
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134540566
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134540566
https://plusone.google.com/share?url=http://www.informit.com/title/9780134540566
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134540566
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134540566/Free-Sample-Chapter

Scala for the Impatient
Second Edition

This page intentionally left blank

Scala for the Impatient
Second Edition

Cay S. Horstmann

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was

aware of a trademark claim, the designations have been printed with initial capital letters or

in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed

or implied warranty of any kind and assume no responsibility for errors or omissions. No

liability is assumed for incidental or consequential damages in connection with or arising out

of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities

(which may include electronic versions; custom cover designs; and content particular to your

business, training goals, marketing focus, or branding interests), please contact our corporate

sales department at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016954825

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by

copyright, and permission must be obtained from the publisher prior to any prohibited

reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or likewise. For information regarding

permissions, request forms and the appropriate contacts within the Pearson Education Global

Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-454056-6

ISBN-10: 0-13-454056-5

Text printed in the United States of America.

1 16

http://www.pearsoned.com/permissions/

To my wife, who made writing this book possible,

and to my children, who made it necessary.

This page intentionally left blank

Foreword to the First Edition xvii

Preface xix

About the Author xxi

THE BASICS A1 11
The Scala Interpreter 11.1

Declaring Values and Variables 41.2

Commonly Used Types 51.3

Arithmetic and Operator Overloading 61.4

More about Calling Methods 81.5

The apply Method 91.6

Scaladoc 101.7

Exercises 15

CONTROL STRUCTURES AND FUNCTIONS A1 172
Conditional Expressions 182.1

Statement Termination 192.2

Block Expressions and Assignments 202.3

vii

Contents

Input and Output 212.4

Loops 222.5

Advanced for Loops 242.6

Functions 252.7

Default and Named Arguments L1 262.8

Variable Arguments L1 262.9

Procedures 282.10

Lazy Values L1 282.11

Exceptions 292.12

Exercises 31

WORKING WITH ARRAYS A1 353
Fixed-Length Arrays 353.1

Variable-Length Arrays: Array Buffers 363.2

Traversing Arrays and Array Buffers 373.3

Transforming Arrays 383.4

Common Algorithms 403.5

Deciphering Scaladoc 413.6

Multidimensional Arrays 423.7

Interoperating with Java 433.8

Exercises 44

MAPS AND TUPLES A1 474
Constructing a Map 484.1

Accessing Map Values 484.2

Updating Map Values 494.3

Iterating over Maps 504.4

Sorted Maps 504.5

Interoperating with Java 504.6

Tuples 514.7

Zipping 524.8

Exercises 52

Contentsviii

CLASSES A1 555
Simple Classes and Parameterless Methods 555.1

Properties with Getters and Setters 565.2

Properties with Only Getters 595.3

Object-Private Fields 605.4

Bean Properties L1 615.5

Auxiliary Constructors 625.6

The Primary Constructor 635.7

Nested Classes L1 665.8

Exercises 68

OBJECTS A1 716
Singletons 716.1

Companion Objects 726.2

Objects Extending a Class or Trait 736.3

The apply Method 736.4

Application Objects 746.5

Enumerations 756.6

Exercises 77

PACKAGES AND IMPORTS A1 797
Packages 807.1

Scope Rules 817.2

Chained Package Clauses 837.3

Top-of-File Notation 837.4

Package Objects 837.5

Package Visibility 847.6

Imports 857.7

Imports Can Be Anywhere 857.8

Renaming and Hiding Members 867.9

Implicit Imports 867.10

Exercises 87

ixContents

INHERITANCE A1 918
Extending a Class 918.1

Overriding Methods 928.2

Type Checks and Casts 938.3

Protected Fields and Methods 948.4

Superclass Construction 948.5

Overriding Fields 958.6

Anonymous Subclasses 978.7

Abstract Classes 978.8

Abstract Fields 978.9

Construction Order and Early Definitions L3 988.10

The Scala Inheritance Hierarchy 1008.11

Object Equality L1 1028.12

Value Classes L2 1038.13

Exercises 105

FILES AND REGULAR EXPRESSIONS A1 1099
Reading Lines 1099.1

Reading Characters 1109.2

Reading Tokens and Numbers 1119.3

Reading from URLs and Other Sources 1119.4

Reading Binary Files 1129.5

Writing Text Files 1129.6

Visiting Directories 1129.7

Serialization 1139.8

Process Control A2 1149.9

Regular Expressions 1169.10

Regular Expression Groups 1179.11

Exercises 118

TRAITS L1 12110
Why No Multiple Inheritance? 12110.1

Traits as Interfaces 12310.2

Traits with Concrete Implementations 12410.3

Contentsx

Objects with Traits 12510.4

Layered Traits 12510.5

Overriding Abstract Methods in Traits 12710.6

Traits for Rich Interfaces 12710.7

Concrete Fields in Traits 12810.8

Abstract Fields in Traits 13010.9

Trait Construction Order 13010.10

Initializing Trait Fields 13210.11

Traits Extending Classes 13310.12

Self Types L2 13410.13

What Happens under the Hood 13510.14

Exercises 137

OPERATORS L1 14111
Identifiers 14211.1

Infix Operators 14311.2

Unary Operators 14311.3

Assignment Operators 14411.4

Precedence 14411.5

Associativity 14511.6

The apply and update Methods 14611.7

Extractors L2 14711.8

Extractors with One or No Arguments L2 14911.9

The unapplySeq Method L2 14911.10

Dynamic Invocation L2 15011.11

Exercises 153

HIGHER-ORDER FUNCTIONS L1 15712
Functions as Values 15712.1

Anonymous Functions 15912.2

Functions with Function Parameters 16012.3

Parameter Inference 16012.4

Useful Higher-Order Functions 16112.5

Closures 16212.6

xiContents

SAM Conversions 16312.7

Currying 16412.8

Control Abstractions 16612.9

The return Expression 16712.10

Exercises 168

COLLECTIONS A2 17113
The Main Collections Traits 17213.1

Mutable and Immutable Collections 17313.2

Sequences 17413.3

Lists 17513.4

Sets 17713.5

Operators for Adding or Removing Elements 17813.6

Common Methods 18013.7

Mapping a Function 18213.8

Reducing, Folding, and Scanning A3 18413.9

Zipping 18713.10

Iterators 18813.11

Streams A3 18913.12

Lazy Views A3 19013.13

Interoperability with Java Collections 19113.14

Parallel Collections 19313.15

Exercises 194

PATTERN MATCHING AND CASE CLASSES A2 19714
A Better Switch 19814.1

Guards 19914.2

Variables in Patterns 19914.3

Type Patterns 20014.4

Matching Arrays, Lists, and Tuples 20114.5

Extractors 20214.6

Patterns in Variable Declarations 20314.7

Patterns in for Expressions 20414.8

Case Classes 20514.9

Contentsxii

The copy Method and Named Parameters 20514.10

Infix Notation in case Clauses 20614.11

Matching Nested Structures 20714.12

Are Case Classes Evil? 20814.13

Sealed Classes 20914.14

Simulating Enumerations 20914.15

The Option Type 21014.16

Partial Functions L2 21114.17

Exercises 212

ANNOTATIONS A2 21515
What Are Annotations? 21615.1

What Can Be Annotated? 21615.2

Annotation Arguments 21715.3

Annotation Implementations 21815.4

Annotations for Java Features 21915.5

15.5.1 Java Modifiers 219

15.5.2 Marker Interfaces 220

15.5.3 Checked Exceptions 220

15.5.4 Variable Arguments 221

15.5.5 JavaBeans 221

Annotations for Optimizations 22215.6

15.6.1 Tail Recursion 222

15.6.2 Jump Table Generation and Inlining 223

15.6.3 Eliding Methods 224

15.6.4 Specialization for Primitive Types 225

Annotations for Errors and Warnings 22615.7

Exercises 227

XML PROCESSING A2 22916
XML Literals 23016.1

XML Nodes 23016.2

Element Attributes 23216.3

Embedded Expressions 23316.4

xiiiContents

Expressions in Attributes 23416.5

Uncommon Node Types 23516.6

XPath-like Expressions 23516.7

Pattern Matching 23716.8

Modifying Elements and Attributes 23816.9

Transforming XML 23916.10

Loading and Saving 23916.11

Namespaces 24216.12

Exercises 243

FUTURES A2 24717
Running Tasks in the Future 24817.1

Waiting for Results 25017.2

The Try Class 25117.3

Callbacks 25117.4

Composing Future Tasks 25217.5

Other Future Transformations 25517.6

Methods in the Future Object 25617.7

Promises 25817.8

Execution Contexts 26017.9

Exercises 260

TYPE PARAMETERS L2 26518
Generic Classes 26618.1

Generic Functions 26618.2

Bounds for Type Variables 26618.3

View Bounds 26818.4

Context Bounds 26818.5

The ClassTag Context Bound 26918.6

Multiple Bounds 26918.7

Type Constraints L3 26918.8

Variance 27118.9

Co- and Contravariant Positions 27218.10

Contentsxiv

Objects Can’t Be Generic 27418.11

Wildcards 27518.12

Exercises 275

ADVANCED TYPES L2 27919
Singleton Types 28019.1

Type Projections 28119.2

Paths 28219.3

Type Aliases 28319.4

Structural Types 28319.5

Compound Types 28419.6

Infix Types 28519.7

Existential Types 28619.8

The Scala Type System 28719.9

Self Types 28819.10

Dependency Injection 28919.11

Abstract Types L3 29119.12

Family Polymorphism L3 29319.13

Higher-Kinded Types L3 29619.14

Exercises 299

PARSING A3 30320
Grammars 30420.1

Combining Parser Operations 30520.2

Transforming Parser Results 30720.3

Discarding Tokens 30820.4

Generating Parse Trees 30920.5

Avoiding Left Recursion 31020.6

More Combinators 31120.7

Avoiding Backtracking 31420.8

Packrat Parsers 31420.9

What Exactly Are Parsers? 31520.10

Regex Parsers 31620.11

xvContents

Token-Based Parsers 31720.12

Error Handling 31920.13

Exercises 320

IMPLICITS L3 32321
Implicit Conversions 32421.1

Using Implicits for Enriching Existing Classes 32421.2

Importing Implicits 32521.3

Rules for Implicit Conversions 32621.4

Implicit Parameters 32821.5

Implicit Conversions with Implicit Parameters 32921.6

Context Bounds 32921.7

Type Classes 33121.8

Evidence 33321.9

The @implicitNotFound Annotation 33421.10

CanBuildFrom Demystified 33421.11

Exercises 336

Index 338

Contentsxvi

When I met Cay Horstmann some years ago he told me that Scala needed a better

introductory book. My own book had come out a little bit earlier, so of course I

had to ask him what he thought was wrong with it. He responded that it was

great but too long; his students would not have the patience to read through the

eight hundred pages of Programming in Scala. I conceded that he had a point.

And he set out to correct the situation by writing Scala for the Impatient.

I am very happy that his book has finally arrived because it really delivers on

what the title says. It gives an eminently practical introduction to Scala, explains

what’s particular about it, how it differs from Java, how to overcome some

common hurdles to learning it, and how to write good Scala code.

Scala is a highly expressive and flexible language. It lets library writers use

highly sophisticated abstractions, so that library users can express themselves

simply and intuitively. Therefore, depending on what kind of code you look at,

it might seem very simple or very complex.

A year ago, I tried to provide some clarification by defining a set of levels for

Scala and its standard library. There were three levels each for application pro-

grammers and for library designers. The junior levels could be learned quickly

and would be sufficient to program productively. Intermediate levels would

make programs more concise and more functional and would make libraries

more flexible to use. The highest levels were for experts solving specialized tasks.

At the time I wrote:

xvii

Foreword to the First Edition

I hope this will help newcomers to the language decide in what order to pick

subjects to learn, and that it will give some advice to teachers and book authors

in what order to present the material.

Cay’s book is the first to have systematically applied this idea. Every chapter is

tagged with a level that tells you how easy or hard it is and whether it’s oriented

towards library writers or application programmers.

As you would expect, the first chapters give a fast-paced introduction to the basic

Scala capabilities. But the book does not stop there. It also covers many of the

more “senior” concepts and finally progresses to very advanced material which

is not commonly covered in a language introduction, such as how to write parser

combinators or make use of delimited continuations. The level tags serve as a

guideline for what to pick up when. And Cay manages admirably to make even

the most advanced concepts simple to understand.

I liked the concept of Scala for the Impatient so much that I asked Cay and his ed-

itor, Greg Doench, whether we could get the first part of the book as a free

download on the Typesafe web site. They have gracefully agreed to my request,

and I would like to thank them for that. That way, everybody can quickly access

what I believe is currently the best compact introduction to Scala.

Martin Odersky

January 2012

Foreword to the First Editionxviii

The evolution of traditional languages such as Java, C#, and C++ has slowed

down considerably, and programmers who are eager to use more modern lan-

guage features are looking elsewhere. Scala is an attractive choice; in fact, I think

it is by far the most attractive choice for programmers who want to improve their

productivity. Scala has a concise syntax that is refreshing after the Java boilerplate.

It runs on the Java virtual machine, providing access to a huge set of libraries

and tools. And Scala doesn’t just target the Java virtual machine. The ScalaJS

project emits JavaScript code, enabling you to write both the server-side and

client-side parts of a web application in a language that isn’t JavaScript. Scala

embraces the functional programming style without abandoning object orienta-

tion, giving you an incremental learning path to a new paradigm. The Scala in-

terpreter lets you run quick experiments, which makes learning Scala very enjoy-

able. Last but not least, Scala is statically typed, enabling the compiler to find

errors, so that you don’t waste time finding them—or not—later in the running

program.

I wrote this book for impatient readers who want to start programming in Scala

right away. I assume you know Java, C#, or C++, and I don’t bore you with ex-

plaining variables, loops, or classes. I don’t exhaustively list all the features of

the language, I don’t lecture you about the superiority of one paradigm over

another, and I don’t make you suffer through long and contrived examples. In-

stead, you will get the information that you need in compact chunks that you

can read and review as needed.

xix

Preface

Scala is a big language, but you can use it effectively without knowing all of its

details intimately. Martin Odersky, the creator of Scala, has identified levels of

expertise for application programmers and library designers—as shown in the

following table.

Overall Scala LevelLibrary DesignerApplication Programmer

BeginningBeginning A1

IntermediateJunior L1Intermediate A2

AdvancedSenior L2Expert A3

ExpertExpert L3

For each chapter (and occasionally for individual sections), I indicate the experi-

ence level required. The chapters progress through levels A1 , L1 , A2 , L2 , A3 , L3 .

Even if you don’t want to design your own libraries, knowing about the tools that

Scala provides for library designers can make you a more effective library user.

This is the second edition of this book, and I updated it thoroughly for Scala 2.12.

I added coverage of recent Scala features such as string interpolation, dynamic

invocation, implicit classes, and futures, and updated all chapters to reflect current

Scala usage.

I hope you enjoy learning Scala with this book. If you find errors or have sugges-

tions for improvement, please visit http://horstmann.com/scala and leave a comment.

On that page, you will also find a link to an archive file containing all code

examples from the book.

I am very grateful to Dmitry Kirsanov and Alina Kirsanova who turned my

manuscript from XHTML into a beautiful book, allowing me to concentrate on

the content instead of fussing with the format. Every author should have it

so good!

Reviewers include Adrian Cumiskey, Mike Davis, Rob Dickens, Steve Haines,

Susan Potter, Daniel Sobral, Craig Tataryn, David Walend, and William Wheeler.

Thanks so much for your comments and suggestions!

Finally, as always, my gratitude goes to my editor, Greg Doench, for encouraging

me to write this book, and for his insights during the development process.

Cay Horstmann

San Francisco, 2016

Prefacexx

http://horstmann.com/scala

Cay S. Horstmann is author of Core Java™, Volumes I & II, Tenth Edition (Prentice

Hall, 2016), as well as a dozen other books for professional programmers and

computer science students. He is a professor of computer science at San Jose State

University and a Java Champion.

xxi

About the Author

Topics in This Chapter A1

5.1 Simple Classes and Parameterless Methods — page 55

5.2 Properties with Getters and Setters — page 56

5.3 Properties with Only Getters — page 59

5.4 Object-Private Fields — page 60

5.5 Bean Properties L1 — page 61

5.6 Auxiliary Constructors — page 62

5.7 The Primary Constructor — page 63

5.8 Nested Classes L1 — page 66

Exercises — page 68

Classes

In this chapter, you will learn how to implement classes in Scala. If you know

classes in Java or C++, you won’t find this difficult, and you will enjoy the much

more concise notation of Scala.

The key points of this chapter are:

• Fields in classes automatically come with getters and setters.

• You can replace a field with a custom getter/setter without changing the

client of a class—that is the “uniform access principle.”

• Use the @BeanProperty annotation to generate the JavaBeans getXxx/setXxx

methods.

• Every class has a primary constructor that is “interwoven” with the class

definition. Its parameters turn into the fields of the class. The primary

constructor executes all statements in the body of the class.

• Auxiliary constructors are optional. They are called this.

5.1 Simple Classes and Parameterless Methods
In its simplest form, a Scala class looks very much like its equivalent in Java

or C++:

55

5Chapter

class Counter {
 private var value = 0 // You must initialize the field

 def increment() { value += 1 } // Methods are public by default

 def current() = value
}

In Scala, a class is not declared as public. A Scala source file can contain multiple

classes, and all of them have public visibility.

To use this class, you construct objects and invoke methods in the usual way:

val myCounter = new Counter // Or new Counter()
myCounter.increment()
println(myCounter.current)

You can call a parameterless method (such as current) with or without parentheses:

myCounter.current // OK

myCounter.current() // Also OK

Which form should you use? It is considered good style to use () for a mutator

method (a method that changes the object state), and to drop the () for an

accessor method (a method that does not change the object state).

That’s what we did in our example:

myCounter.increment() // Use () with mutator

println(myCounter.current) // Don’t use () with accessor

You can enforce this style by declaring current without ():

class Counter {
 ...
 def current = value // No () in definition

}

Now class users must use myCounter.current, without parentheses.

5.2 Properties with Getters and Setters
When writing a Java class, we don’t like to use public fields:

public class Person { // This is Java

 public int age; // Frowned upon in Java

}

With a public field, anyone could write to fred.age, making Fred younger or older.

That’s why we prefer to use getter and setter methods:

Chapter 5 Classes56

public class Person { // This is Java

 private int age;
 public int getAge() { return age; }
 public void setAge(int age) { this.age = age; }
}

A getter/setter pair such as this one is often called a property. We say that the

class Person has an age property.

Why is this any better? By itself, it isn’t. Anyone can call fred.setAge(21), keeping

him forever twenty-one.

But if that becomes a problem, we can guard against it:

 public void setAge(int newValue) { if (newValue > age) age = newValue; }
 // Can’t get younger

Getters and setters are better than public fields because they let you start with

simple get/set semantics and evolve them as needed.

NOTE: Just because getters and setters are better than public fields doesn’t
mean they are always good. Often, it is plainly bad if every client can get or
set bits and pieces of an object’s state. In this section, I show you how to
implement properties in Scala. It is up to you to choose wisely when a
gettable/settable property is an appropriate design.

Scala provides getter and setter methods for every field. Here, we define a public

field:

class Person {
 var age = 0
}

Scala generates a class for the JVM with a private age field and getter and setter

methods. These methods are public because we did not declare age as private. (For

a private field, the getter and setter methods are private.)

In Scala, the getter and setter methods are called age and age_=. For example,

println(fred.age) // Calls the method fred.age()
fred.age = 21 // Calls fred.age_=(21)

In Scala, the getters and setters are not named getXxx and setXxx, but they fulfill

the same purpose. Section 5.5, “Bean Properties,” on page 61 shows how to

generate Java-style getXxx and setXxx methods, so that your Scala classes can

interoperate with Java tools.

575.2 Properties with Getters and Setters

NOTE: To see these methods with your own eyes, compile the Person class
and then look at the bytecode with javap:

$ scalac Person.scala
$ javap -private Person
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject{
 private int age;

public int age(); public void age_$eq(int);
 public Person();
}

As you can see, the compiler created methods age and age_$eq. (The = symbol
is translated to $eq because the JVM does not allow an = in a method name.)

TIP: You can run the javap command inside the REPL as

:javap -private Person

At any time, you can redefine the getter and setter methods yourself. For example,

class Person {
 private var privateAge = 0 // Make private and rename

 def age = privateAge
 def age_=(newValue: Int) {
 if (newValue > privateAge) privateAge = newValue; // Can’t get younger

 }
}

The user of your class still accesses fred.age, but now Fred can’t get younger:

val fred = new Person
fred.age = 30
fred.age = 21
println(fred.age) // 30

NOTE: Bertrand Meyer, the inventor of the influential Eiffel language,
formulated the Uniform Access Principle that states: “All services offered by
a module should be available through a uniform notation, which does not
betray whether they are implemented through storage or through computation.”
In Scala, the caller of fred.age doesn’t know whether age is implemented
through a field or a method. (Of course, in the JVM, the service is always
implemented through a method, either synthesized or programmer-supplied.)

Chapter 5 Classes58

TIP: It may sound scary that Scala generates getter and setter methods for
every field. But you have some control over this process.

• If the field is private, the getter and setter are private.

• If the field is a val, only a getter is generated.

• If you don’t want any getter or setter, declare the field as private[this]
(see Section 5.4, “Object-Private Fields,” on page 60).

5.3 Properties with Only Getters
Sometimes you want a read-only property with a getter but no setter. If the value

of the property never changes after the object has been constructed, use a val
field:

class Message {
 val timeStamp = java.time.Instant.now
 ...
}

The Scala compiler produces a Java class with a private final field and a public

getter method, but no setter.

Sometimes, however, you want a property that a client can’t set at will, but that

is mutated in some other way. The Counter class from Section 5.1, “Simple Classes

and Parameterless Methods,” on page 55 is a good example. Conceptually, the

counter has a current property that is updated when the increment method is called,

but there is no setter for the property.

You can’t implement such a property with a val—a val never changes. Instead,

provide a private field and a property getter, like this:

class Counter {
private var value = 0

 def increment() { value += 1 }
def current = value // No () in declaration

}

Note that there are no () in the definition of the getter method. Therefore, you

must call the method without parentheses:

val n = myCounter.current // Calling myCounter.current() is a syntax error

To summarize, you have four choices for implementing properties:

1. var foo: Scala synthesizes a getter and a setter.

2. val foo: Scala synthesizes a getter.

595.3 Properties with Only Getters

3. You define methods foo and foo_=.

4. You define a method foo.

NOTE: In Scala, you cannot have a write-only property (that is, a property
with a setter and no getter).

TIP: When you see a field in a Scala class, remember that it is not the same
as a field in Java or C++. It is a private field together with a getter (for a val
field) or a getter and a setter (for a var field).

5.4 Object-Private Fields
In Scala (as well as in Java or C++), a method can access the private fields of all

objects of its class. For example,

class Counter {
 private var value = 0
 def increment() { value += 1 }

 def isLess(other : Counter) = value < other.value
 // Can access private field of other object

}

Accessing other.value is legal because other is also a Counter object.

Scala allows an even more severe access restriction with the private[this] qualifier:

private[this] var value = 0 // Accessing someObject.value is not allowed

Now, the methods of the Counter class can only access the value field of the current

object, not of other objects of type Counter. This access is sometimes called

object-private, and it is common in some OO languages such as SmallTalk.

With a class-private field, Scala generates private getter and setter methods.

However, for an object-private field, no getters and setters are generated at all.

Chapter 5 Classes60

NOTE: Scala allows you to grant access rights to specific classes. The
private[ClassName] qualifier states that only methods of the given class can
access the given field. Here, the ClassName must be the name of the class
being defined or an enclosing class. (See Section 5.8, “Nested Classes,” on
page 66 for a discussion of inner classes.)

In this case, the implementation will generate auxiliary getter and setter
methods that allow the enclosing class to access the field. These methods
will be public because the JVM does not have a fine-grained access control
system, and they will have implementation-dependent names.

5.5 Bean Properties L1
As you saw in the preceding sections, Scala provides getter and setter methods

for the fields that you define. However, the names of these methods are not what

Java tools expect. The JavaBeans specification (www.oracle.com/technetwork/articles/
javaee/spec-136004.html) defines a Java property as a pair of getFoo/setFoo methods

(or just a getFoo method for a read-only property). Many Java tools rely on this

naming convention.

When you annotate a Scala field with @BeanProperty, then such methods are

automatically generated. For example,

import scala.beans.BeanProperty

class Person {
 @BeanProperty var name: String = _
}

generates four methods:

1. name: String

2. name_=(newValue: String): Unit

3. getName(): String

4. setName(newValue: String): Unit

Table 5–1 shows which methods are generated in all cases.

615.5 Bean Properties

http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

Table 5–1 Generated Methods for Fields

When to UseGenerated MethodsScala Field

To implement a property that is

publicly accessible and backed by a

field.

public name

name_= (var only)

val/var name

To interoperate with JavaBeans.public name

getName()

name_= (var only)

setName(...) (var only)

@BeanProperty val/var

name

To confine the field to the methods

of this class, just like in Java. Use

private unless you really want a

public property.

private name

name_= (var only)

private val/var name

To confine the field to methods

invoked on the same object. Not

commonly used.

noneprivate[this] val/var

name

To grant access to an enclosing class.

Not commonly used.

implementation-

dependent

private[ClassName]

val/var name

NOTE: If you define a field as a primary constructor parameter (see Sec-
tion 5.7, “The Primary Constructor,” on page 63), and you want JavaBeans
getters and setters, annotate the constructor parameter like this:

class Person(@BeanProperty var name: String)

5.6 Auxiliary Constructors
As in Java or C++, a Scala class can have as many constructors as you like.

However, a Scala class has one constructor that is more important than all the

others, called the primary constructor. In addition, a class may have any number

of auxiliary constructors.

We discuss auxiliary constructors first because they are easier to understand.

They are similar to constructors in Java or C++, with just two differences.

1. The auxiliary constructors are called this. (In Java or C++, constructors have

the same name as the class—which is not so convenient if you rename the

class.)

2. Each auxiliary constructor must start with a call to a previously defined

auxiliary constructor or the primary constructor.

Chapter 5 Classes62

Here is a class with two auxiliary constructors:

class Person {
 private var name = ""
 private var age = 0

 def this(name: String) { // An auxiliary constructor

 this() // Calls primary constructor

 this.name = name
 }

 def this(name: String, age: Int) { // Another auxiliary constructor

 this(name) // Calls previous auxiliary constructor

 this.age = age
 }
}

We will look at the primary constructor in the next section. For now, it is sufficient

to know that a class for which you don’t define a primary constructor has a

primary constructor with no arguments.

You can construct objects of this class in three ways:

val p1 = new Person // Primary constructor

val p2 = new Person("Fred") // First auxiliary constructor

val p3 = new Person("Fred", 42) // Second auxiliary constructor

5.7 The Primary Constructor
In Scala, every class has a primary constructor. The primary constructor is not

defined with a this method. Instead, it is interwoven with the class definition.

1. The parameters of the primary constructor are placed immediately after the

class name.

class Person(val name: String, val age: Int) {
 // Parameters of primary constructor in (...)
 ...
}

Parameters of the primary constructor turn into fields that are initialized with

the construction parameters. In our example, name and age become fields of the

Person class. A constructor call such as new Person("Fred", 42) sets the name and

age fields.

Half a line of Scala is the equivalent of seven lines of Java:

635.7 The Primary Constructor

public class Person { // This is Java

private String name; private int age; public Person(String name, int age) {
this.name = name; this.age = age;

 }
public String name() { return this.name; } public int age() { return this.age; }

 ...
}

2. The primary constructor executes all statements in the class definition. For

example, in the following class

class Person(val name: String, val age: Int) {
println("Just constructed another person")

 def description = s"$name is $age years old"
}

the println statement is a part of the primary constructor. It is executed

whenever an object is constructed.

This is useful when you need to configure a field during construction. For

example:

class MyProg {
 private val props = new Properties
 props.load(new FileReader("myprog.properties"))
 // The statement above is a part of the primary constructor

 ...
}

NOTE: If there are no parameters after the class name, then the class has a
primary constructor with no parameters. That constructor simply executes all
statements in the body of the class.

TIP:You can often eliminate auxiliary constructors by using default arguments
in the primary constructor. For example:

class Person(val name: String = "", val age: Int = 0)

Primary constructor parameters can have any of the forms in Table 5–1. For

example,

class Person(val name: String, private var age: Int)

declares and initializes fields

val name: String
private var age: Int

Chapter 5 Classes64

Construction parameters can also be regular method parameters, without val or

var. How these parameters are processed depends on their usage inside the class.

• If a parameter without val or var is used inside at least one method, it becomes

a field. For example,

class Person(name: String, age: Int) {
 def description = s"$name is $age years old"
}

declares and initializes immutable fields name and age that are object-private.

Such a field is the equivalent of a private[this] val field (see Section 5.4,

“Object-Private Fields,” on page 60).

• Otherwise, the parameter is not saved as a field. It’s just a regular parameter

that can be accessed in the code of the primary constructor. (Strictly speaking,

this is an implementation-specific optimization.)

Table 5–2 summarizes the fields and methods that are generated for different

kinds of primary constructor parameters.

Table 5–2 Fields and Methods Generated for Primary Constructor Parameters

Generated Field/MethodsPrimary Constructor Parameter

object-private field, or no field if no method uses

name

name: String

private field, private getter/setterprivate val/var name: String

private field, public getter/setterval/var name: String

private field, public Scala and JavaBeans

getters/setters

@BeanProperty val/var name: String

If you find the primary constructor notation confusing, you don’t need to use it.

Just provide one or more auxiliary constructors in the usual way, but remember

to call this() if you don’t chain to another auxiliary constructor.

However, many programmers like the concise syntax. Martin Odersky suggests

to think about it this way: In Scala, classes take parameters, just like methods do.

NOTE: When you think of the primary constructor’s parameters as class
parameters, parameters without val or var become easier to understand.The
scope of such a parameter is the entire class. Therefore, you can use the
parameter in methods. If you do, it is the compiler’s job to save it in a field.

655.7 The Primary Constructor

TIP: The Scala designers think that every keystroke is precious, so they let
you combine a class with its primary constructor.When reading a Scala class,
you need to disentangle the two. For example, when you see

class Person(val name: String) {
 var age = 0
 def description = s"$name is $age years old"
}

take this definition apart into a class definition:

class Person(val name: String) {
 var age = 0
 def description = s"$name is $age years old"
}

and a constructor definition:

class Person(val name: String) {
var age = 0
def description = s"$name is $age years old"

}

NOTE: To make the primary constructor private, place the keyword private
like this:

class Person private(val id: Int) { ... }

A class user must then use an auxiliary constructor to construct a Person object.

5.8 Nested Classes L1
In Scala, you can nest just about anything inside anything. You can define func-

tions inside other functions, and classes inside other classes. Here is a simple

example of the latter:

import scala.collection.mutable.ArrayBuffer
class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Member]
 }

 private val members = new ArrayBuffer[Member]

 def join(name: String) = {
 val m = new Member(name)
 members += m

Chapter 5 Classes66

 m
 }
}

Consider two networks:

val chatter = new Network
val myFace = new Network

In Scala, each instance has its own class Member, just like each instance has its own

field members. That is, chatter.Member and myFace.Member are different classes.

NOTE: This is different from Java, where an inner class belongs to the outer
class.

The Scala approach is more regular. For example, to make a new inner object,
you simply use new with the type name: new chatter.Member. In Java, you need
to use a special syntax, chatter.new Member().

In our network example, you can add a member within its own network, but not

across networks.

val fred = chatter.join("Fred")
val wilma = chatter.join("Wilma")
fred.contacts += wilma // OK

val barney = myFace.join("Barney") // Has type myFace.Member
fred.contacts += barney
 // No—can’t add a myFace.Member to a buffer of chatter.Member elements

For networks of people, this behavior probably makes sense. If you don’t want

it, there are two solutions.

First, you can move the Member type somewhere else. A good place would be the

Network companion object. (Companion objects are described in Chapter 6.)

object Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Member]
 }
}

class Network {
 private val members = new ArrayBuffer[Network.Member]
 ...
}

Alternatively, you can use a type projection Network#Member, which means “a Member
of any Network.” For example,

675.8 Nested Classes

class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Network#Member]
 }
 ...
}

You would do that if you want the fine-grained “inner class per object” feature

in some places of your program, but not everywhere. See Chapter 19 for more

information about type projections.

NOTE: In a nested class, you can access the this reference of the enclosing
class as EnclosingClass.this, like in Java. If you like, you can establish an alias
for that reference with the following syntax:

class Network(val name: String) { outer =>

 class Member(val name: String) {
 ...
 def description = s"$name inside ${outer.name}"
 }
}

The class Network { outer => syntax makes the variable outer refer to
Network.this.You can choose any name for this variable. The name self is
common, but perhaps confusing when used with nested classes.

This syntax is related to the “self type” syntax that you will see in Chapter 19.

Exercises
1. Improve the Counter class in Section 5.1, “Simple Classes and Parameterless

Methods,” on page 55 so that it doesn’t turn negative at Int.MaxValue.

2. Write a class BankAccount with methods deposit and withdraw, and a read-only

property balance.

3. Write a class Time with read-only properties hours and minutes and a method

before(other: Time): Boolean that checks whether this time comes before the

other. A Time object should be constructed as new Time(hrs, min), where hrs is in

military time format (between 0 and 23).

4. Reimplement the Time class from the preceding exercise so that the internal

representation is the number of minutes since midnight (between 0 and 24 ×

60 – 1). Do not change the public interface. That is, client code should be

unaffected by your change.

Chapter 5 Classes68

5. Make a class Student with read-write JavaBeans properties name (of type String)
and id (of type Long). What methods are generated? (Use javap to check.) Can

you call the JavaBeans getters and setters in Scala? Should you?

6. In the Person class of Section 5.1, “Simple Classes and Parameterless Methods,”

on page 55, provide a primary constructor that turns negative ages to 0.

7. Write a class Person with a primary constructor that accepts a string containing

a first name, a space, and a last name, such as new Person("Fred Smith"). Supply

read-only properties firstName and lastName. Should the primary constructor

parameter be a var, a val, or a plain parameter? Why?

8. Make a class Car with read-only properties for manufacturer, model name,

and model year, and a read-write property for the license plate. Supply four

constructors. All require the manufacturer and model name. Optionally,

model year and license plate can also be specified in the constructor. If not,

the model year is set to -1 and the license plate to the empty string. Which

constructor are you choosing as the primary constructor? Why?

9. Reimplement the class of the preceding exercise in Java, C#, or C++ (your

choice). How much shorter is the Scala class?

10. Consider the class

class Employee(val name: String, var salary: Double) {
 def this() { this("John Q. Public", 0.0) }
}

Rewrite it to use explicit fields and a default primary constructor. Which form

do you prefer? Why?

69Exercises

Symbols and Numbers
- (minus sign)

in identifiers, 142

operator:

arithmetic, 6

for collections, 178–179

for maps, 49

for type parameters, 271

left-associative, 145

precedence of, 145

unary (negation), 14, 143

-- operator, 177–179

not used for arithmetic decrements, 7

-= operator

arithmetic, 7

for collections, 178–179

for maps, 49

--= operator, 178–179

_ (underscore)

as wildcard:

for XML elements, 236

in case clauses, 30, 198–199, 237

in imports, 8, 76, 85–86

in tuples, 52

for function calls, 158, 288

for function parameters, 161

in identifiers, 142, 317

_* syntax

for arrays, 201

for nested structures, 207

in function parameters, 27

in pattern matching, 237

_=, in setter methods, 57

_1, _2, _3 methods (tuples), 51

; (semicolon)

after statements, 5, 18–20

inside loops, 24–25

: (colon)

followed by annotations, 217

in case clauses, 200–201

in identifiers, 142

in implicits, 329–330

in operator names, 285

and precedence, 145

right-associative, 146, 185

in type parameters, 268–269

:: operator

for lists, 175–176, 178–179

in case clauses, 201, 206

right-associative, 146, 176

:::, :+ operators, 178–179

:\, /: operators, 185

:+= operator, 179

! (exclamation mark)

in identifiers, 142

operator:

in shell scripts, 114–115

precedence of, 145

unary, 143

!! operator, in shell scripts, 114

!= operator, 144

? (question mark)

in identifiers, 142

in parsers, 308

?: operator, 18

??? method, 101

/ (slash)

in identifiers, 142

in XPath, 235

operator, 6

precedence of, 145

//
for comments, 317

in XPath, 235

/* ... */ comments, parsing, 317

338

Index

/% method (BigInt), 7, 203

`...` (backquotes), for identifiers, 142,

200

^ (caret)

in identifiers, 142

in Pascal, 153

operator, 6

precedence of, 145

^? operator, 313

^^ operator, 307–309, 312

^^^ operator, 312

~ (tilde)

in identifiers, 142

operator:

in case clauses, 206

in parsers, 305–311, 313–314

unary, 143

~! operator, 313–314

~> operator, 308–309, 312

' (single quote)

in symbols, 226

parsing, 317

" (double quote), parsing, 317

""", in regular expressions, 116

() (parentheses)

as value of Unit, 18–21

discarding, in parsers, 309

for annotations, 216

for apply method, 9–10

for array elements, 36

for curried parameters, 165

for functions, 158–161, 166

for maps, 48

for primary constructors, 63

for tuples, 51, 287

in case clauses, 201, 205

in method declarations, 8, 56, 59

in regular expressions, 117

to access XML attributes, 232

[] (square brackets)

for arrays, 36

for methods in traits, 126

for type parameters, 14, 266, 287

{} (braces)

for block expressions, 20–21

for existential types, 286

for function arguments, 159

for structural types, 283–285

in formatted strings, 21

in imports, 86

in package clauses, 83

in pattern matching, 211–212, 237

in REPL, 19

in XML literals, 234

Kernighan & Ritchie style for, 20

@ (at)

for XML attributes, 236

in case clauses, 207

in identifiers, 142

$ (dollar sign), in formatted strings, 21

* (asterisk)

as wildcard in Java, 8, 85

in identifiers, 142

in parsers, 308

operator, 6, 327

no infix notation for, 286

precedence of, 145

**
in Fortran, 153

in identifiers, 142

\ (backslash)

in identifiers, 142

operator, 235–236

\\ operator, 235–236

& (ampersand)

in identifiers, 142

operator:

arithmetic, 6

for sets, 177–179

precedence of, 145

&...; (XML), 231

&~ operator, 177–178

&#...; (XML), 232

(number sign)

for type projections, 67, 281–283, 286

in identifiers, 142

#:: operator, 189

#&&, #<, #>, #>>, #|| operators (shell scripts),

115

#| operator (shell scripts), 114

% (percent sign)

for XML attributes, 238

in identifiers, 142

operator, 6

precedence of, 145

+ (plus sign)

in identifiers, 142

operator:

arithmetic, 6

for collections, 178–179

for maps, 49

for type parameters, 271

precedence of, 145

unary, 143

339Index

+: operator

for collections, 178–179

in case clauses, 207

right-associative, 146, 179

++ operator, 177–179

not used for arithmetic increments, 7

++:, ++=:, +=: operators, 178–179

++= operator

for array buffers, 36

for collections, 178–179

+= operator

arithmetic, 7

assignment, 144

for array buffers, 36, 42

for collections, 178–179, 335

for maps, 49

of Buffer, 335

< (left angle bracket)

in identifiers, 142

in XML literals, 230

operator:

and implicits, 329

precedence of, 145

<- operator, 23–24, 204

<: operator, 267–271, 286, 293

<:< operator, 269, 333

<!--...-->, <?...?> comments (XML), 231

<?xml...?> (XML), 241

<~ operator, 308–309, 312

<% operator, 268

<< operator, 6

<= operator, 144

= (equal sign)

in identifiers, 142

operator, 49, 144

precedence of, 145

=:= operator, 269, 333

== operator, 144

for collections, 173

for reference types, 103

===, =/= operators, 144

=> operator, 269

for functions, 166, 287–288

for self types, 134–135, 288–289, 295

in case clauses, 198

> (right angle bracket)

in identifiers, 142

operator, 145

-> operator, 48

precedence of, 145

>: operator, 267, 269

>= operator, 144

>> operator

arithmetic, 6

in parsers, 312

| (vertical bar)

in case clauses, 198

in identifiers, 142

operator:

arithmetic, 6

for sets, 177–178

in parsers, 304–319

precedence of, 145

√ (square root), 142

80 bit extended precision, 219

A
abstract keyword, 97, 123, 127

abstract types, 291–293, 315

bounds for, 293

made concrete in subclass, 283, 291

naming, 296

vs. type parameters, 292

accept combinator, 313

ActionEvent class (Java), 293–294

actionPerformed method (listeners), 293

addString method

of Iterable, 181

of Iterator, 189

aggregate method

of Iterable, 180

of Iterator, 189

of parallel collections, 194

aliases

for this, 68, 289

for types, 174, 283

andThen method (Future), 256

Annotation trait, 218

annotations, 215–226, 287

arguments of, 217–218

for compiler optimizations, 222–226

for errors and warnings, 226

implementing, 218–219

in Java, 216–221

meta-annotations for, 219

order of, 216

anonymous functions, 25, 159–160, 167

Any class, 100, 103

asInstanceOf, isInstanceOf methods, 93, 100

AnyRef class, 100, 112

== method, 103

eq, equals methods, 102

notify, notifyAll, synchronized, wait methods, 100

Index340

AnyVal class, 100, 104

Apache Commons Resolver project, 240

App trait, 75

append, appendAll methods, 41

Application trait, 75

application objects, 74

apply method, 9–10, 73–74, 146–148

of Array, 10, 74

of BigInt, 10

of Buffer, CanBuildFrom, 335

of case classes, 205

of collections, 173

of Future, 253, 260

of PartialFunction, 211

of Process, 115

of StringOps, 9
applyDynamic method (Dynamic), 150–152

applyDynamicNamed method (Dynamic), 151–152

args property, 75

array buffers, 36–37

adding/removing elements of, 36–37

appending collections to, 36

converting to arrays, 37

displaying contents of, 40

empty, 36

largest/smallest elements in, 40

sorting, 40

transforming, 38–40

traversing, 37–38

Array class, 35–36, 269

apply method, 74

corresponds method, 165, 271

mkString, quickSort methods, 40

ofDim method, 42

toBuffer method, 37

Array companion object, 10, 202

ArrayBuffer class, 36–37, 172, 335

max, min, mkString methods, 40

mutable, 175

serializing, 113

sorted, sortWith methods, 40

subclasses of, 42

toArray method, 37

ArrayList class (Java), 36, 43, 173

arrays, 35–44

converting to array buffers, 37

displaying contents of, 40

fixed-length, 35–36

function call syntax for, 146

generic, 269

interoperating with Java, 43–44

invariant, 272

largest/smallest elements in, 40

multidimensional, 42–43, 74

pattern matching for, 201

ragged, 43

sorting, 40

transforming, 38–40

traversing, 37–38

vs. lists, 172

Arrays class (Java), 43

ArrayStoreException, 273

asAttrMap method, 233

ASCII characters, 142

asInstanceOf method (Any), 93, 100

asJavaXxx, asScalaXxx functions (JavaConversions),
192

assert method (Predef), 225

AssertionError, 225

assignments, 20–21, 144

no chaining of, 21

precedence of, 145

right-associative, 146, 179

value of, 20–21

Async library, 254

Atom class, 233–235

Attribute trait, 238

attributes (XML), 232–233

atoms in, 234

entity references in, 232, 234

expressions in, 234–235

in pattern matching, 238

iterating over, 233

modifying, 238

namespace of, 243

no wildcard notation for, 236

attributes property, 232

automatic conversions. See implicit conversions

Await object, 250

B
backtracking, 313–314

balanced trees, 50

bash shell, 114

bean properties, 61–62

@BeanDescription, @BeanDisplayName, @BeanInfo,
@BeanInfoSkip annotations, 221

@beanGetter, @beanSetter annotations, 219

@BeanProperty annotation, 61–62, 216, 221

generated methods for, 65

BigDecimal class, 6–7

BigInt class, 6–9

/% method, 7, 203

341Index

BigInt class (continued)

pow method, 153

unary_- method, 14

BigInt companion object

apply method, 10

probablePrime method, 9

binary files, reading, 112

binary functions, 162, 184

binary operators, 143–146

BitSet class, 177

blocking keyword, 260

blocking calls, 250

blocks, 20–21

BNF (Backus-Naur Form), 304

Boolean type, 5

reading, 22

@BooleanBeanProperty annotation, 221

Breaks object, break method, 23

Buffer class, 298, 335

bufferAsJavaList function (JavaConversions), 192

buffered method (Source), 110, 188

BufferedInputStream class (Java), 138

BufferedIterator trait, 188

Builder trait, 335

Byte type, 5

arrays of, 112

reading, 22

C
C++ programming language

?: operator in, 18

arrays in, 36

assignments in, 21

construction order in, 100

expressions in, 17

functions in, 25

implicit conversions in, 324

linked lists in, 176

loops in, 22, 38

methods in, 72, 94, 219

multiple inheritance in, 121–122

namespaces in, 80

operators in, 145

protected fields in, 94

reading files in, 110

singleton objects in, 72

statements in, 17–20

switch in, 198–199, 223

virtual base classes in, 122

void in, 18, 20, 102

cached thread pool, 260

cake pattern, 290

callbacks, 251–252

call-by-name parameters, 167

case clause, 198–212

_ in, 199, 237

: in, 200–201

:: in, 201, 206

`...` in, 200

~ in, 206

() in, 201

{_*} in, 237

@, +: in, 207

=>, | in, 198

catch-all pattern for, 198–199

enclosed in braces, 211–212, 252

followed by variable, 199–200

infix notation in, 206–207

variables in, 199–200

XML literals in, 237

case classes, 205–211

applicability of, 208–209

declaring, 205

default methods of, 148, 205,

208–209

extending other case classes, 209

in parsers, 306, 309

modifying properties in, 205

sealed, 209

with variable fields, 208

case objects, 205

casts, 93–94

CatalogResolver class (Java), 240

catch statement, 30–31

as a partial function, 212

CDATA markup, 235, 240

ceil method (scala.math), 158

chaining

assignments, 21

auxiliary constructors, 65

method calls, 42

packages, 82–83

chainl1 method (Parsers), 312

ChangeEvent class (Java), 293

Char type, 5, 22, 315

character references, 232

character sets, 111

characters

common, in two strings, 6

in identifiers, 142, 317

reading, 22, 110

sequences of, 14

uppercase, 14

Index342

circular dependencies, 29, 135

class keyword, 55, 287

ClassCastException, 225

classes, 10, 55–68, 287

abstract, 97, 125

abstract types in, 291

and primitive types, 5

annotated, 216

combined with primary constructor, 66

companion objects to, 9, 67, 72–73, 146, 281,

325

concrete, 130

definitions of, 56

executing statements in, 64

using traits in, 125

enriching, 324–325

equality checks in, 102

extending, 73, 91–92

Java classes, 95

multiple traits, 124

only one superclass, 121, 129

final, 92

generic, 266, 270

granting access to, 61–62

immutable, 7, 208

implementing, 265

importing members of, 76, 85

inheritance hierarchy of, 100–102

inlined, 103–105

interoperating with Java, 57

linearization of, 131

mutable, 208

names of, 142

nested, 66–68, 281

properties of, 57, 59

recompiling, 129

serializable, 113, 220

type aliases in, 283

visibility of, 56

vs. traits, 132

classOf method (scala.Predef), 93

ClassTag trait, 269, 299

Cloneable interface (Java), 124, 220

@cloneable annotation, 220

close method (Source), 110

closures, 162–163

collect method

of Future, 256

of GenTraversable, 211

of Iterable, 180

of Iterator, 189

with partial functions, 183

collectionAsScalaIterable function (JavaConversions),
192

collections, 171–194

adding/removing elements of, 178–179

appending to array buffers, 36

applying functions to all elements of, 161,

180–183

combining, 187–188

companion objects of, 173, 335

constructing in a loop, 24, 38

converting to specific type, 181

filtering, 180

folding, 180, 184–186

hierarchy of, 41, 172–173

immutable, 173–174

instances of, 173

interoperating with Java, 191–192

iterators for, 188–189

methods for, 180–182

mutable, 173–174, 179, 191

ordered/unordered, 172, 179

parallel implementations of, 193–194

reducing, 180, 184

scanning, 180, 186

serializing, 113

sorted, 172

traits for, 172–173

traversing, 23, 38, 172, 222–223

unevaluated, 190

unordered, 179

com.sun.org.apache.xml.internal.resolver.tools
package, 240

combinations method (Seq), 182

combinators, 311–313

command-line arguments, 75

comma-separated lists, 311

comments

in lexical analysis, 304

in XML, 231

parsing, 240, 316–317

companion objects, 9, 67, 72–73, 281, 328

apply method in, 146

implicits in, 325

of collections, 173, 335

Comparable interface (Java), 42, 267–268, 329

Comparator interface (Java), 226

compareTo method, 267

compiler

-future flag, 268

implicits in, 327, 334

internal types in, 288

-language:existentials flag, 287

343Index

compiler (continued)

-language:higherKinds flag, 299

-language:implicitConversions flag, 324

-language:postfixOps flag, 144

nested type expressions in, 283

optimizations in, 222–226

Scala annotations in, 216

-Xcheckinit flag, 99

-Xprint flag, 327

compiler plugin, 216

compile-time errors, 22

CompletableFuture class (Java), 260

CompletionStage interface (Java), 249

Component class (Java), 137

compound types, 284–287

comprehensions, 24

concurrency, 193

console

input from, 22, 111

printing to, 21

constants. See values

ConstructingParser class, 240–241

constructors

auxiliary, 62–63, 94

chaining, 65

eliminating, 64

executing, 72

order of, 98–100, 130–132

parameterless, 64, 132

parameters of, 62–66

annotated, 218–219

implicit, 269

primary, 62–66, 94

annotated, 216

default parameters in, 64

private, 66

superclass, 94–95

vals in, 99

Container trait, 298

Container class (Java), 137

contains method, 48

of BitSet, 177

of Iterator, 189

of Seq, 181

containsSlice method, 42

of Iterator, 189

of Seq, 181

of StringOps, 14

context bounds, 268–269, 329–330

control abstractions, 166–167

copy method, 238

of case classes, 205, 208–209

copyToArray method, 42

of Iterable, 181

of Iterator, 189

copyToBuffer method

of Iterable, 181

of Iterator, 189

corresponds method (Array), 165, 271

count method, 41

of Iterable, 180

of Iterator, 189

of StringOps, 14

Curry, Haskell Brooks, 164

currying, 164–165

D
debugging

implicit conversions, 326

reading from strings for, 111

reporting types for, 41

decrements, 7

def keyword, 25, 159, 165

abstract, 95

in parsers, 314

overriding, 95–96

parameterless, 95

return value of, 314

default statement, 198

definitions, 24–25

DelayedInit trait, 75

Delimiters type, 328

dependency injections, 289–291

@deprecated annotation, 219, 226

@deprecatedInheritance, @deprecatedOverriding
annotations, 226

@deprecatedName annotation, 218, 226

destructuring

of lists, 207

of tuples, 202

diamond inheritance problem, 122–123

dictionaryAsScalaMap function (JavaConversions), 192

diff method

of Iterator, 189

of Seq, 182

of sets, 177

directories

and packages, 80

naming, 15

traversing, 112–113

division, quotient and remainder of, 7, 203

do loop, 22

docElem method (ConstructingParser), 240

Index344

DocType class, 241

domain-specific languages, 141, 303

Double type, 5

reading, 22

DoubleLinkedList class (deprecated), 176

drop, dropWhile methods

of Iterable, 180

of Iterator, 189

dropRight method (Iterable), 180

DTDs (Document Type Definitions), 239–241

duck typing, 284

Duration object, 250

Dynamic trait, 150

dynamic invocation, 150–153

dynamically typed languages, 284

E
early definitions, 99, 132–133

EBNF (Extended Backus-Naur Form), 305–306

Eclipse-based Scala IDE, 2

Eiffel programming language, 58

Either type, 300

Elem type, 230, 315

prefix, scope values, 238, 243

elements (XML), 230

attributes of. See attributes (XML)

child, 237–238

empty, 242

matching, 236

modifying, 238

endsWith method

of Iterator, 189

of Seq, 181

entity references, 231

in attributes, 232, 234

resolving, 241

EntityRef class, 232

Enumeration class, 75–77

enumerationAsScalaIterator function (JavaConversions),
192

enumerations, 75–77

simulating, 209

values of, 76–77

eq method (AnyRef), 102

equals method

of AnyRef, 102–103

of case classes, 205, 208–209

of value classes, 104

overriding, 103

parameter type of, 103

Equiv type, 332

err combinator, 313

Error class, 315

error messages

explicit, 319

for implicit conversions, 326, 334

generated with annotations, 226

suppressed, 226

type projections in, 283

with override modifier, 92

escape hatch, 142

evidence objects, 333

Exception trait, 288

exceptions, 29–31

catching, 30

checked, in Java, 29, 220

execution contexts, 260

ExecutionContext trait, 248

Executor interface (Java), 248

Executors, 260

existential types, 287

exists method

of Iterable, 180

of Iterator, 189

expressions

annotated, 217

conditional, 18–19

traversing values of, 23

type of, 18

vs. statements, 17

extends keyword, 91, 99, 123–124

extractors, 118, 147–149, 202–203

F
f prefix, in formatted strings, 21–22, 112

failed method

of Future object, 258

of Future trait, 255–256

failure method (Promise), 259

Failure class, 251, 315

failure combinator, 313

fallbackTo method (Future), 255

fall-through problem, 198

family polymorphism, 293–296

@field annotation, 219

fields

abstract, 97–98, 130, 132

accessing uninitialized, 99

annotated, 216

comparing, 208

concrete, 98, 128–129

copying, 208

345Index

fields (continued)

for primary constructor parameters, 62, 65

getter/setter methods for, 57, 61–62, 65

hash codes of, 103, 208

immutable, 65

object-private, 60–61, 65

overriding, 91, 95–96, 130, 132

printing, 208

private, private final, 59

protected, 94

public, 56

static, 71

transient, volatile, 219

FileInputStream class (Java), 112

files

and packages, 80

appending, 115

binary, 112

naming, 15

processing, 109–115

reading, 109–111

redirecting input/output from/to, 115

saving, 241–242

writing, 112

Files class (Java), 112–113

filter method, 39, 162, 210

of Future, 256

of Iterable, 180

of Iterator, 189

final keyword, 59, 92

finally statement, 30–31

find, firstCompletedOf methods (Future object),

257–258

findAllIn, findFirstIn methods, 116

flatMap method, 182–183

of Future, 254

of Iterable, 180

of Iterator, 189

of Try, 255

Float type, 5

reading, 22

floating-point calculations, 219

fluent interfaces, 280–281

fold method

of Iterable, 180

of Iterator, 189

of parallel collections, 194

foldLeft method, 168, 184–185

of Future object, 257

of Iterable, 180, 273

of Iterator, 189

of parallel collections, 194

foldRight method, 185

of Iterable, 180

of Iterator, 189

of parallel collections, 194

for loop, 22–25

constructing collections in, 24, 38

enhanced (Java), 38

for arrays, 37–40

for futures, 254

for maps, 50

for regex groups, 118

guards in, 204, 254

pattern matching in, 204

range-based (C++), 38

regular expressions in, 116

with Option type, 210

forall method

of Iterable, 180

of Iterator, 189

force method, 190

foreach method, 162, 183, 210

of Future, 255–256

of Iterable, 180

of Iterator, 189

fork-join pool, 260

formatted strings, 21–22, 112

Fortran programming language, 153

Fraction class, 146–147, 324–327

Fraction companion object, 325

Fractional type, 332

fragile base class problem, 92

French delimiters, 328

fromString, fromURL methods (Source), 111

fromTry method (Future), 258

functional programming languages, 157

functions, 25–26, 157–167, 287

anonymous, 25, 159–160, 167

as method parameters, 14, 159

binary, 162, 184

calling, 8–9, 158

converting to Java interfaces, 164

curried, 164–167, 328

exiting immediately, 25

for all elements of a collection, 161

from methods, 288

generic, 266, 269

higher-order, 160–162

identity, 333

implementing, 265

left-recursive, 310

mapping, 182–183

names of, 14, 142, 324

Index346

nested, 23

parameterless, 166–167

parameters of, 25

call-by-name, 167

default, 26

named, 26

other functions as, 160

type deduction in, 160

variable, 26–27

partial, 183, 211–212, 313

passing to another function, 159–160, 163

recursive, 25–27

return type of, 5, 25, 28

return value of, 166–167

scope of, 163

single-argument, 161, 272

storing in variables, 157–159

syntax of, 146–147

variance of, 272

vs. variables, in parsers, 313

future method (Promise), 259

Future companion object, 256–258

apply method, 253, 260

find, firstCompletedOf methods, 257–258

foldLeft, reduceLeft, traverse methods, 257

fromTry, never, successful, unit methods, 258

Future interface (Java), 249

Future trait, 248–260

andThen, collect methods, 256

failed, fallbackTo method, 255–256

filter method, 256

flatMap method, 254

foreach method, 255–256

isCompleted method, 250

map method, 253–254

onComplete, onSuccess, onFailure methods, 252

ready, result methods, 250

recover, recoverWith methods, 255–256

transform, transformWith methods, 256

value method, 250

zip, zipWith methods, 255

futures

blocking waits for, 251

chaining, 253

delaying creation of, 254

execution context of, 260

tasks of:

composing, 252–255

failing, 250

running, 248–249

transformations of, 255–256

vs. promises, 259

G
generators, 24–25

generic arrays, 269

generic classes, 266

conditionally used methods in, 270

generic functions, 266, 269

generic methods, 266

generic types

erased, in JVM, 269

variance of, 271–275

GenTraversable trait, 211

GenXxx sequences, 14

get method (Try), 251

get, getOrElse methods (Map), 48, 210, 232

getLines method (Source), 109, 190

@getter annotation, 219

getXxx methods, 57, 61, 221

grammars, 304–305

left-recursive, 314

Group type, 235

groupBy method, 183

grouped method

of Iterable, 181, 188

of Iterator, 189

guard combinator, 313

guards, 24–25, 38, 199

for pattern matching, 238

in for statements, 204, 254

variables in, 199

H
hash codes, 100, 103

hash sets, 177

hash tables, 47, 50

hashCode method, 177

of AnyRef, 103

of case classes, 205, 208–209

of value classes, 104

overriding, 103

Hashing type, 332

Haskell programming language, 26, 331

hasNext method

of Iterable, 188

of Iterator, 127

head method, 110

of Iterable, 180, 188

of lists, 175–176

headOption method (Iterable), 180

Hindley-Milner algorithm, 26

HTTP (Hypertext Transfer Protocol), 111, 303

347Index

I
id method, 76

@Id annotation, 219

ident method, 317

Identifier type, 317

identifiers, 142, 317

identity functions, 333

IEEE double values, 219

if expression, in loop generators, 24, 38

if/else expression, 18–19, 30

IllegalStateException, 259

immutability, 7

implements keyword, 123

implicit conversions, 42–43, 141, 323–336

ambiguous or multiple, 327

debugging, 326

for parsers, 316

for strings to ProcessBuilder objects, 114

for type parameters, 268

importing, 325–326, 330

naming, 324

rules for, 326–327

unwanted, 191, 324, 326

uses of, 324–325

implicit evidence parameter, 270

implicit keyword, 324, 328–329

implicit parameters, 9, 14, 268, 299, 328–336

not available, 226, 334

of common types, 328

implicit values, 268–269

@implicitAmbiguous annotation, 226

implicitly method (Predef), 330, 333

@implicitNotFound annotation, 226, 334

:implicits in REPL, 326

import statement, 76, 80, 85–87

implicit, 86–87

location of, 85

overriding, 86

selectors for, 86

wildcards in, 8, 85–86

increments, 7

IndexedSeq companion object, 336

IndexedSeq trait, 172, 174–175, 336

indexXxx methods

of Iterator, 189

of Seq, 181

infix notation

for operators, 143–145

precedence of, 285

for types, 285–287

in case clauses, 206–207

in math, 285

with anonymous functions, 159

inheritance, 91–105

diamond, 122–123

hierarchy of, 100–102

multiple, 121–123

init method (Iterable), 180

@inline annotation, 224

inlining, 224

InputStream class (Java), 239

Int type, 5, 268, 270

immutability of, 7

no null value in, 100

reading, 22

int2Fraction method, 325

Integer class (Java), 225

interfaces

fluent, 280–281

rich, 127

interpolated strings. See formatted strings

InterruptedException, 251

intersect method

of Iterator, 189

of Seq, 182

of sets, 177

of StringOps, 6
intersection types. See compound types

intertwining classes and constructors, 94–95

into combinator, 311–312

isCompleted method

of Future, 250

of Promise, 259

isDefinedAt method (PartialFunction), 211

isEmpty method

of Iterable, 180

of Iterator, 189

isInstanceOf method (Any), 93, 100, 200

isSuccess, isFailure methods (Try), 251

IsTraversableXxx type classes, 332

istream::peek function (C++), 110

itemStateChanged method (listeners), 293

Iterable trait, 41, 172, 296–299

methods of, 180–182, 188, 273

iterableAsScalaIterable function (JavaConversions),
192

iterator method (collections), 188

Iterator trait, 127, 172

methods of, 189

iterators, 110, 188–189

constructing streams from, 190

fragility of, 189

turning into arrays, 116

Index348

J
Java programming language

?: operator in, 18

annotations in, 216–221

arrays in, 36, 43, 173, 273

assertions in, 225

assignments in, 21

checked exceptions in, 29, 220

classes in, 91–92

hierarchy of, 67

serializable, 113

closures in, 163

collections in, 172

completable futures in, 260

construction order in, 100

dependencies in, 290

event handling in, 293

expressions in, 17

fields in:

protected, 94

public, 56

functional (SAM) interfaces in, 164

futures in, 249

generic types in, 275

hashCode method for each object in, 177

identifiers in, 142

interfaces in, 121–124, 135, 137

interoperating with Scala:

arrays, 43–44

classes, 57, 95, 216

collections, 191–192

maps, 50–51, 204

methods, 221

traits, 135, 137

lambda expressions in, 164

linked lists in, 173, 176

loops in, 22, 38

maps in, 173

methods in, 72, 92, 94

abstract, 97

overriding, 99

static, 9, 25

with variable arguments, 27

missing values in, 270

modifiers in, 219

no multiple inheritance in, 121

no operator overloading in, 8

no variance in, 226

null value in, 100

operators in, 145

packages in, 80, 82, 84

primitive types in, 36, 100

reading files in, 110–112

singleton objects in, 72

statements in, 17–20

superclass constructors in, 95

switch in, 223

synchronized in, 100

toString method in, 41

traversing directories in, 112–113

type checks and casts in, 93

void in, 18, 20, 102

wildcards in, 85, 275, 286

Java AWT library, 137

Java EE (Java Platform, Enterprise Edition),

216

java.awt.Component, java.awt.Container classes,

137

java.io.BufferedInputStream class, 138

java.io.FileInputStream class, 112

java.io.InputStream class, 239

java.io.PrintWriter class, 112

java.io.Reader class, 239

java.io.Serializable interface, 124

java.io.Writer class, 241

java.lang package, 86–87

java.lang.Cloneable interface, 124, 220

java.lang.Comparable interface, 42

java.lang.Integer class, 225

java.lang.Object class, 100

java.lang.ProcessBuilder class, 44

java.lang.String class, 6, 36

java.lang.Throwable class, 29

java.math.BigXxx classes, 6

java.nio.file.Files class, 112–113

java.rmi.Remote interface, 220

java.util package, 192

java.util.ArrayList class, 36, 43, 173

java.util.Arrays class, 43

java.util.Comparator class, 226

java.util.concurrent.CompletableFuture class, 260

java.util.concurrent.CompletionStage interface,

249

java.util.concurrent.Executor interface, 248

java.util.concurrent.Executors class, 260

java.util.concurrent.Future interface, 249

java.util.LinkedList class, 173

java.util.List interface, 43, 173

java.util.Properties class, 51, 204

java.util.RandomAccess interface, 173

java.util.Scanner class, 53, 111

JavaBeans, 61–62, 221

property change listeners in, 137

349Index

JavaConversions class, 43, 51, 191–192

Javadoc, 10

javap command, 58

JavaScript, 235

closures in, 163

duck typing in, 284

translating from Scala, 10

JavaTokenParsers trait, 316

JButton, JComponent classes (Swing), 137

JDK (Java Development Kit), source code for,

212

JSON (JavaScript Object Notation), 303

jump tables, 223

JUnit framework, 216–217

JVM (Java Virtual Machine)

arrays in, 36

classes in, 129

generic types in, 269

inlining in, 224

stack size of, 222

transient/volatile fields in, 219

K
Kernighan & Ritchie brace style, 20

keySet method (Map), 50

Keyword type, 317

L
last, lastOption methods (Iterable), 180

lastIndexOf, lastIndexOfSlice methods

of Iterator, 189

of Seq, 181

lazy keyword, 28–29, 133

length method

of Iterable, 180

of Iterator, 189

lexical analysis, 304

li element (XML), 233–234

lines

iterating over, 110

reading, 109

linked hash sets, 177

LinkedHashMap class, 50

LinkedList class (deprecated), 176

LinkedList class (Java), 173

List class, 296, 306

immutable, 174

implemented with case classes, 208

List interface (Java), 43, 173

list method (java.nio.file.Files), 112

ListBuffer class, 175

lists, 175–176

adding/removing elements of, 178–179

constructing, 146, 175

destructuring, 176, 207

empty, 101

heterogeneous, 213

immutable, 189, 274

linked, 172

pattern matching for, 201–202, 206

traversing, 176

vs. arrays, 172

literals. See XML literals

loadFile method (XML), 239

log combinator, 311, 313

log messages

adding timestamp to, 125

printing, 313

truncating, 125, 130

types of, 127

LoggedException trait, 135, 288–289

Logger trait, 128

Long type, 5

reading, 22

loops, 22–25

breaking out of, 23

for collections, 23

variables within, 24

vs. folding, 186

M
main method, 74

makeURL function, 234

ManagedException trait, 289

map method, 39, 161, 210

of Future, 253–254

of Iterable, 180–184, 297–298

of Iterator, 189

of Try, 255

Map trait, 48, 172

get, getOrElse methods, 48, 210, 232

immutable, 174

keySet, values methods, 50

mapAsXxxMap functions (JavaConversions), 51,

192

maps, 47–52

blank, 48

constructing, 48

from collection of pairs, 52

function call syntax for, 146

interoperating with Java, 50–51

Index350

iterating over, 50

keys of:

checking, 48

removing, 49

visiting in insertion order, 50

mutable/immutable, 48–49, 173

reversing, 50

sorted, 50

traversing, 204

updating values of, 49

values of, 48

match expression, 198–210, 224, 271

annotated, 223

processing Try instances with, 251

Match class, 117

MatchError, 198

Math class, 8

mathematical functions, 8, 14

max method, 42

of ArrayBuffer, 40

of Iterable, 180

of Iterator, 189

maximum munch rule, 317

MessageFormat.format method (Java), 27

MetaData type, 232–233, 238

method types (in compiler), 288

methods

abstract, 95–98, 123, 127, 135

abundance of, 10, 14

accessor, 56

annotated, 216

as arithmetic operators, 6

calling, 3, 5, 8–9, 56–57, 59, 126

chained, 280

clashes of, in sub- and superclasses,

92

co-/contravariant, 333

curried, 165, 271

declaring, 56

executed lazily, 189

final, 92, 103, 223

for primary constructor parameters,

65

generic, 266

getter/setter, 56–60, 98, 216, 221

inlining, 224

modifiers for, 84

mutator, 56

names of, 7

misspelled, 92

overriding, 91–93, 95–96, 127

parallelized, 193

parameterless, 8, 56, 95

parameters of, 266, 273, 280

implicit, 14, 268

using functions for, 14, 159

wrong type, 92

private, 59, 223

protected, 94

public, 57

return type of, 273, 280

return value of, 266

static, 71

turning into functions, 158, 288

used under certain conditions, 270

variable-argument, 27, 221

with two parameters, 7

Meyer, Bertrand, 58

min method

of ArrayBuffer, 40

of Iterable, 180

of Iterator, 189

of scala.math, 8
mkString method

of Array, ArrayBuffer, 40

of Iterable, 181

of Iterator, 189

of Source, 110–111

ML programming language, 26

mulBy function, 160, 163

multiple inheritance, 121–123

MutableList class (deprecated), 176

mutableXxxAsJavaXxx functions (JavaConversions),
192

N
NamespaceBinding class, 242

namespaces, 242–243

@native annotation, 219

negation operator, 14

never method (Future), 258

new keyword, 66–67

and nested expressions, 74

constructing objects without, 146

omitting, 205, 207–208

newline character

in long statements, 20

in printed values, 21

inside loops, 25

next method

of Iterable, 188

of Iterator, 127

Nil list, 101, 175–176, 226

351Index

node sequences, 230

binding variables to, 237

building programmatically, 231

descendants of, 236

grouping, 235

immutability of, 232, 238

in embedded blocks, 234

traversing, 231

turning into strings, 232

Node type, 230–232

NodeBuffer class, 231–232

NodeSeq type, 230–232

XPath-like expressions in, 235–236

@noinline annotation, 224

None object, 210, 306–307

nonterminal symbols, 305

NoSuchElementException, 254

not combinator, 313

Nothing type, 30, 100, 271, 274

notify, notifyAll methods (AnyRef), 100

NotImplementedError, 101

@NotNull annotation, 218

Null type, 100, 238

null value, 100, 270

NumberFormatException, 111, 251

numbers

average value of, 332

classes for, 14

converting:

between numeric types, 6, 10

to arrays, 111

greatest common divisor of, 153

in identifiers, 317

invoking methods on, 5

parsing, 312, 317

random, 9

ranges of, 14

reading, 22, 111

sums of, 40

Numeric type, 331

numericLit method, NumericLit type, 317

O
Object class, 100

Object class (Java), 100

object keyword, 71–77, 281

objects, 71–77

adding traits to, 125

cloneable, 220

companion, 9, 67, 72–73, 146, 173, 281, 325,

328, 335

compound, 208

constructing, 10, 56, 72, 125

default methods for, 177

equality of, 102–103

extending class or trait, 73

extracting values from, 202

importing members of, 76, 85

nested, 207

nested classes in, 66–68, 281

no type parameters for, 274

of a given class, testing for, 93–94

pattern matching for, 200

remote, 220

scope of, 282

serializing, 113, 284

type aliases in, 283

variance of, 272

ofDim method (Array), 42

onComplete, onSuccess, onFailure methods (Future),
252

operators, 141–149

arithmetic, 6–8

assignment, 144–146

associativity of, 145, 194

binary, 143–146

for adding/removing elements, 178–179

infix, 143, 145

overloading, 8

parsing, 317

postfix, 143–145

precedence of, 144–145, 285, 307

unary, 143–144

opt method (Parsers), 305–306

optimization, 222–226

Option class, 48, 116, 147, 149, 180, 210, 233, 235,

306–307

orNull method, 270

using with for, 210

Ordered trait, 40, 42, 329–330

Ordering type, 42, 329–332

OSGi (Open Services Gateway initiative

framework), 290

OutOfMemoryError, 190

override keyword, 92–93, 95–96, 123, 127

omitted, 97–98

@Overrides annotation, 92

P
package objects, 8, 83–84

packages, 80–87

adding items to, 80

Index352

chained, 82–83

defined in multiple files, 80

importing, 8, 85–87

always, 86–87

selected members of, 86

modifiers for, 84

naming, 82, 87

nested, 81–82

scope of, 282

top-of-file notation for, 83

packrat parsers, 314–315

PackratParsers trait, 314

PackratReader class, 315

padTo method

of Iterator, 189

of Seq, 182

Pair class, 275

par method (parallel collections), 193

parallel implementations, 193

@param annotation, 219

parameters

annotated, 216

curried, 271

deprecated, 226

implicit, 9, 14, 299

named, 205

ParMap trait, 193

parse method, 306

parse trees, 308–309

parseAll method, 306, 313, 315, 318–319

ParSeq trait, 193

parsers, 303–319

backtracking in, 313–314

combining operations in, 305–307

entity map of, 241

error handling in, 319

implicit conversions for, 316

numbers in, 312

output of, 307–308

packrat, 314–315

regex, 316, 319

skipping comments in, 316

strings in, 312

whitespace in, 316

Parsers trait, 305, 315–319

ParSet trait, 193

partial functions, 183, 211–212

PartialFunction class, 211–212

partition method

of Iterable, 180

of Iterator, 189

of StringOps, 52

Pascal programming language, 153

paths, 282–283

pattern matching, 197–211

and +: operator, 179

by type, 200–201

classes for. See case classes

extractors in, 147

failed, 147

for arrays, 201

for lists, 176, 201–202, 206

for maps, 50

for objects, 200

for tuples, 52, 201–202

guards in, 199, 238

in for expressions, 204

in variable declarations, 203–204

in XML, 237–238

jump tables for, 223

not exhaustive, 226

of nested structures, 207

regular expressions in, 203

variables in, 199–200

vs. type checks and casts, 93–94

with extractors, 202

with Option type, 210

with partial functions, 211–212

PCData type, 235

permutations method

of Iterator, 189

of Seq, 182

phrase combinator, 313

piping, 114

Play web framework, 249

Point class, 332

polymorphism, 208

Positional trait, 313, 319

positioned combinator, 313, 319

postfix operators, 143–145

in parsers, 308

pow method (scala.math), 8, 153

Predef object

always imported, 86–87, 93, 174

assert method, 225

classOf method, 93

implicitly method, 330, 333

implicits in, 329–333

prefixedKey method, 243

prefixLength method

of Iterator, 189

of Seq, 181

PrettyPrinter class, 242

primitive types, 5, 36, 225

353Index

print function, 21, 111

printf function, 21, 112

println function, 21

PrintStream.printf method (Java), 27

PrintWriter class (Java), 112

PriorityQueue class, 175

private keyword, 57–68, 84

probablePrime method (BigInt), 9
procedures, 28

process control, 114–115

Process object, 115

ProcessBuilder class (Java), 44

constructing, 115

implicit conversions to, 114

processing instructions, 231

product method

of Iterable, 180

of Iterator, 189

programs

concurrent, 193

displaying elapsed time for, 75

implicit imports in, 86–87

piping, 114

readability of, 8

self-documenting, 296

Promise trait, 258–260

promises, 258–260

properties, 57

in Java. See bean properties

read-only, 59

write-only (not possible), 60

Properties class (Java), 51, 204

propertiesAsScalaMap function (JavaConversions), 51,

192

propertiesAsScalaMap method (JavaConversions), 204

property change listeners, 137

protected keyword, 84, 94

public keyword, 56, 84

PushbackInputStreamReader class (Java), 110

Python programming languages, closures in,

163

Q
Queue class, 174–175

quickSort method (Array), 40

R
r method (String), 116–117

Random object, 9

RandomAccess interface (Java), 173

Range class, 5, 14, 297–298, 336

immutable, 174–175

traversing, 23

raw prefix, in formatted strings, 22

raw string syntax, 116

readBoolean, readByte, readChar, readFloat, readLine,
readShort methods (scala.io.StdIn), 22

readDouble, readInt, readLong methods

(scala.io.StdIn), 22, 111

Reader class (Java), 239, 315

ready, result methods (Await), 250

recover, recoverWith methods (Future), 255–256

recursions, 174

for lists, 176

left, 310–311

tail, 223

reduce method

of Iterable, 180

of Iterator, 189

of parallel collections, 193

reduceLeft method, 162, 184

of Future object, 257

of Iterable, 180

of Iterator, 189

of parallel collections, 193

reduceRight method, 184

of Iterable, 180

of Iterator, 189

of parallel collections, 193

reference types

== operator for, 103

assigning null to, 100

reflective calls, 284

Regex class, 116–117

replaceXxxIn methods, 116, 211

RegexParsers trait, 305, 315–316, 319

regular expressions, 116–117

for extractors, 203

grouping, 117–118

in parsers, 316

matching tokens against, 305

raw string syntax in, 116

return value of, 306

Remote interface (Java), 220

@remote annotation, 220

rep method (Parsers), 305–306, 311–312

REPL (read-eval-print loop), 3–4

implicits in, 326, 333

nearsightedness of, 19

paste mode in, 19, 73

types in, 158, 283

replaceXxxIn methods (Regex), 116, 211

Index354

repXxx methods (Parsers), 312

result method, 223

return keyword, 25, 167

reverse method

of Iterator, 189

of Seq, 182

RewriteRule class, 239

rich interfaces, 127

RichChar class, 6

RichDouble class, 6, 14

RichFile class, 325

RichInt class, 6, 14, 22, 268

root prefix, in package names, 82

Ruby programming language

closures in, 163

duck typing in, 284

RuleTransformer class, 239

S
s prefix, in formatted strings, 22

SAM (single abstract method) conversions, 163

save method (XML), 241

SAX parser, 239

scala package, always imported, 82, 86–87, 113,

174

Scala programming language

embedded languages in, 141, 303

interoperating with shell programs, 114

interpreter of, 1–4

older versions of, 75

strongly typed, 150

translating to JavaScript, 10

scala/bin directory, 1

scala. prefix, in package names, 8, 87

scala.collection package, 173, 192

Scala.js project, 10

scala.language.existentials, importing, 287

scala.language.higherKinds, importing, 299

scala.language.implicitConversions, importing,

324

scala.math package, 8, 14

ceil method, 158

scala.sys.process package, 114

scala.util package, 9

scala-ARM library, 31

scalac program. See compiler

Scaladoc, 6, 10–15, 41–42, 221

ScalaObject interface, 100

scanLeft, scanRight methods, 186

Scanner class (Java), 53, 111

sealed keyword, 209

segmentLength method

of Iterator, 189

of Seq, 181

selectDynamic method (Dynamic), 151–152

selectors, for imports, 86

self types, 68, 134–135, 288–295

dependency injections in, 290–291

no automatic inheritance for, 289

structural types in, 135

typesafe, 294

vs. traits with supertypes, 135

Seq trait, 27, 41, 172–175, 235

methods of, 181–182

seq method (parallel collections), 193

Seq[Char] class, 14

Seq[Node] class, 231–232

seqAsJavaList function (JavaConversions), 192

sequences, 14

adding/removing elements of, 179

as function parameters, 27

comparing, 165, 271

extracting values from, 149–150

filtering, 162

integer, 175

mutable/immutable, 174–175

of characters, 14

reversing, 182

sorting, 162, 182

with fast random access, 175

Serializable interface (Java), 124

Serializable trait, 113

serialization, 113

@SerialVersionUID annotation, 113, 220

Set trait, 172

immutable, 174

setAsJavaSet function (JavaConversions), 192

sets, 177

difference, intersection, union operations on,

177–178

elements of, 177–179

@setter annotation, 219

setXxx methods, 57, 61, 221

shadowing rule, 24

shell scripts, 114–115

Short type, 5

reading, 22

singleton objects, 8–9, 71–72, 281

case objects for, 205

singleton types, 280–281, 283, 287

slice, span, splitAt methods

of Iterable, 180

of Iterator, 189

355Index

sliding method

of Iterable, 181, 188

of Iterator, 189

SmallTalk programming language, 60

Some class, 210, 306–307

sortBy method

of Iterator, 189

of Seq, 182

sorted method

of ArrayBuffer, 40

of Iterator, 189

of Seq, 182

of StringOps, 8, 14

sorted sets, 177

SortedMap trait, 50, 172

SortedSet trait, 172

sortWith method, 162

of ArrayBuffer, 40

of Iterator, 189

of Seq, 182

Source object, 109–111

buffered, close, toArray, toBuffer methods, 110

fromString, fromURL methods, 111

getLines method, 109, 190

mkString method, 110–111

@specialized annotation, 225–226

Spring framework, 290

sqrt method (scala.math), 8
src.zip file (JDK), 212

Stack class, 174–175

stack overflow, 222

standard input, 111

StandardTokenParsers class, 317

start symbol, 305–306

startsWith method

of Iterator, 189

of Seq, 181

stateChanged method (listeners), 293

statements

line breaks in, 20

terminating, 19–20

vs. expressions, 17

stdin method, 111

StdIn object, 22, 111

StdLexical trait, 318

StdTokenParsers trait, 315, 318

StdTokens trait, 317

Stream class, 174

streams, 189–190

@strictfp annotation, 219

String class, 116–117

String class (Java), 6, 36

string interpolation, 21

stringLit method, StringLit type, 317

StringOps class, 6, 14, 52

apply method, 9

containsSlice method, 14

sorted method, 8, 14

strings, 6

characters in:

common, 6

uppercase, 14

classes for, 14

converting:

from any objects, 6

to numbers, 10, 111

to ProcessBuilder objects, 114

formatted, 21–22, 112

parsing, 312, 317

sorting, 8

testing for sequences in, 14

traversing, 23

vs. symbols, 226

structural types, 97, 135, 283–284

adding to compound types, 285

subclasses

anonymous, 97

concrete, 98

early definitions in, 99

equality in, 103

implementing abstract methods in, 123

mixing traits into, 288–289

subsetOf method (BitSet), 177

Success class, 251, 315

success combinator, 313

success method (Promise), 259

successful method (Future), 258

sum method

of ArrayBuffer, 40

of Iterable, 180

of Iterator, 189

super keyword, 92–93, 126

super keyword (Java), 95

superclasses, 133–134

abstract fields in, 98

constructing, 94–95

extending, 137

methods of:

abstract, 97

clashing with subclass methods, 92

overriding, 96

no multiple inheritance of, 121, 124, 129

scope of, 282

sealed, 209

Index356

supertypes, 18, 42, 102

Swing toolkit, 137–138

switch statement, 19, 198

@switch annotation, 223–224

symbols, 226

synchronized method (AnyRef), 100

syntactic sugar, 275, 286

T
tab completion, 3

tail method

of Iterable, 180

of lists, 175–176

TailCalls, TailRec objects, 223

@tailrec annotation, 222

take, takeWhile methods

of Iterable, 180

of Iterator, 189

takeRight method (Iterable), 180

@Test annotation, 217

Text class, 233

pattern matching for, 237

text method, 232

this keyword, 42, 62, 65, 134–135, 280, 288–289,

295

aliases for, 68, 289

scope of, 282

with private, 59

with protected, 94

thread pool, 248

threads

assigning tasks to, 248

blocking, 250–251

throw expression, 30

Throwable class (Java), 29

@throws annotation, 220

to method (RichInt), 6, 22, 175

toArray method

of ArrayBuffer, 37

of Iterable, 181

of Iterator, 189

of Source, 110

toBuffer method

of Array, 37

of Source, 110

toChar method, 6

toIndexedSeq, toIterable methods

of Iterable, 181

of Iterator, 189

toInt, toDouble methods, 6, 111

token method (StdLexical), 318

Token type, 315

tokens, 304

discarding, 308–309

matching against regular expressions, 305

Tokens trait, 317

toList, toStream methods

of Iterable, 181

of Iterator, 189

toMap method, 52, 173

of Iterable, 181

of Iterator, 189

toSeq, toSet methods, 173

of Iterable, 181

of Iterator, 189

toString method, 6, 41, 76, 233

of case classes, 205, 208–209

trait keyword, 123, 287

traits, 123–137, 287

abstract types in, 291

adding to objects, 125

construction order of, 126–127, 130–132

dependency injections in, 135, 290–291

extending, 73

classes, 133–134

superclass, 137

fields in:

abstract, 130, 132

concrete, 128–129

for collections, 172–173

for rich interfaces, 127

implementing, 124, 269

layered, 125–126

methods of, 124–126, 135

overriding, 127

unimplemented, 123

mixing into classes, 288–289

no constructor parameters in, 132–133

self types in, 134–135

type parameters in, 266

universal, 104

vs. classes, 132

vs. Java interfaces, 121–124, 135

vs. structural types, 284

trampolining, 223

transform method

of ArrayBuffer, 183

of RewriteRule, 239

transform, transformWith methods (Future), 256

@transient annotation, 219

Traversable, TraversableOnce traits, 41

TraversableLike trait, 334

traverse method (Future), 257

357Index

trimEnd method, 36

Try class, 31, 251

flatMap, map methods, 255

get method, 251

isSuccess, isFailure methods, 251

try statement, 30–31

exceptions in, 167

trySuccess method (Promise), 259

tuples, 47, 51–52, 287

accessing components of, 51

converting to maps, 52

pattern matching for, 201–202

zipping, 52

type classes, 331–333

type constraints, 269–271, 333

type constructors, 296–299

type errors, 150, 273

type inference, 270

type keyword, 280–281, 283, 287

type parameters, 14, 97, 265–275, 287,

328

annotated, 217, 225

context bounds of, 329–330

implicit conversions for, 268

not possible for objects, 274

structural, 283–284

vs. abstract types, 292

type projections, 67, 281–283, 287

in forSome blocks, 286

type variables, bounds for, 266–269

TypeAnnotation trait, 218

types, 5–6, 279–299

abstract, 283, 291–293, 315

aliases for, 174, 283

annotated, 217

anonymous, 98

checking, 93–94

compound, 284–287

converting, 6, 270

dynamic, 150

equality of, 270

existential, 287

generic, 269, 271–275

implementing multiple traits, 269

infix, 285–287

invariant, 272

naming, 296

pattern matching by, 200–201

primitive, 5, 36, 225

self, 134–135, 288–295

structural, 135, 285

subtypes of, 270

supertypes of, 18, 102

wrapper, 6

U
ul element (XML), 233–234

unapply method, 147–150, 202, 206–207

of case classes, 205

unapplySeq method, 149–150, 202

unary operators, 143–144

unary_- method (BigInt), 14

unary_op methods, 143

@unchecked annotation, 218, 226

@uncheckedVariance annotation, 226

Unicode characters, 142

uniform access principle, 58

uniform creation principle, 173

uniform return type principle, 182

union method (sets), 177

Unit class, 28, 100, 102

value of, 18–21

unit method (Future), 258

universal traits, 104

Unparsed type, 235

until method, 175

until statement, 166

update method, 146–147

updateDynamic method (Dynamic), 151–152

URIs (Uniform Resource Identifiers),

242

URLs (Uniform Resource Locators)

loading files from, 239

reading from, 111

redirecting input from, 115

V
val fields, 4

declarations of, 4–5

early definitions of, 99

final, 99

generated methods for, 59, 61–62, 65

in forSome blocks, 286

in parsers, 314

initializing, 5, 20, 28–29

lazy, 28–29, 99, 133, 314

overriding, 95–96, 98

private, 62

scope of, 282

specifying type of, 5

storing functions in, 157–159

value classes, 103–105, 208

Index358

Value method (enumerations), 75–76

value method (Future), 250

valueAtOneQuarter function, 160

values

binding to variables, 207

naming, 200

printing, 21

values method (Map), 50

van der Linden, Peter, 198

var fields, 4

annotated, 216

declarations of, 4–5

extractors in, 147

pattern matching in, 203–204

generated methods for, 61–62, 65

initializing, 5

no path elements in, 282

overriding, 96

private, 62

specifying type of, 5, 266

updating, 49

vs. function calls, in parsers, 313

@varargs annotation, 221

variables

binding to:

node sequences, 237

values, 207

declaring as Java SAM interfaces, 164

in case clauses, 199–200

naming, 142, 200

within loops, 24

variance, 226

Vector class, 174–175

vector type (C++), 36

view bounds, 268

view method, 190–191

void keyword (C++, Java), 18, 20, 102

@volatile annotation, 219

W
wait method (AnyRef), 100

walk method (java.nio.file.Files), 112

walkFileTree method (Java), 112–113

warnings, 226

while loop, 22, 166

whitespace

in lexical analysis, 304

parsing, 240, 316–317

wildcards, 275

for XML elements, 236

in catch statements, 30

in imports, 8, 85–86

in Java, 85, 286

with keyword, 99, 124–125, 284–287

wrapper types, 6

write method (XML), 241

Writer class (Java), 241

X
XHTML (Extensible Hypertext Markup

Language), 235

XhtmlParser class, 241

XML (Extensible Markup Language), 229–243

attributes in, 232–235, 238

character references in, 232

comments in, 231

elements in, 238, 242

entity references in, 231–232, 241

including non-XML text into, 235

indentation in, 242

loading, 239

malformed, 235

namespaces in, 242–243

nodes in, 230–232

processing instructions in, 231

saving, 233, 241–242

self-closing tags in, 242

transforming, 239

XML declarations, 241

XML literals

braces in, 234

defining, 230

embedded expressions in, 233–234

entity references in, 232

in nested Scala code, 233

in pattern matching, 237–238

XPath (XML Path language), 235–236

Y
yield keyword

as Java method, 142

in loops, 24, 38–39

Z
zip method, 52, 181, 187–189

zip, zipWith methods (Future), 255

zipAll, zipWithIndex methods, 187

of Iterable, 181

of Iterator, 189

zipping, 187–188

359Index

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword to the First Edition
	Preface
	About the Author
	5 CLASSES
	5.1 Simple Classes and Parameterless Methods
	5.2 Properties with Getters and Setters
	5.3 Properties with Only Getters
	5.4 Object-Private Fields
	5.5 Bean Properties
	5.6 Auxiliary Constructors
	5.7 The Primary Constructor
	5.8 Nested Classes
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

