
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134596327
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134596327
https://plusone.google.com/share?url=http://www.informit.com/title/9780134596327
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134596327
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134596327/Free-Sample-Chapter

C# 6 FOR PROGRAMMERS
SIXTH EDITION

DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in
the documents and related graphics published as part of the services for any purpose. All such documents and related
graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim
all warranties and conditions with regard to this information, including all warranties and conditions of merchantabi-
lity, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall
Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improve-
ments and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may
be viewed in full within the software version specified.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/ph

Library of Congress Control Number: 2016946157

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-459632-7
ISBN-10: 0-13-459632-3

Text printed in the United States at RR Donnelley in Crawfordsville, Indiana.
First printing, August 2016

http://www.pearsoned.com/permissions/

C# 6 FOR PROGRAMMERS
SIXTH EDITION

DEITEL® DEVELOPER SERIES

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Deitel® Ser ies Page
Deitel® Developer Series
Android™ 6 for Programmers: An App-Driven

Approach, 3/E
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 6 for Programmers
iOS® 8 for Programmers: An App-Driven

Approach with Swift™

Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

How To Program Series
Android™ How to Program, 3/E
C++ How to Program, 10/E
C How to Program, 8/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E

Simply Series
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Simply C++: An App-Driven Tutorial Approach

VitalSource Web Books
http://bit.ly/DeitelOnVitalSource
Android™ How to Program, 2/E and 3/E
C++ How to Program, 8/E and 9/E
Java™ How to Program, 9/E and 10/E
Simply C++: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E
Visual C#® How to Program, 6/E

LiveLessons Video Learning Products
http://informit.com/deitel
Android™ 6 App Development Fundamentals, 3/E
C++ Fundamentals
Java™ Fundamentals, 2/E
C# 6 Fundamentals
C# 2012 Fundamentals
iOS® 8 App Development Fundamentals with

Swift™, 3/E
JavaScript Fundamentals
Swift™ Fundamentals

REVEL™ Interactive Multimedia
REVEL™ for Deitel Java™

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—http://facebook.com/DeitelFan

• Twitter®—http://twitter.com/deitel

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube™—http://youtube.com/DeitelTV

• Google+™—http://google.com/+DeitelFan

and register for the free Deitel® Buzz Online e-mail newsletter at:
 http://www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on programming-languages corporate training seminars offered by Deitel & Associates,
Inc. worldwide, write to deitel@deitel.com or visit:
 http://www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
http://www.deitel.com
http://www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers, which will help you master programming languages, software develop-
ment, Android™ and iOS® app development, and Internet- and web-related topics:
 http://www.deitel.com/ResourceCenters.html

http://bit.ly/DeitelOnVitalSource
http://informit.com/deitel
http://facebook.com/DeitelFan
http://twitter.com/deitel
http://linkedin.com/company/deitel-&-associates
http://youtube.com/DeitelTV
http://google.com/+DeitelFan
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

Trademarks
DEITEL and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

In memory of William Siebert, Professor Emeritus of
Electrical Engineering and Computer Science at MIT:

Your use of visualization techniques in
your Signals and Systems lectures inspired
the way generations of engineers, computer
scientists, educators and authors present
their work.

Harvey and Paul Deitel

Preface xxi

Before You Begin xxxii

1 Introduction 1
1.1 Introduction 2
1.2 Object Technology: A Brief Review 2
1.3 C# 5

1.3.1 Object-Oriented Programming 5
1.3.2 Event-Driven Programming 6
1.3.3 Visual Programming 6
1.3.4 Generic and Functional Programming 6
1.3.5 An International Standard 6
1.3.6 C# on Non-Windows Platforms 6
1.3.7 Internet and Web Programming 7
1.3.8 Asynchronous Programming with async and await 7

1.4 Microsoft’s .NET 7
1.4.1 .NET Framework 7
1.4.2 Common Language Runtime 7
1.4.3 Platform Independence 8
1.4.4 Language Interoperability 8

1.5 Microsoft’s Windows® Operating System 8
1.6 Visual Studio Integrated Development Environment 10
1.7 Painter Test-Drive in Visual Studio Community 10

2 Introduction to Visual Studio and
Visual Programming 15

2.1 Introduction 16
2.2 Overview of the Visual Studio Community 2015 IDE 16

2.2.1 Introduction to Visual Studio Community 2015 16
2.2.2 Visual Studio Themes 17
2.2.3 Links on the Start Page 17
2.2.4 Creating a New Project 18
2.2.5 New Project Dialog and Project Templates 19
2.2.6 Forms and Controls 20

Contents

viii Contents

2.3 Menu Bar and Toolbar 21
2.4 Navigating the Visual Studio IDE 24

2.4.1 Solution Explorer 25
2.4.2 Toolbox 26
2.4.3 Properties Window 26

2.5 Help Menu and Context-Sensitive Help 28
2.6 Visual Programming: Creating a Simple App that Displays

Text and an Image 29
2.7 Wrap-Up 38
2.8 Web Resources 39

3 Introduction to C# App Programming 40
3.1 Introduction 41
3.2 Simple App: Displaying a Line of Text 41

3.2.1 Comments 42
3.2.2 using Directive 43
3.2.3 Blank Lines and Whitespace 43
3.2.4 Class Declaration 43
3.2.5 Main Method 46
3.2.6 Displaying a Line of Text 46
3.2.7 Matching Left ({) and Right (}) Braces 47

3.3 Creating a Simple App in Visual Studio 47
3.3.1 Creating the Console App 47
3.3.2 Changing the Name of the App File 48
3.3.3 Writing Code and Using IntelliSense 49
3.3.4 Compiling and Running the App 51
3.3.5 Errors, Error Messages and the Error List Window 51

3.4 Modifying Your Simple C# App 52
3.4.1 Displaying a Single Line of Text with Multiple Statements 52
3.4.2 Displaying Multiple Lines of Text with a Single Statement 53

3.5 String Interpolation 55
3.6 Another C# App: Adding Integers 56

3.6.1 Declaring the int Variable number1 57
3.6.2 Declaring Variables number2 and sum 57
3.6.3 Prompting the User for Input 58
3.6.4 Reading a Value into Variable number1 58
3.6.5 Prompting the User for Input and Reading a Value into number2 59
3.6.6 Summing number1 and number2 59
3.6.7 Displaying the sum with string Interpolation 59
3.6.8 Performing Calculations in Output Statements 59

3.7 Arithmetic 59
3.7.1 Arithmetic Expressions in Straight-Line Form 60
3.7.2 Parentheses for Grouping Subexpressions 60
3.7.3 Rules of Operator Precedence 60

3.8 Decision Making: Equality and Relational Operators 61
3.9 Wrap-Up 65

 Contents ix

4 Introduction to Classes, Objects,
Methods and strings 67

4.1 Introduction 68
4.2 Test-Driving an Account Class 69

4.2.1 Instantiating an Object—Keyword new 69
4.2.2 Calling Class Account’s GetName Method 70
4.2.3 Inputting a Name from the User 70
4.2.4 Calling Class Account’s SetName Method 71

4.3 Account Class with an Instance Variable and Set and Get Methods 71
4.3.1 Account Class Declaration 71
4.3.2 Keyword class and the Class Body 72
4.3.3 Instance Variable name of Type string 72
4.3.4 SetName Method 73
4.3.5 GetName Method 75
4.3.6 Access Modifiers private and public 75
4.3.7 Account UML Class Diagram 76

4.4 Creating, Compiling and Running a Visual C# Project with Two Classes 77
4.5 Software Engineering with Set and Get Methods 78
4.6 Account Class with a Property Rather Than Set and Get Methods 79

4.6.1 Class AccountTest Using Account’s Name Property 79
4.6.2 Account Class with an Instance Variable and a Property 81
4.6.3 Account UML Class Diagram with a Property 83

4.7 Auto-Implemented Properties 83
4.8 Account Class: Initializing Objects with Constructors 84

4.8.1 Declaring an Account Constructor for Custom Object Initialization 84
4.8.2 Class AccountTest: Initializing Account Objects When

They’re Created 85
4.9 Account Class with a Balance; Processing Monetary Amounts 87

4.9.1 Account Class with a decimal balance Instance Variable 87
4.9.2 AccountTest Class That Uses Account Objects with Balances 90

4.10 Wrap-Up 93

5 Control Statements: Part 1 95
5.1 Introduction 96
5.2 Control Structures 96

5.2.1 Sequence Structure 97
5.2.2 Selection Statements 98
5.2.3 Iteration Statements 98
5.2.4 Summary of Control Statements 99

5.3 if Single-Selection Statement 99
5.4 if…else Double-Selection Statement 100

5.4.1 Nested if…else Statements 101
5.4.2 Dangling-else Problem 102

x Contents

5.4.3 Blocks 102
5.4.4 Conditional Operator (?:) 103

5.5 Student Class: Nested if…else Statements 103
5.6 while Iteration Statement 106
5.7 Counter-Controlled Iteration 107

5.7.1 Implementing Counter-Controlled Iteration 108
5.7.2 Integer Division and Truncation 110

5.8 Sentinel-Controlled Iteration 110
5.8.1 Implementing Sentinel-Controlled Iteration 110
5.8.2 Program Logic for Sentinel-Controlled Iteration 112
5.8.3 Braces in a while Statement 113
5.8.4 Converting Between Simple Types Explicitly and Implicitly 113
5.8.5 Formatting Floating-Point Numbers 114

5.9 Nested Control Statements 114
5.10 Compound Assignment Operators 117
5.11 Increment and Decrement Operators 118

5.11.1 Prefix Increment vs. Postfix Increment 119
5.11.2 Simplifying Increment Statements 120
5.11.3 Operator Precedence and Associativity 120

5.12 Simple Types 121
5.13 Wrap-Up 121

6 Control Statements: Part 2 123
6.1 Introduction 124
6.2 Essentials of Counter-Controlled Iteration 124
6.3 for Iteration Statement 125

6.3.1 A Closer Look at the for Statement’s Header 126
6.3.2 General Format of a for Statement 126
6.3.3 Scope of a for Statement’s Control Variable 127
6.3.4 Expressions in a for Statement’s Header Are Optional 127
6.3.5 UML Activity Diagram for the for Statement 127

6.4 App: Summing Even Integers 128
6.5 App: Compound-Interest Calculations 129

6.5.1 Performing the Interest Calculations with Math Method pow 130
6.5.2 Formatting with Field Widths and Alignment 131
6.5.3 Caution: Do Not Use float or double for Monetary Amounts 131

6.6 do…while Iteration Statement 132
6.7 switch Multiple-Selection Statement 133

6.7.1 Using a switch Statement to Count A, B, C, D and F Grades 133
6.7.2 switch Statement UML Activity Diagram 138
6.7.3 Notes on the Expression in Each case of a switch 138

6.8 Class AutoPolicy Case Study: strings in switch Statements 139
6.9 break and continue Statements 141

6.9.1 break Statement 141
6.9.2 continue Statement 142

6.10 Logical Operators 143

 Contents xi

6.10.1 Conditional AND (&&) Operator 143
6.10.2 Conditional OR (||) Operator 144
6.10.3 Short-Circuit Evaluation of Complex Conditions 145
6.10.4 Boolean Logical AND (&) and Boolean Logical OR (|) Operators 145
6.10.5 Boolean Logical Exclusive OR (^) 145
6.10.6 Logical Negation (!) Operator 146
6.10.7 Logical Operators Example 146

6.11 Wrap-Up 149

7 Methods: A Deeper Look 150
7.1 Introduction 151
7.2 Packaging Code in C# 152
7.3 static Methods, static Variables and Class Math 152

7.3.1 Math Class Methods 153
7.3.2 Math Class Constants PI and E 154
7.3.3 Why Is Main Declared static? 154
7.3.4 Additional Comments About Main 155

7.4 Methods with Multiple Parameters 155
7.4.1 Keyword static 157
7.4.2 Method Maximum 157
7.4.3 Assembling strings with Concatenation 157
7.4.4 Breaking Apart Large string Literals 158
7.4.5 When to Declare Variables as Fields 159
7.4.6 Implementing Method Maximum by Reusing Method Math.Max 159

7.5 Notes on Using Methods 159
7.6 Argument Promotion and Casting 160

7.6.1 Promotion Rules 161
7.6.2 Sometimes Explicit Casts Are Required 161

7.7 The .NET Framework Class Library 162
7.8 Case Study: Random-Number Generation 164

7.8.1 Creating an Object of Type Random 164
7.8.2 Generating a Random Integer 164
7.8.3 Scaling the Random-Number Range 165
7.8.4 Shifting Random-Number Range 165
7.8.5 Combining Shifting and Scaling 165
7.8.6 Rolling a Six-Sided Die 165
7.8.7 Scaling and Shifting Random Numbers 168
7.8.8 Repeatability for Testing and Debugging 168

7.9 Case Study: A Game of Chance; Introducing Enumerations 169
7.9.1 Method RollDice 172
7.9.2 Method Main’s Local Variables 172
7.9.3 enum Type Status 172
7.9.4 The First Roll 173
7.9.5 enum Type DiceNames 173
7.9.6 Underlying Type of an enum 173
7.9.7 Comparing Integers and enum Constants 173

xii Contents

7.10 Scope of Declarations 174
7.11 Method-Call Stack and Activation Records 177

7.11.1 Method-Call Stack 177
7.11.2 Stack Frames 177
7.11.3 Local Variables and Stack Frames 178
7.11.4 Stack Overflow 178
7.11.5 Method-Call Stack in Action 178

7.12 Method Overloading 181
7.12.1 Declaring Overloaded Methods 181
7.12.2 Distinguishing Between Overloaded Methods 182
7.12.3 Return Types of Overloaded Methods 182

7.13 Optional Parameters 183
7.14 Named Parameters 184
7.15 C# 6 Expression-Bodied Methods and Properties 185
7.16 Recursion 186

7.16.1 Base Cases and Recursive Calls 186
7.16.2 Recursive Factorial Calculations 186
7.16.3 Implementing Factorial Recursively 187

7.17 Value Types vs. Reference Types 189
7.18 Passing Arguments By Value and By Reference 190

7.18.1 ref and out Parameters 191
7.18.2 Demonstrating ref, out and Value Parameters 192

7.19 Wrap-Up 194

8 Arrays; Introduction to Exception Handling 195
8.1 Introduction 196
8.2 Arrays 197
8.3 Declaring and Creating Arrays 198
8.4 Examples Using Arrays 199

8.4.1 Creating and Initializing an Array 199
8.4.2 Using an Array Initializer 200
8.4.3 Calculating a Value to Store in Each Array Element 201
8.4.4 Summing the Elements of an Array 202
8.4.5 Iterating Through Arrays with foreach 203
8.4.6 Using Bar Charts to Display Array Data Graphically;

Introducing Type Inference with var 205
8.4.7 Using the Elements of an Array as Counters 207

8.5 Using Arrays to Analyze Survey Results; Intro to Exception Handling 208
8.5.1 Summarizing the Results 210
8.5.2 Exception Handling: Processing the Incorrect Response 211
8.5.3 The try Statement 211
8.5.4 Executing the catch Block 211
8.5.5 Message Property of the Exception Parameter 211

8.6 Case Study: Card Shuffling and Dealing Simulation 212
8.6.1 Class Card and Getter-Only Auto-Implemented Properties 212
8.6.2 Class DeckOfCards 213

 Contents xiii

8.6.3 Shuffling and Dealing Cards 215
8.7 Passing Arrays and Array Elements to Methods 216
8.8 Case Study: GradeBook Using an Array to Store Grades 219
8.9 Multidimensional Arrays 225

8.9.1 Rectangular Arrays 225
8.9.2 Jagged Arrays 226
8.9.3 Two-Dimensional Array Example: Displaying Element Values 227

8.10 Case Study: GradeBook Using a Rectangular Array 230
8.11 Variable-Length Argument Lists 236
8.12 Using Command-Line Arguments 237
8.13 (Optional) Passing Arrays by Value and by Reference 240
8.14 Wrap-Up 244

9 Introduction to LINQ and the List Collection 245
9.1 Introduction 246
9.2 Querying an Array of int Values Using LINQ 247

9.2.1 The from Clause 249
9.2.2 The where Clause 250
9.2.3 The select Clause 250
9.2.4 Iterating Through the Results of the LINQ Query 250
9.2.5 The orderby Clause 250
9.2.6 Interface IEnumerable<T> 251

9.3 Querying an Array of Employee Objects Using LINQ 251
9.3.1 Accessing the Properties of a LINQ Query’s Range Variable 255
9.3.2 Sorting a LINQ Query’s Results by Multiple Properties 255
9.3.3 Any, First and Count Extension Methods 255
9.3.4 Selecting a Property of an Object 255
9.3.5 Creating New Types in the select Clause of a LINQ Query 255

9.4 Introduction to Collections 256
9.4.1 List<T> Collection 256
9.4.2 Dynamically Resizing a List<T> Collection 257

9.5 Querying the Generic List Collection Using LINQ 261
9.5.1 The let Clause 263
9.5.2 Deferred Execution 263
9.5.3 Extension Methods ToArray and ToList 263
9.5.4 Collection Initializers 263

9.6 Wrap-Up 264
9.7 Deitel LINQ Resource Center 264

10 Classes and Objects: A Deeper Look 265
10.1 Introduction 266
10.2 Time Class Case Study; Throwing Exceptions 266

10.2.1 Time1 Class Declaration 267
10.2.2 Using Class Time1 268

10.3 Controlling Access to Members 270

xiv Contents

10.4 Referring to the Current Object’s Members with the this Reference 271
10.5 Time Class Case Study: Overloaded Constructors 273

10.5.1 Class Time2 with Overloaded Constructors 273
10.5.2 Using Class Time2’s Overloaded Constructors 277

10.6 Default and Parameterless Constructors 279
10.7 Composition 280

10.7.1 Class Date 280
10.7.2 Class Employee 282
10.7.3 Class EmployeeTest 283

10.8 Garbage Collection and Destructors 284
10.9 static Class Members 284
10.10 readonly Instance Variables 288
10.11 Class View and Object Browser 289

10.11.1 Using the Class View Window 289
10.11.2 Using the Object Browser 290

10.12 Object Initializers 291
10.13 Operator Overloading; Introducing struct 291

10.13.1 Creating Value Types with struct 292
10.13.2 Value Type ComplexNumber 292
10.13.3 Class ComplexTest 294

10.14 Time Class Case Study: Extension Methods 295
10.15 Wrap-Up 298

11 Object-Oriented Programming: Inheritance 299
11.1 Introduction 300
11.2 Base Classes and Derived Classes 301
11.3 protected Members 303
11.4 Relationship between Base Classes and Derived Classes 304

11.4.1 Creating and Using a CommissionEmployee Class 305
11.4.2 Creating a BasePlusCommissionEmployee Class without

Using Inheritance 309
11.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 314
11.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Instance Variables 317
11.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 320
11.5 Constructors in Derived Classes 324
11.6 Software Engineering with Inheritance 324
11.7 Class object 325
11.8 Wrap-Up 326

12 OOP: Polymorphism and Interfaces 327
12.1 Introduction 328
12.2 Polymorphism Examples 330

 Contents xv

12.3 Demonstrating Polymorphic Behavior 331
12.4 Abstract Classes and Methods 334
12.5 Case Study: Payroll System Using Polymorphism 336

12.5.1 Creating Abstract Base Class Employee 337
12.5.2 Creating Concrete Derived Class SalariedEmployee 339
12.5.3 Creating Concrete Derived Class HourlyEmployee 341
12.5.4 Creating Concrete Derived Class CommissionEmployee 342
12.5.5 Creating Indirect Concrete Derived

Class BasePlusCommissionEmployee 344
12.5.6 Polymorphic Processing, Operator is and Downcasting 345
12.5.7 Summary of the Allowed Assignments Between Base-Class

and Derived-Class Variables 350
12.6 sealed Methods and Classes 351
12.7 Case Study: Creating and Using Interfaces 352

12.7.1 Developing an IPayable Hierarchy 353
12.7.2 Declaring Interface IPayable 355
12.7.3 Creating Class Invoice 355
12.7.4 Modifying Class Employee to Implement Interface IPayable 357
12.7.5 Using Interface IPayable to Process Invoices and Employees

Polymorphically 358
12.7.6 Common Interfaces of the .NET Framework Class Library 360

12.8 Wrap-Up 361

13 Exception Handling: A Deeper Look 362
13.1 Introduction 363
13.2 Example: Divide by Zero without Exception Handling 364

13.2.1 Dividing By Zero 365
13.2.2 Enter a Non-Numeric Denominator 366
13.2.3 Unhandled Exceptions Terminate the App 366
13.3 Example: Handling DivideByZeroExceptions and FormatExceptions

367
13.3.1 Enclosing Code in a try Block 369
13.3.2 Catching Exceptions 369
13.3.3 Uncaught Exceptions 370
13.3.4 Termination Model of Exception Handling 371
13.3.5 Flow of Control When Exceptions Occur 371

13.4 .NET Exception Hierarchy 372
13.4.1 Class SystemException 372
13.4.2 Which Exceptions Might a Method Throw? 373

13.5 finally Block 374
13.5.1 Moving Resource-Release Code to a finally Block 374
13.5.2 Demonstrating the finally Block 375
13.5.3 Throwing Exceptions Using the throw Statement 379
13.5.4 Rethrowing Exceptions 379
13.5.5 Returning After a finally Block 380

13.6 The using Statement 381

xvi Contents

13.7 Exception Properties 382
13.7.1 Property InnerException 382
13.7.2 Other Exception Properties 383
13.7.3 Demonstrating Exception Properties and Stack Unwinding 383
13.7.4 Throwing an Exception with an InnerException 385
13.7.5 Displaying Information About the Exception 386

13.8 User-Defined Exception Classes 386
13.9 Checking for null References; Introducing C# 6’s ?. Operator 390

13.9.1 Null-Conditional Operator (?.) 390
13.9.2 Revisiting Operators is and as 391
13.9.3 Nullable Types 391
13.9.4 Null Coalescing Operator (??) 392

13.10 Exception Filters and the C# 6 when Clause 392
13.11 Wrap-Up 393

14 Graphical User Interfaces with
Windows Forms: Part 1 394

14.1 Introduction 395
14.2 Windows Forms 396
14.3 Event Handling 398

14.3.1 A Simple Event-Driven GUI 399
14.3.2 Auto-Generated GUI Code 400
14.3.3 Delegates and the Event-Handling Mechanism 403
14.3.4 Another Way to Create Event Handlers 404
14.3.5 Locating Event Information 405

14.4 Control Properties and Layout 406
14.4.1 Anchoring and Docking 407
14.4.2 Using Visual Studio To Edit a GUI’s Layout 409

14.5 Labels, TextBoxes and Buttons 410
14.6 GroupBoxes and Panels 413
14.7 CheckBoxes and RadioButtons 416

14.7.1 CheckBoxes 416
14.7.2 Combining Font Styles with Bitwise Operators 418
14.7.3 RadioButtons 419

14.8 PictureBoxes 424
14.9 ToolTips 426
14.10 NumericUpDown Control 428
14.11 Mouse-Event Handling 430
14.12 Keyboard-Event Handling 433
14.13 Wrap-Up 436

15 Graphical User Interfaces with
Windows Forms: Part 2 438

15.1 Introduction 439

 Contents xvii

15.2 Menus 439
15.3 MonthCalendar Control 449
15.4 DateTimePicker Control 450
15.5 LinkLabel Control 453
15.6 ListBox Control 456
15.7 CheckedListBox Control 461
15.8 ComboBox Control 464
15.9 TreeView Control 468
15.10 ListView Control 474
15.11 TabControl Control 480
15.12 Multiple Document Interface (MDI) Windows 484
15.13 Visual Inheritance 492
15.14 User-Defined Controls 497
15.15 Wrap-Up 500

16 Strings and Characters: A Deeper Look 502
16.1 Introduction 503
16.2 Fundamentals of Characters and Strings 504
16.3 string Constructors 505
16.4 string Indexer, Length Property and CopyTo Method 506
16.5 Comparing strings 507
16.6 Locating Characters and Substrings in strings 511
16.7 Extracting Substrings from strings 514
16.8 Concatenating strings 515
16.9 Miscellaneous string Methods 515
16.10 Class StringBuilder 517

16.11 Length and Capacity Properties, EnsureCapacity Method and
Indexer of Class StringBuilder 518

16.12 Append and AppendFormat Methods of Class StringBuilder 520
16.13 Insert, Remove and Replace Methods of Class StringBuilder 522

16.14 Char Methods 525
16.15 Introduction to Regular Expressions (Online) 527
16.16 Wrap-Up 527

17 Files and Streams 529
17.1 Introduction 530
17.2 Files and Streams 530
17.3 Creating a Sequential-Access Text File 531
17.4 Reading Data from a Sequential-Access Text File 540
17.5 Case Study: Credit-Inquiry Program 544
17.6 Serialization 549
17.7 Creating a Sequential-Access File Using Object Serialization 550
17.8 Reading and Deserializing Data from a Binary File 554
17.9 Classes File and Directory 557

17.9.1 Demonstrating Classes File and Directory 558

xviii Contents

17.9.2 Searching Directories with LINQ 561
17.10 Wrap-Up 565

18 Generics 567
18.1 Introduction 568
18.2 Motivation for Generic Methods 569
18.3 Generic-Method Implementation 571
18.4 Type Constraints 574

18.4.1 IComparable<T> Interface 574
18.4.2 Specifying Type Constraints 574

18.5 Overloading Generic Methods 577
18.6 Generic Classes 577
18.7 Wrap-Up 587

19 Generic Collections; Functional Programming
with LINQ/PLINQ 588

19.1 Introduction 589
19.2 Collections Overview 590
19.3 Class Array and Enumerators 593

19.3.1 C# 6 using static Directive 595
19.3.2 Class UsingArray’s static Fields 596
19.3.3 Array Method Sort 596
19.3.4 Array Method Copy 596
19.3.5 Array Method BinarySearch 596
19.3.6 Array Method GetEnumerator and Interface IEnumerator 596
19.3.7 Iterating Over a Collection with foreach 597
19.3.8 Array Methods Clear, IndexOf, LastIndexOf and Reverse 597

19.4 Dictionary Collections 597
19.4.1 Dictionary Fundamentals 598
19.4.2 Using the SortedDictionary Collection 599

19.5 Generic LinkedList Collection 603
19.6 C# 6 Null Conditional Operator ?[] 607
19.7 C# 6 Dictionary Initializers and Collection Initializers 608
19.8 Delegates 608

19.8.1 Declaring a Delegate Type 610
19.8.2 Declaring a Delegate Variable 610
19.8.3 Delegate Parameters 611
19.8.4 Passing a Method Name Directly to a Delegate Parameter 611

19.9 Lambda Expressions 611
19.9.1 Expression Lambdas 613
19.9.2 Assigning Lambdas to Delegate Variables 614
19.9.3 Explicitly Typed Lambda Parameters 614
19.9.4 Statement Lambdas 614

19.10 Introduction to Functional Programming 614
19.11 Functional Programming with LINQ Method-Call Syntax and Lambdas 616

 Contents xix

19.11.1 LINQ Extension Methods Min, Max, Sum and Average 619
19.11.2 Aggregate Extension Method for Reduction Operations 619
19.11.3 The Where Extension Method for Filtering Operations 621
19.11.4 Select Extension Method for Mapping Operations 622

19.12 PLINQ: Improving LINQ to Objects Performance with Multicore 622
19.13 (Optional) Covariance and Contravariance for Generic Types 626
19.14 Wrap-Up 628

20 Databases and LINQ 629
20.1 Introduction 630
20.2 Relational Databases 631
20.3 A Books Database 632
20.4 LINQ to Entities and the ADO.NET Entity Framework 636
20.5 Querying a Database with LINQ 637

20.5.1 Creating the ADO.NET Entity Data Model Class Library 639
20.5.2 Creating a Windows Forms Project and Configuring It to

Use the Entity Data Model 643
20.5.3 Data Bindings Between Controls and the Entity Data Model 645

20.6 Dynamically Binding Query Results 651
20.6.1 Creating the Display Query Results GUI 652
20.6.2 Coding the Display Query Results App 653

20.7 Retrieving Data from Multiple Tables with LINQ 655
20.8 Creating a Master/Detail View App 661

20.8.1 Creating the Master/Detail GUI 661
20.8.2 Coding the Master/Detail App 663

20.9 Address Book Case Study 664
20.9.1 Creating the Address Book App’s GUI 666
20.9.2 Coding the Address Book App 667

20.10 Tools and Web Resources 671
20.11 Wrap-Up 671

21 Asynchronous Programming with
async and await 672

21.1 Introduction 673
21.2 Basics of async and await 675

21.2.1 async Modifier 675
21.2.2 await Expression 675
21.2.3 async, await and Threads 675

21.3 Executing an Asynchronous Task from a GUI App 676
21.3.1 Performing a Task Asynchronously 676
21.3.2 Method calculateButton_Click 678
21.3.3 Task Method Run: Executing Asynchronously in a Separate Thread 679
21.3.4 awaiting the Result 679
21.3.5 Calculating the Next Fibonacci Value Synchronously 679

21.4 Sequential Execution of Two Compute-Intensive Tasks 680

xx Contents

21.5 Asynchronous Execution of Two Compute-Intensive Tasks 682
21.5.1 awaiting Multiple Tasks with Task Method WhenAll 685
21.5.2 Method StartFibonacci 686
21.5.3 Modifying a GUI from a Separate Thread 686
21.5.4 awaiting One of Several Tasks with Task Method WhenAny 686

21.6 Invoking a Flickr Web Service Asynchronously with HttpClient 687
21.6.1 Using Class HttpClient to Invoke a Web Service 691
21.6.2 Invoking the Flickr Web Service’s

flickr.photos.search Method 691
21.6.3 Processing the XML Response 692
21.6.4 Binding the Photo Titles to the ListBox 693
21.6.5 Asynchronously Downloading an Image’s Bytes 694

21.7 Displaying an Asynchronous Task’s Progress 694
21.8 Wrap-Up 698

A Operator Precedence Chart 700

B Simple Types 702

C ASCII Character Set 704

Index 705

Welcome to the world of leading-edge software development with Microsoft’s® Visual
C#® programming language. C# 6 for Programmers, 6/e is based on C# 6 and related Mi-
crosoft software technologies.1 You’ll be using the .NET platform and the Visual Studio®

Integrated Development Environment on which you’ll conveniently write, test and debug
your applications and run them on Windows® devices. The Windows operating system
runs on desktop and notebook computers, mobile phones and tablets, game systems and
a great variety of devices associated with the emerging “Internet of Things.” We believe
that this book will give you an informative, engaging, challenging and entertaining intro-
duction to C#.

You’ll study C# in the context of four of today’s most popular programming para-
digms:

• object-oriented programming,

• structured programming,

• generic programming and

• functional programming (new in this edition).

If you haven’t already done so, please read the back cover and check out the additional
reviewer comments on the inside back cover—these capture the essence of the book con-
cisely. In this Preface we provide more detail.

The book is loaded with “live-code” examples—most new concepts are presented in
the context of complete working C# apps, followed by one or more executions showing
program inputs and outputs. In the few cases where we show a code snippet, to ensure cor-
rectness first we tested it in a working program then copied the code and pasted it into the
book. We include a broad range of example apps selected from business, education, com-
puter science, personal utilities, mathematics, simulation, game playing, graphics and
many other areas. We also provide abundant tables, line drawings and UML diagrams.

Read the Before You Begin section after this Preface for instructions on setting up
your computer to run the 170+ code examples and to enable you to develop your own C#
apps. The source code for all of the book’s examples is available at

Use the source code we provide to compile and run each program as you study it—this
will help you master C# and related Microsoft technologies faster and at a deeper level.

1. At the time of this writing, Microsoft has not yet released the official C# 6 Specification. To view an
unofficial copy, visit https://github.com/ljw1004/csharpspec/blob/gh-pages/README.md

http://www.deitel.com/books/CSharp6FP

Preface

https://github.com/ljw1004/csharpspec/blob/gh-pages/README.md
http://www.deitel.com/books/CSharp6FP

xxii Preface

Contacting the Authors
As you read the book, if you have a question, we’re easy to reach at

We’ll respond promptly.

Join the Deitel & Associates, Inc. Social Media Communities
For book updates, visit

subscribe to the Deitel® Buzz Online newsletter

and join the conversation on

• Facebook®—http://facebook.com/DeitelFan

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube®—http://youtube.com/DeitelTV

• Twitter®—http://twitter.com/Deitel

• Instagram®—http://instagram.com/DeitelFan

• Google+™—http://google.com/+DeitelFan

New C# 6 Features
We introduce key new C# 6 language features throughout the book (Fig. 1)—each defin-
ing occurrence is marked with a “6” margin icon as shown next to this paragraph.

deitel@deitel.com

http://www.deitel.com/books/CSharp6FP

http://www.deitel.com/newsletter/subscribe.html

C# 6 new language feature First introduced in

string interpolation Section 3.5

expression-bodied methods and get accessors Section 7.15

auto-implemented property initializers Section 8.6.1

getter-only auto-implemented properties Section 8.6.1

nameof operator Section 10.5.1

null-conditional operator (?.) Section 13.9.1

when clause for exception filtering Section 13.10

using static directive Section 19.3.1

null conditional operator (?[]) Section 19.6

collection initializers for any collection with
an Add extension method

Section 19.7

index initializers Section 19.7

Fig. 1 | C# 6 new language features.

http://facebook.com/DeitelFan
http://linkedin.com/company/deitel-&-associates
http://youtube.com/DeitelTV
http://twitter.com/Deitel
http://instagram.com/DeitelFan
http://google.com/+DeitelFan
http://www.deitel.com/books/CSharp6FP
http://www.deitel.com/newsletter/subscribe.html

 A Tour of the Book xxiii

A Tour of the Book
Here’s a quick walkthrough of the book’s key features.

Introduction to Visual C# and Visual Studio 2015 Community Edition
The discussions in

• Chapter 1, Introduction

• Chapter 2, Introduction to Visual Studio and Visual Programming

introduce the C# programming language, Microsoft’s .NET platform and Visual Pro-
gramming. The vast majority of the book’s examples will run on Windows 7, 8 and 10
using the Visual Studio 2015 Community edition with which we test-drive a Painter app in
Section 1.7. Chapter 1 briefly reviews object-oriented programming terminology and
concepts on which the rest of the book depends.

Introduction to C# Fundamentals
The discussions in

• Chapter 3, Introduction to C# App Programming

• Chapter 4, Introduction to Classes, Objects, Methods and strings

• Chapter 5, Control Statements: Part 1

• Chapter 6, Control Statements: Part 2

• Chapter 7, Methods: A Deeper Look

• Chapter 8, Arrays; Introduction to Exception Handling

present rich coverage of C# programming fundamentals (data types, classes, objects, oper-
ators, control statements, methods and arrays) through a series of object-oriented pro-
gramming case studies. Chapter 8 briefly introduces exception handling with an example
that demonstrates attempting to access an element outside an array’s bounds.

Object-Oriented Programming: A Deeper Look
The discussions in

• Chapter 9, Introduction to LINQ and the List Collection

• Chapter 10, Classes and Objects: A Deeper Look

• Chapter 11, Object-Oriented Programming: Inheritance

• Chapter 12, OOP: Polymorphism and Interfaces

• Chapter 13, Exception Handling: A Deeper Look

provide a deeper look at object-oriented programming, including classes, objects, inheri-
tance, polymorphism, interfaces and exception handling. An online two-chapter case
study on designing and implementing the object-oriented software for a simple ATM is
described later in this preface.

Chapter 9 introduces Microsoft’s Language Integrated Query (LINQ) technology,
which provides a uniform syntax for manipulating data from various data sources, such as
arrays, collections and, as you’ll see in later chapters, databases and XML. Chapter 9 is
intentionally simple and brief to encourage readers to begin using LINQ technology early.

xxiv Preface

Section 9.4 introduces the List collection. Later in the book, we take a deeper look at
LINQ, using LINQ to Entities (for querying databases) and LINQ to XML.

Windows Forms Graphical User Interfaces (GUIs)
The discussions in

• Chapter 14, Graphical User Interfaces with Windows Forms: Part 1

• Chapter 15, Graphical User Interfaces with Windows Forms: Part 2

present a detailed introduction to building GUIs using Windows Forms. We also use Win-
dows Forms GUIs in several later chapters.

Strings and Files
The discussions in

• Chapter 16, Strings and Characters: A Deeper Look

• Chapter 17, Files and Streams

investigate strings in more detail, and introduce text-file processing and object-serializa-
tion for inputting and outputting entire objects.

Generics and Generic Collections
The discussions in

• Chapter 18, Generics

• Chapter 19, Generic Collections; Functional Programming with LINQ/PLINQ

introduce generics and generic collections. Chapter 18 introduces C# generics and
demonstrates how to create type-safe generic methods and a type-safe generic class. Rather
than “reinventing the wheel,” most C# programmers should use .NET’s built-in search-
ing, sorting and generic collections (prepackaged data structures) capabilities, which are
discussed in Chapter 19.

Functional Programming with LINQ, PLINQ, Lambdas, Delegates and Immutability
In addition to generic collections, Chapter 19 now introduces functional programming,
showing how to use it with LINQ to Objects to write code more concisely and with fewer
bugs than programs written using previous techniques. In Section 19.12, with one addi-
tional method call, we demonstrate with timing examples how PLINQ (Parallel LINQ)
can improve LINQ to Objects performance substantially on multicore systems.

Database with LINQ to Entities and SQL Server
The discussions in

• Chapter 20, Databases and LINQ

introduce database programming with the ADO.NET Entity Framework, LINQ to Enti-
ties and Microsoft’s free version of SQL Server that’s installed with the Visual Studio 2015
Community edition.

Asynchronous Programming
The discussions in

 Online Bonus Content xxv

• Chapter 21, Asynchronous Programming with async and await

show how to take advantage of multicore architectures by writing applications that can
process tasks asynchronously, which can improve app performance and GUI responsive-
ness in apps with long-running or compute-intensive tasks. The async modifier and await
operator greatly simplify asynchronous programming, reduce errors and enable your apps
to take advantage of the processing power in today’s multicore computers, smartphones
and tablets. In this edition, we added a case study that uses the Task Parallel Library (TPL),
async and await in a GUI app—we keep a progress bar moving along in the GUI thread
in parallel with a lengthy, compute-intensive calculation in another thread.

Online Bonus Content
Figure 2 shows online bonus content available with the publication of the book.

Accessing the Bonus Content
To access these materials—and for downloads, updates and corrections as they become
available—register your copy of C# 6 for Programmers, 6/e at informit.com. To register:

1. Go to

2. Log in or create an account.

3. Enter the product ISBN—9780134596327—and click Submit.

Once you’ve registered your book, you’ll find any available bonus content under Regis-
tered Products. Here’s a quick walkthrough of the initial online content.

XML and LINQ to XML
The Extensible Markup Language (XML), introduced briefly in Chapter 21, is pervasive
in the software-development industry, e-business and throughout the .NET platform.
XML is required to understand XAML—a Microsoft XML vocabulary that’s used to de-
scribe graphical user interfaces, graphics and multimedia for Windows Presentation Foun-
dation (WPF) apps, Universal Windows Platform (UWP) apps and Windows 10 Mobile

Online topics

XML and LINQ to XML

Windows Presentation Foundation (WPF) GUI and XAML

Windows Presentation Foundation (WPF) Graphics and Multimedia

ATM Case Study, Part 1: Object-Oriented Design with the UML

ATM Case Study, Part 2: Implementing an OO Design in C#

Appendix: Using the Visual Studio Debugger

Fig. 2 | Online topics on the C# 6 for Programmers, 6/e Companion Website.

 http://informit.com/register

http://informit.com/register

xxvi Preface

apps. We present XML in more depth, then discuss LINQ to XML, which allows you to
query XML content using LINQ syntax.

Windows Presentation Foundation (WPF) GUI, Graphics and Multimedia
Windows Presentation Foundation (WPF)—created after Windows Forms and before
UWP—is another Microsoft technology for building robust GUI, graphics and multime-
dia desktop apps. We discuss WPF in the context of a painting app, a text editor, a color
chooser, a book-cover viewer, a television video player, various animations, and speech
synthesis and recognition apps.

We featured WPF in the previous edition of this book. Our plans now are to move
on to UWP for creating apps that can run on desktop, mobile and other Windows devices.
For this reason, the WPF chapters are provided as is from the previous edition—we’ll no
longer evolve this material. Many professionals are still actively using Windows Forms and
WPF.

Case Study: Using the UML to Develop an Object-Oriented Design and C# Implemen-
tation of the Software for an ATM (Automated Teller Machine)
The UML™ (Unified Modeling Language™) is a popular graphical language for visually
modeling object-oriented systems. We introduce the UML in the early chapters. We then
provide an online object-oriented design case study in which we use the UML to design and
implement the software for a simple ATM. We analyze a typical requirements document that
specifies the details of the system to be built, i.e., what the system is supposed to do. We then
design the system, specifying how it should work—in particular, we

• determine the classes needed to implement that system,

• determine the attributes the classes need to have,

• determine the behaviors the classes’ methods need to exhibit and

• specify how the classes must interact with one another to meet the system require-
ments.

From the design, we then produce a complete working C# implementation. Students in
our professional courses often report a “light bulb moment”—the case study helps them
“tie it all together” and truly understand object orientation.

Future Online Bonus Content
Periodically, we may make additional bonus chapters and appendices available at

to registered users of the book. Check this website and/or write to us at deitel@deitel.com
for the status of this content. These may cover:

• Universal Windows Platform (UWP) GUI, graphics and multimedia

• ASP.NET web app development

• Web Services

• Microsoft Azure™ Cloud Computing

http://www.informit.com/title/9780134596327

http://www.informit.com/title/9780134596327

 Notes About the Presentation xxvii

Universal Windows Platform (UWP) for Desktop and Mobile Apps
The Universal Windows Platform (UWP) is designed to provide a common platform and
user experience across all Windows devices, including personal computers, smartphones,
tablets, Xbox and even Microsoft’s new HoloLens virtual reality and augmented reality ho-
lographic headset—all using nearly identical code.2

REST Web Services
Web services enable you to package app functionality in a manner that turns the web into
a library of reusable services. We used a Flickr REST-based web service in Chapter 21.

Microsoft Azure™ Cloud Computing
Microsoft Azure’s web services enable you to develop, manage and distribute your apps in
“the cloud.”

Notes About the Presentation
C# 6 for Programmers, 6/e contains a rich collection of examples. We concentrate on build-
ing well-engineered, high performance software and stress program clarity.

Syntax Shading. For readability, we syntax shade the code, similar to the way Visual Stu-
dio colors the code. Our syntax-shading conventions are:

Code Highlighting. We emphasize key code segments by placing them in gray rectangles.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easy reference. We show on-screen components in the
bold Helvetica font (for example, the File menu) and Visual C# program text in the Lucida
font (for example, int count = 5;). We use italics for emphasis.

Objectives. The chapter objectives preview the topics covered in the chapter.

Programming Tips. We include programming tips that focus on important aspects of
program development. These tips and practices represent the best we’ve gleaned from a
combined nine decades of programming, professional training and college teaching expe-
rience.

2. As of Summer 2016, Windows Forms, WPF and UWP apps all can be posted for distribution, either
free or for sale, via the Windows Store. See http://bit.ly/DesktopToUWP for more information.

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears in black

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

http://bit.ly/DesktopToUWP

xxviii Preface

Index. We’ve included an extensive index for reference. Defining occurrences of key terms
in the index are highlighted with a bold page number.

Obtaining the Software Used in C# 6 for Programmers, 6/e
We wrote the book’s code examples in C# 6 for Programmers, 6/e using Microsoft’s free
Visual Studio 2015 Community edition. See the Before You Begin section that follows
this preface for download and installation instructions.

Microsoft DreamSpark™
Microsoft provides many of its professional developer tools to students for free via a pro-
gram called DreamSpark (http://www.dreamspark.com). If you’re a student using this
book in a college course, see the website for details on verifying your status so you take
advantage of this program.

Acknowledgments
We’d like to thank Barbara Deitel of Deitel & Associates, Inc. She painstakingly re-
searched the latest versions of Visual C#, Visual Studio, .NET and other key technologies.
We’d also like to acknowledge Frank McCown, Ph.D., Associate Professor of Computer
Science, Harding University for his suggestion to include an example that used a
ProgressBar with async and await in Chapter 21—so we ported to C# a similar example
from our book Java for Programmers, 3/e.

We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson. We appreciate the extraordinary efforts and mentorship of our friend and pro-
fessional colleague, Mark L. Taub, Editor-in-Chief of the Pearson IT Professional Group.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of Visual C# that prevent bugs from getting into programs.

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observations
These observations help you design attractive, user-friendly graphical user interfaces that
conform to industry norms.

http://www.dreamspark.com

 Reviewers xxix

Kristy Alaura did an extraordinary job recruiting the book’s reviewers and managing the
review process. Julie Nahil did a wonderful job bringing the book to publication and
Chuti Prasertsith worked his magic on the cover design.

Reviewers
The book was scrutinized by industry C# experts and academics teaching C# courses.
They provided countless suggestions for improving the presentation. Any remaining flaws
in the book are our own.

Sixth Edition Reviewers: Lucian Wischik (Microsoft Visual C# Team), Octavio Her-
nandez (Microsoft Certified Solutions Developer, Principal Software Engineer at
Advanced Bionics), José Antonio González Seco (Parliament of Andalusia, Spain), Bradley
Sward (College of Dupage) and Qian Chen (Department of Engineering Technology:
Computer Science Technology Program, Savannah State University).

Other recent edition reviewers: Douglas B. Bock (MCSD.NET, Southern Illinois
University Edwardsville), Dan Crevier (Microsoft), Shay Friedman (Microsoft Visual C#
MVP), Amit K. Ghosh (University of Texas at El Paso), Marcelo Guerra Hahn (Micro-
soft), Kim Hamilton (Software Design Engineer at Microsoft and co-author of Learning
UML 2.0), Huanhui Hu (Microsoft Corporation), Stephen Hustedde (South Mountain
College), James Edward Keysor (Florida Institute of Technology), Narges Kasiri (Okla-
homa State University), Helena Kotas (Microsoft), Charles Liu (University of Texas at San
Antonio), Chris Lovett (Software Architect at Microsoft), Bashar Lulu (INETA Country
Leader, Arabian Gulf), John McIlhinney (Spatial Intelligence; Microsoft MVP Visual
Developer, Visual Basic), Ged Mead (Microsoft Visual Basic MVP, DevCity.net), Anand
Mukundan (Architect, Polaris Software Lab Ltd.), Dr. Hamid R. Nemati (The University
of North Carolina at Greensboro), Timothy Ng (Microsoft), Akira Onishi (Microsoft),
Jeffrey P. Scott (Blackhawk Technical College), Joe Stagner (Senior Program Manager,
Developer Tools & Platforms, Microsoft), Erick Thompson (Microsoft), Jesús Ubaldo
Quevedo-Torrero (University of Wisconsin–Parkside, Department of Computer Sci-
ence), Shawn Weisfeld (Microsoft MVP and President and Founder of UserGroup.tv) and
Zijiang Yang (Western Michigan University).

As you read the book, we’d sincerely appreciate your comments, criticisms, correc-
tions and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. It was fun writing C# 6 for Programmers, 6/e—we hope you enjoy
reading it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., has over 35
years of experience in computing. He is a graduate of MIT, where he studied Information
Technology. Through Deitel & Associates, Inc., he has delivered hundreds of corporate
programming training courses worldwide to clients, including Cisco, IBM, Boeing, Sie-
mens, Sun Microsystems (now Oracle), Dell, Fidelity, NASA at the Kennedy Space Cen-

deitel@deitel.com

xxx Preface

ter, the National Severe Storm Laboratory, NOAA (National Oceanic and Atmospheric
Administration), White Sands Missile Range, Rogue Wave Software, SunGard, Nortel
Networks, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey
Deitel, are the world’s best-selling programming-language professional book/textbook/
video authors.

Paul was named a Microsoft® Most Valuable Pro-
fessional (MVP) for C# in 2012–2014. According to
Microsoft, “the Microsoft MVP Award is an annual
award that recognizes exceptional technology commu-
nity leaders worldwide who actively share their high
quality, real-world expertise with users and Micro-
soft.” He also holds the Java Certified Programmer
and Java Certified Developer designations and is an Oracle Java Champion.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 55 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before they spun off Com-
puter Science programs. He has extensive college teaching experience, including earning
tenure and serving as the Chairman of the Computer Science Department at Boston Col-
lege before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’
publications have earned international recognition, with translations published in Japa-
nese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional
Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hun-
dreds of programming courses to corporate, government, military and academic clients.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer
programming languages, object technology, Internet and web software technology, and
Android and iOS app development. The company’s clients include many of the world’s
largest corporations, government agencies, branches of the military and academic
institutions. The company offers instructor-led training courses delivered at client sites
worldwide on major programming languages and platforms, including C#®, C++, C,
Java™, Android app development, iOS app development, Swift™, Visual Basic® and In-
ternet and web programming.

Through its 40-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., creates leading-edge programming professional books, college textbooks,
LiveLessons video products, e-books and REVEL™ interactive multimedia courses with
integrated labs and assessment (http://revel.pearson.com). Deitel & Associates, Inc.
and the authors can be reached at:

To learn more about Deitel’s corporate training curriculum, visit

deitel@deitel.com

http://www.deitel.com/training

C# MVP 2012–2014

http://revel.pearson.com
http://www.deitel.com/training

 About Deitel & Associates, Inc. xxxi

To request a proposal for worldwide on-site, instructor-led training at your organization,
send an e-mail to deitel@deitel.com.

Individuals wishing to purchase Deitel books can do so via

Individuals wishing to purchase Deitel LiveLessons video training can do so at:

Deitel books and LiveLessons videos are generally available electronically to Safari Books
Online subscribers at:

You can get a free 10-day Safari Books Online trial at:

Bulk orders by corporations, the government, the military and academic institutions
should be placed directly with Pearson. For more information, visit

http://bit.ly/DeitelOnAmazon

http://bit.ly/DeitelOnInformit

http://SafariBooksOnline.com

https://www.safaribooksonline.com/register/

http://www.informit.com/store/sales.aspx

http://bit.ly/DeitelOnAmazon
http://bit.ly/DeitelOnInformit
http://SafariBooksOnline.com
https://www.safaribooksonline.com/register/http://www.informit.com/store/sales.aspx
https://www.safaribooksonline.com/register/http://www.informit.com/store/sales.aspx

Please read this section before using the book to ensure that your computer is set up properly.

Font and Naming Conventions
We use fonts to distinguish between features, such as menu names, menu items, and other
elements that appear in the program-development environment. Our convention is

• to emphasize Visual Studio features in a sans-serif bold font (e.g., Properties win-
dow) and

• to emphasize program text in a fixed-width sans-serif font (e.g., bool x = true).

Visual Studio 2015 Community Edition
This book uses Windows 10 and the free Microsoft Visual Studio 2015 Community edi-
tion—Visual Studio also can run on various older Windows versions. Ensure that your
system meets Visual Studio 2015 Community edition’s minimum hardware and software
requirements listed at:

Next, download the installer from

then execute it and follow the on-screen instructions to install Visual Studio.
Though we developed the book’s examples on Windows 10, most of the examples will

run on Windows 7 and higher. Most examples without graphical user interfaces (GUIs)
also will run on other C# and .NET implementations—see “If You’re Not Using Micro-
soft Visual C#…” later in this Before You Begin for more information.

Viewing File Extensions
Several screenshots in C# 6 for Programmers, 6/e display file names with file-name exten-
sions (e.g., .txt, .cs, .png, etc.). You may need to adjust your system’s settings to display
file-name extensions. If you’re using Windows 7:

1. Open Windows Explorer.

2. Press the Alt key to display the menu bar, then select Folder Options… from the
Tools menu.

3. In the dialog that appears, select the View tab.

https://www.visualstudio.com/en-us/visual-studio-2015-system-
requirements-vs

https://www.visualstudio.com/products/visual-studio-express-vs

Before You Begin

https://www.visualstudio.com/en-us/visual-studio-2015-system-requirements-vs
https://www.visualstudio.com/en-us/visual-studio-2015-system-requirements-vs
https://www.visualstudio.com/products/visual-studio-express-vs

 Obtaining the Source Code xxxiii

4. In the Advanced settings pane, uncheck the box to the left of the text Hide exten-
sions for known file types.

5. Click OK to apply the setting and close the dialog.

If you’re using Windows 8 or higher:

1. Open File Explorer.

2. Click the View tab.

3. Ensure that the File name extensions checkbox is checked.

Obtaining the Source Code
C# 6 for Programmers, 6/e’s source-code examples are available for download at

Click the Examples link to download the ZIP archive file to your computer—most brows-
ers will save the file into your user account’s Downloads folder. You can extract the ZIP
file’s contents using built-in Windows capabilities, or using a third-party archive-file tool
such as WinZip (www.winzip.com) or 7-zip (www.7-zip.org).

Throughout the book, steps that require you to access our example code on your com-
puter assume that you’ve extracted the examples from the ZIP file and placed them in your
user account’s Documents folder. You can extract them anywhere you like, but if you
choose a different location, you’ll need to update our steps accordingly. To extract the ZIP
file’s contents using the built-in Windows capabilities:

1. Open Windows Explorer (Windows 7) or File Explorer (Windows 8 and higher).

2. Locate the ZIP file on your system, typically in your user account’s Downloads
folder.

3. Right click the ZIP file and select Extract All….

4. In the dialog that appears, navigate to the folder where you’d like to extract the
contents, then click the Extract button.

Configuring Visual Studio for Use with This Book
In this section, you’ll use Visual Studio’s Options dialog to configure several Visual Studio
options. Setting these options is not required, but will make your Visual Studio match
what we show in the book’s Visual Studio screen captures.

Visual Studio Theme
Visual Studio has three color themes—Blue, Dark and Light. We used the Blue theme with
light colored backgrounds to make the book’s screen captures easier to read. To switch
themes:

1. In the Visual Studio Tools menu, select Options… to display the Options dialog.

2. In the left column, select Environment.

3. Select the Color theme you wish to use.

Keep the Options dialog open for the next step.

http://www.deitel.com/books/CSharp6FP

http://www.winzip.com
http://www.7-zip.org
http://www.deitel.com/books/CSharp6FP

xxxiv Before You Begin

Line Numbers
Throughout the book’s discussions, we refer to code in our examples by line number. Many
programmers find it helpful to display line numbers in Visual Studio as well. To do so:

1. Expand the Text Editor node in the Options dialog’s left pane.

2. Select All Languages.

3. In the right pane, check the Line numbers checkbox.

Keep the Options dialog open for the next step.

Tab Size for Code Indents
Microsoft recommends four-space indents in source code, which is the Visual Studio de-
fault. Due to the fixed and limited width of code lines in print, we use three-space in-
dents—this reduces the number of code lines that wrap to a new line, making the code a
bit easier to read. If you wish to use three-space indents:

1. Expand the C# node in the Options dialog’s left pane and select Tabs.

2. Ensure that Insert spaces is selected.

3. Enter 3 for both the Tab size and Indent size fields.

4. Click OK to save your settings.

If You’re Not Using Microsoft Visual C#…
C# can be used on other platforms via two open-source projects managed by the .NET
Foundation (http://www.dotnetfoundation.org)—the Mono Project and .NET Core.

Mono Project
The Mono Project is an open source, cross-platform C# and .NET Framework implemen-
tation that can be installed on Linux, OS X (soon to be renamed as macOS) and Windows.
The code for most of the book’s console (non-GUI) apps will compile and run using the
Mono Project. Mono also supports Windows Forms GUI, which is used in Chapters 14–
15 and several later examples. For more information and to download Mono, visit:

.NET Core

.NET Core is a new cross-platform .NET implementation for Windows, Linux, OS X and
FreeBSD. The code for most of the book’s console (non-GUI) apps will compile and run
using .NET Core. At the time of this writing, a .NET Core version for Windows was avail-
able and versions were still under development for other platforms. For more information
and to download .NET Core, visit:

You’re now ready to get started with C# and the .NET platform using C# 6 for Pro-
grammers, 6/e. We hope you enjoy the book!

http://www.mono-project.com/

https://dotnet.github.io/

http://www.dotnetfoundation.org
http://www.mono-project.com/https://dotnet.github.io/
http://www.mono-project.com/https://dotnet.github.io/

1
Introduction

O b j e c t i v e s
In this chapter you’ll:

■ Understand the history of the Visual C# programming
language and the Windows operating system.

■ Learn what cloud computing with Microsoft Azure is.

■ Review the basics of object technology.

■ Understand the parts that Windows, .NET, Visual Studio
and C# play in the C# ecosystem.

■ Test-drive a Visual C# drawing app.

2 Chapter 1 Introduction

O
u

tl
in

e

1.1 Introduction
Welcome to C#1—a powerful computer-programming language that’s used to build sub-
stantial computer applications. There are billions of personal computers in use and an even
larger number of mobile devices with computers at their core. Since it was released in
2001, C# has been used primarily to build applications for personal computers and sys-
tems that support them. The explosive growth of mobile phones, tablets and other devices
also is creating significant opportunities for programming mobile apps. With this new
sixth edition of C# 6 for Programmers, you’ll be able to use Microsoft’s new Universal Win-
dows Platform (UWP) with Windows 10 to build C# apps for both personal computers
and Windows 10 Mobile devices. With Microsoft’s purchase of Xamarin, you also can de-
velop C# mobile apps for Android devices and for iOS devices, such as iPhones and iPads.

1.2 Object Technology: A Brief Review
C# is an object-oriented programming language. In this section we’ll review the basics of
object technology.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more
precisely—as we’ll see in Chapter 4—the classes objects come from, are essentially reusable
software components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software developers have discovered that using
a modular, object-oriented design-and-implementation approach can make software-
development groups much more productive than was possible with earlier techniques—
object-oriented programs are often easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you

1.1 Introduction
1.2 Object Technology: A Brief Review
1.3 C#

1.3.1 Object-Oriented Programming
1.3.2 Event-Driven Programming
1.3.3 Visual Programming
1.3.4 Generic and Functional Programming
1.3.5 An International Standard
1.3.6 C# on Non-Windows Platforms
1.3.7 Internet and Web Programming
1.3.8 Asynchronous Programming with

async and await

1.4 Microsoft’s .NET
1.4.1 .NET Framework
1.4.2 Common Language Runtime
1.4.3 Platform Independence
1.4.4 Language Interoperability

1.5 Microsoft’s Windows® Operating
System

1.6 Visual Studio Integrated Develop-
ment Environment

1.7 Painter Test-Drive in Visual Studio
Community

1. The name C#, pronounced “C-sharp,” is based on the musical # notation for “sharp” notes.

1.2 Object Technology: A Brief Review 3

can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform the task. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In C#,
we create a program unit called a class to house the set of methods that perform the class’s
tasks. For example, a class that represents a bank account might contain one method to
deposit money to an account and another to withdraw money from an account. A class is
similar in concept to a car’s engineering drawings, which house the design of an accelerator
pedal, steering wheel, and so on.

Making Objects from Classes
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and ef-
fective systems, because existing classes and components often have gone through extensive
testing (to locate problems), debugging (to correct those problems) and performance tuning.
Just as the notion of interchangeable parts was crucial to the Industrial Revolution, reusable
classes are crucial to the software revolution that’s been spurred by object technology.

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

4 Chapter 1 Introduction

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Properties, get Accessors and set Accessors
Attributes are not necessarily accessible directly. The car manufacturer does not want driv-
ers to take apart the car’s engine to observe the amount of gas in its tank. Instead, the driver
can check the fuel gauge on the dashboard. The bank does not want its customers to walk
into the vault to count the amount of money in an account. Instead, the customers talk to
a bank teller or check personalized online bank accounts. Similarly, you do not need to
have access to an object’s instance variables in order to use them. You should use the prop-
erties of an object. Properties contain get accessors for reading the values of variables, and
set accessors for storing values into them.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects created from those
classes—an object’s attributes and methods are intimately related. Objects may commu-
nicate with one another, but they’re normally not allowed to know how other objects are
implemented—implementation details are hidden within the objects themselves. This in-
formation hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C#. How will you create the code for your programs?
Perhaps, like many programmers, you’ll simply turn on your computer and start typing.
This approach may work for small programs (like the ones we present in the early chapters
of the book), but what if you were asked to create a software system to control thousands
of automated teller machines for a major bank? Or suppose you were asked to work on a
team of thousands of software developers building the next generation of the U.S. air traf-
fic control system? For projects so large and complex, you should not simply sit down and
start writing programs.

1.3 C# 5

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C# are object ori-
ented—programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 4
and 5, then use them in our deeper treatment of object-oriented programming through
Chapter 12. In our online ATM Software Engineering Case Study, we present a simple
subset of the UML’s features as we guide you through an object-oriented design and im-
plementation experience.

1.3 C#
In 2000, Microsoft announced the C# programming language. C# has roots in the C, C++
and Java programming languages. It has similar capabilities to Java and is appropriate for
the most demanding app-development tasks, especially for building today’s desktop apps,
large-scale enterprise apps, and web-based, mobile and cloud-based apps.

1.3.1 Object-Oriented Programming
C# is object oriented—we’ve discussed the basics of object technology and we present a rich
treatment of object-oriented programming throughout the book. C# has access to the
powerful .NET Framework Class Library—a vast collection of prebuilt classes that enable
you to develop apps quickly (Fig. 1.1). We’ll say more about .NET in Section 1.4.

Some key capabilities in the .NET Framework Class Library

Database Debugging

Building web apps Multithreading

Graphics File processing

Input/output Security

Computer networking Web communication

Permissions Graphical user interface

Mobile Data structures

String processing Universal Windows Platform GUI

Fig. 1.1 | Some key capabilities in the .NET Framework Class Library.

6 Chapter 1 Introduction

1.3.2 Event-Driven Programming
C# graphical user interfaces (GUIs) are event driven. You can write programs that respond
to user-initiated events such as mouse clicks, keystrokes, timer expirations and touches and
finger swipes—gestures that are widely used on smartphones and tablets.

1.3.3 Visual Programming
Visual Studio enables you to use C# as a visual programming language—in addition to writ-
ing program statements to build portions of your apps, you’ll also use Visual Studio to
drag and drop predefined GUI objects like buttons and textboxes into place on your screen,
and label and resize them. Visual Studio will write much of the GUI code for you.

1.3.4 Generic and Functional Programming
Generic Programming
It’s common to write a program that processes a collection—e.g., a collection of numbers,
a collection of contacts, a collection of videos, etc. Historically, you had to program sepa-
rately to handle each type of collection. With generic programming, you write code that
handles a collection “in the general” and C# handles the specifics for each collection type,
saving you a great deal of work. Chapters 18–19 present generics and generic collections.

Functional Programming
With functional programming, you specify what you want to accomplish in a task, but not
how to accomplish it. For example, with Microsoft’s LINQ—which we introduce in
Chapter 9, then use in many later chapters—you can say, “Here’s a collection of numbers,
give me the sum of its elements.” You do not need to specify the mechanics of walking
through the elements and adding them into a running total one at a time—LINQ handles
all that for you. Functional programming speeds application development and reduces
errors. We take a deeper look at functional programming in Chapter 19.

1.3.5 An International Standard
C# has been standardized through ECMA International:

This enables other implementations of the language besides Microsoft’s Visual C#. At the
time of this writing, the C# standard document—ECMA-334—was still being updated
for C# 6. For information on ECMA-334, visit

Visit the Microsoft download center to find the latest version of Microsoft’s C# 6 specifi-
cation, other documentation and software downloads.

1.3.6 C# on Non-Windows Platforms
Microsoft originally developed C# for Windows development, but it can be used on other
platforms via the Mono Project and .NET Core—both managed by the .NET Foundation

For more information, see the Before You Begin section after the Preface.

http://www.ecma-international.org

http://www.ecma-international.org/publications/standards/Ecma-334.htm

http://www.dotnetfoundation.org/

http://www.ecma-international.org
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.dotnetfoundation.org/

1.4 Microsoft’s .NET 7

1.3.7 Internet and Web Programming
Today’s apps can be written with the aim of communicating among the world’s comput-
ers. As you’ll see, this is the focus of Microsoft’s .NET strategy. Later in the book, you’ll
build web-based apps with C# and Microsoft’s ASP.NET technology.

1.3.8 Asynchronous Programming with async and await
In most programming today, each task in a program must finish executing before the next
task can begin. This is called synchronous programming and is the style we use for most of this
book. C# also allows asynchronous programming in which multiple tasks can be performed at
the same time. Asynchronous programming can help you make your apps more responsive
to user interactions, such as mouse clicks and keystrokes, among many other uses.

Asynchronous programming in early versions of Visual C# was difficult and error prone.
C#’s async and await capabilities simplify asynchronous programming by enabling the
compiler to hide much of the associated complexity from the developer. In Chapter 21, we
provide an introduction to asynchronous programming with async and await.

1.4 Microsoft’s .NET
In 2000, Microsoft announced its .NET initiative (www.microsoft.com/net), a broad vi-
sion for using the Internet and the web in the development, engineering, distribution and
use of software. Rather than forcing you to use a single programming language, .NET per-
mits you to create apps in any .NET-compatible language (such as C#, Visual Basic, Visual
C++ and many others). Part of the initiative includes Microsoft’s ASP.NET technology
for building web-based applications.

1.4.1 .NET Framework
The .NET Framework Class Library provides many capabilities that you’ll use to build
substantial C# apps quickly and easily. It contains thousands of valuable prebuilt classes
that have been tested and tuned to maximize performance. You’ll learn how to create your
own classes, but you should re-use the .NET Framework classes whenever possible to speed
up the software-development process, while enhancing the quality and performance of the
software you develop.

1.4.2 Common Language Runtime
The Common Language Runtime (CLR), another key part of the .NET Framework, ex-
ecutes .NET programs and provides functionality to make them easier to develop and de-
bug. The CLR is a virtual machine (VM)—software that manages the execution of
programs and hides from them the underlying operating system and hardware. The source
code for programs that are executed and managed by the CLR is called managed code. The
CLR provides various services to managed code, such as

• integrating software components written in different .NET languages,

• error handling between such components,

• enhanced security,

• automatic memory management and more.

http://www.microsoft.com/net

8 Chapter 1 Introduction

Unmanaged-code programs do not have access to the CLR’s services, which makes un-
managed code more difficult to write.2 Managed code is compiled into machine-specific
instructions in the following steps:

1. First, the code is compiled into Microsoft Intermediate Language (MSIL). Code
converted into MSIL from other languages and sources can be woven together by
the CLR—this allows programmers to work in their preferred .NET program-
ming language. The MSIL for an app’s components is placed into the app’s exe-
cutable file—the file that causes the computer to perform the app’s tasks.

2. When the app executes, another compiler (known as the just-in-time compiler
or JIT compiler) in the CLR translates the MSIL in the executable file into ma-
chine-language code (for a particular platform).

3. The machine-language code executes on that platform.

1.4.3 Platform Independence
If the .NET Framework exists and is installed for a platform, that platform can run any
.NET program. The ability of a program to run without modification across multiple plat-
forms is known as platform independence. Code written once can be used on another type
of computer without modification, saving time and money. In addition, software can tar-
get a wider audience. Previously, companies had to decide whether converting their pro-
grams to different platforms—a process called porting—was worth the cost. With .NET,
porting programs is no longer an issue, at least once .NET itself has been made available
on the platforms.

1.4.4 Language Interoperability
The .NET Framework provides a high level of language interoperability. Because soft-
ware components written in different .NET languages (such as C# and Visual Basic) are
all compiled into MSIL, the components can be combined to create a single unified pro-
gram. Thus, MSIL allows the .NET Framework to be language independent.

The .NET Framework Class Library can be used by any .NET language. The latest
release of .NET includes .NET 4.6 and .NET Core:

• NET 4.6 introduces many improvements and new features, including ASP.NET
5 for web-based applications, improved support for today’s high-resolution 4K
screens and more.

• .NET Core is the cross-platform subset of .NET for Windows, Linux, OS X and
FreeBSD.

1.5 Microsoft’s Windows® Operating System
Microsoft’s Windows is the most widely personal-computer, desktop operating system
worldwide. Operating systems are software systems that make using computers more con-
venient for users, developers and system administrators. They provide services that allow
each app to execute safely, efficiently and concurrently (i.e., in parallel) with other apps.

2. http://msdn.microsoft.com/library/8bs2ecf4.

http://msdn.microsoft.com/library/8bs2ecf4

1.5 Microsoft’s Windows® Operating System 9

Other popular desktop operating systems include macOS (formerly OS X) and Linux.
Mobile operating systems used in smartphones and tablets include Microsoft’s Windows 10
Mobile, Google’s Android and Apple’s iOS (for iPhone, iPad and iPod Touch devices).
Figure 1.2 presents the evolution of the Windows operating system.

Version Description

Windows in the 1990s In the mid-1980s, Microsoft developed the Windows operating
system based on a graphical user interface with buttons, textboxes,
menus and other graphical elements. The various versions released
throughout the 1990s were intended for personal computing.
Microsoft entered the corporate operating systems market with the
1993 release of Windows NT.

Windows XP and
Windows Vista

Windows XP was released in 2001 and combined Microsoft’s cor-
porate and consumer operating-system lines. At the time of this
writing, it still holds more than 10% of the operating-systems
market (https://www.netmarketshare.com/operating-system-
market-share.aspx). Windows Vista, released in 2007, offered the
attractive new Aero user interface, many powerful enhancements
and new apps and enhanced security. But Vista never caught on.

Windows 7 Windows 7 is currently the world’s most widely used desktop oper-
ating system with over 47% of the operating-systems market
(https://www.netmarketshare.com/operating-system-market-
share.aspx). Windows added enhancements to the Aero user
interface, faster startup times, further refinement of Vista’s security
features, touch-screen with multitouch support, and more.

Windows 8 for
Desktops and
Tablets

Windows 8, released in 2012, provided a similar platform (the
underlying system on which apps run) and user experience across a
wide range of devices including personal computers, smartphones,
tablets and the Xbox Live online game service. Its new look-and-
feel featured a Start screen with tiles representing each app, similar
to that of Windows Phone (now Windows 10 Mobile)—Micro-
soft’s smartphone operating system. Windows 8 featured multi-
touch support for touchpads and touchscreen devices, enhanced
security features and more.

Windows 8 UI
(User Interface)

Windows 8 UI (previously called “Metro”) introduced a clean
look-and-feel with minimal distractions to the user. Windows 8
apps featured a chromeless window with no borders, title bars and
menus. These elements were hidden, allowing apps to fill the entire
screen—particularly helpful on smaller screens such as tablets and
smartphones. The interface elements were displayed in the app bar
when the user swiped the top or bottom of the screen by holding
down the mouse button, moving the mouse in the swipe direction
and releasing the mouse button; or using a finger swipe on a touch-
screen device.

Fig. 1.2 | The evolution of the Windows operating system. (Part 1 of 2.)

https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx

10 Chapter 1 Introduction

Windows Store
You can sell apps or offer them for free in the Windows Store. At the time of this writing,
the fee to become a registered developer is $19 for individuals and $99 for companies. Mi-
crosoft retains 30% of the purchase price (more in some markets). See the App Developer
Agreement for more information:

The Windows Store offers several business models for monetizing your app. You can
charge full price for your app before download, with prices starting at $1.49. You also can
offer a time-limited trial or feature-limited trial that allows users to try the app before pur-
chasing the full version, sell virtual goods (such as additional app features) using in-app pur-
chases and more. To learn more about the Windows Store and monetizing your apps, visit

1.6 Visual Studio Integrated Development Environment
C# programs can be created using Microsoft’s Visual Studio—a collection of software tools
called an Integrated Development Environment (IDE). The Visual Studio Community
edition IDE enables you to write, run, test and debug C# programs quickly and conveniently.
It also supports Microsoft’s Visual Basic, Visual C++ and F# programming languages and
many more. Most of this book’s examples were built using Visual Studio Community, which
runs on Windows 7, 8 and 10. A few of the book’s examples require Windows 10.

1.7 Painter Test-Drive in Visual Studio Community
You’ll now use Visual Studio Community to “test-drive” an existing app that enables you
to draw on the screen using the mouse. The Painter app allows you to choose among several
brush sizes and colors. The elements and functionality you see in this app are typical of
what you’ll learn to program in this text. The following steps walk you through test-driv-
ing the app. For this test drive, we assume that you placed the book’s examples in your
user account’s Documents folder in a subfolder named examples.

Windows 10 and the
Universal Windows
Platform

Windows 10, released in 2015, is the current version of Windows
and currently holds a 15% (and growing) share of the operating-
systems market (https://www.netmarketshare.com/operating-
system-market-share.aspx). In addition to many user-interface
and other updates, Windows 10 introduced the Universal Win-
dows Platform (UWP), which is designed to provide a common
platform (the underlying system on which apps run) and user
experience across all Windows devices including personal comput-
ers, smartphones, tablets, Xbox and even Microsoft’s new
HoloLens augmented reality holographic headset—all using nearly
identical code.

https://msdn.microsoft.com/en-us/library/windows/apps/hh694058.aspx

https://msdn.microsoft.com/windows/uwp/monetize/index

Version Description

Fig. 1.2 | The evolution of the Windows operating system. (Part 2 of 2.)

https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh694058.aspx
https://msdn.microsoft.com/windows/uwp/monetize/index

1.7 Painter Test-Drive in Visual Studio Community 11

Step 1: Checking Your Setup
Confirm that you’ve set up your computer and the software properly by reading the book’s
Before You Begin section that follows the Preface.

Step 2: Locating the Painter App’s Directory
Open a File Explorer (Windows 8 and 10) or Windows Explorer (Windows 7) window and
navigate to

Double click the Painter folder to view its contents (Fig. 1.3), then double click the
Painter.sln file to open the app’s solution in Visual Studio. An app’s solution contains
all of the app’s code files, supporting files (such as images, videos, data files, etc.) and config-
uration information. We’ll discuss the contents of a solution in more detail in the next
chapter.

Depending on your system configuration, File Explorer or Windows Explorer might dis-
play Painter.sln simply as Painter, without the filename extension .sln. To display the
filename extensions in Windows 8 and higher:

1. Open File Explorer.

2. Click the View tab, then ensure that the File name extensions checkbox is checked.

To display them in Windows 7:

1. Open Windows Explorer.

2. Press Alt to display the menu bar, then select Folder Options… from Windows Ex-

plorer’s Tools menu.

3. In the dialog that appears, select the View tab.

4. In the Advanced settings: pane, uncheck the box to the left of the text Hide exten-

sions for known file types. [Note: If this item is already unchecked, no action needs
to be taken.]

5. Click OK to apply the setting and close the dialog.

C:\Users\yourUserName\Documents\examples\ch01

Fig. 1.3 | Contents of C:\examples\ch01\Painter.

Double click Painter.sln to
open the project in Visual Studio

12 Chapter 1 Introduction

Step 3: Running the Painter App
To see the running Painter app, click the Start button (Fig. 1.4)

or press the F5 key.

Figure 1.5 shows the running app and labels several of the app’s graphical elements—
called controls. These include GroupBoxes, RadioButtons, Buttons and a Panel. These con-
trols and many others are discussed throughout the text. The app allows you to draw with
a Red, Blue, Green or Black brush of Small, Medium or Large size. As you drag the mouse on
the white Panel, the app draws circles of the specified color and size at the mouse pointer’s
current position. The slower you drag the mouse, the closer the circles will be. Thus, drag-
ging slowly draws a continuous line (as in Fig. 1.6) and dragging quickly draws individual
circles with space in between. You also can Undo your previous operation or Clear the
drawing to start from scratch by pressing the Buttons below the RadioButtons in the GUI.
By using existing controls—which are objects—you can create powerful apps much faster
than if you had to write all the code yourself. This is a key benefit of software reuse.

The brush’s properties, selected in the RadioButtons labeled Black and Medium, are
default settings—the initial settings you see when you first run the app. Programmers
include default settings to provide reasonable choices that the app will use if the user does
not change the settings. Default settings also provide visual cues for users to choose their
own settings. Now you’ll choose your own settings as a user of this app.

Step 4: Changing the Brush Color
Click the RadioButton labeled Red to change the brush color, then click the RadioButton
labeled Small to change the brush size. Position the mouse over the white Panel, then drag
the mouse to draw with the brush. Draw flower petals, as shown in Fig. 1.6.

Fig. 1.4 | Running the Painter app.

Press the Start button to begin executing the Painter app

1.7 Painter Test-Drive in Visual Studio Community 13

Step 5: Changing the Brush Color and Size
Click the Green RadioButton to change the brush color. Then, click the Large RadioBut-
ton to change the brush size. Draw grass and a flower stem, as shown in Fig. 1.7.

Step 6: Finishing the Drawing
Click the Blue and Medium RadioButtons. Draw raindrops, as shown in Fig. 1.8, to com-
plete the drawing.

Step 7: Stopping the App
When you run an app from Visual Studio, you can terminate it by clicking the stop button

on the Visual Studio toolbar or by clicking the close box

i

Fig. 1.5 | Painter app running in Windows 10.

Fig. 1.6 | Drawing flower petals with a small red brush.

GroupBoxes

RadioButtons

Panel

Buttons

14 Chapter 1 Introduction

on the running app’s window.
Now that you’ve completed the test-drive, you’re ready to begin developing C# apps.

In Chapter 2, Introduction to Visual Studio and Visual Programming, you’ll use Visual
Studio to create your first C# program using visual programming techniques. As you’ll see,
Visual Studio will generate for you the code that builds the app’s GUI. In Chapter 3,
Introduction to C# App Programming, you’ll begin writing C# programs containing con-
ventional program code that you write.

Fig. 1.7 | Drawing the flower stem and grass with a large green brush.

Fig. 1.8 | Drawing rain drops with a medium blue brush.

7
Methods: A Deeper Look

O b j e c t i v e s
In this chapter you’ll:
■ See that static methods and variables are associated with

classes rather than objects.
■ Use common Math class functions.
■ Learn C#’s argument promotion rules for when argument

types do not match parameter types exactly.
■ Get a high-level overview of various namespaces from the

.NET Framework Class Library.
■ Use random-number generation to implement game-

playing apps.
■ Understand how the visibility of identifiers is limited to

specific regions of programs.
■ See how the method call and return mechanism is

supported by the method-call stack.
■ Create overloaded methods.
■ Use optional and named parameters.
■ Use recursive methods.
■ Understand what value types and reference types are.
■ Pass method arguments by value and by reference.

7.1 Introduction 151

O
u

tl
in

e

7.1 Introduction
In this chapter, we take a deeper look at methods. We’ll discuss the difference between non-
static and static methods. You’ll see that the Math class in the .NET Framework Class
Library provides many static methods to perform mathematical calculations. We’ll also
discuss static variables (known as class variables) and why method Main is declared static.

You’ll declare a method with multiple parameters and use operator + to perform
string concatenations. We’ll discuss C#’s argument promotion rules for implicitly con-

7.1 Introduction
7.2 Packaging Code in C#
7.3 static Methods, static Variables

and Class Math
7.3.1 Math Class Methods
7.3.2 Math Class Constants PI and E
7.3.3 Why Is Main Declared static?
7.3.4 Additional Comments About Main

7.4 Methods with Multiple Parameters
7.4.1 Keyword static
7.4.2 Method Maximum
7.4.3 Assembling strings with Concatena-

tion
7.4.4 Breaking Apart Large string Literals
7.4.5 When to Declare Variables as Fields
7.4.6 Implementing Method Maximum by Re-

using Method Math.Max
7.5 Notes on Using Methods
7.6 Argument Promotion and Casting

7.6.1 Promotion Rules
7.6.2 Sometimes Explicit Casts Are Required

7.7 The .NET Framework Class Library
7.8 Case Study: Random-Number Genera-

tion
7.8.1 Creating an Object of Type Random
7.8.2 Generating a Random Integer
7.8.3 Scaling the Random-Number Range
7.8.4 Shifting Random-Number Range
7.8.5 Combining Shifting and Scaling
7.8.6 Rolling a Six-Sided Die
7.8.7 Scaling and Shifting Random Numbers
7.8.8 Repeatability for Testing and Debugging

7.9 Case Study: A Game of Chance; Intro-
ducing Enumerations

7.9.1 Method RollDice
7.9.2 Method Main’s Local Variables

7.9.3 enum Type Status
7.9.4 The First Roll
7.9.5 enum Type DiceNames
7.9.6 Underlying Type of an enum
7.9.7 Comparing Integers and enum Con-

stants
7.10 Scope of Declarations
7.11 Method-Call Stack and Activation

Records
7.11.1 Method-Call Stack
7.11.2 Stack Frames
7.11.3 Local Variables and Stack Frames
7.11.4 Stack Overflow
7.11.5 Method-Call Stack in Action

7.12 Method Overloading
7.12.1 Declaring Overloaded Methods
7.12.2 Distinguishing Between Overload-

ed Methods
7.12.3 Return Types of Overloaded Meth-

ods
7.13 Optional Parameters
7.14 Named Parameters
7.15 C# 6 Expression-Bodied Methods

and Properties
7.16 Recursion

7.16.1 Base Cases and Recursive Calls
7.16.2 Recursive Factorial Calculations
7.16.3 Implementing Factorial Recursively

7.17 Value Types vs. Reference Types
7.18 Passing Arguments By Value and

By Reference
7.18.1 ref and out Parameters
7.18.2 Demonstrating ref, out and Value

Parameters
7.19 Wrap-Up

152 Chapter 7 Methods: A Deeper Look

verting simple-type values to other types and when these rules are applied by the compiler.
We’ll also present several commonly used Framework Class Library namespaces.

We’ll take a brief, and hopefully entertaining, diversion into simulation techniques
with random-number generation and develop a version of a popular casino dice game that
uses most of the programming techniques you’ve learned so far. You’ll declare named con-
stants with the const keyword and with enum types. We’ll then present C#’s scope rules,
which determine where identifiers can be referenced in an app.

We’ll discuss how the method-call stack enables C# to keep track of which method is
currently executing, how local variables of methods are maintained in memory and how a
method knows where to return after it completes execution. You’ll overload methods in a
class by providing methods with the same name but different numbers and/or types of
parameters, and learn how to use optional and named parameters.

We’ll introduce C# 6’s expression-bodied methods, which provide a concise notation
for methods that simply return a value to their caller. We’ll also use this expression-bodied
notation for a read-only property’s get accessor.

We’ll discuss how recursive methods call themselves, breaking larger problems into
smaller subproblems until eventually the original problem is solved. Finally, we’ll provide
more insight into how value-type and reference-type arguments are passed to methods.

7.2 Packaging Code in C#
So far, we’ve used properties, methods and classes to package code. We’ll present addition-
al packaging mechanisms in later chapters. C# apps are written by combining your prop-
erties, methods and classes with predefined properties, methods and classes available in the
.NET Framework Class Library and in other class libraries. Related classes are often
grouped into namespaces and compiled into class libraries so that they can be reused in
other apps. You’ll learn how to create your own namespaces and class libraries in
Chapter 15. The Framework Class Library provides many predefined classes that contain
methods for performing common mathematical calculations, string manipulations, char-
acter manipulations, input/output operations, graphical user interfaces, graphics, multi-
media, printing, file processing, database operations, networking operations, error
checking, web-app development, accessibility (for people with disabilities) and more.

7.3 static Methods, static Variables and Class Math
Although most methods are called to operate on the data of specific objects, this is not al-
ways the case. Sometimes a method performs a task that does not depend on the data of any
object (other than the method’s arguments). Such a method applies to the class in which
it’s declared as a whole and is known as a static method.

Software Engineering Observation 7.1
Don’t try to “reinvent the wheel.” When possible, reuse Framework Class Library classes
and methods (https://msdn.microsoft.com/library/mt472912). This reduces app
development time and errors, contributes to good performance and often enhances security.

https://msdn.microsoft.com/library/mt472912

7.3 static Methods, static Variables and Class Math 153

It’s common for a class to contain a group of static methods to perform common
tasks. For example, recall that we used static method Pow of class Math to raise a value to
a power in Fig. 6.6. To declare a method as static, place the keyword static before the
return type in the method’s declaration. You call any static method by specifying the
name of the class in which the method is declared, followed by the member-access operator
(.) and the method name, as in

7.3.1 Math Class Methods
Class Math (from the System namespace) provides a collection of static methods that en-
able you to perform common mathematical calculations. For example, you can calculate
the square root of 900.0 with the static method call

The expression Math.Sqrt(900.0) evaluates to 30.0. Method Sqrt takes an argument of
type double and returns a result of type double. The following statement displays in the
console window the value of the preceding method call:

Here, the value that Sqrt returns becomes the argument to WriteLine. We did not create
a Math object before calling Sqrt, nor did we create a Console object before calling Write-
Line. Also, all of Math’s methods are static—therefore, each is called by preceding the
name of the method with the class name Math and the member-access operator (.).

Method arguments may be constants, variables or expressions. If c = 13.0, d = 3.0 and
f = 4.0, then the statement

calculates and displays the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0.
Figure 7.1 summarizes several Math class methods. In the figure, x and y are of type double.

ClassName.MethodName(arguments)

double value = Math.Sqrt(900.0);

Console.WriteLine(Math.Sqrt(900.0));

Console.WriteLine(Math.Sqrt(c + d * f));

Method Description Example

Abs(x) absolute value of x Abs(23.7) is 23.7
Abs(0.0) is 0.0
Abs(-23.7) is 23.7

Ceiling(x) rounds x to the smallest integer not
less than x

Ceiling(9.2) is 10.0
Ceiling(-9.8) is -9.0

Floor(x) rounds x to the largest integer not
greater than x

Floor(9.2) is 9.0
Floor(-9.8) is -10.0

Cos(x) trigonometric cosine of x (x in radians) Cos(0.0) is 1.0
Sin(x) trigonometric sine of x (x in radians) Sin(0.0) is 0.0
Tan(x) trigonometric tangent of x (x in radians) Tan(0.0) is 0.0

Fig. 7.1 | Math class methods. (Part 1 of 2.)

154 Chapter 7 Methods: A Deeper Look

7.3.2 Math Class Constants PI and E
Each object of a class maintains its own copy of each of the class’s instance variables. There
are also variables for which each object of a class does not need its own separate copy (as
you’ll see momentarily). Such variables are declared static and are also known as class
variables. When objects of a class containing static variables are created, all the objects
of that class share one copy of those variables. Together a class’s static variables and
instance variables are known as its fields. You’ll learn more about static fields in
Section 10.9.

Class Math also declares two double constants for commonly used mathematical values:

• Math.PI (3.1415926535897931) is the ratio of a circle’s circumference to its di-
ameter, and

• Math.E (2.7182818284590451) is the base value for natural logarithms (calculat-
ed with static Math method Log).

These constants are declared in class Math with the modifiers public and const. Making
them public allows other programmers to use these variables in their own classes. A con-
stant is declared with the keyword const—its value cannot be changed after the constant
is declared. Fields declared const are implicitly static, so you can access them via the class
name Math and the member-access operator (.), as in Math.PI and Math.E.

7.3.3 Why Is Main Declared static?
Why must Main be declared static? During app startup, when no objects of the class have
been created, the Main method must be called to begin program execution. Main is some-
times called the app’s entry point. Declaring Main as static allows the execution environ-
ment to invoke Main without creating an instance of the class. Method Main is typically
declared with the header:

Exp(x) exponential method ex Exp(1.0) is 2.71828
Exp(2.0) is 7.38906

Log(x) natural logarithm of x (base e) Log(Math.E) is 1.0
Log(Math.E * Math.E) is 2.0

Max(x, y) larger value of x and y Max(2.3, 12.7) is 12.7
Max(-2.3, -12.7) is -2.3

Min(x, y) smaller value of x and y Min(2.3, 12.7) is 2.3
Min(-2.3, -12.7) is -12.7

Pow(x, y) x raised to the power y (i.e., xy) Pow(2.0, 7.0) is 128.0
Pow(9.0, 0.5) is 3.0

Sqrt(x) square root of x Sqrt(900.0) is 30.0

Common Programming Error 7.1
Constants declared in a class, but not inside a method or property, are implicitly static—
it’s a syntax error to declare such a constant with keyword static explicitly.

Method Description Example

Fig. 7.1 | Math class methods. (Part 2 of 2.)

7.4 Methods with Multiple Parameters 155

but also can be declared with the header:

which we’ll discuss and demonstrate in Section 8.12, Shuffling and Dealing Cards. In ad-
dition, you can declare Main with return type int (instead of void)—this can be useful if
an app is executed by another app and needs to return an indication of success or failure
to that other app.

7.3.4 Additional Comments About Main
Most earlier examples have one class that contained only Main, and some examples had a
second class that was used by Main to create and manipulate objects. Actually, any class can
contain a Main method. In fact, each of our two-class examples could have been imple-
mented as one class. For example, in the app in Figs. 4.11–4.12, method Main (lines 7–43
of Fig. 4.12) could have been moved into class Account (Fig. 4.11). The app results would
have been identical to those of the two-class version. You can place a Main method in every
class you declare. Some programmers take advantage of this to build a small test app into
each class they declare. However, if you declare more than one Main method among the
classes of your project, you’ll need to indicate to the IDE which one you would like to be
the app’s entry point. To do so:

1. With the project open in Visual Studio, select Project > [ProjectName] Properties...

(where [ProjectName] is the name of your project).

2. Select the class containing the Main method that should be the entry point from
the Startup object list box.

7.4 Methods with Multiple Parameters
We now consider how to write a method with multiple parameters. Figure 7.2 defines
Maximum method that determines and returns the largest of three double values. When the
app begins execution, the Main method (lines 8–23) executes. Line 19 calls method Max-
imum (declared in lines 26–43) to determine and return the largest of its three double ar-
guments. In Section 7.4.3, we’ll discuss the use of the + operator in line 22. The sample
outputs show that Maximum determines the largest value regardless of whether that value is
the first, second or third argument.

static void Main()

static void Main(string[] args)

1 // Fig. 7.2: MaximumFinder.cs
2 // Method Maximum with three parameters.
3 using System;
4
5 class MaximumFinder
6 {
7 // obtain three floating-point values and determine maximum value
8 static void Main()
9 {

Fig. 7.2 | Method Maximum with three parameters. (Part 1 of 2.)

156 Chapter 7 Methods: A Deeper Look

10 // prompt for and input three floating-point values
11 Console.Write("Enter first floating-point value: ");
12 double number1 = double.Parse(Console.ReadLine());
13 Console.Write("Enter second floating-point value: ");
14 double number2 = double.Parse(Console.ReadLine());
15 Console.Write("Enter third floating-point value: ");
16 double number3 = double.Parse(Console.ReadLine());
17
18 // determine the maximum of three values
19 ;
20
21 // display maximum value
22 Console.WriteLine();
23 }
24
25 // returns the maximum of its three double parameters
26
27 {
28 double maximumValue = x; // assume x is the largest to start
29
30 // determine whether y is greater than maximumValue
31 if (y > maximumValue)
32 {
33 maximumValue = y;
34 }
35
36 // determine whether z is greater than maximumValue
37 if (z > maximumValue)
38 {
39 maximumValue = z;
40 }
41
42 return maximumValue;
43 }
44 }

Enter first floating-point values: 3.33
Enter second floating-point values: 1.11
Enter third floating-point values: 2.22
Maximum is: 3.33

Enter first floating-point values: 2.22
Enter second floating-point values: 3.33
Enter third floating-point values: 1.11
Maximum is: 3.33

Enter first floating-point values: 2.22
Enter second floating-point values: 1.11
Enter third floating-point values: 3.33
Maximum is: 3.33

Fig. 7.2 | Method Maximum with three parameters. (Part 2 of 2.)

double result = Maximum(number1, number2, number3)

"Maximum is: " + result

static double Maximum(double x, double y, double z)

7.4 Methods with Multiple Parameters 157

7.4.1 Keyword static
Method Maximum’s declaration begins with keyword static, which enables the Main meth-
od (another static method) to call Maximum as shown in line 19 without creating an ob-
ject of class MaximumFinder and without qualifying the method name with the class name
MaximumFinder—static methods in the same class can call each other directly.

7.4.2 Method Maximum
Consider the declaration of method Maximum (lines 26–43). Line 26 indicates that the
method returns a double value, that the method’s name is Maximum and that the method
requires three double parameters (x, y and z) to accomplish its task. When a method has
more than one parameter, the parameters are specified as a comma-separated list. When
Maximum is called in line 19, the parameter x is initialized with the value of the argument
number1, the parameter y is initialized with the value of the argument number2 and the
parameter z is initialized with the value of the argument number3. There must be one
argument in the method call for each required parameter in the method declaration. Also,
each argument must be consistent with the type of the corresponding parameter. For ex-
ample, a parameter of type double can receive values like 7.35 (a double), 22 (an int) or
–0.03456 (a double), but not strings like "hello". Section 7.6 discusses the argument
types that can be provided in a method call for each parameter of a simple type. Note the
use of type double’s Parse method in lines 12, 14 and 16 to convert into double values
the strings typed by the user.

Logic of Determining the Maximum Value
To determine the maximum value, we begin with the assumption that parameter x con-
tains the largest value, so line 28 declares local variable maximumValue and initializes it with
the value of parameter x. Of course, it’s possible that parameter y or z contains the largest
value, so we must compare each of these values with maximumValue. The if statement at
lines 31–34 determines whether y is greater than maximumValue. If so, line 33 assigns y to
maximumValue. The if statement at lines 37–40 determines whether z is greater than max-
imumValue. If so, line 39 assigns z to maximumValue. At this point, the largest of the three
values resides in maximumValue, so line 42 returns that value to line 19 where it’s assigned
to the variable result. When program control returns to the point in the app where Max-
imum was called, Maximum’s parameters x, y and z are no longer accessible. Methods can
return at most one value; the returned value can be a value type that contains one or more
values (implemented as a struct; Section 10.13) or a reference to an object that contains
one or more values.

7.4.3 Assembling strings with Concatenation
C# allows string objects to be created by assembling smaller strings into larger strings
using operator + (or the compound assignment operator +=). This is known as string con-
catenation. When both operands of operator + are string objects, the + operator creates
a new string object containing copies of the characters in its left operand followed by cop-

Common Programming Error 7.2
Declaring method parameters of the same type as double x, y instead of double x,
double y is a syntax error—a type is required for each parameter in the parameter list.

158 Chapter 7 Methods: A Deeper Look

ies of the characters in its right operand. For example, the expression "hello " + "there"

creates the string "hello there" without disturbing the original strings.
In line 22, the expression "Maximum is: " + result uses operator + with operands of

types string and double. Every simple-type value has a string representation. When one
of the + operator’s operands is a string, the other is implicitly converted to a string, then
the two strings are concatenated. So, in line 22, the double value is converted to its string
representation and placed at the end of "Maximum is: ". If there are any trailing zeros in a
double value, these are discarded. Thus, the string representation of 9.3500 is "9.35".

Anything Can Be Converted to a string
If a bool is concatenated with a string, the bool is converted to the string "True" or
"False" (each is capitalized). In addition, every object has a ToString method that returns
a string representation of that object. When an object is concatenated with a string, the
object’s ToString method is called implicitly to obtain the string representation of the
object. If the object is null, an empty string is written.

If a type does not define a ToString method, the default ToString implementation
returns a string containing the type’s fully qualified name—that is, the namespace in
which the type is defined followed by a dot (.) and the type name (e.g., System.Object
for the .NET class Object). Each type you create can declare a custom ToString method,
as you’ll do in Chapter 8 for a Card class that represents a playing card in a deck of cards.

Formatting strings with string Interpolation
Line 22 of Fig. 7.2, of course, could also be written using string interpolation as

As with string concatenation, using string interpolation to insert an object into a string
implicitly calls the object’s ToString method to obtain the object’s string representation.

7.4.4 Breaking Apart Large string Literals
When a large string literal or interpolated string is typed into an app’s source code, you
can break that string into several smaller strings and place them on multiple lines for
readability. The strings can be reassembled using string concatenation. We discuss the
details of strings in Chapter 16.

Console.WriteLine($"Maximum is: {result}");

Common Programming Error 7.3
It’s a syntax error to break a string literal or interpolated string across multiple lines of
code. If a string does not fit on one line, you can split it into several smaller strings and
use concatenation to form the desired string.

Common Programming Error 7.4
Confusing the string concatenation + operator with the addition + operator can lead to
strange results. The + operator is left-associative. For example, if y has the int value 5, the
expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 = 7", because
first the value of y (5) is concatenated with the string "y + 2 = ", then the value 2 is con-
catenated with the new larger string "y + 2 = 5". The expression "y + 2 = " + (y + 2)
produces the desired result "y + 2 = 7". Using C# 6 string interpolation eliminates this
problem.

7.5 Notes on Using Methods 159

7.4.5 When to Declare Variables as Fields
Variable result is a local variable in method Main because it’s declared in the block that
represents the method’s body. Variables should be declared as fields of a class (i.e., as either
instance variables or static variables) only if they’re required for use in more than one
method of the class or if the app should save their values between calls to a given method.

7.4.6 Implementing Method Maximum by Reusing Method Math.Max
Recall from Fig. 7.1 that class Math’s Max method can determine the larger of two values.
The entire body of our maximum method could also be implemented with nested calls to
Math.Max, as follows:

The leftmost Math.Max call has the arguments x and Math.Max(y, z). Before any method
can be called, the runtime evaluates all the arguments to determine their values. If an ar-
gument is a method call, the call must be performed to determine its return value. So, in
the preceding statement, Math.Max(y, z) is evaluated first to determine the larger of y and
z. Then the result is passed as the second argument to the first call to Math.Max, which
returns the larger of its two arguments. Using Math.Max in this manner is a good example
of software reuse—we find the largest of three values by reusing Math.Max, which finds the
larger of two values. Note how concise this code is compared to lines 28–42 of Fig. 7.2.

7.5 Notes on Using Methods
Three Ways to Call a Method
You’ve seen three ways to call a method:

1. Using a method name by itself to call a method of the same class—as in line 19
of Fig. 7.2, which calls Maximum(number1, number2, number3) from Main.

2. Using a reference to an object, followed by the member-access operator (.) and
the method name to call a non-static method of the referenced object—as in
line 23 of Fig. 4.12, which called account1.Deposit(depositAmount) from the
Main method of class AccountTest.

3. Using the class name and the member-access operator (.) to call a static method
of a class—as in lines 12, 14 and 16 of Fig. 7.2, which each call Console.Read-
Line(), or as in Math.Sqrt(900.0) in Section 7.3.

Three Ways to Return from a Method
You’ve seen three ways to return control to the statement that calls a method:

• Reaching the method-ending right brace in a method with return type void.

• When the following statement executes in a method with return type void

• When a method returns a result with a statement of the following form in which
the expression is evaluated and its result (and control) are returned to the caller:

return Math.Max(x, Math.Max(y, z));

 return;

 return expression;

160 Chapter 7 Methods: A Deeper Look

static Members Can Access Only the Class’s Other static Members Directly
A static method or property can call only other static methods or properties of the same
class directly (i.e., using the method name by itself) and can manipulate only static vari-
ables in the same class directly. To access a class’s non-static members, a static method
or property must use a reference to an object of that class. Recall that static methods re-
late to a class as a whole, whereas non-static methods are associated with a specific object
(instance) of the class and may manipulate the instance variables of that object (as well as
the class’s static members).

Many objects of a class, each with its own copies of the instance variables, may exist
at the same time. Suppose a static method were to invoke a non-static method directly.
How would the method know which object’s instance variables to manipulate? What
would happen if no objects of the class existed at the time the non-static method was
invoked?

7.6 Argument Promotion and Casting
Another important feature of method calls is argument promotion—implicitly converting
an argument’s value to the type that the method expects to receive (if possible) in its cor-
responding parameter. For example, an app can call Math method Sqrt with an integer ar-
gument even though the method expects to receive a double argument. The statement

correctly evaluates Math.Sqrt(4) and displays the value 2.0. Sqrt’s parameter list causes
C# to convert the int value 4 to the double value 4.0 before passing the value to Sqrt.
Such conversions may lead to compilation errors if C#’s promotion rules are not satisfied.
The promotion rules specify which conversions are allowed—that is, which conversions
can be performed without losing data. In the Sqrt example above, an int is converted to a

Common Programming Error 7.5
Declaring a method outside the body of a class declaration or inside the body of another
method is a syntax error.

Common Programming Error 7.6
Redeclaring a method parameter as a local variable in the method’s body is a compilation
error.

Common Programming Error 7.7
Forgetting to return a value from a method that should return one is a compilation error.
If a return type other than void is specified, the method must use a return statement to
return a value, and that value must be consistent with the method’s return type. Returning
a value from a method whose return type has been declared void is a compilation error.

Software Engineering Observation 7.2
A static method cannot access non-static members of the same class directly.

Console.WriteLine(Math.Sqrt(4));

7.6 Argument Promotion and Casting 161

double without changing its value. However, converting a double to an int truncates the
fractional part of the double value—thus, part of the value is lost. Also, double variables
can hold values much larger (and much smaller) than int variables, so assigning a double
to an int can cause a loss of information when the double value doesn’t fit in the int.
Converting large integer types to small integer types (e.g., long to int) also can produce
incorrect results.

7.6.1 Promotion Rules
The promotion rules apply to expressions containing values of two or more simple types
and to simple-type values passed as arguments to methods. Each value is promoted to the
appropriate type in the expression. (Actually, the expression uses a temporary copy of each
promoted value—the types of the original values remain unchanged.) Figure 7.3 lists the
simple types alphabetically and the types to which each can be promoted. Values of all sim-
ple types also can be implicitly converted to type object. We demonstrate such implicit
conversions in Chapter 19.

7.6.2 Sometimes Explicit Casts Are Required
By default, C# does not allow you to implicitly convert values between simple types if the
target type cannot represent every value of the original type (e.g., the int value 2000000
cannot be represented as a short, and any floating-point number with nonzero digits after
its decimal point cannot be represented in an integer type such as long, int or short).

To prevent a compilation error in cases where information may be lost due to an
implicit conversion between simple types, the compiler requires you to use a cast operator
to force the conversion. This enables you to “take control” from the compiler. You essen-

Type Conversion types

bool no possible implicit conversions to other simple types
byte ushort, short, uint, int, ulong, long, decimal, float or double
char ushort, int, uint, long, ulong, decimal, float or double
decimal no possible implicit conversions to other simple types
double no possible implicit conversions to other simple types
float double

int long, decimal, float or double
long decimal, float or double
sbyte short, int, long, decimal, float or double
short int, long, decimal, float or double
uint ulong, long, decimal, float or double
ulong decimal, float or double
ushort uint, int, ulong, long, decimal, float or double

Fig. 7.3 | Implicit conversions between simple types.

162 Chapter 7 Methods: A Deeper Look

tially say, “I know this conversion might cause loss of information, but for my purposes
here, that’s fine.” Suppose you create a method Square that calculates the square of an int
argument. To call Square with the whole part of a double argument named doubleValue,
you’d write Square((int) doubleValue). This method call explicitly casts (converts) the
value of doubleValue to an integer for use in method Square. Thus, if doubleValue’s
value is 4.5, the method receives the value 4 and returns 16, not 20.25.

7.7 The .NET Framework Class Library
Many predefined classes are grouped into categories of related classes called namespaces.
Together, these namespaces are referred to as the .NET Framework Class Library.

using Directives and Namespaces
Throughout the text, using directives allow us to use library classes from the Framework
Class Library without specifying their namespace names. For example, an app would in-
clude the declaration

in order to use the class names from the System namespace without fully qualifying their
names. This allows you to use the unqualified name Console, rather than the fully qualified
name System.Console, in your code.

You might have noticed in each project containing multiple classes that in each class’s
source-code file we did not need additional using directives to use the other classes in the
project. There’s a special relationship between classes in a project—by default, such classes
are in the same namespace and can be used by other classes in the project. Thus, a using
declaration is not required when one class in a project uses another in the same project—
such as when class AccountTest used class Account in Chapter 4’s examples. Also, any
classes that are not explicitly placed in a namespace are implicitly placed in the so-called
global namespace.

.NET Namespaces
A strength of C# is the large number of classes in the namespaces of the .NET Framework
Class Library. Some key Framework Class Library namespaces are described in Fig. 7.4,
which represents only a small portion of the reusable classes in the .NET Framework Class
Library.

Common Programming Error 7.8
Converting a simple-type value to a value of another simple type may change the value if
the promotion is not allowed. For example, converting a floating-point value to an inte-
gral value may introduce truncation errors (loss of the fractional part) in the result.

using System;

Software Engineering Observation 7.3
The C# compiler does not require using declarations in a source-code file if the fully
qualified class name is specified every time a class name is used. Many programmers prefer
the more concise programming style enabled by using declarations.

7.7 The .NET Framework Class Library 163

Locating Additional Information About a .NET Class’s Methods
You can locate additional information about a .NET class’s methods in the .NET Frame-
work Class Library reference

When you visit this site, you’ll see an alphabetical listing of all the namespaces in the
Framework Class Library. Locate the namespace and click its link to see an alphabetical
listing of all its classes, with a brief description of each. Click a class’s link to see a more
complete description of the class. Click the Methods link in the left-hand column to see a
listing of the class’s methods.

Namespace Description

System.Windows.Forms Contains the classes required to create and manipulate
GUIs. (Various classes in this namespace are discussed in
Chapter 14, Graphical User Interfaces with Windows
Forms: Part 1, and Chapter 15, Graphical User Interfaces
with Windows Forms: Part 2.)

System.Windows.Controls
System.Windows.Input
System.Windows.Media
System.Windows.Shapes

Contain the classes of the Windows Presentation Founda-
tion for GUIs, 2-D and 3-D graphics, multimedia and ani-
mation.

System.Linq Contains the classes that support Language Integrated
Query (LINQ). (See Chapter 9, Introduction to LINQ and
the List Collection, and several other chapters throughout
the book.)

System.Data.Entity Contains the classes for manipulating data in databases
(i.e., organized collections of data), including support for
LINQ to Entities. (See Chapter 20, Databases and LINQ.)

System.IO Contains the classes that enable programs to input and out-
put data. (See Chapter 17, Files and Streams.)

System.Web Contains the classes used for creating and maintaining web
apps, which are accessible over the Internet.

System.Xml Contains the classes for creating and manipulating XML
data. Data can be read from or written to XML files.

System.Xml.Linq Contains the classes that support Language Integrated
Query (LINQ) for XML documents. (See Chapter 21,
Asynchronous Programming with async and await.)

System.Collections
System.Collections.Generic

Contain the classes that define data structures for maintain-
ing collections of data. (See Chapter 19, Generic Collec-
tions; Functional Programming with LINQ/PLINQ.)

System.Text Contains classes that enable programs to manipulate char-
acters and strings. (See Chapter 16, Strings and Charac-
ters: A Deeper Look.)

Fig. 7.4 | .NET Framework Class Library namespaces (a subset).

https://msdn.microsoft.com/library/mt472912

https://msdn.microsoft.com/library/mt472912

164 Chapter 7 Methods: A Deeper Look

7.8 Case Study: Random-Number Generation
In this and the next section, we develop a nicely structured game-playing app with multi-
ple methods. The app uses most of the control statements presented thus far in the book
and introduces several new programming concepts.

There’s something in the air of a casino that invigorates people—from the high rollers
at the plush mahogany-and-felt craps tables to the quarter poppers at the one-armed ban-
dits. It’s the element of chance, the possibility that luck will convert a pocketful of money
into a mountain of wealth. The element of chance can be introduced in an app via an
object of class Random (of namespace System). Objects of class Random can produce random
byte, int and double values. In the next several examples, we use objects of class Random
to produce random numbers.

Secure Random Numbers
According to Microsoft’s documentation for class Random, the random values it produces
“are not completely random because a mathematical algorithm is used to select them, but
they are sufficiently random for practical purposes.” Such values should not be used, for
example, to create randomly selected passwords. If your app requires so-called cryp-
tographically secure random numbers, use class RNGCryptoServiceProvider1 from name-
space System.Security.Cryptography) to produce random values:

7.8.1 Creating an Object of Type Random
A new random-number generator object can be created with class Random (from the Sys-
tem namespace) as follows:

The Random object can then be used to generate random byte, int and double values—
we discuss only random int values here.

7.8.2 Generating a Random Integer
Consider the following statement:

When called with no arguments, method Next of class Random generates a random int val-
ue in the range 0 to +2,147,483,646, inclusive. If the Next method truly produces values
at random, then every value in that range should have an equal chance (or probability) of
being chosen each time method Next is called. The values returned by Next are actually

Good Programming Practice 7.1
The online .NET Framework documentation is easy to search and provides many details
about each class. As you learn each class in this book, you should review it in the online
documentation for additional information.

1. Class RNGCryptoServiceProvider produces arrays of bytes. We discuss arrays in Chapter 8.

https://msdn.microsoft.com/library/system.security.cryptography.
rngcryptoserviceprovider

Random randomNumbers = new Random();

int randomValue = randomNumbers.Next();

https://msdn.microsoft.com/library/system.security.cryptography.rngcryptoserviceprovider
https://msdn.microsoft.com/library/system.security.cryptography.rngcryptoserviceprovider

7.8 Case Study: Random-Number Generation 165

pseudorandom numbers—a sequence of values produced by a complex mathematical cal-
culation. The calculation uses the current time of day (which, of course, changes constant-
ly) to seed the random-number generator such that each execution of an app yields a
different sequence of random values.

7.8.3 Scaling the Random-Number Range
The range of values produced directly by method Next often differs from the range of val-
ues required in a particular C# app. For example, an app that simulates coin tossing might
require only 0 for “heads” and 1 for “tails.” An app that simulates the rolling of a six-sided
die might require random integers in the range 1–6. A video game that randomly predicts
the next type of spaceship (out of four possibilities) that will fly across the horizon might
require random integers in the range 1–4. For cases like these, class Random provides ver-
sions of method Next that accept arguments. One receives an int argument and returns a
value from 0 up to, but not including, the argument’s value. For example, you might use
the statement

which returns 0, 1, 2, 3, 4 or 5. The argument 6—called the scaling factor—represents the
number of unique values that Next should produce (in this case, six—0, 1, 2, 3, 4 and 5).
This manipulation is called scaling the range of values produced by Random method Next.

7.8.4 Shifting Random-Number Range
Suppose we wanted to simulate a six-sided die that has the numbers 1–6 on its faces, not
0–5. Scaling the range of values alone is not enough. So we shift the range of numbers pro-
duced. We could do this by adding a shifting value—in this case 1—to the result of meth-
od Next, as in

The shifting value (1) specifies the first value in the desired set of random integers. The
preceding statement assigns to face a random integer in the range 1–6.

7.8.5 Combining Shifting and Scaling
The third alternative of method Next provides a more intuitive way to express both shift-
ing and scaling. This method receives two int arguments and returns a value from the first
argument’s value up to, but not including, the second argument’s value. We could use this
method to write a statement equivalent to our previous statement, as in

7.8.6 Rolling a Six-Sided Die
To demonstrate random numbers, let’s develop an app that simulates 20 rolls of a six-sided
die and displays each roll’s value. Figure 7.5 shows two sample outputs, which confirm
that the results of the preceding calculation are integers in the range 1–6 and that each run
of the app can produce a different sequence of random numbers. Line 9 creates the Random
object randomNumbers to produce random values. Line 15 executes 20 times in a loop to
roll the die and line 16 displays the value of each roll.

int randomValue = randomNumbers.Next(6); // 0, 1, 2, 3, 4 or 5

int face = 1 + randomNumbers.Next(6); // 1, 2, 3, 4, 5 or 6

int face = randomNumbers.Next(1, 7); // 1, 2, 3, 4, 5 or 6

166 Chapter 7 Methods: A Deeper Look

Rolling a Six-Sided Die 60,000,000 Times
To show that the numbers produced by Next occur with approximately equal likelihood,
let’s simulate 60,000,000 rolls of a die (Fig. 7.6). Each integer from 1 to 6 should appear
approximately 10,000,000 times.

1 // Fig. 7.5: RandomIntegers.cs
2 // Shifted and scaled random integers.
3 using System;
4
5 class RandomIntegers
6 {
7 static void Main()
8 {
9

10
11 // loop 20 times
12 for (int counter = 1; counter <= 20; ++counter)
13 {
14 // pick random integer from 1 to 6
15
16 Console.Write($"{face} "); // display generated value
17 }
18
19 Console.WriteLine();
20 }
21 }

3 3 3 1 1 2 1 2 4 2 2 3 6 2 5 3 4 6 6 1

6 2 5 1 3 5 2 1 6 5 4 1 6 1 3 3 1 4 3 4

Fig. 7.5 | Shifted and scaled random integers.

1 // Fig. 7.6: RollDie.cs
2 // Roll a six-sided die 60,000,000 times.
3 using System;
4
5 class RollDie
6 {
7 static void Main()
8 {
9 Random randomNumbers = new Random(); // random-number generator

10
11 int frequency1 = 0; // count of 1s rolled
12 int frequency2 = 0; // count of 2s rolled
13 int frequency3 = 0; // count of 3s rolled
14 int frequency4 = 0; // count of 4s rolled
15 int frequency5 = 0; // count of 5s rolled
16 int frequency6 = 0; // count of 6s rolled

Fig. 7.6 | Roll a six-sided die 60,000,000 times. (Part 1 of 2.)

Random randomNumbers = new Random(); // random-number generator

int face = randomNumbers.Next(1, 7);

7.8 Case Study: Random-Number Generation 167

17
18 // summarize results of 60,000,000 rolls of a die
19 for (int roll = 1; roll <= 60000000; ++roll)
20 {
21 int face = randomNumbers.Next(1, 7); // number from 1 to 6
22
23 // determine roll value 1-6 and increment appropriate counter
24 switch ()
25 {
26 case 1:
27 ++frequency1; // increment the 1s counter
28 break;
29 case 2:
30 ++frequency2; // increment the 2s counter
31 break;
32 case 3:
33 ++frequency3; // increment the 3s counter
34 break;
35 case 4:
36 ++frequency4; // increment the 4s counter
37 break;
38 case 5:
39 ++frequency5; // increment the 5s counter
40 break;
41 case 6:
42 ++frequency6; // increment the 6s counter
43 break;
44 }
45 }
46
47 Console.WriteLine("Face\tFrequency"); // output headers
48 Console.WriteLine($"1\t{frequency1}\n2\t{frequency2}");
49 Console.WriteLine($"3\t{frequency3}\n4\t{frequency4}");
50 Console.WriteLine($"5\t{frequency5}\n6\t{frequency6}");
51 }
52 }

Face Frequency
1 10006774
2 9993289
3 9993438
4 10006520
5 9998762
6 10001217

Face Frequency
1 10002183
2 9997815
3 9999619
4 10006012
5 9994806
6 9999565

Fig. 7.6 | Roll a six-sided die 60,000,000 times. (Part 2 of 2.)

face

168 Chapter 7 Methods: A Deeper Look

As the two sample outputs show, the values produced by method Next enable the app
to realistically simulate rolling a six-sided die. The app uses nested control statements (the
switch is nested inside the for) to determine the number of times each side of the die
occurred. The for statement (lines 19–45) iterates 60,000,000 times. During each itera-
tion, line 21 produces a random value from 1 to 6. This face value is then used as the
switch expression (line 24). Based on the face value, the switch statement increments one
of the six counter variables during each iteration of the loop. (In Section 8.4.7, we show an
elegant way to replace the entire switch statement in this app with a single statement.) The
switch statement has no default label because we have a case label for every possible die
value that the expression in line 21 can produce. Run the app several times and observe the
results. You’ll see that every time you execute this apkp, it produces different results.

7.8.7 Scaling and Shifting Random Numbers
Previously, we demonstrated the statement

which simulates the rolling of a six-sided die. This statement always assigns to variable
face an integer in the range 1 ≤ face < 7. The width of this range (i.e., the number of
consecutive integers in the range) is 6, and the starting number in the range is 1. Referring
to the preceding statement, we see that the width of the range is determined by the differ-
ence between the two integers passed to Random method Next, and the starting number of
the range is the value of the first argument. We can generalize this result as

where shiftingValue specifies the first number in the desired range of consecutive integers
and scalingFactor specifies how many numbers are in the range.

It’s also possible to choose integers at random from sets of values other than ranges of
consecutive integers. For this purpose, it’s simpler to use the version of the Next method
that takes only one argument. For example, to obtain a random value from the sequence
2, 5, 8, 11 and 14, you could use the statement

In this case, randomNumbers.Next(5) produces values in the range 0–4. Each value pro-
duced is multiplied by 3 to produce a number in the sequence 0, 3, 6, 9 and 12. We then
add 2 to that value to shift the range of values and obtain a value from the sequence 2, 5,
8, 11 and 14. We can generalize this result as

where shiftingValue specifies the first number in the desired range of values, difference-
BetweenValues represents the difference between consecutive numbers in the sequence and
scalingFactor specifies how many numbers are in the range.

7.8.8 Repeatability for Testing and Debugging
As we mentioned earlier in this section, the methods of class Random actually generate pseu-
dorandom numbers based on complex mathematical calculations. Repeatedly calling any
of Random’s methods produces a sequence of numbers that appears to be random. The cal-

int face = randomNumbers.Next(1, 7);

int number = randomNumbers.Next(shiftingValue, shiftingValue + scalingFactor);

int number = 2 + 3 * randomNumbers.Next(5);

int number = shiftingValue +
 differenceBetweenValues * randomNumbers.Next(scalingFactor);

7.9 Case Study: A Game of Chance; Introducing Enumerations 169

culation that produces the pseudorandom numbers uses the time of day as a seed value to
change the sequence’s starting point. Each new Random object seeds itself with a value
based on the computer system’s clock at the time the object is created, enabling each exe-
cution of an app to produce a different sequence of random numbers.

When debugging an app, it’s sometimes useful to repeat the same sequence of pseu-
dorandom numbers during each execution of the app. This repeatability enables you to
prove that your app is working for a specific sequence of random numbers before you test
the app with different sequences of random numbers. When repeatability is important,
you can create a Random object as follows:

The seedValue argument (an int) seeds the random-number calculation—using the same
seedValue every time produces the same sequence of random numbers. Different seed val-
ues, of course, produce different sequences of random numbers.

7.9 Case Study: A Game of Chance; Introducing
Enumerations
One popular game of chance is the dice game known as “craps,” which is played in casinos
and back alleys throughout the world. The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., “the house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” To win,
you must continue rolling the dice until you “make your point” (i.e., roll that same
point value). You lose by rolling a 7 before making your point.

The app in Fig. 7.7 simulates the game of craps, using methods to define the logic of the
game. The Main method (lines 24–80) calls the static RollDice method (lines 83–94) as
needed to roll the two dice and compute their sum. The four sample outputs show win-
ning on the first roll, losing on the first roll, losing on a subsequent roll and winning on a
subsequent roll, respectively. Variable randomNumbers (line 8) is declared static, so it can
be created once during the program’s execution and used in method RollDice.

Random randomNumbers = new Random(seedValue);

1 // Fig. 7.7: Craps.cs
2 // Craps class simulates the dice game craps.
3 using System;
4
5 class Craps
6 {
7 // create random-number generator for use in method RollDice
8 private static Random randomNumbers = new Random();
9

10
11

Fig. 7.7 | Craps class simulates the dice game craps. (Part 1 of 4.)

// enumeration with constants that represent the game status
private enum Status {Continue, Won, Lost}

170 Chapter 7 Methods: A Deeper Look

12
13 // enumeration with constants that represent common rolls of the dice
14
15
16
17
18
19
20
21
22
23 // plays one game of craps
24 static void Main()
25 {
26 // gameStatus can contain Continue, Won or Lost
27 Status gameStatus = Status.Continue;
28 int myPoint = 0; // point if no win or loss on first roll
29
30
31
32 // determine game status and point based on first roll
33 switch ()
34 {
35
36
37
38 break;
39
40
41
42
43 break;
44
45
46
47
48 break;
49 }
50
51 // while game is not complete
52 while () // game not Won or Lost
53 {
54
55
56 // determine game status
57 if (sumOfDice == myPoint) // win by making point
58 {
59
60 }
61 else
62 {

Fig. 7.7 | Craps class simulates the dice game craps. (Part 2 of 4.)

private enum DiceNames
{
 SnakeEyes = 2,
 Trey = 3,
 Seven = 7,
 YoLeven = 11,
 BoxCars = 12
}

int sumOfDice = RollDice(); // first roll of the dice

(DiceNames) sumOfDice

case DiceNames.Seven: // win with 7 on first roll
case DiceNames.YoLeven: // win with 11 on first roll
 gameStatus = Status.Won;

case DiceNames.SnakeEyes: // lose with 2 on first roll
case DiceNames.Trey: // lose with 3 on first roll
case DiceNames.BoxCars: // lose with 12 on first roll
 gameStatus = Status.Lost;

default: // did not win or lose, so remember point
 gameStatus = Status.Continue; // game is not over
 myPoint = sumOfDice; // remember the point
 Console.WriteLine($"Point is {myPoint}");

gameStatus == Status.Continue

sumOfDice = RollDice(); // roll dice again

gameStatus = Status.Won;

7.9 Case Study: A Game of Chance; Introducing Enumerations 171

63 // lose by rolling 7 before point
64 if ()
65 {
66
67 }
68 }
69 }
70
71 // display won or lost message
72 if ()
73 {
74 Console.WriteLine("Player wins");
75 }
76 else
77 {
78 Console.WriteLine("Player loses");
79 }
80 }
81
82 // roll dice, calculate sum and display results
83
84 {
85 // pick random die values
86 int die1 = randomNumbers.Next(1, 7); // first die roll
87 int die2 = randomNumbers.Next(1, 7); // second die roll
88
89 int sum = die1 + die2; // sum of die values
90
91 // display results of this roll
92 Console.WriteLine($"Player rolled {die1} + {die2} = {sum}");
93
94 }
95 }

Player rolled 2 + 5 = 7
Player wins

Player rolled 2 + 1 = 3
Player loses

Player rolled 2 + 4 = 6
Point is 6
Player rolled 3 + 1 = 4
Player rolled 5 + 5 = 10
Player rolled 6 + 1 = 7
Player loses

Fig. 7.7 | Craps class simulates the dice game craps. (Part 3 of 4.)

sumOfDice == (int) DiceNames.Seven

gameStatus = Status.Lost;

gameStatus == Status.Won

static int RollDice()

return sum; // return sum of dice

172 Chapter 7 Methods: A Deeper Look

7.9.1 Method RollDice
In the rules of the game, the player must roll two dice on the first roll and must do the
same on all subsequent rolls. We declare method RollDice (lines 83–94) to roll the dice
and compute and display their sum. Method RollDice is declared once, but it’s called
from two places (lines 30 and 54) in method Main, which contains the logic for one com-
plete game of craps. Method RollDice takes no arguments, so it has an empty parameter
list. Each time it’s called, RollDice returns the sum of the dice as an int. Although lines
86 and 87 look the same (except for the die names), they do not necessarily produce the
same result. Each of these statements produces a random value in the range 1–6. Variable
randomNumbers (used in lines 86–87) is not declared in the method. Rather it’s declared as
a private static variable of the class and initialized in line 8. This enables us to create
one Random object that’s reused in each call to RollDice.

7.9.2 Method Main’s Local Variables
The game is reasonably involved. The player may win or lose on the first roll or may win
or lose on any subsequent roll. Method Main (lines 24–80) uses local variable gameStatus
(line 27) to keep track of the overall game status, local variable myPoint (line 28) to store
the “point” if the player does not win or lose on the first roll and local variable sumOfDice
(line 30) to maintain the sum of the dice for the most recent roll. Variable myPoint is ini-
tialized to 0 to ensure that the app will compile. If you do not initialize myPoint, the com-
piler issues an error, because myPoint is not assigned a value in every case of the switch
statement—thus, the app could try to use myPoint before it’s definitely assigned a value.
By contrast, gameStatus does not require initialization because it’s assigned a value in ev-
ery branch of the switch statement—thus, it’s guaranteed to be initialized before it’s used.
However, as good practice, we initialize it anyway.

7.9.3 enum Type Status
Local variable gameStatus (line 27) is declared to be of a new type called Status, which
we declared in line 11. Status is a user-defined type called an enumeration, which declares
a set of constants represented by identifiers. An enumeration is introduced by the keyword
enum and a type name (in this case, Status). As with a class, braces ({ and }) delimit the

Player rolled 4 + 6 = 10
Point is 10
Player rolled 1 + 3 = 4
Player rolled 1 + 3 = 4
Player rolled 2 + 3 = 5
Player rolled 4 + 4 = 8
Player rolled 6 + 6 = 12
Player rolled 4 + 4 = 8
Player rolled 4 + 5 = 9
Player rolled 2 + 6 = 8
Player rolled 6 + 6 = 12
Player rolled 6 + 4 = 10
Player wins

Fig. 7.7 | Craps class simulates the dice game craps. (Part 4 of 4.)

7.9 Case Study: A Game of Chance; Introducing Enumerations 173

body of an enum declaration. Inside the braces is a comma-separated list of enumeration
constants—by default, the first constant has the value 0 and each subsequent constant’s
value is incremented by 1. The enum constant names must be unique, but the value associ-
ated with each constant need not be. Type Status is declared as a private member of class
Craps, because Status is used only in that class.

Variables of type Status should be assigned only one of the three constants declared
in the enumeration. When the game is won, the app sets local variable gameStatus to
Status.Won (lines 37 and 59). When the game is lost, the app sets gameStatus to
Status.Lost (lines 42 and 66). Otherwise, the app sets gameStatus to Status.Continue
(line 45) to indicate that the dice must be rolled again.

7.9.4 The First Roll
Line 30 in method Main calls RollDice, which picks two random values from 1 to 6, dis-
plays the value of the first die, the value of the second die and the sum of the dice, and
returns the sum of the dice. Method Main next enters the switch statement at lines 33–
49, which uses the sumOfDice value to determine whether the game has been won or lost,
or whether it should continue with another roll.

7.9.5 enum Type DiceNames
The sums of the dice that would result in a win or loss on the first roll are declared in the
DiceNames enumeration in lines 14–21. These are used in the switch statement’s cases.
The identifier names use casino parlance for these sums. In the DiceNames enumeration,
we assign a value explicitly to each identifier name. When the enum is declared, each con-
stant in the enum declaration is a constant value of type int. If you do not assign a value
to an identifier in the enum declaration, the compiler will do so. If the first enum constant
is unassigned, the compiler gives it the value 0. If any other enum constant is unassigned,
the compiler gives it a value one higher than that of the preceding enum constant. For ex-
ample, in the Status enumeration, the compiler implicitly assigns 0 to Status.Continue,
1 to Status.Won and 2 to Status.Lost.

7.9.6 Underlying Type of an enum
You could also declare an enum’s underlying type to be byte, sbyte, short, ushort, int,
uint, long or ulong by writing

where typeName represents one of the integral simple types.

7.9.7 Comparing Integers and enum Constants
If you need to compare a simple integral type value to the underlying value of an enumer-
ation constant, you must use a cast operator to make the two types match—there are no
implicit conversions between enum and integral types. In the switch expression (line 33),

Good Programming Practice 7.2
Using enumeration constants (like Status.Won, Status.Lost and Status.Continue)
rather than literal integer values (such as 0, 1 and 2) can make code easier to read and
maintain.

private enum MyEnum : typeName {Constant1, Constant2, ...}

174 Chapter 7 Methods: A Deeper Look

we use the cast operator to convert the int value in sumOfDice to type DiceNames and
compare it to each of the constants in DiceNames. Lines 35–36 determine whether the
player won on the first roll with Seven (7) or YoLeven (11). Lines 39–41 determine wheth-
er the player lost on the first roll with SnakeEyes (2), Trey (3) or BoxCars (12). After the
first roll, if the game is not over, the default case (lines 44–48) saves sumOfDice in
myPoint (line 46) and displays the point (line 47).

Additional Rolls of the Dice
If we’re still trying to “make our point” (i.e., the game is continuing from a prior roll), the
loop in lines 52–69 executes. Line 54 rolls the dice again. If sumOfDice matches myPoint
in line 57, line 59 sets gameStatus to Status.Won, and the loop terminates because the
game is complete. In line 64, we use the cast operator (int) to obtain the underlying value
of DiceNames.Seven so that we can compare it to sumOfDice. If sumOfDice is equal to Sev-
en (7), line 66 sets gameStatus to Status.Lost, and the loop terminates because the game
is over. When the game completes, lines 72–79 display a message indicating whether the
player won or lost, and the app terminates.

Control Statements in the Craps Example
Note the use of the various program-control mechanisms we’ve discussed. The Craps class
uses two methods—Main and RollDice (called twice from Main)—and the switch, while,
if…else and nested if control statements. Also, notice that we use multiple case labels
in the switch statement to execute the same statements for sums of Seven and YoLeven
(lines 35–36) and for sums of SnakeEyes, Trey and BoxCars (lines 39–41).

Code Snippets for Auto-Implemented Properties
Visual Studio has a feature called code snippets that allows you to insert predefined code
templates into your source code. One such snippet enables you to easily create a switch
statement with cases for all possible values for an enum type. Type switch in the C# code
then press Tab twice. If you specify a variable of an enum type in the switch statement’s
expression and press Enter, a case for each enum constant will be generated automatically.

To get a list of all available code snippets, type Ctrl + k, Ctrl + x. This displays the
Insert Snippet window in the code editor. You can navigate through the Visual C# snippet
folders with the mouse to see the snippets. This feature also can be accessed by right
clicking in the source code editor and selecting the Insert Snippet… menu item.

7.10 Scope of Declarations
You’ve seen declarations of C# entities, such as classes, methods, properties, variables and
parameters. Declarations introduce names that can be used to refer to such C# entities.
The scope of a declaration is the portion of the app that can refer to the declared entity by
its unqualified name. Such an entity is said to be “in scope” for that portion of the app.
This section introduces several important scope issues. The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the dec-
laration appears.

2. The scope of a local-variable declaration is from the point at which the declara-
tion appears to the end of the block containing the declaration.

7.10 Scope of Declarations 175

3. The scope of a local-variable declaration that appears in the initialization section
of a for statement’s header is the body of the for statement and the other expres-
sions in the header.

4. The scope of a method, property or field of a class is the entire body of the class.
This enables non-static methods and properties of a class to use any of the
class’s fields, methods and properties, regardless of the order in which they’re de-
clared. Similarly, static methods and properties can use any of the static mem-
bers of the class.

Any block may contain variable declarations. If a local variable or parameter in a
method has the same name as a field, the field is hidden until the block terminates—in
Chapter 10, we discuss how to access hidden fields. A compilation error occurs if a nested
block in a method contains a variable with the same name as a local variable in an outer
block of the method. The app in Fig. 7.8 demonstrates scoping issues with fields and local
variables.

Error-Prevention Tip 7.1
Use different names for fields and local variables to help prevent subtle logic errors that
occur when a method is called and a local variable of the method hides a field of the same
name in the class.

1 // Fig. 7.8: Scope.cs
2 // Scope class demonstrates static- and local-variable scopes.
3 using System;
4
5 class Scope
6 {
7
8
9

10 // Main creates and initializes local variable x
11 // and calls methods UseLocalVariable and UseStaticVariable
12 static void Main()
13 {
14
15
16 Console.WriteLine($"local x in method Main is {x}");
17
18 // UseLocalVariable has its own local x
19 UseLocalVariable();
20
21 // UseStaticVariable uses class Scope's static variable x
22 UseStaticVariable();
23
24 // UseLocalVariable reinitializes its own local x
25 UseLocalVariable();
26
27 // class Scope's static variable x retains its value
28 UseStaticVariable();

Fig. 7.8 | Scope class demonstrates static- and local-variable scopes. (Part 1 of 2.)

// static variable that’s accessible to all methods of this class
private static int x = 1;

int x = 5; // method's local variable x hides static variable x

176 Chapter 7 Methods: A Deeper Look

Line 8 declares and initializes the static variable x to 1. This static variable is
hidden in any block (or method) that declares a local variable named x. Method Main (lines
12–31) declares local variable x (line 14) and initializes it to 5. This local variable’s value
is output to show that static variable x (whose value is 1) is hidden in method Main. The
app declares two other methods—UseLocalVariable (lines 34–43) and UseStaticVari-
able (lines 46–53)—that each take no arguments and do not return results. Method Main
calls each method twice (lines 19–28). Method UseLocalVariable declares local variable
x (line 36). When UseLocalVariable is first called (line 19), it creates local variable x and

29
30 Console.WriteLine($"\nlocal x in method Main is {x}");
31 }
32
33 // create and initialize local variable x during each call
34 static void UseLocalVariable()
35 {
36
37
38 Console.WriteLine(
39 $"\nlocal x on entering method UseLocalVariable is {x}");
40
41 Console.WriteLine(
42 $"local x before exiting method UseLocalVariable is {x}");
43 }
44
45 // modify class Scope's static variable x during each call
46 static void UseStaticVariable()
47 {
48 Console.WriteLine("\nstatic variable x on entering method " +
49 $"UseStaticVariable is {x}");
50
51 Console.WriteLine("static variable x before exiting " +
52 $"method UseStaticVariable is {x}");
53 }
54 }

local x in method Main is 5

local x on entering method UseLocalVariable is 25
local x before exiting method UseLocalVariable is 26

static variable x on entering method UseStaticVariable is 1
static variable x before exiting method UseStaticVariable is 10

local x on entering method UseLocalVariable is 25
local x before exiting method UseLocalVariable is 26

static variable x on entering method UseStaticVariable is 10
static variable x before exiting method UseStaticVariable is 100

local x in method Main is 5

Fig. 7.8 | Scope class demonstrates static- and local-variable scopes. (Part 2 of 2.)

int x = 25; // initialized each time UseLocalVariable is called

++x; // modifies this method's local variable x

x *= 10; // modifies class Scope's static variable x

7.11 Method-Call Stack and Activation Records 177

initializes it to 25 (line 36), outputs the value of x (lines 38–39), increments x (line 40)
and outputs the value of x again (lines 41–42). When UseLocalVariable is called a second
time (line 25), it re-creates local variable x and reinitializes it to 25, so the output of each
call to UseLocalVariable is identical.

Method UseStaticVariable does not declare any local variables. Therefore, when it
refers to x, static variable x (line 8) of the class is used. When method UseStaticVari-
able is first called (line 22), it outputs the value (1) of static variable x (lines 48–49),
multiplies the static variable x by 10 (line 50) and outputs the value (10) of static vari-
able x again (lines 51–52) before returning. The next time method UseStaticVariable is
called (line 28), the static variable has its modified value, 10, so the method outputs 10,
then 100. Finally, in method Main, the app outputs the value of local variable x again (line
30) to show that none of the method calls modified Main’s local variable x, because the
methods all referred to variables named x in other scopes.

7.11 Method-Call Stack and Activation Records
To understand how C# performs method calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Think of a stack as analogous to a
pile of dishes. When a dish is placed on the pile, it’s placed at the top—referred to as push-
ing the dish onto the stack. Similarly, when a dish is removed from the pile, it’s removed
from the top—referred to as popping the dish off the stack. Stacks are known as last-in,
first-out (LIFO) data structures—the last item pushed (inserted) on the stack is the first
item popped (removed) from the stack.

7.11.1 Method-Call Stack
The method-call stack (sometimes referred to as the program-execution stack) is a data
structure that works behind the scenes to support the method call/return mechanism. It
also supports the creation, maintenance and destruction of each called method’s local vari-
ables. As we’ll see in Figs. 7.10–7.12, the stack’s last-in, first-out (LIFO) behavior is exactly
what a method needs in order to return to the method that called it.

7.11.2 Stack Frames
As each method is called, it may, in turn, call other methods, which may, in turn, call other
methods—all before any of the methods return. Each method eventually must return con-
trol to the method that called it. So, somehow, the system must keep track of the return
addresses that each method needs in order to return control to the method that called it.
The method-call stack is the perfect data structure for handling this information. Each
time a method calls another method, an entry is pushed onto the stack. This entry, called
a stack frame or an activation record, contains the return address that the called method
needs in order to return to the calling method. It also contains some additional informa-
tion we’ll soon discuss. If the called method returns instead of calling another method be-
fore returning, the stack frame for the method call is popped, and control transfers to the
return address in the popped stack frame. The same techniques apply when a method ac-
cesses a property or when a property calls a method.

The beauty of the call stack is that each called method always finds the information it
needs to return to its caller at the top of the call stack. And, if a method makes a call to

178 Chapter 7 Methods: A Deeper Look

another method, a stack frame for the new method call is simply pushed onto the call stack.
Thus, the return address required by the newly called method to return to its caller is now
located at the top of the stack.

7.11.3 Local Variables and Stack Frames
The stack frames have another important responsibility. Most methods have local vari-
ables—parameters and any local variables the method declares. Local variables need to ex-
ist while a method is executing. They need to remain active if the method makes calls to
other methods. But when a called method returns to its caller, the called method’s local
variables need to “go away.” The called method’s stack frame is a perfect place to reserve
the memory for the called method’s local variables. That stack frame exists as long as the
called method is active. When that method returns—and no longer needs its local vari-
ables—its stack frame is popped from the stack, and those local variables no longer exist.

7.11.4 Stack Overflow
Of course, the amount of memory in a computer is finite, so only a certain amount of mem-
ory can be used to store activation records on the method-call stack. If more method calls
occur than can have their activation records stored on the method-call stack, a fatal error
known as stack overflow occurs2—typically caused by infinite recursion (Section 7.16).

7.11.5 Method-Call Stack in Action
Now let’s consider how the call stack supports the operation of a Square method (lines
15–18 of Fig. 7.9) called by Main (lines 8–12).

2. This is how the website stackoverflow.com got its name. This is a popular website for getting an-
swers to your programming questions.

1 // Fig. 7.9: SquareTest.cs
2 // Square method used to demonstrate the method
3 // call stack and activation records.
4 using System;
5
6 class Program
7 {
8 static void Main()
9 {

10 int x = 10; // value to square (local variable in main)
11 Console.WriteLine($"x squared: { }");
12 }
13
14 // returns the square of an integer
15 static int Square(int y) // y is a local variable
16 {
17 return y * y; // calculate square of y and return result
18 }
19 }

Fig. 7.9 | Square method used to demonstrate the method-call stack and activation records.
(Part 1 of 2.)

Square(x)

7.11 Method-Call Stack and Activation Records 179

First, the operating system calls Main—this pushes an activation record onto the stack
(Fig. 7.10). This tells Main how to return to the operating system (i.e., transfer to return
address R1) and contains the space for Main’s local variable x, which is initialized to 10.

Method Main—before returning to the operating system—calls method Square in
line 11 of Fig. 7.9. This causes a stack frame for Square (lines 15–18) to be pushed onto
the method-call stack (Fig. 7.11). This stack frame contains the return address that Square
needs to return to Main (i.e., R2) and the memory for Square’s local variable y.

After Square performs its calculation, it needs to return to Main—and no longer needs
the memory for y. So Square’s stack frame is popped from the stack—giving Square the
return location in Main (i.e., R2) and losing Square’s local variable (Step 3). Figure 7.12
shows the method-call stack after Square’s activation record has been popped.

Method Main now displays the result of calling Square (Fig. 7.9, line 11). Reaching
the closing right brace of Main causes its stack frame to be popped from the stack, giving
Main the address it needs to return to the operating system (i.e., R1 in Fig. 7.10)—at this
point, Main’s local variable x no longer exists.

You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. There’s a significant omission in the sequence of
illustrations in this section. See if you can spot it before reading the next sentence. The call
to the method Console.Writeln, of course, also involves the stack, which should be
reflected in this section’s illustrations and discussion.

x squared: 100

Fig. 7.10 | Method-call stack after the operating system calls main to execute the program.

Fig. 7.9 | Square method used to demonstrate the method-call stack and activation records.
(Part 2 of 2.)

Method call stack after operating system calls Main

Activation record
for method Main

Top of stack
Return location: R1

Local variables:

x 10

Lines that represent the operating
system executing instructions

Key

Step 1: Operating system calls Main to begin program execution

Operating system
static void Main()
{
 int x = 10;
 Console.WriteLine(
 $"x squared: {Square(x)}");
}

Return location R1

180 Chapter 7 Methods: A Deeper Look

Fig. 7.11 | Method-call stack after Main calls square to perform the calculation.

s

Fig. 7.12 | Method-call stack after method square returns to Main.

Return location R2

Activation record for
method Square

Activation record
for method Main

Step 2: Main calls method Square to perform calculation

Return location: R1

Local variables:

x 10

Return location: R2

Local variables:

y 10

Top of stack

static void Main()
{
 int x = 10;
 Console.WriteLine(
 $"x squared: {Square(x)}");
}

static int Square(int y)
{
 return y * y;
}

Method call stack after Main calls Square

Method call stack after Square returns its result to Main

Return location R2

Activation record
for method Main

Step 3: Square returns its result to Main

Return location: R1

Local variables:

x 10

Top of stack

static void Main()
{
 int x = 10;
 Console.WriteLine(
 $"x squared: {Square(x)}");
}

static int Square(int y)
{
 return y * y;
}

7.12 Method Overloading 181

7.12 Method Overloading
Methods of the same name can be declared in the same class, as long as they have different
sets of parameters (determined by the number, types and order of the parameters). This is
called method overloading. When an overloaded method is called, the C# compiler selects
the appropriate method by examining the number, types and order of the arguments in the
call. Method overloading is commonly used to create several methods with the same name
that perform the same or similar tasks, but on different types or different numbers of arguments.
For example, Random method Next (Section 7.8) has overloads that accept different numbers
of arguments, and Math method Max has overloads that accept different types of arguments
(ints vs. doubles). These find the minimum and maximum, respectively, of two values of
each of the numeric simple types. Our next example demonstrates declaring and invoking
overloaded methods. You’ll see examples of overloaded constructors in Chapter 10.

7.12.1 Declaring Overloaded Methods
In class MethodOverload (Fig. 7.13), we include two Square methods—one that calculates
the square of an int (and returns an int) and one that calculates the square of a double
(and returns a double). Although these methods have the same name and similar param-
eter lists and bodies, you can think of them simply as different methods. It may help to
think of the method names as “Square of int” and “Square of double,” respectively.

1 // Fig. 7.13: MethodOverload.cs
2 // Overloaded method declarations.
3 using System;
4
5 class MethodOverload
6 {
7 // test overloaded square methods
8 static void Main()
9 {

10 Console.WriteLine($"Square of integer 7 is {Square(7)}");
11 Console.WriteLine($"Square of double 7.5 is {Square(7.5)}");
12 }
13
14 // square method with int argument
15
16 {
17 Console.WriteLine($"Called square with int argument: {intValue}");
18 return intValue * intValue;
19 }
20
21 // square method with double argument
22
23 {
24 Console.WriteLine(
25 $"Called square with double argument: {doubleValue}");
26 return doubleValue * doubleValue;
27 }
28 }

Fig. 7.13 | Overloaded method declarations. (Part 1 of 2.)

static int Square(int intValue)

static double Square(double doubleValue)

182 Chapter 7 Methods: A Deeper Look

Line 10 in Main invokes method Square with the argument 7. Literal integer values
are treated as type int, so the method call in line 10 invokes the version of Square at lines
15–19 that specifies an int parameter. Similarly, line 11 invokes method Square with the
argument 7.5. Literal real-number values are treated as type double, so the method call in
line 11 invokes the version of Square at lines 22–27 that specifies a double parameter.
Each method first outputs a line of text to prove that the proper method was called in each
case.

The overloaded methods in Fig. 7.13 perform the same calculation, but with two dif-
ferent types. C#’s generics feature provides a mechanism for writing a single “generic
method” that can perform the same tasks as an entire set of overloaded methods. We dis-
cuss generic methods in Chapter 18.

7.12.2 Distinguishing Between Overloaded Methods
The compiler distinguishes overloaded methods by their signature—a combination of the
method’s name and the number, types and order of its parameters. The signature also in-
cludes the way those parameters are passed, which can be modified by the ref and out key-
words (discussed in Section 7.18). If the compiler looked only at method names during
compilation, the code in Fig. 7.13 would be ambiguous—the compiler would not know
how to distinguish between the Square methods (lines 15–19 and 22–27). Internally, the
compiler uses signatures to determine whether a class’s methods are unique in that class.

For example, in Fig. 7.13, the compiler will use the method signatures to distinguish
between the “Square of int” method (the Square method that specifies an int parameter)
and the “Square of double” method (the Square method that specifies a double param-
eter). As another example, if Method1’s declaration begins as

then that method will have a different signature than a method that begins with

The order of the parameter types is important—the compiler considers the preceding two
Method1 headers to be distinct.

7.12.3 Return Types of Overloaded Methods
In discussing the logical names of methods used by the compiler, we did not mention the
methods’ return types. Methods cannot be distinguished by return type. If in a class named
MethodOverloadError you define overloaded methods with the following headers:

Called square with int argument: 7
Square of integer 7 is 49
Called square with double argument: 7.5
Square of double 7.5 is 56.25

void Method1(int a, float b)

void Method1(float a, int b)

int Square(int x)
double Square(int x)

Fig. 7.13 | Overloaded method declarations. (Part 2 of 2.)

7.13 Optional Parameters 183

which each have the same signature but different return types, the compiler generates the
following error for the second Square method:

Overloaded methods can have the same or different return types if the parameter lists are
different. Also, overloaded methods need not have the same number of parameters.

7.13 Optional Parameters
Methods can have optional parameters that allow the calling method to vary the number
of arguments to pass. An optional parameter specifies a default value that’s assigned to the
parameter if the optional argument is omitted. You can create methods with one or more
optional parameters. All optional parameters must be placed to the right of the method’s non-
optional parameters—that is, at the end of the parameter list.

When a parameter has a default value, the caller has the option of passing that partic-
ular argument. For example, the method header

specifies an optional second parameter. Each call to Power must pass at least a baseValue
argument, or a compilation error occurs. Optionally, a second argument (for the expo-
nentValue parameter) can be passed to Power. Each optional parameter must specify a de-
fault value by using an equal (=) sign followed by the value. For example, the header for
Power sets 2 as exponentValue’s default value. Consider the following calls to Power:

• Power()—This call generates a compilation error because this method requires a
minimum of one argument.

• Power(10)—This call is valid because one argument (10) is being passed. The op-
tional exponentValue is not specified in the method call, so the compiler uses 2
for the exponentValue, as specified in the method header.

• Power(10, 3)—This call is also valid because 10 is passed as the required argu-
ment and 3 is passed as the optional argument.

Figure 7.14 demonstrates an optional parameter. The program calculates the result of
raising a base value to an exponent. Method Power (lines 15–25) specifies that its second
parameter is optional. In Main, lines 10–11 call method Power. Line 10 calls the method
without the optional second argument. In this case, the compiler provides the second
argument, 2, using the default value of the optional argument, which is not visible to you
in the call.

Type 'MethodOverloadError' already defines a member called 'Square'
with the same parameter types

Common Programming Error 7.9
Declaring overloaded methods with identical parameter lists is a compilation error re-
gardless of whether the return types are different.

Common Programming Error 7.10
Declaring a non-optional parameter to the right of an optional one is a compilation error.

static int Power(int baseValue, int exponentValue = 2)

184 Chapter 7 Methods: A Deeper Look

7.14 Named Parameters
Normally, when calling a method, the argument values—in order—are assigned to the pa-
rameters from left to right in the parameter list. Consider a Time class that stores the time of
day in 24-hour clock format as int values representing the hour (0–23), minute (0–59) and
second (0–59). Such a class might provide a SetTime method with optional parameters like

In the preceding method header, all three of SetTime’s parameters are optional. Assuming
that we have a Time object named t, consider the following calls to SetTime:

• t.SetTime()—This call specifies no arguments, so the compiler assigns the de-
fault value 0 to each parameter. The resulting time is 12:00:00 AM.

• t.SetTime(12)—This call specifies the argument 12 for the first parameter,
hour, and the compiler assigns the default value 0 to the minute and second pa-
rameters. The resulting time is 12:00:00 PM.

• t.SetTime(12, 30)—This call specifies the arguments 12 and 30 for the param-
eters hour and minute, respectively, and the compiler assigns the default value 0
to the parameter second. The resulting time is 12:30:00 PM.

1 // Fig. 7.14: CalculatePowers.cs
2 // Optional parameter demonstration with method Power.
3 using System;
4
5 class CalculatePowers
6 {
7 // call Power with and without optional arguments
8 static void Main()
9 {

10 Console.WriteLine($"Power(10) = { }") ;
11 Console.WriteLine($"Power(2, 10) = { }");
12 }
13
14 // use iteration to calculate power
15 static int Power(int baseValue,)
16 {
17 int result = 1;
18
19 for (int i = 1; i <= exponentValue; ++i)
20 {
21 result *= baseValue;
22 }
23
24 return result;
25 }
26 }

Power(10) = 100
Power(2, 10) = 1024

Fig. 7.14 | Optional parameter demonstration with method Power.

public void SetTime(int hour = 0, int minute = 0, int second = 0)

Power(10)
Power(2, 10)

int exponentValue = 2

7.15 C# 6 Expression-Bodied Methods and Properties 185

• t.SetTime(12, 30, 22)—This call specifies the arguments 12, 30 and 22 for the
parameters hour, minute and second, respectively, so the compiler does not pro-
vide any default values. The resulting time is 12:30:22 PM.

What if you wanted to specify only arguments for the hour and second? You might
think that you could call the method as follows:

C# doesn’t allow you to skip an argument as shown above. C# provides a feature called
named parameters, which enable you to call methods that receive optional parameters by
providing only the optional arguments you wish to specify. To do so, you explicitly specify
the parameter’s name and value—separated by a colon (:)—in the argument list of the
method call. For example, the preceding statement can be written as follows:

In this case, the compiler assigns parameter hour the argument 12 and parameter second
the argument 22. The parameter minute is not specified, so the compiler assigns it the de-
fault value 0. It’s also possible to specify the arguments out of order when using named pa-
rameters. The arguments for the required parameters must always be supplied. The
argumentName: value syntax may be used with any method’s required parameters.

7.15 C# 6 Expression-Bodied Methods and Properties
C# 6 introduces a new concise syntax for:

• methods that contain only a return statement that returns a value

• read-only properties in which the get accessor contains only a return statement

• methods that contain single statement bodies.

Consider the following Cube method:

In C# 6, this can be expressed with an expression-bodied method as

The value of x * x * x is returned to Cube’s caller implicitly. The symbol => follows the
method’s parameter list and introduces the method’s body—no braces or return state-
ment are required and this can be used with static and non-static methods alike. If the
expression to the right of => does not have a value (e.g., a call to a method that returns
void), the expression-bodied method must return void. Similarly, a read-only property
can be implemented as an expression-bodied property. The following reimplements the
IsNoFaultState property in Fig. 6.11 to return the result of a logical expression:

t.SetTime(12, , 22); // COMPILATION ERROR

t.SetTime(hour: 12, second: 22); // sets the time to 12:00:22

static int Cube(int x)
{
 return x * x * x;
}

static int Cube(int x) => x * x * x;

public bool IsNoFaultState =>
 State == "MA" || State == "NJ" || State == "NY" || State == "PA";

186 Chapter 7 Methods: A Deeper Look

7.16 Recursion
The apps we’ve discussed thus far are generally structured as methods that call one another
in a disciplined, hierarchical manner. For some problems, however, it’s useful to have a
method call itself. A recursive method is a method that calls itself, either directly or indi-
rectly through another method. We consider recursion conceptually first. Then we examine
an app containing a recursive method.

7.16.1 Base Cases and Recursive Calls
Recursive problem-solving approaches have a number of elements in common. When a
recursive method is called to solve a problem, it actually is capable of solving only the sim-
plest case(s), or base case(s). If the method is called with a base case, it returns a result. If
the method is called with a more complex problem, it divides the problem into two con-
ceptual pieces (often called divide and conquer): a piece that the method knows how to do
and a piece that it does not know how to do. To make recursion feasible, the latter piece
must resemble the original problem, but be a slightly simpler or slightly smaller version of
it. Because this new problem looks like the original problem, the method calls a fresh copy
(or several fresh copies) of itself to work on the smaller problem; this is referred to as a re-
cursive call and is also called the recursion step. The recursion step normally includes a
return statement, because its result will be combined with the portion of the problem the
method knew how to solve to form a result that will be passed back to the original caller.

The recursion step executes while the original call to the method is still active (i.e.,
while it has not finished executing). The recursion step can result in many more recursive
calls, as the method divides each new subproblem into two conceptual pieces. For the
recursion to terminate eventually, each time the method calls itself with a slightly simpler
version of the original problem, the sequence of smaller and smaller problems must con-
verge on the base case(s). At that point, the method recognizes the base case and returns a
result to the previous copy of the method. A sequence of returns ensues until the original
method call returns the result to the caller. This process sounds complex compared with
the conventional problem solving we’ve performed to this point.

7.16.2 Recursive Factorial Calculations
Let’s write a recursive app to perform a popular mathematical calculation. The factorial of
a nonnegative integer n, written n! (and pronounced “n factorial”), is the product

1! is equal to 1 and 0! is defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated itera-
tively (nonrecursively) using the for statement as follows:

n · (n – 1) · (n – 2) · … · 1

long factorial = 1;

for (long counter = number; counter >= 1; --counter)
{
 factorial *= counter;
}

7.16 Recursion 187

A recursive declaration of the factorial method is arrived at by observing the following
relationship:

For example, 5! is clearly equal to 5 · 4!, as is shown by the following equations:

The evaluation of 5! would proceed as shown in Fig. 7.15. Figure 7.15(a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 7.15(b) shows the values returned from each recursive call to its caller
until the value is calculated and returned.

7.16.3 Implementing Factorial Recursively
Figure 7.16 uses recursion to calculate and display the factorials of the integers from 0 to
10. The recursive method Factorial (lines 17–28) first tests to determine whether a ter-
minating condition (line 20) is true. If number is less than or equal to 1 (the base case),
Factorial returns 1 and no further recursion is necessary. If number is greater than 1, line
26 expresses the problem as the product of number and a recursive call to Factorial eval-
uating the factorial of number - 1, which is a slightly simpler problem than the original
calculation, Factorial(number).

n! = n · (n – 1)!

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

Fig. 7.15 | Recursive evaluation of 5!.

1 // Fig. 7.16: FactorialTest.cs
2 // Recursive Factorial method.
3 using System;

Fig. 7.16 | Recursive Factorial method. (Part 1 of 2.)

(a) Sequence of recursive calls

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

188 Chapter 7 Methods: A Deeper Look

Method Factorial (lines 17–28) receives a parameter of type long and returns a result
of type long. As you can see in Fig. 7.16, factorial values become large quickly. We chose
type long (which can represent relatively large integers) so that the app could calculate fac-
torials greater than 20!. Unfortunately, the Factorial method produces large values so
quickly that factorial values soon exceed even the maximum value that can be stored in a
long variable. Due to the restrictions on the integral types, variables of type float, double
or decimal might ultimately be needed to calculate factorials of larger numbers. This situ-
ation points to a weakness in some programming languages—the languages are not easily
extended to handle the unique requirements of various apps. As you know, C# allows you
to create new types. For example, you could create a type HugeInteger for arbitrarily large
integers. This class would enable an app to calculate the factorials of larger numbers. In fact,

4
5 class FactorialTest
6 {
7 static void Main()
8 {
9 // calculate the factorials of 0 through 10

10 for (long counter = 0; counter <= 10; ++counter)
11 {
12 Console.WriteLine($"{counter}! = { }");
13 }
14 }
15
16 // recursive declaration of method Factorial
17
18 {
19 // base case
20 if (number <= 1)
21 {
22 return 1;
23 }
24 else // recursion step
25 {
26 return number * ;
27 }
28 }
29 }

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Fig. 7.16 | Recursive Factorial method. (Part 2 of 2.)

Factorial(counter)

static long Factorial(long number)

Factorial(number - 1)

7.17 Value Types vs. Reference Types 189

the .NET Framework’s BigInteger type (from namespace System.Numerics) supports
arbitrarily large integers.

7.17 Value Types vs. Reference Types
Types in C# are divided into two categories—value types and reference types.

Value Types
C#’s simple types (like int, double and decimal) are all value types. A variable of a value
type simply contains a value of that type. For example, Fig. 7.17 shows an int variable named
count that contains the value 7.

Reference Types
By contrast, a variable of a reference type (also called a reference) contains the location
where the data referred to by that variable is stored. Such a variable is said to refer to an
object in the program. For example, the statement

creates an object of our class Account (presented in Chapter 4), places it in memory and
stores the object’s reference in variable myAccount of type Account, as shown in Fig. 7.18.
The Account object is shown with its name instance variable.

Reference-Type Instance Variables Are Initialized to null by Default
Reference-type instance variables (such as myAccount in Fig. 7.18) are initialized by default
to null. The type string is a reference type. For this reason, string instance variable name

Common Programming Error 7.11
Either omitting the base case or writing the recursion step incorrectly so that it does not con-
verge on the base case will cause infinite recursion, eventually exhausting memory. This er-
ror is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

Fig. 7.17 | Value-type variable.

Account myAccount = new Account();

Fig. 7.18 | Reference-type variable.

7
A variable (count) of a value type (int)
contains a value (7) of that type

count

int count = 7;

Account myAccount = new Account();

Account objectmyAccount

A variable (myAccount) of a reference
type (Account) contains the location
of an Account object

name
(The arrow represents
the location of the
Account object)

190 Chapter 7 Methods: A Deeper Look

is shown in Fig. 7.18 with an empty box representing the null-valued variable. A string
variable with the value null is not an empty string, which is represented by "" or
string.Empty. Rather, the value null represents a reference that does not refer to an
object, whereas the empty string is a string object that does not contain any characters.
In Section 7.18, we discuss value types and reference types in more detail.

7.18 Passing Arguments By Value and By Reference
Two ways to pass arguments to methods in many programming languages are pass-by-val-
ue and pass-by-reference. When an argument is passed by value (the default in C#), a copy
of its value is made and passed to the called method. Changes to the copy do not affect
the original variable’s value in the caller. This prevents the accidental side effects that so
greatly hinder the development of correct and reliable software systems. Each argument
that’s been passed in the programs so far has been passed by value. When an argument is
passed by reference, the caller gives the method the ability to access and modify the caller’s
original variable—no copy is passed.

To pass an object by reference into a method, simply provide as an argument in the
method call the variable that refers to the object. Then, in the method body, reference the
object using the corresponding parameter name. The parameter refers to the original
object in memory, so the called method can access the original object directly.

In the previous section, we began discussing the differences between value types and
reference types. A major difference is that:

• value-type variables store values, so specifying a value-type variable in a method call
passes a copy of that variable’s value to the method, whereas

• reference-type variables store references to objects, so specifying a reference-type vari-
able as an argument passes the method a copy of the reference that refers to the object.

Even though the reference itself is passed by value, the method can still use the refer-
ence it receives to interact with—and possibly modify—the original object. Similarly,
when returning information from a method via a return statement, the method returns a
copy of the value stored in a value-type variable or a copy of the reference stored in a ref-
erence-type variable. When a reference is returned, the calling method can use that refer-
ence to interact with the referenced object.

Software Engineering Observation 7.4
A variable’s declared type (e.g., int or Account) indicates whether the variable is of a
value type or a reference type. If a variable’s type is one of the simple types (Appendix), an
enum type or a struct type (which we introduce in Section 10.13), then it’s a value type.
Classes like Account are reference types.

Performance Tip 7.1
A disadvantage of pass-by-value is that, if a large data item is being passed, copying that
data can take a considerable amount of execution time and memory space.

Performance Tip 7.2
Pass-by-reference improves performance by eliminating the pass-by-value overhead of
copying large objects.

7.18 Passing Arguments By Value and By Reference 191

7.18.1 ref and out Parameters
What if you would like to pass a variable by reference so the called method can modify the
variable’s value in the caller? To do this, C# provides keywords ref and out.

ref Parameters
Applying the ref keyword to a parameter declaration allows you to pass a variable to a
method by reference—the method will be able to modify the original variable in the caller.
Keyword ref is used for variables that already have been initialized in the calling method.

out Parameters
Preceding a parameter with keyword out creates an output parameter. This indicates to
the compiler that the argument will be passed into the called method by reference and that
the called method will assign a value to the original variable in the caller. This also prevents
the compiler from generating an error message for an uninitialized variable that’s passed
as an argument to a method.

Passing Reference-Type Variables by Reference
You also can pass a reference-type variable by reference, which allows you to modify it so
that it refers to a new object. Passing a reference by reference is a tricky but powerful tech-
nique that we discuss in Section 8.13.

Software Engineering Observation 7.5
Pass-by-reference can weaken security; the called method can corrupt the caller’s data.

Common Programming Error 7.12
When a method call contains an uninitialized variable as an argument to a ref param-
eter, the compiler generates an error.

Common Programming Error 7.13
If the method does not assign a value to the out parameter in every possible path of execu-
tion, the compiler generates an error. Also, reading an out parameter before it’s assigned
a value is also a compilation error.

Software Engineering Observation 7.6
A method can return only one value to its caller via a return statement, but can return
many values by specifying multiple output (ref and/or out) parameters.

Software Engineering Observation 7.7
By default, C# does not allow you to choose whether to pass each argument by value or by
reference. Value types are passed by value. Objects are not passed to methods; rather,
references to objects are passed—the references themselves are passed by value. When a
method receives a reference to an object, the method can manipulate the object directly,
but the reference value cannot be changed to refer to a new object.

192 Chapter 7 Methods: A Deeper Look

7.18.2 Demonstrating ref, out and Value Parameters
The app in Fig. 7.19 uses the ref and out keywords to manipulate integer values. The
class contains three methods that calculate the square of an integer.

1 // Fig. 7.19: ReferenceAndOutputParameters.cs
2 // Reference, output and value parameters.
3 using System;
4
5 class ReferenceAndOutputParameters
6 {
7 // call methods with reference, output and value parameters
8 static void Main()
9 {

10 int y = 5; // initialize y to 5
11 int z; // declares z, but does not initialize it
12
13 // display original values of y and z
14 Console.WriteLine($"Original value of y: {y}");
15 Console.WriteLine("Original value of z: uninitialized\n");
16
17 // pass y and z by reference
18 SquareRef(); // must use keyword ref
19 SquareOut(); // must use keyword out
20
21 // display values of y and z after they’re modified by
22 // methods SquareRef and SquareOut, respectively
23 Console.WriteLine($"Value of y after SquareRef: {y}");
24 Console.WriteLine($"Value of z after SquareOut: {z}\n");
25
26 // pass y and z by value
27 Square();
28 Square();
29
30 // display values of y and z after they’re passed to method Square
31 // to demonstrate that arguments passed by value are not modified
32 Console.WriteLine($"Value of y after Square: {y}");
33 Console.WriteLine($"Value of z after Square: {z}");
34 }
35
36 // uses reference parameter x to modify caller's variable
37 static void SquareRef()
38 {
39 x = x * x; // squares value of caller's variable
40 }
41
42 // uses output parameter x to assign a value
43 // to an uninitialized variable
44 static void SquareOut()
45 {
46 x = 6; // assigns a value to caller's variable
47 x = x * x; // squares value of caller's variable
48 }

Fig. 7.19 | Reference, output and value parameters. (Part 1 of 2.)

ref y
out z

y
z

ref int x

out int x

7.18 Passing Arguments By Value and By Reference 193

Method SquareRef (lines 37–40) multiplies its parameter x by itself and assigns the
new value to x. SquareRef’s parameter is declared as ref int, which indicates that the
argument passed to this method must be an integer that’s passed by reference. Because the
argument is passed by reference, the assignment at line 39 modifies the original argument’s
value in the caller.

Method SquareOut (lines 44–48) assigns its parameter the value 6 (line 46), then
squares that value. SquareOut’s parameter is declared as out int, which indicates that the
argument passed to this method must be an integer that’s passed by reference and that the
argument does not need to be initialized in advance.

Method Square (lines 52–55) multiplies its parameter x by itself and assigns the new
value to x. When this method is called, a copy of the argument is passed to the parameter
x. Thus, even though parameter x is modified in the method, the original value in the
caller is not modified.

Method Main (lines 8–34) invokes methods SquareRef, SquareOut and Square. We
begin by initializing variable y to 5 and declaring, but not initializing, variable z. Lines 18–
19 call methods SquareRef and SquareOut. Notice that when you pass a variable to a
method with a reference parameter, you must precede the argument with the same key-
word (ref or out) that was used to declare the reference parameter. Lines 23–24 display
the values of y and z after the calls to SquareRef and SquareOut. Notice that y has been
changed to 25 and z has been set to 36.

Lines 27–28 call method Square with y and z as arguments. In this case, both vari-
ables are passed by value—only copies of their values are passed to Square. As a result, the
values of y and z remain 25 and 36, respectively. Lines 32–33 output the values of y and
z to show that they were not modified.

49
50 // parameter x receives a copy of the value passed as an argument,
51 // so this method cannot modify the caller's variable
52 static void Square()
53 {
54 x = x * x;
55 }
56 }

Original value of y: 5
Original value of z: uninitialized

Value of y after SquareRef: 25
Value of z after SquareOut: 36

Value of y after Square: 25
Value of z after Square: 36

Common Programming Error 7.14
The ref and out arguments in a method call must match the ref and out parameters
specified in the method declaration; otherwise, a compilation error occurs.

Fig. 7.19 | Reference, output and value parameters. (Part 2 of 2.)

int x

194 Chapter 7 Methods: A Deeper Look

7.19 Wrap-Up
In this chapter, we discussed the difference between non-static and static methods, and
we showed how to call static methods by preceding the method name with the name of
the class in which it appears and the member-access operator (.). You saw that the Math
class in the .NET Framework Class Library provides many static methods to perform
mathematical calculations. We also discussed static class members and why method Main
is declared static.

We presented several commonly used Framework Class Library namespaces. You
learned how to use operator + to perform string concatenations. You also learned how to
declare constants with the const keyword and how to define sets of named constants with
enum types. We demonstrated simulation techniques and used class Random to generate sets
of random numbers. We discussed the scope of fields and local variables in a class. You saw
how to overload methods in a class by providing methods with the same name but dif-
ferent signatures. You learned how to use optional and named parameters.

We showed the concise notation of C# 6’s expression-bodied methods and read-only
properties for implementing methods and read-only property get accessors that contain
only a return statement. We discussed how recursive methods call themselves, breaking
larger problems into smaller subproblems until eventually the original problem is solved.
You learned the differences between value types and reference types with respect to how
they’re passed to methods, and how to use the ref and out keywords to pass arguments
by reference.

In Chapter 8, you’ll maintain lists and tables of data in arrays. You’ll see a more ele-
gant implementation of the app that rolls a die 60,000,000 times and two versions of a
GradeBook case study. You’ll also access an app’s command-line arguments that are passed
to method Main when a console app begins execution.

Symbols
^, boolean logical exclusive OR

143, 145
truth table 146

--, prefix/postfix decrement
118, 119

-, subtraction 60, 61
!, logical negation 143, 146

truth table 146
!=, not equals 62
?:, ternary conditional operator

103, 120
?? (null coalescing operator)

391, 392
?., null-conditional operator

(C# 6) 390, 391, 607
?[], null-conditional operator

(C# 6) 607
. (member access operator) 70
.NET Core xxxv
"", empty string 190
{, left brace 45
}, right brace 45
@ verbatim string character 504
*, multiplication 60, 61
*=, multiplication compound

assignment operator 118
/ forward slash in end tags 692
/, division 60, 61
/* */ delimited comment 42
//, single-line comment 42
\, escape character 55
\", double-quote escape

sequence 54
\=, division compound

assignment operator 118
\n, newline escape sequence 54
\r, carriage-return escape

sequence 55
\t, horizontal tab escape

sequence 54

&, boolean logical AND 143,
145

&, menu access shortcut 440,
442

&&, conditional AND 143, 144
truth table 144

%, remainder 60, 61
%=, remainder compound

assignment operator 118
+, addition 60, 61
+, concatenation operator 515
++, prefix/postfix increment 118
+=, addition compound

assignment operator 117
<, less than 62
<=, less than or equal 62
<>, angle brackets for XML

elements 692
=, assignment operator 58
-=, subtraction compound

assignment operator 117
==, comparison operator 508
==, is equal to 62
=> (in an expression-bodied

method) 185
=>, lambda operator 613, 650
>, greater than 62
>=, greater than or equal to 62
|, boolean logical inclusive OR

143, 145
||, conditional OR 143, 144

truth table 144
$ (dollar sign for interpolated

string) 56

A
Abs method of Math 153
absolute value 153
abstract class 334, 335, 353
abstract keyword 316, 334
abstract method 334, 336, 338

abstraction 71
AcceptButton property of class

Form 398
AcceptsReturn property of class

TextBox 411
access modifier 75

private 75, 270, 303
protected 270, 303
public 75, 270, 303

access modifier in the UML
- (private) 76
+ (public) 76

access private member of a class
76

access shortcut 439
action 100, 106
action expression in the UML

98
action state in the UML 98
action state symbol 97
Activation property of class

ListView 474
activation record 177
active control 407
active tab 21
active window 397
ActiveLinkColor property of

class LinkLabel 453
ActiveMdiChild property of

class Form 485, 486
activity diagram 98, 100

do...while statement 133
for statement 128
if statement 100
if...else statement 101
in the UML 106
sequence statement 97
switch statement 138
while statement 107

activity in the UML 97
add a database to a project 639

Index

706 Index

add a reference to a class library
532, 644

Add method of class List<T> 260
Add method of class

ObjectCollection 459
Add method of class

SortedDictionary<K,V> 602
Add Tab menu item 480
Add User Control… option in

Visual Studio .NET 499
Add Windows Form… option in

Visual Studio 485
AddDay method of structure

DateTime 453
addition 60
AddLast method of class

LinkedList 605
AddRange method of class

List<T> 257
AddYears method of structure

DateTime 453
ADO.NET Entity Data Model

636
data source for data binding

645
entities 642

ADO.NET Entity Framework
631
DbContext class 649
DbExtensions class 650
Entity Data Model 636

AfterSelected event of class
TreeView 469

Aggregate LINQ extension

method 619
algebraic notation 60
Alphabetic icon 27
alphabetizing 507
Alt key 433
Alt key shortcut 439
Alt property of class

KeyEventArgs 434, 436
Analyze menu 21
anchor a control 407
Anchor property of class Control

409
anchoring a control 407
Anchoring demonstration 408
Android

operating system 9

angle bracket (<>) for XML
elements 692

anonymous method 590, 611,
650

anonymous type 256, 659
Equals method 659
ToString method 659

Any extension method of
interface IEnumerable<T> 255

app 45
app bar 9
App Developer Agreement 10
Appearance property of class

CheckBox 416
Append method of class

StringBuilder 520
AppendFormat method of class

StringBuilder 521, 522
AppendText method of class File

557
application 16
Application class 448

Exit method 448, 461
arbitrary number of arguments

236
args parameter of Main method

238
argument promotion 160
argument to a method 46
ArgumentException class 602
ArgumentOutOfRangeException

class 268, 276, 505, 514, 522
arithmetic compound

assignment operators 117
arithmetic operators 59
ArrangeIcons value of

enumeration MdiLayout 487
array

bounds checking 209
ignoring element zero 210
Length property 198
pass an array element to a

method 217
pass an array to a method

217
array-access expression 197
Array class 244, 592, 593, 596

Resize method 198

Array class static methods for
common array manipulations
593

array-creation expression 198,
199

array initializer 200
for jagged array 226
for rectangular array 225
nested 225

array-access expression
for jagged arrays 226
for rectangular arrays 225

ArrayList class 592
arrays as references 240
arrow 98
as operator (downcasting) 349,

391
ascending modifier of a LINQ

orderby clause 250
ASCII (American Standard

Code for Information
Interchange) 436
character set 138, 704

ASP.NET 7
AsParallel method of class

ParallelEnumerable 625
assembly (compiled code) 51,

644
assign a value to a variable 58
assignment operator

= 58, 61
compound 117

assignment statement 58
associativity of operators 61, 65,

120
left to right 65, 121
right to left 61, 65, 120

async xxv, 7
async modifier 674, 675, 678
asynchronous programming 7,

674
asynchronous task 673, 675
attribute

in the UML 4, 76
of a class 2
of an object 4

Attribute method of class
XElement 693

attributes (XML) 692
augmented reality 10

Index 707

AuthorISBN table of Books
database 632, 634

Authors table of Books database
632, 633

auto-implemented property 83,
87, 534
getter only (C# 6) 212, 282

auto-hide 24
autoincremented database

column 633
automatic garbage collection

374
automatic memory

management 284
AutoPopDelay property of class

ToolTip 427
AutoScroll property of class

Form 398
AutoScroll property of class

Panel 413
AutoSize property of class

TextBox 33
average calculation 107, 109,

110
Average IEnumerable<T>

extension method 619, 625
Average ParallelQuery<T>

extension method 625
await xxv
await expression 7, 675, 679
await multiple Tasks 685
awaitable entity 675

B
BackColor property of a form 32
BackColor property of class

Control 406
background color 32
BackgroundImage property of

class Control 406
backslash, (\) 54
bar chart 205, 206
bar of asterisks 205, 206
base

for constructor initializers
316

for invoking overridden
methods 323

keyword 303, 316, 323, 324
base case 186

base class 300
constructor 307
default constructor 307
direct 300, 302
indirect 300, 302
method overridden in a

derived class 323
behavior of a class 2
BigInteger struct 189
binary operator 58, 59, 146
binary search tree 599
BinaryFormatter class 550

Deserialize method 550
Serialize method 554

BinarySearch method of class
Array 596

BindingNavigator class 638, 647
BindingSource class 647

DataSource property 650
EndEdit method 651
MoveFirst method 654
Position property 654

BitArray class 593
bitwise operators 418
bitwise Xor operator 449
blank line 43
block of statements 64, 102,

113, 159
BMP (Windows bitmap) 36
body

of a class declaration 45
of a method 46
of an if statement 61

body of a loop 106
Bohm, C. 97
Books database 632

table relationships 635
bool simple type 99, 702

expression 103
Boolean 99
boolean logical AND, & 143,

145
boolean logical exclusive OR, ^

143, 145
truth table 146

boolean logical inclusive OR, |
145

BorderStyle property of class
Panel 413

boundary of control 498

bounds checking 209
boxing 592
braces ({ and }) 102, 113
braces ({}) 64
braces not required 137
braces, { } 200
break statement 136, 141

exiting a for statement 142
brittle software 320
buffer 531
BufferedStream class 531
buffering 531
Build menu 21
built-in array capabilities 592
button 396
Button class 12, 396, 410

Click event 411
FlatStyle property 411
Text property 411

Button properties and events
411

Button property of class
MouseEventArgs 431

ButtonBase class 410
byte simple type 702

C
C format specifier 92
C format specifier (for currency)

91
C# 6 185

Add extension method
support in collection
initializers 608

exception filter 392
expression-bodied method

185
expression-bodied property

185
getter-only auto-

implemented property
212, 282, 289

index initializer 608
nameof operator 276
null-conditional operator

(?.) 390, 391, 607
null-conditional operator

(?[]) 607
string interpolation 55, 56
using static 595

708 Index

C# 6 Specification xxi, 373
C# Coding Conventions 207
.cs file name extension 45
C# keywords 44
C# programming language 5
Calculating values to be placed

into the elements of an array
201

calculations 66, 97
CalendarForeColor property of

class DateTimePicker 450
CalendarMonthBackground

property of class
DateTimePicker 450

call stack 382
callback method 675
calling method (caller) 73
camel case 44, 58, 72
CancelButton property of class

Form 398
CancelPendingRequests method

of class HttpClient 691
Capacity property of class

List<T> 257
Capacity property of class

StringBuilder 518
Card class represents a playing

card 212
card games 212
card shuffling

Fisher-Yates 215
Card shuffling and dealing

application 216
carriage return 55
Cascade value of enumeration

MdiLayout 487
cascaded method calls 297
cascaded window 487
case 136, 137

keyword 136
case sensitive 44
casino 164, 169
cast

downcast 349
cast operator 112, 113, 161,

173
catch

general catch clause 370
catch all exception types 370
catch an exception 367

Catch block 211
catch block 369

when clause (C# 6) 392
with no exception type 370
with no identifier 369

catch-related errors 373
Categorized icon 27
Ceiling method of Math 153
char simple type 57, 702

array 505
Char struct 503

CompareTo method 527
IsDigit method 526
IsLetter method 527
IsLetterOrDigit method

527
IsLower method 527
IsPunctuation method 527
IsSymbol method 527
IsUpper method 527
IsWhiteSpace method 527
static character-testing

methods and case-
conversion methods 525

ToLower method 527
ToUpper method 527

character 163
constant 138, 504
string 46

check box 410
CheckBox class 396, 416

Appearance property 416
Checked property 416
CheckedChanged event 416
CheckState property 416
properties and events 416
Text property 416
ThreeState property 416

CheckBoxes property
of class ListView 474
of class TreeView 469

Checked property
of class CheckBox 416
of class RadioButton 419
of class ToolStripMenuItem

443, 448
of class TreeNode 469

CheckedChanged event
of class CheckBox 416
of class RadioButton 419

CheckedIndices property of
class CheckedListBox 462

CheckedItems property of class
CheckedListBox 462

CheckedListBox class 439, 457,
461
CheckedIndices property

462
CheckedItems property 462
GetItemChecked method 462
ItemCheck event 461, 462
properties and events 462
SelectionMode property 462

CheckOnClick property of class
ToolStripMenuItem 443

CheckState property of class
CheckBox 416

child node 468
child window 484

maximized 486
minimized 486

Choose Items… option in Visual
Studio 500

chromeless window 9
class 2, 3, 152

constructor 84
declaration 44, 45
default constructor 86
instance variable 154
name 44, 45, 493
user defined 44

class average 107
class cannot extend a sealed class

351
class constraint 576
class hierarchy 300, 335
class library 7, 301, 325, 493

add a reference 644
add a reference to 532
compile into 532

class variable 154
Class View (Visual Studio .NET)

289
“class-wide” information 285
Classes

Application 448
ArgumentException 602
ArgumentOutOfRange-

Exception 276
Array 244, 592, 593, 596, 597

Index 709

Classes (cont.)
ArrayList 592
BinaryFormatter 550
BindingNavigator 647
BindingSource 647, 651
BitArray 593
BufferedStream 531
Button 410
ButtonBase 410
CheckBox 416
CheckedListBox 439, 457,

461
ComboBox 439, 464
Console 46, 53, 530, 531
Control 406, 409, 497
DataContractJson-

Serializer 550
DataGridView 638
DateTimePicker 450
DbContext 637, 643
Delegate 404
Dictionary 565, 592
Dictionary<K,V> 598
Directory 557, 561
DirectoryInfo 479, 557
DivideByZeroException

365, 368, 372
Enumerable 616, 637
EventArgs 400
Exception 372
ExecutionEngineException

372
File 557, 561, 565
FileInfo 479
FileStream 531
Font 418
Form 397, 398, 485, 486
FormatException 366, 369
Graphics 433, 467
GroupBox 413
Hashtable 602
HttpClient 691
ImageList 469, 475
IndexOutOfRangeException

211
InvalidCastException 349,

391, 591
InvalidOperationException

597, 606

Classes (cont.)
ItemCheckEventArgs 462
KeyEventArgs 433, 434, 436
KeyNotFoundException 602
LinkedList 592, 605
LinkedList<T> 592, 603
LinkedListNode<T> 603
LinkLabel 439, 453, 453
List 592
List<T> 256, 257, 260, 592
ListBox 439, 456
ListBox.ObjectCollection

458
ListView 474
ListViewItem 475
Match 503, 527
Math 153
MemoryStream 531
MenuStrip 440
MonthCalendar 449
MouseEventArgs 430
MulticastDelegate 404
NullReferenceException

372
NumericUpDown 396, 428
object 305, 325
ObjectCollection 458, 459,

461
ObservableCollection<T>

650, 655
OpenFileDialog 543, 549
OutOfMemoryException 372
PaintEventArgs 497
Panel 413
ParallelEnumerable 625
ParallelQuery<T> 625
Path 473, 565
PictureBox 424, 487
Process 456
ProgressBar 694
Queryable 637
Queue<T> 592, 593
RadioButton 416, 419
Random 164
ResourceManager 426
Resources 426
SaveFileDialog 538
SolidBrush 433
SortedDictionary 592, 599,

601

Classes (cont.)
SortedDictionary<K,V> 592
SortedList 592, 593
SortedList<K,V> 592
SortedSet<T> 627
Stack 577
Stack<T> 592, 593
StackOverflowException

372
Stream 531, 531
StreamReader 531
StreamWriter 531
string 73, 503
StringBuilder 503, 517,

520, 521, 522
SystemException 372
TabControl 480
TabPage 480
Task<TResult> 679
TextBox 396
TextReader 531
TextWriter 531
Timer 499
ToolStripMenuItem 440,

442
ToolTip 426, 427
TreeNode 469
TreeNodeCollection 469
TreeView 439, 468, 469
TreeViewEventArgs 469
Type 326, 350
UnauthorizedAccess-

Exception 473
UserControl 497
ValueType 525
XAttribute 693
XDocument 693
XElement 693
XmlSerializer 550

Clear method of class Array 597
Clear method of class

Dictionary 565
Clear method of class Graphics

467
Clear method of class List<T>

257
Clear method of class

ObjectCollection 461
ClearSelected method of class

ListBox 458

710 Index

click a Button 398, 410
Click event of class Button 411
Click event of class PictureBox

424
Click event of class

ToolStripMenuItem 442, 443
Clicks property of class

MouseEventArgs 431
client of a class 73, 78
client code 330
client of a class 75
ClipRectangle property of class

PaintEventArgs 497, 498
clock 498
cloning objects

shallow copy 326
close a project 21
close a window 398
close box 38
Close method of class Form 398
CLR (Common Language

Runtime) 7, 374, 388
code reuse 300, 589
code snippets 174
Coding Conventions (C#) 207
coding requirements 207
coin tossing 165
collapse a tree 25
Collapse method of class

TreeNode 470
collapse node 469
collection 256, 569, 589
collection class 589
collection initializer 263, 608

Add extension method (C# 6)
608

collision 598
Color structure 433
column 225
column in a database table 631,

632
column index 229
columns of a two-dimensional

array 225
ComboBox class 396, 439, 464

DropDownStyle property
464, 465

Items property 465
MaxDropDownItems property

464

ComboBox class (cont.)
SelectedIndex property 465
SelectedIndexChanged event

465
SelectedIndexChanged event

handler 654
SelectedItem property 465
Sorted property 465

ComboBox demonstration 464
ComboBox properties and an

event 465
ComboBox used to draw a selected

shape 465
ComboBoxStyle enumeration 464

DropDown value 464
DropDownList value 464
Simple value 464

comma (,) 129
comma-separated list 129

of parameters 157
of arguments 74

command-line argument 237,
239

Command Prompt 41, 238
comment 42
CommissionEmployee class 305,

320
extends Employee 343

Common Language Runtime
(CLR) 7, 374, 388

Common Programming Errors
overview xxvii

CompareTo method
of interface IComparable

360, 527, 574
comparison operator 61, 360
compartment in a UML class

diagram 76
compilation error 42
compile 47
compile into a class library 532
compile-time error 42
compiler 113
compiler error 42
compile-time type safety 568
ComplexNumber class 292
component 2, 396
component tray 427, 647
composite key 631
composite primary key 634

composition 280, 301, 303
compound assignment

operators 117, 120
*= 118
\= 118
%= 118
+= 117
-= 117

compound interest 129
calculating with for 129

Concat method of class string
515

concatenate strings 286
concrete class 334
concrete derived class 339
concurrent operations 673
condition 61, 133
conditional AND (&&) operator

143, 145, 255
truth table 144

conditional expression 103
conditional operator, ?: 103,

120
conditional OR, || 143, 144

truth table 144
confusing the equality operator

== with the assignment
operator = 61

connect to a database 637, 639
connection string 641, 645
console app 41, 47
Console class 530, 531
console window 41, 53, 54
Console.WriteLine 46, 53
const keyword 139, 154, 202,

288
constant 139, 154, 202

declare 202
must be initialized 202
Pascal Case 202

constant integral expression
133, 138

constant string expression 133
Constants

Nan of structure Double 366,
388

NegativeInfinity of
structure Double 366

PositiveInfinity of
structure Double 366

Index 711

constituent controls 497
constructor 84

multiple parameters 87
constructor constraint (new())

576
constructor header 85
constructor initializer 276, 316

with keyword base 316
constructors cannot specify a

return type 85
container 396, 397

parent 409
container control in a GUI 407
Contains method of class

List<T> 257, 260
ContainsKey method of class

Dictionary 565
ContainsKey method of

SortedDictionary<K,V> 602
context-sensitive help 28
contextual keyword 82

value 82
contextual keywords 44
continue keyword 141
continue statement 141, 142

terminating an iteration of a
for statement 143

contravariance 627
control 20, 26, 396
control boundary 498
Control class 406, 497

Anchor property 409
BackColor property 406
BackgroundImage property

406
Dock property 409
Enabled property 407
Focused property 406
Font property 407
ForeColor property 407
Hide method 407
KeyDown event 433, 434
KeyPress event 433, 434
KeyUp event 433, 434
Location property 409
MaximumSize property 409
MinimumSize property 409
MouseDown event 431
MouseEnter event 431
MouseHover event 431

Control class (cont.)
MouseLeave event 431
MouseMove event 431
MouseUp event 431
MouseWheel event 431
OnPaint method 497
Padding property 409
Select method 407
Show method 407
Size property 409
TabIndex property 407
TabStop property 407
Text property 407
Visible property 407

control layout and properties
406

Control property of class
KeyEventArgs 434, 436

control statement 97, 99, 100
nesting 99
stacking 99

control variable 124, 126, 127
Controls 12

BindingNavigator 647
Button 12
DataGridView 638
GroupBox 12
Label 20, 29, 32
Panel 12
PictureBox 20, 29, 35
RadioButton 12

Controls property of class
GroupBox 413, 414

Controls property of class Panel
413

converge on a base case 186
convert

an integral value to a
floating-point value 162

Copy method of class Array 596
Copy method of class File 557
copying objects

shallow copy 326
CopyTo method of class string

506
Cos method of Math 153
cosine 153
Count extension method of

interface IEnumerable<T> 255
Count method (LINQ) 565

Count property
of class List<T> 257
of SortedDictionary<K,V>

602
counter-controlled iteration

107, 112, 115, 124, 125
with the for iteration

statement 125
with the while iteration

statement 125
counting loop 125
covariance 626
covariant

interface 626
craps (casino game) 164, 169
create a reusable class 493
create an object (instance) of a

class 69, 70
Create method of class File 557
CreateDirectory method of

class Directory 557
CreateText method of class File

557
creating a child Form to be added

to an MDI Form 485
creating a generic method 584
creating and initializing an array

199
credit inquiry 545
.cs file name extension 25, 72
.csproj file extension 36
Ctrl key 136, 433
Ctrl + z 136
culture settings 91, 114
Current property of

IEnumerator 596
current time 499
CurrentValue property of class

ItemCheckEventArgs 462
cursor 46, 53
custom control 497, 498

creation 498, 500
Custom palette 32
Custom tab 32
Custom value of enumeration

DateTimePickerFormat 450
CustomFormat property of class

DateTimePicker 450
customize a Form 26
customize Visual Studio IDE 21

712 Index

D
D format specifier for integer

values 92, 206
data binding 637
data source 249, 615

entity data model 645
Data Source Configuration Wizard

645
Data Sources window 645, 646
data types

bool 99
double 110
float 110

database 630
add to a project 639
saving changes in LINQ to

Entities 650
schema 632

database connection 639
database management system

(DBMS) 630
database schema 632, 636
database table 631
DataContext class

SaveChanges method 637
DataContractJsonSerializer

class 550
DataGridView control 638, 638,

646
DataSource property

BindingSource class 650
Date property of a DateTime 450
DateChanged event of class

MonthCalendar 449, 450
DateTime structure 499, 680

AddDay method 453
AddYears method 453
DayOfWeek property 453
Now property 499, 625
Subtract method 625
ToLongDateString method

453
ToLongTimeString method

499
DateTimePicker class 450

CalendarForeColor property
450

CalendarMonthBackground
property 450

CustomFormat property 450

DateTimePicker class (cont.)
Format property 450
MaxDate property 450, 453
MinDate property 450, 453
ShowCheckBox property 450
ShowUpDown property 451
Value property 450, 451,

452
ValueChanged event 450

DateTimePickerFormat
enumeration 450
Custom value 450
Long value 450
Short value 450
Time value 450

DayOfWeek

enumeration 453
property of structure

DateTime 453
DB2 630
DbContext class 637, 643, 649

SaveChanges method 651
DbExtensions class 650

Load extension method 650,
654

DBMS (database management
system) 630

dealing a card 212
Debug menu 21
Debugging 21
decimal literal 89
decimal point 110, 114
decimal simple type 57, 87,

130, 703
Parse method 92

decimal type
Parse method 93

DecimalPlaces property of class
NumericUpDown 428

decision 61, 99
decision symbol 99
declaration 55

class 44, 45
method 46

declarative programming 247
declare a constant 202
decrement operator, -- 118, 119
default

case in a switch 136
keyword 136

default case 168
default constructor 86, 279, 307
default event of a control 404
default settings 12
default type constraint (object)

of a type parameter 579
default value 73, 121
default value for optional

parameter 183, 183
deferred execution 263, 621
definitely assigned 109, 172
Delegate 686
delegate 403, 590, 608

Delegate class 404
Func 619, 621, 649, 650,

655
MulticastDelegate class 404
registering an event handler

403
delegate keyword 403, 610
Delete method of class

Directory 558
Delete method of class File

557, 565
delimited comments 42
dependent condition 145
derived class 300
Descendants method of class

XDocument 693
descending modifier of a LINQ

orderby clause 250
deselected state 419
Deserialize method of class

BinaryFormatter 550
deserialized object 550
design mode 38
design process 5
Design view 19, 30
destructor 284
dialog 19
DialogResult enumeration 424,

538
diamond 99

in the UML 97
dice game 169
dictionary 597
Dictionary class 592
Dictionary<K,V> class 565, 592,

598
Clear method 565

Index 713

Dictionary<K,V> class (cont.)
ContainsKey method 565
Keys property 565
Remove method 565

digit 57
direct base class 300, 302
Directory class 557, 561

CreateDirectory method 557
GetFiles method 565
methods (partial list) 558

DirectoryInfo class 479, 557
Exists method 479
FullName property 479
GetDirectories method 479
GetFiles method 479
Name property 479
Parent property 479

display output 65
displaying line numbers in the

IDE xxxv
Dispose method of interface

IDisposable 361, 381
distance between values

(random numbers) 168
Distinct extension method of

interface IEnumerable<T> 255
divide and conquer 186
divide by zero 365, 368
DivideByZeroException class

365, 368, 369, 372
division 60
.dll file 51, 494
do keyword 132
do...while iteration statement

98, 132, 133
dock a control 407
Dock property of class Control

409, 647
docking demonstration 409
.NET 8

Framework 7, 569
Framework Class Library

(FCL) 5, 8, 43, 152, 162,
360

Framework documentation
43

initiative 7
.NET 4.6 8
.NET Core xxxv, 6, 8
dotted line in the UML 98

Double 574
(double) cast 113
double data type 110
double equals, == 61
double quote, " 46, 54
double-selection statement 98
double simple type 57, 131, 703

Parse method 157
Double.NaN 366, 388
Double.NegativeInfinity 366
Double.PositiveInfinity 366
down-arrow button 32
downcast 349
drag the mouse 27
Draw event of class ToolTip 427
draw on control 498
DrawEllipse method of class

Graphics 468
DrawPie method of class

Graphics 468
DrawRectangle method of class

Graphics 468
DreamSpark xxviii
driver class 69
drop-down list 396, 464
DropDown value of enumeration

ComboBoxStyle 464
DropDownList value of

enumeration ComboBoxStyle
464

DropDownStyle property of class
ComboBox 464, 465

dummy value 110
DVD 530
dynamic binding 348
dynamic resizing 246
dynamic resizing of a List

collection 257
dynamically linked library 51,

494

E
E format specifier 92
ECMA-334 (C# Standard) 6
Edit menu 21
editable list 465
EF (ADO.NET Entity

Framework) 631
element (XML) 692
element of an array 197

element of chance 164
eligible for destruction 284, 287
eligible for garbage collection

284, 287
eliminate resource leak 375
ellipsis button 33
else 100
Employee abstract base class 338,

357
Employee class with FirstName,

LastName and MonthlySalary
properties 251

Employee class with references to
other objects 283

Employee hierarchy test
application 346

empty parameter list 75
empty statement (a semicolon,

;) 103
empty string 190

"" 190
string.Empty 190

EmptyStackException indicates a
stack is empty 580

Enabled property of class
Control 407

encapsulation 4, 312, 351
“end of data entry” 110
end-of-file indicator 530

EOF 136
end tag 692
EndEdit method of class

BindingSource 651
EndsWith method of class string

510, 511
EnsureCapacity method of class

StringBuilder 518
Enter (or Return) key 30, 46
enter data from the keyboard 396
entities in an entity data model

642
entity connection string 641
Entity Data Model 631, 636,

638, 649
ADO.NET Entity

Framework 636
create from database 639
data source for data binding

645
entities 642

714 Index

entity-relationship diagram 635
entry point 46

of an application 154
enum 172

keyword 172
Enumerable class 616, 637

Range method 625
Repeat method 697
ToArray method 263
ToList method 263, 625

enumeration 172
enumeration constant 173
enumerations

ComboBoxStyle 464
DateTimePickerFormat 450
DayOfWeek 453
MdiLayout 487
SelectionMode 457

enumerator 589, 596
fail fast 597
of a LinkedList 606

equal likelihood 166
equality operators (== and !=) 99
Equals method of an

anonymous type 659
Equals method of class object

325
Equals method of class string

508, 509
Error List window 51
Error property of class Console

530
escape character 54
escape sequence 54, 57

carriage return, \r 55
escape character, \ 55
horizontal tab, \t 54
newline, \n 54, 57

event 398
event driven 6, 398
event handler 398, 403
event handling 398
event handling model 398
event multicasting 404
event sender 403
EventArgs class 400
events 6
events at an interval 499
exception 58, 209, 211, 363

ArgumentException 602

exception (cont.)
handler 211
handling 209
IndexOutOfRangeException

211
InvalidCastException 349,

391, 591
InvalidOperationException

597, 606
KeyNotFoundException 602
Message property 211
parameter 211

Exception Assistant 370
Exception class 372
exception filter (C# 6) 392

when clause 392
exception handler 363, 373
exception handling 58
.exe file name extension 51
executable 8, 51
execute an application 47
ExecutionEngineException class

372
exhausting memory 189
Exists method of class

Directory 558
Exists method of class

DirectoryInfo 479
Exit method of class

Application 448, 461
exit point of a control statement

99
Exp method of Math 154
expand a tree 25
Expand method of class TreeNode

470
expand node 469
ExpandAll method of class

TreeNode 470
explicit conversion 113
explicit type argument 573
exponential complexity 678
exponential method 154
exponentiation operator 130
expression 59, 99, 114
expression bodied (C# 6)

=> 185
method 185
property 185

expression lambda 613

extend a class 300
extensibility 330
extensible programming

language 68
extension method 255, 295,

608, 618, 637
Aggregate 616, 619
Enumerable class 616
IEnumerable<T> 616
LINQ 608, 616
LINQ to Entities 649
Max 619
Min 619
OrderBy 621
Reverse 507
Select 616, 622
Sum 619
Where 616, 621

external iteration 615

F
F format specifier 92

for floating-point numbers
114

factorial 186
Factorial method 187
false keyword 61, 99, 100
fault tolerant 58
fault-tolerant program 211, 363
Fibonacci series 676, 678
field

default initial value 73
in a database table 631

field of a class 154, 175
field width 131
File class 557, 561

Delete method 565
File class methods (partial list)

557
File menu 21
File name extensions

.cs 25

.csproj 36
FileAccess enumeration 539
FileInfo class 479

FullName property 479
Name property 479

file-position pointer 544
files 530

Index 715

FileStream class 531, 538, 544,
555
Seek method 549

FillEllipse method of class
Graphics 433, 468

FillPie method of class
Graphics 468

FillRectangle method of class
Graphics 468

filter (functional programming)
616, 621

filter a collection using LINQ
247

filter elements 621
filtering array elements 611
final state in the UML 98
Finalize method

of class object 325
finally block 370, 374
finally blocks always execute,

even when no exception
occurs 375

Find method of class LinkedList
607

Finished design of MasterDetail
app 662

First extension method of
interface IEnumerable<T> 255

FirstDayOfWeek property of
class MonthCalendar 449

FirstNode property of class
TreeNode 469

Fisher-Yates shuffling algorithm
215

flag value 110
flash drive 530
FlatStyle property of class

Button 411
Flickr 687
Flickr API key 687
float simple type 57, 110, 131,

702
floating-point division 114
floating-point number 110, 112

double data type 110
float data type 110

Floor method of Math 153
flow of control 106, 112
flow of control in the if...else

statement 100

focus 397
Focused property of class

Control 406
Font class 418

Style property 418
Font dialog 34
Font property of a Label 33
Font property of class Control

407
Font property of class Form 398
font size 33
font style 34, 416
Font window 34
FontStyle enumeration 418
for iteration statement 98, 125,

126, 128, 129
activity diagram 128
header 126

foreach iteration statement
203, 597
on rectangular arrays 234

ForeColor property of class
Control 407

foreign key 634, 636
form 20
form background color 32
Form class 397

AcceptButton property 398
ActiveMdiChild property

486
AutoScroll property 398
CancelButton property 398
Close method 398
Font property 398
FormBorderStyle property

398
Hide method 398
IsMdiChild property 486
IsMdiContainer property

485, 486
LayoutMdi method 486, 487
Load event 398
MaximumSize property 409
MdiChildActivate event 486
MdiChildren property 486
MdiParent property 485
MinimumSize property 409
Padding property 408
Show method 398
Text property 398

Form properties, methods and
events 398

format item 522
Format menu 21
Format property of class

DateTimePicker 450
format specifier 91

C for currency 91
D for integer values 92, 206
E for scientific notation 92
F for floating-point numbers

92, 114
G for scientific or floating-

point notation depending
on the context 92

N for numbers 92
table 92

format string 522
FormatException class 366, 369
formatted output

field width 131
left align 131
right align 131

FormBorderStyle property of
class Form 398

forward slash character (/) in
end tags 692

fragile software 320
Framework Class Library 574
from clause of a LINQ query

249
FromStream method of class

Image 694
FullName property of class

DirectoryInfo 479
FullName property of class

FileInfo 479
FullName property of class Type

326
FullPath property of class

TreeNode 469
FullStackException indicates a

stack is full 580
fully qualified class name 162,

399, 494
fully qualified name 158, 162,

399
Func delegate 619, 621, 649,

650, 655
Func<TResult> delegate 679

716 Index

function key 436
functional programming 6, 247,

590, 615
filter 616
map 616
reduce 616

G
G format specifier 92
game playing 164
garbage collector 284, 374
general catch clause 370, 372,

392
general class average problem

110
generic class 257, 568, 577

Dictionary 592
LinkedList 592, 603
LinkedListNode 603
List 592
Queue 592
SortedDictionary 592, 599,

601
SortedList 592
SortedSet 627
Stack 592

generic interface 568
generic method 568, 571

creating 584
implementation 571

generic programming 590
generics 568

class 568
class constraint 576
compile-time type safety 568
constructor constraint

(new()) 576
default type constraint

(object) of a type
parameter 579

interface 568
interface constraint 576
method 571
overloading 577
reference type constraint

class 576
reusability 577
scope of a type parameter

579

generics (cont.)
specifying type constraints 574
Stack class 577
type argument 573, 581
type checking 568
type constraint of a type

parameter 574, 576
type parameter 572
type parameter list 572
value type constraint struct

576
where clause 576

get accessor of a property 4, 79,
80, 81

get keyword 82
GetByteArrayAsync method of

class HttpClient 694
GetCreationTime method of

class Directory 558
GetCreationTime method of

class File 557
GetDirectories method of class

Directory 473, 558
GetDirectories method of class

DirectoryInfo 479
GetEnumerator method of

interface IEnumerable 596
GetExtension method of class

Path 565
GetFiles method of class

Directory 558, 565
GetFiles method of class

DirectoryInfo 479
GetHashCode method of class

Object 599
GetItemChecked method of class

CheckedListBox 462
GetLastAccessTime method of

class Directory 558
GetLastAccessTime method of

class File 557
GetLastWriteTime method of

class Directory 558
GetLastWriteTime method of

class File 557
GetLength method of an array 229
GetNodeCount method of class

TreeNode 470
GetObject method of class

ResourceManager 426

GetSelected method of class
ListBox 458

GetStringAsync method of class
HttpClient 691, 692

getter-only auto-implemented
properties (C# 6) 212

getter-only auto-implemented
property 282, 289

GetType method of class object
326, 350

GetValueOrDefault method of a
nullable type 391

GIF (Graphic Interchange
Format) 36

global namespace 162
Good Programming Practices

overview xxvii
goto elimination 97
goto statement 96
graph information 206
Graphic Interchange Format

(GIF) 36
graphical user interface (GUI)

19, 163, 395
Graphics class 433, 467

Clear method 467
DrawEllipse method 468
DrawPie method 468
DrawRectangle method 468
FillEllipse method 433,

468
FillPie method 468
FillRectangle method 468

Graphics property of class
PaintEventArgs 497, 498

group by (LINQ) 565
GroupBox class 12
GroupBox control 413

Controls property 414
properties 413
Text property 413

guard condition in the UML 99
GUI (graphical user interface)

19, 395
container control 407
control 396
control, basic examples 396
thread 622
Windows Forms 396

guillemets (« and ») 87

Index 717

H
handle an event 403
handle an exception 367
hard disk 530
has-a relationship 280, 300
hash function 599
hash table 598
hashing 598
Hashtable class 593
HasValue property of a nullable

type 391
Height property of structure

Size 409
Help menu 22, 28
HelpLink property of Exception

383
“hidden” fields 175
hide implementation details 270
Hide method of class Control

407
Hide method of class Form 398
HoloLens 10
horizontal tab 54
hot key 439
HourlyEmployee class that

extends Employee 341
HttpClient class 691

CancelPendingRequests
method 691

GetByteArrayAsync method
694

GetStringAsync method
691, 692

I
IBM

DB2 630
ICollection<T> interface 591
IComparable interface 360
IComparable<T> interface 574,

627
CompareTo method 574

IComparer<T> interface 627
IComponent interface 360, 396
icon 22
IDE (Integrated Development

Environment) 10, 16
identifier 44, 55
identity column in a database

table 633

IDictionary<K,V> interface 591
IDisposable interface 361, 381

Dispose method 361
IEC 60559 702
IEEE 754 702
IEnumerable interface

method GetEnumerator 596
IEnumerable<T> extension

method
Any 255
Average 619, 625
Count 255
Distinct 255
First 255
Max 625
Min 625

IEnumerable<T> interface 251,
591, 596, 637

IEnumerator interface 361, 596
if single-selection statement 61,

64, 98, 99, 100, 133
activity diagram 100

if...else double-selection
statement 98, 100, 101, 112,
133
activity diagram 101

ignoring array element zero 210
IList<T> interface 591
Image property of class

PictureBox 35, 424
image resource 426
ImageIndex property of class

ListViewItem 475
ImageIndex property of class

TreeNode 469
ImageList class 469, 475

Images property 475
ImageList property of class

TabControl 481
ImageList property of class

TreeView 469
Images Collection Editor 475
Images property of class

ImageList 475
imaginary part of a complex

number 292
immutability 616
immutable string 286, 506
imperative programming 247

implement an interface 329,
353, 358

implementation-dependent
code 270

implementing a Dispose
method (link to MSDN
article) 361

implicit conversion 114
implicit conversions between

simple types 161
implicitly typed local variable

206, 207, 250, 256
in parallel 673
In property of class Console 530
increment 129

a control variable 124
expression 142

increment and decrement
operators 118

increment operator, ++ 118
Increment property of class

NumericUpDown 428
indefinite repetition 110
indentation 46, 64, 100, 102

indent size 45
independent software vendor

(ISV) 324
index 197, 209
index initializer (C# 6) 608
Index property of class

ItemCheckEventArgs 462
index zero 197
indexer 506

[] operator 591
of a SortedDictionary<K,V>

602
IndexOf method

of class Array 597
of class List<T> 257
of class string 511, 513

IndexOfAny method of class
string 511

IndexOutOfRangeException class
209, 211, 372

indirect base class 300, 302
infer a local variable’s type 206
infinite loop 106, 113, 127, 189
infinite recursion 189
infinity symbol 636
information hiding 4, 75, 351

718 Index

inherit from class Control 498
inherit from Windows Form

control 498
inheritance 4, 300, 305, 324

examples 301
hierarchy 301
hierarchy for class Shape 302
hierarchy for university

CommunityMembers 302
single 300
with exceptions 373

initial state in the UML 98
initial value of control variable

124
InitialDelay property of class

ToolTip 427
initializer list 200
Initializing jagged and

rectangular arrays 227
Initializing the elements of an

array with an array initializer
200

initializing two-dimensional
arrays in declarations 227

inlining method calls 351
InnerException property of

Exception 382, 386
innermost set of brackets 210
input data from the keyboard 65
input validation 369
Insert method of class List<T>

260
Insert Separator option 442
Insert Snippet window 174
inserting separators in a menu

442
instance 3
instance variable 4, 72, 73, 154
int operands promoted to

double 114
int simple type 57, 117, 702

Parse method 58
TryParse method 369

Int32 struct 574
integer 56

division 60, 110
value 57

integer array 200
integer division without

exception handling 364

integer promotion 114
Integrated Development

Environment (IDE) 10, 16
IntelliSense 49, 249, 297, 298,

631, 636
interest rate 129
interface 251, 329, 353, 359

declaration 352
interface constraint 576
interface keyword 352, 359
Interfaces

ICollection<T> 591
IComparable 360, 574
IComparable<T> 627
IComparer<T> 627
IComponent 360, 396
IDictionary 591
IDictionary<K,V> 591
IDisposable 361, 381
IEnumerable 596
IEnumerable<T> 251, 591,

637
IEnumerator 361, 596
IList<T> 591
IQueryable<T> 637
ISerializable 550

interpolation
$ before a string literal 56
string 55, 56

interpolation expression 56, 59,
64
calculation in 59
specify a format 91

Interval property of class Timer
499

InvalidCastException class
349, 391, 591

InvalidOperationException
class 597, 606

Invoice class implements
IPayable 355

Invoke method of class Control
686

InvokeRequired property of
class Control 686

iOS 9
IPayable interface declaration

355
IPayable interface hierarchy

UML class diagram 354

IQueryable<T> interface 637
is-a relationship 300, 330
is operator 349
IsDigit method of Char 526
ISerializable interface 550
IsLetter method of Char 527
IsLetterOrDigit method of

Char 527
IsLower method of Char 527
IsMdiChild property of class

Form 486
IsMdiContainer property of

class Form 485, 486
IsPunctuation method of

struct Char 527
IsSymbol method of struct Char

527
IsUpper method of struct Char

527
IsWhiteSpace method of struct

Char 527
ItemActivate event of class

ListView 474
ItemCheck event of class

CheckedListBox 461, 462
ItemCheckEventArgs class 462

CurrentValue property 462
Index property 462
NewValue property 462

Items property
of class ComboBox 465
of class ListBox 457, 458
of class ListView 474

ItemSize property of class
TabControl 481

iteration 109
counter controlled 115
of a loop 142
sentinel controlled 110

iteration (looping)
of a for loop 210

iteration statement 97, 98, 106
do...while 98, 132, 133, 133
for 98, 128
foreach 98
while 98, 107

iteration terminates 106
iteration variable 203
iterative 189

Index 719

J
Jacopini, G. 97
jagged array 225, 226, 227
JIT (just-in-time) compilation 8
joining database tables 635, 658

LINQ to Entities 655
Joint Photographic Experts

Group (JPEG) 36
JPEG (Joint Photographic

Experts Group) 36
just-in-time (JIT) compiler 8

K
key code 436
key data 436
key event 433, 434
key value 436
keyboard 56, 396
keyboard shortcuts 439
KeyChar property of class

KeyPressEventArgs 433
KeyCode property of class

KeyEventArgs 434
KeyData property of class

KeyEventArgs 434
KeyDown event of class Control

433, 434
KeyEventArgs class 433

Alt property 434, 436
Control property 434, 436
KeyCode property 434
KeyData property 434
KeyValue property 434
Modifiers property 434
properties 434
Shift property 434, 436

KeyNotFoundException class 602
KeyPress event of class Control

433, 434
KeyPressEventArgs class 433

KeyChar property 433, 434
properties 434

keys
function 436
modifier 433

Keys enumeration 433
Keys property

of Dictionary 565
of SortedDictionary<K,V>

602

KeyUp event of class Control
433, 434

KeyValue property of class
KeyEventArgs 434

KeyValuePair<K,V> structure 602
Keywords 44, 98

abstract 316, 334
as 349, 391
async 674, 675, 678
await 675, 679
base 303, 316, 323, 324
break 136
case 136
char 57
class 44
const 139, 154, 202, 288
continue 141
decimal 57, 87
default 136
delegate 403, 610
do 132
else 100
enum 172
float 57
for 125
get 82
if 61, 99, 100
int 57
interface 352
is 349
nameof 276
namespace 493
new 70, 198, 226
null 73, 121, 189, 198
operator 293
out 191
override 213, 308, 316
params 236
partial 401
private 75, 270, 303
protected 75, 270, 303
public 75, 267, 270, 303
readonly 288
ref 191, 217
return 75, 160
sealed 351
set 82
static 130, 157
struct 292
this 271, 285

Keywords (cont.)
value (contextual) 82
var 206
virtual 316
void 46, 73
while 106, 132

L
Label 33
label 410
Label class 20, 29, 32
Label control 396, 410
label in a switch 136, 137
lambda expression 611, 621,

650, 655, 675, 679
expression lambda 613
lambda operator (=>) 613,

650
statement lambda 614

lambda operator 613
language independence 8
Language Integrated Query

(LINQ) 246
language interoperability 8
LargeImageList property of

class ListView 475
last-in first-out (LIFO) order 584
Last property of class

LinkedList 607
last-in, first-out (LIFO) 177
LastIndexOf method of class

Array 597
LastIndexOf method of class

string 511, 513
LastIndexOfAny method of class

string 511
LastNode property of class

TreeNode 469
late binding 348
layout, control 406
LayoutMdi method of class Form

486, 487
leading 0 206
left align output 131
left brace, { 45, 46, 57
legacy code 590
Length property

of an array 198, 198
of class string 506, 507
of class StringBuilder 518

720 Index

let clause of a LINQ query 263
LIFO (last-in, first-out) 177,

584
line numbers xxxv
LinkArea property of class

LinkLabel 453
LinkBehavior property of class

LinkLabel 454
LinkClicked event of class

LinkLabel 453, 454
LinkColor property of class

LinkLabel 454
LinkedList generic class 592

AddFirst method 606
AddLast method 605
method Find 607
method Remove 607
property First 606
property Last 607

LinkedList<T> class 592
LinkedList<T> generic class 603
LinkedListNode class

property Next 603
property Previous 603
property Value 603

LinkedListNode<T> generic class
603

LinkLabel class 439, 453
ActiveLinkColor property

453
LinkArea property 453
LinkBehavior property 454
LinkClicked event 453, 454
LinkColor property 454
LinkVisited property 454
Text property 454
UseMnemonic property 454
VisitedLinkColor property

454
LinkLabel properties and an

event 453
LinkVisited property of class

LinkLabel 454
LINQ (Language Integrated

Query) 246, 561, 615
anonymous type 256
ascending modifier 250
Count method 565
deferred execution 263
descending modifier 250

LINQ (Language Integrated
Query) (cont.)
extension method 616
extension method Aggregate

619
extension method Max 619
extension method Min 619
extension method Select

622
extension method Sum 619
extension method Where 621
extension methods for

arithmetic 619
from clause 249
group by 565
let clause 263
LINQ to Entities 247, 631
LINQ to Objects 246, 561,

631
LINQ to XML 247
orderby clause 250
provider 247
query expression 246
query syntax 616, 637
range variable 249
Resource Center 671
select clause 250
usage throughout the book

247
where clause 250

LINQ to Entities 247, 631,
632, 649
data binding 637
DbContext class 637, 643
extension methods 649
Object data source 645
primary keys 631
saving changes back to a

database 650
LINQ to Objects 246, 247,

588, 590, 623, 631, 637
using a List<T> 261
using an array of Employee

objects 252
using an int array 248

LINQ to XML 247, 687, 691
LINQPad (www.linqpad.net)

671
Linux 9
List class 592

list, editable 465
List<T> generic class 256, 592

Add method 260
AddRange method 257
Capacity property 257
Clear method 257
Contains method 257, 260
Count property 257
IndexOf method 257
Insert method 260
methods 257
Remove method 257, 260
RemoveAt method 257, 260
RemoveRange method 257
Sort method 257
TrimExcess method 257

ListBox control 396, 439, 456
ClearSelected method 458
GetSelected method 458
Items property 458
MultiColumn property 457
properties, method and

event 457
SelectedIndex property 458
SelectedIndexChanged event

457
SelectedIndices property

458
SelectedItem property 458
SelectedItems property 458
SelectionMode property 457
Sorted property 458

ListBox.ObjectCollection class
458

ListView control 474
Activation property 474
CheckBoxes property 474
ItemActivate event 474
Items property 474
LargeImageList property

475
MultiSelect property 474
SelectedItems property 474
SmallImageList property

475
View property 474

ListView displaying files and
folders 475

ListView properties and events
474

http://www.linqpad.net

Index 721

ListViewItem class 475
ImageIndex property 475

literal 46
Load event of class Form 398
Load extension method of class

DbExtensions 650, 654
load factor 599
local variable 74, 108, 109, 174,

175, 176, 272
local variable “goes out of scope”

530
Location property of class

Control 409
Log method of Math 154
logarithm 154
logic error 58
logical negation, ! 146

operator truth table 146
logical operators 143, 146, 147
logical output operation 531
logical XOR, ^ 145
long simple type 702
long-term retention of data 530
Long value of enumeration

DateTimePickerFormat 450
loop 107

body 132
continuation condition 98
counter 124
infinite 106, 113

loop-continuation condition
124, 126, 132, 133, 142

looping 109
lowercase letter 44

M
m-by-n array 225
m to indicate a decimal literal 89
magic numbers 202
Main method 46, 57
make your point (game of craps)

169
managed code 7
many-to-many relationship

636, 643
map (functional programming)

616, 622
map elements to new values 622
MariaDB 630
mask the user input 410

master/detail view 661
Match class 503, 527
Math class 153

Abs method 153
Ceiling method 153
Cos method 153
E constant 154
Exp method 154
Floor method 153
Log method 154
Max method 154
Min method 154
PI constant 154
Pow method 130, 131, 153,

154
Sin method 153
Sqrt method 153, 154, 160,

388
Tan method 153

Max IEnumerable<T> extension
method 619, 625

Max method of Math 154
Max ParallelQuery<T> extension

method 625
MaxDate property of class

DateTimePicker 450, 453
MaxDate property of class

MonthCalendar 449
MaxDropDownItems property of

class ComboBox 464
Maximum property of class

NumericUpDown 428
MaximumSize property of class

Control 409
MaximumSize property of class

Form 409
MaxSelectionCount property of

class MonthCalendar 449
.mdf file extension 632
MDI (Multiple Document

Interface) 484
child 491
parent and child properties,

method and event 486
title bar 487
window 396

MdiChildActivate event of class
Form 486

MdiChildren property of class
Form 485, 486

MdiLayout enumeration 487
ArrangeIcons value 487
Cascade value 487
TileHorizontal value 487
TileVertical value 487

MdiParent property of class Form
485

MdiWindowListItem property of
class MenuStrip 487

member access (.) operator 130,
153, 285

member access operator (.) 70
MemberwiseClone method of

class object 326
memory consumption 589
memory leak 284, 374
MemoryStream class 531
menu 21, 396, 439

access shortcut 439
access shortcut, create 440
Analyze 21
Build 21
Debug 21
Edit 21
ellipsis convention 442
expanded and checked 440
File 21
Format 21
Help 22, 28
Project 21
Team 21
Test 21
Tools 21
View 21, 24
Window 22

menu bar 21, 396
in Visual Studio IDE 21

menu item 21, 439
MenuItem property

MdiWindowListItem example
487

MenuStrip class 440
MdiWindowListItem property

487
RightToLeft property 443

MenuStrip properties and events
443

merge symbol in the UML 106
message 46

722 Index

Message property of Exception
211, 379, 382

method 3, 46
local variable 74
parameter 74
parameter list 74
static 130

method call 3, 157
method-call stack 177, 382
method declaration 157
method header 73
method overloading 181
method parameter list 236
MethodInvoker delegate 686
methods implicitly sealed 351
methods of class List<T> 257
Metro 9
Microsoft

SQL Server 630
Microsoft Developer Network

(MSDN) 18
Microsoft Intermediate

Language (MSIL) 8, 51
Microsoft Visual Studio

Community edition xxxiii
Min IEnumerable<T> extension

method 619, 625
Min LINQ exension method
Min method of Math 154
Min ParallelQuery<T> extension

method 625
MinDate property of class

DateTimePicker 450, 453
MinDate property of class

MonthCalendar 449
minimized and maximized child

window 486
Minimum property of class

NumericUpDown 428
MinimumSize property of class

Control 409
MinimumSize property of class

Form 409
mobile application 2
modal dialog 538
model 639
model designer 642
modifier key 433
Modifiers property of class

KeyEventArgs 434

modulus operator (%) 59
monetary amount 87
monetary calculations 131
monetizing your apps 10
Mono Project xxxv, 6
MonthCalendar class 449

DateChanged event 449
FirstDayOfWeek property

449
MaxDate property 449
MaxSelectionCount property

449
MinDate property 449
MonthlyBoldedDates

property 449
SelectionEnd property 449
SelectionRange property

449
SelectionStart property

449
MonthlyBoldedDates property of

class MonthCalendar 449
More Windows... option in Visual

Studio .NET 487
mouse 396

pointer 23
mouse click 430
mouse event 430, 431
mouse move 430
MouseDown event of class Control

431
MouseEnter event of class

Control 431
MouseEventArgs class 430

Button property 431
Clicks property 431
X property 431
Y property 431

MouseEventArgs properties 431
MouseEventHandler delegate

430
MouseHover event of class

Control 431
MouseLeave event of class

Control 431
MouseMove event of class Control

431
MouseUp event of class Control

431

MouseWheel event of class
Control 431

Move method of class Directory
558

Move method of class File 557
MoveFirst method of class

BindingSource 654
MoveNext method of

IEnumerator 596
MSDN (Microsoft Developers

Network) 18
MSIL (Microsoft Intermediate

Language) 8
multicast delegate 404
multicast event 404
MulticastDelegate class 404
MultiColumn property of class

ListBox 457
multidimensional array 225
MultiExtended value of

enumeration SelectionMode
457

Multiline property of class
TabControl 481

Multiline property of class
TextBox 411

multiple document interface
(MDI) 396, 484

multiple-selection statement 98
multiplication, * 59
MultiSelect property of class

ListView 474
MultiSimple value of

enumeration SelectionMode
457

multithreading 674
mutual exclusion 419
mutually exclusive options 419
MySQL 630

N
N format specifier 92
name collision 399, 494
name conflict 399, 494
Name property of class

DirectoryInfo 479
Name property of class FileInfo

479
named constant 202
named parameter 185

Index 723

nameof operator (C# 6) 276
namespace 43, 162, 493

declaration 493
keyword 493

namespace declaration 399
Namespaces

of the FCL 162
System 164
System.Collections 163,

574, 590
System.Collections.Con-

current 590
System.Collections.Generic

163, 256, 565, 590
System.Collections.Spe-

cialized 590
System.Data.Entity 163,

637
System.Data.Linq 163
System.Diagnostics 456
System.Drawing 418
System.IO 163, 531
System.Linq 163, 248, 637
System.Net.Http 691
System.Runtime.Serializ-

ation.Formatters.Binary
550

System.Runtime.Serializ-

ation.Json 550
System.Text 163, 503
System.Text.Regular-

Expressions 503
System.Threading.Tasks

679
System.Web 163
System.Windows.Controls

163
System.Windows.Forms 163,

397
System.Windows.Input 163
System.Windows.Media 163
System.Windows.Shapes 163
System.Xml 163
System.Xml.Linq 163, 693
System.Xml.Serialization

550
naming convention for methods

that return boolean 139
NaN constant of structure Double

366, 388

natural logarithm 154
navigation property 637, 646,

647
NegativeInfinity constant of

structure Double 366
NegativeNumberException

represents exceptions caused
by illegal operations
performed on negative
numbers 387

nested array initializer 225
nested control statements 114,

168
nested for statement 206, 227,

229
nested foreach statement 229
nested if selection statement

104, 105
nested if...else selection

statement 101, 104, 105
nested parentheses 60
new keyword 70, 198, 226
New Project dialog 19, 20, 29
new() (constructor constraint)

576
newline character 54
newline escape sequence, \n 54,

57
NewValue property of class

ItemCheckEventArgs 462
Next method of class Random

164, 165, 168
Next property of class

LinkedListNode 603
NextNode property of class

TreeNode 469
node 468

child 468
expand and collapse 469
parent 468
root 468
sibling 468

Nodes property
of class TreeNode 469
of class TreeView 469

non-static class member 285
None value of enumeration

SelectionMode 457
not selected state 419
note (in the UML) 98

Notepad 454
Now property of DateTime 625
Now property of structure

DateTime 499
NuGet package manager 644
null coalescing operator (??)

391, 392
null keyword 73, 121, 189, 198
nullable type 391, 607

GetValueOrDefault method
391

HasValue property 391
Value property 391

null-conditional operator (?.)
390, 391, 607

null-conditional operator (?[])
607

NullReferenceException class
372

numbers with decimal points 87
numeric literal

whole number 130
with a decimal point 130

NumericUpDown control 396, 428
DecimalPlaces property 428
Increment property 428
Maximum property 428
Minimum property 428
ReadOnly property 430
UpDownAlign property 429
Value property 429
ValueChanged event 429

NumericUpDown properties and
events 428

O
object 2
Object Browser (Visual Studio

.NET) 289
object class 300, 305, 325

Equals method 325
Finalize method 325
GetHashCode method 326
GetType method 326, 350
MemberwiseClone method

326
ReferenceEquals method

326
ToString method 307, 326

724 Index

object-creation expression 70,
85

Object data source 645
object initializer 291
object initializer list 291
object methods that are

inherited directly or
indirectly by all classes 325

object of a class 4
object of a derived class 331
object of a derived class is

instantiated 324
object-oriented analysis and

design (OOAD) 5
object-oriented language 5
object-oriented programming

(OOP) 5, 300
object serialization 550
ObjectCollection collection

Add method 459
Clear method 461
RemoveAt method 459

object-oriented programming
590

ObservableCollection<T> class
650, 655

one-to-many relationship 635,
636

One value of enumeration
SelectionMode 457

OnPaint method of class Control
497

OOAD (object-oriented
analysis and design) 5

OOP (object-oriented
programming) 5, 300

Open method of class File 557
OpenFileDialog class 543, 549
opening a project 21
OpenRead method of class File

557
OpenText method of class File

557
OpenWrite method of class File

557
operand 58
operands of a binary operator 59
operating system 8
operation in the UML 76

operation parameter in the
UML 77

operator 59
operator keyword 293
operator overloading 291
operator precedence 60

operator precedence chart
114

rules 60
Operators 613, 650

^, boolean logical exclusive
OR 143, 145

--, prefix decrement/postfix
decrement 118, 119

-, subtraction 60, 61
!, logical negation 143, 146
!=, not equals 62
?:, ternary conditional

operator 103, 120
*, multiplication 60, 61
*=, multiplication

compound assignment
118

/, division 60, 61
\=, division compound

assignment 118
&, boolean logical AND 143,

145
&&, conditional AND 143,

144
%, remainder 60, 61
%=, remainder compound

assignment 118
+, addition 60, 61
++, prefix increment/postfix

increment 118, 119
+=, addition assignment

operator 117
+=, addition compound

assignment 117
<, less than 62
<=, less than or equal 62
=, assignment operator 58
-=, subtraction compound

assignment 117
==, is equal to 62
>, greater than 62
>=, greater than or equal to

62

Operators (cont.)
|, boolean logical inclusive

OR 143, 145
||, conditional OR 143, 144
arithmetic 59
as 349, 391
await 675
binary 58, 59
boolean logical AND, & 143,

145
boolean logical exclusive

OR, ^ 143, 145
boolean logical inclusive

OR, | 145
cast 113, 173
compound assignment 117,

120
conditional AND, && 143,

143, 145, 255
conditional operator, ?:

103, 120
conditional OR, || 143,

144, 145
decrement operator, -- 118,

119
increment and decrement

118
increment operator, ++ 118
is 349
logical negation, ! 146
logical operators 143, 146
logical XOR, ^ 145
member access (.) 130, 285
postfix decrement 118
postfix increment 118
precedence chart 700
prefix decrement 118
prefix increment 118
remainder, % 59

optimizing compiler 131
optional parameter 183, 184

default value 183, 183
Oracle Corporation 630
orderby clause of a LINQ query

250
ascending modifier 250
descending modifier 250

OrderBy extension method 621
OrderBy extension method of

class Queryable 649, 655

Index 725

out keyword 191
out-of-range array index 372
Out property of class Console 530
outer set of brackets 210
OutOfMemoryException class 372
output 54
output parameter 191
overloaded constructors 273
overloaded generic methods 577
overloaded methods 49, 181, 569
overloaded operators for

complex numbers 294
overloading constructors 86
override a base class method

303, 307
override keyword 213, 308,

316

P
package manager

NuGet 644
Padding property of class

Control 409
Padding property of class Form

408
page layout software 503
PaintEventArgs class 497

ClipRectangle property 497
Graphics property 497

PaintEventArgs properties 498
pair of braces {} 64
palette 32
Panel class 12, 396, 413

AutoScroll property 413
BorderStyle property 413
Controls property 413
properties 413
scrollbars 414

parallel 673
operations 673

Parallel LINQ 247
ParallelEnumerable

AsParallel method 625
ParallelEnumerable class 625
ParallelQuery<T> class 625
ParallelQuery<T> extension

method
Average 625
Max 625
Min 625

parameter 74, 74, 85
output 191

parameter in the UML 77
Parameter Info window 49
parameter list 74

empty 75
parameter name 74
parameter type 74
parameterless constructor 275,

280, 576
struct 293

params keyword 236
parent container 409
parent menu 439
parent node 468
Parent property of class

DirectoryInfo 479
parent window 484
parentheses 46, 60

nested 60
Parse method

of simple type decimal 92
of simple type double 157

Parse method of class XDocument
693

Parse method of type decimal
93

Parse method of type int 58
partial class 397
partial keyword 401
Pascal Case 44

constants 202
Pascal case 72
pass an array element to a

method 217
pass an array to a method 217
pass-by-reference 190
pass-by-value 190, 217
Passing an array reference by

value and by reference 241
Passing arrays and individual

array elements to methods
217

passing options to a program
with command-line
arguments 238

password TextBox 410
Path class 473, 565

GetExtension method 565
perform a calculation 66

perform a task 74, 85
perform an action 46
performance 674
performing operations

concurrently 673
permission setting 475
persistent

data 530
physical output operation 531
PictureBox class 20, 29, 35,

424, 487
Click event 424
Image property 424
properties and event 424
SizeMode property 424

pin icon 24
platform 10
platform independence 8
PLINQ (Parallel LINQ) 590,

623
PNG (Portable Network

Graphics) 36
Poll analysis application 209
polymorphically process

Invoices and Employees 358
polymorphism 139, 326, 328
pop off a stack 177
portability 8
Portable Network Graphics

(PNG) 36
porting 8
position number 197
Position property of class

BindingSource 654
PositiveInfinity constant of

structure Double 366
postdecrement 118
postfix decrement operator 118
postfix increment operator 118,

127
PostgreSQL 630
postincrement 118
Pow method of Math 130, 131,

153, 154
power (exponent) 154
power of 3 larger than 100 106
precedence 65, 120

arithmetic operators 61
chart 61

precedence chart 114

726 Index

precedence chart appendix 700
precision

of double values 703
of float values 703

precision of a floating-point
value 111

predecrement 118
predicate 250, 621
prefix decrement operator 118
prefix increment operator 118
preincrement 118
prepackaged data structures 589
Previous property of class

LinkedListNode 603
PrevNode property of class

TreeNode 470
primary key 631, 636

in LINQ to Entities 631
primitive data type promotion

114
principal in an interest

calculation 129
principle of least privilege 288
private

access modifier 75, 271, 303
static class member 285

probability 164
procedural programming 590
Process class 456

Start method 456
program execution stack 177
program in the general 328
program in the specific 328
programming paradigms

functional 590
generic 590
object oriented 590
procedural 590
structured 590

ProgressBar class 694
project 18
Project menu 21
projection 256
promotion 114, 130

rules 160
Properties window 26, 28, 30, 34
property 4, 79
property declaration 82
property of a form or control 26
proprietary class 324

protected access modifier 75,
270, 303

pseudocode 100
pseudorandom number 165,

168
public

access modifier 75, 267, 303
interface 267
member of a derived class

303
method 268, 270
service 267
static class members 285
static method 285

push onto a stack 177

Q
query 246, 630, 632
query expression (LINQ) 246
Queryable class 637

OrderBy extension method
649, 655

ThenBy extension method
650

Where extension method 655
Queue class 592, 593
Queue generic class 592
Queue<T> class 592

R
radians 153
radio button 410, 419

group 419
using with TabPage 484

RadioButton control 12, 416,
419
Checked property 419
CheckedChanged event 419
properties and events 419
Text property 419

Random class 164
Next method 164, 165, 168

random number generation 212
random numbers 168

in a range 168
scaling factor 165, 168
seed value 165, 169
shifting value 168

Range method of class
Enumerable 625

range variable of a LINQ query
249

Read method of class Console
531

read-only property 104
ReadLine method of class

Console 58, 70, 136, 531
readonly

keyword 288
ReadOnly property of class

NumericUpDown 430
ReadOnly property of class

TextBox 411
ReadToEnd method of class

StreamReader 561
real number 110
real part of a complex number

292
realization in the UML 354
reclaim memory 287
record 534, 631
rectangular array 225, 226

with three rows and four
columns 225, 226

recursion 473
recursion step 186
recursive call 186
recursive evaluation 187

of 5! 187
recursive factorial 186
recursive method 186
reduce (functional

programming) 616
ref keyword 191, 217
refer to an object 189
reference 189
reference type 189
reference type constraint class

576
Reference, output and value

parameters 192
ReferenceEquals method of

object 326
Regex class 503
regular expression 527
reinventing the wheel 43
relational database 630, 631
relational database table 631
relational operators 61
release resource 375

Index 727

release unmanaged resources
361

remainder 60
remainder operator, % 59, 60
Remove method of class

Dictionary 565
Remove method of class

LinkedList 607
Remove method of class List<T>

257, 260
Remove method of class

StringBuilder 522
RemoveAt method of class

List<T> 257, 260
RemoveAt method of class

ObjectCollection 459
RemoveRange method of class

List<T> 257
Repeat method of class

Enumerable 697
repetition

counter controlled 112
sentinel controlled 112

repetition statement
while 109, 112

Replace method of class string
515, 516

Replace method of class
StringBuilder 524

representational error in floating
point 131

requirements 5
requirements of an app 139
reserved word 44, 98

false 99
true 99

Reset method of interface
IEnumerator 596

ReshowDelay property of class
ToolTip 427

Resize method of class Array
198, 246, 256

resource 426
resource leak 284, 374
ResourceManager class 426

GetObject method 426
Resources class 426
responses to a survey 209, 210
REST web service 687

result of an uncaught exception
370

Result property of class Task
679

resumption model of exception
handling 371

rethrow an exception 380
return keyword 75, 160
return statement 82, 186
return type 75

of a method 73
reusability 577
reusable component 301
reusable software components 2,

162
reuse 43
Reverse extension method 507
Reverse method of class Array

597
right align output 131
right brace, } 46, 57, 109, 112
RightToLeft property of class

MenuStrip 443
robust 58
robust application 363
Roll a six-sided die 6,000,000

times 166
Roll a six-sided die 60,000,000

times 208
rolling two dice 172
root node 468

create 470
rounding a number 60, 110,

114, 153
for display 114

row in a database table 631
row objects representing rows in

a database table 636
rows of a two-dimensional array

225
rules of operator precedence 60
Run command in Windows 456
Run method of class Task 679,

685
run mode 38
run-time logic error 58
running an app 456
runtime class 350
runtime system 577

S
SalariedEmployee class that

extends Employee 340
SaveChanges method of a LINQ

to Entities DbContext 637,
651

SaveFileDialog class 538
saving changes back to a

database in LINQ to Entities
650

savings account 129
sbyte simple type 702
scaling factor (random

numbers) 165, 168
schema (database) 632
scope 127, 175

of a declaration 174
of a type parameter 579
static variable 285

screen cursor 46, 53, 54
screen-manager program 330
scrollbar 27
ScrollBars property of class

TextBox 411
scrollbox 27
SDI (Single Document

Interface) 484
sealed

class 351
keyword 351
method 351

secondary storage device 530
secondary storage devices

DVD 530
flash drive 530
hard disk 530
tape 530

seed value (random numbers)
165, 169

Seek method of class FileStream
549

SeekOrigin enumeration 549
select clause of a LINQ query

250
Select LINQ extension method

622
Select method of class Control

407
Select Resource dialog 35
selected state 419

728 Index

SelectedImageIndex property of
class TreeNode 470

SelectedIndex property of class
ComboBox 465

SelectedIndex property of class
ListBox 458

SelectedIndex property of class
TabControl 481

SelectedIndexChanged event
handler
ComboBox class 654

SelectedIndexChanged event of
class ComboBox 465

SelectedIndexChanged event of
class ListBox 457

SelectedIndexChanged event of
class TabControl 481

SelectedIndices property of
class ListBox 458

SelectedItem property of class
ComboBox 465

SelectedItem property of class
ListBox 458

SelectedItems property of class
ListBox 458

SelectedItems property of class
ListView 474

SelectedNode property of class
TreeView 469

SelectedTab property of class
TabControl 481

selecting an item from a menu
398

selecting data from a table 632
selection 99
selection statement 97, 98

if 98, 99, 100, 133
if...else 98, 100, 101, 112,

133
switch 98, 133, 138

SelectionEnd property of class
MonthCalendar 449

SelectionMode enumeration
457
MultiExtended value 457
MultiSimple value 457
None value 457
One value 457

SelectionMode property of class
CheckedListBox 462

SelectionMode property of class
ListBox 457, 458

SelectionRange property of
class MonthCalendar 449

SelectionStart property of
class MonthCalendar 449

semicolon (;) 46, 56
sentinel-controlled iteration 110
sentinel-controlled repetition

110, 112
sentinel value 110, 112
sentinel-controlled loop 606
separator bar 442
sequence 97
sequence structure 97
sequence-structure activity

diagram 97
sequential-access file 534
sequential execution 96
[Serializable] attribute 550
SerializationException class

554
Serialize method of class

BinaryFormatter 550, 554
serialized object 550
service of a class 270
set accessor of a property 4, 79,

80, 81
Set as Startup Project 644
set keyword 82
shadow 273
shallow copy 326
Shape class hierarchy 302
shift 165
Shift key 433
Shift property of class

KeyEventArgs 434, 436
Shifted and scaled random

integers 166
shifting value (random

numbers) 165, 168
short-circuit evaluation 145
short simple type 702
Short value of enumeration

DateTimePickerFormat 450
shortcut key 439
ShortcutKeyDisplayString

property of class
ToolStripMenuItem 440, 443

ShortcutKeys property of class
ToolStripMenuItem 440, 443

shortcuts with the & symbol 442
Show All Files icon 25
Show method of class Control

407
Show method of class Form 398,

485, 491
ShowCheckBox property of class

DateTimePicker 450
ShowDialog method of class

OpenFileDialog 543, 549
ShowDialog method of class

SaveFileDialog 538
ShowShortcutKeys property of

class ToolStripMenuItem 440,
443

ShowUpDown property of class
DateTimePicker 451

shuffling 212
Fisher-Yates 215

sibling node 468
side effect 145, 190, 619
Sieve of Eratosthenes 696
signal value 110
signature of a method 182
simple condition 143
simple name 493
simple type 57, 96, 121, 161

bool 702
byte 702
char 57, 702
decimal 57, 87, 703
double 57, 703
float 57, 702
int 57, 117, 702
keywords 57
long 702
sbyte 702
short 702
table of 702
uint 702
ulong 702
ushort 702

Simple value of enumeration
ComboBoxStyle 464

Sin method of Math 153
sine 153
Single Document Interface

(SDI) 484

Index 729

single-entry/single-exit control
statements 99

single inheritance 300
single-selection statement 98, 99
single-line comment 42
single-selection statement

if 99
Size property of class Control

409
Size structure 409

Height property 409
Width property 409

SizeMode property of class
PictureBox 36, 424

sizing handle 31
.sln file extension 36
small circles in the UML 97
SmallImageList property of

class ListView 475
smart tag menu 652
smartphone 2
snap lines 409, 410
Software Engineering

Observations overview xxviii
software reuse 300, 493
solid circle in the UML 98
solid circle surrounded by a

hollow circle in the UML 98
SolidBrush class 433
solution 11, 18
Solution Explorer window 25
Sort method of class Array 596
Sort method of class List<T>

257
Sorted property of class

ComboBox 465
Sorted property of class ListBox

458
SortedDictionary generic class

592, 599, 601
SortedDictionary<K,V> class

592
ContainsKey method 602
Count property 602
method Add 602
property Values 603

SortedList class 592, 593
SortedList<K,V> generic class

592
SortedSet<T> class 627

source code 41
Source property of Exception

383
space character 43
space/time trade-off 599
spacing convention 45
special character 57, 504
Split method of class Regex 601
Split method of class String

544
SQL 246, 630
SQL Server Express 641
SQL Server Express LocalDB

630
Sqrt method of class Math 388
Sqrt method of Math 153, 154,

160
square brackets, [] 197
square root 154
stack 177, 577
Stack class 592, 593
stack frame 177
Stack generic class 577, 592

Stack< double> 587
Stack<int> 587

stack overflow 178
stack trace 365
stack unwinding 383
Stack unwinding and Exception

class properties 383
Stack<T> class 592
StackOverflowException class

372
StackTrace property of

Exception 382, 383, 386
standard error stream object 531
standard input stream object

531
standard input/output object 46
standard output stream object

531
standard reusable component

301
standard time format 268
Start method of class Process

456
Start Page 17
start tag 692
StartsWith and EndsWith

methods 510

StartsWith method of class
string 263, 510, 511

Startup object for a Visual Studio
project 155

startup project 25
state button 416
statement 46, 74, 85

break 136, 141
continue 141
control statement 97, 99,

100
control-statement nesting 99
control-statement stacking

99
do...while 98, 132, 133
double selection 98
empty 103
for 98, 125, 128, 129
foreach 203
if 61, 64, 98, 99, 100, 133
if...else 98, 100, 101, 112,

133
iteration 97, 99, 106
multiple selection 98
nested 114
nested if...else 101
return 160
selection 97, 98
single selection 98
switch 98, 133, 138
switch multiple-selection

statement 168
throw 268, 379
try 211, 371
using 381
while 98, 107, 109, 112

statement lambda 614
static

class member 285
method 130
variable 284, 285

static binding 351
static class 297
static keyword 157
static member demonstration

287
static method 157
static method cannot access

non-static class members
285

730 Index

static method Concat 515
static variable 154
static variable scope 285
static variable used to maintain

a count of the number of
Employee objects in memory
286

stereotype in the UML 83
straight-line form 60
stream

standard error 531
standard input 531
standard output 531

Stream class 531
stream of bytes 530
StreamReader class 531

ReadToEnd method 561
StreamWriter class 531
StretchImage value 36
string class 46, 503

Concat method 515
constant 504
CopyTo method 506
EndsWith method 510, 511
Equals method 508, 509
immutable 506
IndexOf method 511, 513
IndexOfAny method 511
LastIndexOf method 511,

513
LastIndexOfAny method

511, 513
Length property 506, 507
literal 46
method ToLower 602
method ToUpper 606
Replace method 515, 516
Split method 544
StartsWith method 263,

511
Substring method 514
ToLower method 515, 516
ToUpper method 263, 515,

516
Trim method 515, 517
verbatim 456, 504

String Collection Editor in Visual
Studio .NET 459

string concatenation 157, 286
string constructors 505

string format specifiers 92
string indexer 507
string indexer, Length property

and CopyTo method 506
string interpolation (C# 6) 55,

56
$ 56

string literal 504
string type 55, 73
string.Empty 190
StringBuilder class 503, 517

Append method 520
AppendFormat method 521
Capacity property 518
constructors 517
EnsureCapacity method 518
Length property 518
Remove method 522
Replace method 524
ToString method 517

StringBuilder constructors 517
StringBuilder size

manipulation 518
StringBuilder text replacement

524
struct

cannot define parameterless
constructor 293

DateTime 499
default constructor 293

struct keyword 292
structured programming 97,

590
Structured Query Language

(SQL) 630
Style property of class Font 418
submenu 439
Substring method of class

string 514
Subtract method of DateTime

625
subtraction 60
Sum LINQ extension method

619
summarizing responses to a

survey 208
summing integers with the for

statement 128
switch code snippet (IDE) 174
switch expression 133, 136

switch logic 139
switch multiple-selection

statement 98, 133, 138, 168
activity diagram with break

statements 138
case label 136, 137
default label 136, 168

Sybase 630
synchronous programming 7
syntax 42
syntax color highlighting 48
syntax error 42
syntax error underlining 52
System 189
System namespace 43, 164, 503
System.Collections namespace

163, 574, 590
System.Collections.Concur-

rent namespace 590
System.Collections.Generic

namespace 163, 256, 565,
590

System.Collections.Special-

ized namespace 590
System.Data.Entity namespace

163, 637
System.Diagnostics namespace

456
System.Drawing namespace 418
System.IO namespace 163, 531
System.Linq namespace 163,

248, 637
System.Net.Http namespace

691
System.Numerics namespace

BigInteger struct 189
System.Runtime.Serialization

.Formatters.Binary
namespace 550

System.Runtime.Serialization

.Json namespace 550
System.Text namespace 163,

503
System.Text.Regular-

Expressions namespace 503
System.Threading.Tasks

namespace 679
System.Web namespace 163
System.Windows.Controls

namespace 163

Index 731

System.Windows.Forms
namespace 163, 397

System.Windows.Input
namespace 163

System.Windows.Media
namespace 163

System.Windows.Shapes
namespace 163

System.Xml namespace 163
System.Xml.Linq namespace

163, 693
System.Xml.Serialization

namespace 550
SystemException class 372, 388

T
tab 396
tab character, \t 43, 54
tab stops 54
Tabbed pages in Visual Studio

.NET 480
tabbed window 21
TabControl class 480

ImageList property 481
ItemSize property 481
Multiline property 481
SelectedIndex property 481
SelectedIndexChanged event

481
SelectedTab property 481
TabCount property 481
TabPages property 480, 481

TabControl with TabPages
example 481

TabControl, adding a TabPage
481

TabCount property of class
TabControl 481

TabIndex property of class
Control 407

table 225
table element 225
table in a relational database 631
table of simple types 702
table of values 225
TabPage class 480

add to TabControl 480, 481
Text property 480
using radio buttons 484

TabPages property of class
TabControl 480, 481

TabStop property of class
Control 407

tabular format 200
tagging 687
Tan method of Math 153
tangent 153
tape 530
TargetSite property of

Exception 383
Task class

Result property 679
Run method 679, 685
WhenAll method 685
WhenAny method 686

Task Parallel Library 679
Task<TResult> class 679
Team menu 21
template 19
temporary data storage 530
temporary value 113
termination housekeeping 284
termination model of exception

handling 371
ternary operator 103
test harness 224
Testing class

BasePlusCommissionEmployee
312

Testing class
CommissionEmployee 308

Testing generic class Stack 581,
585

Tests interface IPayable with
disparate classes 359

text editor 46, 503
Text property 30, 33
Text property of class Button

411
Text property of class CheckBox

416
Text property of class Control

407
Text property of class Form 398
Text property of class GroupBox

413
Text property of class LinkLabel

454

Text property of class
RadioButton 419

Text property of class TabPage
480

Text property of class TextBox
411

Text property of class
ToolStripMenuItem 443

Text property of class TreeNode
470

TextAlign property of a Label
34

textbox 410
TextBox control 396, 410

AcceptsReturn property 411
Multiline property 411
ReadOnly property 411
ScrollBars property 411
Text property 411
TextChanged event 411
UseSystemPasswordChar

property 410
TextChanged event of class

TextBox 411
Text-displaying application 42
TextReader class 531
TextWriter class 531
ThenBy extension method of

class Queryable 650
this

keyword 271, 272, 285
reference 271
to call another constructor of

the same class 276
this used implicitly and

explicitly to refer to members
of an object 271

thread
of execution 674

ThreeState property of class
CheckBox 416

throw an exception 211, 268,
276, 364, 369

throw point 366, 371
throw statement 379
Tick event of class Timer 499
tile 9
tiled window 487
TileHorizontal value of

enumeration MdiLayout 487

732 Index

TileVertical value of
enumeration MdiLayout 487

time and date 499
Time value of enumeration

DateTimePickerFormat 450
Time1 class declaration

maintains the time in 24-
hour format 267

Time1 object used in an app 269
Time2 class declaration with

overloaded constructors 273
TimeOfDay property of DateTime

450
Timer class 499

Interval property 499
Tick event 499

TimeSpan 625
TotalMilliseconds property

625
TimeSpan value type 680
title bar 30
title bar, MDI parent and child

487
Titles table of Books database

632, 633
ToArray method of class

Enumerable 263
tokenize a string 544
ToList method of class

Enumerable 263, 625
ToLongDateString method of

structure DateTime 453
ToLongTimeString method of

structure DateTime 499
ToLower method of class string

515, 516, 602
ToLower method of struct Char

527
tool bar 396
tool tip 23
toolbar 22
toolbar icon 22
Toolbox 26
Tools menu 21
ToolStripMenuItem class 440

Checked property 443, 448
CheckOnClick property 443
Click event 442, 443
ShortcutKeyDisplayString

property 440, 443

ShortcutKeys property 440,
443

ShowShortcutKeys property
440, 443

Text property 443
ToolStripMenuItem properties

and an event 443
ToolTip class 426

AutoPopDelay property 427
Draw event 427
InitialDelay property 427
ReshowDelay property 427

ToolTip properties and events
427

ToString method of an
anonymous type 659

ToString method of class
Exception 386

ToString method of class
object 307, 326

ToString method of class
StringBuilder 517, 520

TotalMilliseconds property of
TimeSpan 625

ToUpper method of class string
263, 515, 516, 606

ToUpper method of struct Char
527

trace 584
transfer of control 96
transition arrow in the UML 97,

98, 100, 107
traverse an array 227
tree 468
TreeNode class 469

Checked property 469
Collapse method 470
Expand method 470
ExpandAll method 470
FirstNode property 469
FullPath property 469
GetNodeCount method 470
ImageIndex property 469
LastNode property 469
NextNode property 469
Nodes property 469
PrevNode property 470
SelectedImageIndex

property 470
Text property 470

TreeNode Editor 470
TreeNode properties and

methods 469
TreeNodeCollection class 469
TreeView class 439, 468

AfterSelected event 469
CheckBoxes property 469
ImageList property 469
Nodes property 469
SelectedNode property 469

TreeView displaying a sample
tree 468

TreeView properties and an
event 469

TreeView used to display
directories 471

TreeViewEventArgs class 469
trigger an event 396
trigonometric cosine 153
trigonometric sine 153
trigonometric tangent 153
Trim method of class string 515
TrimExcess method of class

List<T> 257
true 61, 99, 100
truncate 60, 110
truth table 144

for operator ^ 145
for operator ! 146
for operator && 144
for operator || 144

try block 211, 369
try statement 211, 371
TryParse method of structure

int 369
24-hour clock format 267
two-dimensional array 225
type 55, 57
type argument 572, 573, 581
type checking 568
Type class 326, 350

FullName property 326
type constraint 574, 576

specifying 574
type inference 206, 573
type parameter 572, 578, 587

scope 579
type parameter list 572, 578
typesetting system 503
typing in a TextBox 398

Index 733

U
uint simple type 702
ulong simple type 702
UML

activity diagram 133
UML (Unified Modeling

Language) 5
activity diagram 97, 98, 100,

106
arrow 98
class diagram 76, 83
compartment in a class

diagram 76
diamond 99
dotted line 98
final state 98
guard condition 99
merge symbol 106
modeling properties 83
note 98
solid circle 98
solid circle surrounded by a

hollow circle 98
stereotype 83

UML class diagram 301
unary cast operator 113
unary operator 114, 146
UnauthorizedAccessException

class 473
unboxing conversion 592
uncaught exception 370
uneditable text or icons 396
unhandled exception 366, 370
Unicode character set 121, 138,

504
Unified Modeling Language

(UML) 5
universal-time format 267, 268
Universal Windows Platform

(UWP) 10
unmanaged resource 361
unqualified name 162, 174, 493
unwind a method from the call

stack 386
UpDownAlign property of class

NumericUpDown 429
uppercase letter 44, 57
UseMnemonic property of class

LinkLabel 454
user-defined classes 44

UserControl control 497
UserControl defined clock 498
user-defined exception class 386
user-interface thread 622
UseSystemPasswordChar

property of class TextBox 410
ushort simple type 702
using directive 43, 162
Using lambda expressions 612
using static directive 595

V
valid identifier 55
validate data 78
validate input 369
validation 89
validity checking 89
value contextual keyword 82
Value property of a nullable type

391
Value property of class

DateTimePicker 450, 451,
452

Value property of class
LinkedListNode 603

Value property of class
NumericUpDown 429

Value property of class
XAttribute 693

value type 189
value type constraint struct

576
value types 292
ValueChanged event

of class DateTimePicker 450
of class NumericUpDown 429

Values property of class
SortedDictionary<K,V> 603

ValueType class 525
var keyword 206
variable 55

declaration statement 55, 57
name 55

variable is not modifiable 288
variable-length argument list

236
variable scope 127
verbatim string 456, 504

syntax(@) 504
VIEW menu 21, 24

View property of class ListView
474, 474

virtual

keyword 316
virtual machine (VM) 7
Visible property of class

Control 407
VisitedLinkColor property of

class LinkLabel 454
visual app development 16
visual programming 397
Visual Studio 10

component tray 427
IDE (integrated

development
environment) 10

themes 17
Visual Studio .NET Class View

289
Visual Studio .NET Object

Browser 289
Visual Studio Community 2015

47
Visual Studio® 16
void keyword 46, 73

W
web service 687
when clause of a catch handler

(C# 6) 392
WhenAll method of class Task

685
WhenAny method of class Task

686
where clause 576

of a LINQ query 250
Where extension method 621

of class Queryable 655
while iteration statement 98,

107
activity diagram in the UML

107
while keyword 132
while repetition statement 109,

112
whitespace 43, 46, 65

characters 43
whitespace character (regular

expressions) 517
whole-number literal 130

734 Index

widget 396
Width property of structure Size

409
window auto hide 24
window gadget 396
Window menu 22
window tab 21
Windows

Font 34
Properties 26, 28, 30, 34
Solution Explorer 25

Windows 10 10
Windows 8 9
Windows 8 UI 9
Windows bitmap (BMP) 36
Windows Explorer 456
Windows Forms 396
Windows operating system 9
Windows Phone 7 9
Windows Phone operating

system 9
Windows Store xxvii, 10
word processor 503, 511
workflow 97

Write method of class Console
53, 531

WriteLine method of class
Console 46, 53, 531

WriteLine method of class
StreamWriter 539

www.deitel.com/LINQ/ 264

X
X format specifier 92
X property of class

MouseEventArgs 431
XAttribute class 693

Value property 693
XDocument class 693

Descendants method 693
Parse method 693

XElement class 693
Attribute method 693

XML (Extensible Markup
Language) 687
element 692
end tag 692
start tag 692

XmlSerializer class 550
Xor bitwise operator 449

Y
Y property of class

MouseEventArgs 431

Z
zeroth element 197

http://www.deitel.com/LINQ/

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Before You Begin
	1 Introduction
	1.1 Introduction
	1.2 Object Technology: A Brief Review
	1.3 C#
	1.3.1 Object-Oriented Programming
	1.3.2 Event-Driven Programming
	1.3.3 Visual Programming
	1.3.4 Generic and Functional Programming
	1.3.5 An International Standard
	1.3.6 C# on Non-Windows Platforms
	1.3.7 Internet and Web Programming
	1.3.8 Asynchronous Programming with async and await

	1.4 Microsoft’s .NET
	1.4.1 .NET Framework
	1.4.2 Common Language Runtime
	1.4.3 Platform Independence
	1.4.4 Language Interoperability

	1.5 Microsoft’s Windows® Operating System
	1.6 Visual Studio Integrated Development Environment
	1.7 Painter Test-Drive in Visual Studio Community

	7 Methods: A Deeper Look
	7.1 Introduction
	7.2 Packaging Code in C#
	7.3 static Methods, static Variables and Class Math
	7.3.1 Math Class Methods
	7.3.2 Math Class Constants PI and E
	7.3.3 Why Is Main Declared static?
	7.3.4 Additional Comments About Main

	7.4 Methods with Multiple Parameters
	7.4.1 Keyword static
	7.4.2 Method Maximum
	7.4.3 Assembling strings with Concatenation
	7.4.4 Breaking Apart Large string Literals
	7.4.5 When to Declare Variables as Fields
	7.4.6 Implementing Method Maximum by Reusing Method Math.Max

	7.5 Notes on Using Methods
	7.6 Argument Promotion and Casting
	7.6.1 Promotion Rules
	7.6.2 Sometimes Explicit Casts Are Required

	7.7 The .NET Framework Class Library
	7.8 Case Study: Random-Number Generation
	7.8.1 Creating an Object of Type Random
	7.8.2 Generating a Random Integer
	7.8.3 Scaling the Random-Number Range
	7.8.4 Shifting Random-Number Range
	7.8.5 Combining Shifting and Scaling
	7.8.6 Rolling a Six-Sided Die
	7.8.7 Scaling and Shifting Random Numbers
	7.8.8 Repeatability for Testing and Debugging

	7.9 Case Study: A Game of Chance; Introducing Enumerations
	7.9.1 Method RollDice
	7.9.2 Method Main’s Local Variables
	7.9.3 enum Type Status
	7.9.4 The First Roll
	7.9.5 enum Type DiceNames
	7.9.6 Underlying Type of an enum
	7.9.7 Comparing Integers and enum Constants

	7.10 Scope of Declarations
	7.11 Method-Call Stack and Activation Records
	7.11.1 Method-Call Stack
	7.11.2 Stack Frames
	7.11.3 Local Variables and Stack Frames
	7.11.4 Stack Overflow
	7.11.5 Method-Call Stack in Action

	7.12 Method Overloading
	7.12.1 Declaring Overloaded Methods
	7.12.2 Distinguishing Between Overloaded Methods
	7.12.3 Return Types of Overloaded Methods

	7.13 Optional Parameters
	7.14 Named Parameters
	7.15 C# 6 Expression-Bodied Methods and Properties
	7.16 Recursion
	7.16.1 Base Cases and Recursive Calls
	7.16.2 Recursive Factorial Calculations
	7.16.3 Implementing Factorial Recursively

	7.17 Value Types vs. Reference Types
	7.18 Passing Arguments By Value and By Reference
	7.18.1 ref and out Parameters
	7.18.2 Demonstrating ref, out and Value Parameters

	7.19 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

