
displaying storage statistics, 263
du command, 260–262
du -h command, 261
du -s command, 262
free space, checking, 260
fs.block.size parameter, 275
help for file commands, 260
reclaiming used space, 274–276
report command, 263
reserving space for non-HDFS data use, 262
test command, 263
used space, checking, 260–262

HDFS storage, files and directories
checking the existence of files, 263
distinguishing directories from files, 263
removing, 274

HDFS storage, space quotas
checking, 266–267
Hadoop block sizes, effects of, 265–266
managing, 265
name quotas, setting, 264
vs. name quotas, 263
quota violation state, 266
removing, 265
replication factors, effects of, 265–266
setting limits on directories, 264–266
user specific vs. directory specific, 264

hdfs user, setting up, 70–71
HDFS_BYTES_READ counter, 649
HDFS_BYTES_WRITTEN counter, 649
hdfs-site.xml file

configuring archival storage tiers, 235–236
configuring HDFS storage directories, 262
configuring pseudo-distributed Hadoop

clusters, 74
decommissioning a DataNode service, 536
default behavior for HDFS client, 191
dfs.data.dir parameter, 262
dfs.datanode.reserved parameter, 262
dfs.hosts.exclude parameter, 536
dfs.namenode.http-bind-host parameter,

124, 563

767Index

dfs.namenode.https-bind.host parameter,
124, 563

dfs.namenode.rpc.bind-host parameter,
124, 563

dfs.namenode.servicerpc-bind.host
parameter, 124, 563

dfs.permissions.enabled parameter, 255
dfs.permissions.supergroup parameter, 259
hadoop.security.authentication property,

258–259
HDFS in a multihomed network, 124
modifying HDFS configuration, 106–109
permission checking, enabling/disabling,

255
super users, designating, 259
user identities, determining, 258–259
YARN in a multihomed network, 124

hdfs-site.xml file, configuration parameters,
499–500

hds-audit.log file, 519
head command, 360
Heap dumps, 734
Heap size, adjusting for the simple cluster,

80–81
Heartbeats

DataNodes, 207–208, 213–214
frequency, configuring, 321
overview, 322
piggybacking, 322
stopped, 322

help command
dfsadmin utility, 251–252
hdfs dfs utility, 245–247

Help feature, Sqoop, 368
Help for commands

dfsadmin utility, 251–252
file commands, 260
hdfs dfs utility, 245–247
HDFS storage, 260
managing HDFS with hdfs dfs utility,

245–247
spark-submit script, 187–188
Sqoop, 368
YARN commands, 530

Heterogeneous HDFS storage, archival
storage, 233–234

HiBench, benchmarking clusters, 642–643
Hierarchical queues, 414, 416. See also Leaf

queues.
High availability (dfsadmin commands, HA),

346
High availability (HA). See HA (high

availability).
History file directory, specifying, 114
History files, managing, 114
Hive

alternative to MapReduce, 25
authorization, 514–516
connecting to Spark SQL, 199
data organization, 142
definition, 141
description, 9, 17
executing under Sentry, 517
loading data into, 142–143
monitoring, 609–610
overview, 141–142
partitioned Hive tables, 381
querying data, 143
SQL features. See HiveQL.

Hive jobs
Oozie action nodes, 451–452
optimizing. See Optimizing Hive jobs.

Hive Query Language (HQL), 164, 452
Hive tables, 142
HiveContext, 198–199
hive-partition-key parameter, 381
hive-partition-value parameter, 381
HiveQL, 26
hive.sentry.provider property, 515
HiveServer2, 514–517
Hortonworks, 60
Hosts, including/excluding, 75
Hot data

archival storage, 232, 233–234
storage policies, 237

Hot swapping a disk drive, 729
HotSpot, 624
hPDL (Hadoop Process Definition

Language), 447
HQL (Hive Query Language), 164, 452
HSQLDB, 372
HTTP protocol, enabling, 63

768 Index

HttpFS gateway
accessing HDFS, 314–315
configuring, 313–314
overview, 313
vs. WebHDFS, 315

Hue
configuring, 558–559
in the Hadoop ecosphere, 17

Hue, administering a cluster
administrative tasks, 561–562
Beeswax, configuring, 560
configuring Hue, 558–559
creating user accounts, 554–556
desktop features, configuring, 559
Hadoop, configuring, 557–560
installing, 556–557
managing Hue, 561
managing workf lows, 561–562
Oozie, configuring, 560
overview, 553–554
starting the Hue server, 561
user impersonation, 558
YARN, configuring, 559–560
ZooKeeper, configuring, 560

I
IBM, Hadoop distribution, 60
if-then-else actions. See decision control nodes.
Impala, alternative to MapReduce, 25
import command, 368–370
Import process

incremental imports, 378–379
input parsing options, 373
overview, 368–371
selective import, 374–376
into SequenceFiles, 373

import-all-tables command, 376
Importing data. See Loading data.
incremental parameter, 378–379
Ingesting data. See Loading data.
Initializing, Spark SQL, 199
In-memory archival storage, 237
In-memory computation, Spark, 151
Input split size, tuning map tasks, 627–628
InputFormat, 164
Input/output

delimiters, 372–373

directories, MapReduce, 137
MapReduce, 132
tuning map tasks, 627–630

Installation and upgrades, administrator
duties, 19

Installing
client server, Oozie architecture, 445–446
Ganglia, 580–581
Hue, 556–557
Kafka, 401
Kerberos, 486–487
OEL (Oracle Enterprise Linux), 745
Oozie, 441–442
Oozie server, 442–444
server, Oozie architecture, 442–444

Installing fully distributed clusters, 61–62.
See also Modifying fully distributed
clusters; Planning fully distributed
clusters.

checking the new file system, 118
overview, 61–62
starting up and shutting down the cluster,

114–117
Installing Hadoop clusters. See also

Configuring clusters.
Hadoop distributions, 60–61
installation types, 61–62
multinode clusters. See Fully distributed

clusters.
single-node installation. See Installing

pseudo-distributed clusters.
standalone installation, 61–62

Installing Java, 69–70
Installing pseudo-distributed clusters. See also

Configuring pseudo-distributed Hadoop
clusters.

description, 61–62
Hadoop users, creating, 70–71
HDFS management, setting up, 70–71
hdfs user, setting up, 70–71
installing Hadoop software, 70
Java requirements, 69–70
mapred user, setting up, 70–71
MapReduce services, setting up, 70–71
overview, 62–63
passwordless connection, 68–69
required directories, creating, 71

769Index

setting up SSH, 68–69
starting up and shutting down the cluster,

114–117
utilities, 63
YARN services, setting up, 70–71
yarn user, setting up, 70–71

Installing pseudo-distributed clusters,
modifying the Linux kernel

connectivity, checking, 68
DNS, checking, 65–66
increasing file limits, 64
IP tables, disabling, 67
IPv6, disabling, 67
modified parameters, summary of, 64
NIC bonding, 65
noatime for disk mounts, setting, 65
nodiratime for directory mounts, setting,

65
NTP, enabling, 65
SELinux, disabling, 66
server BIOS settings, checking, 65
shell limits, setting, 67–68
swap, disabling, 66
testing disk speed, 65
THP compaction, turning off, 68
turning off the network firewall, 67
Ulimits, setting, 67–68

Installing Spark
compiling binaries, 157
examples, 157
key files and directories, 157
overview, 155–156
reducing verbosity, 158

Instant messaging data, definition, 6
Integrity checks. See File system checks; fsck

command.
Interactive Spark applications. See Spark

applications, interactive.
Intercepts, 390
Interrupts, monitoring, 575
I/O load, reducing, 624–625
I/O processes, MapReduce, 132–133
I/O statistics, monitoring, 573–574
iopath option, 645
iostat utility, 573–574
IP tables, disabling, 67
IPv6, disabling, 67

J
jar command, 645
JAR files, displaying, 682
Java, installing, 69–70
Java classes, and Hadoop Streaming, 140
Java Database Connectivity (JDBC) server,

Spark applications, 191–192
Java heap, JVM garbage collection. See

also Troubleshooting JVM garbage
collection.

generations, 732–733
old generations, 732–733
overview, 732–733
permanent generations, 732–733
sizing, 733
young generations, 732–733

Java requirements for installing pseudo-
distributed clusters, 69–70

Java Virtual Machine (JVM)
configuring reuse, 623–624
heap size, configuring, 616–617
and HotSpot, 624
metrics, 577
off heap usage, 668

JAVA_HOME environment variable, 73
JBOD disks, single rack to multiple racks,

98
JDBC (Java Database Connectivity) server,

Spark applications, 191–192
JN (JournalNode) daemons

configuring HA (high availability), 336
large cluster guidelines, 101

Job counters, 649–650
Job history metadata, YARN, 54
job -info command, 471
job -kill command, 471
Job launchers, Oozie workf lows, 449
Job logs, reviewing, 602–604
Job processing

configuring Hadoop clusters, 73–74
MapReduce, 133–135

Job queue status, checking, 533
Job queues. See Capacity Scheduler, queues;

Fair Scheduler, queues.
Job stages, displaying, 682, 684
Job tokens, 501
Job types, Oozie workf lows, 439

770 Index

JobHistoryServer
description, 54
large cluster guidelines, 101
as monitoring tool, 606–607
port, specifying, 113
starting, 88–89

job.properties file, 462
Jobs. See also Applications.

completed, monitoring, 684, 686
details, displaying with MapReduce,

137–139
IDs, troubleshooting, 736
information, viewing, 531
parallelism, 377–378
scheduling. See Capacity Scheduler; Fair

Scheduler; Oozie.
Spark applications, definition, 180–181
Spark execution model, 692, 693
status, checking, 471
tracking from the command line, 686
YARN, 49

Jobs, failures
Oozie, 473
troubleshooting, 738–739

Jobs tab, 682, 683
job.xml file, 589
join control nodes, configuring, 456–457
Joining two databases, optimizing shuff le

operations, 702
Joins, Pig jobs, 638
JournalNode (JN) daemons

configuring HA (high availability), 336
large cluster guidelines, 101

JSON files, 679
Jsvc libraries, 500
JVM (Java Virtual Machine)

configuring reuse, 623–624
heap size, configuring, 616–617
and HotSpot, 624
metrics, 577
off heap usage, 668

JVM garbage collection, Java heap. See
also Troubleshooting JVM garbage
collection.

generations, 732–733
old generations, 732–733
overview, 732–733

permanent generations, 732–733
sizing, 733
young generations, 732–733

K
kadm5.acl file, 487
kadmin utility, 494, 502
kadmin.local utility, 502
Kafka

benefits of, 398–399
brokers, 400, 402
commit log abstraction, 399
consumers, 400, 403
description, 17, 398
functional description, 399–400
handling large volumes of data, 400
installing, 401
integrating with Hadoop and Storm,

404–406
key components, 400
as messaging solution, 400
producers, 400, 403–404
topics, 400, 403

Kafka clusters
brokers, starting the, 402
creating topics, 403
producers, starting, 403–404
setting up, 401–404
ZooKeeper services, setting up, 402

kdadmind daemon, 502
kdb5_util utility, 502
KDC (Key Distribution Center)

authentication, 480
encryption types supported, specifying, 489
Kerberos security, 482–483
TCP ports, specifying, 489
UDC ports, specifying, 489

kdc.conf file, 487, 489–490
kdc_ports parameter, 489
kdc_tcp_ports parameter, 489
kdestroy command, 503
Kerberized clusters, definition, 482
Kerberized clusters, managing

accessing the Kerberos database, 502
AD, integrating with Hadoop, 504–505
AD, setting up one-way trust, 503–504
adding principals, 502

771Index

administration commands, 502–503. See
also specific commands.

authenticating users, 502
changing passwords, 502
defining SPNs, 503–504
granting tickets, 502
listing a user’s ticket cache, 503
performing HDFS operations, 502
provisioning UPNs, 503–504
remote administration, 502
retrieving TGTs, 502
setting up one-way trust, 503–505
utilities and daemons, 502
viewing tickets, 502

Kerberized systems, 257
Kerberos. See also Authorization.

AS (Authentication Service), 482–483
256-byte encryption, enabling/disabling,

490
ACLs, specifying for UPNs, 490
administrative domain. See Kerberos,

realms.
authenticating users and services, 501
authentication process, 480, 483–484
authentication server, 483
block access tokens, 501
central server. See KDC (Key Distribution

Center).
delegation tokens, 501
description, 30, 480
determining user identities, 258–259
example, 490
job tokens, 501
KDC (Key Distribution Center), 480,

482–483
keytab file, 480
name origin, 482
overview, 482
TGTs (Ticket Granting Tickets), 480, 483
tickets, 483
tokens, 501

Kerberos, authorization
configuring Kerberos, 487–489
configuring the KDC, 489–490
installing Kerberos, 486–487
kadm5.acl file, 487
kdc.conf file, 487, 489–490

krb5.conf file, 487–489
overview, 486

Kerberos, passwords
changing, 502, 503
storage location, 483, 493–495. See also

Keytab file.
weak, dictionary of, 490

Kerberos, realms
definition, 483
one-way trust, 485–486, 503–505
service principal, 483
special principal, 485
SPNs (service principal names), 483
trusted relationships, 484–485
two-way trust, 485–486
UPNs (user principal names), 483, 490
user principal, 483

Kerberos, securing a cluster
acceptance filters, 496
core-site.xml file, configuration

parameters, 497–498
Hadoop configuration files, 497–500
HDFS-related configuration, 499–500
hdfs-site.xml file, configuration

parameters, 499–500
LinuxContainerExecutor, configuring, 498
mapping SPNs, 495–497
overview, 495
securing DataNodes, 500
starting the cluster in secure mode,

500–501
translating SPNs to operating system

names, 495–496
YARN-related configuration, 498
yarn-site.xml file, configuration

parameters, 498
Kerberos, setting up

creating a database, 491
deleting SPNs, 493
keytab file, 493
overview, 490–491
SPNs, 492–493
starting servers, 492
UPNs, 491

Kerberos databases
accessing, 502
creating, 491

772 Index

Kerberos trusts, 484–485
Key Distribution Center (KDC). See KDC

(Key Distribution Center).
Keytab files, 480, 493
KickStart, 63
kill command, 472, 532–533
kill control nodes, Oozie workf lows, 438
kill nodes, configuring, 458–459
Killed jobs, monitoring with web UIs,

601–602
Killing a job, 471, 472
Killing running applications, 532–533
Killing Spark jobs, 740
kinit command, 502–503
kinit utility, 502
klist command, 494, 503
klist utility, 502
KMS (Key Management Server), 521, 522
Knox, description, 31
kpasswd command, 503
kpasswd utility, 502
krb5.conf file, 487–489
krb5kdc command, 492
krb5kdc daemon, 502

L
L option, 310, 312
Large datasets, handling, 37
last-value parameter, 378–379
launch_container.sh script, 589
Lazy_Persist, storage policies, 237
LDAP directories

as Kerberos database, 491
one-way trusts, 503
permission checks, 507

LDAP Synchronization Connector (LSC), 505
Leaf queues

Capacity Scheduler, 414
Fair Scheduler, 428

Lease recovery, 224–225
limits.conf file, setting shell limits, 67–68
Lineage information, 718
Linux file and directory commands

cd, 245
change directory, 245
copying files and directories, 245
cp, HDFS analog, 245

HDFS command analogs, 245
head, HDFS analog, 360
listing files, 244–245
ls, HDFS analog, 245
ls, listing HDFS files, 247, 248
moving files and directories, 245
mv, HDFS analog, 245
print working directory, 245
pwd, 245
sudo, 259
use administrative privileges, 259

Linux file limits, increasing, 64
Linux file system 1 full, troubleshooting,

726
Linux kernel, modifying. See Installing

pseudo-distributed clusters, modifying
the Linux kernel.

Linux servers
cloning, 745–746
monitoring. See Monitoring Linux servers.

LinuxContainerExecutor, configuring, 498
list command, 531–532
list-corruptfileblocks option, 286
list-databases command, 368
Listing

archival storage policies, 238
relational databases, 368
snapshots, 282
tables in a database, 368

list-tables command, 368
Loading data

bulk data. See DistCp.
copying between clusters. See DistCp.
Hadoop data transfer tools, 355–356. See

also specific tools.
from HDFS, with Spark, 164–165
into Hive, 142–143
messaging systems. See Kafka.
from relational databases. See Spark; Sqoop.
Spark SQL, 199–200
streaming data. See Flume; Kafka; Storm.
vast amounts of. See DistCp.

Loading data from the command line
cat command, 356–357
copy and moving files to and from HDFS,

358–360
copyFromLocal command, 358

773Index

copyToLocal command, 359
dumping a file’s contents, 356–357
get command, 359–360
getMerge command, 360
head command, 360
mv command, 360
put command, 358
specifying files as URIs, 357
tail command, 360
test command, 357
testing for files, 357
viewing first and last portions of an HDFS

file, 360
Local directories

out of free space, troubleshooting, 727–729
Spark on YARN, setting, 681

Local mode
Pig, 144
Spark, 158

LOCAL_DIRS environment variable, 681
locations option, 287
Log aggregation. See also Flume.

accessing log files, 595–597
configuring log retention, 594–595
default retention period, 592
error message, 534
HDFS storage location, 593–594
overview, 592–593
viewing application logs, 596–597, 740–741

Log directories out of free space,
troubleshooting, 727–729

Log files. See also specific log files.
accessing, 595–597
auditing, 519–520
deleting, 598
Hadoop audits, 519–520
Oozie, 473
rotating, 598

Log ingesting tool. See Flume.
Log level, setting, 598–599
Log retention

configuring, 594–595
default retention period, 592

Log4j log file, 519
log4j.properties file, configuring logging, 75,

584

log_aggregation.retain.seconds parameter, 112
Logging

configuring, 584
configuring Hadoop clusters, 75
HDFS staging directories, 587–588
Log4j log file, 519, 584
“replaying edit logs” message, 326
types of logs, 583–584

Logging, NodeManager
launching, 590
local directories, 588–592
map/reduce containers, creating, 590

Logging levels, 591–592
Logging-related parameters, configuring,

111–113
Logical NameNode ID, 337
Logical nameservice, 337
Logs

accessing, 583, 584
analysis scenario, 7
monitoring with web UIs, 686
reviewing, 533–534
reviewing with ResourceManager,

602–604
stderr, 583–584
stdout, 583–584
syslog, 583–584
types of, 583–584. See also Application

logs; Daemon logs.
logs command, 533–534
lost+found directory, 288–289. See also Trash

directory.
ls command

HDFS analog, 245
listing HDFS files, 247, 248
listing snapshots, 282, 283

LSC (LDAP Synchronization Connector),
505

lsSnapshottbleDir command, 282
LZO format, 290, 291

M
m parameter, 382
Machine learning algorithms, Spark, 155
Mahout, description, 17
Managing, archival storage policies, 239

774 Index

Managing HDFS
from the command line. See dfsadmin utility.
setting up HDFS in pseudo-distributed

Hadoop clusters, 70–71
Managing HDFS with hdfs dfs utility

 (minus sign), in dfs subcommands, 245
accessing the HDFS shell, 245
chgrp command, 250–251
chmod command, 251
chown command, 250–251
displaying all commands, 245
emptying the trash directory, 250
expunge command, 250
help command, 245–247
Linux file and directory command analogs,

245
mkdir command, 249
overview, 245
R operation, 251
recursive changes, 251
rm command, 249–250
shell commands, types of, 245
skipTrash option, 250
stat command, 248–249
stat command vs. ls command, 248–249

Managing HDFS with hdfs dfs utility, files
and directories

confirming existence of, 248
contents, displaying, 245, 247
creating directories, 249
displaying information about, 247, 248
groups, changing, 250–251
listing, 245, 247–248
ownership, changing, 250–251
permissions, changing, 251
removing, 249–250

Manual failover, 348–349, 545–546
Map and reduce tasks, configuring

MapReduce memory, 615–616
Map phase, tuning map tasks, 626, 628–630
Map step, MapReduce, 130
MapFiles, small f iles problem, 300
map(function) transformation, 178
MAP_INPUT_RECORDS counter, 650
Map-only jobs, 652
MAP_OUTPUT_RECORDS counter, 650
Mapper tasks, YARN, 49

Mappers
limiting, 656–658
minimizing output, 655
too many, 655–656

Mapping, SPNs (service principal names),
495–497

MapR, Hadoop distribution, 60
MapReduce environment, configuring

Hadoop clusters, 80
mapred user, setting up in pseudo-distributed

Hadoop clusters, 70–71
mapred-env.sh file, 79
mapred.reduce.slowstart.completed

parameter, 634
mapred-site.xml file

configuring MapReduce, 82–83
configuring pseudo-distributed Hadoop

clusters, 74
configuring the reducer initialization time,

634
enabling compression, 293–294
mapred.reduce.slowstart.completed

parameter, 634
mapreduce.map.memory.mb, 615–616
mapreduce.map.output.compress

parameter, 293–294
mapreduce.map.output.compress.codec

parameter, 293–294
mapreduce.map.sort.spill parameter, 633
mapreduce.map.sort.spill.percent

parameter, 629–630
mapreduce.output.fileoutputformat.

compress parameter, 293–294
mapreduce.output.fileoutputformat.

compress.codec parameter, 294
mapreduce.reduce.input.buffer.percent

parameter, 633
mapreduce.reducer.memory.mb parameter,

615–616
mapreduce.reduce.shuff le.input.buffer.

percent parameter, 633
mapreduce.reduce.shuff le.memory.limit.

percent parameter, 633–634
mapreduce.reduce.shuff le.merge.percent

parameter, 632, 634
mapreduce.reduce.shuff le.parallelcopies

parameter, 633

775Index

mapreduce.shuff le.transfer.buffer.size
parameter, 633–634

mapreduce.task.io.sort.factor parameter,
628–630

mapreduce.task.io.sort.mb parameter,
628–630

tuning MapReduce shuff le process, 632–634
MapReduce

alternatives to, 25
configuring Hadoop clusters, 82–83
data compression, 133, 291–294
displaying job details, 137–139
distributed data processing, 24–25
drawbacks, 149
Hadoop ecosphere, 15
input/output directories, 137
inputs and outputs, 132
I/O processes, 132–133
job processing, 133–135
key concepts, 131–133
map phase, 7
map step, 130
performance tuning. See Optimizing

MapReduce; Tuning map tasks;
Tuning reduce tasks.

programming model, 130
reduce phase, 7
reduce step, 130
sample program, 135–136
tasks, reducing. See Tuning map tasks.
typical scenario for, 7
in a YARN-based cluster, 54–56

MapReduce, Hadoop Streaming
definition, 139–140
functional description, 140
Java classes, 140

MapReduce, WordCount program
description, 130
running, 136–137
sample program, 135–136

Map/reduce containers, creating, 590
MapReduce framework counters, 650–651
MapReduce jobs, Oozie action nodes,

450–451
MapReduce mode, Pig, 144
MapReduce services, setting up in pseudo-

distributed Hadoop clusters, 70–71

mapreduce.jobhistory.address parameter, 113
mapreduce.jobhistory.done-dir parameter, 114
mapreduce.jobhistory.intermediate-done-dir

parameter, 114
mapreduce.jobhistory.webapp.address

parameter, 114
mapreduce.job.jvm.numtasks parameter, 624
mapreduce.job.maps parameter, 656
mapreduce.job.reduces parameter, 656
mapreduce.job.running.map.limit parameter,

656
mapreduce.job.running.reduce.limit

parameter, 656
mapreduce.job.speculative.minimum-

allowed-tasks parameter, 622
mapreduce.job.speculative.slowtaskthreshold

parameter, 622
mapreduce.job.speculative.speculative-cap-

running-tasks parameter, 622
mapreduce.job.speculative.speculative-cap-

total-tasks parameter, 622
mapreduce.job.tags property, 598
mapreduce.map.cpu.vcores, 621
mapreduce.map.java.opts parameter, 110–111
mapreduce.map.log.level property, 591
mapreduce.map.memory.mb, 615–616
mapreduce.map.memory.mb parameter, 110
mapreduce.map.output.compress parameter,

293–294
mapreduce.map.output.compress.codec

parameter, 293–294
mapreduce.map.sort.spill parameter, 633
mapreduce.map.sort.spill.percent parameter,

629–630
mapreduce.map.speculative parameter, 622
mapreduce.output.fileoutputformat.compress

parameter, 293–294
mapreduce.output.fileoutputformat.compress.

codec parameter, 294
mapreduce.reduce.cpu.vcores, 621
mapreduce.reduce.input.buffer.percent

parameter, 633
mapreduce.reduce.java.opts parameter,

110–111
mapreduce.reduce.log.level property, 592
mapreduce.reduce.memory.mb parameter,

110

776 Index

mapreduce.reducer.memory.mb parameter,
615–616

mapreduce.reduce.shuff le.input.buffer.
percent parameter, 633

mapreduce.reduce.shuff le.memory.limit.
percent parameter, 633–634

mapreduce.reduce.shuff le.merge.percent
parameter, 632, 634

mapreduce.reduce.shuff le.parallelcopies
parameter, 633

mapreduce.reduce.speculative parameter, 622
mapreduce.shuff le.transfer.buffer.size

parameter, 633–634
mapreduce-site.xml file, 113–114
mapreduce.task.io.sort.factor parameter, 625,

628–630
mapreduce.task.io.sort.mb parameter, 628–630
Master nodes

fully distributed clusters, 99–100
in Hadoop clusters, 36
HDFS, architecture, 38–39
planning for fully distributed clusters,

100–101
Master nodes, configuring, 161
Master processes, starting/stopping, 161
master_key-type parameter, 490
Master-master replication, setting up,

550–551
Maximum capacity, Capacity Scheduler, 412
max_life parameter, 490
max_renewable_life parameter, 490
Measuring performance. See Benchmarking

clusters; Hadoop metrics.
memChannel, 392
meminfo command, 573
Memory

choosing, 96–99
configuring, for MapReduce. See

Configuring MapReduce, memory.
ratio of physical to virtual, 617
tuning, 689
virtual memory for map and reduce tasks,

617
Memory, sizing

fully distributed clusters, single rack to
multiple racks, 98

Spark executors, 672

Memory channels, 392
Memory related parameters, 109–111
Memory usage

monitoring, 571, 572–573
optimizing shuff le operations, 696
page ins/outs, 571
Spark applications, monitoring, 684, 685
Spark executors, configuring, 671–672
Spark on YARN, configuring resource

allocation, 660, 670–672
thrashing, 571
troubleshooting, 734

Memory usage, Spark executors
allocating, 660
configuring, 671–672
finding current, 672

MEMORY_AND_DISK storage level, 719
MEMORY_AND_DISK_SER storage level,

711, 719
MEMORY_ONLY storage level, 719
MEMORY_ONLY_SER storage level, 711,

719
merge command, 379
Merge joins, 638
Merge phase

tuning map tasks, 626
tuning reduce tasks, 630–632

Merging files, small files problem, 303–304
Mesos

running Spark applications, 189
Mesos, Spark applications, 189
Mesos clusters, running Spark, 155, 158,

161–162
Message system. See Kafka.
Metadata files, checkpointing, 36
Metadata retention, specifying, 700
metasave command, dfsadmin utility, 254
Metastore, sharing, 372
Metastore databases, backing up, 553
Metrics for Hadoop. See Hadoop metrics.
Metrics REST API, 684
Microsoft SQL Server, 367
MILLIS_MAPS counter, 650
MILLIS_REDUCES counter, 650
Minimum share preemption, Capacity

Scheduler, 421–422
Minor GC (garbage collection), 687

777Index

Minus sign (-), in dfs subcommands, 245
min.user.id parameter, 498
Mkdir command, 249
MLlib, 155
Modeling. See Data modeling.
Modifying fully distributed clusters

DataNode web interface, 120–121
gateway machines, 119
Hadoop web interfaces, 120
web interfaces, 119–121
YARN web interface, 121

Modifying fully distributed clusters, HDFS
configuration. See also Creating fully
distributed clusters; Installing pseudo-
distributed clusters, modifying the
Linux kernel; Planning fully distributed
clusters.

block replication, setting, 107–108
block size, setting, 107
data directories, specifying, 108
dfs.block.size parameter, 107
dfs.datanode.data.dir parameter, 108
dfs.datanode.du.reserved parameter, 107
dfs.name.node.dir parameter, 108
dfs.permissions.superusergroup parameter,

108
dfs.replication parameter, 107–108
fsimage file location, specifying, 108
hdfs-site.xml file, 106–109
in a multihomed network, 124
non-HDFS storage size, setting, 107
super user group, specifying, 108

Modifying fully distributed clusters,
MapReduce configuration

history file directory, specifying, 114
history files, managing, 114
JobHistoryServer port, specifying, 113
mapreduce.jobhistory.address parameter,

113
mapreduce.jobhistory.done-dir parameter, 114
mapreduce.jobhistory.intermediate-done-

dir parameter, 114
mapreduce.jobhistory.webapp.address

parameter, 114
mapreduce-site.xml file, 113–114
staging directory, specifying, 113
Web UI, setting, 114

yarn.app.mapreduce.am.staging_dir
parameter, 113–114

Modifying fully distributed clusters, ports
Hadoop clients, 124–126
for HDFS, 123–124
port numbers for Hadoop services, setting,

122–123
Modifying fully distributed clusters, YARN

configuration
log_aggregation.retain.seconds parameter,

112
logging related parameters, 111–113
mapreduce.map.java.opts parameter,

110–111
mapreduce.map.memory.mb parameter, 110
mapreduce.reduce.java.opts parameter,

110–111
mapreduce.reduce.memory.mb parameter,

110
memory related parameters, 109–111
in a multihomed network, 124
yarn.application.classpath parameter, 113
yarn.log.aggregation-enable parameter,

111–112
yarn.nodemanager.aux-services parameter,

109
yarn.nodemanager.aux-services.

mapreduce_shuff le-class parameter,
109

yarn.nodemanager.local-dirs parameter, 112
yarn.nodemanager.log-dirs parameter, 112
yarn.nodemanager.resource.cpu-vcores

parameter, 110
yarn.nodemanager.resource.memory-mb

parameter, 109–110
yarn-site.xml file, 109
yarn.xml file, 109

Modifying the Linux kernel. See Installing
pseudo-distributed clusters, modifying
the Linux kernel.

Monitoring. See also Hadoop metrics.
aggregating metrics. See Monitoring with

Ganglia.
collecting metrics. See Monitoring with

Ganglia.
decommissioning and recommissioning

nodes, 539

778 Index

Monitoring (continued)
Fair Scheduler, 434
Hive, 609–610
Spark, 610
Spark applications, 193–194
tools for, 16
tracking metrics. See Monitoring with

Ganglia.
Monitoring Linux servers

alerting tool, 582
bandwidth, 572
context switches, 571, 575
CPU usage, 570–573
disk storage, 571–572
interrupts, 575
I/O statistics, 573–574
memory usage, 571, 572–573
network utilization, 575–576
page faults, 572–573
processes, 572–573
read/write operations, 574–576
resource usage, 574–575
runnable processes, 571
running processes, 572

Monitoring Linux servers, tools for
dstat command, 576
free command, 573
iostat utility, 573–574
meminfo command, 573
Nagios, 582
ps command, 572
sar utility, 574–576
top command, 574–575
vmstat utility, 572–573

Monitoring with Ganglia
architecture, 580
gmetad daemon, 580
gmond daemon, 580
gweb process, 580
overview, 579
RRDtool, 580

Monitoring with Ganglia, setup
alerting and monitoring, 582
extracting configuration files, 581
gmetad daemon, configuring, 581
gmond daemon, configuring, 581
Hadoop metrics, 582

installing Ganglia, 580–581
Nagios, 582

Monitoring with web UIs
completed jobs, 604–606, 606–607
failed and killed jobs, 601–602
GC (garbage collection), 684, 685
HDFS storage usage, 608–609
JobHistoryServer, 606–607
as monitoring tool, 599–606
NameNode, 608–609
overview, 599
ResourceManager, 599–606
reviewing job logs, 602–604
running jobs, 604–606

Mountable file systems, 564–566
move option, 288–289
Mover tool, 240
moveToTrash() method, 278
Moving data

within a cluster, 361–363
between clusters, 361–363
into an HDFS. See Loading data.
out of an HDFS. See Sqoop, exporting data.

Moving data around, archival storage,
239–240

Moving files to and from HDFS, 358–360
Multihomed network, HDFS in, 562–563
mv command, 360
mv command, HDFS analog, 245
MySQL databases

configuring, 445, 548–549
HA (high availability), 549–551
large cluster guidelines, 102
master-master replication, setting up,

550–551
switching active/passive roles, 551

N
Nagios, 582
Name quotas

vs. space quotas, 263
specifying, dfsadmin utility, 264

NameNode operations
block reports, 322
checkpoints, 319
DataNode interactions, 322–323
HDFS metadata, 319–321

779Index

overview, 318
startup process, 321

NameNode operations, edit logs
definition, 318
merging with fsimage files. See

Checkpointing.
overview, 320–321

NameNode operations, fsimage files
copying, controlling transfer speed, 327
creating. See Checkpointing.
definition, 318
downloading, 320–321
importance of updating, 323–324
loss or corruption, 319
merging with edit logs. See Checkpointing.
overview, 320–321
viewing contents of, 321

NameNode operations, heartbeats
definition, 322
frequency, configuring, 321
overview, 322
piggybacking, 322
stopped, 322

NameNode operations, safe mode
automatic operations, 328–329
backup and recovery, 332–334
configuration information, getting, 333–334
enabling, 330–331
transitioning to open mode, 331–332

NameNodes
backing up HDFS metadata, 552
Block Storage Service, 350
communication with DataNodes, 207–208
configuring file system, host, and port

information, 81
crashes, troubleshooting, 737–738
data stored in, 43–44
description, 36, 43
federated, 349–350
forcing a manual failover, 546
function of, 39–40
HA (high availability), 546
in Hadoop clusters, 36
in HDFS architecture, 38–39
HDFS operations, 43–45. See also

Secondary NameNodes.
health, checking, 349

large cluster guidelines, 101
metadata file location, specifying, 85
as monitoring tools, 608–609
moving to a different host, 545
namespace volumes, 350
outages. See HA (high availability).
relation to DataNodes, 44
restarting, 46
starting, 87–88
status, displaying, 349
transitioning from Standby to active, 546
updating, 254
URI, specifying, 85
in very large clusters. See Federated

NameNodes.
NameNodes, edit logs

extra, configuring, 326–327
“replaying edit logs” message, 326

Namespace volumes, 350
Narrow dependencies, 698–700
Narrow transformations, 698
nestedUserQueue rule, 430
Netezza, 367
Network considerations, single rack to

multiple racks, 99
Network firewall, turning off, 67
Network parameters, Spark-related, 676
Network utilization, monitoring, 575–576
NFSv3 gateway, configuring, 566–567
NIC bonding, 65
“No credentials cache found” message,

494–495
noatime for disk mounts, setting, 65
node command, 533
Node status, checking, 533
NODE_LOCAL, data locality level, 715
NodeManager

configuring MapReduce memory, 617–618
in Hadoop clusters, 37
mapreduce shuff le, implementing, 83–84
YARN, 49, 52

NodeManager, logging
application logs, 585–586
launching, 590
local directories, 588–592
map/reduce containers, creating, 590

NodeManager, starting, 88–89

780 Index

NodeManager failures, troubleshooting, 738
NodeManager log file, 519–520
NodeManager services, large cluster

guidelines, 101–102
Nodes

listing, 533
for planning fully distributed clusters,

choosing, 94
removing from a cluster. See Nodes,

decommissioning and recommissioning.
Nodes, decommissioning and

recommissioning
adding DataNodes, 540–541
adding NodeManagers, 540–541
decommissioning a NodeManager, 538–539
decommissioning DataNodes, 537–538
including and excluding hosts, 536
monitoring, 539
overview, 535
recommissioning nodes, 538–539
run time, 539
tuning the HDFS, 539–540

Node’s used DFS percentage, 270–271
nodiratime for directory mounts, setting, 65
nofile attribute, 67–68
Non-HDFS storage size, setting, 107
NO_PREF, data locality level, 715
nproc attribute, 67–68
NTP, enabling, 65
--num-executors command-line f lag, 667
NUM_KILLED_MAPS counter, 649
NUM_KILLED_REDUCES counter, 649
num-mappers parameter, 382

O
Objects, Sentry authorization, 513
ODBC server, Spark applications, 191–192
OEL (Oracle Enterprise Linux), installing, 745
OIV (Off line Image Viewer), 321
ok control nodes, configuring, 458–459
Old Generation garbage collection, 687
Old generations, JVM garbage collection,

732–733
ONE_SSD, storage policies, 237
One-way trust

on Kerberized clusters, 503–505
Kerberos realms, 485–486, 503–505

Oozie. See also Capacity Scheduler; Fair
Scheduler.

bundles, 473
configuration files, 473
configuring, 560
cron scheduling, 474
Dashboard, 555
description, 17
job failures, 473
log files, 473
SLAs (service level agreements), 474–475
troubleshooting, 473–474

Oozie, deploying
configuring Hadoop for Oozie, 444–446
installing Oozie, 441–442
installing Oozie server, 442–444
MySQL database, configuring, 445
overview, 441–442
workf low jobs, 463

Oozie, managing and administering
checking coordinator status, 472
checking job status, 471
checking Oozie status, 472
common commands, 471
dry runs, 472
killing a job, 471, 472
overview, 470–471
resuming a suspended job, 472
running Pig jobs through HTTP, 472
SLA event records, getting, 472
suspending running jobs, 472–473
validating a workf low.xml file, 472
validating XML schemas, 472

Oozie architecture, client
description, 440
installing, 445–446

Oozie architecture, database, 440–441
Oozie architecture, server

description, 439–440
installing, 442–444
starting/stopping, 444–445

Oozie coordinators
data based, 467–469
overview, 464–465
submitting from the command line, 469–470
time based, 465–467, 469. See also cron

scheduling.

781Index

Oozie status, checking, 472
oozie utility, 438
Oozie workf low jobs

configuring, 460–461
deploying, 463
dynamic workf lows, 463–464
job.properties file, 462
properties, specifying, 461–463
running, 461–464

Oozie workf lows
bundle jobs, 439
case statements, 460
control nodes, 446–447
control nodes, configuring, 456–460
coordinator jobs, 438–439
decision control nodes, 438, 446–447
defining, 447–449
description, 437–439, 446
end control nodes, 438, 446–447, 448, 456
example, 448
fork actions, 448
fork control nodes, 438, 446–447, 448,

456–457
if-then-else actions. See decision control

nodes.
job launchers, 449
job types, 439
join control nodes, 438, 446–447, 448,

456–457
kill control nodes, 438
ok control nodes, configuring, 458–459
start control nodes, 438, 446–447, 448, 456
workf low jobs, 439
workf low.xml file, 447–449

Oozie workf lows, action nodes
configuring, 449–454
description, 438, 448
fs actions, 454
for Hive jobs, 451–452
for MapReduce jobs, 450–451
for Pig, 452–453
Shell actions, 453
types of, 449–450. See also specific types.

Oozie workf lows, creating
control nodes, configuring, 456–460
decision, configuring, 459–460
end control nodes, configuring, 456

error nodes, configuring, 458–459
fork control nodes, configuring, 456–457
join control nodes, configuring, 456–457
kill nodes, configuring, 458–459
ok control nodes, configuring, 458–459
overview, 454–455
start control nodes, configuring, 456

Operating Hadoop clusters
DataNode services, starting, 87–88
formatting the HDFS, 86–87
HDFS services, starting, 87–88
JobHistoryServer, starting, 88–89
NameNode services, starting, 87–88
NodeManager, starting, 88–89
ResourceManager, starting, 88–89
Secondary NameNode services, starting,

87–88
services, shutting down, 90
services, starting, 87–89
setting environment variables, 87
YARN services, starting, 88–89

Operating system. See YARN (Yet Another
Resource Negotiator).

Optimization, administrator duties, 20. See
also Performance; Tuning.

Optimized row columnar (ORC) files, 297,
300–301, 303, 681

Optimizing
JVM garbage collection, 733–734
Spark execution model, 692–694

Optimizing Hive jobs
bucketing, 635
built-in capabilities, 636
cost-based optimization, 636
ORCFILE format for Hive tables, 636
overview, 635
parallel execution, 635
partitioning, 635
vectorization, 636–637

Optimizing MapReduce. See also Tuning
map tasks; Tuning reduce tasks.

balancing work among reducers, 655
combiners, 652–654
data compression, 654–655
limiting mappers or reducers, 656–658
map-only jobs, 652
minimizing mapper output, 655

782 Index

Optimizing MapReduce (continued)
Partitioners, 654
reduce phase, 633–634
reducer initialization time, 634
shuff le process, 632–634
sort, 633
spill process, 633
too many mappers or reducers, 655–656

Optimizing Pig jobs
merge joins, 638
replicated joins, 638
rules for, 637
setting parallelism, 637
skewed joins, 638
specialized joins, 638

Optimizing shuff le operations. See also
Optimizing Spark applications.

accumulators, 702–703
aggregateByKey operator, 702
all-to-all operations, 695
avoiding a shuff le, 702–703, 709–710
broadcast variables, 702–703
cogroup operator, 702
compression operations, 697–698
configuring shuff le parameters, 697
disk I/O, 696–697
example, 695–696
GC (garbage collection), 697
groupByKey operator, 700–702
joining two databases, 702
memory usage, 696
metadata retention, specifying, 700
minimizing shuff le operations, 699
narrow transformations, 698
reduceByKey operator, 694–695, 700–702
stage boundaries, 699
triggering a shuff le, 698–700
wide transformations, 698

Optimizing Spark applications. See also
Optimizing shuff le operations; Tuning
Spark streaming applications.

caching data, 717–723
compression, 711–712
data serialization, 710–711
number of tasks, 703–710
parallelism, 703–710

partitioning, 703–710
Spark execution model, 692–694
SQL query optimizer, 712–716

Options file, Sqoop, 371
Oracle Enterprise Linux (OEL), installing, 745
Oracle products. See specific products.
ORC (optimized row columnar) files, 297,

300–301, 303, 681
ORCFILE format for Hive tables, 636
OS page caching, 228
Out of memory errors, troubleshooting,

734–735
OutputFormat, 164
overwrite option, 364–365

P
Package manager for Red Hat, SUSE and

Fedora Linux, 63
Page faults, monitoring, 572–573
Page ins/outs, monitoring, 571
Pair RDDs, 179
Parallel execution, Hive jobs, 635
parallel option, 637
Parallelism

optimizing, 703–710
in Pig jobs, 637
in Spark applications, 703–705

Parallelizing
data ingestion, 688
data processing, 689

Parquet files, 290, 680
Partitioners, 654
Partitioning

Hive jobs, 635
optimizing, 703–710

Partitioning in Spark applications
avoiding a shuff le, 709–710
coalesce operator, 708–709
HashPartitioner partitions, 709
by key code, 709
overview, 703–704
by range, 709
RangePartitioner partitions, 709
repartition operator, 708
repartitioning, 708
types of partitions, 709

783Index

Partitioning in Spark applications, number of
partitions

increasing, 707–708
in an RDD, changing, 708–709
setting default for, 706–707

Partitions, 708–709
Passwordless connection, pseudo-distributed

Hadoop clusters, 68–69
Passwords, Kerberos

changing, 502, 503
storage location, 483, 493–495
weak, dictionary of, 490

Passwords, Sqoop, 372
pdsh utility, 63, 102–106
Performance. See also Optimization; Tuning.

administrator duties, 20
checkpointing, 327
choosing a file format, 297
measuring. See Benchmarking clusters;

Hadoop metrics.
troubleshooting, 682–684

Performance, improving
configuring JVM reuse, 623–624
deprecated parameters, 623
reducing I/O load, 624–625
speculative execution, 621–624

Permanent generations, JVM garbage
collection, 732–733

Permission checking, enabling/disabling, 255
“Permission denied” errors, 256
Permissions

ACLs (access control lists), 507–509
authorization, 507
changing, 507
changing file permissions, 507
checking, 507
checking permissions, 507
configuring, 506
configuring super users, 506
extended attributes, 509–510
Hive, 514–515
overview, 505–506
raw namespace, 509–510
security namespace, 509–510
simple security mode, 505–506
system namespace, 509–510
user namespace, 509–510

Permissions for files and directories. See
HDFS permissions.

persist() method, 719–721
Persistence, RDD, 179
PHYSICAL_MEMORY_BYTES counter,

650
Pig

description, 17, 26
example, 145
execution modes, 144
local mode, 144
MapReduce mode, 144
Oozie action nodes, 452–453
overview, 144

Pig jobs
optimizing. See Optimizing Pig jobs.
running through HTTP, 472

Pig Latin, 144
Piggybacking heartbeats, 322
Pipe symbol (|)

piping data into HDFS files, 360
reviewing files, 359

Pipeline recovery, 226–227
Pipeline setup stage, 227
Pipelining, 693
Pivotal HD, Hadoop distribution, 60
Planning fully distributed clusters

choosing nodes, 94
form factors, 94
general considerations, 92–94
master nodes, 99–100
overview, 92
typical architecture, 93

Planning fully distributed clusters, servers
blade servers, 94, 97
commodity servers, 94
custom designed rack servers, 97–98
DataNodes, 100–101
Master Nodes, 100–101
rack servers, 94
sizing, 100–101

Planning fully distributed clusters, single rack
to multiple racks

amount of data storage, 96
architecture, 95–96
blade servers, 97
CPU, choosing, 96–99

784 Index

Planning fully distributed clusters, single rack
to multiple racks (continued)

custom designed rack servers, 97–98
disk configuration, 97–98
disk failure, risk of, 98
disk sizing, 97–98
extending clusters, 101
growth patterns, 96
JBOD disks, 98
key principles, 96–99
large cluster guidelines, 101–102
memory, choosing, 96–99
memory, sizing, 98
network considerations, 99
RAID disks, 98
sizing the cluster, 96
storage, choosing, 96–99
type of workload, 96
virtualization, 97

Policies, Sentry authorization, 513, 517
Policy administration examples, 517–518
Policy engine, Sentry, 513
Policy providers, Sentry, 513
Port numbers for Hadoop services, setting,

122–123
Ports, modifying in fully distributed clusters

Hadoop clients, 124–126
for HDFS, 123–124
port numbers for Hadoop services, setting,

122–123
POST operation, 308
PostgreSQL, 445
Precedence among configuration files, 76–78
Preempting applications, Capacity Scheduler,

421–422
Preemption, Fair Scheduler, 409
primaryGroup rule, 430
Principals, adding to Kerberized clusters, 502
printTopology command, 211
Priorities, Fair Scheduler, 409
Privilege models, Sentry authorization, 514
Privileges, Sentry authorization, 513, 514
Processes, monitoring, 572–573
Processing engines, Hadoop 2 vs. Hadoop 1, 23
Processing layer. See YARN (Yet Another

Resource Negotiator).
PROCESS_LOCAL, data locality level, 715

Producers, Kafka, 400, 403–404
Programming model, MapReduce, 130
Properties

core Hadoop properties, 81
Oozie workf low jobs, 461–463
precedence, 662
Spark, viewing, 713–714

Protocol Buffers, 200, 712
ps command, 572
Pseudo-distributed systems, 19
ptopax option, 283
Puppet, 569
put command, 358
PUT operation, 308, 312
pwd command, 245
pyspark command, 661
Python

memory resources, 667
in the Oozie shell, 453
sample programs, 157
vs. Scala, 170–171, 713
vs. Spark, 170–171
storage levels, 721

Python objects in an RDD, 157
Python program, submitting, 187

Q
QJM (Quorum Journal Manager), 335
quasiquotes, 713
Query plans, 686
Querying data

with Hive, 143
Spark SQL, 200

queue command, 533
queue element, 415
Queues. See Capacity Scheduler, queues;

Capacity Scheduler, subqueues; Fair
Scheduler, queues.

Quota violation state, 266

R
R operation, 251
r (read) permission, 255–256, 506
Rack awareness

cluster redundancy, 209–210
configuring, 210
dfsadmin utility, 211–212

785Index

distributing data replicas, 211
finding cluster rack information, 210–211,

212
fsck command, 211
overview, 209–210
printTopology command, 211
report command, 212
ResourceManager, 209
topology.py script, 210

Rack servers, custom designed, 97–98
RACK_LOCAL, data locality level, 715
Racks. See Hardware racks.
RAID disks, 98
RAM_DISK storage type, 237
RangePartitioner partitions, 709
Ranger, description, 31
Raw namespace, 509–510
RBW (Replica Being Written) replica state,

216
RCFile format, 290, 300–310
RDBMS (relational database management

system)
listing, 368
loading unto HDFS. See Spark; Sqoop.
moving data to and from. See Sqoop.
querying. See Hive.

RDD (resilient distributed dataset). See also
Spark applications.

caching. See Caching RDD data.
collect(0) operation, 720
contents of, 174
creating DataFrames, 200–201
Double RDDs, 179
narrow dependencies, 698–700
number of partitions, changing, 708–709
operations, 176–178
overview, 173
Pair RDDs, 179
persistence, 179
Spark execution model, 693
wide dependencies, 698–700

RDD (resilient distributed dataset), actions
count() operation, 177
counting number of elements, 177
definition, 170
first operation, 177
returning arrays of elements, 177

returning largest element, 177
saveAsTextFile() operation, 177
saving as a text file, 177
take(n), 177
top() operation, 177

RDD (resilient distributed dataset), creating
from existing RDDs, 170
with parallelization, 174
subsets of RDDs, 178
from a text file, 175
with transformations, 178

RDD (resilient distributed dataset),
transformations

creating new RDDs, 178
creating subsets of RDDs, 178
definition, 170
distinct, 178
filter(function), 178
filtering out duplicates, 178
f latMap, 178
map(function), 178
sample, 178
sortBy, 178
sorting, 178

rdd.getNumPartitions() function, 709
rdd.partitions.size() function, 709
Read (r) permission, 255–256, 506
Read phase, tuning map tasks, 626
Read tests, benchmarking clusters, 640
Reading HDFS data, 219–220
Read-only default configuration, Hadoop

clusters, 74
Read/write operations, monitoring, 574–576
Realms. See Kerberos, realms.
Rebalancing HDFS data

adjusting balancer bandwidth, 273–274
amount of data moved, 270
average DFS used percentage, 270–271
balancer command, 269
balancer tool, 267, 268–271, 547
balancing storage on DataNodes, 547–548
current balance, checking, 547
dfsadmin command, 271–272
iterative movement of blocks, 272
making the balancer run faster, 273–274
node’s used DFS percentage, 270–271
overview, 267–268

786 Index

Rebalancing HDFS data (continued)
run time, 270
setBalancerBandwidth option, 273–274
start-balancer.sh command, 268–271
threshold, setting, 269–270
tools for, 267, 271–272
unbalanced data, description, 48
unbalanced data, reasons for, 268
when to run the balancer, 272

Recommissioning nodes. See Nodes,
decommissioning and recommissioning.

Recoverability, distributed computing
requirements, 33

Recovering deleted files, from snapshots,
283–284

Recovery process. See also Backup and
recovery; Fault tolerance.

block recovery, 226
close stage, 227
data streaming stage, 227
disaster recovery, 20. See also Backup and

recovery; Snapshots.
GS (Generation Stamp), 224
lease recovery, 224–225
pipeline recovery, 226–227
pipeline setup stage, 227
RUR (Replica Under Recovery) replica

state, 216
UNDER_RECOVERY block state, 218–219
work preserving recovery, 739

Recursive changes, 251
Red Hat, package manager for, 63
Red Hat Enterprise Linux RPM software

packages, 63
Red Hat products. See specific products.
Reduce phase

optimizing MapReduce, 633–634
tuning reduce tasks, 630–632

Reduce step, MapReduce, 130
Reduce tasks, YARN, 49
reduceByKey operator, 694–695, 700–702
Reducer initialization time, optimizing

MapReduce, 634
Reducers

balancing work among, 655
limiting, 656–658
too many, 655–656

reducers.bytes.per.reducer property, 637
reducers.max property, 637
REDUCE_SHUFFLE_BYTES counter,

650
Redundancy of data

cluster computing, 12–13
Hadoop architecture, 34

refreshNodes command, 254, 535
refreshQueues command, 424
reject rule, 430
Relational databases. See RDBMS (relational

database management system).
Remote administration, Kerberized clusters,

502
Removing, space quotas, 265
Renaming directories, 283
repartition operator, 708
Repartitioning, 708
“Replaying edit logs” message, 326
Replica Being Written (RBW) replica state,

216
Replica states, 216
Replica Under Recovery (RUR) replica

state, 216
Replicas Waiting to be Recovered (RWR)

replica state, 216
Replicated joins, 638
Replication, troubleshooting, 730
report command

“Access denied...” error, 256–257
description, 252
displaying HDFS storage, 263
displaying rack information, 212
examining HDFS cluster status, 252–254
sample output, 253–254

Reporting, data science component, 11
Representational State Transfer (REST) API.

See WebHDFS.
Resilient distributed dataset (RDD). See

RDD (resilient distributed dataset).
Resource allocation

ApplicationMaster, 53–56
Hadoop 2, 407–410. See also Resource

schedulers.
Hadoop 2 vs. Hadoop 1, 24
Hadoop clusters, 36
limits, 661–663

787Index

managing cluster workloads, 408
overview, 660–661
YARN memory. See Allocating YARN

memory.
Resource management

Hadoop ecosphere, 15
YARN, 50–56

Resource schedulers
default, 408
list of, 409. See also specific schedulers.

Resource usage, monitoring, 574–575
ResourceManager

in Hadoop clusters, 36
high availability. See HA (high

availability), ResourceManager.
large cluster guidelines, 101
rack awareness, 209
Restart feature, 543
YARN, 49

ResourceManager, starting, 88–89
ResourceManager crashes, troubleshooting,

738
ResourceManager log file, 519–520
REST (Representational State Transfer) API.

See WebHDFS.
Restart feature, 543
Restoring deleted files, from the trash

directory, 278
resume command, 472
Resuming a suspended job, 472
Retention duration for application logs,

setting, 592
Retrying jobs after a failure, 738–739
rm command, 249–250
Role-based authorization. See Authorization,

Sentry.
Roles, Sentry authorization, 514, 518–519
Rotating log files, 598
RPC metrics, 577
rpm, 63
RRDtool, 580
Rumen, benchmarking clusters, 643–644
Runnable processes, monitoring, 571
Running

Oozie workf low jobs, 461–464
Pig jobs through HTTP, 472
processes, monitoring, 572

Running jobs
displaying, 682
monitoring, 604–606

RUR (Replica Under Recovery) replica
state, 216

RWR (Replicas Waiting to be Recovered)
replica state, 216

S
S3 (Amazon Simple Storage Service), 165
S3 (s3a) file system, 244
S3DistCp, 307
Safe mode. See NameNode operations, safe

mode.
Safeguarding data. See Snapshots; Trash

directory.
safemode wait command, 330–331
Sample transformation, 178
sar utility, 574–576
SASL (Simple Authentication and Security

Layer), 477, 501
Scala language

benefits of, 21, 170–171
building Spark applications, 186
default persistence level, 721
examples, 157
running Spark applications on Mesos, 189
in the Spark shell, 182–183

Scala objects, in RDD files, 170
Scalability

distributed computing requirements, 33
issues with traditional database systems, 9

Scale up architecture vs. scale out, 8
Scaling trace runtime, benchmarking clusters,

643–644
Scheduler, YARN, 51
Schedulers. See Resource schedulers.
Scheduling jobs

administration, 29–30
Hadoop ecosphere, 15

Scheduling policies, configuring, 431
scp, 63
Scripting, in Pig Latin. See Pig.
Scripts, for starting and stopping a cluster,

116–117
Secondary NameNodes

checkpointing, 324, 328–329

788 Index

Secondary NameNodes (continued)
HA (high availability), 46–47
in Hadoop clusters, 36, 88
in HDFS, 46–47
restarting NameNodes, 46
starting, 87–88

secondaryGroupExistingQueue rule, 430
Securing data, administration, 30–31
Security

default, 30
determining access to cluster data. See

Authorization.
Fair Scheduler, 432
Knox, 524–525
overview, 478–480
Ranger, 525
roles in a cluster, 479–480
tracking cluster activity. See Auditing.
verifying user identities. See Authentication.

Security namespace, 509–510
SecurityAuth-hdfs.audit log file, 519
security.job.client.protocol.acl property, 511
security.job.task.protocol.acl property, 511
select() operation, 200
SELinux, disabling, 66
Sending, files, 63
Sensor data, definition, 6
Sentiment data, definition, 6
Sentry policy file, 514
Sentry service. See also Authentication.

description, 30, 514
role-based authorization. See

Authorization, Sentry.
sentry.metastore.service.users property, 516
SequenceFiles, 679

description, 299–300
HDFS, 42
small files problem, 299–300
structured format, 290

SerDe (serialization deserialization), 295
Server, Oozie architecture

description, 439–440
installing, 442–444
starting/stopping, 444–445

Server BIOS settings, checking, 65
Server log data, 6. See also Logs.

Service level agreements (SLAs)
event records, getting, 472
Oozie, 474–475

Service level authorization. See
Authorization, service level.

Service principal, Kerberos realms, 483
Service principal names (SPNs). See SPNs

(service principal names).
Service tickets, 483. See also TGTs

(Ticket Granting Tickets).
Services, starting/shutting down, 87–90
set default_parallel option, 637
setBalancerBandwidth option, 273–274
setQuota command, 264, 346
setSpaceQuota command, 265, 346
setStoragePolicy command, 239
Shell actions, Oozie action nodes, 453
Shell commands, types of, 245
Shell limits, setting, 67–68
shell method, 340–341
Short-circuit local reads, 231–232, 563–564
show() operation, 200
Shuff le boundaries, 693
Shuff le phase, tuning reduce tasks, 630–632
Shuff le process, optimizing MapReduce,

632–634
Shuff ling data, 693
Shutting down. See Starting up and shutting

down.
Simple Authentication and Security Layer

(SASL), 477, 501
Simple security mode, 505–506
Simplicity, Spark, 152
Sink processors, 390
Sinks, 389–390, 395, 578–579
Site-specific configuration, configuring

Hadoop clusters, 74
Skewed joins, 638
skipTrash option, 250, 280
sla command, 472
SLAs (service level agreements)

event records, getting, 472
Oozie, 474–475

Small files
consolidating batch files, 307
managing, 304–306

789Index

performance impact, 307
SequenceFile key/pairs, 307

Small files problem
federated NameNode architecture, 304
MapFiles, 300. See also SequenceFiles.
merging files, 303–304, 306–307
overcoming, 303–304
overview, 303–304
SequenceFiles, 299–300. See also MapFiles.

Snappy format, 290, 291
snapshotDiff command, 282–283
Snapshots. See also fsimage file.

as backups, 284
copying files from, 283
creating/deleting, 281–282
enabling/disabling, 281
listing, 282
overview, 280–281
recovering deleted files, 283–284
renaming directories, 283
snapshottable directories, removing, 283
viewing differences between, 282–283

soft limit settings, 67–68
Solr, alternative to MapReduce, 25
Sort performance, tuning reduce tasks, 632
Sort process, optimizing MapReduce, 633
sortBy transformation, 178
Sorting, RDDs, 178
Sources, 389–390, 395, 578–579
Space, storage. See HDFS storage.
Space quotas. See HDFS storage, space quotas.
Spark

accessing text files, 164–165
alternative to MapReduce, 25
cluster mode, 158–159
clusters for, 158–159. See also specific clusters.
data access, 164–166
data compression, 295
general framework, 152
graphs, 155
and Hadoop, 153
installing. See Installing Spark.
loading data from a relational database, 166
loading data from HDFS, 164–165
local mode, 158
machine learning algorithms, 155
MapReduce drawbacks, 149

on Mesos clusters, 155, 158, 161–162
overview, 147–149
run modes, 158–159
standalone clusters, 158
streaming data, 155
uses for, 152

Spark API, entry point to, 183
Spark applications. See also RDD (resilient

distributed dataset).
architecture, 179–181
building, 186
client mode, 189, 190
cluster managers, 180
cluster mode, 189, 190–191
components of, 180–181
configuration properties, 192–193
definition, 180
driver program, 180
executing, 187–189
executors, 181
JDBC server, 191–192
job, definition, 180
jobs, description, 181
local file storage, specifying, 193
memory allocation, specifying, 193
on Mesos, 189
ODBC server, 191–192
running on Mesos, 189
running with spark-submit script, 193–194
shared variables, 173
Spark Shell, 181–185
spark.executor.memory property, 193
sparklocal.dir property, 193
spark-submit script, 187–189
stage, definition, 180
stages, description, 181
streaming, tuning. See Tuning Spark

streaming applications.
task, definition, 180
tasks, description, 181
worker processes, 180
on YARN, 189

Spark applications, configuring
configuration properties, 192–193
local file storage, specifying, 193
memory allocation, specifying, 193
spark.executor.memory property, 193

790 Index

Spark applications, configuring (continued)
sparklocal.dir property, 193
with spark-submit script, 193–194

Spark applications, interactive
execution, overview, 185
overview, 181
Spark Shell, 181–185

Spark applications, monitoring with web UIs
cache status, displaying, 684
completed jobs, displaying, 684, 686
configuration parameters, displaying, 682
DAG page, 684
debugging, 686
default port, 682
Environment tab, 682
garbage collection, 684, 685
getting logs, 686
JAR files used, displaying, 682
job stages, displaying, 682, 684
Jobs tab, 682, 683
memory usage, 684, 685
Metrics REST API, 684
query plans, 686
running jobs, displaying, 682
Spark history server, 684, 686
Stages tab, 682, 684
Storage tab, 684
task durations, 684, 685
Task Metrics tab, 684, 685
tracking jobs from the command line, 686
troubleshooting performance, 682–684
viewing status of, 194

Spark applications, running
client mode, 186–187
cluster mode, 186–187
in the standalone Spark cluster, 186–187

Spark benefits
accessibility, 151–152
advanced execution engine, 150–151
compactness, 152
ease of use, 151–152
in-memory computation, 151
simplicity, 152
speed, 149–151

Spark cluster managers
Mesos, 161–162
standalone cluster, 159–161

Spark Core, 154

Spark execution model
DAG (directed acyclic graph), 693
execution plan, 693
jobs, 692, 693
optimizing, 692–694
pipelining, 693
RDD (resilient distributed dataset), 693
shuff le boundaries, 693
shuff ling data, 693
Spark applications, 692
stages, 693
tasks, 693–694

Spark executors, configuring resource
allocation

broadcast variables, 672
dynamic allocation, 667
memory usage, 671–672
number of executors, 667
overview, 666–667
resources for the executors, 667–669
summary of, 669
tasks and executors, 669, 672–673
for workload types, 674

Spark history server, 684, 686
Spark jobs, killing, 740
Spark jobs, troubleshooting

fault tolerance, 740
killing Spark jobs, 740
maximum attempts, specifying, 740
maximum failures per job, specifying, 740
maximum launch attempts, specifying, 740
task failures, 739

Spark JVM garbage collection,
troubleshooting, 734

Spark micro-batching, 196
Spark on YARN, cluster managers

compatibility, 158
overview, 162–163
setting up Spark, 163
Spark/YARN interaction, 163
standalone scheduler, 155
YARN vs. standalone cluster manager, 163

Spark on YARN, configuring resource
allocation

cluster mode vs. client mode, 674–676
CPU, 660
for drivers, duties, 663–664
for drivers, in client mode, 664–665

791Index

for drivers, in cluster mode, 665–666
dynamic allocation, enabling, 677–678
dynamic allocation vs. static, 676–678
for executors. See Spark executors,

configuring resource allocation.
memory usage, 660, 670–672
property precedence, 662
resource allocation limits, 661–663
resource allocation overview, 660–661
setting configuration properties, 662–663
setting local directories, 681
Spark-related network parameters, 676
yarn-client mode, 662
yarn-cluster mode, 662

Spark programming
accumulators, 172
anonymous functions, 171
broadcast variables, 172
chaining transformations, 172
Java language, 170
languages, 170–171. See also specific

languages.
lazy execution model, 172
passing functions as parameters, 171
Python language, 170
restricted shared variables, 172
Scala language, 170
shared variables, 172

Spark programming, RDDs
actions, 170
creating from existing RDDs, 170
definition, 170
lineage, 173

Spark Shell
overview, 182–183
running programs locally, 183–184
running spark-shell on a cluster, 184–185
vs. Spark applications, 181–182

Spark SQL
connecting to Hive, 199
HiveContext, 198–199
initializing, 199
loading data, 199–200
overview, 198–199
querying data, 200
in the Spark stack, 154
SQLContext, 198–199

Spark SQL, DataFrames
creating, 198, 200–201
creating with RDDs, 200–201
description, 198
displaying contents, 200
filter() operation, 200
filtering rows, 200
groupBy operation, 200
grouping data, 200
operations on, 200
select() operation, 200
selecting fields or functions, 200
show() operation, 200

Spark SQL query optimizer
code generation, 713–714
data locality, 715–716
logical plan, 712–713
optimizer steps, 712–714
overview, 712
physical plan, 713
speculative execution, 714
viewing Spark properties, 713–714

Spark Stack
components, 154–155
GraphX, 155
MLib, 155
overview, 153–154
Spark Core, 154
Spark SQL, 154
Spark Streaming, 155
Standalone Scheduler, 155

Spark standalone cluster manager, 163
Spark streaming, 195–197

description, 155
example, 197–198
functional description, 195–196
micro-batching, 196
overview, 194–195
streaming sources, 196
windowed computations, 196

spark.akka.framesize property, 676
spark.akka.threads property, 676
spark.cleaner.tll property, 700
SparkConf, 193, 661–662
SparkContext

entry point to the Spark API, 183
naming conventions, 186

792 Index

SparkContext (continued)
running Spark applications, 185–186
in Spark standalone clusters, 159

SparkContext objects
creating, 182
in Spark cluster execution, 185

SparkContext.newAPIHadoopFile method, 165
SparkContext.wholeTextFiles format, 165
spark.default.parallelism configuration

property, 706
spark.default.parallelism property, 709
spark-defaults.conf file, 661
spark.driver.cores property, 665
spark.driver.maxResultSize property, 675
spark.driver.memory property, 665
spark.dynamicAllocation.enabled property,

667, 677
spark.dynamicAllocation.

executorIdleTimeout property, 677
spark.dynamicAllocation.

schedulerbacklogTimeout property, 677
spark.dynamicAllocation.

sustainedSchedulerBacklogTimeout
property, 677

spark.executor.cores parameter, 667
spark.executor.cores property, 661
spark.executor.instances property, 667
spark.executor.memory parameter, 667
spark.locality.wait property, 715
spark.locality.wait.node property, 715
spark.memory.fraction property, 670
spark.memory.storageFraction property, 670
spark.reducer.maxSizeInFlight property, 697
Spark-related network parameters, 676
spark-shell command, 661
spark.shuff le.compress property, 697
spark.shuff le.file.buffer property, 697
spark.shuff le.spill.compress property, 697
spark.speculation.multiplier property, 714
spark-submit command, 661
spark-submit script

cluster URL, specifying, 188
description, 187
example, 187
help command, 187–188
master f lag, 188
running Spark applications in local mode, 188

spark.yarn.am.cores property, 664
spark.yarn.am.memory property, 664
Special principal, Kerberos realms, 485
specified rule, 430
Speculative execution, 621–624, 714
Speed, Spark, 149–151
Spill phase, tuning map tasks, 626, 628–630
Spill process, optimizing MapReduce, 633
SPILLED_RECORDS counter, 650
split-by id parameter, 376
Splittability, file formats, 297
Splitting data along column lines, 376
Splitting queries into chunks, 376
SPNs (service principal names)

defining, 503–504
deleting, 493
Kerberos realms, 483
mapping, 495–497
setting up, 492–493
translating to operating system names,

495–496
SQL query optimizer

optimizing, 712–716
Spark. See Spark SQL query optimizer.

SQLContext, Spark SQL, 198–199
Sqoop. See also Sqoop 2.

architecture, 366–367
connectors, 367
deploying, 367
description, 17, 356
drivers, 367
help feature, 368

Sqoop, exporting data
functional description, 383–385
from Hive to a database, 386
number of mappers, specifying, 382, 383
overview, 382–383
simultaneous update or insertion, 385–386
stored procedures, 386

Sqoop, loading data from relational databases
to HDFS

into Avro files, 373
in binary format, 373
combining new datasets with old, 379
compressing table data, 373–374
creating Sqoop jobs, 377
free form import, 375–376

793Index

getting data from all tables, 376–377
import process, overview, 368–371
incremental imports, 378–379
input parsing options, 373
input/output delimiters, 372–373
job parallelism, 377–378
listing relational databases, 368
listing tables in a database, 368
metastore, sharing, 372
options file, 371
passwords, specifying, 372
selecting a target directory, 374, 376
selective import, 374–376
into SequenceFiles, 373
specifying an access mode, 374
splitting data along column lines, 376
splitting queries into chunks, 376

Sqoop, loading data from relational databases
to Hive

overview, 379–381
partitioned Hive tables, 381

Sqoop 2, 387–388. See also Sqoop.
Sqoop jobs, creating, 377
SSD storage type, 237
SSH

passwordless SSH, configuring, 105
setting up on pseudo-distributed Hadoop

clusters, 68–69
sshfence method, 340–341
Stage boundaries, 699
Stages

definition, 180
description, 181
Spark execution model, 693

Stages tab, 682, 684
Staging directory, specifying, 113
staging-table parameter, 382
Standalone cluster manager

architecture, 159–160
driver program, 159
executor, 159
master nodes, configuring, 161
master processes, starting/stopping, 161
setting up, 159
tasks, 159
worker nodes, configuring, 161
worker processes, starting/stopping, 161
vs. YARN, 163

Standalone clusters, Spark, 158
Standalone installation, 61–62
Standalone Scheduler

Spark cluster manager, 155
Spark Stack, 155

Standalone Spark cluster, running Spark
applications, 186–187

Standby NameNode
checkpointing, 325, 327–328
metadata file location, specifying, 85
query errors, 346

Standby NameNode service, in Hadoop
clusters, 36, 88

start control nodes
configuring, 456
Oozie workf lows, 438, 446–447, 448, 456

start-balancer.sh command, 268–271
Starting up and shutting down

fully distributed clusters, 114–117
Hadoop services, 90
shutdown/startup scripts, 546

Statistical analysis. See Data science.
status option, 532
stderr logs, 583–584
stdout logs, 583–584
Storage

architecture, archival storage, 234–235
fully distributed clusters, single rack to

multiple racks, 96–99
Storage levels

DISK_ONLY, 719
MEMORY_AND_DISK, 719
MEMORY_AND_DISK_SER, 719
MEMORY_ONLY, 719
MEMORY_ONLY_SER, 719
setting, 720–721, 721–722

Storage policies, cold data, 237
Storage preferences for files, archival storage,

235
Storage tab, 684
Storage types, archival storage, 236–239
Storing data. See HDFS storage.
Storm

alternative to MapReduce, 25
description, 17
integrating with Kafka, 404–406

Streaming access to data, HDFS, 38
Streaming data. See Spark streaming.

794 Index

StreamingContext, 195–197
Structured data

handling. See Spark SQL.
traditional database systems, 8

Subqueues, Capacity Scheduler
configuring, 414
creating, 413–414
diagram, 418
setting up, 415–416

sudo command, 259
Super user group, specifying, 108
Super users, designating, 259
supported_enctypes parameter, 489
SUSE, package manager for, 63
suspend command, 472
Suspending running jobs, 472–473
Swap, disabling, 66
syslog logs, 583–584
System namespace, 509–510

T
T option, 310
Table data, compressing, 373–374
Tables in a database, listing, 368
Tachyon, 722
tail command, 360
target-dir parameter, 376
Task durations, monitoring, 684, 685
Task failures, troubleshooting, 738–739
Task IDs, troubleshooting, 736
Task Metrics tab, 684, 685
Task progress, reporting, 511
Tasks

cluster computing, 13
definition, 180
description, 181
standalone cluster manager, 159
YARN, 49

Tasks, in Spark applications
optimizing, 703–710
overview, 703–704
Spark execution model, 693–694
too few, 706

Temporary data, storage policies, 237
TEMPORARY replica state, 216
TeraGen, 641–642
TeraSort

benchmarking clusters, 640–643

generating test data, 641–642
overview, 640–641
sorting test data, 642
TeraGen, 641–642
TeraSort, 642
TeraValidate, 642
using benchmarks, 642
utility suite, 641
validating test output, 642

TeraValidate, 642
test command, 263, 357
TestDFSIO, testing I/O performance,

638–640
Testing. See also Benchmarking clusters.

disk speed, 65
for files, 357
HA (high availability), NameNode setup, 345
I/O performance, benchmarking clusters,

638–640
Text file type, 290
Text files

accessing with Spark, 164–165
creating RDD files from, 175
description, 298

Tez, description, 17
TGS (Ticket Granting Service)

definition, 480
maximum life, specifying, 490
maximum renewal time, 490

TGTs (Ticket Granting Tickets)
clearing a ticket cache, 503
description, 480
“failed to find any kerberos tgt” message,

502
listing a user’s ticket cache, 503
retrieving, 502
service tickets, 483

THP compaction, turning off, 68
Thrashing, monitoring, 571
Thrift protocol, 192
Thrift Server, 192
Ticket cache

clearing a, 503
listing, 503

Ticket Granting Service (TGS). See TGS
(Ticket Granting Service).

Ticket Granting Tickets (TGTs). See TGTs
(Ticket Granting Tickets).

795Index

Tickets
definition, 483
granting tickets, 502
viewing, 502

Time-based scheduling, 465–467, 469
Tokens, 501
top command, 530, 574–575
Topics, Kafka, 400, 403
topology.py script, 210
toSnapshot parameter, 282–283
TOTAL_LAUNCHED_MAPS counter, 649
TOTAL_LAUNCHED_REDUCES

counter, 649
Trace Builder, benchmarking clusters, 643–644
trace option, 645
Transformations. See RDD (resilient

distributed dataset), transformations.
transitionToActive command, 349, 535
transitionToStandby command, 349, 535, 545
Trash directory. See also lost+found

directory.
bypassing, 280
checkpointing interval, setting, 278–279
configuring, 278–279
data retention interval, setting, 278–279
description, 250, 278
emptying, 250, 279
enabling, 278
moveToTrash() method, 278
permanently deleting files, 250, 278–279
preventing accidental data deletion,

278–280
restoring deleted files, 278
selectively deleting files, 279
viewing contents of, 250

Trash retention interval, setting, 81
Troubleshooting

Oozie, 473–474
performance, 682–684
YARN jobs that are stuck, 731–732

Troubleshooting, failure types
ApplicationMaster crashes, 738
daemon failures, 737
job failures, 738–739
NameNode crashes, 737–738
NodeManager failures, 738
ResourceManager crashes, 738
retrying jobs after a failure, 738–739

starting failures for Hadoop daemons,
737–738

task failures, 738–739
work preserving recovery, 739

Troubleshooting JVM garbage collection
optimizing, 733–734
overview, 732–733
Spark JVM garbage collection, 734

Troubleshooting JVM memory allocation
analyzing memory usage, 734
ApplicationMaster memory issues, 735–736
heap dumps, 734
job IDs, 736
out of memory errors, 734–735
task IDs, 736

Troubleshooting space issues
disk volume failure toleration, 729–730
HDFS issues, 727
hot swapping a disk drive, 729
Linux file system 1 full, 726
local directories out of free space, 727–729
log directories out of free space, 727–729
overview, 725–726
replication, 730
setting dfs.datanode.du.reserved parameter,

730
Troubleshooting Spark jobs. See also

Debugging Spark applications.
fault tolerance, 740
killing Spark jobs, 740
maximum attempts, specifying, 740
maximum failures per job, specifying, 740
task failures, 739

Trusted relationships, Kerberos realms, 484–485
Tuning. See also Optimization; Performance.

administrator duties, 20
GC (garbage collection), 686–688

Tuning map tasks. See also Optimizing
MapReduce.

compression, 628
data locality, 626–627
input split size, 627–628
input/output, 627–630
map phase, 626, 628–630
merge phase, 626
overview, 625–626
read phase, 626
spill phase, 626, 628–630

796 Index

Tuning reduce tasks. See also Optimizing
MapReduce.

merge phase, 630–632
reduce phase, 630–632
shuff le phase, 630–632
sort performance, 632
write phase, 630–632

Tuning Spark streaming applications. See also
Optimizing Spark applications.

garbage collection, 689
memory, 689
overview, 688
parallelizing data ingestion, 688
parallelizing data processing, 689
reducing batch processing time, 688–689
setting the batch interval, 689

twittersource, 394
256-byte encryption, enabling/disabling, 490
Two-way trust, Kerberos realms, 485–486

U
Uberized jobs, 646
Ubuntu Linux, 63, 743
Ulimits, setting, 67–68
UNDER_CONSTRUCTION block state,

218–219
UNDER_RECOVERY block state, 218–219
Under-replicated files, 289
Unrecoverable files, 288–289
Unstructured data, definition, 6
update option, 364–365
update-key parameter, 382, 385–386
update-mode parameter, 382, 386
Upgrades. See Installation and upgrades.
UPNs (user principal names)

Kerberos realms, 483, 490
provisioning on Kerberized clusters,

503–504
setting up, 491

User accounts
creating, 554–556
functional, 727

User capabilities, limiting, 419–420
User identity, verifying. See Authentication.
User impersonation, 558
User metrics, 577
User namespace, 509–510

User principal, Kerberos realms, 483
user rule, 430
User specific space quotas, 264
User whitelist, 511
Users

enabling new users, 257–258
Sentry authorization, 513
super users, designating, 259
user identities, 258–259
using administrative privileges, 259

users option, 645
Utilities

automated deployment tools, 63
copying data between hosts, 63
Crowbar, 63
curl, 63
executing remote commands, 63
FTP protocol, 63
HTTP protocol, 63
installing pseudo-distributed Hadoop

clusters, 63
KickStart, 63
package manager for Red Hat, SUSE and

Fedora Linux, 63
pdsh, 63
Red Hat Enterprise Linux RPM software

packages, 63
rpm, 63
scp, 63
sending and getting files, 63
wget, 63
yum, 63

V
validate command, 472
Validating

benchmark test output, 642
a workf low.xml file, 472
XML schemas, 472

Vectorization, Hive jobs, 636–637
View (viewfs) file system, 244
Viewing, application logs, 584–585, 596–597
VirtualBox, installing, 744
Virtualization, fully distributed clusters, 97
Visualization, data science component, 11
vmstat utility, 572–573
VMware, Hadoop distribution, 60

797Index

W
w (write) permission, 255–256, 506
WANdisco, Hadoop distribution, 60
Warm data

archival storage, 232, 233–234
storage policies, 237

Web interfaces, fully distributed clusters,
119–121

Web UIs
as monitoring tools. See Monitoring with

web UIs.
setting, 114

WebHCat Server, 479–480
WebHDFS, 244
WebHDFS API

adding headers, 310–311
checking directory quotas, 313
creating directories, 312
creating files, 312
DELETE operation, 308, 312–313
following redirects, 310–311
GET operation, 308
vs. HttpFS gateway, 315
indicating the HTTP method, 310–311
overview, 308
point to an uploaded file, 310–311
POST operation, 308
PUT operation, 308, 312
reading files, 312
removing directories, 312–313
setting up, 309
using, 308–309

WebHDFS API, HDFS commands
curl tool, 310–311
H option, 310
L option, 310, 312
overview, 309–310
T option, 310
X option, 310

wget, 63
Whitelists, 511
Wide dependencies, 698–700
Wide transformations, 698
WordCount program

description, 130
running, 136–137
sample program, 135–136

Work preserving recovery, 739
Worker nodes

in Hadoop clusters, 36
HDFS, architecture, 38–39

Worker nodes, configuring, 161
Worker processes, 161, 180
Workf lows, managing, 561–562
workf low.xml file, validating a, 472
Wrangling data. See Data wrangling.
Write (w) permission, 255–256, 506
Write phase, tuning reduce tasks, 630–632
Write tests, benchmarking clusters, 639
Writing, to an HDFS file, 42–43

X
X option, 310
x (execute) permission, 506

Y
YARN (Yet Another Resource Negotiator)

ApplicationMaster, 52–56
ApplicationsManager, 51
architecture, 49–50
clients, 49
component interactions, 54–56
configuring, 559–560
configuring in pseudo-distributed clusters,

80, 83–86. See also Modifying
fully distributed clusters, YARN
configuration.

containers, 50
daemons, setting up, 73–74
DataNodes, 49
Hadoop 2 vs. Hadoop 1, 21–22
Hadoop ecosphere, 15
job history metadata, 54
JobHistoryServer, starting, 88–89
jobs, 49
mapper tasks, 49
metrics, 577
in a multihomed network, 124, 562–563
NodeManager, 49, 52
NodeManager, starting, 88–89
operations, auditing, 519
overview, 48
reduce tasks, 49
resource management, 50–56

798 Index

YARN (continued)
ResourceManager, 49
ResourceManager, starting, 88–89
Scheduler, 51
services, starting, 88–89
setting up on pseudo-distributed Hadoop

clusters, 70–71
Spark applications, 189
vs. standalone cluster manager, 163
tasks, 49
web interface, fully distributed clusters, 121

YARN commands for managing applications
administrative commands, 534–535
application command, 531
applicationattempt command, 532
checkHealth command, 535
displaying cluster usage, 530
failover command, 535
filtering lists of applications, 531–532
getServiceState command, 535
help for, 530
job queue status, checking, 533
kill command, 532–533
killing, 532–533
list command, 531–532
logs, reviewing, 533–534
logs command, 533–534
node command, 533
node status, checking, 533
nodes, listing, 533
overview, 530–531
queue command, 533
refreshNodes command, 535
status, checking, 532
status option, 532
top, 530
transitionToActive command, 535
transitionToStandby command, 535
viewing job information, 531

yarn user, setting up, 70–71
yarn.application.classpath parameter, 113
yarn.app.mapreduce.am.command-opts

parameter, 618
yarn.app.mapreduce.am.resource.mb

parameter, 618
yarn.app.mapreduce.am.staging_dir

parameter, 113–114

yarn-client mode, 662
yarn-cluster mode, 662
YARN_CONF_DIR environment variable,

163
yarn-env.sh file, 79
yarn.exclude file, 536
yarn.include file, 536
yarn.log.aggregation-enable parameter,

111–112
yarn.log-aggregation.retain-seconds

parameter, 595
YARN_LOG_DIR parameter, 597
yarn.log.server.url parameter, 595
yarn.nodemanager.aux-services parameter, 109
yarn.nodemanager.aux-services property, 83
yarn.nodemanager.aux-services.mapreduce_

shuff le-class parameter, 109
yarn.nodemanager.aux-services.mapreduce.

shuff le.class property, 84
yarn.nodemanager.container parameter, 498
yarn.nodemanager.disk-health-checker.

max-disk-utilization-perdisk-percentage
parameter, 727–729

yarn.nodemanager.disk-health-checker.min-
healthydisks parameter, 727–729

yarn.nodemanager.keytab parameter, 498
yarn.nodemanager.linux-container-executor.

group parameter, 498
yarn.nodemanager.local-dirs parameter, 112,

498, 681
yarn.nodemanager.local-dirs property, 588
yarn.nodemanager.log.deletion-threads-count

parameter, 594
yarn.nodemanager.log-dirs parameter, 112, 498
yarn.nodemanager.log.retain-seconds

parameter, 594
yarn.nodemanager.principal parameter, 498
yarn.nodemanager.remote-app-log-dir

parameter, 593
yarn.nodemanager.resource.cpu-vcores

parameter, 110, 620–621
yarn.nodemanager.resource.cpu-vcores

property, 662
yarn.nodemanager.resource.memory-mb

parameter, 109–110, 614, 661
yarn.nodemanager.vmem-pmem-ratio

parameter, 617

799Index

yarn.resourcemanager.keytab parameter, 498
yarn.resourcemanager.nodes.exclude-path

parameter, 536
yarn.resourcemanager.nodes.include-path

parameter, 536
yarn.resourcemanager.principal parameter,

498
yarn.scheduler.maximum-allocation-vcores

parameter, 621
yarn.scheduler.minimum-allocation-mb

property, 662
yarn.scheduler.minimum-allocation-vcores

parameter, 621
yarn-site.xml file

allocating memory for containers, 614
configuring pseudo-distributed Hadoop

clusters, 74
configuring ratio of physical memory to

virtual, 617
configuring the Fair Scheduler, 428–430
configuring virtual cores, 620–621
configuring YARN, 83–86
decommissioning a NodeManager service,

536
mapreduce.jobhistory.bind-host parameter,

124
mapreduce.map.cpu.vcores, 621
mapreduce.reduce.cpu.vcores, 621
memory related parameters, 109
YARN in a multihomed network, 124

yarn .scheduler.maximum-allocation-
vcores parameter, 621

yarn .scheduler.minimum-allocation-
vcores parameter, 621

yarn.nodemanager.resource.cpu-vcores
parameter, 620–621

yarn.nodemanager.resource.memory-mb
parameter, 614

yarn.nodemanager.vmem-pmem-ratio
parameter, 617

yarn-site.xml file, configuration parameters,
498

yarn.xml file, 109
Yet Another Resource Negotiator (YARN).

See YARN (Yet Another Resource
Negotiator).

Young Generation garbage collection, 687
Young generations, JVM garbage collection,

732–733
yum, 63

Z
ZKFC (ZooKeeper Failover controller),

347–348
ZooKeeper

configuring, 560
description, 17, 47
as a high availability coordinator, 335
large cluster guidelines, 102
setting up for Kafka, 402

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgment
	About the Author
	III: Managing and Protecting Hadoop Data and High Availability
	9 HDFS Commands, HDFS Permissions and HDFS Storage
	Managing HDFS through the HDFS Shell Commands
	Using the hdfs dfs Utility to Manage HDFS
	Listing HDFS Files and Directories
	Creating an HDFS Directory
	Removing HDFS Files and Directories
	Changing File and Directory Ownership and Groups

	Using the dfsadmin Utility to Perform HDFS Operations
	The dfsadmin –report Command

	Managing HDFS Permissions and Users
	HDFS File Permissions
	HDFS Users and Super Users

	Managing HDFS Storage
	Checking HDFS Disk Usage
	Allocating HDFS Space Quotas

	Rebalancing HDFS Data
	Reasons for HDFS Data Imbalance
	Running the Balancer Tool to Balance HDFS Data
	Using hdfs dfsadmin to Make Things Easier
	When to Run the Balancer

	Reclaiming HDFS Space
	Removing Files and Directories
	Decreasing the Replication Factor

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

