

Pandas for
Everyone

T he Pearson Addison-Wesley Data and Analytics Series provides readers with
practical knowledge for solving problems and answering questions with data.
Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and
compelling way

The series aims to tie all three of these areas together to help the reader build
end-to-end systems for fighting spam; making recommendations; building
personalization; detecting trends, patterns, or problems; and gaining insight
from the data exhaust of systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Pearson Addison-Wesley
Data and Analytics Series

http://informit.com/awdataseries
http://informit.com/socialconnect

Pandas for
Everyone

Python Data Analysis

Daniel Y. Chen

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017956175

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-454693-3
ISBN-10: 0-13-454693-8

1 17

http://informit.com/aw
http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

❦

To my family: Mom, Dad, Eric, and Julia

❦

This page intentionally left blank

Contents

Foreword xix

Preface xxi

Acknowledgments xxvii

About the Author xxxi

I Introduction 1

1 Pandas DataFrame Basics 3
1.1 Introduction 3
1.2 Loading Your First Data Set 4
1.3 Looking at Columns, Rows,

and Cells 7
1.3.1 Subsetting Columns 7
1.3.2 Subsetting Rows 8
1.3.3 Mixing It Up 12

1.4 Grouped and Aggregated
Calculations 18
1.4.1 Grouped Means 19
1.4.2 Grouped Frequency

Counts 23
1.5 Basic Plot 23
1.6 Conclusion 24

2 Pandas Data Structures 25
2.1 Introduction 25
2.2 Creating Your Own Data 26

2.2.1 Creating a Series 26
2.2.2 Creating a DataFrame 27

2.3 The Series 28
2.3.1 The Series Is

ndarray-like 30
2.3.2 Boolean Subsetting:

Series 30
2.3.3 Operations Are

Automatically
Aligned and Vectorized
(Broadcasting) 33

viii Contents

2.4 The DataFrame 36
2.4.1 Boolean Subsetting:

DataFrames 36
2.4.2 Operations Are Automatically

Aligned and Vectorized
(Broadcasting) 37

2.5 Making Changes to Series and
DataFrames 38
2.5.1 Add Additional Columns 38
2.5.2 Directly Change a Column 39
2.5.3 Dropping Values 43

2.6 Exporting and Importing Data 43
2.6.1 pickle 43
2.6.2 CSV 45
2.6.3 Excel 46
2.6.4 Feather Format to Interface

With R 47
2.6.5 Other Data Output Types 47

2.7 Conclusion 47

3 Introduction to Plotting 49
3.1 Introduction 49
3.2 Matplotlib 51
3.3 Statistical Graphics Using

matplotlib 56
3.3.1 Univariate 57
3.3.2 Bivariate 58
3.3.3 Multivariate Data 59

3.4 Seaborn 61
3.4.1 Univariate 62
3.4.2 Bivariate Data 65
3.4.3 Multivariate Data 73

3.5 Pandas Objects 83
3.5.1 Histograms 84
3.5.2 Density Plot 85
3.5.3 Scatterplot 85
3.5.4 Hexbin Plot 86
3.5.5 Boxplot 86

3.6 Seaborn Themes and Styles 86
3.7 Conclusion 90

Contents ix

II Data Manipulation 91

4 Data Assembly 93
4.1 Introduction 93
4.2 Tidy Data 93

4.2.1 Combining Data Sets 94
4.3 Concatenation 94

4.3.1 Adding Rows 94
4.3.2 Adding Columns 98
4.3.3 Concatenation With

Different Indices 99
4.4 Merging Multiple Data Sets 102

4.4.1 One-to-One Merge 104
4.4.2 Many-to-One Merge 105
4.4.3 Many-to-Many

Merge 105
4.5 Conclusion 107

5 Missing Data 109
5.1 Introduction 109
5.2 What Is a NaN Value? 109
5.3 Where Do Missing Values

Come From? 111
5.3.1 Load Data 111
5.3.2 Merged Data 112
5.3.3 User Input Values 114
5.3.4 Re-indexing 114

5.4 Working With Missing Data 116
5.4.1 Find and Count missing

Data 116
5.4.2 Cleaning Missing Data 118
5.4.3 Calculations With Missing

Data 120
5.5 Conclusion 121

6 Tidy Data 123
6.1 Introduction 123
6.2 Columns Contain Values,

Not Variables 124

x Contents

6.2.1 Keep One Column
Fixed 124

6.2.2 Keep Multiple Columns
Fixed 126

6.3 Columns Contain Multiple Variables 128
6.3.1 Split and Add Columns

Individually
(Simple Method) 129

6.3.2 Split and Combine in a Single
Step (Simple Method) 131

6.3.3 Split and Combine in a Single
Step (More Complicated
Method) 132

6.4 Variables in Both Rows and
Columns 133

6.5 Multiple Observational Units in a Table
(Normalization) 134

6.6 Observational Units Across Multiple
Tables 137
6.6.1 Load Multiple Files Using

a Loop 139
6.6.2 Load Multiple Files Using a List

Comprehension 140
6.7 Conclusion 141

III Data Munging 143

7 Data Types 145
7.1 Introduction 145
7.2 Data Types 145
7.3 Converting Types 146

7.3.1 Converting to String
Objects 146

7.3.2 Converting to Numeric
Values 147

7.4 Categorical Data 152
7.4.1 Convert to Category 152
7.4.2 Manipulating Categorical

Data 153
7.5 Conclusion 153

Contents xi

8 Strings and Text Data 155
8.1 Introduction 155
8.2 Strings 155

8.2.1 Subsetting and Slicing
Strings 155

8.2.2 Getting the Last Character in
a String 157

8.3 String Methods 158
8.4 More String Methods 160

8.4.1 Join 160
8.4.2 Splitlines 160

8.5 String Formatting 161
8.5.1 Custom String

Formatting 161
8.5.2 Formatting Character

Strings 162
8.5.3 Formatting Numbers 162
8.5.4 C printf Style

Formatting 163
8.5.5 Formatted Literal Strings in

Python 3.6+ 163
8.6 Regular Expressions (RegEx) 164

8.6.1 Match a Pattern 164
8.6.2 Find a Pattern 168
8.6.3 Substituting a Pattern 168
8.6.4 Compiling a Pattern 169

8.7 The regex Library 170
8.8 Conclusion 170

9 Apply 171
9.1 Introduction 171
9.2 Functions 171
9.3 Apply (Basics) 172

9.3.1 Apply Over a Series 173
9.3.2 Apply Over a

DataFrame 174
9.4 Apply (More Advanced) 177

9.4.1 Column-wise
Operations 178

9.4.2 Row-wise Operations 180

xii Contents

9.5 Vectorized Functions 182
9.5.1 Using numpy 184
9.5.2 Using numba 185

9.6 Lambda Functions 185
9.7 Conclusion 187

10 Groupby Operations: Split–Apply–Combine 189
10.1 Introduction 189
10.2 Aggregate 190

10.2.1 Basic One-Variable Grouped
Aggregation 190

10.2.2 Built-in Aggregation
Methods 191

10.2.3 Aggregation Functions 192
10.2.4 Multiple Functions

Simultaneously 195
10.2.5 Using a dict in

agg/aggregate 195
10.3 Transform 197

10.3.1 z-Score Example 197
10.4 Filter 201
10.5 The pandas.core.groupby

.DataFrameGroupBy Object 202
10.5.1 Groups 202
10.5.2 Group Calculations Involving

Multiple Variables 203
10.5.3 Selecting a Group 204
10.5.4 Iterating Through

Groups 204
10.5.5 Multiple Groups 206
10.5.6 Flattening the Results 206

10.6 Working With a MultiIndex 207
10.7 Conclusion 211

11 The datetime Data Type 213
11.1 Introduction 213
11.2 Python’s datetime Object 213
11.3 Converting to datetime 214
11.4 Loading Data That Include Dates 217
11.5 Extracting Date Components 217

Contents xiii

11.6 Date Calculations and
Timedeltas 220

11.7 Datetime Methods 221
11.8 Getting Stock Data 224
11.9 Subsetting Data Based on Dates 225

11.9.1 The DatetimeIndex
Object 225

11.9.2 The TimedeltaIndex
Object 226

11.10 Date Ranges 227
11.10.1 Frequencies 228
11.10.2 Offsets 229

11.11 Shifting Values 230
11.12 Resampling 237
11.13 Time Zones 238
11.14 Conclusion 240

IV Data Modeling 241

12 Linear Models 243
12.1 Introduction 243
12.2 Simple Linear Regression 243

12.2.1 Using statsmodels 243
12.2.2 Using sklearn 245

12.3 Multiple Regression 247
12.3.1 Using statsmodels 247
12.3.2 Using statsmodels With

Categorical Variables 248
12.3.3 Using sklearn 249
12.3.4 Using sklearn With

Categorical Variables 250
12.4 Keeping Index Labels From

sklearn 251
12.5 Conclusion 252

13 Generalized Linear Models 253
13.1 Introduction 253
13.2 Logistic Regression 253

13.2.1 Using Statsmodels 255
13.2.2 Using Sklearn 256

xiv Contents

13.3 Poisson Regression 257
13.3.1 Using Statsmodels 258
13.3.2 Negative Binomial Regression

for Overdispersion 259
13.4 More Generalized Linear Models 260
13.5 Survival Analysis 260

13.5.1 Testing the Cox Model
Assumptions 263

13.6 Conclusion 264

14 Model Diagnostics 265
14.1 Introduction 265
14.2 Residuals 265

14.2.1 Q-Q Plots 268
14.3 Comparing Multiple Models 270

14.3.1 Working With Linear
Models 270

14.3.2 Working With GLM Models 273
14.4 k-Fold Cross-Validation 275
14.5 Conclusion 278

15 Regularization 279
15.1 Introduction 279
15.2 Why Regularize? 279
15.3 LASSO Regression 281
15.4 Ridge Regression 283
15.5 Elastic Net 285
15.6 Cross-Validation 287
15.7 Conclusion 289

16 Clustering 291
16.1 Introduction 291
16.2 k-Means 291

16.2.1 Dimension Reduction
With PCA 294

16.3 Hierarchical Clustering 297
16.3.1 Complete Clustering 298
16.3.2 Single Clustering 298
16.3.3 Average Clustering 299

Contents xv

16.3.4 Centroid Clustering 299
16.3.5 Manually Setting the

Threshold 299
16.4 Conclusion 301

V Conclusion 303

17 Life Outside of Pandas 305
17.1 The (Scientific) Computing Stack 305
17.2 Performance 306

17.2.1 Timing Your Code 306
17.2.2 Profiling Your Code 307

17.3 Going Bigger and Faster 307

18 Toward a Self-Directed Learner 309
18.1 It’s Dangerous to Go Alone! 309
18.2 Local Meetups 309
18.3 Conferences 309
18.4 The Internet 310
18.5 Podcasts 310
18.6 Conclusion 311

VI Appendixes 313

A Installation 315
A.1 Installing Anaconda 315

A.1.1 Windows 315
A.1.2 Mac 316
A.1.3 Linux 316

A.2 Uninstall Anaconda 316

B Command Line 317
B.1 Installation 317

B.1.1 Windows 317
B.1.2 Mac 317
B.1.3 Linux 318

B.2 Basics 318

xvi Contents

C Project Templates 319

D Using Python 321
D.1 Command Line and Text Editor 321
D.2 Python and IPython 322
D.3 Jupyter 322
D.4 Integrated Development Environments

(IDEs) 322

E Working Directories 325

F Environments 327

G Install Packages 329
G.1 Updating Packages 330

H Importing Libraries 331

I Lists 333

J Tuples 335

K Dictionaries 337

L Slicing Values 339

M Loops 341

N Comprehensions 343

O Functions 345
O.1 Default Parameters 347
O.2 Arbitrary Parameters 347

O.2.1 *args 347
O.2.2 **kwargs 348

P Ranges and Generators 349

Contents xvii

Q Multiple Assignment 351

R numpy ndarray 353

S Classes 355

T Odo: The Shapeshifter 357

Index 359

This page intentionally left blank

Foreword

With each passing year data becomes more important to the world, as does the ability to
compute on this growing abundance of data. When deciding how to interact with data,
most people make a decision between R and Python. This does not reflect a language war
but rather a luxury of choice where data scientists and engineers can work in the language
with which they feel most comfortable. These tools make it possible for everyone to work
with data for machine learning and statistical analysis. That is why I am happy to see what
I started with R for Everyone extended to Python with Pandas for Everyone.

I first met Dan Chen when he stumbled into the “Introduction to Data Science”
course while working toward a master’s in public health at Columbia University’s Mailman
School of Public Health. He was part of a cohort of MPH students who cross-registered
into the graduate school course and quickly developed a knack for data science, embracing
statistical learning and reproducibility. By the end of the semester he was devoted to, and
evangelizing, the merits of data science.

This coincided with the rise of Pandas, improving Python’s use as a tool for data science
and enabling engineers already familiar with the language to use it for data science as well.
This fortuitous timing meant Dan developed into a true multilingual data scientist,
mastering both R and Pandas. This puts him in a great position to reach different
audiences, as shown by his frequent and popular talks at both R and Python conferences
and meetups. His enthusiasm and knowledge shine through and resonate in everything he
does, from educating new users to building Python libraries. Along the way he fully
embraces the ethos of the open-source movement.

As the name implies, this book is meant for everyone who wants to use Python for data
science, whether they are veteran Python users, experienced programmers, statisticians, or
entirely new to the field. For people brand new to Python the book contains a collection
of appendixes for getting started with the language and for installing both Python and
Pandas, and it covers the whole analysis pipeline, including reading data, visualization, data
manipulation, modeling, and machine learning.

Pandas for Everyone is a tour of data science through the lens of Python, and Dan Chen
is perfectly suited to guide that tour. His mixture of academic and industry experience
lends valuable insights into the analytics process and how Pandas should be used to greatest
effect. All this combines to make for an enjoyable and informative read for everyone.

–Jared Lander, series editor

This page intentionally left blank

Preface

In 2013, I didn’t even know the term “data science” existed. I was a master’s of public
health (MPH) student in epidemiology at the time and was already captivated with the
statistical methods beyond the t-test, ANOVA, and linear regression from my psychology
and neuroscience undergraduate background. It was also in the fall of 2013 that I attended
my first Software-Carpentry workshop and that I taught my first recitation section as a
teaching assistant for my MPH program’s Quantitative Methods course (essentially a
combination of a first-semester epidemiology and biostatistics course). I’ve been learning
and teaching ever since.

I’ve come a long way since taking my first Introduction to Data Science course, which
was taught by Rachel Schutt, PhD; Kayur Patel, PhD; and Jared Lander. They opened my
eyes to what was possible. Things that were inconceivable (to me) were actually common
practices, and anything I could think of was possible (although I now know that “possible”
doesn’t mean “performs well”). The technical details of data science—the coding
aspects—were taught by Jared in R. Jared’s friends and colleagues know how much of an
aficionado he is of the R language.

At the time, I had been meaning to learn R, but the Python/R language war never
breached my consciousness. On the one hand, I saw Python as just a programming
language; on the other hand, I had no idea Python had an analytics stack (I’ve come a long
way since then). When I learned about the SciPy stack and Pandas, I saw it as a bridge
between what I knew how to do in Python from my undergraduate and high school days
and what I had learned in my epidemiology studies and through my newly acquired data
science knowledge. As I became more proficient in R, I saw the similarities to Python. I
also realized that a lot of the data cleaning tasks (and programming in general) involve
thinking about how to get what you need—the rest is more or less syntax. It’s important
to try to imagine what the steps are and not get bogged down by the programming details.
I’ve always been comfortable bouncing around the languages and never gave too much
thought to which language was “better.” Having said that, this book is geared toward a
newcomer to the Python data analytics world.

This book encapsulates all the people I’ve met, events I’ve attended, and skills I’ve
learned over the past few years. One of the more important things I’ve learned (outside of
knowing what things are called so Google can take me to the relevant StackOverflow
page) is that reading the documentation is essential. As someone who has worked on
collaborative lessons and written Python and R libraries, I can assure you that a lot of time
and effort go into writing documentation. That’s why I constantly refer to the relevant
documentation page throughout this book. Some functions have so many parameters used
for varying use cases that it’s impractical to go through each of them. If that were the focus
of this book, it might as well be titled Loading Data Into Python. But, as you practice
working with data and become more comfortable with the various data structures, you’ll
eventually be able to make “educated guesses” about what the output of something will

xxii Preface

be, even though you’ve never written that particular line of code before. I hope this book
gives you a solid foundation to explore on your own and be a self-guided learner.

I met a lot of people and learned a lot from them during the time I was putting this
book together. A lot of the things I learned dealt with best practices, writing vectorized
statements instead of loops, formally testing code, organizing project folder structures, and
so on. I also learned lot about teaching from actually teaching. Teaching really is the best
way to learn material. Many of the things I’ve learned in the past few years have come to
me when I was trying to figure them out to teach others. Once you have a basic
foundation of knowledge, learning the next bit of information is relatively easy. Repeat the
process enough times, and you’ll be surprised how much you actually know. That includes
knowing the terms to use for Google and interpreting the StackOverflow answers. The
very best of us all search for our questions. Whether this is your first language or your
fourth, I hope this book gives you a solid foundation to build upon and learn as well as a
bridge to other analytics languages.

Breakdown of the Book
This book is organized into five parts plus a set of appendixes.

Part I
Part I aims to be an introduction to Pandas using a realistic data set.

. Chapter 1: Starts by using Pandas to load a data set and begin looking at various
rows and columns of the data. Here you will get a general sense of the syntax of
Python and Pandas. The chapter ends with a series of motivating examples that
illustrate what Pandas can do.

. Chapter 2: Dives deeper into what the Pandas DataFrame and Series objects are.
This chapter also covers boolean subsetting, dropping values, and different ways to
import and export data.

. Chapter 3: Covers plotting methods using matplotlib, seaborn, and Pandas to
create plots for exploratory data analysis.

Part II
Part II focuses on what happens after you load data and need to combine data together. It
also introduces “tidy data”—a series of data manipulations aimed at “cleaning” data.

. Chapter 4: Focuses on combining data sets, either by concatenating them together
or by merging disparate data.

. Chapter 5: Covers what happens when there is missing data, how data are created to
fill in missing data, and how to work with missing data, especially what happens
when certain calculations are performed on them.

. Chapter 6: Discusses Hadley Wickham’s “Tidy Data” paper, which deals with
reshaping and cleaning common data problems.

Part III
Part III covers the topics needed to clean and munge data.

Preface xxiii

. Chapter 7: Deals with data types and how to convert from different types within
DataFrame columns.

. Chapter 8: Introduces string manipulation, which is frequently needed as part of the
data cleaning task because data are often encoded as text.

. Chapter 9: Focuses on applying functions over data, an important skill that
encompasses many programming topics. Understanding how apply works will pave
the way for more parallel and distributed coding when your data manipulations need
to scale.

. Chapter 10: Describes groupby operations. These powerful concepts, like apply, are
often needed to scale data. They are also great ways to efficiently aggregate,
transform, or filter your data.

. Chapter 11: Explores Pandas’s powerful date and time capabilities.

Part IV
With the data all cleaned and ready, the next step is to fit some models. Models can be
used for exploratory purposes, not just for prediction, clustering, and inference. The goal
of Part IV is not to teach statistics (there are plenty of books in that realm), but rather to
show you how these models are fit and how they interface with Pandas. Part IV can be
used as a bridge to fitting models in other languages.

. Chapter 12: Linear models are the simpler models to fit. This chapter covers fitting
these models using the statsmodels and sklean libraries.

. Chapter 13: Generalized linear models, as the name suggests, are linear models
specified in a more general sense. They allow us to fit models with different response
variables, such as binary data or count data. This chapter also covers survival models.

. Chapter 14: Since we have a core set of models that we can fit, the next step is to
perform some model diagnostics to compare multiple models and pick the “best”
one.

. Chapter 15: Regularization is a technique used when the models we are fitting are
too complex or overfit our data.

. Chapter 16: Clustering is a technique we use when we don’t know the actual answer
within our data, but we need a method to cluster or group “similar” data points
together.

Part V
The book concludes with a few points about the larger Python ecosystem, and additional
references.

. Chapter 17: Quickly summarizes the computation stack in Python, and starts down
the path to code performance and scaling.

. Chapter 18: Provides some links and references on learning beyond the book.

Appendixes
The appendixes can be thought as a primer to Python programming. While they are not a
complete introduction to Python, the various appendixes do supplement some of the
topics throughout the book.

xxiv Preface

. Appendixes A–G: These appendixes cover all the tasks related to running Python
code—from installing Python, to using the command line to execute your scripts,
and to organizing your code. They also cover creating Python environments and
installing libraries.

. Appendixes H–T: The appendixes cover general programming concepts that are
relevant to Python and Pandas. They are supplemental references to the main part of
the book.

How to Read This Book
Whether you are a newcomer to Python or a fluent Python programmer, this book is
meant to be read from the beginning. Educators, or people who plan to use the book for
teaching, may also find the order of the chapters to be suitable for a workshop or class.

Newcomers
Absolute newcomers are encouraged to first look through Appendixes A–F, as they explain
how to install Python and get it working. After taking these steps, readers will be ready to
jump into the main body of the book. The earlier chapters make references to the relevant
appendixes as needed. The concept map and objectives found at the beginning of the
earlier chapters help organize and prepare the reader for what will be covered in the
chapter, as well as point to the relevant appendixes to be read before continuing.

Fluent Python Programmers
Fluent Python programmers may find the first two chapters to be sufficient to get started
and grasp the syntax of Pandas; they can then use the rest of the book as a reference. The
objectives at the beginning of the earlier chapters point out which topics are covered in the
chapter. The chapter on “tidy data” in Part II, and the chapters in Part III, will be
particularly helpful in data manipulation.

Instructors
Instructors who want to use the book as a teaching reference may teach each chapter in
the order presented. It should take approximately 45 minutes to 1 hour to teach
each chapter. I have sought to structure the book so that chapters do not reference future
chapters, so as to minimize the cognitive overload for students—but feel free to shuffle
the chapters as needed.

Setup
Everyone will have a different setup, so the best way to get the most updated set of
instructions on setting up an environment to code through the book would be on the
accompanying GitHub repository:

https://github.com/chendaniely/pandas_for_everyone

Otherwise, see Appendix A for information on how to install Python on your computer.

https://github.com/chendaniely/pandas_for_everyone

Preface xxv

Getting the Data
The easiest way to get all the data to code along the book is to download the repository
using the following URL:

https://github.com/chendaniely/pandas_for_everyone/archive/master.zip

This will download everything in the repository, as well as provide a folder in which you
can put your Python scripts or notebooks. You can also copy the data folder from the
repository and put it in a folder of your choosing. The instructions on the GitHub
repository will be updated as necessary to facilitate downloading the data for the book.

Setting up Python
Appendixes F and G cover environments and installing packages, respectively. Following
are the commands used to build the book and should be sufficient to help you get started.

$ conda create -n book python=3.6

$ source activate book

$ conda install pandas xlwt openpyxl feather -format seaborn numpy \
ipython jupyter statsmodels scikit-learnregex \
wget odo numba

$ conda install -c conda-forge pweave

$ pip install lifelines

$ pip install pandas-datareader

Feedback, Please!
Thank you for taking the time to go through this book. If you find any problems, issues,
or mistakes within the book, please send me feedback! GitHub issues may be the best place
to provide this information, but you can also email me at chendaniely@gmail.com. Just be
sure to use the [PFE] tag in the beginning of the subject line so I can make sure your emails
do not get flooded by various listserv emails. If there are topics that you feel should be
covered in the book, please let me know. I will try my best to put up a notebook in the
GitHub repository, and to get it incorporated in a later printing or edition of the book.

Words of encouragement are appreciated.

Register your copy of Pandas for Everyone on the InformIT site for convenient access
to updates and/or corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780134546933) and click Submit. Look on the Registered Products
tab for an Access Bonus Content link next to this product, and follow that link to
access any available bonus materials. If you would like to be notified of exclusive offers
on new editions and updates, please check the box to receive email from us.

https://github.com/chendaniely/pandas_for_everyone/archive/master.zip
mailto:chendaniely@gmail.com
http://informit.com/register

Acknowledgments

Introduction to Data Science: The three people who paved the way for this book were
my instructors in the “Introduction to Data Science” course at Columbia—Rachel Schutt,
Kayur Patel, and Jared Lander. Without them, I wouldn’t even know what the term “data
science” means. I learned so much about the field through their lectures and labs;
everything I know and do today can be traced back to this class. The instructors were only
part of the learning process. The people in my study group, where we fumbled through
our homework assignments and applied our skills to the final project of summarizing
scientific articles, made learning the material and passing the class possible. They were
Niels Bantilan, Thomas Vo, Vivian Peng, and Sabrina Cheng (depicted in the figure here).
Perhaps unsurprisingly, they also got me through my master’s program (more on that later).

One of the midnight doodles by Vivian Peng for
our project group. We have Niels, our project
leader, at the top; Thomas, me, and Sabrina in the
middle row; and Vivian at the bottom.

Software-Carpentry: As part of the “Introduction to Data Science” course, I attended a
Software-Carpentry workshop, where I was first introduced to Pandas. My first instructors
were Justin Ely and David Warde-Farley. Since then I’ve been involved in the community,
thanks to Greg Wilson, and still remember the first class I helped teach, led by Aron
Ahmadia and Randal S. Olson. The many workshops that I’ve taught since then, and the
fellow instructors whom I’ve met, gave me the opportunity to master the knowledge and
skills I know and practice today, and to disseminate them to new learners, which has
cumulated into this book.

Software-Carpentry also introduced me to the NumFOCUS, PyData, and the
Scientific Python communities, where all my (Python) heroes can be found. There are too
many to list here. My connection to the R world is all thanks to Jared Lander.

Columbia University Mailman School of Public Health: My undergraduate study
group evolved into a set of lifelong friends during my master’s program. The members of

xxviii Acknowledgments

this group got me through the first semester of the program in which epidemiology and
biostatistics were first taught. The knowledge I learned in this program later transferred
into my knowledge of machine learning. Thanks go to Karen Lin, Sally Cheung, Grace
Lee, Wai Yee (Krystal) Khine, Ashley Harper, and Jacquie Cheung. A second set of thanks
to go to my old study group alumni: Niels Bantilan, Thomas Vo, and Sabrina Cheng.

To my instructors, Katherine Keyes and Martina Pavlicova, thanks for being exemplary
teachers in epidemiology, and biostatistics, respectively. Thanks also to Dana March
Palmer, for whom I was a TA and who gave me my first teaching experience. Mark Orr
served as my thesis advisor while I was at Mailman. The department of epidemiology had a
subset of faculty who did computational and simulation modeling, under the leadership of
Sandro Galea, the department chair at the time. After graduation, I got my first job as a
data analyst with Jacqueline Merrill at the Columbia University School of Nursing.

Getting to Mailman was a life-altering event. I never would have considered entering
an MPH program if it weren’t for Ting Ting Guo. As an advisor, Charlotte Glasser was a
tremendous help to me in planning out my frequent undergraduate major changes and
postgraduate plans.

Virginia Tech: The people with whom I work at the Social and Decision Analytics
Laboratory (SDAL) have made Virginia Tech one of the most enjoyable places where I’ve
worked. A second thanks to Mark Orr, who got me here. The administrators of the lab,
Kim Lyman and Lori Conerly, make our daily lives that much easier. Sallie Keller and
Stephanie Shipp, the director and the deputy lab director, respectively, create a
collaborative work environment. The rest of the lab members, past and present (in no
particular order)—David Higdon, Gizem Korkmaz, Vicki Lancaster, Mark Orr, Bianca
Pires, Aaron Schroeder, Ian Crandell, Joshua Goldstein, Kathryn Ziemer, Emily Molfino,
and Ana Aizcorbe—also work hard at making my graduate experience fun. It’s also been a
pleasure to train and work with the summer undergraduate and graduate students in the
lab through the Data Science for the Public Good program. I’ve learned a lot about
teaching and implementing good programming practices. Finally, Brian Goode adds to my
experience progressing though the program by always being available to talk about
various topics.

The people down in Blacksburg, Virginia, where most of the book was written, have
kept me grounded during my coursework. My PhD cohort—Alex Song Qi, Amogh
Jalihal, Brittany Boribong, Bronson Weston, Jeff Law, and Long Tian—have always found
time for me, and for one another, and offered opportunities to disconnect from the PhD
grind. I appreciate their willingness to work to maintain our connections, despite being in
an interdisciplinary program where we don’t share many classes together, let alone labs.

Brian Lewis and Caitlin Rivers helped me initially get settled in Blacksburg and gave
me a physical space to work in the Network Dynamics and Simulation Science Laboratory.
Here, I met Gloria Kang, Pyrros (Alex) Telionis, and James Schlitt, who have given me
creative and emotional outlets the past few years. NDSSL has also provided and/or been
involved with putting together some of the data sets used in the book.

Last but not least, Dennie Munson, my program liaison, can never be thanked enough
for putting up with all my shenanigans.

Acknowledgments xxix

Book Publication Process: Debra Williams Cauley, thank you so much for giving me
this opportunity to contribute to the Python and data science community. I’ve grown
tremendously as an educator during this process, and this adventure has opened more
doors for me than the number of times I’ve missed deadlines. A second thanks to Jared
Lander for recommending me and putting me up for the task.

Even more thanks go to Gloria Kang, Jacquie Cheung, and Jared Lander for their
feedback during the writing process. I also want to thank Chris Zahn for all the work in
reviewing the book from cover to cover, and Kaz Sakamoto and Madison Arnsbarger for
providing feedback and reviews. Through their many conversations with me, M Pacer,
Sebastian Raschka, Andreas Müller, and Tom Augspurger helped me make sure I covered
my bases, and did things “properly.”

Thanks to all the people involved in the post-manuscript process: Julie Nahil
(production editor), Jill Hobbs (copy editor), Rachel Paul (project manager and
proofreader), Jack Lewis (indexer), and SPi Global (compositor). Y’all have been a pleasure
to work with. More importantly, you polished my writing when it needed a little help and
made sure the book was formatted consistently.

Family: My immediate and extended family have always been close. It is always a pleasure
when we are together for holidays or random cookouts. It’s always surprising how the
majority of the 50-plus of us manage to regularly get together throughout the year. I am
extremely lucky to have the love and support from this wonderful group of people.

To my younger siblings, Eric and Julia: It’s hard being an older sibling! The two of you
have always pushed me to be a better person and role model, and you bring humor, joy,
and youth into my life.

A second thanks to my sister for providing the drawings in the preface and the appendix.
Last but not least, thank you, Mom and Dad, for all your support over the years. I’ve

had a few last-minute career changes, and you have always been there to support my
decisions, financially, emotionally, and physically—including helping me relocate between
cities. Thanks to the two of you, I’ve always been able to pursue my ambitions while
knowing full well I can count on your help along the way. This book is dedicated to you.

This page intentionally left blank

About the Author

Daniel Chen is a research associate and data engineer at the Social and Decision Analytics
Laboratory at the Biocomplexity Institute of Virginia Tech. He is pursuing a PhD in the
interdisciplinary program in Genetics, Bioinformatics, and Computational Biology
(GBCB). He completed his master’s in public health (MPH in epidemiology) at Columbia
University Mailman School of Public Health, where he looked at attitude diffusion in
social networks. His current research interest is repurposing administrative data to inform
policy decision-making. He is a data scientist at Lander Analytics, an instructor and lesson
maintainer for Software Carpentry and Data Carpentry, and a course instructor for
DataCamp. In a previous life, he studied psychology and neuroscience and worked in a
bench laboratory doing microscopy work looking at proteins in the brain associated with
learning and memory.

This page intentionally left blank

6
Tidy Data

6.1 Introduction
As mentioned in Chapter 4, Hadley Wickham,1 one of the more prominent members of
the R community, introduced the concept of tidy data in a paper in the Journal of Statistical
Software.2 Tidy data is a framework to structure data sets so they can be easily analyzed and
visualized. It can be thought of as a goal one should aim for when cleaning data. Once you
understand what tidy data is, that knowledge will make your data analysis, visualization,
and collection much easier.

What is tidy data? Hadley Wickham’s paper defines it as meeting the following
criteria:

. Each row is an observation.. Each column is a variable.. Each type of observational unit forms a table.

This chapter goes through the various ways to tidy data as identified in Wickham’s
paper.

Concept Map
Prior knowledge:

a. function and method calls
b. subsetting data
c. loops
d. list comprehension

This chapter:
. Reshaping data

a. unpivot/melt/gather
b. pivot/cast/spread

1. Hadley Wickham: http://hadley.nz/
2. Tidy data paper: http://vita.had.co.nz/papers/tidy-data.pdf

http://hadley.nz/
http://vita.had.co.nz/papers/tidy-data.pdf

124 Chapter 6 Tidy Data

c. subsetting
d. combining

1. globbing
2. concatenation

Objectives
This chapter will cover:

1. Unpivoting/melting/gathering columns into rows
2. Pivoting/casting/spreading rows into columns
3. Normalizing data by separating a dataframe into multiple tables
4. Assembling data from multiple parts

6.2 Columns Contain Values, Not Variables
Data can have columns that contain values instead of variables. This is usually a convenient
format for data collection and presentation.

6.2.1 Keep One Column Fixed
We’ll use data on income and religion in the United States from the Pew Research Center
to illustrate how to work with columns that contain values, rather than variables.

import pandas as pd
pew = pd.read_csv('../data/pew.csv')

When we look at this data set, we can see that not every column is a variable. The
values that relate to income are spread across multiple columns. The format shown is a
great choice when presenting data in a table, but for data analytics, the table needs to be
reshaped so that we have religion, income, and count variables.

show only the first few columns
print(pew.iloc[:, 0:6])

religion <$10k $10-20k $20-30k $30-40k \
0 Agnostic 27 34 60 81
1 Atheist 12 27 37 52
2 Buddhist 27 21 30 34
3 Catholic 418 617 732 670
4 Don't know/refused 15 14 15 11
5 Evangelical Prot 575 869 1064 982
6 Hindu 1 9 7 9
7 Historically Black Prot 228 244 236 238
8 Jehovah's Witness 20 27 24 24
9 Jewish 19 19 25 25
10 Mainline Prot 289 495 619 655
11 Mormon 29 40 48 51
12 Muslim 6 7 9 10

6.2 Columns Contain Values, Not Variables 125

13 Orthodox 13 17 23 32
14 Other Christian 9 7 11 13
15 Other Faiths 20 33 40 46
16 Other World Religions 5 2 3 4
17 Unaffiliated 217 299 374 365

$40-50k
0 76
1 35
2 33
3 638
4 10
5 881
6 11
7 197
8 21
9 30
10 651
11 56
12 9
13 32
14 13
15 49
16 2
17 341

This view of the data is also known as “wide” data. To turn it into the “long” tidy data
format, we will have to unpivot/melt/gather (depending on which statistical programming
language we use) our dataframe. Pandas has a function called melt that will reshape the
dataframe into a tidy format. melt takes a few parameters:

. id_vars is a container (list, tuple, ndarray) that represents the variables that will
remain as is.

. value_vars identifies the columns you want to melt down (or unpivot). By default,
it will melt all the columns not specified in the id_vars parameter.

. var_name is a string for the new column name when the value_vars is melted
down. By default, it will be called variable.

. value_name is a string for the new column name that represents the values for the
var_name. By default, it will be called value.

we do not need to specify a value_vars since we want to pivot
all the columns except for the 'religion' column
pew_long = pd.melt(pew, id_vars='religion')

print(pew_long.head())

religion variable value
0 Agnostic <$10k 27
1 Atheist <$10k 12
2 Buddhist <$10k 27

126 Chapter 6 Tidy Data

3 Catholic <$10k 418
4 Don't know/refused <$10k 15

print(pew_long.tail())

religion variable value
175 Orthodox Don't know/refused 73
176 Other Christian Don't know/refused 18
177 Other Faiths Don't know/refused 71
178 Other World Religions Don't know/refused 8
179 Unaffiliated Don't know/refused 597

We can change the defaults so that the melted/unpivoted columns are named.

pew_long = pd.melt(pew,
id_vars='religion',
var_name='income',
value_name='count')

print(pew_long.head())

religion income count
0 Agnostic <$10k 27
1 Atheist <$10k 12
2 Buddhist <$10k 27
3 Catholic <$10k 418
4 Don't know/refused <$10k 15

print(pew_long.tail())

religion income count
175 Orthodox Don't know/refused 73
176 Other Christian Don't know/refused 18
177 Other Faiths Don't know/refused 71
178 Other World Religions Don't know/refused 8
179 Unaffiliated Don't know/refused 597

6.2.2 Keep Multiple Columns Fixed
Not every data set will have one column to hold still while you unpivot the rest of the
columns. As an example, consider the Billboard data set.

billboard = pd.read_csv('../data/billboard.csv')

look at the first few rows and columns
print(billboard.iloc[0:5, 0:16])

year artist track time date.entered \
0 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26
1 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02
2 2000 3 Doors Down Kryptonite 3:53 2000-04-08
3 2000 3 Doors Down Loser 4:24 2000-10-21
4 2000 504 Boyz Wobble Wobble 3:35 2000-04-15

6.2 Columns Contain Values, Not Variables 127

wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8 wk9 wk10 wk11
0 87 82.0 72.0 77.0 87.0 94.0 99.0 NaN NaN NaN NaN
1 91 87.0 92.0 NaN NaN NaN NaN NaN NaN NaN NaN
2 81 70.0 68.0 67.0 66.0 57.0 54.0 53.0 51.0 51.0 51.0
3 76 76.0 72.0 69.0 67.0 65.0 55.0 59.0 62.0 61.0 61.0
4 57 34.0 25.0 17.0 17.0 31.0 36.0 49.0 53.0 57.0 64.0

You can see here that each week has its own column. Again, there is nothing wrong
with this form of data. It may be easy to enter the data in this form, and it is much quicker
to understand what it means when the data is presented in a table. However, there may be
a time when you will need to melt the data. For example, if you wanted to create a faceted
plot of the weekly ratings, the facet variable would need to be a column in the dataframe.

billboard_long = pd.melt(
billboard,
id_vars=['year', 'artist', 'track', 'time', 'date.entered'],
var_name='week',
value_name='rating')

print(billboard_long.head())

year artist track time date.entered \
0 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26
1 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02
2 2000 3 Doors Down Kryptonite 3:53 2000-04-08
3 2000 3 Doors Down Loser 4:24 2000-10-21
4 2000 504 Boyz Wobble Wobble 3:35 2000-04-15

week rating
0 wk1 87.0
1 wk1 91.0
2 wk1 81.0
3 wk1 76.0
4 wk1 57.0

print(billboard_long.tail())

year artist track time \
24087 2000 Yankee Grey Another Nine Minutes 3:10
24088 2000 Yearwood, Trisha Real Live Woman 3:55
24089 2000 Ying Yang Twins Whistle While You Tw... 4:19
24090 2000 Zombie Nation Kernkraft 400 3:30
24091 2000 matchbox twenty Bent 4:12

date.entered week rating
24087 2000-04-29 wk76 NaN
24088 2000-04-01 wk76 NaN
24089 2000-03-18 wk76 NaN
24090 2000-09-02 wk76 NaN
24091 2000-04-29 wk76 NaN

128 Chapter 6 Tidy Data

6.3 Columns Contain Multiple Variables
Sometimes columns in a data set may represent multiple variables. This format is
commonly seen when working with health data, for example. To illustrate this situation,
let’s look at the Ebola data set.

ebola = pd.read_csv('../data/country_timeseries.csv')
print(ebola.columns)

Index(['Date', 'Day', 'Cases_Guinea', 'Cases_Liberia',
'Cases_SierraLeone', 'Cases_Nigeria', 'Cases_Senegal',
'Cases_UnitedStates', 'Cases_Spain', 'Cases_Mali',
'Deaths_Guinea', 'Deaths_Liberia', 'Deaths_SierraLeone',
'Deaths_Nigeria', 'Deaths_Senegal', 'Deaths_UnitedStates',
'Deaths_Spain', 'Deaths_Mali'],

dtype='object')

print select rows
print(ebola.iloc[:5, [0, 1, 2, 3, 10, 11]])

Date Day Cases_Guinea Cases_Liberia Deaths_Guinea \
0 1/5/2015 289 2776.0 NaN 1786.0
1 1/4/2015 288 2775.0 NaN 1781.0
2 1/3/2015 287 2769.0 8166.0 1767.0
3 1/2/2015 286 NaN 8157.0 NaN
4 12/31/2014 284 2730.0 8115.0 1739.0

Deaths_Liberia
0 NaN
1 NaN
2 3496.0
3 3496.0
4 3471.0

The column names Cases_Guinea and Deaths_Guinea actually contain two variables.
The individual status (cases and deaths, respectively) as well as the country name, Guinea.
The data is also arranged in a wide format that needs to be unpivoted.

ebola_long = pd.melt(ebola, id_vars=['Date', 'Day'])
print(ebola_long.head())

Date Day variable value
0 1/5/2015 289 Cases_Guinea 2776.0
1 1/4/2015 288 Cases_Guinea 2775.0
2 1/3/2015 287 Cases_Guinea 2769.0
3 1/2/2015 286 Cases_Guinea NaN
4 12/31/2014 284 Cases_Guinea 2730.0

print(ebola_long.tail())

Date Day variable value
1947 3/27/2014 5 Deaths_Mali NaN
1948 3/26/2014 4 Deaths_Mali NaN

6.3 Columns Contain Multiple Variables 129

1949 3/25/2014 3 Deaths_Mali NaN
1950 3/24/2014 2 Deaths_Mali NaN
1951 3/22/2014 0 Deaths_Mali NaN

6.3.1 Split and Add Columns Individually (Simple Method)
Conceptually, the column of interest can be split based on the underscore in the column
name, _. The first part will be the new status column, and the second part will be the new
country column. This will require some string parsing and splitting in Python (more on
this in Chapter 8). In Python, a string is an object, similar to how Pandas has Series and
DataFrame objects. Chapter 2 showed how Series can have method such as mean, and
DataFrames can have methods such as to_csv. Strings have methods as well. In this case we
will use the split method that takes a string and splits the string up based on a given
delimiter. By default, split will split the string based on a space, but we can pass in the
underscore, _, in our example. To get access to the string methods, we need to use the str

accessor (see Chapter 8 for more on strings). This will give us access to the Python string
methods and allow us to work across the entire column.

get the variable column
access the string methods
and split the column based on a delimiter
variable_split = ebola_long.variable.str.split('_')

print(variable_split[:5])

0 [Cases, Guinea]
1 [Cases, Guinea]
2 [Cases, Guinea]
3 [Cases, Guinea]
4 [Cases, Guinea]
Name: variable, dtype: object

print(variable_split[-5:])

1947 [Deaths, Mali]
1948 [Deaths, Mali]
1949 [Deaths, Mali]
1950 [Deaths, Mali]
1951 [Deaths, Mali]
Name: variable, dtype: object

After we split on the underscore, the values are returned in a list. We know it’s a list
because that’s how the split method works,3 but the visual cue is that the results are
surrounded by square brackets.

the entire container
print(type(variable_split))

<class 'pandas.core.series.Series'>

3. String split documentation:
https://docs.python.org/3.6/library/stdtypes.html#str.split

https://docs.python.org/3.6/library/stdtypes.html#str.split

130 Chapter 6 Tidy Data

the first element in the container
print(type(variable_split[0]))

<class 'list'>

Now that the column has been split into the various pieces, the next step is to assign
those pieces to a new column. First, however, we need to extract all the 0-index elements
for the status column and the 1-index elements for the country column. To do so, we
need to access the string methods again, and then use the get method to get the index we
want for each row.

status_values = variable_split.str.get(0)
country_values = variable_split.str.get(1)

print(status_values[:5])

0 Cases
1 Cases
2 Cases
3 Cases
4 Cases
Name: variable, dtype: object

print(status_values[-5:])

1947 Deaths
1948 Deaths
1949 Deaths
1950 Deaths
1951 Deaths
Name: variable, dtype: object

print(country_values[:5])

0 Guinea
1 Guinea
2 Guinea
3 Guinea
4 Guinea
Name: variable, dtype: object

print(country_values[-5:])

1947 Mali
1948 Mali
1949 Mali
1950 Mali
1951 Mali
Name: variable, dtype: object

Now that we have the vectors we want, we can add them to our dataframe.

ebola_long['status'] = status_values
ebola_long['country'] = country_values

6.3 Columns Contain Multiple Variables 131

print(ebola_long.head())

Date Day variable value status country
0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea
1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea
2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea
3 1/2/2015 286 Cases_Guinea NaN Cases Guinea
4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea

6.3.2 Split and Combine in a Single Step (Simple Method)
In this subsection, we’ll exploit the fact that the vector returned is in the same order as our
data. We can concatenate (see Chapter 4) the new vector or our original data.

variable_split = ebola_long.variable.str.split('_', expand=True)
variable_split.columns = ['status', 'country']
ebola_parsed = pd.concat([ebola_long, variable_split], axis=1)

print(ebola_parsed.head())

Date Day variable value status country status \
0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea Cases
1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea Cases
2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea Cases
3 1/2/2015 286 Cases_Guinea NaN Cases Guinea Cases
4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea Cases

country
0 Guinea
1 Guinea
2 Guinea
3 Guinea
4 Guinea

print(ebola_parsed.tail())

Date Day variable value status country status \
1947 3/27/2014 5 Deaths_Mali NaN Deaths Mali Deaths
1948 3/26/2014 4 Deaths_Mali NaN Deaths Mali Deaths
1949 3/25/2014 3 Deaths_Mali NaN Deaths Mali Deaths
1950 3/24/2014 2 Deaths_Mali NaN Deaths Mali Deaths
1951 3/22/2014 0 Deaths_Mali NaN Deaths Mali Deaths

country
1947 Mali
1948 Mali
1949 Mali
1950 Mali
1951 Mali

132 Chapter 6 Tidy Data

6.3.3 Split and Combine in a Single Step (More Complicated
Method)

In this subsection, we’ll again exploit the fact that the vector returned is in the same order
as our data. We can concatenate (see Chapter 4) the new vector or our original data.

We can accomplish the same result in a single step by taking advantage of the fact that
the split results return a list of two elements, where each element is a new column. We can
combine the list of split items with the built-in zip function. zip takes a set of iterators
(e.g., lists, tuples) and creates a new container that is made of the input iterators, but each
new container created has the same index as the input containers. For example, if we have
two lists of values,

constants = ['pi', 'e']
values = ['3.14', '2.718']

we can zip the values together:

we have to call list on the zip function
to show the contents of the zip object
in Python 3, zip returns an iterator
print(list(zip(constants, values)))

[('pi', '3.14'), ('e', '2.718')]

Each element now has the constant matched with its corresponding value.
Conceptually, each container is like a side of a zipper. When we zip the containers, the
indices are matched up and returned.

Another way to visualize what zip is doing is taking each container passed into zip and
stacking the containers on top of each other (think about the row-wise concatenation
described in Section 4.3.1), thereby creating a dataframe of sorts. zip then returns the
values on a column-by-column basis in a tuple.

We can use the same ebola_long.variable.str.split(' ') to split the values in the
column. However, since the result is already a container (a Series object), we need to
unpack it so that we have the contents of the container (each status–country list), rather
than the container itself (the series).

In Python, the asterisk operator, *, is used to unpack containers.4 When we zip the
unpacked containers, the effect is the same as when we created the status values and the
country values earlier. We can then assign the vectors to the columns simultaneously using
multiple assignment (Appendix Q).

ebola_long['status'], ebola_long['country'] = \
zip(*ebola_long.variable.str.split('_'))

print(ebola_long.head())

Date Day variable value status country
0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea

4. Unpacking argument lists:
https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists

https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists

6.4 Variables in Both Rows and Columns 133

1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea
2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea
3 1/2/2015 286 Cases_Guinea NaN Cases Guinea
4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea

6.4 Variables in Both Rows and Columns
At times data will be formatted so that variables are in both rows and columns—that is, in
some combination of the formats described in previous sections of this chapter. Most of
the methods needed to tidy up such data have already been presented. What is left to show
is what happens if a column of data actually holds two variables instead of one variable. In
this case, we will have to pivot or cast the variable into separate columns.

weather = pd.read_csv('../data/weather.csv')
print(weather.iloc[:5, :11])

id year month element d1 d2 d3 d4 d5 d6 d7
0 MX17004 2010 1 tmax NaN NaN NaN NaN NaN NaN NaN
1 MX17004 2010 1 tmin NaN NaN NaN NaN NaN NaN NaN
2 MX17004 2010 2 tmax NaN 27.3 24.1 NaN NaN NaN NaN
3 MX17004 2010 2 tmin NaN 14.4 14.4 NaN NaN NaN NaN
4 MX17004 2010 3 tmax NaN NaN NaN NaN 32.1 NaN NaN

The weather data include minimum and maximum (tmin and tmax values in the
element column, respectively) temperatures recorded for each day (d1, d2, ..., d31) of the
month (month). The element column contains variables that need to be casted/pivoted to
become new columns, and the day variables need to be melted into row values. Again,
there is nothing wrong with the data in the current format. It is simply not in a shape
amenable to analysis, although this kind of formatting can be helpful when presenting data
in reports. Let’s first melt/unpivot the day values.

weather_melt = pd.melt(weather,
id_vars=['id', 'year', 'month', 'element'],
var_name='day',
value_name='temp')

print(weather_melt.head())

id year month element day temp
0 MX17004 2010 1 tmax d1 NaN
1 MX17004 2010 1 tmin d1 NaN
2 MX17004 2010 2 tmax d1 NaN
3 MX17004 2010 2 tmin d1 NaN
4 MX17004 2010 3 tmax d1 NaN

print(weather_melt.tail())

id year month element day temp
677 MX17004 2010 10 tmin d31 NaN
678 MX17004 2010 11 tmax d31 NaN
679 MX17004 2010 11 tmin d31 NaN

134 Chapter 6 Tidy Data

680 MX17004 2010 12 tmax d31 NaN
681 MX17004 2010 12 tmin d31 NaN

Next, we need to pivot up the variables stored in the element column. This process is
referred to as casting or spreading in other statistical languages. One of the main differences
between pivot_table and melt is that melt is a function within Pandas, whereas
pivot_table is a method we call on a DataFrame object.

weather_tidy = weather_melt.pivot_table(
index=['id', 'year', 'month', 'day'],
columns='element',
values='temp')

Looking at the pivoted table, we notice that each value in the element column is now a
separate column. We can leave this table in its current state, but we can also flatten the
hierarchical columns.

weather_tidy_flat = weather_tidy.reset_index()
print(weather_tidy_flat.head())

element id year month day tmax tmin
0 MX17004 2010 1 d1 NaN NaN
1 MX17004 2010 1 d10 NaN NaN
2 MX17004 2010 1 d11 NaN NaN
3 MX17004 2010 1 d12 NaN NaN
4 MX17004 2010 1 d13 NaN NaN

Likewise, we can apply these methods without the intermediate dataframe:

weather_tidy = weather_melt.\
pivot_table(

index=['id', 'year', 'month', 'day'],
columns='element',
values='temp').\

reset_index()

print(weather_tidy.head())

element id year month day tmax tmin
0 MX17004 2010 1 d1 NaN NaN
1 MX17004 2010 1 d10 NaN NaN
2 MX17004 2010 1 d11 NaN NaN
3 MX17004 2010 1 d12 NaN NaN
4 MX17004 2010 1 d13 NaN NaN

6.5 Multiple Observational Units in a Table
(Normalization)

One of the simplest ways of knowing whether multiple observational units are represented
in a table is by looking at each of the rows, and taking note of any cells or values that are

6.5 Multiple Observational Units in a Table (Normalization) 135

being repeated from row to row. This is very common in government education
administration data, where student demographics are reported for each student for each
year the student is enrolled.

Let’s look again at the Billboard data we cleaned in Section 6.2.2.

print(billboard_long.head())

year artist track time date.entered \
0 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26
1 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02
2 2000 3 Doors Down Kryptonite 3:53 2000-04-08
3 2000 3 Doors Down Loser 4:24 2000-10-21
4 2000 504 Boyz Wobble Wobble 3:35 2000-04-15

week rating
0 wk1 87.0
1 wk1 91.0
2 wk1 81.0
3 wk1 76.0
4 wk1 57.0

Suppose we subset (Section 2.4.1) the data based on a particular track:

print(billboard_long[billboard_long.track == 'Loser'].head())

year artist track time date.entered week rating
3 2000 3 Doors Down Loser 4:24 2000-10-21 wk1 76.0
320 2000 3 Doors Down Loser 4:24 2000-10-21 wk2 76.0
637 2000 3 Doors Down Loser 4:24 2000-10-21 wk3 72.0
954 2000 3 Doors Down Loser 4:24 2000-10-21 wk4 69.0
1271 2000 3 Doors Down Loser 4:24 2000-10-21 wk5 67.0

We can see that this table actually holds two types of data: the track information and the
weekly ranking. It would be better to store the track information in a separate table. This
way, the information stored in the year, artist, track, and time columns would not be
repeated in the data set. This consideration is particularly important if the data is manually
entered. Repeating the same values over and over during data entry increases the risk of
inconsistent data.

What we should do in this case is to place the year, artist, track, time, and
date.entered in a new dataframe, with each unique set of values being assigned a unique
ID. We can then use this unique ID in a second dataframe that represents a song, date,
week number, and ranking. This entire process can be thought of as reversing the steps in
concatenating and merging data described in Chapter 4.

billboard_songs = billboard_long[['year', 'artist', 'track', 'time']]
print(billboard_songs.shape)

(24092, 4)

We know there are duplicate entries in this dataframe, so we need to drop the duplicate
rows.

136 Chapter 6 Tidy Data

billboard_songs = billboard_songs.drop_duplicates()
print(billboard_songs.shape)

(317, 4)

We can then assign a unique value to each row of data.

billboard_songs['id'] = range(len(billboard_songs))
print(billboard_songs.head(n=10))

year artist track time id
0 2000 2 Pac Baby Don't Cry (Keep... 4:22 0
1 2000 2Ge+her The Hardest Part Of ... 3:15 1
2 2000 3 Doors Down Kryptonite 3:53 2
3 2000 3 Doors Down Loser 4:24 3
4 2000 504 Boyz Wobble Wobble 3:35 4
5 2000 98^0 Give Me Just One Nig... 3:24 5
6 2000 A*Teens Dancing Queen 3:44 6
7 2000 Aaliyah I Don't Wanna 4:15 7
8 2000 Aaliyah Try Again 4:03 8
9 2000 Adams, Yolanda Open My Heart 5:30 9

Now that we have a separate dataframe about songs, we can use the newly created id

column to match a song to its weekly ranking.

Merge the song dataframe to the original data set
billboard_ratings = billboard_long.merge(

billboard_songs, on=['year', 'artist', 'track', 'time'])
print(billboard_ratings.shape)

(24092, 8)

print(billboard_ratings.head())

year artist track time date.entered week \
0 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk1
1 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk2
2 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk3
3 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk4
4 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk5

rating id
0 87.0 0
1 82.0 0
2 72.0 0
3 77.0 0
4 87.0 0

Finally, we subset the columns to the ones we want in our ratings dataframe.

billboard_ratings = \
billboard_ratings[['id', 'date.entered', 'week', 'rating']]

print(billboard_ratings.head())

6.6 Observational Units Across Multiple Tables 137

id date.entered week rating
0 0 2000-02-26 wk1 87.0
1 0 2000-02-26 wk2 82.0
2 0 2000-02-26 wk3 72.0
3 0 2000-02-26 wk4 77.0
4 0 2000-02-26 wk5 87.0

6.6 Observational Units Across Multiple Tables
The last bit of data tidying relates to the situation in which the same type of data is spread
across multiple data sets. This issue was also covered in Chapter 4, when we discussed data
concatenation and merging. One reason why data might be split across multiple files
would be the size of the files. By splitting up data into various parts, each part would be
smaller. This may be good when we need to share data on the Internet or via email, since
many services limit the size of a file that can be opened or shared. Another reason why a
data set might be split into multiple parts would be to account for the data collection
process. For example, a separate data set containing stock information could be created for
each day.

Since merging and concatenation have already been covered, this section will focus on
techniques for quickly loading multiple data sources and assembling them together.

The Unified New York City Taxi and Uber Data is a good choice to illustrate these
processes. The entire data set contains data on more than 1.3 billion taxi and Uber trips
from New York City, and is organized into more than 140 files. For illustration purposes,
we will work with only five of these data files. When the same data is broken into multiple
parts, those parts typically have a structured naming pattern associated with them.

First let’s download the data. Do not worry too much about the details in the following
block of code. The raw_data_urls.txt file contain a list of URLs where each URL is the
download link to a part of the taxi data. We begin by opening and reading the file, and
iterating through each line of the file (i.e., each data URL). We download only the first 5
data sets since the files are fairly large. We use some string manipulation (Chapter 8) to
create the path where the data will be saved, and use the urllib library to download
our data.

import os
import urllib

code to download the data
download only the first 5 data sets from the list of files
with open('../data/raw_data_urls.txt', 'r') as data_urls:

for line, url in enumerate(data_urls):
if line == 5:

break
fn = url.split('/')[-1].strip()
fp = os.path.join('..', 'data', fn)
print(url)
print(fp)
urllib.request.urlretrieve(url, fp)

138 Chapter 6 Tidy Data

In this example, all of the raw taxi trips have the pattern fhv_tripdata_YYYY_XX.csv,
where YYYY represents the year (e.g., 2015), and XX represents the part number. We can use
the a simple pattern matching function from the glob library in Python to get a list of all
the filenames that match a particular pattern.

import glob
get a list of the csv files from the nyc-taxi data folder
nyc_taxi_data = glob.glob('../data/fhv_*')
print(nyc_taxi_data)

['../data/fhv_tripdata_2015-04.csv',
'../data/fhv_tripdata_2015-05.csv',
'../data/fhv_tripdata_2015-03.csv',
'../data/fhv_tripdata_2015-01.csv',
'../data/fhv_tripdata_2015-02.csv']

Now that we have a list of filenames we want to load, we can load each file into a
dataframe. We can choose to load each file individually, as we have been doing so far.

taxi1 = pd.read_csv(nyc_taxi_data[0])
taxi2 = pd.read_csv(nyc_taxi_data[1])
taxi3 = pd.read_csv(nyc_taxi_data[2])
taxi4 = pd.read_csv(nyc_taxi_data[3])
taxi5 = pd.read_csv(nyc_taxi_data[4])

We can look at our data and see how they can be nicely stacked (concatenated) on top
of each other.

print(taxi1.head(n=2))
print(taxi2.head(n=2))
print(taxi3.head(n=2))
print(taxi4.head(n=2))
print(taxi5.head(n=2))

Dispatching_base_num Pickup_date locationID
0 B00001 2015-04-01 04:30:00 NaN
1 B00001 2015-04-01 06:00:00 NaN

Dispatching_base_num Pickup_date locationID
0 B00001 2015-05-01 04:30:00 NaN
1 B00001 2015-05-01 05:00:00 NaN

Dispatching_base_num Pickup_date locationID
0 B00029 2015-03-01 00:02:00 213.0
1 B00029 2015-03-01 00:03:00 51.0

Dispatching_base_num Pickup_date locationID
0 B00013 2015-01-01 00:30:00 NaN
1 B00013 2015-01-01 01:22:00 NaN

Dispatching_base_num Pickup_date locationID
0 B00013 2015-02-01 00:00:00 NaN
1 B00013 2015-02-01 00:01:00 NaN

6.6 Observational Units Across Multiple Tables 139

We can concatenate them just as we did in Chapter 4.

shape of each dataframe
print(taxi1.shape)
print(taxi2.shape)
print(taxi3.shape)
print(taxi4.shape)
print(taxi5.shape)

(3917789, 3)
(4296067, 3)
(3281427, 3)
(2746033, 3)
(3126401, 3)

concatenate the dataframes together
taxi = pd.concat([taxi1, taxi2, taxi3, taxi4, taxi5])

shape of final concatenated taxi data
print(taxi.shape)

(17367717, 3)

However, manually saving each dataframe will get tedious when the data is split into
many parts. As an alternative approach, we can automate the process using loops and list
comprehensions.

6.6.1 Load Multiple Files Using a Loop
An easier way to load multiple files is to first create an empty list, use a loop to iterate
though each of the CSV files, load the CSV files into a Pandas dataframe, and finally
append the dataframe to the list. The final type of data we want is a list of dataframes
because the concat function takes a list of dataframes to concatenate.

create an empty list to append to
list_taxi_df = []

loop though each CSV filename
for csv_filename in nyc_taxi_data:

you can choose to print the filename for debugging
print(csv_filename)

load the CSV file into a dataframe
df = pd.read_csv(csv_filename)

append the dataframe to the list that will hold the dataframes
list_taxi_df.append(df)

print the length of the dataframe
print(len(list_taxi_df))

5

140 Chapter 6 Tidy Data

type of the first element
print(type(list_taxi_df[0]))

<class 'pandas.core.frame.DataFrame'>

look at the head of the first dataframe
print(list_taxi_df[0].head())

Dispatching_base_num Pickup_date locationID
0 B00001 2015-04-01 04:30:00 NaN
1 B00001 2015-04-01 06:00:00 NaN
2 B00001 2015-04-01 06:00:00 NaN
3 B00001 2015-04-01 06:00:00 NaN
4 B00001 2015-04-01 06:15:00 NaN

Now that we have a list of dataframes, we can concatenate them.

taxi_loop_concat = pd.concat(list_taxi_df)
print(taxi_loop_concat.shape)

(17367717, 3)

Did we get the same results as the manual load and concatenation?
print(taxi.equals(taxi_loop_concat))

True

6.6.2 Load Multiple Files Using a List Comprehension
Python has an idiom for looping though something and adding it to a list, called a list
comprehension. The loop given previously, which is shown here again without the
comments, can be written in a list comprehension (Appendix N).

the loop code without comments
list_taxi_df = []
for csv_filename in nyc_taxi_data:

df = pd.read_csv(csv_filename)
list_taxi_df.append(df)

same code in a list comprehension
list_taxi_df_comp = [pd.read_csv(data) for data in nyc_taxi_data]

The result from our list comprehension is a list, just as the earlier loop example.

print(type(list_taxi_df_comp))

<class 'list'>

Finally, we can concatenate the results just as we did earlier.

taxi_loop_concat_comp = pd.concat(list_taxi_df_comp)

are the concatenated dataframes the same?
print(taxi_loop_concat_comp.equals(taxi_loop_concat))

True

6.7 Conclusion 141

6.7 Conclusion
This chapter explored how we can reshape data into a format that is conducive tp data
analysis, visualization, and collection. We applied the concepts in Hadley Wickham’s Tidy
Data paper to show the various functions and methods to reshape our data. This is an
important skill because some functions need data to be organized into a certain shape, tidy
or not, to work. Knowing how to reshape your data is an important skill for both the data
scientist and the analyst.

This page intentionally left blank

360 Index

Asterisk (*), unpacking containers, 132
astype method

converting column to categorical type,
152–153

converting to numeric values,
147–149

converting values to strings, 146
Attributes

class, 355
Series, 29

Average cluster algorithm, in hierarchical
clustering, 299–300

Axes, plotting, 55–56

B

Bar plots, 70, 72
Bash shell, 317–318
BIC (Bayesian information criteria), 272,

274–275
Binary

feather format for saving, 47
logistic regression for binary response

variable, 253
serialize and save data in binary format,

43–45
Bivariate statistics

in matplotlib, 58–59
in seaborn, 65–73

Booleans (bool)
subsetting DataFrame, 36–37
subsetting Series, 30–33

Boxplots
for bivariate statistics, 58–59, 70
creating, 85–86, 88

Broadcasting, Pandas support for, 37–38

C

C printf style formatting, 163
Calculations

datetime, 220–221
involving multiple variables, 203–204
with missing data (values), 120–121

of multiple functions simultaneously, 195
timing execution of, 307

CAS (computer algebra systems), 305
category

converting column to, 152–153
manipulating categorical data, 153
overview of, 152
representing categorical variables, 146
sklearn library used with categorical

variables, 250–251
statsmodels library used with

categorical variables, 248–249
Centroid cluster algorithm, in hierarchical

clustering, 299–300
Characters

formatting character strings, 162
getting first character of string, 156
getting last character of string, 157–158
slicing multiple letters of string, 156
strings as series of, 155

Classes, 355–356
Clustering

average cluster algorithm, 299–300
centroid cluster algorithm, 299–300
complete cluster algorithm, 298
dimension reduction using PCA,

294–297
hierarchical clustering, 297–298
k-means, 291–294
manually setting threshold for, 299, 301
overview of, 291
single cluster algorithm, 298–299
summary/conclusion, 301

Code
profiling, 307
reuse, 345
timing execution of, 306–307

Colon (:), use in slicing syntax, 13,
339–340

Colors, multivariate statistics in seaborn,
74–77

Columns
adding, 38–39
apply column-wise operations, 178–180

Index 361

concatenation generally, 98–99
concatenation with different indices,

101–102
converting to category, 152–153
directly changing, 39–42
dropping values, 43
rows and columns both containing

variables, 133–134
slicing, 15–17
subsetting by index position break, 8
subsetting by name, 7–8
subsetting by range, 14–15
subsetting generally, 17–18
subsetting using slicing syntax,

13–14
Columns, with multiple variables

overview of, 128–129
split and add individually, 129–131
split and combine in single step,

131–133
Columns, with values not variables

keeping multiple columns fixed,
126–127

keeping one column fixed, 124–126
overview of, 124

Comma-separated values. See CSV
(comma-separated values)

Command line
basic commands, 318
Linux, 318
Mac, 317–318
overview of, 317
Windows, 317

compile, pattern compilation, 169
Complete cluster algorithm, in hierarchical

clustering, 298
Comprehensions

function comprehension, 343
list comprehension, 140
overview of, 341–342

Computer algebra systems (CAS), 305
Concatenation (concat)

adding columns, 98–99
adding rows, 94–97

with different indices, 99–102
ignore_index parameter after, 98
loading multiple files, 140
observational units across multiple tables,

137–139
overview of, 94
split and combine in single step,

131–133
concurrent.features, 307
conda

creating environments, 327
managing packages, 329–330

Conferences, resources for self-directed
learners, 309–310

Confidence interval, in linear regression
example, 245

Containers
join method and, 160
looping over contents, 341–342
types of, 155
unpacking, 132

Conversion, of data types
to category, 152–153
to datetime, 214–216
to numeric, 147–148
odo library and, 357
to string, 146–147

Count (bar) plot, for univariate
statistics, 65

Counting
groupby count, 209–211
missing data (values), 116–117
poisson regression and, 257

Covariates
adding to linear models, 270
multiple linear regression with three

covariates, 266–268
Cox proportional hazards model

survival analysis, 261–263
testing assumptions, 263–264

CoxPHFitter class, lifelines library, 261,
263–264

cProfile, profiling code, 307
create (environments), 327

362 Index

Cross-validation
model diagnostics, 275–278
regularization techniques, 287–289

cross_val_scores, 277
CSV (comma-separated values)

for data storage, 45–46
importing CSV files, 46
loading CSV file into DataFrame, 357
loading multiple files using loop,

139–140
Cumulative sum (cumsum), 210–211
cython, performance-related library,

306

D

Dask library, 307
Data assembly

adding columns, 98–99
adding rows, 94–97
combining data sets, 94
concatenation, 94
concatenation with different indices,

99–102
ignore_index parameter after

concatenation, 98
many-to-many merges, 105–107
many-to-one merges, 105
merging multiple data sets, 102–104
one-to-one merges, 104
overview of, 93
summary/conclusion, 107
tidy data, 93–94

Data models
diagnostics. See Model diagnostics
generalized linear. See GLM (generalized

linear models)
linear. See Linear models

Data sets
cleaning data, 354
combining, 94
equality tests for missing data, 110
exporting/importing data. See

Exporting/importing data

going bigger and faster, 307
Indemics (Interactive Epidemic

Simulation), 208
lists for data storage, 333
loading, 4–6
many-to-many merges, 105–107
many-to-one merges, 105
merging, 102–104
one-to-one merges, 104
tidy data, 93–94

Data structures
adding columns, 38–39
creating, 26–28
CSV (comma-separated values), 45–46
DataFrame alignment and vectorization,

37–38
DataFrame boolean subsetting, 36–37
DataFrame generally, 36
directly changing columns, 39–42
dropping values, 43
Excel and, 46–47
exporting/importing data, 43
feather format, 47
making changes to, 38
overview of, 25
pickle data, 43–45
Series alignment and vectorization,

33–36
Series boolean subsetting, 30–33
Series generally, 28–29
Series methods, 31
Series similarity with ndarray, 30
summary/conclusion, 47–48

Data types (dtype)
category dtype, 152
converting generally, 357
converting to category, 152–153
converting to datetime, 214–216
converting to numeric, 147–152
converting to string, 146–147
getting list of types stored in column,

152–153
manipulating categorical data, 153
to_numeric downcast, 151–152

Index 363

to_numeric function, 148–151
overview of, 145
Series attributes, 29
specifying from numpy library,

146–147
summary/conclusion, 153
viewing list of, 145–146

Databases, odo library support, 357
DataCamp site, resources for self-directed

learners, 310
DataFrame

adding columns, 38–39
aggregation, 195–196
alignment and vectorization, 37–38
apply function(s), 174–176
basic plots, 23–24
boolean subsetting, 36–37
as class, 355–356
concatenation, 97
creating, 27–28
defined, 3
directly changing columns, 39–42
exporting, 47–48
grouped and aggregated calculations,

18–19
grouped frequency counts, 23
grouped means, 19–22
histogram, 84
loading first data set, 4–6
methods, 37
ndarray save method, 43
odo library support, 357
overview of, 3–4, 36
slicing columns, 15–17
subsetting columns by index position

break, 8
subsetting columns by name, 7–8
subsetting columns by range, 14–15
subsetting columns using slicing syntax,

13–14
subsetting rows and columns, 17–18
subsetting rows by index label, 8–11
subsetting rows by ix attribute, 12
subsetting rows by row number, 11–12

summary/conclusion, 24
type function for checking, 5
writing CSV files (to_csv method),

45–46
date_range function, 227–228
datetime

adding columns to data structures, 38–39
calculations, 220–221
converting to, 214–216
directly changing columns, 41–42
extracting date components (year, month,

day), 217–220
frequencies, 228–229
getting stock-related data, 224–225
loading date related data, 217
methods, 221–224
object, 213–214
offsets, 229–230
overview of, 213
ranges, 227–228
resampling, 237–238
shifting values, 230–237
subsetting data based on dates,

225–227
summary/conclusion, 240
time zones, 238–239

DatetimeIndex, 225–226, 228
Day, extracting date components from
datetime object, 217–220

Daylight savings, 238
def keyword, use with functions,

345–346
Density plots

2D density plot, 68–70
plot.kde function, 85
for univariate statistics, 63–64

Diagnostics. See Model diagnostics
Dictionaries (dict)

creating DataFrame, 27–28
overview of, 337–338
passing method to, 195–196

Directories, working, 325–326
distplot, creating histograms, 62–63
dmatrices function, patsy library, 276–279

364 Index

Docstrings (docstring), function
documentation, 172, 345

downcast parameter, to_numeric function,
151–152

dropna parameter
counting missing values, 116–117
dropping missing values, 119–120

Dropping (drop)
data structure values, 43
missing data (values), 119–120

dtype. See Data types (dtype)

E

EAFP (easier to ask for forgiveness than for
permissions), 203

Elastic net, regularization technique,
285–287

Environments
creating, 327–328
deleting, 328

Equality tests, for missing data, 110
errors parameter, numeric, 149
Excel

DataFrame and, 47
Series and, 46

Exporting/importing data
CSV (comma-separated values), 45–46
Excel, 46–47
feather format, 47
overview of, 43
pickle data, 43–45

F

f-strings (formatted literal strings),
163–164

Facets, plotting, 78–83
Feather format, interface with R language,

47
Files

loading multiple using list
comprehension, 140

loading multiple using loop, 139–140
odo library support, 357
working directories and, 325

fillna method, 118–119
Filter (filter), groupby operations,

201–202
Find

missing data (values), 116–117
patterns, 168

findall, patterns, 168
float/float64, 146–148
Folders

project organization, 319
working directories and, 325

for loop. See Loops (for loop)

format method, 162
Formats/formatting

date formats, 216
odo library for conversion of data formats,

357
serialize and save data in binary format,

43–45
strings (string), 161–164

Formatted literal strings (f-strings),
163–164

formula API, in statsmodels library,
243–244

freq parameter, 228
Frequency

datetime, 228–229
grouped frequency counts, 23
offsets, 229–230
resampling converting between, 237–238

Functions
across rows or columns of data, 172
aggregation, 192–193
apply over DataFrame, 174–176
apply over Series, 173–174
arbitrary parameters, 347–348
calculating multiple simultaneously, 195
comprehensions and, 343
creating/using, 171–172
custom, 193–195
default parameters, 347

Index 365

groupy, 192
**kwargs, 348
lambda, 185–187
options for applying in and aggregate

methods, 195–197
overview of, 345–347
regular expressions (regex), 165
vectorized, 182–184
z-score example of transforming data,

197–198

G

Gapminder data set, 4
Generalized linear models. See GLM

(generalized linear models)
Generators

converting to list, 14–15
overview of, 349–350

get

creating dictionaries, 337–338
selecting groups, 204

glm function, in statsmodels library, 258
GLM (generalized linear models). See also

Linear models
logistic regression, 253–255
model diagnostics, 273–275
more GLM options, 260
negative binomial regression, 259
overview of, 253
poisson regression, 257
sklearn library for logistic regression,

256–257
statsmodels library for logistic

regression, 255–256
statsmodels library for poisson

regression, 258–259
summary/conclusion, 263–264
survival analysis using Cox model,

260–263
testing Cox model assumptions,

263–264
Groupby (groupy)

aggregation, 190

aggregation functions, 192–195
applying functions in and aggregate

methods, 195–197
built-in aggregation methods, 191–192
calculations generally, 18–19
calculations involving multiple variables,

203–204
calculations of means, 19–22
compared with SQL, 189
filtering, 201–202
flattening results, 206–207
frequency counts, 23
iterating through groups, 204–206
methods and functions, 192
missing value example, 199–201
multiple groups, 206
one-variable grouped aggregation,

190–191
overview of, 189
saving groupby object without running
aggregate, transform, or filter
methods, 202–203

selecting groups, 204
summary/conclusion, 211
transform, 197
working with multiIndex, 207–211
z-score example of transforming data,

197–198
Groups

iterating through, 204–206
selecting, 204
working with multiple, 206

Guido, Sarah, 243

H

hexbin plot
bivariate statistics in seaborn, 67, 69
plt.hexbin function, 86–87

Hierarchical clustering
average cluster algorithm, 299–300
centroid cluster algorithm, 299–300
complete cluster algorithm, 298
manually setting threshold for, 299

366 Index

Hierarchical clustering (continued)
overview of, 297–298
single cluster algorithm, 298–299

Histograms
creating using plot.hist functions, 84
of model residuals, 269
for univariate statistics in matplotlib,

57–58
for univariate statistics in seaborn,

62–63

I

id, unique identifiers, 146
IDEs (integrated development

environments), Python, 322–323
ignore_index parameter, after

concatenation, 98
iloc

indexing rows or columns, 8
Series attributes, 29
subsetting rows and columns, 17–18
subsetting rows by number, 11–12
subsetting rows or columns, 12–14

Importing (import). See also
Exporting/importing data
itertools library, 350
libraries, 331–332
loading first data set, 4–5
matplotlib library, 51
pandas, 353

Indemics (Interactive Epidemic Simulation)
data set, 208

Indices
beginning and ending indices in ranges,

339
concatenate columns with different

indices, 101–102
concatenate rows with different indices,

99–101
date ranges, 227–228
issues with absolute, 18
out of bounds notification, 176
re-indexing as source of missing values,

114–116

subsetting columns by index position
break, 8

subsetting date based on, 225–227
subsetting rows by index label, 8–11
working with multiIndex, 207–211

inplace parameter, functions and methods,
42

Installation
of Anaconda, 315–316
from command line, 317–318

Integers (int/int64)
converting to string, 146–148
vectors with integers (scalars),

33–34
Interactive Epidemic Simulation (Indemics)

data set, 208
Internet resources, for self-directed learners,

310
Interpolation, in filling missing data, 119
IPython (ipython)

ipython command, 322–323
magic commands, 306

Iteration. See Loops (for loop)

itertools library, 350
ix

indexing rows or columns, 8
Series attributes, 29
subsetting rows, 12

J

join

merges and, 102
string methods, 160

jointplot, creating seaborn scatterplot,
66–69, 71

jupyter command, 322–323

K

k-fold cross validation, 275–278
k-means

clustering, 291–294
using PCA, 295–297

Index 367

KaplanMeierFitter, lifelines library,
261–263

KDE plot, of bivariate statistics, 70–71
keep_default_na parameter, specifying NaN

values, 111
Key-value pairs, 337–338
Key-value stores, 348
Keys, creating DataFrame, 27
Keywords

lambda keyword, 187
passing keyword argument, 173

**kwargs, 347–348

L

L1 regularization, 281–282, 285–287
L2 regularization, 283–284, 285–287
lambda functions, applying, 185–187
Lander, Jared, 243
LASSO regression, 281–282, 285–287
Leap years/leap seconds, 238
Learning resources, for self-directed learners,

309–311
Libraries. See also by individual types

importing, 331–332
performance libraries, 306

lifelines library
CoxPHFitter class, 261, 263–264
KaplanMeierFitter class, 261–263

Linear models. See also GLM (generalized
linear models)

cross-validation, 287–289
elastic net, 285–287
LASSO regression regularization,

281–282
model diagnostics, 270–273
multiple regression, 247
overview of, 243
R2 (coefficient of determination)

regression score function, 277
reasons for regularization, 279–280
residuals, 266–268
restoring labels in sklearn models,

251–252

ridge regression, 283–284
simple linear regression, 243
sklearn library for multiple regression,

249–251
sklearn library for simple linear

regression, 245–247
statsmodels library for multiple

regression, 247–249
statsmodels library for simple linear

regression, 243–245
summary/conclusion, 252

Linux
command line, 318
installing Anaconda, 316
running python and ipython commands,

322
viewing working directory, 325

Lists (list)
comprehensions and, 343
converting generator to, 14–15,

349
creating Series, 26–28
of data types, 145–146
loading multiple files using list

comprehension, 140
looping, 341–342
multiple assignment, 351–352
overview of, 333

lmplot

creating scatterplots, 66
with hue parameter, 76

Loading data
datetime data, 217
as source of missing data, 111–112

loc

indexing rows or columns, 8–10
Series attributes, 29
subsetting rows and columns, 17–18
subsetting rows or columns, 12–14

Logistic regression
overview of, 253–255
sklearn library for, 256–257
statsmodels library for, 255–256
working with GLM models, 274

368 Index

logit function, performing logistic
regression, 255–256

Loops (for loop)

comprehensions and, 343
loading multiple files using, 139–140
overview of, 341–342
through groups, 204–206
through lists, 341–342

M

Mac
command line, 317–318
installing Anaconda, 316
pwd command for viewing working

directory, 325
running python and ipython commands,

322
Machine learning models, 245
Many-to-many merges, 105–107
Many-to-one merges, 105
map function, 307
Matrices, 276–279, 353–354
match, pattern matching, 164–168
matplotlib library

bivariate statistics, 58–59
multivariate statistics, 59–61
overview of, 51–56
statistical graphics, 56–57
univariate statistics, 57–58

Mean (mean)
custom functions, 193
group calculations involving multiple

variables, 203–204
grouped means, 19–22
numpy library, 192
Series in identifying, 32

Meetups, resources for self-directed learners,
309

melt function
converting wide data into tidy data,

125–126
rows and columns both containing

variables, 133–134

Merges (merge)
many-to-many, 105–107
many-to-one, 105
of multiple data sets, 102–104
one-to-one, 104
as source of missing data, 112–113

Methods
built-in aggregation methods, 191–192
class, 356
datetime, 221–224
Series, 31
string, 158–161

Mirjalili, Vahid, 243
Missing data (NaN values)

calculations with, 120–121
cleaning, 118
concatenation and, 96, 100
date range for filling in, 232–233
dropping, 119–120
fill forward or fill backward, 118–119
finding and counting, 116–117, 180
interpolation in filling, 119
loading data as source of, 111–112
merged data as source of, 112–113
overview of, 109
re-indexing causing, 114–116
recoding or replacing (fillna method),

118
sources of, 111
specifying with na_values parameter,

111
summary/conclusion, 121
transform example, 199–201
user input creating, 114
what is a NaN value, 109–111
working with, 116

Model diagnostics
comparing multiple models, 270
k-fold cross validation, 275–278
overview of, 265
q-q plots, 268–270
residuals, 265–268
summary/conclusion, 278

Index 369

working with GLM models, 273–275
working with linear models, 270–273

Models
generalized linear. See GLM (generalized

linear models)
linear. See Linear models

Month, extracting date components from
datetime object, 217–220

Müller, Andreas, 243
Multiple assignment, 351–352
Multiple regression

overview of, 247
residuals, 266–268
sklearn library for, 249–251
statsmodels library for, 247–249

Multivariate statistics
in matplotlib, 59–61
in seaborn, 73–83

N

na_filter parameter, specifying NaN values,
111

Name, subsetting columns by, 7–8
NaN. See Missing data (NaN values)
na_values parameter, specifying NaN values,

111
ndarray

restoring labels in sklearn models,
251–252

Series similarity with, 30
working with matrices and arrays,

353–354
Negative binomial regression, 259
Negative numbers, slicing values from end of

container, 156–157
Normal distribution

of data, 280
q-q plots and, 268–270

numba library
performance-related libraries, 306
timing execution of statements or

expressions, 307
vectorize decorator from, 185

Numbers (numeric)
converting variables to numeric values,

147–148
formatting number strings, 162
negative numbers, 156–157
to_numeric downcast, 151–152
to_numeric function, 148–151

numpy library
broadcasting support, 37–38
exporting/importing data, 43–45
functions, 178
mean, 192
ndarray, 353–354
restoring labels in sklearn models,

251–252
Series similarity with numpy.ndarray,

30
sklearn library taking numpy arrays, 246
specifying dtype from, 146–147
vectorize, 184, 306

nunique method, grouped frequency
counts, 23

O

Object-oriented languages, 355
Objects

classes, 355–356
converting to datetime, 214–216
datetime, 213–214
lists as, 333
plots and plotting using Pandas objects,

83–86
Observational units

across multiple tables, 137–139
in a table, 134–137

Odds ratios, performing logistic regression,
256

odo library, 47, 357
Offsets, frequency, 229–230
One-to-one merges, 104
OSX. See Mac
Overdispersion of data, negative binomial

regression for, 259

370 Index

P

Packages
benefits of isolated environments,

327–328
installing, 329–330
updating, 330

pairgrid, bivariate statistics, 73
Pairwise relationships (pairplot)

bivariate statistics, 73–74
with hue parameter, 77

Parameters
arbitrary function parameters, 347–348
default function parameters, 347
functions taking, 346

patsy library, 276–279
Patterns. See also Regular expressions (regex)

compiling, 169
matching, 164–168
substituting, 168–169

PCA (principal component analysis),
294–297

pd

alias for pandas, 5
reading pickle data, 44–45

Performance
avoiding premature optimization, 306
profiling code, 307
timing execution of statements or

expressions, 306–307
pickle data, 43–45
Pivot/unpivot

columns containing multiple variables,
128–129

converting wide data into tidy data,
125–126

keeping multiple columns fixed, 126–127
rows and columns both containing

variables, 133–134
Placeholders, formatting character strings,

162
Plots/plotting (plot)

basic plots, 23–24
bivariate statistics in matplotlib, 58–59

bivariate statistics in seaborn, 65–73
creating boxplots (plot.box), 85–86, 88
creating density plots (plot.kde), 85
creating scatterplots (plot.scatter),

85–86
linear regression residuals, 266–268
matplotlib library, 51–56
multivariate statistics in matplotlib,

59–61
multivariate statistics in seaborn, 73–83
overview of, 49–50
Pandas objects and, 83–85
q-q plots, 268–270
seaborn library, 61
statistical graphics, 56–57
summary/conclusion, 90
themes and styles in seaborn, 86–90
univariate statistics in matplotlib, 57–58
univariate statistics in seaborn, 62–65

PLOT_TYPE functions, 83
plt.hexbin function, 86–87
Podcast resources, for self-directed learners,

310–311
Point representation, Anscombe’s data set, 52
poisson function, in statsmodels library,

258
Poisson regression

negative binomial regression as alternative
to, 259

overview of, 257
statsmodels library for, 258–259

Position, subsetting columns by index
position break, 8

Principal component analysis (PCA),
294–297

Project templates, 319, 325
Pycon, conference resource for self-directed

learners, 310
Python

Anaconda distribution, 327
command line and text editor, 321–322
comparing Pandas types with, 6
conferences, 310
enhanced features in Pandas, 3

Index 371

IDEs (integrated development
environments), 322–323

ipython command, 322–323
jupyter command, 322–323
as object-oriented languages, 355
running from command line, 317–318
scientific computing stack, 305
ways to use, 321
working with objects, 5
as zero-indexed languages, 339

Q

q-q plots, model diagnostics, 268–270

R

R language, interface with (to_feather
method), 47

random.shuffle method, directly changing
columns, 41–42

Ranges (range)
beginning and ending indices, 339
date ranges, 227–228
filling in missing values, 232–233
overview of, 349–350
passing range of values, 333
subsetting columns, 14–15

Raschka, Sebastian, 243
re module, 164, 170
Regex. See Regular expressions (regex)
regplot, creating scatterplot, 65–66
Regression

LASSO regression regularization,
281–282

logistic regression, 253–255
more GLM options, 260
multiple regression, 247
negative binomial regression, 259
poisson regression, 257
reasons for regularization, 279–281
restoring labels in sklearn models,

251–252

ridge regression regularization, 283–284
simple linear regression, 243
sklearn library for logistic regression,

256–257
sklearn library for multiple regression,

249–251
sklearn library for simple linear

regression, 245–247
statsmodels library for logistic

regression, 255–256
statsmodels library for multiple

regression, 247–249
statsmodels library for poisson

regression, 258–259
statsmodels library for simple linear

regression, 243–245
Regular expressions (regex)

overview of, 164
pattern compilation, 169
pattern matching, 164–168
pattern substitution, 168–169
regex library, 170
syntax, special characters, and functions,

165
Regularization

cross-validation, 287–289
elastic net, 285–287
LASSO regression, 281–282
overview of, 279
reasons for, 279–281
ridge regression, 283–284
summary/conclusion, 289

reindex method, re-indexing as source of
missing values, 114–116

Resampling, datetime, 237–238
Residual sum of squares (RSS), 272
Residuals, model diagnostics, 265–268
Ridge regression

elastic net and, 285–287
regularization techniques, 283–284

Rows
apply row-wise operations, 180–182
concatenation generally, 94–97
concatenation with different indices,

99–101

372 Index

Rows (continued)
multiple observational units in a table,

134–137
removing row numbers from output, 46
rows and columns both containing

variables, 133–134
subsetting rows and columns, 17–18
subsetting rows by index label, 8–11
subsetting rows by ix attribute, 12
subsetting rows by row number, 11–12

RSS (residual sum of squares), 272
Rug plots, for univariate statistics, 63–65

S

Scalars, 33–34
Scaling up, going bigger and faster, 307
Scatterplots

for bivariate statistics, 58, 65–67
matplotlib example, 54
for multivariate statistics, 60–61
plot.scatter function, 85–86

Scientific computing stack, 305
scipy library

hierarchical clustering, 297
performance libraries, 306
scientific computing stack, 305

Scripts
project templates for running, 325
running Python from command line,

317–318
seaborn

Anscombe’s quartet for data visualization,
50

bivariate statistics, 65–73
multivariate statistics, 73–83
overview of, 61
themes and styles, 86–90
tips data set, 199
titanic data set, 176
univariate statistics, 62–65

Searches. See Find
Self-directed learners, resources for,

309–311

Semicolon (;), types of delimiters, 45
Serialization, serialize and save data in binary

format, 43–45
Series

adding columns, 38–39
aggregation functions, 196–197
alignment and vectorization, 33–36
apply function(s) over, 173–174
attributes, 29
boolean subsetting, 30–33
categorical attributes or methods, 153
as class, 355–356
creating, 26
defined, 3
directly changing columns, 39–42
exporting/importing data, 43–45
exporting to Excel (to_excel method),

46
histogram, 84
methods, 31
overview of, 28–29
similarity with ndarray, 30
writing CSV files (to_csv method),

45–46
shape

DataFrame attributes, 5
Series attributes, 29

Shape, in plotting, 77–78
Shell scripts, running Python from

command line, 317–318
Simple linear regression

overview of, 243
sklearn library, 245–247
statsmodels library, 243–245

Single cluster algorithm, in hierarchical
clustering, 298–299

size attribute, Series, 29
Size, in plotting, 77–78
sklearn library

importing PCA function, 294
k-fold cross validation, 276–278
KMeans function, 293
for logistic regression, 256–257
for multiple regression, 249–251

Index 373

restoring labels in sklearn models,
251–252

for simple linear regression, 245–247
splitting data into training and testing sets,

279–280
Slicing

colon (:) use in slicing syntax, 13,
339–340

columns, 15–17
string from beginning or to end, 157–158
strings, 156–157
strings incrementally, 158
subsetting columns, 13–14
subsetting multiple rows and columns,

17–18
values, 339–340

snakevis, profiling code, 307
sns.distplot, creating histograms, 62–63
Sns.set_style function, 86–90
Special characters, regular expressions, 165
Split-apply-combine, 189
split method

split and add columns individually,
129–131

split and combine in single step, 131–133
splitlines method, strings, 160–161
Spyder IDE, 322
SQL

comparing Pandas to, 104
groupy compared with SQL GROUP BY,

189
odo library support, 357

Square brackets ([])
getting first character of string, 156
list syntax, 333

Statistical graphics
bivariate statistics in matplotlib, 58–59
bivariate statistics in seaborn, 65–73
matplotlib library, 51–56
multivariate statistics in matplotlib,

59–61
multivariate statistics in seaborn, 73–83
overview of, 56–57
seaborn library, 61

univariate statistics in matplotlib, 57–58
univariate statistics in seaborn, 62–65

Statistics
basic plots, 23–24
grouped and aggregated calculations,

18–19
grouped frequency counts, 23
grouped means, 19–22

statsmodels library
for logistic regression, 255–256
for multiple regression, 247–249
for poisson regression, 258–259
for simple linear regression, 243–245

Stocks/stock prices, 224–225
Storage

of information in dictionaries,
337–338

lists for data storage, 333
str accessor, 129
Strings (string)

accessing methods, 129
converting values to, 146–147
formatting, 161–164
getting last character in, 157–158
methods, 158–161
overview of, 155
pattern compilation, 169
pattern matching, 164–168
pattern substitution, 168–169
regular expressions (regex) and, 164, 170
subsetting and slicing, 155–157
summary/conclusion, 170

strptime, for date formats, 216
str.replace, pattern substitution, 168–169
Styles, seaborn, 86–90
Subsets/subsetting

columns by index position break, 8
columns by name, 7–8
columns by range, 14–15
columns generally, 17–18
columns using slicing syntax, 13–14
data by dates, 225–227
DataFrame boolean subsetting, 36–37

374 Index

Subsets/subsetting (continued)
lists, 333
multiple rows, 12
rows by index label, 8–11
rows by ix attribute, 12
rows by row number, 11–12
rows generally, 17–18
strings, 155–157
tuples, 335

sum

cumulative (cumsum), 210–211
custom functions, 194

Summarization. See Aggregation (or
aggregate)

Survival analysis, using Cox model, 260–263
SWC Windows Installer, 317
SymPy, 305

T

T attribute, Series, 29
Tab separated values (TSV), 45, 217
Tables

observational units across multiple,
137–139

observational units in, 134–137
tail, returning last row, 10
Templates, project, 319, 325
Terminal application, Mac, 317–318
Text. See also Characters; Strings (string)

function documentation (docstring),
172

overview of, 155
Themes, seaborn, 86–90
Tidy data

columns containing multiple variables,
128–129

columns containing values not variables,
124

data assembly, 93–94
keeping multiple columns fixed, 126–127
keeping one column fixed, 124–126
loading multiple files using list

comprehension, 140

loading multiple files using loop,
139–140

observational units across multiple tables,
137–139

observational units in a table, 134–137
overview of, 123–124
rows and columns both containing

variables, 133–134
split and add columns individually,

129–131
split and combine in single step, 131–133
summary/conclusion, 141

Time. See datetime
Time zones, 238–239
timedelta object

date calculations, 220–221
subsetting date based data, 226–227

TimedeltaIndex, 226–227
timeit function, timing execution of

statements or expressions, 306–307
tips data set, seaborn library, 199, 243
to_csv method, 45–46
to_datetime function, 214–216
to_excel method, 46
to_feather method, 47
to_numeric function, 148–152
Transform (transform)

applying to data, 269–270
missing value example of transforming

data, 199–201
overview of, 197
z-score example of transforming data,

197–198
TSV (tab separated values), 45, 217
Tuples (tuple), 335
type function, working with Python

objects, 5

U

Unique identifiers, 146
Univariate statistics

in matplotlib, 57–58
in seaborn, 62–65

Index 375

Updates, package, 330
urllib library, 134–137
User input, as source of missing data, 114

V

value_counts method, 23, 116–117
Values (value)

columns containing values not variables.
See Columns, with values not variables

converting to strings, 146–147
creating DataFrame values, 27
directly changing columns, 39–42
dropping, 43
functions taking, 346
missing. See Missing data (NaN values)
multiple assignment of list of,

351–352
passing/reassigning, 333
Series attributes, 29
shifting datetime values, 230–237
slicing, 339–340

VanderPlas, Jake, 305
Variables

adding covariates to linear models, 270
bi-variable statistics. See Bivariate statistics
calculations involving multiple,

203–204
columns containing multiple. See

Columns, with multiple variables
columns containing values not variables.

See Columns, with values not variables
converting to numeric values, 147–148
multiple assignment, 351–352
multiple linear regression with three

covariates, 266–268
multiple variable statistics. See

Multivariate statistics
one-variable grouped aggregation,

190–191
rows and columns both containing,

133–134
in simple linear regression, 243
single variable statistics. See Univariate

statistics

sklearn library used with categorical
variables, 250–251

statsmodels library used with
categorical variables, 248–249

Vectors (vectorize)
applying vectorized function,

182–184
with common index labels (automatic

alignment), 35–36
DataFrame alignment and vectorization,

37–38
Series alignment and vectorization, 33
Series referred to as vectors, 30
using numba library, 185
using numpy library, 184
vectors of different length, 34–35
vectors of same length, 33
vectors with integers (scalars),

33–34
Violin plots

bivariate statistics, 73
creating scatterplots, 71
with hue parameter, 76

Visualization
Anscombe’s quartet for data visualization,

49–50
using plots for, 23–24

W

Wickham, Hadley, 93–94, 123
“Wide” data, converting into tidy data,

125–126
Windows

Anaconda command prompt, 322
cd command for viewing working

directory, 325
command line, 317
installing Anaconda, 315

X

xarray library, 305
xrange, 349–350

376 Index

Y

Year, extracting date components from
datetime object, 217–220

Z

z-score, transforming data, 197–198
Zero-indexed languages, 339

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	6 Tidy Data
	6.1 Introduction
	6.2 Columns Contain Values, Not Variables
	6.2.1 Keep One Column Fixed
	6.2.2 Keep Multiple Columns Fixed

	6.3 Columns Contain Multiple Variables
	6.3.1 Split and Add Columns Individually (Simple Method)
	6.3.2 Split and Combine in a Single Step (Simple Method)
	6.3.3 Split and Combine in a Single Step (More Complicated Method)

	6.4 Variables in Both Rows and Columns
	6.5 Multiple Observational Units in a Table (Normalization)
	6.6 Observational Units Across Multiple Tables
	6.6.1 Load Multiple Files Using a Loop
	6.6.2 Load Multiple Files Using a List Comprehension

	6.7 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

