
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134389455
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134389455
https://plusone.google.com/share?url=http://www.informit.com/title/9780134389455
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134389455
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134389455/Free-Sample-Chapter

Praise for Introduction to Android™ Application Development,
Fifth Edition

“Introduction to Android Application Development is a great resource for developers who
want to understand Android app development but who have little or no experience with
mobile software. This fifth edition has a bunch of great changes, from using Android
 Studio to understanding and implementing navigation patterns, and each chapter has quiz
 questions to help make sure you’re picking up the vital info that fills this book.”
—Ian G. Clifton, author of Android User Interface Design

“Revamped, revitalized, and refreshed! Introduction to Android Application Development,
Fifth Edition, is a wonderful upgrade to an already impressive compendium. Common
 pitfalls are explained, new features are covered in depth, and the knowledge that the
book is geared to cover everything from introduction of a concept to learning how to
 implement it into your app makes this a great choice for new developers who are ready to
make the jump into Android development. Being already accustomed to the professional
work and experience that Annuzzi et al., bring to the table, you will be grateful to have
expert insight along with the care and instruction that developers of all skill levels can
benefit from.”
—Phil Dutson, solution architect, ICON Health & Fitness

“Best technical summary of Material Design implementation I’ve seen outside the
 Android sample docs.”
—Ray Rischpater, software development manager, Uber

“Introduction to Android Application Development is well written and fulfills the requirements
of developers, project managers, educators, and entrepreneurs in developing fully featured
Android applications. In addition, it emphasizes quality assurance for mobile applications,
teaches you how to design and plan your Android application, and teaches the software
development process through a step-by-step, easy-to-understand approach. I recommend
this book to anyone who wants to not just focus on developing apps, but also to apply
tips and tricks and other tools for project management in their development of successful
applications.”
—Bintu Harwani, founder of MCE (Microchip Computer Education)

This page intentionally left blank

Introduction
to Android™
Application

Development

Fifth Edition

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Introduction
to Android™
Application

Development

Android Essentials

Fifth Edition

Joseph Annuzzi, Jr.
Lauren Darcey
Shane Conder

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Names: Annuzzi, Joseph, Jr., author. | Darcey, Lauren, 1977- author. |
 Conder, Shane, 1975- author.
Title: Introduction to Android application development : Android essentials /
 Joseph Annuzzi, Jr., Lauren Darcey, Shane Conder.
Description: Fifth edition | New York : Addison-Wesley, [2016] | Includes
 bibliographical references and index.
Identifiers: LCCN 2015037913 | ISBN 9780134389455 (pbk. : alk. paper)
Subjects: LCSH: Application software—Development. | Android (Electronic
 resource) | Mobile computing. | Wireless communication systems.
Classification: LCC QA76.76.A65 A56 2016 | DDC 005.3—dc23
LC record available at http://lccn.loc.gov/2015037913

Copyright © 2016 Joseph Annuzzi, Jr., Lauren Darcey, and Shane Conder

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Some figures that appear in this book have been reproduced from or are modifications based on work created
and shared by the Android Open Source Project and used according to terms described in the Creative Commons
3.0 Attribution License (http://creativecommons.org/licenses/by/3.0/).

Some figures that appear in this book have been reproduced from or are modifications based on work created
and shared by Google and used according to terms described in the Creative Commons Attribution 3.0 License.
See https://developers.google.com/site-policies.

Screenshots of Google Products follow these guidelines:
http://www.google.com/permissions/using-product-graphics.html

The following are registered trademarks of Google:
Android™, Chrome™, Google Play™, Nexus™, Dalvik™, Google Maps™, Google+™, Google TV™, Google and
the Google logo are registered trademarks of Google Inc.

ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

Altium® and Altium Designer® are trademarks or registered trademarks of Altium Limited or its subsidiaries.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other
countries.

Cyanogen is a trademark of Cyanogen Inc., registered in certain countries.

CyanogenMod is a trademark of CyanogenMod, LLC, registered in the United States.

JetBrains® and IntelliJ®, are registered trademarks owned by JetBrains s.r.o.

ISBN-13: 978-0-13-438945-5
ISBN-10: 0-13-438945-X

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing December 2015

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Senior Project Editor
Kesel Wilson

Copy Editor
Deborah Thompson

Indexer
Jack Lewis

Proofreader
Sue Boshers

Technical Reviewers
Douglas Jones
Ray Rischpater
Valerie Shipbaugh

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

http://lccn.loc.gov/2015037913
http://www.pearsoned.com/permissions
http://creativecommons.org/licenses/by/3.0
https://developers.google.com/site-policies
http://www.google.com/permissions/using-product-graphics.html

v

This book is dedicated to Cleopatra (Cleo).
—Joseph Annuzzi, Jr.

This book is dedicated to ESC.
—Lauren Darcey and Shane Conder

v

This page intentionally left blank

Contents at a Glance
 Acknowledgments xxxi

 About the Authors xxxiii

 Introduction 1

I: Platform Overview

 1 Presenting Android 11

 2 Setting Up for Development 31

 3 Creating Your First Application 51

II: Application Basics

 4 Understanding Application Components 77

 5 Defining the Manifest 95

 6 Managing Application Resources 111

 7 Exploring Building Blocks 147

 8 Positioning with Layouts 179

 9 Partitioning with Fragments 213

III: Application Design Essentials

 10 Architecting with Patterns 237

 11 Appealing with Style 269

 12 Embracing Material Design 285

 13 Designing Compatible Applications 319

IV: Application Development Essentials

 14 Using Android Preferences 345

 15 Accessing Files and Directories 363

 16 Saving with SQLite 377

 17 Leveraging Content Providers 393

V: Application Delivery Essentials

 18 Learning the Development Workflow 411

 19 Planning the Experience 437

 20 Delivering Quality Applications 449

 21 Testing Your Applications 467

 22 Distributing Your Applications 499

VI: Appendixes

 A Tips and Tricks: Android Studio 527

 B Quick-Start: Android Emulator 539

 C Quick-Start: Android Device Monitor 567

 D Mastery: Android SDK Tools 585

 E Quick-Start: Gradle Build System 603

 F Answers to Quiz Questions 623

 Index 631

x Contents at a Glance

Contents
 Acknowledgments xxxi

 About the Authors xxxiii

 Introduction 1

Who Should Read This Book 1

Key Questions Answered in This Book 2

How This Book Is Structured 2

An Overview of Changes in This Edition 3

Development Environments Used in This Book 5

Supplementary Materials for This Book 6

Conventions Used in This Book 6

Where to Find More Information 7

Contacting the Authors 8

I: Platform Overview

 1 Presenting Android 11

The Android Open Source Project (AOSP) 11

The Open Handset Alliance 12

Google Goes Mobile First 12

Introducing the Open Handset Alliance 12

Joining the Open Handset Alliance 13

Manufacturers: Designing Android Devices 13

Mobile Operators: Delivering the Android
Experience 14

Apps Drive Device Sales: Developing Android
Applications 14

Taking Advantage of All Android Has to Offer 15

Android: Where We Are Now 15

Android Platform Uniqueness 16

Android: The Code Names 16

Free and Open Source 17

Familiar and Inexpensive Development Tools 17

Reasonable Learning Curve for Developers 18

Enabling Development of Powerful Applications 18

Rich, Secure Application Integration 19

xii Contents

No Costly Obstacles for Development 19

A “Free Market” for Applications 19

A Growing Platform 20

The Android Platform 21

Android’s Underlying Architecture 21

Security and Permissions 22

Exploring Android Applications 23

Android beyond the OHA and GMS 26

Amazon Fire OS 26

Cyanogen OS and CyanogenMod 27

Maker Movement and Open-Source Hardware 27

Maintaining Awareness 28

Summary 28

Quiz Questions 28

Exercises 28

References and More Information 29

 2 Setting Up for Development 31

Configuring Your Development Environment 31

Configuring Your Operating System for Device
Debugging 34

Configuring Your Android Hardware for Debugging 34

Upgrading Android Studio 35

Upgrading the Android SDK 37

Problems with Android Studio 37

Problems with the Android SDK 37

IntelliJ IDEA as an Android Studio Alternative 38

Exploring the Android SDK 38

Understanding the Android SDK License
Agreement 38

Reading the Android SDK Documentation 40

Exploring the Core Android Application
Framework 40

Exploring the Core Android Tools 42

Exploring the Android Sample Applications 45

Summary 48

Quiz Questions 48

Exercises 48

References and More Information 48

 3 Creating Your First Application 51

Testing Your Development Environment 51

Importing the BorderlessButtons Sample into
Android Studio 52

Using the Preinstalled AVD for Running Your
BorderlessButtons Project 54

Running the BorderlessButtons Application
in the Android Emulator 55

Building Your First Android Application 57

Creating and Configuring a New Android Project 57

Understanding the Android Symbolic View
and the Traditional Project View 62

Core Files and Directories of the Android
Application 62

Running Your Android Application in the Emulator 64

Debugging Your Android Application in the
Emulator 66

Adding Logging Support to Your Android
Application 69

Debugging Your Application on Hardware 71

Summary 73

Quiz Questions 74

Exercises 74

References and More Information 74

II: Application Basics

 4 Understanding Application Components 77

Mastering Important Android Terminology 77

The Application Context 78

Retrieving the Application Context 78

Using the Application Context 78

Performing Application Tasks with Activities 80

The Lifecycle of an Android Activity 80

Organizing Activity Components with Fragments 85

Managing Activity Transitions with Intents 87

Transitioning between Activities with Intents 88

Organizing Application Navigation with Activities,
Fragments, and Intents 90

 Contents xiii

xiv Contents

Working with Services 90

Receiving and Broadcasting Intents 91

Summary 92

Quiz Questions 92

Exercises 93

References and More Information 93

 5 Defining the Manifest 95

Configuring Android Applications Using the Android
Manifest File 95

Editing the Android Manifest File 96

Managing Your Application’s Identity 99

Setting the Application Name and Icon 99

Enforcing Application System Requirements 100

Enforcing Application Platform Requirements 100

Other Application-Configuration Settings and
Filters 102

Registering Activities in the Android Manifest 103

Designating a Primary Entry-Point Activity for
Your Application Using an Intent Filter 103

Configuring Other Intent Filters 103

Registering Other Application Components 104

Working with Permissions 105

Registering Permissions Your Application
Requires 105

Registering Permissions Your Application
Enforces 108

Exploring Other Manifest File Settings 109

Summary 109

Quiz Questions 109

Exercises 110

References and More Information 110

 6 Managing Application Resources 111

What Are Resources? 111

Storing Application Resources 111

Resource Value Types 112

Accessing Resources Programmatically 116

Adding Simple Resource Values
in Android Studio 116

Working with Different Types of Resources 120

Working with String Resources 120

Using String Resources as Format Strings 121

Working with Quantity Strings 123

Working with String Arrays 123

Working with Boolean Resources 124

Working with Integer Resources 125

Working with Colors 126

Working with Dimensions 126

Using Dimension Resources Programmatically 127

Drawable Resources 128

Working with Images 129

Working with Color State Lists 131

Working with Animation 133

Working with Menus 135

Working with XML Files 137

Working with Raw Files 138

References to Resources 138

Working with Layouts 140

Designing Layouts in Android Studio 141

Using Layout Resources Programmatically 144

Referencing System Resources 144

Summary 145

Quiz Questions 146

Exercises 146

References and More Information 146

 7 Exploring Building Blocks 147

Introducing Android Views and Layouts 147

The Android View 147

The Android Controls 147

The Android Layout 148

Displaying Text to Users with TextView 148

Configuring Layout and Sizing 149

Creating Contextual Links in Text 150

Retrieving Data from Users with Text Fields 152

Retrieving Text Input Using EditText Controls 152

 Contents xv

xvi Contents

Constraining User Input with Input Filters 154

Helping the User with Autocompletion 155

Giving Users Choices Using Spinner Controls 157

Allowing Simple User Selections with Buttons and
Switches 159

Using Basic Buttons 159

Using CheckBox and ToggleButton
Controls 161

Using RadioGroup and RadioButton 163

Retrieving Dates, Times, and Numbers from Users with
Pickers 166

Using Indicators to Display Progress
and Activity to Users 168

Indicating Progress with ProgressBar 168

Adding Progress Indicators to the ActionBar 170

Indicating Activity with Activity Bars and Activity
Circles 171

Adjusting Progress with Seek Bars 171

Other Valuable User Interface Controls 173

Displaying Rating Data with RatingBar 173

Showing Time Passage with the
Chronometer 174

Displaying the Time 175

Playing Video with VideoView 175

Summary 177

Quiz Questions 177

Exercises 177

References and More Information 178

 8 Positioning with Layouts 179

Creating User Interfaces in Android 179

Creating Layouts Using XML Resources 179

Creating Layouts Programmatically 181

Organizing Your User Interface 184

Using ViewGroup Subclasses for Layout
Design 185

Using ViewGroup Subclasses as View
Containers 185

Using Built-in Layout Classes 185

Using LinearLayout 187

Using RelativeLayout 189

Using FrameLayout 193

Using TableLayout 196

Using GridLayout 198

Using Multiple Layouts on a Screen 202

Using Container Control Classes 203

Using Data-Driven Containers 204

Adding Scrolling Support 208

Exploring Other View Containers 209

Summary 210

Quiz Questions 210

Exercises 211

References and More Information 211

 9 Partitioning with Fragments 213

Understanding Fragments 213

Understanding the Fragment Lifecycle 214

Managing Fragment Modifications 216

Working with Special Types of Fragments 217

Designing Fragment-Based Applications 218

Using the Android Support Library Package 228

Adding Fragment Support to Legacy
Applications 229

Using Fragments in New Applications Targeting Older
Platforms 229

Linking the Android Support Package to Your
Project 230

Additional Ways to Use Fragments 231

Behavior Fragments without a User Interface 231

Exploring Nested Fragments 232

Summary 232

Quiz Questions 232

Exercises 233

References and More Information 233

 Contents xvii

xviii Contents

III: Application Design Essentials

 10 Architecting with Patterns 237

Architecting Your Application’s Navigation 237

Android Application Navigation Scenarios 237

Launching Tasks and Navigating the Back Stack 240

Navigating with Fragments 241

Relationships between Screens 242

Android Navigation Design Patterns 243

Encouraging Action 251

Menus 251

Action Bars 251

Floating Action Button 256

Actions Originating from Your Application’s
Content 257

Dialogs 258

Summary 267

Quiz Questions 267

Exercises 267

References and More Information 268

 11 Appealing with Style 269

Styling with Support 269

Themes and Styles 269

Defining the Default Application Themes 270

Theme and Style Inheritance 271

Colors 272

Layout 273

Merge and Include 274

TextInputLayout 275

FloatingActionButton 275

Toolbar as Bottom Bar 276

Application Branding 278

The Results Applied 280

Typography 280

Summary 282

Quiz Questions 282

Exercises 283

References and More Information 283

 12 Embracing Material Design 285

Understanding Material 285

The Default Material Theme 286

The SampleMaterial Application 286

Implementing the SampleMaterial Application 286

Dependencies 286

Material Support Styles 287

Showing the Dataset in the List 288

Summary 317

Quiz Questions 317

Exercises 317

References and More Information 318

 13 Designing Compatible Applications 319

Maximizing Application Compatibility 319

Designing User Interfaces for Compatibility 321

Working with Fragments 323

Leveraging the Various Android Support Library
APIs 323

Supporting Specific Screen Types 323

Working with Nine-Patch Stretchable Graphics 324

Providing Alternative Application Resources 324

Understanding How Resources Are Resolved 325

Organizing Alternative Resources with Qualifiers 326

Providing Resources for Different Orientations 331

Using Alternative Resources Programmatically 333

Organizing Application Resources Efficiently 334

Targeting Tablets and TVs 336

Targeting Tablet Devices 336

Targeting TV Devices 337

Extending Your Application to Watches and Cars 338

Ensuring Compatibility with SafetyNet 339

Summary 340

Quiz Questions 340

Exercises 341

References and More Information 341

 Contents xix

xx Contents

IV: Application Development Essentials

 14 Using Android Preferences 345

Working with Application Preferences 345

Determining When Preferences Are Appropriate 345

Storing Different Types of Preference Values 346

Creating Private Preferences for Use by a Single
Activity 346

Creating Shared Preferences for Use by Multiple
Activities 346

Searching and Reading Preferences 347

Adding, Updating, and Deleting Preferences 348

Reacting to Preference Changes 349

Finding Preferences Data on the File System 349

Creating Manageable User Preferences 350

Creating a Preference Resource File 350

Using the PreferenceActivity Class 353

Organizing Preferences with Headers 354

Auto Backup for Android Applications 359

Summary 361

Quiz Questions 361

Exercises 361

References and More Information 362

 15 Accessing Files and Directories 363

Working with Application Data on a Device 363

Practicing Good File Management 364

Understanding Android File Permissions 365

Working with Files and Directories 366

Exploring the Android Application Directories 366

Working with Other Directories and Files on the
Android File System 372

Summary 375

Quiz Questions 375

Exercises 375

References and More Information 376

 16 Saving with SQLite 377

SampleMaterial Upgraded with SQLite 377

Working with Databases 377

Providing Data Access 379

Updating the SampleMaterialActivity
Class 381

Updating the SampleMaterialAdapter
Constructor 382

Database Operations Off the Main UI Thread 382

Creating a Card in the Database 384

Getting All Cards 385

Adding a New Card 386

Updating a Card 387

Deleting a Card 388

Summary 390

Quiz Questions 390

Exercises 391

References and More Information 391

 17 Leveraging Content Providers 393

Exploring Android’s Content Providers 393

Using the MediaStore Content Provider 394

Using the CallLog Content Provider 397

Using the CalendarContract Content
Provider 398

Using the UserDictionary Content
Provider 399

Using the VoicemailContract Content
Provider 399

Using the Settings Content Provider 399

Introducing the ContactsContract Content
Providers 400

Modifying Content Provider Data 402

Adding Records 402

Updating Records 404

Deleting Records 405

Using Third-Party Content Providers 406

Summary 406

 Contents xxi

xxii Contents

Quiz Questions 406

Exercises 407

References and More Information 407

V: Application Delivery Essentials

 18 Learning the Development Workflow 411

An Overview of the Android
Development Process 411

Choosing a Software Methodology 412

Understanding the Dangers of Waterfall
Approaches 412

Understanding the Value of Iteration 413

Gathering Application Requirements 413

Determining Project Requirements 413

Developing Use Cases for Android
Applications 416

Incorporating Third-Party Requirements and
Recommendations 417

Managing a Device Database 417

Assessing Project Risks 421

Identifying Target Devices 421

Acquiring Target Devices 422

Determining the Feasibility of Application
Requirements 423

Understanding Quality Assurance Risks 423

Writing Essential Project Documentation 425

Developing Test Plans for Quality Assurance
Purposes 425

Providing Documentation Required by Third
Parties 426

Providing Documentation for Maintenance and
Porting 426

Leveraging Configuration Management Systems 426

Choosing a Source Control System 426

Implementing an Application Version System That
Works 427

Designing Android Applications 427

Understanding Android Device Limitations 428

Exploring Common Android Application
Architectures 428

Designing for Extensibility and Maintenance 428

Designing for Application Interoperability 430

Developing Android Applications 430

Testing Android Applications 431

Controlling the Test Release 431

Deploying Android Applications 432

Determining Target Markets 432

Supporting and Maintaining
Android Applications 433

Track and Address Crashes Reported by Users 433

Testing Firmware Upgrades 433

Maintaining Adequate Application
Documentation 433

Managing Live Server Changes 434

Identifying Low-Risk Porting Opportunities 434

Application Feature Selection 434

Summary 434

Quiz Questions 435

Exercises 435

References and More Information 435

 19 Planning the Experience 437

Thinking about Objectives 437

User Objectives 438

Team Objectives 438

Objectives of Other Stakeholders 438

Techniques for Focusing Your Product Efforts 439

Personas 439

User Story Mapping 440

Entity Discovery and Organization 440

Planning User Interactions 441

Communicating Your Application’s Identity 442

Designing Screen Layouts 443

Sketches 443

Wireframes 443

Design Comps 444

 Contents xxiii

xxiv Contents

Reacting Properly with Visual Feedback 444

Observing Target Users for Usability 445

Mocking Up the Application 445

Testing the Release Build 446

Summary 446

Quiz Questions 446

Exercises 447

References and More Information 447

 20 Delivering Quality Applications 449

Best Practices in Delivering Quality Applications 449

Meeting Android Users’ Demands 450

Designing User Interfaces for Android Devices 450

Designing Stable and Responsive Android
Applications 451

Designing Secure Android Applications 453

Designing Android Applications for Maximum
Profit 453

Following the Android Application Quality
Guidelines 454

Leveraging Third-Party Quality Standards 456

Designing Android Applications for Ease of
Maintenance and Upgrades 456

Leveraging Android Tools for Application Design 458

Avoiding Silly Mistakes in Android
Application Design 459

Best Practices in Delivering Quality
Android Applications 459

Designing a Development Process That Works
for Android Development 460

Testing the Feasibility of Your Application Early and
Often 460

Using Coding Standards, Reviews, and Unit Tests
to Improve Code Quality 461

Handling Defects Occurring on a Single Device 463

Leveraging Android Tools for Development 464

Avoiding Silly Mistakes in Android Application
Development 464

Summary 464

Quiz Questions 465

Exercises 465

References and More Information 465

 21 Testing Your Applications 467

Best Practices in Testing Mobile Applications 467

Designing a Mobile Application Defect-Tracking
System 467

Managing the Testing Environment 469

Maximizing Testing Coverage 471

Leveraging Android SDK Tools for Android Application
Testing 477

Avoiding Silly Mistakes in Android Application
Testing 479

Android Application Testing Essentials 479

Unit Testing with JUnit 480

Introducing the PasswordMatcher
Application 481

Determining What Our Tests Should Prove 485

Creating a Run Configuration for Test Code 485

Writing the Tests 489

Running Your First Test Using Android Studio 491

Analyzing the Test Results 492

Adding Additional Tests 493

More Android Automated Testing
Programs and APIs 496

Summary 497

Quiz Questions 497

Exercises 498

References and More Information 498

 22 Distributing Your Applications 499

Choosing the Right Distribution Model 499

Protecting Your Intellectual Property 500

Following the Policies of Google Play 501

Billing the User 501

Packaging Your Application for Publication 502

Preparing Your Code for Packaging 503

Packing and Signing Your Application 504

 Contents xxv

xxvi Contents

Testing the Release Version of Your Application
Package 508

Including All Required Resources 508

Readying Your Servers or Services 508

Distributing Your Application 508

Publishing to Google Play 509

Signing Up for Publishing to Google Play 509

Uploading Your Application to Google Play 511

Uploading Application Marketing Assets 514

Configuring Pricing and Distribution Details 515

Configuring Additional Application Options 516

Managing Other Developer Console Options 516

Publishing Your Application to Google Play 516

Managing Your Application on Google Play 517

Google Play Staged Rollouts 518

Publishing to the Google Play Private Channel 518

Translating Your Application 519

Publishing Using Other Alternatives 520

Self-Publishing Your Application 520

Summary 522

Quiz Questions 522

Exercises 522

References and More Information 523

VI: Appendixes

 A Tips and Tricks: Android Studio 527

Organizing Your Android Studio Workspace 527

Integrating with Source Control Services 527

Repositioning Windows within Android Studio 528

Resizing the Editor Window 528

Resizing Tool Windows 528

Viewing Editor Windows Side by Side 529

Viewing Two Sections of the Same File 529

Closing Unwanted Tabs 531

Keeping Editor Windows under Control 531

Creating Custom Log Filters 532

Searching Your Project 532

Organizing Android Studio Tasks 532

Writing Code in Java 533

Using Autocomplete 533

Creating New Classes and Methods 533

Organizing Imports 533

Reformatting Code 534

Renaming Almost Anything 534

Refactoring Code 535

Reorganizing Code 536

Using Intention Actions 536

Providing Javadoc-Style Documentation 537

Resolving Mysterious Build Errors 537

Summary 537

Quiz Questions 538

Exercises 538

References and More Information 538

 B Quick-Start: Android Emulator 539

Simulating Reality: The Emulator’s Purpose 539

Working with Android Virtual Devices 541

Using the Android Virtual Device Manager 542

Creating an AVD 543

Creating AVDs with Custom Hardware Settings 547

Launching the Emulator with a Specific AVD 548

Maintaining Emulator Performance 549

Launching an Emulator to Run an Application 550

Launching an Emulator from the Android Virtual
Device Manager 554

Configuring the GPS Location of the Emulator 555

Calling between Two Emulator Instances 557

Messaging between Two Emulator Instances 558

Interacting with the Emulator through the Console 559

Using the Console to Simulate Incoming Calls 559

Using the Console to Simulate SMS Messages 560

Using the Console to Send GPS Coordinates 561

Using the Console to Monitor Network Status 562

 Contents xxvii

xxviii Contents

Using the Console to Manipulate Power
Settings 562

Using Other Console Commands 563

Personalizing the Emulator 563

Understanding Emulator Limitations 563

Summary 565

Quiz Questions 565

Exercises 565

References and More Information 565

 C Quick-Start: Android Device Monitor 567

Using Device Monitor with Android Studio and as a
Stand-Alone Application 567

Getting Up to Speed Using Key Features
of Device Monitor 568

Working with Processes, Threads, and the Heap 569

Attaching a Debugger to an Android Application 569

Stopping a Process 570

Monitoring Thread Activity of an Android
Application 570

Monitoring Heap Activity 570

Prompting Garbage Collection 571

Creating and Using an HPROF File 572

Using the Allocation Tracker 573

Viewing Network Statistics 574

Working with the File Explorer 575

Browsing the File System of an Emulator or
Device 575

Copying Files from the Emulator or Device 577

Copying Files to the Emulator or Device 577

Deleting Files on the Emulator or Device 577

Working with the Emulator Control 578

Changing Telephony Status 578

Simulating Incoming Voice Calls 579

Simulating Incoming SMS Messages 579

Sending a Location Fix 579

Working with the System Information Pane 580

Taking Screen Captures of the Emulator
and Device Screens 580

Working with Application Logging 581

Summary 582

Quiz Questions 583

Exercises 583

References and More Information 583

 D Mastery: Android SDK Tools 585

Using the Android Documentation 585

Leveraging the Android Emulator 588

Viewing Application Log Data with logcat 589

Debugging Applications with Device Monitor 590

Using Android Debug Bridge (ADB) 591

Using the Layout Editor 591

Using the Android Hierarchy Viewer 592

Launching the Hierarchy Viewer 593

Working in Layout View Mode 593

Optimizing Your User Interface 594

Working in Pixel Perfect Mode 595

Working with Nine-Patch Stretchable Graphics 596

Working with Other Android Tools 597

Summary 600

Quiz Questions 600

Exercises 600

References and More Information 601

 E Quick-Start: Gradle Build System 603

Gradle Build Files 603

Project Settings 604

Module Settings 606

Using Android Studio to Configure Your Builds 609

Syncing Your Project 609

Configuring the Android Properties 609

Working with Signing Options 611

Configuring Different Build Flavors 611

Configuring Different Build Types 614

Configuring Application Dependencies 615

Adding Library Dependencies 615

 Contents xxix

xxx Contents

Building Different APK Variants 616

Running Different Gradle Build Tasks 618

Summary 620

Quiz Questions 620

Exercises 621

References and More Information 621

 F Answers to Quiz Questions 623

Chapter 1: Presenting Android 623

Chapter 2: Setting Up for Development 623

Chapter 3: Creating Your First Application 623

Chapter 4: Understanding Application Components 624

Chapter 5: Defining the Manifest 624

Chapter 6: Managing Application Resources 624

Chapter 7: Exploring Building Blocks 624

Chapter 8: Positioning with Layouts 625

Chapter 9: Partitioning with Fragments 625

Chapter 10: Architecting with Patterns 625

Chapter 11: Appealing with Style 626

Chapter 12: Embracing Material Design 626

Chapter 13: Designing Compatible Applications 626

Chapter 14: Using Android Preferences 626

Chapter 15: Accessing Files and Directories 627

Chapter 16: Saving with SQLite 627

Chapter 17: Leveraging Content Providers 627

Chapter 18: Learning the Development Workflow 627

Chapter 19: Planning the Experience 628

Chapter 20: Delivering Quality Applications 628

Chapter 21: Testing Your Applications 628

Chapter 22: Distributing Your Applications 629

Appendix A: Tips and Tricks: Android Studio 629

Appendix B: Quick-Start: Android Emulator 629

Appendix C: Quick-Start: Android
Device Monitor 630

Appendix D: Mastery: Android SDK Tools 630

Appendix E: Quick-Start: Gradle Build System 630

 Index 631

Acknowledgments

This book is the result of collaboration among the finest group of professionals: from
the efforts of the team at Pearson Education (Addison-Wesley); from the suggestions
made by the technical reviewers; and from the support of family, friends, coworkers, and
acquaintances alike. We’d like to thank the Android developer community, Google, and the
Android Open Source Project for their vision and expertise. Special thanks go to Mark
Taub for believing in the vision for extending this book to another edition; Laura Lewin,
who was the driving force behind the book—without her this book would not have
become a reality; Olivia Basegio, who was instrumental in orchestrating all of the efforts
among everyone involved; and Songlin Qiu for performing countless iterations combing
through the manuscript to make this book ready for production. And to the technical
reviewers: Ray Rischpater, who surprised us yet again with quality recommendations;
Doug Jones, whose expertise uncovered needed improvements to the fine details; and
Valerie Shipbaugh, who was able to provide tips on desperately needed clarification
(as well as Mike Wallace, Mark Gjoel, Dan Galpin, Tony Hillerson, Ronan Schwarz, and
Charles Stearns, who reviewed previous editions). For previous editions, Dan Galpin
graciously provided the clever Android graphics used for Tips, Notes, and Warnings.
Amy Badger must be commended for her wonderful waterfall illustration, and we also
thank Hans Bodlaender for letting us use the nifty chess font he developed as a hobby
project.

This page intentionally left blank

About the Authors

Joseph Annuzzi, Jr. is a code warrior, graphic artist, entrepreneur, and author. He usually
can be found mastering the Android platform; implementing cutting-edge HTML5
capabilities; leveraging various cloud technologies; speaking in different programming
languages; working with diverse frameworks; integrating with various APIs; tinkering with
peer-to-peer, cryptography, and biometric algorithms; or creating stunningly realistic 3D
renders. He is always on the lookout for disruptive Internet and mobile technologies. He
graduated from the University of California, Davis, with a BS in managerial economics and
a minor in computer science, and lives where much of the action is, Silicon Valley.

When he is not working with technology, he has been known to lounge in the
sun on the beaches of the Black Sea with international movie stars; he has trekked
through the Bavarian forest in winter, has immersed himself in the culture of the Italian
Mediterranean, and has narrowly escaped the wrath of an organized crime ring in Eastern
Europe after his taxi dropped him off in front of the bank ATM they were liquidating.
He also lives an active and healthy lifestyle, designs and performs custom fitness training
routines to stay in shape, and adores his loyal beagle, Cleopatra.

Lauren Darcey is responsible for the technical leadership and direction of a small
software company specializing in mobile technologies, including Android and iOS
consulting services. With more than two decades of experience in professional software
production, Lauren is a recognized authority in application architecture and the
development of commercial-grade mobile applications. Lauren received a BS in computer
science from the University of California, Santa Cruz.

She spends her copious free time traveling the world with her geeky mobile-minded
husband and pint-sized geekling daughter. She is an avid nature photographer. Her work
has been published in books and newspapers around the world. In South Africa, she
dove with 4-meter-long great white sharks and got stuck between a herd of rampaging
hippopotami and an irritated bull elephant. She’s been attacked by monkeys in Japan,
has gotten stuck in a ravine with two hungry lions in Kenya, has gotten thirsty in Egypt,
narrowly avoided a coup d’état in Thailand, geocached her way through the Swiss Alps,
drank her way through the beer halls of Germany, slept in the crumbling castles of Europe,
and has gotten her tongue stuck to an iceberg in Iceland (while being watched by a herd
of suspicious wild reindeer). Most recently, she can be found hiking along the Appalachian
Trail with her daughter and documenting the journey with Google Glass.

Shane Conder has extensive application development experience and has focused his
attention on mobile and embedded development for well over a decade. He has designed

xxxiv About the Authors

and developed many commercial applications for Android, iOS, BREW, BlackBerry,
J2ME, Palm, and Windows Mobile—some of which have been installed on millions of
phones worldwide. Shane has written extensively about the tech industry and is known
for his keen insights regarding mobile development platform trends. Shane received a BS
in computer science from the University of California, Santa Cruz.

A self-admitted gadget freak, Shane always has the latest smartphone, tablet, or wearable.
He enjoys traveling the world with his geeky wife, even if she did make him dive with
4-meter-long great white sharks and almost get eaten by a lion in Kenya. He admits that
he has to take at least three devices with him when backpacking (“just in case”)—even
where there is no coverage. Lately, his smartwatch collection has exceeded his number of
wrists. Luckily, his young daughter is happy to offer her own. Such are the burdens of a
daughter of engineers.

Introduction

Android is a popular, free, open-source mobile platform that has taken the world
by storm. This book provides guidance for software development teams on designing,
 developing, testing, debugging, and distributing professional Android applications. If you’re
a veteran mobile developer, you can find tips and tricks to streamline the development
process and take advantage of Android’s unique features. If you’re new to mobile
 development, this book provides everything you need to make a smooth transition from
traditional software development to mobile development—specifically, the most promising
platform: Android.

Who Should Read This Book
This book includes tips for successful mobile development based upon our years in the
mobile industry and covers everything you need to know in order to run a successful
Android project from concept to completion. We cover how the mobile software process
differs from traditional software development, including tricks to save valuable time and
pitfalls to avoid. Regardless of the size of your project, this book is for you.

This book was written for several audiences:

■■ Software developers who want to learn to develop professional Android
applications. The bulk of this book is targeted at software developers with
Java experience who do not necessarily have mobile development experience.
 More-seasoned developers of mobile applications can learn how to take advantage
of Android and how it differs from the other technologies on the mobile
 development market today.

■■ Quality assurance personnel tasked with testing Android applications.
Whether they are black-box or white-box testing, quality assurance engineers
can find this book invaluable. We devote several chapters to mobile QA concerns,
 including topics such as developing solid test plans and defect-tracking systems
for mobile applications, how to manage handsets, and how to test applications
 thoroughly using all the Android tools available.

■■ Project managers planning and managing Android development teams.
Managers can use this book to help plan, hire for, and execute Android projects
from start to finish. We cover project risk management and how to keep Android
projects running smoothly.

2 Introduction

■■ Other audiences. This book is useful not only to the software developer, but also
to the corporation looking at potential vertical market applications, the entrepre-
neur thinking about a cool phone application, and the hobbyist looking for some
fun with his or her new phone. Businesses seeking to evaluate Android for their
specific needs (including feasibility analysis) can also find the information provided
valuable. Anyone with an Android handset and a good idea for a mobile application
can put the information in this book to use for fun and profit.

Key Questions Answered in This Book
This book answers the following questions:

1. What is Android? How do the SDK versions differ?

2. How is Android different from other mobile technologies? How should
developers take advantage of these differences?

3. How do developers use Android Studio and the Android SDK tools to develop
and debug Android applications on the emulator and handsets?

4. How are Android applications structured?

5. How do developers design robust user interfaces for mobile—specifically, for
Android?

6. What capabilities does the Android SDK have and how can developers use them?

7. What is material design and why does it matter?

8. How does the mobile development process differ from traditional desktop
development?

9. What strategies work best for Android development?

10. What do managers, developers, and testers need to look for when planning,
 developing, and testing a mobile application?

11. How do mobile teams deliver quality Android applications for publishing?

12. How do mobile teams package Android applications for distribution?

13. How do mobile teams make money from Android applications?

14. And, finally, what is new in this edition of the book?

How This Book Is Structured
Introduction to Android Application Development, Fifth Edition, focuses on Android essentials,
including setting up the development environment, understanding the application
 lifecycle, user interface design, developing for different types of devices, and the mobile
software process from design and development to testing and publication of commercial-
grade applications.

 An Overview of Changes in This Edition 3

The book is divided into six parts. Here is an overview of the various parts:

■■ Part I: Platform Overview
 Part I provides an introduction to Android, explaining how it differs from other

 mobile platforms. You become familiar with the Android SDK tools, install the
 development tools, and write and run your first Android application—on the
 emulator and on a handset. This section is of primary interest to developers and
testers, especially white-box testers.

■■ Part II: Application Basics
 Part II introduces the principles necessary to write Android applications. You learn

how Android applications are structured and how to include resources, such as
strings, graphics, and user interface components, in your projects. You learn about
the core user interface element in Android: the View. You also learn about the most
common user interface controls and layouts provided in the Android SDK. This
 section is of primary interest to developers.

■■ Part III: Application Design Essentials
 Part III dives deeper into how applications are designed in Android. You learn about

material design, styling, and common design patterns found among applications.
You also learn how to design and plan your applications. This section is of primary
 interest to developers.

■■ Part IV: Application Development Essentials
 Part IV covers the features used by most Android applications, including storing

persistent application data using preferences, working with files and directories,
SQLite, and content providers. This section is of primary interest to developers.

■■ Part V: Application Delivery Essentials
 Part V covers the software development process for mobile, from start to finish,

with tips and tricks for project management, software developers, user-experience
 designers, and quality assurance personnel.

■■ Part VI: Appendixes
 Part VI includes several helpful appendixes to help you get up and running with the

most important Android tools. This section consists of tips and tricks for Android
Studio, an overview of the Android SDK tools, three helpful quick-start guides for
the Android development tools—the emulator, Device Monitor, and Gradle—as
well as answers to the end-of-chapter quiz questions.

An Overview of Changes in This Edition
When we began writing the first edition of this book, there were no Android devices
on the market. Today, there are hundreds of millions of Android devices (with thousands
of different device models) shipping all over the world every quarter—phones, tablets,
e-book readers, smartwatches, and specialty devices such as gaming consoles, TVs, and
Google Glass. Other devices such as Google Chromecast provide screen sharing between
Android devices and TVs.

4 Introduction

The Android platform has gone through extensive changes since the first edition of this
book was published. The Android SDK has many new features, and the development tools
have received many much-needed upgrades. Android, as a technology, is now the leader
within the mobile marketplace.

In this new edition, we took the opportunity to add a wealth of information. But
don’t worry, it’s still the book readers loved the first, second, third, and fourth time around;
it’s just much bigger, better, and more comprehensive, following many best practices. In
 addition to adding new content, we’ve retested and upgraded all existing content (text
and sample code) for use with the latest Android SDKs available, while still remaining
backward compatible. We included quiz questions to help readers ensure they understand
each chapter’s content, and end-of-chapter exercises for readers to perform to dig deeper
into all that Android has to offer. The Android development community is diverse and we
aim to support all developers, regardless of which devices they are developing for. This
includes developers who need to target nearly all platforms, so coverage in some key areas
of older SDKs continues to be included because it’s often the most reasonable option for
compatibility.

Here are some of the highlights of the additions and enhancements we’ve made to this
edition:

■■ The entire book has been overhauled to include coverage of the Android Studio
IDE. Previous editions of this book included coverage of the Eclipse IDE. Where
applicable, all content, images, and code samples have been updated for Android
Studio. In addition, coverage of the latest and greatest Android tools and utilities is
included.

■■ The chapter on defining the manifest includes coverage of the new Android 6.0
Marshmallow (API Level 23) permission model, and it provides a code sample
 demonstrating the new permission model.

■■ A brand new chapter on material design has been added and demonstrates how
developers can integrate common material design features into their application, and
it includes a code sample.

■■ A brand new chapter on working with styles has been included with tips on how
to best organize styles and reuse common UI components for optimized display
 rendering, and it provides a code sample.

■■ A brand new chapter on common design patterns has been added with details on
various ways to architect your application, and it offers a code sample.

■■ A brand new chapter on incorporating SQLite for working with persistent
 database-backed application data has been added, and it includes a code sample.

■■ An appendix providing tips and tricks for using Android Studio has been included.
■■ An appendix on the Gradle build system has been included to help you understand
what Gradle is and why it’s important.

■■ The AdvancedLayouts code sample has been updated so that the GridView and
ListView components make use of Fragment and ListFragment classes respectively.

 Development Environments Used in This Book 5

■■ Some code samples include an ActionBar by making use of the new Toolbar, and
have done so using the support library for maintaining compatibility on devices
running older APIs. When necessary, application manifests have been updated to
support parent-child Activity relationships that support up-navigation.

■■ Many code samples make use of the AppCompatActivity class and the
 appcompat-v7 support library.

■■ All chapters and appendixes include quiz questions and exercises for readers to test
their knowledge of the subject matter presented.

■■ All existing chapters have been updated, often with some entirely new sections.
■■ All sample code and accompanying applications have been updated to work with
the latest SDK.

As you can see, we cover many of the hottest and most exciting features that Android
has to offer. We didn’t take this review lightly; we touched every existing chapter,
 updated content, and added new chapters as well. Finally, we included many additions,
 clarifications, and, yes, even a few fixes based on the feedback from our fantastic (and
 meticulous) readers. Thank you!

Development Environments Used in This Book
The Android code in this book was written using the following development
environments:

■■ Windows 7, 8, and Mac OS X 10.9
■■ Android Studio 1.3.2
■■ Android SDK API Level 23 (referred to in this book as Android Marshmallow)
■■ Android SDK Tools 24.3.4
■■ Android SDK Platform Tools 23.0.0
■■ Android SDK Build Tools 23.0.0
■■ Android Support Repository 17 (where applicable)
■■ Java SE Development Kit (JDK) 7 Update 55
■■ Android devices: Nexus 4, 5, and 6 (phones), Nexus 7 (first- and second-generation
7-inch tablet), Nexus 9 and 10 (large tablet), including various other popular devices
and form factors.

The Android platform continues to grow aggressively in market share against
 competing mobile platforms, such as Apple iOS, Windows Phone, and BlackBerry OS.
New and exciting types of Android devices reach consumers’ hands at a furious pace.
Developers have embraced Android as a target platform to reach the device users of today
and tomorrow.

Android’s latest major platform update, Android Marshmallow, brings many new
 features. This book covers the latest SDK and tools available, but it does not focus on

6 Introduction

them to the detriment of popular legacy versions of the platform. The book is meant to
be an overall reference to help developers support as many popular devices as possible on
the market today. As of the writing of this book, approximately 9.7% of users’ devices are
running a version of Android Lollipop, 5.0 or 5.1, and Android Marshmallow has yet to
be released on real devices. Of course, some devices will receive upgrades, and users will
purchase new Lollipop and Marshmallow devices as they become available, but for now,
developers need to straddle this gap and support numerous versions of Android to reach
the majority of users in the field. In addition, the next version of the Android operating
system is likely to be released in the near future.

So what does this mean for this book? It means we provide legacy API support and
discuss some of the newer APIs available in later versions of the Android SDK. We discuss
strategies for supporting all (or at least most) users in terms of compatibility. And we pro-
vide screenshots that highlight different versions of the Android SDK, because each major
revision has brought with it a change in the look and feel of the overall platform. That
said, we are assuming that you are downloading the latest Android tools, so we provide
screenshots and steps that support the latest tools available at the time of writing, not
legacy tools. Those are the boundaries we set when trying to determine what to include
and leave out of this book.

Supplementary Materials for This Book
The source code that accompanies this book is available for download from our book’s
website: http://introductiontoandroid.blogspot.com/2015/08/5th-edition-book-code-samples.html.
The code samples are organized by chapter and downloadable in zip format or accessible
from the command line with Git. You’ll also find other Android topics discussed on our
book’s website (http://introductiontoandroid.blogspot.com).

Conventions Used in This Book
This book uses the following conventions:

■■ Code and programming terms are set in monospace text.
■■ Java import statements, exception handling, and error checking are often removed
from printed code examples for clarity and to keep the book to a reasonable length.

This book also presents information in the following sidebars:

Tip
Tips provide useful information or hints related to the current text.

Note
Notes provide additional information that might be interesting or relevant.

http://introductiontoandroid.blogspot.com/2015/08/5th-edition-book-code-samples.html
http://introductiontoandroid.blogspot.com

 Where to Find More Information 7

Warning
Warnings provide hints or tips about pitfalls that may be encountered and how to avoid
them.

Where to Find More Information
There is a vibrant, helpful Android developer community on the Web. Here are a number
of useful websites for Android developers and followers of the mobile industry:

■■ Android Developer website: the Android SDK and developer reference site:
http://d.android.com/index.html and http://d.android.com

■■ Google Plus: Android Developers Group:
https://plus.google.com/+AndroidDevelopers/posts

■■ YouTube: Android Developers and Google Design:
https://www.youtube.com/user/androiddevelopers
https://www.youtube.com/channel/UClKO7be7O9cUGL94PHnAeOA

■■ Google Material Design:
https://www.google.com/design/spec/material-design/introduction.html

■■ Stack Overflow: the Android website with great technical information
(complete with tags) and an official support forum for developers:
http://stackoverflow.com/questions/tagged/android

■■ Android Open Source Project:
https://source.android.com/index.html

■■ Open Handset Alliance: Android manufacturers, operators, and developers:
http://openhandsetalliance.com

■■ Google Play: buy and sell Android applications:
https://play.google.com/store

■■ tuts+: Android development tutorials:
http://code.tutsplus.com/categories/android

■■ Google Sample Apps: open-source Android applications hosted on GitHub:
https://github.com/googlesamples

■■ Android Tools Project Site: the tools team discusses updates and changes:
https://sites.google.com/a/android.com/tools/recent

■■ FierceDeveloper: a weekly newsletter for wireless developers:
http://fiercedeveloper.com

■■ XDA-Developers Android Forum:
http://forum.xda-developers.com/android

■■ Developer.com: a developer-oriented site with mobile articles:
http://developer.com

http://d.android.com/index.html
http://d.android.com
https://plus.google.com/+AndroidDevelopers/posts
https://www.youtube.com/user/androiddevelopers
https://www.youtube.com/channel/UClKO7be7O9cUGL94PHnAeOA
https://www.google.com/design/spec/material-design/introduction.html
http://stackoverflow.com/questions/tagged/android
https://source.android.com/index.html
http://openhandsetalliance.com
https://play.google.com/store
http://code.tutsplus.com/categories/android
https://github.com/googlesamples
https://sites.google.com/a/android.com/tools/recent
http://fiercedeveloper.com
http://forum.xda-developers.com/android
http://developer.com

8 Introduction

Contacting the Authors
We welcome your comments, questions, and feedback. We invite you to visit our blog at:

■■ http://introductiontoandroid.blogspot.com

Or email us at:

■■ introtoandroid5e@gmail.com

Find Joseph Annuzzi on LinkedIn:

■■ Joseph Annuzzi, Jr.: https://www.linkedin.com/in/josephannuzzi

Circle Joseph Annuzzi on Google+:

■■ Joseph Annuzzi, Jr.: http://goo.gl/FBQeL

http://introductiontoandroid.blogspot.com
https://www.linkedin.com/in/josephannuzzi
http://goo.gl/FBQeL

16
Saving with SQLite

There are many different ways for storing your Android applications’ data. As you learned
in Chapter 14, “Using Android Preferences,” and in Chapter 15, “Accessing Files and
Directories,” there is definitely more than one way for accessing and storing your data. But
what if you need to store structured data for your application, such as data more suited for
storing in a database? That’s where SQLite comes in. In this chapter, we are going to be
modifying the SampleMaterial application found in Chapter 12, “Embracing Material
Design,” so that Card data is stored persistently in a SQLite database on the device and
will survive various lifecycle events. By the end of this chapter, you will be confident in
adding a SQLite database for your application.

SampleMaterial Upgraded with SQLite
The SampleMaterial application found in Chapter 12, “Embracing Material Design,”
shows you how to work with data in the application but fails when it comes to
 storing the data permanently so that it survives Android lifecycle events. When a dding,
 updating, and deleting cards from the SampleMaterial application, and then clearing
the SampleMaterial application from the Recent apps, the application is not able to
 remember what cards were added, updated, and deleted. So we updated the application
to store the information in a SQLite database to keep track of the data permanently.
F igure 16.1 shows the SampleSQLite application, which looks the same as the
 SampleMaterial application, but is backed by a SQLite database.

Working with Databases
The first thing that must be done is to define the database table that should be created for
storing the cards in the database. Luckily, Android provides a helper class for defining a
SQLite database table through Java code. That class is called SQLiteOpenHelper. You need
to create a Java class that extends from the SQLiteOpenHelper, and this is where you can
define a database name and version, and where you define the tables and columns. This
is also where you create and upgrade your database. For the SampleSQLite application,

378 Chapter 16 Saving with SQLite

Figure 16.1 Showing the SampleSQLite application.

we created a CardsDBHelper class that extends from SQLiteOpenHelper, and here’s the
implementation that can be found in the CardsDBHelper.java file:

public class CardsDBHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "cards.db";

 private static final int DB_VERSION = 1;

 public static final String TABLE_CARDS = "CARDS";

 public static final String COLUMN_ID = "_ID";

 public static final String COLUMN_NAME = "NAME";

 public static final String COLUMN_COLOR_RESOURCE = "COLOR_RESOURCE";

 private static final String TABLE_CREATE =

 "CREATE TABLE " + TABLE_CARDS + " (" +

 Working with Databases 379

 COLUMN_ID + " INTEGER PRIMARY KEY AUTOINCREMENT, " +

 COLUMN_NAME + " TEXT, " +

 COLUMN_COLOR_RESOURCE + " INTEGER" +

 ")";

 public CardsDBHelper(Context context) {

 super(context, DB_NAME, null, DB_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 db.execSQL(TABLE_CREATE); }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 db.execSQL("DROP TABLE IF EXISTS " + TABLE_CARDS);

 onCreate(db);

 }

}

This class starts off by defining a few static final variables for providing a name and
version number, and an appropriate table name with table column names. Further, the
TABLE_CREATE variable provides the SQL statement for creating the table in the database.
The CardsDBHelper constructor accepts a context and this is where the database name
and version are set. The onCreate() and onUpgrade() methods either create the new
table or delete an existing table, and then create a new table.

You should also notice that the table provides one column for the _ID as an INTEGER,
one column for the NAME as TEXT, and one column for the COLOR_RESOURCE as an INTEGER.

Note
The SQLiteOpenHelper class assumes version numbers will be increasing for an
 upgrade. That means if you are at version 1, and want to update your database, set the
 version number to 2 and increase the version number incrementally for additional versions.

Providing Data Access
Now that you are able to create a database, you need a way to access the database. To do
so, you will create a class that provides access to the database from the SQLiteDatabase

380 Chapter 16 Saving with SQLite

class using the SQLiteOpenHelper class. This class is where we will be defining the
 methods for adding, updating, deleting, and querying the database. The class for doing
this is provided in the CardsData.java file and a partial implementation can be
found here:

public class CardsData {

 public static final String DEBUG_TAG = "CardsData";

 private SQLiteDatabase db;

 private SQLiteOpenHelper cardDbHelper;

 private static final String[] ALL_COLUMNS = {

 CardsDBHelper.COLUMN_ID,

 CardsDBHelper.COLUMN_NAME,

 CardsDBHelper.COLUMN_COLOR_RESOURCE

 };

 public CardsData(Context context) {

 this.cardDbHelper = new CardsDBHelper(context);

 }

 public void open() {

 db = cardDbHelper.getWritableDatabase(); }

 public void close() {

 if (cardDbHelper != null) {

 cardDbHelper.close(); }

 }

}

Notice the CardsData() constructor. This creates a new CardsDBHelper() object
that will allow us to access the database. The open() method is where the database is
created with the getWritableDatabase() method. The close() method is for closing
the database. It is important to close the database to release any resources obtained by
the object so that unexpected errors do not occur in your application during use. You
also want to open and close the database during your application’s particular lifecycle
events so that you are only executing database operations at the times when you have the
 appropriate access.

 Working with Databases 381

Updating the SampleMaterialActivity Class
The onCreate() method of the SampleMaterialActivity now creates a new data access
object and opens the database. Here is the updated onCreate() method:

public CardsData cardsData = new CardsData(this);

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_sample_material);

 names = getResources().getStringArray(R.array.names_array);

 colors = getResources().getIntArray(R.array.initial_colors);

 recyclerView = (RecyclerView) findViewById(R.id.recycler_view);

 recyclerView.setLayoutManager(new LinearLayoutManager(this));

 new GetOrCreateCardsListTask().execute();

 FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);

 fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Pair<View, String> pair = Pair.create(v.findViewById(R.id.fab),

 TRANSITION_FAB);

 ActivityOptionsCompat options;

 Activity act = SampleMaterialActivity.this;

options = ActivityOptionsCompat.makeSceneTransitionAnimation(act, pair);

Intent transitionIntent = new Intent(act, TransitionAddActivity.class);

 act.startActivityForResult(transitionIntent, adapter.getItemCount(),

options.toBundle());

 }

 });

}

382 Chapter 16 Saving with SQLite

Notice the new GetOrCreateCardsListTask().execute() method call. We cover this
implementation later in this chapter. This method queries the database for all cards or fills
the database with cards if it is empty.

Updating the SampleMaterialAdapter Constructor
An update in the SampleMaterialAdapter class is also needed, and the constructor is
shown below:

public CardsData cardsData;

public SampleMaterialAdapter(Context context, ArrayList<Card> cardsList,

 CardsData cardsData) {

 this.context = context;

 this.cardsList = cardsList;

 this.cardsData = cardsData;

}

Notice a CardsData object is passed into the constructor to ensure the database is
available to the SampleMaterialAdapter object once it is created.

Warning
Because database operations block the UI thread of your Android application, you should
always run database operations in a background thread.

Database Operations Off the Main UI Thread
To make sure that the main UI thread of your Android application does not block during
a potentially long-running database operation, you should run your database operations
in a background thread. Here, we have implemented an AsyncTask for creating new cards
in the database, and will subsequently update the UI only after the database operation is
complete. Here is the GetOrCreateCardsListTask class that extends the AsyncTask class,
which either retrieves all the cards from the database or creates them:

public class GetOrCreateCardsListTask extends AsyncTask<Void, Void,

ArrayList<Card>> {

 @Override

 protected ArrayList<Card> doInBackground(Void... params) {

 cardsData.open();

 cardsList = cardsData.getAll();

 if (cardsList.size() == 0) {

 for (int i = 0; i < 50; i++) {

 Working with Databases 383

 Card card = new Card();

 card.setName(names[i]);

 card.setColorResource(colors[i]);

 cardsList.add(card);

 cardsData.create(card);

 Log.d(DEBUG_TAG, "Card created with id " + card.getId() + ",

name " + card.getName() + ", color " + card.getColorResource());

 }

 }

 return cardsList;

 }

 @Override

 protected void onPostExecute(ArrayList<Card> cards) {

 super.onPostExecute(cards);

 adapter = new SampleMaterialAdapter(SampleMaterialActivity.this,

 cardsList, cardsData);

 recyclerView.setAdapter(adapter);

 }

}

When this class is created and executed in the onCreate() method of the Activity,
it overrides the doInBackground() method and creates a background task for retriev-
ing all the cards from the database with the call to getAll(). If no items are returned,
that means the database is empty and needs to be populated with entries. The for
loop creates 50 Cards and each Card is added to the cardsList, and then created in
the database with the call to create(). Once the background operation is complete,
the onPostExecute() method, which was also overridden from the AsyncTask class,
receives the cardsList result from the doInBackground() operation. It then uses the
cardsList and cardsData to create a new SampleMaterialAdapter, and then adds that
adapter to the recyclerView to update the UI once the entire background operation
has completed.

Notice the AsyncTask class has three types defined; the first is of type Void, the second
is also Void, and the third is ArrayList<Card>. These map to the Params, Progress, and
Result generic types of an AsyncTask. The first Params is used as the parameter of the
doInBackground() method, which are Void, and the third Result generic is used as the
parameter of the onPostExecute() method. In this case, the second Void generic was
not used, but would be used as the parameter for the onProgressUpdate() method of an
AsyncTask.

384 Chapter 16 Saving with SQLite

Note
Note that you are not able to call UI operations on the doInBackground() method
of an AsyncTask. Those operations need to be performed before or after the
 doInBackground() method, but if you need the UI to update only after the background
operation has completed, you must perform those operations in the onPostExecute()
method so the UI is updated appropriately.

Creating a Card in the Database
The magic happens in the call to cardsData.create(). This is where the Card is inserted
into the database. Here is the create() method definition found in the CardsData class:

public Card create(Card card) {

 ContentValues values = new ContentValues();

 values.put(CardsDBHelper.COLUMN_NAME, card.getName());

 values.put(CardsDBHelper.COLUMN_COLOR_RESOURCE, card.getColorResource());

 long id = db.insert(CardsDBHelper.TABLE_CARDS, null, values);

 card.setId(id);

 Log.d(DEBUG_TAG, "Insert id is " + String.valueOf(card.getId()));

 return card;

}

The create() method accepts a Card data object. A ContentValues object is created
to temporarily store the data that will be inserted into the database in a structured format.
There are two value.put() calls that map the database column to a Card attribute. The
insert() method is then called on the cards table and the temporary values are passed in
for insertion. An id is returned from the call to insert() and that value is then set as the
id for the Card, and finally a Card object is returned. Figure 16.2 shows the logcat out-
put of cards being inserted into the database.

Figure 16.2 logcat output showing items inserted into the database.

 Working with Databases 385

Getting All Cards
Earlier, we mentioned the getAll() method that queries the database for all the cards in
the cards table. Here is the implementation of the getAll() method:

public ArrayList<Card> getAll() {

 ArrayList<Card> cards = new ArrayList<>();

 Cursor cursor = null;

 try {

 cursor = db.query(CardsDBHelper.TABLE_CARDS,

 COLUMNS, null, null, null, null, null);

 if (cursor.getCount() > 0) {

 while (cursor.moveToNext()) {

 Card card = new Card();

 card.setId(cursor.getLong(cursor

 .getColumnIndex(CardsDBHelper.COLUMN_ID)));

 card.setName(cursor.getString(cursor

 .getColumnIndex(CardsDBHelper.COLUMN_NAME)));

 card.setColorResource(cursor

 .getInt(cursor.getColumnIndex(CardsDBHelper

 .COLUMN_COLOR_RESOURCE)));

 cards.add(card);

 }

 }

 } catch (Exception e){

 Log.d(DEBUG_TAG, "Exception raised with a value of " + e);

 } finally{

 if (cursor != null) {

 cursor.close();

 }

 }

 return cards;

}

A query is performed on the cards table inside a try statement with a call to query()
that returns all columns for the query as a Cursor object. A Cursor allows you to access
the results of the database query. First, we ensure that the Cursor count is greater than

386 Chapter 16 Saving with SQLite

zero, otherwise no results will be returned from the query. Next, we iterate through all the
cursor objects by calling the moveToNext() method on the cursor, and for each database
item, we create a Card data object from the data in the Cursor and set the Cursor data to
Card data. We also handle any exceptions that we may have encountered, and finally the
Cursor object is closed and all cards are returned.

Adding a New Card
You already know how to insert cards into the database because we did that to initialize
the database. So adding a new Card is very similar to how we initialized the database. The
addCard() method of the SampleMaterialAdapter class needs a slight modification. This
method executes AsyncTask to add a new card in the background. Here is the updated
implementation of the addCard() method creating a CreateCardTask and executing
the task:

public void addCard(String name, int color) {

 Card card = new Card();

 card.setName(name);

 card.setColorResource(color);

 new CreateCardTask().execute(card);

}

private class CreateCardTask extends AsyncTask<Card, Void, Card> {

 @Override

 protected Card doInBackground(Card... cards) {

 cardsData.create(cards[0]);

 cardsList.add(cards[0]);

 return cards[0];

 }

 @Override

 protected void onPostExecute(Card card) {

 super.onPostExecute(card);

 ((SampleMaterialActivity) context).doSmoothScroll(getItemCount() - 1);

 notifyItemInserted(getItemCount());

 Log.d(DEBUG_TAG, "Card created with id " + card.getId() + ", name " +

 card.getName() + ", color " + card.getColorResource());

 }

}

 Working with Databases 387

The doInBackground() method makes a call to the create() method of the
 cardsData object, and in the onPostExecute() method, a call to the doSmoothScroll()
method of the calling Activity is made, then the adapter is notified that a new Card has
been inserted.

Updating a Card
To update a Card, we first need a way to keep track of the position of a Card within
the list. This is not the same as the database id because the id of the item in the
database is not the same as the position of the item in the list. The database increments
the id of a Card, so each new Card has an id one higher than the previous Card. The
 RecyclerView list, on the other hand, shifts positions as items are added and removed
from the list.

First, let’s update the Card data object found in the Card.java file and add a new
listPosition attribute with the appropriate getter and setter methods as shown here:

private int listPosition = 0;

public int getListPosition() {

 return listPosition;

}

public void setListPosition(int listPosition) {

 this.listPosition = listPosition;

}

Next, update the updateCard() method of the SampleMaterialAdapter class and
implement an UpdateCardTask class that extends AsyncTask as follows:

public void updateCard(String name, int list_position) {

 Card card = new Card();

 card.setName(name);

 card.setId(getItemId(list_position));

 card.setListPosition(list_position);

 new UpdateCardTask().execute(card);

}

private class UpdateCardTask extends AsyncTask<Card, Void, Card> {

 @Override

 protected Card doInBackground(Card... cards) {

 cardsData.update(cards[0].getId(), cards[0].getName());
(Continues)

388 Chapter 16 Saving with SQLite

(Continued)

 cardsList.get(cards[0].getListPosition()).setName(cards[0].getName());

 return cards[0];

 }

 @Override

 protected void onPostExecute(Card card) {

 super.onPostExecute(card);

 Log.d(DEBUG_TAG, "list_position is " + card.getListPosition());

 notifyItemChanged(card.getListPosition());

 }

}

The UpdateCardTask calls the update() method of the cardsData object in the
doInBackground() method and then updates the name of the corresponding Card in the
cardsList object and returns the Card. The onPostExecute() method then notifies the
adapter that the item has changed with the notifyItemChanged() method call.

Finally, the CardsData class needs to implement the update() method to update the
particular Card in the database. Here is the update() method:

public void update(long id, String name) {

 String whereClause = CardsDBHelper.COLUMN_ID + "=" + id;

 Log.d(DEBUG_TAG, "Update id is " + String.valueOf(id));

 ContentValues values = new ContentValues();

 values.put(CardsDBHelper.COLUMN_NAME, name);

 db.update(CardsDBHelper.TABLE_CARDS, values, whereClause, null);

}

The update() method accepts id and name parameters. A whereClause is then con-
structed for matching the id of the Card with the appropriate id column in the database, and
a new ContentValues object is created for adding the updated name for the particular Card
to the appropriate name column. Finally, the update() method is executed on the database.

Deleting a Card
Now let’s take a look at how to modify the deletion of cards. Remember the
 animateCircularDelete() method—this is where a Card was animated off the screen
and deleted from the cardsList object. In the onAnimationEnd() method, construct a
Card data object and pass that to the execute method of a DeleteCardTask object, which
is an AsyncTask. Here are those implementations:

public void animateCircularDelete(final View view, final int list_position) {

 int centerX = view.getWidth();

 Working with Databases 389

 int centerY = view.getHeight();

 int startRadius = view.getWidth();

 int endRadius = 0;

 Animator animation = ViewAnimationUtils.createCircularReveal(view,

 centerX, centerY, startRadius, endRadius);

 animation.addListener(new AnimatorListenerAdapter() {

 @Override

 public void onAnimationEnd(Animator animation) {

 super.onAnimationEnd(animation);

 view.setVisibility(View.INVISIBLE);

 Card card = new Card();

 card.setId(getItemId(list_position));

 card.setListPosition(list_position);

 new DeleteCardTask().execute(card);

 }

 });

 animation.start();

}

private class DeleteCardTask extends AsyncTask<Card, Void, Card> {

 @Override

 protected Card doInBackground(Card... cards) {

 cardsData.delete(cards[0].getId());

 cardsList.remove(cards[0].getListPosition());

 return cards[0];

 }

 @Override

 protected void onPostExecute(Card card) {

 super.onPostExecute(card);

 notifyItemRemoved(card.getListPosition());

 }

}

390 Chapter 16 Saving with SQLite

The doInBackground() method of the DeleteCardTask calls the delete() method
of the cardsData object and passes in the id of Card. Then the Card is removed from the
cardsList object, and in the onPostExecute() method, the adapter is notified that an
item has been removed by calling the notifyItemRemoved() method and passing in the
list position of the Card that has been removed.

There is one last method to implement—the delete() method of the CardsData class.
Here is that method:

public void delete(long cardId) {

 String whereClause = CardsDBHelper.COLUMN_ID + "=" + cardId;

 Log.d(DEBUG_TAG, "Delete position is " + String.valueOf(cardId));

 db.delete(CardsDBHelper.TABLE_CARDS, whereClause, null);

}

The delete() method of the CardsData class accepts an id of a Card, constructs a
whereClause using that id, and then calls the delete() method on the cards table of the
database, passing in the appropriate whereClause with the id of the Card to delete.

Summary
You now have a full implementation of a database that provides permanent storage for
your application. In this chapter, you learned how to create a database. You also learned
how to access the database for querying, inserting, updating, and deleting items from it. In
addition, you also learned how to update the SampleMaterial application so that Card
data is stored in a database. Finally, you learned how to perform your database opera-
tions off of the main UI thread by performing the operations in the background with an
AsyncTask so as not to block the UI when running these blocking operations. You should
now be ready to implement simple SQLite databases in your own applications.

Quiz Questions
1. What is the SQLiteDatabase method for creating a table?

2. What method provides access for reading and writing a database?

3. True or false: The async() method of an AsyncTask allows you to execute long-
running operations off the main UI thread in the background.

4. True or false: The onAfterAsync() method of an AsyncTask allows you to execute
UI methods after an AsyncTask completes.

 References and More Information 391

Exercises
1. Read through the “Saving Data in SQL Databases” training in the Android

 documentation found here: http://d.android.com/training/basics/data-storage/
databases.html.

2. Read through the “SQLiteDatabase” SDK reference to learn more about how to
utilize a SQLite database here: http://d.android.com/reference/android/database/sqlite/
SQLiteDatabase.html.

3. Modify the SampleSQLite application to support the deletion of all items from the
database with a single database operation.

References and More Information
Android Tools: “sqlite3”:

http://d.android.com/tools/help/sqlite3.html
SQLite:

http://www.sqlite.org/
Command Line Shell For SQLite:

http://www.sqlite.org/cli.html
Android API Guides: “Content Providers”:

http://d.android.com/guide/topics/providers/content-providers.html
Android SDK Reference regarding the application android.database.sqlite package:

http://d.android.com/reference/android/database/sqlite/package-summary.html
Android SDK Reference regarding the application AsyncTask class:

http://d.android.com/reference/android/os/AsyncTask.html
Android SDK Reference regarding the application ContentValues class:

http://d.android.com/reference/android/content/ContentValues.html
Android SDK Reference regarding the application SQLiteDatabase class:

http://d.android.com/reference/android/database/sqlite/SQLiteDatabase.html
Android SDK Reference regarding the application SQLiteOpenHelper class:

http://d.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
Android SDK Reference regarding the application Cursor class:

http://d.android.com/ reference/android/database/Cursor.html

http://d.android.com/training/basics/data-storage/databases.html
http://d.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://d.android.com/tools/help/sqlite3.html
http://www.sqlite.org
http://www.sqlite.org/cli.html
http://d.android.com/guide/topics/providers/content-providers.html
http://d.android.com/reference/android/database/sqlite/package-summary.html
http://d.android.com/reference/android/os/AsyncTask.html
http://d.android.com/reference/android/content/ContentValues.html
http://d.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://d.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://d.android.com/�reference/android/database/Cursor.html
http://d.android.com/training/basics/data-storage/databases.html
http://d.android.com/reference/android/database/sqlite/SQLiteDatabase.html

This page intentionally left blank

Index

A
AbsoluteLayout, avoiding use of, 322

Action buttons

adding to ActionBar, 252–253
floating action buttons, 256–257,

275–276
ActionBar class

action overflow, 253–255
adding action buttons, 252–253
adding progress indicators, 170–171
compatibility and, 255
floating action buttons, 256–257,

275–276
organizing application navigation, 90
overview of, 251–252
toolbars as action bars, 255–256

Actions

action bar compatibility, 255
action bars, 251–252
action buttons, 252–253
action overflow, 253–255
adding primary action to applications,

297–301
floating action buttons, 256–257,

275–276
menus, 251
originating from application content

areas, 257–258
overview of, 251
Toolbar as action bars, 255–256

632 <activity-alias> tag

<activity-alias> tag, 109

Activity bars, 171

Activity circles, 171

Activity class

adding to new project, 59–61
attaching/detaching fragments,

216–217
customizing back stack, 241
defined, 77
defining for hosting Fragment

components, 227–228
dialogs for organizing information

and reacting to user events, 260
displaying using indicator controls,

168–169
in Fragment lifecycle, 214–215
fragments and, 213
handling configuration changes, 335
instantiating LinearLayout

programmatically, 181–182
launching activity belonging to

another application, 89
launching by class name, 88
managing transitions with intents,

87–89
organizing application navigation, 90
organizing with fragments, 85–87
performing application tasks,

80–85
private preference for use by single

activity, 346
registering in manifest file, 103–105
shared preference for use by multiple

activities, 346–347
<activity> tag, registering activities

in manifest file, 103

Ad revenues, in distribution of
applications, 502

Adapter class, binding data set to
RecyclerView, 293–296

AdapterView controls

ArrayAdapter control, 204–205
CursorAdapter control, 205–206
data-driven containers, 204
ListView control, 206–208
ScrollView control, 208–209

ADB (Android Debug Bridge), 591

addCard(), adding cards to database,
386–387

Adobe AIR, support for Android platform, 24

ADT (Android Developer Tools) plugin, 18

Ahead-of-time compilation (AOT), 21

AlertDialog, 257

Aliases, activity, 109

Allocation Tracker, in Device Monitor,
573–574

Alternative resources. See also Resources

creating, 325–326
maximizing application

compatibility, 321
organizing, 334–335
organizing with qualifiers, 326–331
providing for different screen

orientations, 331–333
reasons for including, 324–325
targeting tablet devices, 336
using, 115–116

Amazon Appstore, 20, 456

Amazon Fire OS, 26–27

AnalogClock control, 175

Analyzing test results, 492–493

Ancestral navigation, 239–241

Android application development

high-quality. See Quality Android
applications

standard for development and design.
See Material design

workflow in. See Development workflow

 Android SDK 633

Android project view, comparing
with traditional Project view, 62

Android robot, 16–17

Android Runtime (ART), 21, 106–108

Android SDK

accessing documentation, 40
Android Debug Bridge and, 591
code diagnostics in, 462
configuring development

environment, 31
design tools in, 458–459
development tools in, 464
Device Monitor and, 567,

590–591
documentation for, 585–588
downloading and installing,

32–33
exploring Android SDK manager,

43–45
exploring core features, 40–42
freely available, 18
Hierarchy Viewer, 591–595
introduction to, 585
layout editor, 591–592
leveraging Android emulators with,

588–589
license agreement in, 38–39, 449
logcat for viewing log data,

589–590
Nine-Patch Stretchable Graphics,

596–598
other tools in, 597–600
preference system, 345
reporting bugs, 37–38
summary, Q&A, and references,

600–601
testing essentials, 477–480, 496
unit tests in, 462–463
upgrading, 37

Android application package (APK)

multiples in Google Play, 414–415
variants in Gradle, 616–618

Android Auto, extending applications
to cars, 339

Android Backup Service, 458

Android Debug Bridge (ADB), 591

Android Developer Tools (ADT) plugin, 18

Android Developers Blog, 452

Android development process.
See Development workflow

Android emulator. See Emulator

Android manifest for filtering, in Packaging
applications, 503–504

Android Marshmallow

auto backup feature introduced in, 99
permission levels, 105–106
permissions for fingerprint

authentication, 108
Android Open Source Project (AOSP)

Compatibility Test Suite, 339
Google initiative making Android

source code available, 11
Android OS, introduction to

AOSP (Android Open Source
Project), 11

applications, 23–26
architecture underlying, 21–22
current focus, 15–16
custom forks, 26–28
Google’s mobile first philosophy, 12
Open Handset Alliance, 12–15
reasonable learning curve for

developers, 18
security and permissions, 22–23
summary, Q&A, and references,

28–29
uniqueness of Android platform,

16–21

634 Android SDK Manager

reporting bugs, 37
repositioning windows, 528
searching projects, 532
source control service integration,

527–528
summary, Q&A, and references,

537–538
task organization, 532–533
for Testing applications, 491–496
tips/tricks, 527
tool windows, resizing, 528–529
upgrading, 35–36
Variable extraction in, 535
viewing two sections of same file in,

529–531
Android Support Library package

adding Fragment support to legacy
applications, 229

adding Fragment support to new
applications targeting older platforms,
229–230

dependencies in Gradle, 606–609
designing user interfaces for

compatibility, 322
dialog fragments, 264–267
leveraging for compatibility, 323
linking to project, 230–231
nested fragments added to, 232
overview of, 228
for styles, 269

Android Virtual Device Manager

creating AVDs, 543–547
creating AVDs with custom hardware

settings in, 547–548
introduction to, 542–543
launching emulators, 549, 554–555

Android Virtual Devices (AVD)

calling between two emulator
instances, 557–558

Android SDK Manager

downloading Android Support Library
package, 230–231

exploring, 43–45
Android Studio

adding resources to project, 112
adding simple resource values,

116–120
Autocomplete and, 533–537
build error resolution in, 537
closing unwanted tabs, 531
creating new projects, 58
custom log filters, 532
Debugger tab options, 67
designing layouts, 141–143
Device Monitor and, 567–568
editor windows, controlling, 531
editor windows, resizing, 528
editor windows, viewing side

by side, 529
exploring, 42
Gradle build system and. See Gradle

builds, Android Studio for
IDE for Android application

development, 18
importing BorderlessButtons

sample, 52–54
imports in, 533–534
IntelliJ IDEA as alternative to, 38
Intention Actions, 536–537
Java code and, 533–537
Javadoc-style documentation, 537
Method extraction, 536
new classes/methods, 533
organizing workspaces, 527
refactoring code, 535
reformatting code, 534
Rename tool in, 534
reorganizing code, 536

 Applications 635

maximizing application compatibility,
319–320

supporting material Activity
APIs, 291

APK (Android application package)

multiples in Google Play, 414–415
variants in Gradle, 616–618

AppCompatActivity class

for backward compatible Activity, 85
designing Fragment-based applications,

218–219
extending to support material
Activity APIs, 291

Application branding, 277–279

Application components

Android terminology related to, 77–78
managing Activity transitions with

intents, 87–89
organizing Activity components with

fragments, 85–87
organizing application navigation, 90
overview of, 77
performing application tasks with

activities, 80–85
receiving and broadcasting intents, 91–92
registering in manifest file, 104–105
retrieving and using application
Context, 78–79

summary, Q&A, and references, 92–93
working with services, 90–91

Application dependencies, configuring, 615

<application> tag, 109

Applications

adding Fragment support to legacy
applications, 229

adding Fragment support to new
applications targeting older platforms,
229–230

architecting with patterns. See
Architectural design patterns

creating, 543–547
creating for devices you want to

emulate, 55
creating with custom hardware

settings, 547–548
exploring AVD manager, 43–44
GPS locations of emulators and,

555–556
introduction to, 541–542
launching emulators to run

applications and, 550–554
launching emulators with, 548–549
maintaining emulator performance, 549
running BorderlessButtons project

using preinstalled profile, 54
selecting project profile, 51

Android Wear API, 338

AndroidJUnitRunner, 497

AndroidManifest.xml. See Manifest file

android.util.class, 69

android.view package, 147

android.widget package, 147–148

Animation

of circular reveal, 297
referencing animation files by

filenames, 114
working with, 133–135

AOSP (Android Open Source Project)

Compatibility Test Suite, 339
Google initiative making Android

source code available, 11
AOT (ahead-of-time compilation), 21

Apache Software License (ASL/Apache2), 17

APIs

for adding and implementing material
design, 285

Android Wear API, 338
leveraging support library for

compatibility, 323

636 Applications

overview of, 57
running new project in emulator,

64–66
summary, Q&A, and references,

73–74
Applications, testing development

environment

importing BorderlessButtons sample
into Android Studio, 52–54

overview of, 51
running BorderlessButtons

application in emulator, 55–57
running BorderlessButtons project

using preinstalled AVD, 54–55
ApplicationTest class, 485

Apps. See Applications

Architectural design patterns

action bar compatibility, 255
action bars, 251–252
action buttons, 252–253
action overflow, 253–255
action-related features, 251
actions originating from application

content areas, 257–258
dialogs, 258
floating action buttons, 256–257
hierarchical relationships between

screens, 242–244
implementing dialogs, 259
launching tasks and navigating the

back stack, 240–241
master detail flows, 249–250
menus, 251
navigating with fragments, 241–242
navigation drawer, 247–249
navigation scenarios, 237–240
overview of, 237
summary, Q&A, and references,

267–268
swipe views, 244–246

associated with user profiles, 22
configuring using manifest file, 95–96
defining default themes, 270–271
designing Fragment-based applications,

218–219
developing. See Development

workflow
distributing. See Distribution of

applications
driving device sales, 14–15
exploring Android sample applications,

45–47
high-quality. See Quality Android

applications
introduction to Android APIs, 23–26
maintaining. See Maintenance of

applications
managing on Google Play, 517–518
maximizing compatibility, 319–321
packaging. See Packaging applications
placing application icon in
ActionBar, 252

popular third-party, 41
publishing. See Publication of

applications
requirements of, 413–421, 423
standard for development and design.

See Material design
testing. See Testing applications
version systems for, 427

Applications, building first

adding logging support to, 69–70
Android project view and

traditional Project view, 62
core files and directories, 62–64
creating/configuring new project,

57–61
debugging new application on

hardware, 71–73
debugging new project in emulator,

66–69

 Boolean resources, working with 637

Authentication, permissions for fingerprint
authentication, 108

Auto application

extending applications to watches
and cars, 338

quality guidelines, 455
Auto Backup, 99, 359–361

Autocomplete, 155–157, 533–537

AutoCompleteTextView, 155–156

autolink attribute, creating contextual
links in text, 150–152

Automation, of testing applications,
472, 496–497

AVD. See Android Virtual Devices (AVD)

B
Back navigation, 239

Back stack, navigating, 240–241

Backups

auto backup feature, 99, 359–361
in testing applications, 476

Behaviors, creating reusable behavior
components without a user interface,
231–232

Beta Channel, options for upgrading
Android Studio, 35

Billing

distribution of applications and,
501–502

in-app, 477
methods for, 453–454

Binding application data, to RecyclerView,
293–296

BitmapDrawable, working with image
resources, 130

Black-box testing, 473

Bold attribute, working with string
resources, 121

Boolean resources, working with,
124–125

tabs, 246–247
targets, 243–244
toolbars as action bars, 255–256
types of dialogs, 259–260
working with Android Support

package dialog fragments, 264–267
working with custom dialogs,

263–264
working with dialogs and dialog

fragments, 260–263
Architecture

of Android devices in development
workflow, 428

underlying Android, 21–22
ArrayAdapter control, binding array

element to views, 204–205

ART (Android Runtime), 21, 106–108

ASL/Apache2 (Apache Software License), 17

assertEquals() method, 491

Assertions, in testing applications, 491

Assets, retrieving and using application
Context, 79

AsyncTask class, 383–384

Attributes

color, 273
FrameLayout view, 195
GridLayout view, 200
LinearLayout view, 188–189
preference, 351
RelativeLayout view, 191–193
setting dialog attributes, 261–262
shared by ViewGroup classes,

186–187
TableLayout view, 197
TableRow view, 197

Audio

MediaStore content provider, 394
storing application data on

devices, 363

638 BorderlessButtons sample app

floating action buttons, 256–257,
275–276

for PasswordMatcher, 481–485
as targets, 243–244
using basic buttons, 158–161

C
Cache, data, 364

CalendarContract content provider,
398–399

Callback methods

attaching/detaching fragments with
activities, 216–217

using Activity callbacks to manage
application state and resources,
81–82

CallLog content provider

adding required permissions for
accessing, 398

overview of, 397–398
Calls

simulation of incoming, 559–560, 579
between two emulator instances,

557–558
Canary Channel, options for upgrading

Android Studio, 35

Card data object

adding cards to database, 384,
386–387

completing transition and revealing
new card, 304–306

creating, 291–292
deleting cards, 313–317, 388–390
editing card activity, 310–313
initializing using initCards(), 292
querying (getAll) in database,

385–386
updating cards, 387–388
viewing/editing card transition,

306–310

BorderlessButtons sample app

importing into Android Studio, 52–54
running in emulator, 55–57
running using AVD, 54–55

Branding, application branding, 277–279

Breakpoints, viewing/setting, 67

Broadcasts, of intent, 91–92

Browsing files of emulators/devices, in
File Explorer, 575–576

Bug reports, in development workflow, 433

Builds

errors, 537
in Gradle. See Gradle build system
validation, 471–472

Built-in content providers

CalendarContract content provider,
398–399

CallLog content provider, 397–398
ContactsContract content provider,

400–402
MediaStore content provider, 394
overview of, 394
Settings content provider, 399
UserDictionary content provider, 399
Voicemail content provider, 399

Built-in layout classes

FrameLayout view, 193–195
GridLayout view, 198–202
LinearLayout view, 187–189
overview of, 185–187
RelativeLayout view, 189–193
TableLayout view, 196–198

Button objects

adding action buttons to ActionBar,
252–253

creating layout using XML
resources, 186

defining for applying state list resource,
132–133

 Compatibility 639

stepping through, 67
working with Java code, 533–537

Colors

adding simple resource values,
116–120

in application branding, 277–279
attributes, 273
defining by RGB values, 288–289
styles and themes, 272–273
working with, 126
working with color state lists, 131–133

colors.xml file, 288–289

Compatibility

creating alternative resources,
325–326

designing user interfaces, 321–322
extending applications to watches

and cars, 338–339
leveraging Android Support library

APIs, 323
maintaining backward compatibility,

374–375
maximizing application compatibility,

319–321
Nine-Patch Stretchable Graphics

and, 324
organizing alternative resources,

334–335
organizing alternative resources with

qualifiers, 326–331
programmatic use of alternative

resources, 333–334
providing alternative resources for

different screen orientations,
331–333

reasons for including alternative
resources, 324–325

SafetyNet ensuring, 339–340
screen type support, 323–324
summary, Q&A, and references,

340–342

CardView class

animating circular reveal, 297
grouping View widgets, 286
implementing ViewHolder class,

296–297
showing dataset in list, 288
types of user interface controls, 210

Cars, extending applications to,
338–339

CharacterPickerDialog, 258

CheckBox control, 161–163

Child views, view controls, 184–185

Chronometer control, 174

Circular reveal, animation of, 297

Classes. See also by individual types

built-in classes for layouts, 185–187
importing required packages, 70
modeling in planning user

experiences, 440
Clean starting states, in testing

applications, 470

Click

click handlers for RadioButton
control, 165

organizing application navigation, 90
Client/server applications, testing, 424

Closing unwanted tabs, in
Android Studio, 531

Cloud-friendly applications, testing, 424

Code

creating run configuration for testing,
485–489

delivering quality code, 461–463
Google initiative making Android

source code available, 11
instructions in Android applications, 111
for packaging and distribution of

applications, 503
preparing for distribution of

applications, 503

640 Compatibility

ContactsContract content provider,
400–402

Cursor objects and, 205–206
deleting records, 405–406
exploring, 393
MediaStore content provider,

394–396
<providers> tag, 109
Settings content provider, 399
summary, Q&A, and references,

406–407
third-party, 406
updating records, 404–405
UserDictionary content

provider, 399
Voicemail content provider, 399

ContentProviderOperation class

deleting records, 405–406
updating records, 404–405

Context class

defined, 77
file access methods, 366–367
openFileOutput(), 367
retrieving and using application

context, 78–79
Context menu, 251

Contextual action mode, 256

Contextual links, creating in text, 150–152

Control of test releases, in development
workflow, 431–432

Controls. See also by individual types, 147–148

Copying files, to/from emulators/
devices, 577

Core app quality guidelines, 454–455

Coverage of tests, 471–477

Crash reports, in development workflow, 433

CRM (customer relationship management),
397–398

CursorAdapter control, binding columns of
data to views, 205–206

targeting tablet devices, 336–337
targeting TV devices, 337–338
working with fragments, 323

Compatibility Test Suite, AOSP, 339

<compatible-screens> tag, 102

Configuration changes

handling, 335
retaining data across, 335

Configuration file. See Manifest file

Conformance standards, in testing
applications, 476

Console, Developer, 509–512, 515–517

Console, Emulator. See Emulator console

ContactsContract content provider

adding records to, 402–404
data column classes, 402
overview of, 400
updating records, 404–405
working with, 400–402

Container class controls, in layouts

AdapterView controls, 206–207
ArrayAdapter binding array element

to views, 204–205
CursorAdapter binding columns of

data to views, 205–206
data-driven containers, 204
list of, 209–210
ListView controls, 207–208
overview of, 203

Content areas, actions originating from
application, 257–258

Content providers

accessing when permissions
required, 396

adding records to, 402–404
built-in, 394
CalendarContract content provider,

398–399
CallLog content provider, 397–398

 Developers, reasonable learning curve for 641

Debug class, 476

Debugging

configuring hardware debugging,
34–35

configuring operating system for
device debugging, 34

in Device Monitor, 569
new application on hardware, 71–73
new project in emulator, 66–69
reporting bugs, 37–38

Default resources

defined, 324
using, 115–116

Defect-tracking systems, 467–469

Defects, redefining for mobile applications,
468–469

Deleting

cards, 313–317, 388–390
files from emulators/devices,

577–578
preferences, 348–349
records, 405–406

Dependencies, adding to application,
286–287

Deploying Android applications, 432

Descendant navigation, 238–239

Design

architecting with patterns. See
Architectural design patterns

designing Android applications in
development workflow, 427–430

of developmental process, 460
material design. See Material design
planning user experiences, 444
tools for, 458–459

Dev Channel, options for upgrading Android
Studio, 35

Developer Console, 477, 509–512,
515–517

Developers, reasonable learning curve for, 18

CursorLoader class, performing cursor
queries, 393

Custom dialogs, 263–264

Custom log filters, 532

Customer relationship management (CRM),
397–398

Cyanogen OS, 27

D
Data. See also Resources

retaining across configuration
changes, 335

storing application data on devices,
363–364

Data access object, creating, 381–382

Data-driven containers, 204

Data types

supported as preference-setting
values, 346

utilities for handling different file
types, 366

value types, 112–114
Databases. See also SQLite

accessing, 379–380
adding cards, 384, 386–387
creating, 377–379
deleting cards, 388–390
in development workflow, 417–418
operations off main UI thread,

383–384
querying (getAll) cards, 385–386
storing device data in, 419–420
third-party, 420–421
tracking devices in, 419
updating cards, 387–388
using device data from, 420

DatePicker control, 166–168

DatePickerDialog, 257

Dates, retrieving using pickers, 166–168

642 Development, setting up for

developing Android applications, 430
device databases, 417–421
documentation, 425–426, 433
exercises for, 435
extensibility, 428–429
feasibility of application

requirements, 423
Google Play Staged Rollouts, 432
interoperability of applications, 430
introduction to, 411
iterative process, 413
limitations of Android devices, 428
live server changes, 434
low-risk porting opportunities, 434
lowest common denominator method,

413–414, 416
maintaining Android applications,

433–434
maintenance, designing for, 428–429
maintenance, documentation for, 426
maximizing application compatibility,

319–320
overview of, 411–412
porting documentation in, 426
private controlled testing, 431
private group testing, 431–432
project risk assessment, 421–424
quality assurance, risk assessment for,

423–424
quality assurance, test plans for,

425–426
releases of devices, 422
retirement (sunset) of devices, 422
software methodologies, 412–413
source control systems, 426–427
summary, Q&A, and references,

434–436
supporting Android applications,

433–434

Development, setting up for

accessing Android SDK
documentation, 40

configuring development
environment, 31–34

configuring hardware debugging,
34–35

configuring operating system for
device debugging, 34

exploring Android emulator, 44–46
exploring Android sample applications,

45–47
exploring Android SDK and AVD

managers, 43–45
exploring Android Studio, 42
exploring core features of Android

SDK core, 40–42
IntelliJ IDEA as alternative to Android

Studio, 38
overview of, 31
reporting Android SDK bugs, 37–38
reporting Android Studio bugs, 37
summary, Q&A, and references,

48–49
understanding Android SDK license

agreement, 38–39
upgrading Android SDK, 37
upgrading Android Studio, 35–36

Development workflow

application requirements, 413–421
application version systems, 427
architecture of Android devices, 428
bug reports, 433
configuration management systems,

426–427
controlling test releases, 431–432
crash reports, 433
customization method, 414–416
deploying Android applications, 432
designing Android applications, 427–430

 Digital signatures, in distribution of applications 643

stopping processes, 570
summary, Q&A, and references,

582–583
System Information pane, 580
thread activity, 570
using with Android Studio, 567–568

Devices. See also Hardware

debugging applications on, 71–73
extending applications to watches and

cars, 338–339
maximizing application compatibility,

320–321
specifying device features with

manifest file, 101–102
storing application data on, 363–364
support for adoptable storage, 372
targeting tablet devices, 336–337
targeting TV devices, 337–338

Diagnostics, in quality Android applications,
456–457

Dialog class

implementing dialogs, 259
overview of, 258
summary, Q&A, and references,

267–268
types of dialogs, 257, 259–260
working with Android Support

package dialog fragments, 264–267
working with custom dialogs,

263–264
working with dialogs and dialog

fragments, 260–263
DialogFragment class

lifecycle of, 261
managing dialogs for use with user

interface, 261
working with special types of

fragments, 218
Digital signatures, in distribution of

applications, 504–508

target devices, acquiring, 422–423
target devices, identifying, 421–422
target markets, 432
testing applications, 424, 431–432
testing firmware upgrades, 433
third-party documentation

requirements, 426
third-party requirements/

recommendations, 417
third-party testing facilities, 426
use cases in, 416
user interface documentation, 425
waterfall approaches to, 412–413

Device configuration, in testing applications,
469–470

Device databases. See also Databases

in development workflow, 417–418
selecting devices for tracking, 419
storing data, 419–420
third-party, 420–421
using data from, 420

Device Monitor

Allocation Tracker, 573–574
debuggers in, 569
debugging applications, 590–591
Emulator Control pane, 578–579
File Explorer pane, 575–578
Garbage Collection, 571–572
heap activity, 570–571
HPPROF files, 572–573
interacting with processes, 569
key features of, 568–569
LogCat tool, 581–582
Network Statistics, 574–575
Quick-Start, 567
screen captures of emulators/device

screens, 580–581
as stand-alone application, 567–568

644 Dimensions

permissions, verifying, 504
publishing to alternative

marketplaces, 520
required resources in, 508
self-publishing applications for,

520–521
servers/services in, preparing, 508
summary, Q&A, and references,

522–523
target platforms, verifying, 503
testing release versions in, 508
translating applications for, 519
versioning applications, 503

Dividers, for visual appeal, 279–280

Documentation

accessing Android SDK
documentation, 40

for Android SDK tools, 585–588
in development workflow, 425–426
Javadoc-style documentation in

Android Studio, 537
Domain modeling, 440

Dot (.) character, shortcut in package
specification, 98

Drawable resources

adding simple resource values in
Android Studio, 116–120

defining circle-shape, 270–271
working with, 128–129

<drawable> tag, 128

DrawerLayout control, 210

Drawers, organizing application
navigation, 90

E
E-mail apps, implementing service for, 91

Eclipse

ADT facilitating Android development
with, 18

Dimensions

adding simple resource values in
Android Studio, 116–120

designing user interfaces for
compatibility, 322

working with, 126–128
Directories

core, 62–64
creating and writing to files in default

application directory, 367–368
default resource directories, 112
exploring, 366–367
reading from files in default application

directory, 369
retrieving and using application
Context, 79

viewing, 61
working with other directories and

files on Android file system, 372–373
DisplayMetrics utility, getting information

about screen, 322

Distribution of applications

ad revenues in, 502
Android manifest for filtering in,

503–504
billing users, 501–502
code preparation for, 503
details in Google Play, 515
digital signatures in, 504–508
disabling debugging/logging for, 504
distribution channels and, 508–509
file packages, 504–508
Google Play policies, 501
Google Play requirements, 504
intellectual property protection in, 500
introduction to, 499
models for, 499–502
name/icons of applications in, 503
packaging applications for publication

and, 502–509

 External storage 645

simulating reality, 539–541
summary, Q&A, and references,

565–566
testing applications, 472–473

Emulator console

manipulating power settings,
562–563

monitoring network status, 562
sending GPS coordinates, 561
simulating incoming call, 559–560
simulating SMS message, 560–561

Emulator Control pane, 579

introduction to, 578
location fixes in, 579

simulating incoming SMS messages, 579
telephony status in, 578–579

Encryption, 453

End User License Agreement (EULA), 453

Entity discovery/organization,
440–441

Entity relationship modeling, 440

Entry navigation, 238

Environment class, accessing external
storage, 374

Environments, managing test environments,
469–471

Errors, debugging new project in emulator,
66–69

Espresso, 497

EULA (End User License Agreement), 453

Events, handling selection events,
206–207

Exerciser Monkey, 497

Experience, user. See Planning user
experience

Extensibility, in development workflow,
428–429

External navigation, 240

External storage, 374

ADT plugin no longer supported,
32, 527

Android Support Library for use
with, 231

choosing source control system, 426
Editor windows

controlling, 531
resizing, 528
viewing side by side, 529

Editors/editing

card activity, 310–313
card transitions, 306–310
layout editor, 591–592
manifest file, 96–99
preference editor, 348
video editing, 91

EditText boxes, 481–485, 490

EditText controls

constraining user input with input
filters, 154–155

retrieving text input, 152–154
Education guidelines, 455

ems, measuring width of TextView, 150

Emulator. See also Android Virtual Device
Manager; Android Virtual Devices (AVD)

Android SDK tools and, 588–589
calling between two instances in,

557–558
debugging new project, 66–69
exploring, 44–46
GPS locations of, 555–556
limitations of, 563–564
messaging between two instances,

558–559
personalizing, 563
Quick-Start for, 539
running BorderlessButtons

application in, 55–57
running new project in, 64–66

646 Feasibility

referencing animation files by
filenames, 114

retrieving and using application
Context, 79

storing, 111–112, 114
storing application data on devices,

363–364
summary, Q&A, and references,

375–376
support for adoptable storage

devices, 372
viewing, 61
working with, 366
working with other directories and

files on Android file system, 372–373
Filters

application filtering options, 102
configuring intent filters, 103–104
constraining user input with input

filters, 154–155
packaging applications and, 503–504

Fingerprint, permissions for fingerprint
authentication, 108

Fire OS (Amazon), 26–27

Firmware upgrades, 433

Fixed tabs, navigation design patterns,
246–247

Flavors, Gradle builds, 611–614

Floating action buttons

adding primary action to material
application, 297–301

adding to main layout, 289–290
overview of, 256–257
styles and themes and, 275–276

Fonts, typography, 280–282

Forks, custom uses of Android, 26–28

Format strings, 121

Fragment class

adding Fragment support to legacy
applications, 229

F
Feasibility

of application requirements, 423
testing, 460

Features

specifying device features with
manifest file, 101–102

targeting tablet devices, 336
targeting TV devices, 338

File Explorer pane

browsing files of emulators/devices,
575–576

copying files to/from emulators/
devices, 577

deleting files from emulators/devices,
577–578

directories in, 576
finding preferences data, 349–350
introduction to, 575

File objects, 372–373

Files

core, 62–64
creating and writing to external

storage, 374
creating and writing to in default

application directory, 367–368
file package in distribution, 504–508
finding preferences data in file system,

349–350
good management practices, 364–365
in Gradle, 603–604
maintaining backward compatibility,

374–375
permissions, 365
reading from files in default application

directory, 369
reading raw files byte by byte,

369–370
reading XML files, 370–371

 Google Mobile Services (GMS) 647

understanding, 213–214
working with dialog fragments,

260–263
Fragmentation issues. See also

Compatibility, 319

FragmentTransaction, 216

Frame-by-frame animation, 133–134

FrameLayout view

attributes, 195
using, 193–195

G
Games

Google Play Game Services, 15, 516
implementing service for, 91
typical activities in, 80

Gaps, for visual appeal, 279–280

Garbage Collection, 571–572

GCM (Google Cloud Messaging), 516

getAll(), querying cards in database,
385–386

getQuantityString(), working with
quantity strings, 123

getResources(), retrieving application
resources, 79, 121–122

Global Positioning System (GPS),
locations of emulators, 555–556

GMS (Google Mobile Services), 13

GNU General Public License Version 2
(GPLv2), 17

Goals, of testing applications, 485

Google

list of Google services, 26
mobile first philosophy, 12
role Open Handset Alliance, 13

Google Cloud Messaging (GCM), 516

Google Experience devices, 423

Google Maps, 555–556

Google Mobile Services (GMS), 13

adding Fragment support to new
applications targeting older platforms,
229–230

Android Support Library package
and, 228

attaching/detaching with activities,
216–217

creating reusable behavior components
without a user interface, 231–232

defining, 215–216
defining Activity classes for hosting
Fragment components, 227–228

defining layout resource files for,
225–226

designing compatible applications, 323
designing Fragment-based applications,

218–219
designing user interfaces for

compatibility, 322
dialog fragments in Support package,

264–267
implementing ListFragment,

219–223
implementing WebViewFragment,

223–225
lifecycle of, 214–215
linking Android Support package to

project, 230–231
ListFragment control, 207–208
managing modifications, 216
master detail flows, 249–250
navigation with, 241–242
nested, 232
organizing Activity components

with, 85–87
organizing application navigation, 90
overview of, 78
special types of, 217–218
summary, Q&A, and references,

232–234
targeting tablet devices, 336

648 Google Play

module settings in, 606–609
project settings in, 604–605
Quick-Start for, generally, 603
summary, Q&A, and references,

620–621
support library dependencies in,

606–609
wrappers in, 606–609

Gradle builds, Android Studio for

adding library dependencies, 615–616
APK variants, 616–618
configuring Android properties in,

609–611
configuring application

dependencies, 615
configuring build flavors in, 611–614
configuring build types in, 614–615
introduction to, 603, 609
running tasks in, 618–620
signing options in, 611
syncing projects, 609

Graphics

Nine-Patch Stretchable Graphics, 130
referencing by filenames, 114
storing, 114
storing resources files, 112
using alternative resources, 115
working with image resources, 129

GridLayout view

attributes, 200
using, 198–202

GridView controls, 204

Guidelines for Android applications, 454–456

H
HAL (hardware abstraction layer), 21

Hardware

configuring debugging, 34–35

Google Play

Android markets, 20
application filtering options, 102
configuring application options, 516
Developer Console in, 509–512,

515–517
Developer Distribution Agreement,

476, 501, 510
developers registering with, 23
distribution details in, 515
in distribution of Android apps, 14–15
distribution policies of, 501
distribution requirements of, 504
Game Services in, 516
for low cost development, 19
managing applications on, 517–518
packaging requirements of, 504
pricing details in, 515
Private Channel in, 518–519
publishing applications to, 509, 516
removing applications from, 518
return policy, 517
SafetyNet service, 339
signing up for, 509–511
Staged Rollouts in, 432, 518
targeting TV devices, 338
uploading application marketing assets

to, 514
uploading applications to, 511–513

Google Wallet Merchant accounts, 501,
510–511

GPLv2 (GNU General Public License
Version 2), 17

GPS (Global Positioning System), locations
of emulators, 555–556

Gradle build system

adding dependencies to application,
286–287

files in, 603–604

 Intellectual property protection 649

Images

formats, 130
MediaStore content provider, 394
storing on devices, 363
working with image resources, 129–131

Imports

in Android Studio, 533–534
BorderlessButtons sample, 52–54
Optimize Imports command, 70

<include> statement, including layout
within other layouts, 274–275

Indicator controls

adding progress indicators to
ActionBar, 170–171

adjusting progress with seek bars,
171–172

displaying progress and activity using,
168–169

indicating activity with activity bars
and activity circles, 171

Inheritance, styles and themes, 271–272

initCards(), initializing Card data
object, 292

Input filters, constraining user input with,
154–155

Input methods, specifying with manifest file,
100–101

Input mode

targeting tablet devices, 336
targeting TV devices, 337

InputFilter objects, 154–155

Installations, in testing applications, 476

<instrumentation> tag, unit tests, 109

Integer resources, 125–126

Integrated development environments.
See IDEs (integrated development
environments)

Integration points, in testing applications,
474–475

Intellectual property protection, 500

debugging new application (Nexus 4
example), 71–73

manifest file enforcing application
platform requirements, 100

maximizing compatibility, 320–321
open source, 27–28
upgrading, 15

hasSystemFeature(), specifying device
features, 101–102

Headers, organizing preferences, 354–359

Heap activity, in Device Monitor, 570–571

Hierarchies, screen relationships, 242–244

Hierarchy Viewer

introduction to, 592
launching, 593
Layout View mode in, 592–594
Pixel Perfect mode in, 592, 595
user interface optimization in, 594–595

HPPROF files, in Device Monitor, 572–573

HTML

HTML-style attributes, 122
working with layouts, 140

I
IARC (International Age Rating

Coalition), 516

Icons

placing in ActionBar, 252
setting application icon, 99
working with image resources, 129

Identity, managing application identity, 99

Identity of applications, in planning user
experience, 442–443

IDEs (integrated development environments).
See also Android Studio

alternatives to Android Studio, 38
for application development, 18
configuring development

environment, 32

650 IntelliJ IDEA

Italic attribute, working with string
resources, 121

itemView

implementing ViewHolder class,
296–297

OnClickListener of, 306

J
Java

Android Studio and, 533–537
Autocomplete, 533–537
developing Android applications with,

24, 533–537
documentation, 537
file utilities, 366
imports, 533–534
Intention Actions, 536–537
Method extraction, 536
new classes/methods, 533
refactoring code, 535
reformatting code, 534
Rename tool and, 534
reorganizing code, 536
Variable extraction, 535

Javadoc-style documentation, in Android
Studio, 537

java.io

reading raw files byte by byte,
369–370

utilities for handling different file
types, 366

JDK (Java Development Kit), 31

JetBrains

IntelliJ IDEA. See IntelliJ IDEA
reporting bugs via, 37

JUnit tests. See also Unit tests,
462–463, 480–481

IntelliJ IDEA

as alternative to Android Studio, 38
Android Studio based on, 18,

32, 527
Intent class

configuring intent filters, 103–104
creating intents with action and data,

88–89
defined, 78
designating primary entry point using

intent filter, 103
managing Activity transitions with,

87–88
organizing application navigation, 90
passing information using, 89–90
receiving and broadcasting,

91–92
Intention Actions feature,

536–537

International Age Rating Coalition
(IARC), 516

Internationalization, in testing
applications, 475

Interoperability of applications, 430

Interprocess communication (IPC), 91

Introduction, to book

authors’ contact information, 8
changes to this edition, 3–5
conventions used in book, 6–7
development environments used in

book, 5–6
how book is structured, 2–3
intended audience, 1–2
key issues addressed, 2
list of useful websites, 7
supplementary materials, 6

IPC (interprocess communication), 91

Issue Tracker website, reporting bugs to,
37–38

 Licenses 651

defining layout files for fragments,
225–226

designing screens for compatibility, 324
designing with Android Studio,

141–143
FrameLayout view, 193–195
GridLayout view, 198–202
LinearLayout view, 187–189
list of view containers, 209–210
ListView controls, 207–208
organizing your user interface,

184–185
RelativeLayout view, 189–193
scrolling support added to, 208–209
styles and themes, 273–274
summary, Q&A, and references,

210–212
TableLayout view, 196–198
using layout resources

programmatically, 144
using multiple layouts on a screen,

202–203
working with, 140–141

LBS (Location-based services), 416,
555–556

Legacy applications

adding ActionBar to, 255
adding Fragment support to, 229

Libraries. See also Android Support Library
package

adding library dependencies,
615–616

adding support libraries to application,
286–287

License Verification Library (LVL), 500

Licenses

Android, 17
understanding license agreement,

38–39

K
Keys, 505–506

“Killer apps,” 477

L
Landscape mode, providing alternative

resources for different orientations,
332–333

Last-in-first-out order, navigating back stack,
240–241

Lateral navigation, 238

Launching emulators

from Android Virtual Device
Manager, 554–555

with Android Virtual Devices,
548–549

to run applications, 550–554
Launching Hierarchy Viewer, 593

Layout controls, 148, 322

Layout editor, 591–592

Layout View mode, in Hierarchy Viewer,
592–594

Layouts

AdapterView controls, 206–207
ArrayAdapter binding array element

to views, 204–205
built-in classes for, 185–187
configuring text layout and size,

149–150
container class controls in, 203
controls in, 148
creating programmatically, 181–184
creating RelativeLayout, 289–290
creating using XML resources,

179–181
CursorAdapter binding columns of

data to views, 205–206
data-driven containers, 204

652 Lifecycle

Logging

adding logging support to application,
69–70

application information, 67
defect information, 467–468
filtering logging messages, 70
in quality Android applications,

462–463
viewing log data, 589–590

Logos, 115

Low-risk porting opportunities, 434

LVL (License Verification Library), 500

M
Mac OS X, configuring operating system

for device debugging, 34

Maintenance of applications

designing for, 428–429
in development process, 433–434
documentation for, 426, 433
ease of, 456

Maintenance of emulator performance, 549

Maker Movement, Android versions, 27–28

Managers

exploring Android SDK and AVD
managers, 43–44

handling state of system services,
25–26

Manifest file

configuring Android applications
using, 95–96

editing, 96–99
enforcing system requirements,

100–102
list of configurable features, 109
managing application identity, 99
registering activities in, 103–105
registering hardware and software

requirements, 321

Lifecycle

of an activity, 80–82
of fragments, 214–215

LinearLayout view

attributes, 188–189
creating layout using XML

resources, 186
defining layout for transitions,

299–301
instantiating programmatically, 181–184
using, 187–189

Lines, measuring height of TextView, 150

Links, creating contextual links in text,
150–152

Linux OSs

Android running on, 21
configuring operating system for

device debugging, 34
SELinux (Security-Enhanced Linux),

22–23
ListFragment class

designing Fragment-based applications,
218–219

implementing, 219–223
using ListView control with, 207–208
working with special types of

fragments, 217
ListView control

binding data to AdapterView, 206
types of data-driven containers, 204
using with ListFragment, 207–208

Live server changes, 434

Location-based services (LBS), 416, 555–556

Location fixes, in Emulator Control, 579

Logcat utility

Device Monitor, 581–582
filtering logging messages, 70
logging application information, 67
for viewing log data, 589–590

 Multimedia, storing application data on devices 653

styling applications, 287–288
summary, Q&A, and references,

317–318
understanding, 285–286
viewing/editing card transition,

306–310
Material theme support library, 287

MediaController object, 177

MediaStore content provider,
394–396

Menus

organizing application navigation, 90
styling, 280
types of, 251
working with, 135–137

<merge> tag, including layout within other
layouts, 274–275

Metadata, 109

Method extraction, in Android
Studio, 536

Mimicking real-world activities, in testing
applications, 470–471

Mobile applications

Google’s mobile first philosophy, 12
testing applications, 467

Mobile operators, members of Open
Handset Alliance, 14

Mockups, 445–446

MODE_APPEND, file permissions, 365

MODE_PRIVATE, file permissions, 365

Module settings, in Gradle, 606–609

Monitoring network status, 562

monkey program (UI/Application Exerciser
Monkey), 496

monkeyrunner test tool, 472, 496

MultiAutoCompleteTextView,
155–157

Multimedia, storing application data on
devices, 363

registering permissions enforced
by application, 108–109

registering permissions required
by application, 105–106

requesting permissions at runtime,
106–108

summary, Q&A, and references,
109–110

targeting TV devices, 337
Manufacturers, members of Open Handset

Alliance, 13–14

Markets/marketing. See also Google Play

revenue models and, 19
uploading application marketing assets

to Google Play, 514
Master detail flows, navigation design

patterns, 90, 249–250

Material design

adding dependencies to application,
286–287

adding primary action, 297–301
animating circular reveal, 297
binding application data to
RecyclerView, 293–296

completing transition and revealing
new card, 304–306

creating/initializing Card data object,
291–292

creating layout, 289–290
default themes, 286
defining colors, 288–289
defining string resources, 289
deleting cards, 313–317
editing card activity, 310–313
extending AppCompatActivity

class, 291
implementing TransitionActivity

class, 302–304
implementing ViewHolder class,

296–297

654 N scenarios, navigation

O
OHA (Open Handset Alliance)

members, 13–15
overview of, 12–13

onActivityResult(), implementing
material activity, 304

OnClickListener

adding to floating action button,
298–299

deleting cards, 313–317
viewing/editing card transition, 306

onCreate()

initializing static Activity data, 82
SampleMaterialActivity class, 381
TransitionEditActivity

class, 310
onDestroy(), destroying static Activity

data, 84–85

onPause(), stopping, saving, releasing
Activity data, 83

onResume(), initializing and retrieving
Activity data, 83

onSaveInstanceState(), saving
Activity state into a bundle, 84

onStart(), confirming Activity
features, 83

openFileOupput(), 367

OpenGL ES, 101–102

Optimize Imports command, 70

Options menu, 251

Orientation of screen

providing alternative resources for
different orientations,
331–333

targeting tablet devices, 336
targeting TV devices, 337

OS (operating system), configuring for device
debugging, 34

Overscan margins, targeting TV
devices, 337

N
N scenarios, navigation, 237–240

Names

distribution of applications and, 503
setting application name, 99

Navigation

with fragments, 241–242
hierarchical relationships between

screens, 242–244
launching tasks and navigating the

back stack, 240–241
master detail flows, 249–250
n scenarios, 237–240
navigation drawer, 247–249
organizing application navigation, 90
swipe views, 244–246
tabs, 246–247
targeting tablet devices, 336
targeting TV devices, 337
targets, 243–244

Navigation drawer, 247–249

Nested fragments, 232

Nested layouts, 202

Network Statistics, in Device
Monitor, 574–575

Networks, downloading content from, 363

New classes/methods, in Android Studio, 533

New Project creation wizard, 58

News apps, implementing service for, 91

Nexus

debugging new application on, 71–73
exploring Android emulator, 46
Google’s Android offering, 14

Nine-Patch Stretchable Graphics

Android SDK tools, 596–598
screen compatibility and, 324
working with, 130

Numbers, retrieving using pickers, 166–168

 Planning user experience 655

PCB (printed circuit board), 27–28

Performance, in testing applications, 476

Permission groups, 108

<permission> tag, for fingerprint
authentication, 109

Permissions

accessing CallLog content
provider, 398

accessing content providers that
require, 396

accessing Settings content
provider, 399

applications enforcing own, 23
file permissions, 365
registering enforced, 108–109
registering required, 105–106
requesting at runtime, 106–108
verifying, 504

Personalizing emulators, 563

Personas, 439–440

Pickers, retrieving dates, times, and
numbers, 166–168

Pixel density, specifying, 102

Pixel Perfect mode, in Hierarchy Viewer,
592, 595

Planning user experience

class modeling, 440
design comps, 444
determining objectives, 437–439
domain modeling, 440
entity discovery/organization,

440–441
entity relationship modeling, 440
exercises for, 447
focusing on objectives, 439–442
identity of applications, 442–443
introduction to, 437
mockups, 445–446
personas, 439–440

P
Packages

commonly used, 25
file packages in, 504–508
important, 41
naming, 99
shortcut in package specification, 98
views and controls, 147

Packaging applications

code preparation for, 503
digital signatures, 504–508
disabling debugging/logging for, 504
distribution channels and, 508–509
file packages in, 504–508
filtering, 503–504
Google Play requirements, 504
introduction to, 502–503
name/icons of applications in, 503
permissions verification, 504
preparing servers/services, 508
required resources, 508
target platforms, 503
testing release versions, 508
versioning applications, 503

Parent views, view controls, 184–185

Partitioning. See Fragment class

PasswordMatcher application

adding additional tests, 493–496
analyzing test results, 492–493
Android Studio for, 491–496
assertions, 491
goals in testing of, 485
introduction to, 481–485
run configurations of code for,

485–489
unit-testing APIs for, 491
writing tests for, 489–491

656 Planning user experience

creating private and shared
preferences, 346–347

determining when to use, 345
finding preferences data in file system,

349–350
organizing with headers, 354–359
PreferenceActivity class, 353–354
reacting to changes in, 349
retrieving and using application
Context, 79

searching and reading, 347
storing preference values, 346
summary, Q&A, and references,

361–362
Pricing & Distribution tab, 515

Primitive types, storing, 114

Printed circuit board (PCB), 27–28

Private controlled testing, in development
workflow, 431

Private data, 453

Private group testing, in development
workflow, 431–432

Private preferences, 346–347

Product Details section, 514

Profit maximization, 453–454

Programmatic approach

accessing Boolean resources, 125
accessing resources, 116
accessing string resources, 121–122
to layouts, 144, 181–184
to menu resources, 136–137
to raw files, 138
to tweened animation, 135
use of alternative resources,

333–334
using Boolean resources, 125
using color resources, 126
using dimension resources, 127

prototypes, 446
screen layouts, 443–444
screen maps, 441–442
sketches, 443
stakeholder objectives, 438–439
summary, Q&A, and references,

446–447
target users, feedback from, 445–446
team objectives, 438
testing release builds, 446
UI storyboards, 445
user flows, 441
user objectives, 438
user story mapping, 440
visual feedback, 444–445
wireframes, 443–444

<plurals>, working with quantity
strings, 123

PNG graphics, 130

Pop-up menu, 251

Porting, documentation for, 426

Portrait mode, providing alternative
resources for different orientations,
332–333

Power settings, 562–563

PreferenceActivity class

creating manageable user
preferences, 350

using, 353–354
PreferenceFragment class, 217

Preferences

accessing application preferences, 79
adding, updating, and deleting,

348–349
Auto Backup, 359–361
creating manageable user

preferences, 350
creating preference resource file,

350–352

 Quantity strings 657

Q
Qualifiers

list of important alternative resource
qualifiers, 328–331

organizing alternative resources,
326–327

Quality Android applications

avoiding mistakes in, 459
best practices, 449, 459–460
code quality in delivery of,

461–463
design tools for, 458–459
designing development process, 460
diagnostics, 456–457
feasibility testing, 460
guidelines for, 454–456
introduction to, 449
logging, 462–463
maintenance, 456
private data in, 453
profit maximizing and, 453–454
responsiveness of applications,

451–452
security of applications, 453
stability of applications,

451–452
summary, Q&A, and references, 465
third-party standards for, 456
unit tests, 461–463
upgrades and updates, 456–458
user demands, 450
user interface design, 450–451

Quality assurance

in project risk assessment,
423–424

test plans for, 425–426
Quantity strings, 123

using drawable resources, 129
using integer resources, 125–126
working with image resources,

130–131
to XML resources, 137

Programming languages, Android
options, 24

Progress indicators. See Indicator controls

ProgressBar control

adding to ActionBar or Toolbar, 170
displaying progress, 168–169

ProgressDialog class, 257

ProGuard, 500

Project risk assessment

acquiring target devices, 422–423
in development workflow, 421–424
feasibility of application

requirements, 423
identifying target devices, 421–422
quality assurance, 423–424
releases of devices, 422
retirement (sunset) of devices, 422
testing client/server applications, 424
testing cloud-friendly applications, 424
testing in, 424

Project settings, in Gradle, 604–605

Project view, comparing Android
project view with, 62

Properties, configuration of, 609–611

Property animation, 133

Prototypes, in planning user
experience, 446

<providers> tag, content providers, 109

Publication of applications. See also
Distribution of applications; Packaging
applications

to alternative marketplaces, 520
to Google Play, 509–518

658 RadioButton control

Reporting bugs, 37–38

Repositioning windows, within Android
Studio, 528

Required resources, in distribution of
applications, 508

res directory, 112

res/layout directory

defining layout files for fragments,
225–226

XML resources in, 179
res/value directory

colors subdirectory, 272
string array resources in, 123
string resources in, 120
themes and styles subdirectories, 270,

287–288
Resolution, designing user interfaces for

compatibility, 321–322

Resource files (XML)

creating preference resource file,
350–352

defining layout resource files for
fragments, 225–226

storing, 111–112
working with XML resource files, 137

Resources

accessing programmatically, 116
adding simple resource values in

Android Studio, 116–120
alternative. See Alternative resources
default, 115–116, 324
referencing, 138–140, 144–145
retrieving application resources, 79
storing, 111–114
summary, Q&A, and references,

145–146
using Activity callbacks to manage

application state and resources,
81–82

R
RadioButton control, 163–165

RadioGroup control, 163–165

RatingBar control, 172–174

Raw data, storing, 111

Raw files

defining Raw XML resources, 137
reading byte by byte, 369–370
storing, 114
working with, 138

READ_EXTERNAL_STORAGE permission, 396

Reading, preferences, 347

Real-world activity simulation, 470–471

Records, content provider

adding, 402–404
deleting, 405–406
updating, 404–405

RecyclerView

adapter for binding data set to,
293–296

adding to main layout for application,
289–290

implementing ViewHolder class,
296–297

populating list of names into, 286
types of user interface controls,

209–210
Refactoring code, in Android Studio, 535

Reformatting code, in Android Studio, 534

RelativeLayout view

attributes, 191–193
creating, 289–290
using, 189–191

Releases of devices, in project risk
assessment, 422

Rename tool, in Android Studio, 534

Reorganizing code, in Android Studio, 536

 SD cards 659

Runtime

Android apps running as separate
process, 21

requesting permissions at, 106–108

S
SafetyNet, ensuring compatibility, 339–340

SAX utilities, for working with XML files, 370

Screen compatibility mode, 324

Screen layouts, in planning user experiences,
443–444

Screen maps, in planning user experiences,
441–442

Screens

capturing emulators/device screens,
580–581

compatibility support, 323–324
designing user interfaces, 322
hierarchical relationships between,

242–244
maximizing application

compatibility, 320
providing alternative resources for

different screen orientations, 331–333
specifying sizes, 102
targeting tablet devices, 336
targeting TV devices, 337
using multiple layouts on a, 202–203

Scripting languages, developing Android
applications with, 24

Scrollable tabs, navigation design patterns,
246–247

ScrollView, adding to layout, 208–209

SD cards

creating and writing files to, 374
maintaining backward compatibility,

374–375
support for adoptable storage

devices, 372

using default and alternative resources,
115–116

what they are, 111
working with animation, 133–135
working with Boolean resources,

124–125
working with color state lists, 131–133
working with colors, 126
working with dimensions, 126–128
working with drawable resources,

128–129
working with images, 129–131
working with integer resources,

125–126
working with layouts, 140–144
working with menus, 135–137
working with quantity strings, 123
working with raw files, 138
working with string arrays, 123–124
working with string resources,

120–122
working with XML files, 137

Responsiveness of applications, 451–452

Return policy, Google Play, 517

Reuse, creating reusable behavior
components without a user interface,
231–232

RGB color values

defining color resources, 126,
288–289

styles and themes, 272
Risk assessment. See Project risk

assessment

R.java class file, accessing resources
programmatically, 116–117

RSA key, 71–73

Rubin, Andy, 13

Run/Debug Configurations, 485–489,
550–553

660 SDK (software development kit). See Android SDK

Size attributes, TextView control, 149–150

Sketches, 443

Smartwatch, 15

Smoke test design, 471–472

SMS messages

Emulator console and, 560–561
Emulator Control and, 579
sending between two emulator

instances, 558–559
Social networking app, implementing service

for, 91

Software

manifest file enforcing application
platform requirements, 100

methodologies for, 412–413
upgrading, 15

Software development kit (SDK). See
Android SDK

Source control

integrating services for, 527–528
systems for, 426–427

Spinner control, 157–158

SQLite. See also Databases

accessing databases, 379–380
adding card to database, 384, 386–387
creating databases, 377–379
creating new data access object,

381–382
database operations off main UI

thread, 383–384
deleting cards, 388–390
querying (getAll) cards in database,

385–386
summary, Q&A, and references, 390–391
updating cards, 387–388

SQLiteOpenHelper, 377, 380

Stability of applications, 451–452

Stable Channel, options for upgrading
Android Studio, 35

SDK (software development kit). See
Android SDK

Searches

preferences, 347
project search, 532

Security

Android platform and, 22–23
of applications, 453

Security-Enhanced Linux (SELinux), 22–23

SeekBar control, adjusting progress with
seek bars, 171–172

Selections, handling selection events,
206–207

<selector> resource type, 131

Self-publishing applications, for distribution,
520–521

SELinux (Security-Enhanced Linux), 22–23

Servers

packaging and distributing
applications, 508

testing applications, 473–474
Service class

defined, 78
working with services, 90–91

Set up, for development. See Development,
setting up for

Settings content provider, 399

Shared preferences

creating, 346–347
reacting to changes in, 349

SharedPreferences interface

methods, 347–348
overview of, 346
reading, 347

Signing options, in Gradle, 611

Signing up, for Google Play, 509–511

Simulation of reality

in emulators, 539–541
in testing applications, 470–471

 TableRow view 661

defining default application themes,
270–271

divider and gap use, 279–280
for FloatingActionButton,

275–276
inheritance, 271–272
layout, 273–274
menu styles, 280
merge and include, 274–275
summary, Q&A, and references,

282–284
support libraries for, 269
TextInputLayout, 275
toolbar use as bottom bar, 276–277
typography, 280–282

Subclasses, ViewGroup, 185

Sunset of devices, in project risk
assessment, 422

Support Library. See Android Support Library
package

<supports-gl-texture> tag, 102

<supports-screens> tag, 102

Swipe

navigation design patterns, 244–246
organizing application navigation, 90

SwipeRefreshLayer, 209

Syncing projects, in Gradle, 609

System Information, 580

System requirements, 100–102

System resources, 144–145

T
TabLayout, adding, 246–247

TABLE_CREATE, SQL statement, 379

TableLayout view

attributes, 197
using, 196–198

TableRow view, 197

Stack

Activity, 80–81
launching tasks and navigating back

stack, 240–241
Stakeholder objectives, 438–439

Stand-alone applications, Device Monitor,
567–568

startActivity(), managing Activity
transitions with intents, 87–89

State, callbacks for managing application
state, 81–82

Stopping processes, in Device Monitor, 570

Storage

creating and writing files to external
storage, 374

device data in databases, 419–420
limited capacity of Android

devices, 364
of preference values, 346
of resources, 111–114
support for adoptable storage

devices, 372
Store Listing tab, 514

Stretchable graphics. See Nine-Patch
Stretchable Graphics

StrictMode class, 476

String resources

accessing programmatically, 116
defining <string-array>, 289
using programmatically, 121–122
working with, 120–121
working with quantity strings, 123
working with string arrays, 123–124

strings.xml file, 288–289

Styles

application branding, 277–279
applying to application, 287–288
colors, 272–273
compared with themes, 269–270

662 Tablet devices

on emulators, 472–473
Espresso for, 497
exercises for, 498
goals of, 485
in-app billing, 477
installation, 476
integration points, 474–475
internationalization of, 475
introduction to, 467
JUnit for, 480–481
“killer apps,” 477
logging defect information, 467–468
managing environments, 469–471
maximizing testing coverage, 471–477
mimicking real-world activities,

470–471
mobile application defects, 468–469
monkey for, 496
monkeyrunner for, 496
PasswordMatcher for, 481–485
performance, 476
on real devices, 365
release builds, 446
risk assessment and, 424
run configurations of code for,

485–489
servers and services, 473–474
smoke test design, 471–472
specializing scenarios in, 474
summary, Q&A, and references,

497–498
UiAutomation, 497
unexpected scenarios, 477
unit tests, 480–481, 491
upgrades, 475
visual appeal/usability, 474
white-box testing, 473
writing tests for, 489–491

Tablet devices

app quality guidelines, 455
targeting, 336–337

Tabs, navigation design patterns, 246–247

Targets

acquiring target devices, 422–423
identifying target devices, 421–422
market targets, 432
navigation design patterns, 243–244
user target, 445–446
verifying target platforms, 503

Tasks

launching, 240–241
organizing, 532–533

TDD (Test-Driven Development), 481

Team objectives, 438

Telephony status, in Emulator Control,
578–579

Test-Driven Development (TDD), 481

Testing applications, 467

adding additional tests, 493–496
analyzing results, 492–493
Android SDK tools for, 477–480
Android Studio for, 491–496
AndroidJUnitRunner for, 497
assertions in, 491
automated testing programs/APIs,

496–497
automation of, 472
backups in, 476
best practices, 467
black-box testing, 473
build validation, 471–472
clean starting states, 470
conformance standards, 476
defect-tracking systems, 467–469
in development workflow, 431–432
device configuration, 469–470

 TransitionActivity class 663

content providers, 406
device databases, 420–421
documentation requirements, 426
firmware, 469
standards, 456
testing facilities, 426

Threads

database operations off main UI
thread, 383–384

in Device Monitor, 570
Time

displaying, 175
retrieving using pickers, 166–168
showing passage of time with
Chronometer, 174

TimePicker control, 167–168

TimePickerDialog, 258

TODO windows, 528, 532

ToggleButton control, 161–163

Tokenizer, assigning to
MultiAutoCompleteTextView, 156–157

Tool windows, resizing, 528–529

Toolbar

as action bar, 255–256
adding progress indicators to,

170–171
application branding and, 277–279
as bottom bar, 276–277
defining themes, 270
types of user interface control,

209–210
Tracking devices, 419

TrafficStats class, 574

TransitionActivity class

completing transition and revealing
new card, 304–306

editing card activity, 310–313
implementing, 302–304

Testing release versions

in distribution of applications, 508
in packaging applications, 508

testMatchingPasswords() method,
493–494

testPreConditions() method, 490–493

Text

configuring text layout and size,
149–150

creating contextual links in, 150–152
displaying with TextView, 148–149
editors. See EditText controls
examples of string resources, 120
retrieving text input using EditText

control, 152–154
TextClock control, displaying time, 175

TextInputLayout, styles and themes
and, 275

TextView control

configuring text layout and size,
149–150

creating layout using XML resources,
180

defining layout for transitions, 300
displaying text with, 148–149
instantiating LinearLayout

programmatically, 181–183
in PasswordMatcher, 483–485
writing tests for PasswordMatcher

application, 489–491
Themes

<application> tag attributes, 109
compared with styles, 269–270
default theme in material design,

286–287
defining default, 270–271
inheritance, 271–272

Third-party

applications, 24

664 TransitionActivity class

ease of maintenance in, 456–458
firmware, 433
testing, 475

Uploads

application marketing assets to Google
Play, 514

applications to Google Play,
511–513

USB, connecting Android device to computer,
71–73

User interface (UI)

adding progress indicators to
ActionBar, 170–171

adjusting progress with seek bars,
171–172

autocomplete feature, 155–157
buttons, 158–161
CheckBox and ToggleButton controls,

161–163
configuring text layout and size,

149–150
constraining user input with input

filters, 154–155
creating contextual links in text,

150–152
creating in Android, 179
creating reusable behavior components

without a user interface, 231–232
current Android focus, 16
database operations off main UI

thread, 383–384
design of, 450–451
designing for compatibility, 321–322
displaying progress and activity using

indicator controls, 168–169
displaying rating data with RatingBar,

172–174
displaying text with TextView,

148–149
displaying time, 175

viewing/editing card transition,
306–310

TransitionAddActivity class

defining layout for, 299
implementing, 302

TransitionEditActivity class

onCreate(), 310
viewing/editing card transition, 307

Translating applications, for distribution
of applications, 519

Trust relationships, application signing
for, 23

TV

app quality guidelines, 455
targeting TV devices, 337–338

Tweened animation, 134–135

Typography, styles, 280–282

U
UI/Application Exerciser Monkey, 496

UI storyboards, 445

UiAutomation, 497

uiautomator, 497

Underlining attribute, working with string
resources, 121

Unit tests

APIs for, 491
delivering quality Android

applications, 461–463
<instrumentation> tag, 109
testing applications, 480–481

Updates

ease of, 457–458
preferences, 348–349

Upgrades

Android SDK, 37
Android Studio, 35–36
current Android focus, 15

 ViewGroup classes 665

V
Value types

resource types, 112–113
storing primitive types, 114

Variable extraction, in Android Studio, 535

Version systems

development workflow and, 427
distribution of applications and, 503

Video

implementing service for video
editing, 91

MediaStore content provider, 394
playing with VideoView, 175–177
storing application data on devices, 363

VideoView control, 175–177

View container controls

AdapterView controls, 206–207
ArrayAdapter control, 204–205
CursorAdapter control, 205–206
data-driven containers, 204
ListView control, 207–208
using container control classes, 203

View controls

adding to ActionBar, 252
designing user interfaces for

compatibility, 322
parent and child views, 184–185
ViewGroup classes. See ViewGroup

classes
ViewGroup containers, 203

ViewGroup classes

built-in classes for layouts, 185–187
FrameLayout view, 193–195
GridLayout view, 198–202
LinearLayout view, 187–189
organizing user interface, 184–185
RelativeLayout view, 180, 189–193

documentation for, 425
in Hierarchy Viewer, 594–595
indicating activity with activity bars

and activity circles, 171
navigating Android system UI, 237
organizing, 184–185
playing video with VideoView, 175–177
RadioGroup and RadioButton

controls, 163–165
retrieving dates, times, and numbers

using pickers, 166–168
retrieving text input using EditText

control, 152–154
showing passage of time with
Chronometer, 174

Spinner control for user choices,
157–158

summary, Q&A, and references,
177–178

targeting tablet devices, 336
types of user interface controls,

209–210
UI elements, 257
views and layouts for, 147–148

User story mapping, 440

UserDictionary content provider, 399

Users

Android apps associated with user
profiles, 22

creating manageable preferences, 350
meeting objectives of, 438
meeting quality demands of, 450
members of Open Handset Alliance, 14
multiple users with restricted profiles, 23
planning user experience. See Planning

user experience
<uses-configuration> tag, 100–101

<uses-features> tag, 101–102

<uses-permissions> tag, 105–106, 396

666 ViewGroup classes

Windows OSs, configuring for device
debugging, 34

Wireframes, 443–444

Workflow. See Development workflow

Workspaces, organizing, 527

Wrappers, in Gradle, 606–609

WRITE_SECURE_SETTINGS permission, 399

WRITE_SETTINGS permission, 399

Writing tests, 489–491

X
XML

colors.xml file, 272
creating layout using XML resources,

179–181
defining Boolean resources, 125
defining color resources, 126
defining dimension resources, 127
defining drawable resources, 128
defining fragments, 215–216
defining menu resources, 135–136
defining tweened animation sequences,

134–135
editing manifest file, 96
manifest file as, 95
reading XML files, 370–371
resource files. See Resource files

(XML)
resources stored as, 111–112
storing XML files, 114
utilities, 371
working with layouts, 140

XML Pull Parser, 370

subclasses used in layout design, 185
TableLayout view, 195–198
TextView control, 180
types of, 179

ViewGroup containers, 203

ViewHolder class, 296–297

ViewPager control, 210

Views

android.view package, 147–148
displaying text with TextView, 148–149
VideoView, 175–177

Visual appeal/usability, in testing
applications, 474

Visual feedback, in planning user experience,
444–445

Voicemail content provider, 399

W
Watches, extending applications to, 338–339

Wear applications

extending applications to watches and
cars, 338

quality guidelines, 455
Weather apps, implementing service for, 91

Web applications, 24

WebViewFragment class

implementing, 223–225
working with special types of

fragments, 218
Welcome to Android Studio dialog, 58

White-box testing, 473

Widgets

grouping View widgets, 286
TextInputLayout, 275

	Cover
	Contents
	Acknowledgments
	About the Authors
	Introduction
	Who Should Read This Book
	Key Questions Answered in This Book
	How This Book Is Structured
	An Overview of Changes in This Edition
	Development Environments Used in This Book
	Supplementary Materials for This Book
	Conventions Used in This Book
	Where to Find More Information
	Contacting the Authors

	16 Saving with SQLite
	SampleMaterial Upgraded with SQLite
	Working with Databases
	Providing Data Access
	Updating the SampleMaterialActivity Class
	Updating the SampleMaterialAdapter Constructor
	Database Operations Off the Main UI Thread
	Creating a Card in the Database
	Getting All Cards
	Adding a New Card
	Updating a Card
	Deleting a Card

	Summary
	Quiz Questions
	Exercises
	References and More Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

