
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134437996
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134437996
https://plusone.google.com/share?url=http://www.informit.com/title/9780134437996
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134437996
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134437996/Free-Sample-Chapter

Android™
Database Best

Practices

About the Android
Deep Dive Series

Zigurd Mednieks, Series Editor

The Android Deep Dive Series is for intermediate and expert developers who use
Android Studio and Java, but do not have comprehensive knowledge of Android system-
level programming or deep knowledge of Android APIs. Readers of this series want to
bolster their knowledge of fundamentally important topics.

Each book in the series stands alone and provides expertise, idioms, frameworks, and
engineering approaches. They provide in-depth information, correct patterns and idioms,
and ways of avoiding bugs and other problems. The books also take advantage of new
Android releases, and avoid deprecated parts of the APIs.

About the Series Editor
Zigurd Mednieks is a consultant to leading OEMs, enterprises, and entrepreneurial
ventures creating Android-based systems and software. Previously he was chief archi-
tect at D2 Technologies, a voice-over-IP (VoIP) technology provider, and a founder of
OpenMobile, an Android-compatibility technology company. At D2 he led engineering
and product definition work for products that blended communication and social media
in purpose-built embedded systems and on the Android platform. He is lead author of
Programming Android and Enterprise Android.

Android™
Database Best

Practices

Adam Stroud

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016941977

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

The following are registered trademarks of Google: Android™, Google Play™.

Google and the Google logo are registered trademarks of Google Inc., used with
permission.

The following are trademarks of HWACI: SQLite, sqlite.org, HWACI.

Gradle is a trademark of Gradle, Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Square is a registered trademark of Square, Inc.

Facebook is a trademark of Facebook, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

MySQL trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The following are registered trademarks of IBM: IBM, IMS, Information Management
System.

PostgreSQL is copyright © 1996-8 by the PostgreSQL Global Development Group, and is
distributed under the terms of the Berkeley license.

Some images in the book originated from the sqlite.org and used with permission.

Twitter is a trademark of Twitter, Inc.

ISBN-13: 978-0-13-443799-6
ISBN-10: 0-13-443799-3

Text printed in the United States on recycled paper at RR Donnelley
in Crawfordsville, Indiana.
First printing, July 2016

Publisher
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Full-Service Production
Manager
Julie B. Nahil

Project Editor
codeMantra

Copy Editor
Barbara Wood

Indexer
Cheryl Lenser

Proofreader
codeMantra

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

http://www.pearsoned.com/permissions/

v

To my wife, Sabrina, and my daughters, Elizabeth and Abigail.
You support, inspire, and motivate me in everything you do.

v

This page intentionally left blank

Contents in Brief
Preface xv

Acknowledgments xix

About the Author xxi

	 1	 Relational Databases 1

	 2	 An Introduction to SQL 17

	 3	 An Introduction to SQLite 39

	 4	 SQLite in Android 47

	 5	 Working with Databases in Android 79

	 6	 Content Providers 101

	 7	 Databases and the UI 137

	 8	 Sharing Data with Intents 163

	 9	 Communicating with Web APIs 177

	 10	 Data Binding 231

Index 249

This page intentionally left blank

Contents
Preface xv

Acknowledgments xix

About the Author xxi

	 1	 Relational Databases  1
History of Databases  1

Hierarchical Model  2

Network Model  2

The Introduction of the Relational Model  3

The Relational Model  3

Relation  3

Properties of a Relation  5

Relationships  6

Relational Languages  9

Relational Algebra  9

Relational Calculus  13

Database Languages  14

ALPHA  14

QUEL  14

SEQUEL  14

Summary  15

	 2	 An Introduction to SQL  17
Data Definition Language  17

Tables  18

Indexes  20

Views  23

Triggers  24

Data Manipulation Language  28

INSERT  28

UPDATE  30

DELETE  31

Queries  32

ORDER BY  32

Joins  34

Summary  37

x	 Contents

	 3	 An Introduction to SQLite  39
SQLite Characteristics  39

SQLite Features  39

Foreign Key Support  40

Full Text Search  40

Atomic Transactions  41

Multithread Support  42

What SQLite Does Not Support  42

Limited JOIN Support  42

Read-Only Views  42

Limited ALTER TABLE Support  43

SQLite Data Types  43

Storage Classes  43

Type Affinity  44

Summary  44

	 4	 SQLite in Android  47
Data Persistence in Phones  47

Android Database API  47

SQLiteOpenHelper  47

SQLiteDatabase  57

Strategies for Upgrading Databases  58

Rebuilding the Database  58

Manipulating the Database  59

Copying and Dropping Tables  59

Database Access and the Main Thread  60

Exploring Databases in Android  61

Accessing a Database with adb  61

Using Third-Party Tools to Access Android
Databases  73

Summary  77

	 5	 Working with Databases in Android  79
Manipulating Data in Android  79

Inserting Rows into a Table  80

Updating Rows in a Table  83

Replacing Rows in a Table  85

Deleting Rows from a Table  86

	 Contents	 xi

Transactions  87

Using a Transaction  87

Transactions and Performance  88

Running Queries  89

Query Convenience Methods  89

Raw Query Methods  91

Cursors  91

Reading Cursor Data  91

Managing the Cursor  94

CursorLoader  94

Creating a CursorLoader  94

Starting a CursorLoader  97

Restarting a CursorLoader  98

Summary  99

	 6	 Content Providers  101
REST-Like APIs in Android  101

Content URIs  102

Exposing Data with a Content Provider  102

Implementing a Content Provider  102

Content Resolver  108

Exposing a Remote Content Provider to
External Apps  108

Provider-Level Permission  109

Individual Read/Write Permissions  109

URI Path Permissions  109

Content Provider Permissions  110

Content Provider Contract  112

Allowing Access from an External App  114

Implementing a Content Provider  115

Extending android.content.ContentProvider  115

insert()  119

delete()  120

update()  122

query()  124

getType()  130

xii	 Contents

When Should a Content Provider Be Used?  132

Content Provider Weaknesses  132

Content Provider Strengths  134

Summary  135

	 7	 Databases and the UI  137
Getting Data from the Database to the UI  137

Using a Cursor Loader to Handle Threading  137

Binding Cursor Data to a UI  138

Cursors as Observers  143

registerContentObserver(ContentObserver)  143

registerDataSetObserver(DataSetObserver)  144

unregisterContentObserver
(ContentObserver)  144

unregisterDataSetObserver
(DataSetObserver)  144

setNotificationUri(ContentResolver,
Uri uri)  145

Accessing a Content Provider from an Activity  145

Activity Layout  145

Activity Class Definition  147

Creating the Cursor Loader  148

Handling Returned Data  149

Reacting to Changes in Data  156

Summary  161

	 8	 Sharing Data with Intents  163
Sending Intents  163

Explicit Intents  163

Implicit Intents  164

Starting a Target Activity  164

Receiving Implicit Intents  166

Building an Intent  167

Actions  168

Extras  168

Extra Data Types  169

What Not to Add to an Intent  172

ShareActionProvider  173

Share Action Menu  174

Summary  175

	 Contents	 xiii

	 9	 Communicating with Web APIs  177
REST and Web Services  177

REST Overview  177

REST-like Web API Structure  178

Accessing Remote Web APIs  179

Accessing Web Services with Standard
Android APIs  179

Accessing Web Services with Retrofit  189

Accessing Web Services with Volley  197

Persisting Data to Enhance User Experience  206

Data Transfer and Battery Consumption  206

Data Transfer and User Experience  207

Storing Web Service Response Data  207

Android SyncAdapter Framework  207

AccountAuthenticator  208

SyncAdapter  212

Manually Synchronizing Remote Data  218

A Short Introduction to RxJava  218

Adding RxJava Support to Retrofit  219

Using RxJava to Perform the Sync  222

Summary  229

	 10	 Data Binding  231
Adding Data Binding to an Android Project  231

Data Binding Layouts  232

Binding an Activity to a Layout  234

Using a Binding to Update a View  235

Reacting to Data Changes  238

Using Data Binding to Replace Boilerplate Code  242

Data Binding Expression Language  246

Summary  247

Index 249

This page intentionally left blank

Preface

The explosion in the number of mobile devices in all parts of the word has led to an
increase in both the number and complexity of mobile apps. What was once considered
a platform for only simplistic applications now contains countless apps with considerable
functionality. Because a mobile device is capable of receiving large amounts of data from
multiple data sources, there is an increasing need to store and recall that data efficiently.

In traditional software systems, large sets of data are frequently stored in a database that
can be optimized to both store the data as well as recall the data on demand. Android
provides this same functionality and includes a database system, SQLite. SQLite provides
enough power to support today’s modern apps and also can perform well in the resource-
constrained environment of most mobile devices. This book provides details on how
to use the embedded Android database system. Additionally, the book contains advice
inspired by problems encountered when writing “real-world” Android apps.

Who Should Read This Book
This book is written for developers who have at least some experience with writing
Android apps. Specifically, an understanding of basic Android components (activities,
fragments, intents, and the application manifest) is assumed, and familiarity with the
Android threading model is helpful.

At least some knowledge of relational database systems is also helpful but is not
necessarily a prerequisite for understanding the topics in this book.

How This Book Is Organized
This book begins with a discussion of the theory behind relational databases as well as
some history of the relational model and how it came into existence. Next, the discussion
moves to the Structured Query Language (SQL) and how to use SQL to build a database
as well as manipulate and read a database. The discussion of SQL provides some details on
Android specifics but generally discusses non-Android-specific SQL.

From there, the book moves on to provide information on SQLite and how it relates
to Android. The book also covers the Android APIs that can be used to interact with a
database as well as some best practices for database use.

With the basics of database, SQL, and SQLite covered, the book then moves into
solving some of the problems app developers often face while using a database in Android.
Topics such as threading, accessing remote data, and displaying data to the user are covered.
Additionally, the book presents an example database access layer based on a content provider.

xvi	 Preface

Following is an overview of each of the chapters:

■■ Chapter 1, “Relational Databases,” provides an introduction to the relational
database model as well as some information on why the relational model is more
popular than older database models.

■■ Chapter 2, “An Introduction to SQL,” provides details on SQL as it relates to
databases in general. This chapter discusses the SQL language features for creating
database structure as well as the features used to manipulate data in a database.

■■ Chapter 3, “An Introduction to SQLite,” contains details of the SQLite database
system, including how SQLite differs from other database systems.

■■ Chapter 4, “SQLite in Android,” discusses the Android-specific SQLite details such
as where a database resides for an app. It also discusses accessing a database from
outside an app, which can be important for debugging.

■■ Chapter 5, “Working with Databases in Android,” presents the Android API for
working with databases and explains how to get data from an app to a database and
back again.

■■ Chapter 6, “Content Providers,” discusses the details around using a content
provider as a data access mechanism in Android as well as some thoughts on when
to use one.

■■ Chapter 7, “Databases and the UI,” explains how to get data from the local database
and display it to the user, taking into account some of the threading concerns that
exist on Android.

■■ Chapter 8, “Sharing Data with Intents,” discusses ways, other than using content
providers, that data can be shared between apps, specifically by using intents.

■■ Chapter 9, “Communicating with Web APIs,” discusses some of the methods and
tools used to achieve two-way communication between an app and a remote
Web API.

■■ Chapter 10, “Data Binding,” discusses the data binding API and how it can be used
to display data in the UI. In addition to providing an overview of the API, this
chapter provides an example of how to view data from a database.

Example Code
This book includes a lot of source code examples, including an example app that is
discussed in later chapters of the book. Readers are encouraged to download the example
source code and manipulate it to gain a deeper understanding of the information
presented in the text.

The example app is a Gradle-based Android project that should build and run. It was
built with the latest libraries and build tools that were available at the time of this writing.

	 Conventions Used in This Book	 xvii

The source code for the example can be found on GitHub at https://github.com/
android-database-best-practices/device-database. It is made available under the Apache 2
open-source license and can be used according to that license.

Conventions Used in This Book
The following typographical conventions are used in this book:

■■ Constant width is used for program listings, as well as within paragraphs to refer
to program elements such as variable and function names, databases, data types,
environment variables, statements, and keywords.

■■ Constant width bold is used to highlight sections of code.

Note
A Note signifies a tip, suggestion, or general note.

Register your copy of AndroidTM Database Best Practices at informit.com for convenient
access to downloads, updates, and corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780134437996) and click Submit. Once the process is complete, you
will find any available bonus content under “Registered Products.”

https://github.com/android-database-best-practices/device-database
https://github.com/android-database-best-practices/device-database

This page intentionally left blank

Acknowledgments

I have often believed that software development is a team sport. Well, I am now convinced
that authoring is also a team sport. I would not have made it through this experience
without the support, guidance, and at times patience of the team. I would like to thank
executive editor Laura Lewin and editorial assistant Olivia Basegio for their countless
hours and limitless e-mails to help keep the project on schedule.

I would also like to thank my development editor, Michael Thurston, and technical
editors, Maija Mednieks, Zigurd Mednieks, and David Whittaker, for helping me
transform my unfinished, random, and meandering thoughts into something directed and
cohesive. The support of the team is what truly made this a rewarding experience, and it
would not have been possible without all of you.

Last, I would like to thank my beautiful wife and wonderful daughters. Your patience
and support have meant more than I can express.

This page intentionally left blank

About the Author

Adam Stroud is an Android developer who has been developing apps for Android since
2010. He has been an early employee at multiple start-ups, including Runkeeper, Mustbin,
and Chef Nightly, and has led the Android development from the ground up. He has
a strong passion for Android and open source and seems to be attracted to all things
Android.

In addition to writing code, he has written other books on Android development and
enjoys giving talks on a wide range of topics, including Android gaining root access on
Android devices. He loves being a part of the Android community and getting together
with other Android enthusiasts to “geek out.”	

Adam is currently the technical cofounder and lead Android developer at a new
start-up where he oversees the development of the Android app.

This page intentionally left blank

5
Working with Databases

in Android

The previous chapter introduced the SQLiteOpenHelper and SQLiteDatabase classes
and discussed how to create databases. Of course, this is only the first step as a database is
not very useful until it contains data and allows software to run queries against that data.
This chapter explains how that is done in Android by discussing which Android SDK
classes can be used to manipulate a database as well as query a database.

Manipulating Data in Android
The Android SDK contains many classes to support database operations. Along with the
classes to support create, read, update, and delete (CRUD) operations, the SDK contains
classes to help generate the queries that read the database. Following are the classes
introduced in this chapter and a summary of how they are used to work with databases in
Android:

■■ SQLiteDatabase: Represents a database in Android. It contains methods to perform
standard database CRUD operations as well as control the SQLite database file used
by an app.

■■ Cursor: Holds the result set from a query on a database. An app can read the data
from a cursor and display it to a user or perform business logic based on the data
contained in the cursor.

■■ ContentValues: A key/value store that inserts data into a row of a table. In most
cases, the keys map to the column names of the table, and the values are the data to
enter into the table.

■■ CursorLoader: Part of the loader framework that handles cursor objects.
■■ LoaderManager: Manages all loaders for an activity or fragment. The LoaderManager
contains the API for initializing and resetting a loader that may be used by Android
components.

Working with SQL is a vital part of working with databases in Android. In Chapter 2,
“An Introduction to SQL,” we saw how SQL is used to both create and upgrade a

80	 Chapter 5 Working with Databases in Android

database. SQL can also be used to read, update, and delete information from a database in
Android. The Android SDK provides useful classes to assist in creating SQL statements,
while also supporting the use of Java string processing to generate SQL statements.

Working with SQL in Android involves calling methods on an SQLiteDatabase object.
This class contains methods for building SQL statements as well as convenience methods
to make issuing SQL statements to the database easy.

In a typical database use case, inserting data into the database is the step that follows
creating the database. This makes sense since a database is useful only after it contains data.
The steps to create a database were covered in the previous chapter, so this discussion
starts with inserting data into a database.

Inserting Rows into a Table
The SQLiteDatabase class contains multiple convenience methods that can be used
to perform insert operations. In most cases, one of the following three methods is used to
perform an insert operation:

■■ long insert(String table, String nullColumnHack, ContentValues

values)

■■ long insertOrThrow(String table, String nullColumnHack, ContentValues

values)

■■ long insertWithOnConflict(String table, String nullColumnHack,

ContentValues values, int conflictAlgorithm)

Notice that the parameter lists for all the variations of the insert methods contain
(as the first three parameters) a String tableName, a String nullColumnHack, and
ContentValues values. SQLiteDatabase.insertWithOnConflict() contains a fourth
parameter which will be discussed soon. The common three parameters for the insert
methods are

■■ String table: Gives the name of the table on which to perform the insert operation.
This name needs to be the same as the name given to the table when it was created.

■■ String nullColumnHack: Specifies a column that will be set to null if the
ContentValues argument contains no data.

■■ ContentValues values: Contains the data that will be inserted into the table.

ContentValues is a maplike class that matches a value to a String key. It contains
multiple overloaded put methods that enforce type safety. Here is a list of the put meth-
ods supported by ContentValues:

■■ void put(String key, Byte value)

■■ void put(String key, Integer value)

■■ void put(String key, Float value)

■■ void put(String key, Short value)

	 Manipulating Data in Android	 81

■■ void put(String key, byte[] value)

■■ void put(String key, String value)

■■ void put(String key, Double value)

■■ void put(String key, Long value)

■■ void put(String key, Boolean value)

Each put method takes a String key and a typed value as parameters. When using
ContentValues to insert data into a database, the key parameter must match the name of
the column for the table that is targeted by the insert.

In addition to the overloaded put methods just listed, there is also a put(ContentValues
other) method that can be used to add all the values from another ContentValues object,
and a putNull(String key) method that adds a null value to a column of a table.

In a typical use case, a new instance of ContentValues is created and populated with
all the values that should be inserted into the table. The ContentValues object is then
passed to one of the insert methods from SQLiteDatabase. Listing 5.1 shows typical
ContentValues usage.

Listing 5.1  Inserting Data with SQLiteDatabase.insert()

int id = 1;

String firstName = "Bob";

String lastName = "Smith";

ContentValues contentValues = new ContentValues();

contentValues.put("id", id);

contentValues.put("first_name", firstName);

contentValues.put("last_name", lastName);

SQLiteDatabase db = getDatabase();

db.insert("people", null, contentValues);

The code in Listing 5.1 passes a null for the value of the nullColumnHack to the
SQLiteDatabase.insert() method. This is primarily because the code in Listing 5.1
“knows” what values were used to populate the values parameter and can ensure that
there is at least one column represented in the ContentValues object. However, this is not
always the case, and this is why the nullColumnHack parameter exists.

To explain nullColumnHack, consider the case where a ContentValues object that
is inserted into a table contains no key/value pairs. This would amount to attempting
to perform an insert operation without specifying any columns to insert data into. Such
an insert statement is illegal in SQL because an insert statement must specify at least one

82	 Chapter 5 Working with Databases in Android

column to insert data into. The nullColumnHack parameter can be used to guard against
the “empty ContentValues” use case by specifying the name of a column that should be
set to null in the case that the ContentValues object contains no data. Like the keys in
the ContentValues instance, the string value for nullColumnHack must match the name
of a column in the table that is targeted by the insert statement.

Listing 5.2 contains a usage of the nullColumnHack parameter. After the code in
Listing 5.2 is run, column last_name will contain a value of null.

Listing 5.2  Specifying Null Columns with nullColumnHack

ContentValues contentValues = new ContentValues();

SQLiteDatabase db = getDatabase();

db.insert("people", "last_name", contentValues);

All three insert methods of SQLiteDatabase return a long. The value returned by the
methods is the row ID of the inserted row, or a value of −1 if there was an error perform-
ing the insert.

Both Listings 5.1 and 5.2 used the simplest insert method to put a row into a table of
the database, SQLiteDatabase.insert(). This method attempts to perform the insert and
returns −1 if there is an error. The other two insert methods can be used to handle error
cases differently.

SQLiteDatabase.insertOrThrow() is similar to SQLiteDatabase.insert().
However, it throws an SQLException if there was an error inserting the row.
SQLiteDatabase.insertOrThrow() takes the same parameter list and has the same return
type as SQLiteDatabase.insert(). It takes a String as the table parameter, a String as
the nullColumnHack parameter, and a ContentValues object as the values parameter.

SQLiteDatabase.insertWithConflict(String table, String nullColumnHack,

ContentValues values, int conflictAlgorithm) operates a little differently from the
other two insert methods. It supports conflict resolution during the insert operation.
Insertion conflicts occur when an attempt is made to insert a row into a table that would
produce duplicates in a column that has the UNIQUE constraint applied to it, or duplicate
data for the primary key. For example, consider the database table represented by Table 5.1.

Table 5.1  Example Database Table

first_name last_name id*

Bob Smith 1

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

	 Manipulating Data in Android	 83

In Table 5.1, the id column is the primary key and must hold a unique value for
all rows across the entire table. Therefore, an attempt to insert a row containing an id
of 1 would be an illegal operation in SQL because it would cause a UNIQUE constraint
violation.

In this scenario, the two previous insert methods would indicate the error
by either returning a value of -1 (SQLiteDatabase.insert()) or throwing an
exception (SQLiteDatabase.insertOrThrow()). However, SQLiteDatabase.
insertWithOnConflict() takes a fourth int parameter that can be used to tell the
method how to handle the insertion conflict. The conflict resolution algorithms are
defined as constants in SQLiteDatabase and can be one of the following:

■■ SQLiteDatabase.CONFLICT_ROLLBACK: Aborts the current insert statement.
If the insert was part of a transaction, any previous statements are also undone
and the value of SQLiteDatabase.CONFLICT_FAIL is returned by the
insertWithOnConflict() method.

■■ SQLiteDatabase.CONFLICT_ABORT: Aborts the current statement. If the statement
was part of a transaction, all previous statements are left untouched.

■■ SQLiteDatabase.CONFLICT_FAIL: Similar to SQLiteDatabase.CONFLICT_ABORT.
In addition to aborting the current statement, this flag causes the method to return
SQLITE_CONSTRAINT as a return code.

■■ SQLiteDatabase.CONFLICT_IGNORE: Skips the current statement and all other
statements in the transaction are processed. When using this flag, no error value is
returned.

■■ SQLiteDatabase.CONFLICT_REPLACE: Removes conflicting rows currently in
the table, and the new row is inserted. An error will not be returned when using
this flag.

■■ SQLiteDatabase.NONE: No conflict resolution is applied.

Updating Rows in a Table
Once data has been inserted into a database, it often needs to be updated. Like the three
insert methods discussed previously, SQLiteDatabase has a couple of update methods that
can be used to perform update operations on tables in a database:

■■ int update(String table, ContentValues values, String whereClause,

String[] whereArgs)

■■ int updateWithOnConflict(String table, ContentValues values, String

whereClause, String[] whereArgs, int conflictAlgorithm)

Much like the insert methods, both update methods take the same first four parameters,
and updateWithOnConflict() takes a fifth parameter to define how a conflict should be
resolved.

84	 Chapter 5 Working with Databases in Android

The common parameters for the update methods are

■■ String table: Defines the name of the table on which to perform the update.
As with the insert statements, this string needs to match the name of a table in the
database schema.

■■ ContentValues values: Contains the key/value pairs that map the columns and
values to be updated by the update statement.

■■ String whereClause: Defines the WHERE clause of an UPDATE SQL statement.
This string can contain the “?” character that will be replaced by the values in the
whereArgs parameter.

■■ String[] whereArgs: Provides the variable substitutions for the whereClause
argument.

Listing 5.3 shows an example of the SQLiteDatabase.update() call.

Listing 5.3  Example Update Call

String firstName = "Robert";

ContentValues contentValues = new ContentValues();

contentValues.put("first_name", firstName);

SQLiteDatabase db = getDatabase();

db.update("people", contentValues, "id = ?", new String[] {"1"});

Listing 5.3 updates the first name of the person that has an id of 1. The code first
creates and populates a ContentValues object to hold the values that will be updated.
It then makes the call to SQLiteDatabase.update() to issue the statement to the
database. The rows are selected for the update() method using the whereClause and
whereArgs parameters, which are in bold in Listing 5.3. The “?” in the whereClause
parameter of the update() method serves as a placeholder for the statement. The
whereArgs parameter, containing an array of strings, holds the value(s) that will replace
the placeholder(s) when the statement is sent to the database. Since Listing 5.3 contains
only a single placeholder, the string array only needs to be of size 1. When multiple
placeholders are used, they will be replaced in order using the values from the string array.
Passing null values for the whereClause and whereArgs parameters will cause the update
statement to be run against every row in the table.

Table 5.2 shows the result of running the code in Listing 5.3 on Table 5.1. The changes
to the row with id 1 are in bold.

The basic whereClause in Listing 5.3 matches the value of a single column. When
using either update method, any legal SQL whereClause can be used to build the
statement.

	 Manipulating Data in Android	 85

Both update methods in SQLiteDatabase return an integer that represents the number
of rows that were affected by the update statement.

Replacing Rows in a Table
In addition to insert and update operations, SQLiteDatabase supports the SQL replace
operation with the SQLiteDatabase.replace() methods. In SQLite, a replace operation
is an alias for INSERT OR REPLACE. It inserts the row if it does not already exist in a table,
or updates the row if it already exists.

Note
This is different from an update operation because an update operation does not insert a
row if it does not already exist.

There are two versions of the replace() method in SQLiteDatabase:
SQLiteDatabase.replace() and SQLiteDatabase.replaceOrThrow(). Both methods
have the same parameter list:

■■ String table: The name of the table on which to perform the operation
■■ String nullColumnHack: The name of a column to set a null value in case of an
empty ContentValues object

■■ ContcentValues initialValues: The values to insert into the table

Both replace() methods return a long indicating the row ID of the new row, or a
value of -1 if an error occurs. In addition, replaceOrThrow() can also throw an exception
in the case of an error.

Listing 5.4 shows an example of the SQLiteDatabase.replace() call.

Listing 5.4  Example Replace Call

String firstName = "Bob";

ContentValues contentValues = new ContentValues();

contentValues.put("first_name", firstName);

contentValues.put("id", 1);

Table 5.2  person Table after Call to update()

first_name last_name id*

Robert Smith 1

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

86	 Chapter 5 Working with Databases in Android

SQLiteDatabase db = getDatabase();

db.replace("people", null, contentValues);

Table 5.3 shows the state of the people table after running the SQLiteDatabase.
replace() call in Listing 5.4. Notice that the last_name attribute for the first row is
now blank. This is because there was a conflict when processing the SQLiteDatabase.
replace() method. The ContentValues object passed to SQLiteDatabase.replace()
specified a value of 1 for the id attribute. The conflict arises because the id attribute
is the primary key for the table, and there is already a row that contains an id of 1. To
resolve the conflict, the SQLiteDatabase.replace() method removes the conflicting
row and inserts a new row containing the values specified in the ContentValues object.
Because the ContentValues object passed to SQLiteDatabase.replace()contains
values for only the first_name and id attributes, only those attributes are populated in
the new row.

Deleting Rows from a Table
Unlike the update and insert operations, SQLiteDatabase has only a single method
for deleting rows: SQLiteDatabase.delete(String table, String whereClause,
String[] whereArgs). The delete() method’s signature is similar to the signature of
the update() method. It takes three parameters representing the name of the table from
which to delete rows, the whereClause, and a string array of whereArgs. The process-
ing of the whereClause and the whereArgs for the delete() method matches the
whereClause processing for the update() method. The whereClause parameter contains
question marks as placeholders, and the whereArgs parameter contains the values for the
placeholders. Listing 5.5 shows a delete() method example.

Listing 5.5  Example Delete Method

SQLiteDatabase db = getDatabase();

db.delete("people", "id = ?", new String[] {"1"});

Table 5.3  person Table after replace() Call

first_name last_name id*

Bob 1

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

	 Transactions	 87

The results of running the code in Listing 5.5 are shown in Table 5.4, where there is no
longer a row with an id of 1.

Transactions
All of the previously discussed insert, update, and delete operations manipulate tables
and rows in a database. While each operation is atomic (will either succeed or fail on its
own), it is sometimes necessary to group a set of operations together and have the set of
operations be atomic. There are times when a set of related operations should be allowed
to manipulate the database only if all operations succeed to maintain database integrity.
For these cases, a database transaction is usually used to ensure that the set of operations is
atomic. In Android, the SQLiteDatabase class contains the following methods to support
transaction processing:

■■ void beginTransaction(): Begins a transaction
■■ void setTransactionSuccessful(): Indicates that the transaction should be
committed

■■ void endTransaction(): Ends the transaction causing a commit if
setTransactionSuccessful() has been called

Using a Transaction
A transaction is started with the SQLiteDatabase.beginTransaction() method. Once
a transaction is started, calls to any of the data manipulation method calls (insert(),
update(), delete()) may be made. Once all of the manipulation calls have been
made, the transaction is ended with SQLiteDatabase.endTransaction(). To mark the
transaction as successful, allowing all the operations to be committed, SQLiteDatabase.
setTransactionSuccessful() must be called before the call to SQLiteDatabase.
endTransaction() is made. If endTransaction() is called without a call to
setTransactionSuccessful(), the transaction will be rolled back, undoing all of the
operations in the transaction.

Because the call to setTransactionSuccessful() affects what happens during
the endTransaction() call, it is considered a best practice to limit the number
of non-database operations between a call to setTransactionSuccessful() and
endTransaction(). Additionally, do not perform any additional database manipulation

Table 5.4  Row Deleted from the Table

first_name last_name id*

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

88	 Chapter 5 Working with Databases in Android

operations between the call to setTransactionSuccessful() and endTransaction().
Once the call to setTransactionSuccessful() is made, the transaction is marked as
clean and is committed in the call to endTransaction() even if errors have occurred after
the call to setTransactionSuccessful().

Listing 5.6 shows how a transaction should be started, marked successful, and ended in
Android.

Listing 5.6  Transaction Example

SQLiteDatabase db = getDatabase();

db.beginTransaction();

try {

 // insert/update/delete

 // insert/update/delete

 // insert/update/delete

 db.setTransactionSuccessful();

} finally {

 db.endTransaction();

}

Database operations that happen in a transaction as well as the call to
setTransaction() should take place in a try block with the call to endTransaction()
happening in a finally block. This ensures that the transaction will be ended even if an
unhandled exception is thrown while modifying the database.

Transactions and Performance
While transactions can help maintain data integrity by ensuring that multiple data
manipulation operations occur atomically, they can also be used purely to increase database
performance in Android. Like any operation performed in Java, there is overhead that is
associated with running SQL statements inside a transaction. While a single transaction
may not inject large amounts of overhead into a data manipulation routine, it is important
to remember that every call to insert(), update(), and delete() is performed in its
own transaction. Thus inserting 100 records into a table would mean that 100 individual
transactions will get started, cleaned, and closed. This can cause a severe slowdown when
attempting to perform a large number of data manipulation method calls.

To make multiple data manipulation calls run as fast as possible, it is generally a good
idea to combine them into a single transaction manually. If the Android SDK determines
that a call to insert()/update()/delete() is already inside of an open transaction, it
will not attempt to start another transaction for the single operation. With a few lines

	 Running Queries	 89

of code, an app can dramatically speed up data manipulation operations. It is common
to see a speed increase of five to ten times when wrapping even 100 data manipulation
operations into a single transaction. These performance gains can increase as the number
and complexity of operations increase.

Running Queries
Previous sections of this chapter discussed inserting, updating, and deleting data from
a database. The last piece of database CRUD functionality is retrieving data from the
database. As with the insert and update database operations, SQLiteDatabase contains
multiple methods to support retrieving data. In addition to a series of query convenience
methods, SQLiteDatabase includes a set of methods that support more free-form “raw”
queries that can be generated via standard Java string manipulation methods. There is also
an SQLiteQueryBuilder class that can further aid in developing complex queries such
as joins.

Query Convenience Methods
The simplest way to issue a query to a database in Android is to use one of the query
convenience methods located in SQLiteDatabase. These methods are the overloaded
variations of SQLiteDatabase.query(). Each variant of the query() method takes a
parameter list that includes the following:

■■ String table: Indicates the table name of the query.
■■ String[] columns: Lists the columns that should be included in the result set of
the query.

■■ String selection: Specifies the WHERE clause of the selection statement. This string
can contain “?” characters that can be replaced by the selectionArgs parameter.

■■ String[] selectionArgs: Contains the replacement values for the “?” of the
selection parameter.

■■ String groupBy: Controls how the result set is grouped. This parameter represents
the GROUP BY clause in SQL.

■■ String having: Contains the HAVING clause from an SQL SELECT statement. This
clause specifies search parameters for grouping or aggregate SQL operators.

■■ String orderBy: Controls how the results from the query are ordered. This defines
the ORDER BY clause of the SELECT statement.

The table name, column list selection string, and selection arguments parameters
operate in the same manner as other operations discussed earlier in the chapter. What is
different about the query() methods is the inclusion of the GROUP BY, HAVING, and ORDER
BY clauses. These clauses allow an app to specify additional query attributes in the same
way that an SQL SELECT statement would.

90	 Chapter 5 Working with Databases in Android

Each query method returns a cursor object that contains the result set for the
query. Listing 5.7 shows a query returning data from the people table used in previous
listings.

Listing 5.7  Simple Query

SQLiteDatabase db = getDatabase();

Cursor result = db.query("people",

 new String[] {"first_name", "last_name"},

 "id = ?",

 new String[] {"1"},

 null,

 null,

 null);

Listing 5.7 returns the first_name and last_name columns for the row that has an
id of 1. The query statement passes null values for the GROUP BY, HAVING, and ORDER BY
clauses since the result set should be of size 1 and these clauses have no effect on a result
set with size 1.

The query() method also supports passing a null value for the columns param-
eter which will cause the query to return all the table’s columns in the result set. It
is usually better to specify the desired table columns rather than letting the Android
SDK return all columns from a table and making the caller ignore the columns it does
not need.

To return all the rows from a table, pass null values for the selection and
selectionArgs parameters. A query returning all rows in a table is shown in Listing 5.8;
the result set is sorted by ID in descending order.

Listing 5.8  Returning All Rows in a Table

SQLiteDatabase db = getDatabase();

Cursor result = db.query("people",

 new String[] {"first_name", "last_name"},

 null,

 null,

 null,

 null,

 "id DESC");

	 Cursors	 91

Raw Query Methods
If the query() convenience methods do not provide enough flexibility for a query that
an app needs to run, the SQLiteDatabase.rawQuery() methods can be used instead.
Like the convenience query methods, the rawQuery() methods are an overloaded set
of methods. However, unlike the query() methods, the rawQuery() methods take two
parameters as input: a String parameter representing the query to run, and a String[]
to support query placeholder substitution. Listing 5.9 shows the same query as Listing 5.6
using the rawQuery() method instead of the query() convenience method.

Listing 5.9  Using the rawQuery() Method

SQLiteDatabase db = getDatabase();

Cursor result = db.rawQuery("SELECT first_name, last_name " +

 "FROM people " +

 "WHERE id = ?",

 new String[] {"1"});

Like the query() method, rawQuery() returns a cursor containing the result set for
the query. The caller can read and process the resulting cursor in the same way that it
processes the result from the query() methods.

The rawQuery() method allows an app to have great flexibility and construct more
complex queries using joins, sub-queries, unions, or any other SQL construct supported
by SQLite. However, it also forces the app developer to build the query in Java code (or
perhaps from reading a string resource), which can be cumbersome for really complex
queries.

To aid in building more complex queries, the Android SDK contains the
SQLiteQueryBuilder class. The SQLiteQueryBuilder class is discussed in more detail in
the next chapter with the discussion of ContentProviders.

Cursors
Cursors are what contain the result set of a query made against a database in Android. The
Cursor class has an API that allows an app to read (in a type-safe manner) the columns
that were returned from the query as well as iterate over the rows of the result set.

Reading Cursor Data
Once a cursor has been returned from a database query, an app needs to iterate over the
result set and read the column data from the cursor. Internally, the cursor stores the rows
of data returned by the query along with a position that points to the current row of data
in the result set. When a cursor is returned from a query() method, its position points
to the spot before the first row of data. This means that before any rows of data can be read
from the cursor, the position must be moved to point to a valid row of data.

92	 Chapter 5 Working with Databases in Android

The Cursor class provides the following methods to manipulate its internal position:

■■ boolean Cursor.move(int offset): Moves the position by the given offset
■■ boolean Cursor.moveToFirst(): Moves the position to the first row
■■ boolean Cursor.moveToLast(): Moves the position to the last row
■■ boolean Cursor.moveToNext(): Moves the cursor to the next row relative to the
current position

■■ boolean Cursor.moveToPosition(int position): Moves the cursor to the
specified position

■■ Cursor.moveToPrevious(): Moves the cursor to the previous row relative to the
current position

Each move() method returns a boolean to indicate whether the operation was
successful or not. This flag is useful for iterating over the rows in a cursor.

Listing 5.10 shows the code to read data from a cursor containing all the data from the
people table.

Listing 5.10  Reading Cursor Data

SQLiteDatabase db = getDatabase();

String[] columns = {"first_name",

 "last_name",

 "id"};

Cursor cursor = db.query("people",

 columns,

 null,

 null,

 null,

 null,

 null);

while(cursor.moveToNext()) {

 int index;

 index = cursor.getColumnIndexOrThrow("first_name");

 String firstName = cursor.getString(index);

	 Cursors	 93

 index = cursor.getColumnIndexOrThrow("last_name");

 String lastName = cursor.getString(index);

 index = cursor.getColumnIndexOrThrow("id");

 long id = cursor.getLong(index);

 //... do something with data

}

The code in Listing 5.10 uses a while loop to iterate over the rows in the cursor
returned from the query() method. This pattern is useful if the code performing the
iteration “controls” the cursor and has sole access to it. If other code can access the cursor
(for example, if the cursor is passed into a method as a parameter), the cursor should also
be set to a known position as the current position may not be the position ahead of the
first row.

Once the cursor’s position is pointing to a valid row, the columns of the row can be
read from the cursor. To read the data, the code in Listing 5.10 uses two methods from
the cursor class: Cursor.getColumnIndexOrThrow() and one of the type get() methods
from the Cursor class.

The Cursor.getColumnIndexOrThrow() method takes a String parameter that
indicates which column to read from. This String value needs to correspond to one of
the strings in the columns parameter that was passed to the query() method. Recall that
the columns parameter determines what table columns are part of the result set. Cursor.
getColumnIndexOrThrow()throws an exception if the column name does not exist in
the cursor. This usually indicates that the column was not part of the columns parameter
of the query(). The Cursor class also contains a Cursor.getColumnIndex() method
that does not throw an exception if the column name is not found. Instead,
Cursor.getColumnIndex() returns a -1 value to represent an error.

Once the column index is known, it can be passed to one of the cursor’s get()
methods to return the typed data of the row. The get() methods return the data from
the column in the row which can then be used by the app. The Cursor class contains the
following methods for retrieving data from a row:

■■ byte[] Cursor.getBlob(int columnIndex): Returns the value as a byte[]
■■ double Cursor.getDouble(int columnIndex): Returns the value as a double
■■ float Cursor.getFloat(int columnIndex): Returns the value as a float
■■ int Cursor.getInt(int columnIndex): Returns the value as an int
■■ long Cursor.getLong(int columnIndex): Returns the value as a long
■■ short Cursor.getShort(int columnIndex): Returns the value as a short
■■ String Cursor.getString(int columnIndex): Returns the value as a String

94	 Chapter 5 Working with Databases in Android

Managing the Cursor
The internals of a cursor can contain a lot of resources such as all the data returned from
the query along with a connection to the database. Because of this, it is important to
handle a cursor appropriately and tell it to clean up when it is no longer in use to prevent
memory leaks. To perform the cleanup, the Cursor class contains the Cursor.close()
method, which needs to be called when an activity or fragment no longer needs the
cursor.

In versions of Android before 3.0, cursor maintenance was left to developers. They
either had to handle the closing of the cursor themselves or had to make sure they
informed an activity that it was using a cursor so the activity would close the cursor at an
appropriate time.

Android 3.0 introduced the loader framework that takes care of managing cursors for
activities/fragments. To support older versions of Android, the loader framework has also
been backported and added to the support library. When using the loader framework,
apps no longer need to worry about calling Cursor.close() or informing an activity/
fragment of a cursor that it needs to manage.

CursorLoader
The previous section discussed the low-level details of how to perform database
operations in Android using SQLiteDatabase. However, it did not discuss the fact that
databases on Android are stored on the file system, meaning that accessing a database
from the main thread should be avoided in order to keep an app responsive for the user.
Accessing a database from a non-UI thread typically involves some type of asynchronous
mechanism, where a request for database access is made and the response to the request
is delivered at some point in the future. Because views can be updated only from the UI
thread, apps need to make calls to update views on the UI thread even though the results
to a database query may be delivered on a different thread.

Android provides multiple tools for executing potentially long-running code off the
UI thread while having results processed in the UI thread. One such tool is the loader
framework. For accessing databases, there is a specialized component of the Loader called
CursorLoader, which, in addition to managing a cursor’s lifecycle with regard to an
activity lifecycle, also takes care of running queries in a background thread and presenting
the results on the main thread, making it easy to update the display.

Creating a CursorLoader
There are multiple pieces to the CursorLoader API. A CursorLoader is a specialized
member of Android’s loader framework specifically designed to handle cursors. In a
typical implementation, a CursorLoader uses a ContentProvider to run a query against a
database, then returns the cursor produced from the ContentProvider back to an activity
or fragment.

	 CursorLoader	 95

Note
ContentProviders are discussed in detail in Chapter 6, “Content Providers.” For now, it is
enough to know that they abstract the functionality provided by SQLiteDatabase away from
an activity (or fragment) so the activity does not need to worry about making method calls on
an SQLiteDatabase object.

An activity only needs to use the LoaderManager to start a CursorLoader and respond to
callbacks for CursorLoader events.

In order to use a CursorLoader, an activity gets an instance of the LoaderManager. The
LoaderManager manages all loaders for an activity or fragment, including a CursorLoader.

Once an activity or fragment has a reference to its LoaderManager, it tells the
LoaderManager to initialize a loader by providing the LoaderManager with an object
that implements the LoaderManager.LoaderCallbacks interface in the LoaderManager.
initLoader() method. The LoaderManager.LoaderCallbacks interface contains the
following methods:

■■ Loader<T> onCreateLoader(int id, Bundle args)
■■ void onLoadFinished(Loader<T>, T data)
■■ void onLoaderReset(Loader<T> loader)

LoaderCallbacks.onCreate() is responsible for creating a new loader and returning
it to the LoaderManager. To use a CursorLoader, LoaderCallbacks.onCreate()creates,
initializes, and returns a CursorLoader object that contains the information necessary to
run a query against a database (through a ContentProvider).

Listing 5.11 shows the implementation of the onCreateLoader() method returning a
CursorLoader.

Listing 5.11  Implementing onCreateLoader()

@Override

public Loader<Cursor> onCreateLoader(int id, Bundle args) {

 Loader<Cursor> loader = null;

 switch (id) {

 case LOADER_ID_PEOPLE:

 loader = new CursorLoader(this,

 PEOPLE_URI,

 new String[] {"first_name", "last_name", "id"},

 null,

 null,

 "id ASC");

96	 Chapter 5 Working with Databases in Android

 break;

 }

 return loader;

}

In Listing 5.11, the onCreateLoader() method first checks the ID it was passed to
know which loader it needs to create. It then instantiates a new CursorLoader object and
returns it to the caller.

The constructor of CursorLoader can take parameters that allow the CursorLoader to
run a query against a database. The CursorLoader constructor called in Listing 5.11 takes
the following parameters:

■■ Content context: Provides the application context needed by the loader
■■ Uri uri: Defines the table against which to run the query
■■ String[] projection: Specifies the SELECT clause for the query
■■ String selection: Specifies the WHERE clause which may contain “?” as placeholders
■■ String[] selectionArgs: Defines the substitution variables for the selection
placeholders

■■ String sortOrder: Defines the ORDER BY clause for the query

The last four parameters, projection, selection, selectionArgs, and sortOrder,
are similar to parameters passed to the SQLiteDatabase.query() discussed earlier in this
chapter. In fact, they also do the same thing: define what columns to include in the result
set, define which rows to include in the result set, and define how the result set should be
sorted.

Once the data is loaded, Loader.Callbacks.onLoadFinished() is called,
allowing the callback object to use the data in the cursor. Listing 5.12 shows a call to
onLoadFinished().

Listing 5.12  Implementing onLoadFinished()

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

while(data.moveToNext()) {

 int index;

 index = data.getColumnIndexOrThrow("first_name");

 String firstName = data.getString(index);

	 CursorLoader	 97

 index = data.getColumnIndexOrThrow("last_name");

 String lastName = data.getString(index);

 index = data.getColumnIndexOrThrow("id");

 long id = data.getLong(index);

 //... do something with data

}

Notice how similar the code in Listing 5.12 is to the code in Listing 5.10 where a
direct call to SQLiteDatabase.query() was made. The code to process the results of
the query is nearly identical. Also, when using the LoaderManager, the activity does not
need to worry about calling Cursor.close() or making the database query on a non-UI
thread. That is all handled by the loader framework.

There is one other important point to note about onLoadFinished(). It is not
only called when the initial data is loaded; it is also called when changes to the data are
detected by the Android database. There is one line of code that needs to be added to the
ContentProvider to trigger this, and that is discussed next chapter. However, having a
single point in the code that receives query data and can update the display can be really
convenient. This architecture allows activities to easily react to changes in data without
the developer worrying about explicitly notifying the activities of changes to the data.
The LoaderManager handles the lifecycle and knows when to requery and pass the data
to the LoaderManager.Callbacks when it needs to.

There is one more method in the LoaderManager.Callbacks interface that
needs to be implemented to use a CursorLoader: LoaderManager.Callbacks.
onLoaderReset(Loader<T> loader). This method is called by the LoaderManager when
a loader that was previously created is reset and its data should no longer be used. For a
CursorLoader, this typically means that any references to the cursor that was provided by
onLoadFinished() need to be discarded as they are no longer active. If a reference to the
cursor is not persisted, the onLoadReset() method can be empty.

Starting a CursorLoader
Now that the mechanics of using a CursorLoader have been discussed, it is time to
focus on how to start a data load operation with the LoaderManager. For most use cases,
an activity or a fragment implements the LoaderManager.Callbacks interface since
it makes sense for the activity/fragment to process the cursor result in order to update
its display. To start the load, LoaderManager.initLoader() is called. This ensures that
the loader is created, calling onCreateLoader(), loading the data, and making a call to
onLoadFinished().

98	 Chapter 5 Working with Databases in Android

Both activities and fragments can get their LoaderManager object by calling
getLoaderManager(). They can then start the load process by calling LoaderManager.
initLoader(). LoaderManager.initLoader() takes the following parameters:

■■ int id: The ID of the loader. This is the same ID that is passed to
onCreateLoader() and can be used to identify a loader (see Listing 5.11).

■■ Bundle args: Extra data that might be needed to create the loader. This is also
passed to onCreateLoader() (see Listing 5.11). This value can be null.

■■ LoaderManager.LoaderCallbacks callbacks: An object to handle the
LoaderManager callbacks. This is typically the activity or fragment that is making
the call to initLoader().

The call to initLoader() should happen early in an Android component’s lifecycle.
For activities, initLoader() is usually called in onCreate(). Fragments should call
initLoader() in onActivityCreated() (calling initLoader() in a fragment before its
activity is created can cause problems).

Once initLoader() is called, the LoaderManager checks to see if there is already a
loader associated with the ID passed to initLoader(). If there is no loader associated
with the ID, LoaderManager makes a call to onCreateLoader() to get the loader and
associate it with the ID. If there is currently a loader associated with the ID, initLoader()
continues to use the preexisting loader object. If the caller is in the started state, and there
is already a loader associated with the ID, and the associated loader has already loaded its
data, then a call to onLoadFinished() is made directly from initLoader(). This usually
happens only if there is a configuration change.

One detail to note about initLoader() is that it cannot be used to alter the query
that was used to create the CursorLoader that gets associated with an ID. Once the
loader is created (remember, the query is used to define the CursorLoader), it is reused
only on subsequent calls to initLoader(). If an activity/fragment needs to alter the
query that was used to create a CursorLoader with a given ID, it needs to make a call to
restartLoader().

Restarting a CursorLoader
Unlike the call to LoaderManager.initLoader(), a call to LoaderManager.
restartLoader() disassociates a loader with a given ID and allows it to be re-created.
This results in onCreateLoader() being called again, allowing a new CursorLoader
object to be made which can contain a different query for a given ID. LoaderManager.
restartLoader() takes the same parameter list as initLoader() (int id, Bundle,
args, LoaderManager.Callbacks, and callbacks) and discards the old loader. This
makes restartLoader() useful for when the query of a CursorLoader needs to change.
However, the restartLoader() method should not be used to simply handle activity/
fragment lifecycle changes as they are already handled by the LoaderManager.

	 Summary	 99

Summary
This chapter presented the basic API for working with databases in Android and built
upon the concepts introduced in Chapter 4, “SQLite in Android,” where database
creation was discussed. By using SQLiteDatabase and its create(), insert(), update(),
replace(), and delete() methods, an app is able to manipulate an internal database.
In addition, an app can call the query and rawQuery() methods to retrieve the data from a
database to perform actions on that data, or just display it to a user.

Query data is returned in the form of a cursor that can be iterated over to access the
result set returned by a query.

While this chapter introduced some of the low-level “plumbing” needed to use an
in-app database, there are higher-level components that allow apps to both abstract some
of the data access details away from components that define and drive user interaction
(activities and fragments) as well as allow data to be shared across apps and across processes.
These concepts are introduced in the next chapter with the discussion of content
providers.

This page intentionally left blank

Index

Symbols
?? (null coalescing operator), 247

A
accessing databases. See also content providers

with adb utility, 61–62
connecting with sqlite3, 67–72
copying files to development machines, 73
finding file location, 64–67
permissions, 62–64

allowing external apps, 114–115
main thread and, 60–61
with Stetho, 73–75
via Web services

with Android SDK (Software
Development Kit), 179–187

REST and, 177–179
with Retrofit, 188–194
with Volley, 194–203

AccountAuthenticator class, 204–208
ACTION_SEND, 168
ACTION_SEND_MULTIPLE, 168
ActionProvider class, 174
actions in implicit intents, 167–168
activities

accessing content providers
activity class sdefinition, 147–148
activity layout, 145–147
creating cursor loader, 148–149
handling returned data, 149–156
reacting to data changes, 156–161

binding to layouts, 234–235
starting, 164–166
UI (user interface). See UI (user interface)

Activity class
getIntent( ) method, 167
onCreate( ) method, 167
onCreateOptionsMenu( ) method, 174–175

adb (Android Debug Bridge) utility
accessing databases, 61–62

connecting with sqlite3, 67–72
copying files to development machines, 73
finding file location, 64–67
permissions, 62–64

viewing SQLite version, 40

250 Index

with ListViews, 139–142
with RecyclerViews, 142, 145–147

BLOB storage class, 43
boilerplate code, replacing, 242–245
BR class, 238
bulkInsert( ) method, 105–108

C
candidate keys, 6
cardinality, 4
Cartesian product, 11
checkpoints, 41
close( ) method, 94
closing databases, 133–134
Codd, Edgar, 3
conflict resolution in insert operations, 82–83
connections

to HTTP servers, 179–184
with sqlite3, 67–72

constraints
candidate keys, 6
foreign keys

definition, 6
in SQLite, 40

keys, 6
primary keys, 6
REST, 177–178
superkeys, 6

constructors
CursorLoader class, 96
SQLiteOpenHelper class, 48–50

content observers, cursors as, 143
reacting to data changes, 156–161
registerContentObserver( ) method, 143–144
registerDataSetObserver( ) method, 144
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144

content providers
accessing from activities

activity class definition, 147–148
activity layout, 145–147
creating cursor loader, 148–149
handling returned data, 149–156
reacting to data changes, 156–161

content resolvers, role of, 108
ContentProvider class, 102–103

applyBatch( ) method, 105–108
bulkInsert( ) method, 105–108
delete( ) method, 104
extending, 115–118
getType( ) method, 104–105
insert( ) method, 103–104
onCreate( ) method, 103
query( ) method, 105
update( ) method, 105

DevicesProvider implementation, 115
class declaration, 115–118
delete( ) method, 120–122
getType( ) method, 130–132
insert( ) method, 119–120

ALPHA, 14
ALTER TABLE statement, 19–20

in SQLite, 43
upgrading databases, 59

Android Debug Bridge (adb) utility. See adb
(Android Debug Bridge) utility

Android SDK (Software Development Kit), 47
accessing Web services, 179–187
ContentValues class, 79

put( ) methods, 80–81
Cursor class, 79, 92

managing cursors, 94. See also
CursorLoader class

reading data, 92–94
CursorLoader class, 79, 94–95. See also

cursor loaders
creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

JSON API, 184–187
LoaderManager class, 79

creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

SQLiteDatabase class, 57–58, 79
deleting rows, 86–87
inserting rows, 80–83
queries, 89–91
replacing rows, 85–86
transactions, 87–89
updating rows, 83–85

SQLiteOpenHelper class, 47–48
constructors, 48–50
onConfigure( ) method, 53–54
onCreate( ) method, 50
onDowngrade( ) method, 54
onUpgrade( ) method, 50–53

SQLiteQueryBuilder class, 91, 128–130
applyBatch( ) method, 105–108
applySql( ) method, 51–52
app-specific permissions, 110–112
AsyncTask class, 180–184
atomic transactions

in content providers, 105–108
methods, 87–88
performance, 88–89
in SQLite, 41–42

attributes, 3, 4–4
authorities

in content URIs, 102
definition, 64

B
BaseActivity class, 147
battery consumption, Web services and, 203
beginTransaction( ) method, 87–88
binary relations, 4
binding. See also data binding library

activities to layouts, 234–235
cursor data to UI, 138

251Index

creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

cursors
binding data to UI, 138

with ListViews, 139–142
with RecyclerViews, 142, 145–147

creating CursorLoaders, 95–98
definition, 92
intents and, 172–173
managing, 94. See also CursorLoader class
objects versus, 133
as observers, 143

reacting to data changes, 156–161
registerContentObserver( ) method, 143–144
registerDataSetObserver( ) method, 144
setNotificationUri( ) method, 145
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144

ORM versus, 142
reading data, 92–94
restarting CursorLoaders, 99
starting CursorLoaders, 98–99
threads and, 94–95

D
data binding library, 231. See also binding

adding to projects, 200, 231
binding activities to layouts, 234–235
converting view layouts to data binding layouts,

232–233
expression language, 246–247
reacting to data changes, 238–242
replacing boilerplate code, 242–245
updating views, 235–238

Data Definition Language (DDL). See DDL (Data Definition
Language)

Data Manipulation Language (DML). See DML
(Data Manipulation Language)

data persistence, 47
for Web services, 204

AccountAuthenticator class, 204–208
manual synchronization with RxJava, 213–223
SyncAdapter class, 209–213
SyncAdapter framework, 204

data transfer. See Web services
data types

for intent extras, 169
for observable fields, 240
in SQLite, 43

storage classes, 43
type affinity, 44

databases
accessing. See accessing databases
closing, 133–134
hierarchical model, 2
history of, 1–2
languages, 14

ALPHA, 14
QUEL, 14

query( ) method, 124–130
update( ) method, 122–124

exposing to external apps, 108–109
allowing access, 114–115
app-specific permissions, 110–112
contracts, 112–114
path permissions, 109–110
provider-level permissions, 109
read/write permissions, 109

finding file location, 64–67
limitations, 132–134
RESTful APIs compared, 101
strengths, 134–135
UI (user interface). See UI (user interface)
URI scheme conventions, 101–102

content resolvers, role of, 108
ContentProvider class, 102–103

applyBatch( ) method, 105–108
bulkInsert( ) method, 105–108
delete( ) method, 104
extending, 115–118
getType( ) method, 104–105
insert( ) method, 103–104
onCreate( ) method, 103
query( ) method, 105
update( ) method, 105

ContentResolver class, 159–160
ContentValues class, 79, 80–81
Context class

getResolver( ) method, 108
startActivity( ) method, 164

contracts for content providers, 112–114
converting view layouts to data binding layouts,

232–233
copying

databases to development machines, 73
tables, 59–60

CREATE INDEX statement, 22
CREATE TABLE statement, 18–19
CREATE TRIGGER statement, 24–27
CREATE VIEW statement, 23–24
createChooser( ) method, 164–166
CREATOR member variable, 172
Cursor class, 79, 92

managing cursors, 94. See also CursorLoader class
reading data, 92–94
registerContentObserver( ) method,

143–144
registerDataSetObserver( ) method, 144
setNotificationUri( ) method, 145
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144

cursor loaders. See also CursorLoader class
content providers and, 134
creating, 95–98, 148–149
reacting to data changes, 156–161
restarting, 99
starting, 98–99
threads and, 137

CursorAdapter class, 140–142
CursorLoader class, 79, 94–95. See also cursor loaders

252 Index

databases (continued)
SEQUEL, 14
SQL. See SQL (Structured Query Language)
SQLite. See SQLite

network model, 2
relational model, 3

attributes, 4
first normal form, 5
intension/extension, 4
referential integrity, 7–9
relational algebra, 9–13
relational calculus, 13
relational languages, 9
relations, 3
relationships, 6–7
schemas, 5, 17
tuples, 4

upgrading. See upgrading databases
DataBindingUtil class, 234–235
DDL (Data Definition Language), 17

for indexes, 20–21
CREATE INDEX statement, 22
DROP INDEX statement, 22–23

for tables, 18
ALTER TABLE statement, 19–20, 59
CREATE TABLE statement, 18–19
DROP TABLE statement, 20

for triggers, 24
CREATE TRIGGER statement, 24–27
DROP TRIGGER statement, 27–28

for views, 23
CREATE VIEW statement, 23–24
DROP VIEW statement, 24

DEFAULT keyword in INSERT statements,
29–30

degrees, 4
delete( ) method

ContentProvider class, 104
DevicesProvider class, 120–122
SQLiteDatabase class, 86–87

DELETE statement, 31
deleting table rows, 86–87, 104
deliverSelfNotification( ) method, 143
DeviceCursorAdapter class

getItemCount( ) method, 151–152
implementation, 153–156
onBindViewHolder( ) method, 152–153
swapCursor( ) method, 151

DevicesOpenHelper implementation, 54–57
DevicesProvider implementation, 115

class declaration, 115–118
delete( ) method, 120–122
getType( ) method, 130–132
insert( ) method, 119–120
query( ) method, 124–130, 156–159
update( ) method, 122–124

DeviceViewHolder class, 153–156
difference operator, 11
DML (Data Manipulation Language), 28

DELETE statement, 31
INSERT statement, 28–29

DEFAULT keyword, 29–30
SELECT statement in, 29
VALUES keyword, 28–29

UPDATE statement, 30–31
domain relational calculus, 13
domains, 4
DROP INDEX statement, 22–23
DROP TABLE statement, 20
DROP TRIGGER statement, 27–28
DROP VIEW statement, 24
dropping

indexes, 22–23
tables, 20, 59–60
triggers, 27–28
views, 24

E
endTransaction( ) method, 87–88
explicit intents, 163
expression language for data binding, 246–247
extending ContentProvider class, 115–118
extension, 4
external apps

exposing content providers to, 108–109
allowing access, 114–115
app-specific permissions, 110–112
contracts, 112–114
path permissions, 109–110
provider-level permissions, 109
read/write permissions, 109

sharing data via intents, 164
actions, 167–168
extras, 168–169
Parcelable interface, 170–172
receiving implicit intents, 166–167
ShareActionProvider class, 173–175
starting target activities, 164–166

EXTRA_STREAM, 169
EXTRA_TEXT, 169
extras in implicit intents, 168–169

F
finding database file location, 64–67
findViewByID( ) method, 242
first normal form, 5
foreign keys

definition, 6
in SQLite, 40

FROM clause in SELECT statements, 32
FTS (full text search) in SQLite, 40–41
full table scans, 20

G
get( ) methods, 94
getColumnIndex( ) method, 93–94
getColumnIndexOrThrow( ) method, 93–94
getIntent( ) method, 167
getItemCount( ) method, 151–152

253Index

getReadableDatabase( ) method, 58
getResolver( ) method, 108
getType( ) method

ContentProvider class, 104–105
DevicesProvider class, 130–132

getWritableDatabase( ) method, 58
GSON library, 188, 190

H
hierarchical model of databases, 2
history of databases, 1–2
HTTP clients, OkHttp library, 190–193
HTTP servers, connecting to, 179–184
HttpURLConnection class, 179–180

I
IBM Information Management System (IMS), 2
IDs

adding to views, 242–245
in content URIs, 102

implicit intents, 164
actions, 167–168
extras, 168–169
Parcelable interface, 170–172
receiving, 166–167
ShareActionProvider class, 173–175
starting target activities, 164–166

IMS (IBM Information Management System), 2
indexes

CREATE INDEX statement, 22
definition, 20–21
DROP INDEX statement, 22–23

initLoader( ) method, 95, 98–99
insert( ) method

ContentProvider class, 103–104
DevicesProvider class, 119–120
SQLiteDatabase class, 80–83

INSERT statement, 28–29
DEFAULT keyword, 29–30
SELECT statement in, 29
VALUES keyword, 28–29

inserting
null columns, 81–82
table rows, 80–83, 103–104

insertOrThrow( ) method, 80, 82
insertWithOnConflict( ) method, 80, 82–83
INTEGER storage class, 43
intension, 4
Intent class

actions, 167–168
createChooser( ) method, 164–166
extras, 168–169
putExtra( ) method, 164, 169
resolveActivity( ) method, 164
setType( ) method, 164

intents
cursors and, 172–173
definition, 163
explicit intents, 163

implicit intents, 164
actions, 167–168
extras, 168–169
Parcelable interface, 170–172
receiving, 166–167
ShareActionProvider class, 173–175
starting target activities, 164–166

interprocess communication, 135
intersection operator, 10

J
Jackson, parsing JSON with, 197–200
joins, 12–13, 34–37, 42
journal mode, 41
JSON

Android APIs for, 184–187
parsing with Jackson, 197–200

K
keys, 6

L
languages, 14

ALPHA, 14
QUEL, 14
SEQUEL, 14
SQL. See SQL (Structured Query Language)
SQLite. See SQLite

<layout> element, 232–233
layouts

for activities, 145–147
binding activities to, 234–235
view layouts, converting to data binding layouts,

232–233
listings

AccountService in manifest, 207
ACTION_SEND_MULTIPLE, 168
activity with intent filter, 166
adb shell dumpsys subcommand, 65
adding

cancel support to AsyncTask, 182–184
data binding library to build.gradle, 200
data binding support to build.gradle, 231
manufacturer reference to device table, 36
new row to device table, 20
Retrofit to build.gradle, 188
RxJava adapter to Retrofit, 214–216
RxJava support to build.gradle, 214
Stetho to build.gradle, 74
transaction support to bulkInsert( )

and applyBatch( ), 106–107
views with IDs, 242–244
Volley dependency, 195
Volley to settings.gradle, 195

attaching SyncAdapter with SyncService, 212
binding

cursor with CursorAdapter, 141
to framework with AuthenticatorService, 206
layout to activity, 234

254 Index

DeviceCursorAdapter and DeviceViewHolder,
153–156

DeviceCursorAdapter.swapCursor( ), 151
DevicesOpenHelper.onConfigure( ), 54
DevicesOpenHelper.onCreate( ), 50
DevicesOpenHelper.onUpgrade( ), 51
DevicesProvider.onCreate( ), 118
GetManufacturersAndDevicesRequest,

202–203
getType( ), 131
insert( ), 119
notifyUris( ), 160
ObservableDevice, 237
onCreateLoader( ), 96
onLoadFinished( ), 97
query( ), 124–127
SQLiteOpenHelper constructor, 49
stub AccountAuthenticator, 204–206
SyncAdapter, 209–211
SyncManager.call( ), 217–219
SyncManager.

getManufacturersAndDevices( ), 216
update( ), 122–123
VolleyApiClient, 196

inserting
data using contract class, 114
data with SQLiteDatabase.insert( ), 81
manufacturers, 36

issuing .help to sqlite3, 67–69
joining tables with JOIN, 37
layout definition for DeviceListActivity,

145–146
<layout> element usage, 232–233
list_item_device.xml definition, 146
loading

devices with VolleyApiClient, 200–202
new cursor with onLoaderReset( ), 151

making requests with AsyncTask, 180–182
making Retrofit call, 194
manually triggering SyncAdapter, 213
mapping UriMatcher, 117
null coalescing operator, 247
observable Web service call to DeviceService, 216
OkHttpLoggingInterceptor output, 191–193
onCreate( ) method implementation, 147–148
opening HttpURLConnection connections,

179–180
ordering rows with ORDER BY, 34
Parcelable implementation, 170–171
parsing JSON with JacksonRequest, 197–200
populating table with multiple INSERT

statements, 30
processing

all rows with UPDATE, 31
cursor in onLoadFinished( ), 149

protected call to Context.startActivity( ), 165
pulling contact information with adb pull, 73
querying raw_contacts table, 70
reading cursor data, 92–93
removing

listings (continued)
BR and R class imports, 238
calling Intent.createChooser( ), 166
chaining onChange( ) method, 144
combining adb shell and sqlite3, 72

with formatting added, 72
complete implementation of SyncManager,

220–223
configuring

provider with onCreateOptionsMenu, 175
Retrofit, 188–190

connecting
to contacts database, 67
cursor with SimpleCursorAdapter, 139–140

content provider declaration, 115–117
content provider manifest, 107
contents of res/xml/authenticator.xml, 208
contents of res/xml/syncadapter.xml, 213
converting JSON to data model, 184–187
copying and dropping table, 60
creating

the device table, 19
device_name view, 24
explicit intent, 163
FTS table, 40
implicit intent, 164
index on model column, 22
loader with onCreateLoader( ), 148–149
manufacturer table, 35
trigger on device table, 26

data binding expression language, 246
databases directory listing, 66
/data/data directory listing, 62–63
declaring content provider permissions, 111–112
defining Web service interface, 188
deleting index on model column, 23
device database Application class, 74
DeviceListActivity class definition, 147
enabling

column headers, 70
columns, 71

entire implementation of DevicesOpenHelper,
54–57

examples
delete method, 87
replace call, 85
table, 60
update call, 84

exported content provider manifest listing, 114
extending contracts with DevicesContract.

DeviceManufacturer, 128
file permissions, 63
getting list of attached devices, 61

with device names, 62
handling implicit intent, 167
home directory listing, 66
implementing

applySql( ), 51–52
contract class, 112–113
delete( ), 120–121

255Index

device table, 20
device_name view, 24
insert_date trigger, 27
rows with DELETE, 31

returning
all rows in table, 90
number of items, 152

running .tables, 69–70
SELECT statement, 32

with WHERE clause, 32
sending

JPEG extra, 169
updates from DevicesProvider.query( ),

156–159
setting ObservableField values, 241
share action provider menu item, 174
simple query, 90
snippets of insert( ), update( ), and delete( ),

159–160
specifying null columns with

nullColumnHack, 82
standard SQL types, 44
SyncService manifest declaration, 212
transaction example, 88
UPDATE with WHERE clause, 31
updated ObservableDevice with

ObservableField, 241
updating

bound view, 236
IDs, 244–245
layout to use ObservableDevice,

239–240
UI in onBindViewHolder( ),

152–153
view from single row in cursor, 138

ListViews, 139–142
loader framework. See CursorLoader class
LoaderCallbacks interface, 95

onLoaderReset( ) method, 98, 150–151
onLoadFinished( ) method

binding data to UI, 138
creating cursor loaders, 97–98
processing cursors, 149–150
setting ObservableField values, 241
threads and, 137
updating views, 235–237

LoaderManager class, 79
creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

M
main thread, database access and, 60–61
many-to-many relationships, 7
mapping URIs to tables, 117–118
menus, 174–175
MIME types, returning, 104–105
move( ) method, 92
moveToFirst( ) method, 92

moveToLast( ) method, 92
movetoNext( ) method, 92
moveToPosition( ) method, 92
moveToPrevious( ) method, 92
multithread support in SQLite, 42

N
n-ary relations, 4
natural joins, 12–13
network model of databases, 2
notifyChange( ) method, 159–160
notifyPropertyChanged( ) method, 238
notifyUris( ) method, 160–161
null coalescing operator, 247
null columns, inserting, 81–82
NULL storage class, 43

O
object-relational mapping (ORM), 142
objects, cursors versus, 133
observable fields

data types, 240
setting values, 241–242
updating views, 237–238

ObservableDevice class, 237–242
ObservableField class, 240–242
observers, cursors as. See content observers, cursors as
OkHttp library, 190–193
onBindViewHolder( ) method, 152–153
onChange( ) method, 143–144
onConfigure( ) method, 53–54
onCreate( ) method

Activity class, 167
ContentProvider class, 103
DeviceListActivity class, 147–148
DevicesOpenHelper class, 50
DevicesProvider class, 118
LoaderCallbacks interface, 95
SQLiteOpenHelper class, 50

onCreateLoader( ) method
DeviceListActivity class, 148–149
LoaderCallbacks interface, 96

onCreateOptionsMenu( ) method, 174–175
onDowngrade( ) method, 54
one-to-many relationships, 7
one-to-one relationships, 6
onInvalidate( ) method, 144
onLoaderReset( ) method, 98, 150–151
onLoadFinished( ) method

binding data to UI, 138
creating cursor loaders, 97–98
processing cursors, 149–150
setting ObservableField values, 241
threads and, 137
updating views, 235–237

onUpgrade( ) method
DevicesOpenHelper class, 51
SQLiteOpenHelper class, 50–53

256 Index

read/write permissions, 109
REAL storage class, 43
rebuilding database as upgrade method, 58
receiving implicit intents, 166–167
RecyclerViews, 142, 145–147
referential integrity, 7–9
registerContentObserver( ) method, 143–144
registerDataSetObserver( ) method, 144
relational algebra

Cartesian product, 11
definition, 9–10
difference operator, 11
intersection operator, 10
joins, 12–13
projection operation, 12, 32
selection operation, 11–12
union operator, 10

relational calculus
definition, 9, 13
domain relational calculus, 13
tuple relational calculus, 13

relational languages, 9
relational algebra, 9–10

Cartesian product, 11
difference operator, 11
intersection operator, 10
joins, 12–13
projection operation, 12, 32
selection operation, 11–12
union operator, 10

relational calculus, 13
domain relational calculus, 13
tuple relational calculus, 13

relational model of databases, 3
relational languages, 9

relational algebra, 9–13
relational calculus, 13

relations, 3
attributes, 4
first normal form, 5
intension/extension, 4
schemas, 5, 17
tuples, 4

relationships
definition, 6–7
referential integrity, 7–9

relations, 3
attributes, 4
definition, 3
first normal form, 5
intension/extension, 4
relationships

definition, 6–7
referential integrity, 7–9

schemas, 5, 17
tuples, 4

relationships
definition, 6–7
referential integrity, 7–9

operators
Cartesian product, 11
data binding expression language, 246–247
difference, 11
intersection, 10
projection operation, 12
selection operation, 11–12
union, 10

ORDER BY clause in SELECT statements, 32–34
ORM (object-relational mapping), 142

P
Parcelable interface, 170–172
path permissions, 109–110
paths in content URIs, 102
performance of transactions, 88–89
permissions, 62–64

app-specific, 110–112
path, 109–110
provider-level, 109
read/write, 109

persisting data. See data persistence
primary keys, 6
projection operation, 12, 32
provider-level permissions, 109
pull command (adb), 73
put( ) methods, 80–81
putExtra( ) method, 164, 169

Q
QUEL, 14
queries

cursors
creating CursorLoaders, 95–98
definition, 92
managing, 94. See also CursorLoader class
reading data, 92–94
restarting CursorLoaders, 99
starting CursorLoaders, 98–99
threads and, 94–95

joins, 34–37
SELECT statement, 32–34
SQLiteDatabase class, 89–91

query( ) method, 89–91
rawQuery( ) method, 91

query( ) method
ContentProvider class, 105
DevicesProvider class, 124–130, 156–159
SQLiteDatabase class, 89–91

R
R class, 238
rawQuery( ) method, 91
reading

cursor data, 92–94
parcels, 172
threads and, 137

257Index

remote data transfer. See Web services
removing table rows, 86–87, 104
replace( ) method, 85–86
replaceOrThrow( ) method, 85
replacing

boilerplate code, 242–245
table rows, 85–86

RequestQueue (Volley), 195–197
resolveActivity( ) method, 164
REST (Representational State Transfer)

constraints, 177–178
Web services and, 177–179

restarting CursorLoaders, 99
restartLoader( ) method, 99
RESTful APIs

content providers compared, 101
structure of, 178–179

Retrofit, 188–194
adding RxJava support, 214–216
adding to projects, 188
configuring, 188–190
OkHttp library, 190–193
Web service calls, 193–194
Web service interface, 188

rowid column (SQLite), 21
rows

deleting, 86–87, 104
inserting, 80–83, 103–104
replacing, 85–86
updating, 83–85, 105

RxJava, 213–214
adding support to Retrofit, 214–216
SyncManager implementation, 216–223

S
schemas, 5, 17
schemes in content URIs, 102
SELECT statement, 32–34

in INSERT statements, 29
joins, 34–37
ORDER BY clause, 32–34

selection operation, 11–12
SEQUEL, 14
serialized mode in SQLite, 42
setContentView( ) method, 234–235
setNotificationUri( ) method Cursor class, 145
setTransactionSuccessful( ) method, 87–88
setType( ) method, 164
ShareActionProvider class, 173–175
sharing data

with content providers. See content providers
with intents. See intents

SimpleCursorAdapter class, 139–140
single-thread mode in SQLite, 42
SQL (Structured Query Language), 14

DDL (Data Definition Language), 17
for indexes, 20–23
for tables, 18–20

for triggers, 24–28
for views, 23–24

DML (Data Manipulation Language), 28
DELETE statement, 31
INSERT statement, 28–30
UPDATE statement, 30–31

queries
joins, 34–37
SELECT statement, 32–34

SQLite
Android SDK. See Android SDK

(Software Development Kit)
characteristics, 39
data persistence, 47
data types, 43

storage classes, 43
type affinity, 44

features, 39–40
atomic transactions, 41–42
foreign key support, 40
full text search, 40–41
multithread support, 42

limitations, 42–43
threads and database access, 60–61
upgrading databases, 58

by manipulating database, 59–60
by rebuilding database, 58

sqlite3 command, 67–72
SQLiteDatabase class, 57–58, 79

deleting rows, 86–87
inserting rows, 80–83
queries, 89–91

query( ) method, 89–91
rawQuery( ) method, 91

replacing rows, 85–86
transactions, 87–89
updating rows, 83–85

SQLiteOpenHelper class, 47–48
constructors, 48–50
onConfigure( ) method, 53–54
onCreate( ) method, 50
onDowngrade( ) method, 54
onUpgrade( ) method, 50–53

SQLiteQueryBuilder class, 91, 128–130
startActivity( ) method, 164
starting

CursorLoaders, 98–99
target activities, 164–166

statements (SQL)
ALTER TABLE, 19–20

in SQLite, 43
upgrading databases, 59

CREATE INDEX, 22
CREATE TABLE, 18–19
CREATE TRIGGER, 24–27
CREATE VIEW, 23–24
DELETE, 31
DROP INDEX, 22–23
DROP TABLE, 20

258 Index

transactions
in content providers, 105–108
methods, 87–88
performance, 88–89
in SQLite, 41–42

triggers
CREATE TRIGGER statement, 24–27
definition, 24
DROP TRIGGER statement, 27–28
warning about, 28

tuple relational calculus, 13
tuples, 3, 4
type affinity in SQLite, 44

U
UI (user interface), binding cursor data to, 138

with ListViews, 139–142
with RecyclerViews, 142, 145–147

unary relations, 4
union operator, 10
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144
update( ) method

ContentProvider class, 105
DevicesProvider class, 122–124
SQLiteDatabase class, 83–85

UPDATE statement, 30–31
updateWithOnConflict( ) method, 83–85
updating

data binding layouts, 238–242
table rows, 83–85, 105
views

with data binding, 235–238
with ListViews, 139–142
from onLoadFinished( ) method, 138
reacting to data changes, 156–161
with RecyclerViews, 142, 145–147

upgrading databases, 58
by manipulating database, 59–60
onUpgrade( ) method, 50–53
by rebuilding database, 58

URIs
mapping to tables, 117–118
scheme conventions, 101–102

URL scheme conventions, 101
user experience, Web services and, 203–204
user interface. See UI (user interface)

V
VALUES keyword in INSERT statements, 28–29
view layouts, converting to data binding layouts, 232–233
views

adding IDs, 242–245
CREATE VIEW statement, 23–24
definition, 23

statements (SQL) (continued)
DROP TRIGGER, 27–28
DROP VIEW, 24
INSERT, 28–29

DEFAULT keyword, 29–30
SELECT statement in, 29
VALUES keyword, 28–29

SELECT, 32–34
in INSERT statements, 29
joins, 34–37
ORDER BY clause, 32–34

UPDATE, 30–31
Stetho, 73–75
storage classes in SQLite, 43
storing data. See data persistence
Structured Query Language. See SQL
superkeys, 6
swapCursor( ) method, 151
SyncAdapter class, 209–213
SyncAdapter framework, 204

AccountAuthenticator class, 204–208
SyncAdapter class, 209–213

synchronizing remote data
manual synchronization with RxJava, 213–223

adding support to Retrofit, 214–216
SyncManager implementation, 216–223

SyncAdapter framework, 204
AccountAuthenticator class, 204–208
SyncAdapter class, 209–213

SyncManager implementation, 216–223

T
tables

ALTER TABLE statement, 19–20
in SQLite, 43
upgrading databases, 59

copying and dropping, 59–60
CREATE TABLE statement, 18–19
definition, 18
deleting rows, 86–87, 104
DROP TABLE statement, 20
inserting rows, 80–83, 103–104
mapping URIs to, 117–118
relations. See relations
replacing rows, 85–86
updating rows, 83–85, 105

target activities, starting, 164–166
ternary relations, 4
TEXT storage class, 43
theta joins, 13
threads

AsyncTask class, 180–184
cursor loaders and, 137
cursors and, 94–95
database access and, 60–61
in SQLite, 42

259Index

DROP VIEW statement, 24
in SQLite, 42
updating

with data binding, 235–238
with ListViews, 139–142
from onLoadFinished( ) method, 138
reacting to data changes, 156–161
with RecyclerViews, 142, 145–147

Volley, 194–203
adding to projects, 194–195
parsing JSON, 197–200
RequestQueue, 195–197
Web service calls, 200–203

W
WAL (write-ahead-log) model, 41–42
Web services

accessing databases

with Android SDK (Software Development
Kit), 179–187

with Retrofit, 188–194
with Volley, 194–203

battery consumption and, 203
data persistence, 204

AccountAuthenticator class, 204–208
manual synchronization with RxJava,

213–223
SyncAdapter class, 209–213
SyncAdapter framework, 204

REST and, 177–179
user experience and, 203–204

WHERE clause
in SELECT statements, 32
in UPDATE statement, 30, 31

write permissions, 109
write-ahead-log (WAL) model, 41–42
writeToParcel( ) method, 172

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	5 Working with Databases in Android
	Manipulating Data in Android
	Inserting Rows into a Table
	Updating Rows in a Table
	Replacing Rows in a Table
	Deleting Rows from a Table

	Transactions
	Using a Transaction
	Transactions and Performance

	Running Queries
	Query Convenience Methods
	Raw Query Methods

	Cursors
	Reading Cursor Data
	Managing the Cursor

	CursorLoader
	Creating a CursorLoader
	Starting a CursorLoader
	Restarting a CursorLoader

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

