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Introduction

Android is a popular, free, open-source mobile platform that has taken the world 
by storm. This book provides guidance for software development teams on designing, 
 developing, testing, debugging, and distributing professional Android applications. If you’re 
a veteran mobile developer, you can find tips and tricks to streamline the  development 
process and take advantage of Android’s unique features. If you’re new to mobile 
 development, this book provides everything you need to make a smooth transition from 
traditional software development to mobile development—specifically, the most promising 
platform: Android.

Who Should Read This Book
This book includes tips for successful mobile development based upon our years in the 
mobile industry and covers everything you need to know in order to run a successful 
Android project from concept to completion. We cover how the mobile software process 
differs from traditional software development, including tricks to save valuable time and 
pitfalls to avoid. Regardless of the size of your project, this book is for you.

This book was written for several audiences:

■■ Software developers who want to learn to develop professional  Android 
applications. The bulk of this book is targeted at software developers with 
Java experience who do not necessarily have mobile development  experience. 
 More-seasoned developers of mobile applications can learn how to take  advantage 
of Android and how it differs from the other technologies on the mobile 
 development market today.

■■ Quality assurance personnel tasked with testing Android applications. 
Whether they are black-box or white-box testing, quality assurance engineers 
can find this book invaluable. We devote several chapters to mobile QA concerns, 
 including topics such as developing solid test plans and defect-tracking systems 
for mobile applications, how to manage handsets, and how to test applications 
 thoroughly using all the Android tools available.

■■ Project managers planning and managing Android development teams. 
Managers can use this book to help plan, hire for, and execute Android projects 
from start to finish. We cover project risk management and how to keep Android 
projects running smoothly.
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■■ Other audiences. This book is useful not only to the software developer, but also 
to the corporation looking at potential vertical market applications, the entrepre-
neur thinking about a cool phone application, and the hobbyist looking for some 
fun with his or her new phone. Businesses seeking to evaluate Android for their 
specific needs (including feasibility analysis) can also find the information provided 
valuable. Anyone with an Android handset and a good idea for a mobile application 
can put the information in this book to use for fun and profit.

Key Questions Answered in This Book
This book answers the following questions:

1. What is Android? How do the SDK versions differ?

2. How is Android different from other mobile technologies? How should  
developers take advantage of these differences?

3. How do developers use Android Studio and the Android SDK tools to develop 
and debug Android applications on the emulator and handsets?

4. How are Android applications structured?

5. How do developers design robust user interfaces for mobile—specifically, for 
Android?

6. What capabilities does the Android SDK have and how can developers use them?

7. What is material design and why does it matter?

8. How does the mobile development process differ from traditional desktop 
development?

9. What strategies work best for Android development?

10. What do managers, developers, and testers need to look for when planning, 
 developing, and testing a mobile application?

11. How do mobile teams deliver quality Android applications for publishing?

12. How do mobile teams package Android applications for distribution?

13. How do mobile teams make money from Android applications?

14. And, finally, what is new in this edition of the book?

How This Book Is Structured
Introduction to Android Application Development, Fifth Edition, focuses on Android  essentials, 
including setting up the development environment, understanding the application 
 lifecycle, user interface design, developing for different types of devices, and the mobile 
software process from design and development to testing and publication of commercial-
grade applications.
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The book is divided into six parts. Here is an overview of the various parts:

■■ Part I: Platform Overview
 Part I provides an introduction to Android, explaining how it differs from other 

 mobile platforms. You become familiar with the Android SDK tools, install the 
 development tools, and write and run your first Android application—on the 
 emulator and on a handset. This section is of primary interest to developers and 
testers, especially white-box testers.

■■ Part II: Application Basics
 Part II introduces the principles necessary to write Android applications. You learn 

how Android applications are structured and how to include resources, such as 
strings, graphics, and user interface components, in your projects. You learn about 
the core user interface element in Android: the View. You also learn about the most 
common user interface controls and layouts provided in the Android SDK. This 
 section is of primary interest to developers.

■■ Part III: Application Design Essentials
 Part III dives deeper into how applications are designed in Android. You learn about 

material design, styling, and common design patterns found among applications. 
You also learn how to design and plan your applications. This section is of primary 
 interest to developers.

■■ Part IV: Application Development Essentials
 Part IV covers the features used by most Android applications, including storing 

persistent application data using preferences, working with files and directories, 
SQLite, and content providers. This section is of primary interest to developers.

■■ Part V: Application Delivery Essentials
 Part V covers the software development process for mobile, from start to finish, 

with tips and tricks for project management, software developers, user-experience 
 designers, and quality assurance personnel.

■■ Part VI: Appendixes
 Part VI includes several helpful appendixes to help you get up and running with the 

most important Android tools. This section consists of tips and tricks for Android 
Studio, an overview of the Android SDK tools, three helpful quick-start guides for 
the Android development tools—the emulator, Device Monitor, and Gradle—as 
well as answers to the end-of-chapter quiz questions.

An Overview of Changes in This Edition
When we began writing the first edition of this book, there were no Android devices 
on the market. Today, there are hundreds of millions of Android devices (with thousands 
of different device models) shipping all over the world every quarter—phones, tablets, 
e-book readers, smartwatches, and specialty devices such as gaming consoles, TVs, and 
Google Glass. Other devices such as Google Chromecast provide screen sharing between 
Android devices and TVs.
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The Android platform has gone through extensive changes since the first edition of this 
book was published. The Android SDK has many new features, and the development tools 
have received many much-needed upgrades. Android, as a technology, is now the leader 
within the mobile marketplace.

In this new edition, we took the opportunity to add a wealth of information. But 
don’t worry, it’s still the book readers loved the first, second, third, and fourth time around; 
it’s just much bigger, better, and more comprehensive, following many best practices. In 
 addition to adding new content, we’ve retested and upgraded all existing content (text 
and sample code) for use with the latest Android SDKs available, while still remaining 
backward compatible. We included quiz questions to help readers ensure they understand 
each chapter’s content, and end-of-chapter exercises for readers to perform to dig deeper 
into all that Android has to offer. The Android development community is diverse and we 
aim to support all developers, regardless of which devices they are developing for. This 
includes developers who need to target nearly all platforms, so coverage in some key areas 
of older SDKs continues to be included because it’s often the most reasonable option for 
compatibility.

Here are some of the highlights of the additions and enhancements we’ve made to this 
edition:

■■ The entire book has been overhauled to include coverage of the Android Studio 
IDE. Previous editions of this book included coverage of the Eclipse IDE. Where 
applicable, all content, images, and code samples have been updated for Android 
Studio. In addition, coverage of the latest and greatest Android tools and utilities is 
included.

■■ The chapter on defining the manifest includes coverage of the new Android 6.0 
Marshmallow (API Level 23) permission model, and it provides a code sample 
 demonstrating the new permission model.

■■ A brand new chapter on material design has been added and demonstrates how 
developers can integrate common material design features into their application, and 
it includes a code sample.

■■ A brand new chapter on working with styles has been included with tips on how 
to best organize styles and reuse common UI components for optimized display 
 rendering, and it provides a code sample.

■■ A brand new chapter on common design patterns has been added with details on 
various ways to architect your application, and it offers a code sample.

■■ A brand new chapter on incorporating SQLite for working with persistent 
 database-backed application data has been added, and it includes a code sample.

■■ An appendix providing tips and tricks for using Android Studio has been included.
■■ An appendix on the Gradle build system has been included to help you understand 
what Gradle is and why it’s important.

■■ The AdvancedLayouts code sample has been updated so that the GridView and 
ListView components make use of Fragment and ListFragment classes respectively.
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■■ Some code samples include an ActionBar by making use of the new Toolbar, and 
have done so using the support library for maintaining compatibility on devices 
running older APIs. When necessary, application manifests have been updated to 
support parent-child Activity relationships that support up-navigation.

■■ Many code samples make use of the AppCompatActivity class and the 
 appcompat-v7 support library.

■■ All chapters and appendixes include quiz questions and exercises for readers to test 
their knowledge of the subject matter presented.

■■ All existing chapters have been updated, often with some entirely new sections.
■■ All sample code and accompanying applications have been updated to work with 
the latest SDK.

As you can see, we cover many of the hottest and most exciting features that  Android 
has to offer. We didn’t take this review lightly; we touched every existing chapter, 
 updated content, and added new chapters as well. Finally, we included many additions, 
 clarifications, and, yes, even a few fixes based on the feedback from our fantastic (and 
 meticulous) readers. Thank you!

Development Environments Used in This Book
The Android code in this book was written using the following development 
environments:

■■ Windows 7, 8, and Mac OS X 10.9
■■ Android Studio 1.3.2
■■ Android SDK API Level 23 (referred to in this book as Android Marshmallow)
■■ Android SDK Tools 24.3.4
■■ Android SDK Platform Tools 23.0.0
■■ Android SDK Build Tools 23.0.0
■■ Android Support Repository 17 (where applicable)
■■ Java SE Development Kit (JDK) 7 Update 55
■■ Android devices: Nexus 4, 5, and 6 (phones), Nexus 7 (first- and second-generation 
7-inch tablet), Nexus 9 and 10 (large tablet), including various other popular devices 
and form factors.

The Android platform continues to grow aggressively in market share against 
 competing mobile platforms, such as Apple iOS, Windows Phone, and BlackBerry OS. 
New and exciting types of Android devices reach consumers’ hands at a furious pace. 
Developers have embraced Android as a target platform to reach the device users of today 
and tomorrow.

Android’s latest major platform update, Android Marshmallow, brings many new 
 features. This book covers the latest SDK and tools available, but it does not focus on 
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them to the detriment of popular legacy versions of the platform. The book is meant to 
be an overall reference to help developers support as many popular devices as possible on 
the market today. As of the writing of this book, approximately 9.7% of users’ devices are 
running a version of Android Lollipop, 5.0 or 5.1, and Android Marshmallow has yet to 
be released on real devices. Of course, some devices will receive upgrades, and users will 
purchase new Lollipop and Marshmallow devices as they become available, but for now, 
developers need to straddle this gap and support numerous versions of Android to reach 
the majority of users in the field. In addition, the next version of the Android operating 
system is likely to be released in the near future.

So what does this mean for this book? It means we provide legacy API support and 
discuss some of the newer APIs available in later versions of the Android SDK. We discuss 
strategies for supporting all (or at least most) users in terms of compatibility. And we pro-
vide screenshots that highlight different versions of the Android SDK, because each major 
revision has brought with it a change in the look and feel of the overall platform. That 
said, we are assuming that you are downloading the latest Android tools, so we  provide 
screenshots and steps that support the latest tools available at the time of writing, not 
legacy tools. Those are the boundaries we set when trying to determine what to include 
and leave out of this book.

Supplementary Materials for This Book
The source code that accompanies this book is available for download from our book’s 
website: http://introductiontoandroid.blogspot.com/2015/08/5th-edition-book-code-samples.html. 
The code samples are organized by chapter and downloadable in zip format or accessible 
from the command line with Git. You’ll also find other Android topics discussed on our 
book’s website (http://introductiontoandroid.blogspot.com).

Conventions Used in This Book
This book uses the following conventions:

■■ Code and programming terms are set in monospace text.
■■ Java import statements, exception handling, and error checking are often removed 
from printed code examples for clarity and to keep the book to a reasonable length.

This book also presents information in the following sidebars:

Tip
Tips provide useful information or hints related to the current text.

Note
Notes provide additional information that might be interesting or relevant.

http://introductiontoandroid.blogspot.com/2015/08/5th-edition-book-code-samples.html
http://introductiontoandroid.blogspot.com
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Warning
Warnings provide hints or tips about pitfalls that may be encountered and how to avoid 
them.

Where to Find More Information
There is a vibrant, helpful Android developer community on the Web. Here are a number 
of useful websites for Android developers and followers of the mobile industry:

■■ Android Developer website: the Android SDK and developer reference site:  
http://d.android.com/index.html and http://d.android.com

■■ Google Plus: Android Developers Group: 
https://plus.google.com/+AndroidDevelopers/posts

■■ YouTube: Android Developers and Google Design: 
https://www.youtube.com/user/androiddevelopers  
https://www.youtube.com/channel/UClKO7be7O9cUGL94PHnAeOA

■■ Google Material Design:  
https://www.google.com/design/spec/material-design/introduction.html

■■ Stack Overflow: the Android website with great technical information 
( complete with tags) and an official support forum for developers:  
http://stackoverflow.com/questions/tagged/android

■■ Android Open Source Project:  
https://source.android.com/index.html

■■ Open Handset Alliance: Android manufacturers, operators, and developers:  
http://openhandsetalliance.com

■■ Google Play: buy and sell Android applications:  
https://play.google.com/store

■■ tuts+: Android development tutorials:  
http://code.tutsplus.com/categories/android

■■ Google Sample Apps: open-source Android applications hosted on GitHub:  
https://github.com/googlesamples

■■ Android Tools Project Site: the tools team discusses updates and changes:  
https://sites.google.com/a/android.com/tools/recent

■■ FierceDeveloper: a weekly newsletter for wireless developers:  
http://fiercedeveloper.com

■■ XDA-Developers Android Forum:  
http://forum.xda-developers.com/android

■■ Developer.com: a developer-oriented site with mobile articles:  
http://developer.com

http://d.android.com/index.html
http://d.android.com
https://plus.google.com/+AndroidDevelopers/posts
https://www.youtube.com/user/androiddevelopers
https://www.youtube.com/channel/UClKO7be7O9cUGL94PHnAeOA
https://www.google.com/design/spec/material-design/introduction.html
http://stackoverflow.com/questions/tagged/android
https://source.android.com/index.html
http://openhandsetalliance.com
https://play.google.com/store
http://code.tutsplus.com/categories/android
https://github.com/googlesamples
https://sites.google.com/a/android.com/tools/recent
http://fiercedeveloper.com
http://forum.xda-developers.com/android
http://developer.com
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Contacting the Authors
We welcome your comments, questions, and feedback. We invite you to visit our blog at:

■■ http://introductiontoandroid.blogspot.com

Or email us at:

■■ introtoandroid5e@gmail.com

Find Joseph Annuzzi on LinkedIn:

■■ Joseph Annuzzi, Jr.: https://www.linkedin.com/in/josephannuzzi

Circle Joseph Annuzzi on Google+:

■■ Joseph Annuzzi, Jr.: http://goo.gl/FBQeL

http://introductiontoandroid.blogspot.com
https://www.linkedin.com/in/josephannuzzi
http://goo.gl/FBQeL
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Saving with SQLite

There are many different ways for storing your Android applications’ data. As you learned 
in Chapter 14, “Using Android Preferences,” and in Chapter 15, “Accessing Files and 
Directories,” there is definitely more than one way for accessing and storing your data. But 
what if you need to store structured data for your application, such as data more suited for 
storing in a database? That’s where SQLite comes in. In this chapter, we are going to be 
modifying the SampleMaterial application found in Chapter 12, “Embracing Material 
Design,” so that Card data is stored persistently in a SQLite database on the device and 
will survive various lifecycle events. By the end of this chapter, you will be confident in 
adding a SQLite database for your application.

SampleMaterial Upgraded with SQLite
The SampleMaterial application found in Chapter 12, “Embracing Material  Design,” 
shows you how to work with data in the application but fails when it comes to 
 storing the data permanently so that it survives Android lifecycle events. When a dding, 
 updating, and deleting cards from the SampleMaterial application, and then  clearing 
the  SampleMaterial application from the Recent apps, the application is not able to 
 remember what cards were added, updated, and deleted. So we updated the  application 
to store the information in a SQLite database to keep track of the data  permanently. 
F igure 16.1 shows the SampleSQLite application, which looks the same as the 
 SampleMaterial application, but is backed by a SQLite database.

Working with Databases
The first thing that must be done is to define the database table that should be created for 
storing the cards in the database. Luckily, Android provides a helper class for defining a 
SQLite database table through Java code. That class is called SQLiteOpenHelper. You need 
to create a Java class that extends from the SQLiteOpenHelper, and this is where you can 
define a database name and version, and where you define the tables and columns. This 
is also where you create and upgrade your database. For the SampleSQLite application, 
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Figure 16.1 Showing the SampleSQLite application.

we created a CardsDBHelper class that extends from SQLiteOpenHelper, and here’s the 
implementation that can be found in the CardsDBHelper.java file:

public class CardsDBHelper extends SQLiteOpenHelper {

    private static final String DB_NAME = "cards.db";

    private static final int DB_VERSION = 1;

 

    public static final String TABLE_CARDS = "CARDS";

    public static final String COLUMN_ID = "_ID";

    public static final String COLUMN_NAME = "NAME";

    public static final String COLUMN_COLOR_RESOURCE = "COLOR_RESOURCE";

 

    private static final String TABLE_CREATE =

            "CREATE TABLE " + TABLE_CARDS + " (" +
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                    COLUMN_ID + " INTEGER PRIMARY KEY AUTOINCREMENT, " +

                    COLUMN_NAME + " TEXT, " +

                    COLUMN_COLOR_RESOURCE + " INTEGER" +

                    ")";

 

    public CardsDBHelper(Context context) {

        super(context, DB_NAME, null, DB_VERSION);

    }

 

    @Override

    public void onCreate(SQLiteDatabase db) {

        db.execSQL(TABLE_CREATE);    }

 

    @Override

    public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

        db.execSQL("DROP TABLE IF EXISTS " + TABLE_CARDS);

        onCreate(db);

    }

}

This class starts off by defining a few static final variables for providing a name and 
version number, and an appropriate table name with table column names. Further, the 
TABLE_CREATE variable provides the SQL statement for creating the table in the database. 
The CardsDBHelper constructor accepts a context and this is where the database name 
and version are set. The onCreate() and onUpgrade() methods either create the new 
table or delete an existing table, and then create a new table.

You should also notice that the table provides one column for the _ID as an INTEGER, 
one column for the NAME as TEXT, and one column for the COLOR_RESOURCE as an INTEGER.

 
Note
The SQLiteOpenHelper class assumes version numbers will be increasing for an 
 upgrade. That means if you are at version 1, and want to update your database, set the 
 version number to 2 and increase the version number incrementally for additional versions.

Providing Data Access
Now that you are able to create a database, you need a way to access the database. To do 
so, you will create a class that provides access to the database from the SQLiteDatabase 
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class using the SQLiteOpenHelper class. This class is where we will be defining the 
 methods for adding, updating, deleting, and querying the database. The class for  doing 
this is provided in the CardsData.java file and a partial implementation can be 
found here:

public class CardsData {

    public static final String DEBUG_TAG = "CardsData";

 

    private SQLiteDatabase db;

    private SQLiteOpenHelper cardDbHelper;

 

    private static final String[] ALL_COLUMNS = {

            CardsDBHelper.COLUMN_ID,

            CardsDBHelper.COLUMN_NAME,

            CardsDBHelper.COLUMN_COLOR_RESOURCE

    };

 

    public CardsData(Context context) {

        this.cardDbHelper = new CardsDBHelper(context);

    }

 

    public void open() {

        db = cardDbHelper.getWritableDatabase();    }

 

    public void close() {

        if (cardDbHelper != null) {

            cardDbHelper.close();        }

    }

}

Notice the CardsData() constructor. This creates a new CardsDBHelper() object 
that will allow us to access the database. The open() method is where the database is 
created with the getWritableDatabase() method. The close() method is for closing 
the database. It is important to close the database to release any resources obtained by 
the object so that unexpected errors do not occur in your application during use. You 
also want to open and close the database during your application’s particular lifecycle 
events so that you are only executing database operations at the times when you have the 
 appropriate access.
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Updating the SampleMaterialActivity Class
The onCreate() method of the SampleMaterialActivity now creates a new data access 
object and opens the database. Here is the updated onCreate() method:

public CardsData cardsData = new CardsData(this);

 

@Override

protected void onCreate(Bundle savedInstanceState) {

    super.onCreate(savedInstanceState);

    setContentView(R.layout.activity_sample_material);

 

    names = getResources().getStringArray(R.array.names_array);

    colors = getResources().getIntArray(R.array.initial_colors);

 

    recyclerView = (RecyclerView) findViewById(R.id.recycler_view);

    recyclerView.setLayoutManager(new LinearLayoutManager(this));

 

    new GetOrCreateCardsListTask().execute();

 

    FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);

    fab.setOnClickListener(new View.OnClickListener() {

        @Override

        public void onClick(View v) {

            Pair<View, String> pair = Pair.create(v.findViewById(R.id.fab),

                    TRANSITION_FAB);

 

            ActivityOptionsCompat options;

            Activity act = SampleMaterialActivity.this;

options = ActivityOptionsCompat.makeSceneTransitionAnimation(act, pair);

 

Intent transitionIntent = new Intent(act, TransitionAddActivity.class);

            act.startActivityForResult(transitionIntent, adapter.getItemCount(), 

options.toBundle());

        }

    });

}
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Notice the new GetOrCreateCardsListTask().execute() method call. We cover this 
implementation later in this chapter. This method queries the database for all cards or fills 
the database with cards if it is empty.

Updating the SampleMaterialAdapter Constructor
An update in the SampleMaterialAdapter class is also needed, and the constructor is 
shown below:

public CardsData cardsData;

public SampleMaterialAdapter(Context context, ArrayList<Card> cardsList,

            CardsData cardsData) {

    this.context = context;

    this.cardsList = cardsList;

    this.cardsData = cardsData;

}

Notice a CardsData object is passed into the constructor to ensure the database is 
available to the SampleMaterialAdapter object once it is created.

 
Warning
Because database operations block the UI thread of your Android application, you should 
always run database operations in a background thread.

Database Operations Off the Main UI Thread
To make sure that the main UI thread of your Android application does not block during 
a potentially long-running database operation, you should run your database operations 
in a background thread. Here, we have implemented an AsyncTask for creating new cards 
in the database, and will subsequently update the UI only after the database operation is 
complete. Here is the GetOrCreateCardsListTask class that extends the AsyncTask class, 
which either retrieves all the cards from the database or creates them:

public class GetOrCreateCardsListTask extends AsyncTask<Void, Void, 

ArrayList<Card>> {

    @Override

    protected ArrayList<Card> doInBackground(Void... params) {

        cardsData.open();

        cardsList = cardsData.getAll();

        if (cardsList.size() == 0) {

            for (int i = 0; i < 50; i++) {
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                Card card = new Card();

                card.setName(names[i]);

                card.setColorResource(colors[i]);

                cardsList.add(card);

                cardsData.create(card);

                Log.d(DEBUG_TAG, "Card created with id " + card.getId() + ", 

name " + card.getName() + ", color " + card.getColorResource());

            }

        }

        return cardsList;

    }

 

    @Override

    protected void onPostExecute(ArrayList<Card> cards) {

        super.onPostExecute(cards);

        adapter = new SampleMaterialAdapter(SampleMaterialActivity.this,

                cardsList, cardsData);

        recyclerView.setAdapter(adapter);

    }

}

When this class is created and executed in the onCreate() method of the  Activity, 
it overrides the doInBackground() method and creates a background task for retriev-
ing all the cards from the database with the call to getAll(). If no items are returned, 
that means the database is empty and needs to be populated with entries. The for 
loop creates 50 Cards and each Card is added to the cardsList, and then created in 
the database with the call to create(). Once the background operation is complete, 
the onPostExecute() method, which was also overridden from the AsyncTask class, 
receives the cardsList result from the doInBackground() operation. It then uses the 
cardsList and cardsData to create a new SampleMaterialAdapter, and then adds that 
adapter to the recyclerView to update the UI once the entire background operation 
has completed.

Notice the AsyncTask class has three types defined; the first is of type Void, the second 
is also Void, and the third is ArrayList<Card>. These map to the Params, Progress, and 
Result generic types of an AsyncTask. The first Params is used as the parameter of the 
doInBackground() method, which are Void, and the third Result generic is used as the 
parameter of the onPostExecute() method. In this case, the second Void generic was 
not used, but would be used as the parameter for the onProgressUpdate() method of an 
AsyncTask.
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Note
Note that you are not able to call UI operations on the doInBackground() method 
of an AsyncTask. Those operations need to be performed before or after the 
 doInBackground() method, but if you need the UI to update only after the background 
operation has completed, you must perform those operations in the onPostExecute() 
method so the UI is updated appropriately.

Creating a Card in the Database
The magic happens in the call to cardsData.create(). This is where the Card is inserted 
into the database. Here is the create() method definition found in the CardsData class:

public Card create(Card card) {

    ContentValues values = new ContentValues();

    values.put(CardsDBHelper.COLUMN_NAME, card.getName());

    values.put(CardsDBHelper.COLUMN_COLOR_RESOURCE, card.getColorResource());

    long id = db.insert(CardsDBHelper.TABLE_CARDS, null, values);

    card.setId(id);

    Log.d(DEBUG_TAG, "Insert id is " + String.valueOf(card.getId()));

    return card;

}

The create() method accepts a Card data object. A ContentValues object is created 
to temporarily store the data that will be inserted into the database in a structured format. 
There are two value.put() calls that map the database column to a Card attribute. The 
insert() method is then called on the cards table and the temporary values are passed in 
for insertion. An id is returned from the call to insert() and that value is then set as the 
id for the Card, and finally a Card object is returned. Figure 16.2 shows the logcat out-
put of cards being inserted into the database.

 

Figure 16.2 logcat output showing items inserted into the database.
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Getting All Cards
Earlier, we mentioned the getAll() method that queries the database for all the cards in 
the cards table. Here is the implementation of the getAll() method:

public ArrayList<Card> getAll() {

    ArrayList<Card> cards = new ArrayList<>();

    Cursor cursor = null;

    try {

        cursor = db.query(CardsDBHelper.TABLE_CARDS,

                COLUMNS, null, null, null, null, null);

        if (cursor.getCount() > 0) {

            while (cursor.moveToNext()) {

                Card card = new Card();

                card.setId(cursor.getLong(cursor

                        .getColumnIndex(CardsDBHelper.COLUMN_ID)));

                card.setName(cursor.getString(cursor

                        .getColumnIndex(CardsDBHelper.COLUMN_NAME)));

                card.setColorResource(cursor                        

                        .getInt(cursor.getColumnIndex(CardsDBHelper

                                .COLUMN_COLOR_RESOURCE)));

                    cards.add(card);

            }

        }

    } catch (Exception e){

        Log.d(DEBUG_TAG, "Exception raised with a value of " + e);

    } finally{

        if (cursor != null) {

            cursor.close();

        }

    }

    return cards;

}

A query is performed on the cards table inside a try statement with a call to query() 
that returns all columns for the query as a Cursor object. A Cursor allows you to access 
the results of the database query. First, we ensure that the Cursor count is greater than 
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zero, otherwise no results will be returned from the query. Next, we iterate through all the 
cursor objects by calling the moveToNext() method on the cursor, and for each database 
item, we create a Card data object from the data in the Cursor and set the Cursor data to 
Card data. We also handle any exceptions that we may have encountered, and finally the 
Cursor object is closed and all cards are returned.

Adding a New Card
You already know how to insert cards into the database because we did that to initialize 
the database. So adding a new Card is very similar to how we initialized the database. The 
addCard() method of the SampleMaterialAdapter class needs a slight modification. This 
method executes AsyncTask to add a new card in the background. Here is the updated 
implementation of the addCard() method creating a CreateCardTask and executing 
the task:

public void addCard(String name, int color) {

    Card card = new Card();

    card.setName(name);

    card.setColorResource(color);

    new CreateCardTask().execute(card);

}

 

private class CreateCardTask extends AsyncTask<Card, Void, Card> {

    @Override

    protected Card doInBackground(Card... cards) {

        cardsData.create(cards[0]);

        cardsList.add(cards[0]);

        return cards[0];

    }

 

    @Override

    protected void onPostExecute(Card card) {

        super.onPostExecute(card);

        ((SampleMaterialActivity) context).doSmoothScroll(getItemCount() - 1);

        notifyItemInserted(getItemCount());

        Log.d(DEBUG_TAG, "Card created with id " + card.getId() + ", name " + 

                card.getName() + ", color " + card.getColorResource());

    }

}
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The doInBackground() method makes a call to the create() method of the 
 cardsData object, and in the onPostExecute() method, a call to the doSmoothScroll() 
method of the calling Activity is made, then the adapter is notified that a new Card has 
been inserted.

Updating a Card
To update a Card, we first need a way to keep track of the position of a Card within 
the list. This is not the same as the database id because the id of the item in the 
database is not the same as the position of the item in the list. The database increments 
the id of a Card, so each new Card has an id one higher than the previous Card. The 
 RecyclerView list, on the other hand, shifts positions as items are added and removed 
from the list. 

First, let’s update the Card data object found in the Card.java file and add a new 
listPosition attribute with the appropriate getter and setter methods as shown here:

private int listPosition = 0; 

 

public int getListPosition() {

    return listPosition;

}

 

public void setListPosition(int listPosition) {

    this.listPosition = listPosition;

}

Next, update the updateCard() method of the SampleMaterialAdapter class and 
implement an UpdateCardTask class that extends AsyncTask as follows:

public void updateCard(String name, int list_position) {

    Card card = new Card();

    card.setName(name);

    card.setId(getItemId(list_position));

    card.setListPosition(list_position);

    new UpdateCardTask().execute(card);

}

 

private class UpdateCardTask extends AsyncTask<Card, Void, Card> {

    @Override

    protected Card doInBackground(Card... cards) {

        cardsData.update(cards[0].getId(), cards[0].getName());
(Continues)
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(Continued)

        cardsList.get(cards[0].getListPosition()).setName(cards[0].getName());

        return cards[0];

    }

 

    @Override

    protected void onPostExecute(Card card) {

        super.onPostExecute(card);

        Log.d(DEBUG_TAG, "list_position is " + card.getListPosition());

        notifyItemChanged(card.getListPosition());

    }

}

The UpdateCardTask calls the update() method of the cardsData object in the 
doInBackground() method and then updates the name of the corresponding Card in the 
cardsList object and returns the Card. The onPostExecute() method then notifies the 
adapter that the item has changed with the notifyItemChanged() method call.

Finally, the CardsData class needs to implement the update() method to update the 
particular Card in the database. Here is the update() method:

public void update(long id, String name) {

    String whereClause = CardsDBHelper.COLUMN_ID + "=" + id;

    Log.d(DEBUG_TAG, "Update id is " + String.valueOf(id));

    ContentValues values = new ContentValues();

    values.put(CardsDBHelper.COLUMN_NAME, name);

    db.update(CardsDBHelper.TABLE_CARDS, values, whereClause, null);

}

The update() method accepts id and name parameters. A whereClause is then con-
structed for matching the id of the Card with the appropriate id column in the database, and 
a new ContentValues object is created for adding the updated name for the particular Card 
to the appropriate name column. Finally, the update() method is executed on the database.

Deleting a Card
Now let’s take a look at how to modify the deletion of cards. Remember the 
 animateCircularDelete() method—this is where a Card was animated off the screen 
and deleted from the cardsList object. In the onAnimationEnd() method, construct a 
Card data object and pass that to the execute method of a DeleteCardTask object, which 
is an AsyncTask. Here are those implementations:

public void animateCircularDelete(final View view, final int list_position) {

    int centerX = view.getWidth();
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    int centerY = view.getHeight();

    int startRadius = view.getWidth();

    int endRadius = 0;

    Animator animation = ViewAnimationUtils.createCircularReveal(view, 

            centerX, centerY, startRadius, endRadius);

 

    animation.addListener(new AnimatorListenerAdapter() {

        @Override

        public void onAnimationEnd(Animator animation) {

            super.onAnimationEnd(animation);

            view.setVisibility(View.INVISIBLE);

            Card card = new Card();

            card.setId(getItemId(list_position));

            card.setListPosition(list_position);

            new DeleteCardTask().execute(card);

        }

    });

    animation.start();

}

 

private class DeleteCardTask extends AsyncTask<Card, Void, Card> {

    @Override

    protected Card doInBackground(Card... cards) {

        cardsData.delete(cards[0].getId());

        cardsList.remove(cards[0].getListPosition());

        return cards[0];

    }

 

    @Override

    protected void onPostExecute(Card card) {

        super.onPostExecute(card);

        notifyItemRemoved(card.getListPosition());

    }

}
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The doInBackground() method of the DeleteCardTask calls the delete() method 
of the cardsData object and passes in the id of Card. Then the Card is removed from the 
cardsList object, and in the onPostExecute() method, the adapter is notified that an 
item has been removed by calling the notifyItemRemoved() method and passing in the 
list position of the Card that has been removed.

There is one last method to implement—the delete() method of the CardsData class. 
Here is that method:

public void delete(long cardId) {

    String whereClause = CardsDBHelper.COLUMN_ID + "=" + cardId;

    Log.d(DEBUG_TAG, "Delete position is " + String.valueOf(cardId));

    db.delete(CardsDBHelper.TABLE_CARDS, whereClause, null);

}

The delete() method of the CardsData class accepts an id of a Card, constructs a 
whereClause using that id, and then calls the delete() method on the cards table of the 
database, passing in the appropriate whereClause with the id of the Card to delete.

Summary
You now have a full implementation of a database that provides permanent storage for 
your application. In this chapter, you learned how to create a database. You also learned 
how to access the database for querying, inserting, updating, and deleting items from it. In 
addition, you also learned how to update the SampleMaterial application so that Card 
data is stored in a database. Finally, you learned how to perform your database opera-
tions off of the main UI thread by performing the operations in the background with an 
AsyncTask so as not to block the UI when running these blocking operations. You should 
now be ready to implement simple SQLite databases in your own applications.

Quiz Questions
1. What is the SQLiteDatabase method for creating a table?

2. What method provides access for reading and writing a database?

3. True or false: The async() method of an AsyncTask allows you to execute long-
running operations off the main UI thread in the background.

4. True or false: The onAfterAsync() method of an AsyncTask allows you to execute 
UI methods after an AsyncTask completes.
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Exercises
1. Read through the “Saving Data in SQL Databases” training in the Android 

 documentation found here: http://d.android.com/training/basics/data-storage/
databases.html.

2. Read through the “SQLiteDatabase” SDK reference to learn more about how to 
utilize a SQLite database here: http://d.android.com/reference/android/database/sqlite/
SQLiteDatabase.html.

3. Modify the SampleSQLite application to support the deletion of all items from the 
database with a single database operation.
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Auto application

extending applications to watches  
and cars, 338

quality guidelines, 455
Auto Backup, 99, 359–361

Autocomplete, 155–157, 533–537

AutoCompleteTextView, 155–156

autolink attribute, creating contextual  
links in text, 150–152

Automation, of testing applications,  
472, 496–497

AVD. See Android Virtual Devices (AVD)

B
Back navigation, 239

Back stack, navigating, 240–241

Backups

auto backup feature, 99, 359–361
in testing applications, 476

Behaviors, creating reusable behavior 
components without a user interface, 
231–232

Beta Channel, options for upgrading 
Android Studio, 35

Billing

distribution of applications and, 
501–502

in-app, 477
methods for, 453–454

Binding application data, to RecyclerView, 
293–296

BitmapDrawable, working with image 
resources, 130

Black-box testing, 473

Bold attribute, working with string  
resources, 121

Boolean resources, working with,  
124–125

tabs, 246–247
targets, 243–244
toolbars as action bars, 255–256
types of dialogs, 259–260
working with Android Support 

package dialog fragments, 264–267
working with custom dialogs,  

263–264
working with dialogs and dialog 

fragments, 260–263
Architecture

of Android devices in development 
workflow, 428

underlying Android, 21–22
ArrayAdapter control, binding array 

element to views, 204–205

ART (Android Runtime), 21, 106–108

ASL/Apache2 (Apache Software License), 17

assertEquals() method, 491

Assertions, in testing applications, 491

Assets, retrieving and using application 
Context, 79

AsyncTask class, 383–384

Attributes

color, 273
FrameLayout view, 195
GridLayout view, 200
LinearLayout view, 188–189
preference, 351
RelativeLayout view, 191–193
setting dialog attributes, 261–262
shared by ViewGroup classes,  

186–187
TableLayout view, 197
TableRow view, 197

Audio

MediaStore content provider, 394
storing application data on  

devices, 363



638 BorderlessButtons sample app

floating action buttons, 256–257, 
275–276

for PasswordMatcher, 481–485
as targets, 243–244
using basic buttons, 158–161

C
Cache, data, 364

CalendarContract content provider, 
398–399

Callback methods

attaching/detaching fragments with 
activities, 216–217

using Activity callbacks to manage 
application state and resources,  
81–82

CallLog content provider

adding required permissions for 
accessing, 398

overview of, 397–398
Calls

simulation of incoming, 559–560, 579
between two emulator instances, 

557–558
Canary Channel, options for upgrading 

Android Studio, 35

Card data object

adding cards to database, 384,  
386–387

completing transition and revealing 
new card, 304–306

creating, 291–292
deleting cards, 313–317, 388–390
editing card activity, 310–313
initializing using initCards(), 292
querying (getAll) in database,  

385–386
updating cards, 387–388
viewing/editing card transition, 

306–310

BorderlessButtons sample app

importing into Android Studio, 52–54
running in emulator, 55–57
running using AVD, 54–55

Branding, application branding, 277–279

Breakpoints, viewing/setting, 67

Broadcasts, of intent, 91–92

Browsing files of emulators/devices, in  
File Explorer, 575–576

Bug reports, in development workflow, 433

Builds

errors, 537
in Gradle. See Gradle build system
validation, 471–472

Built-in content providers

CalendarContract content provider, 
398–399

CallLog content provider, 397–398
ContactsContract content provider, 

400–402
MediaStore content provider, 394
overview of, 394
Settings content provider, 399
UserDictionary content provider, 399
Voicemail content provider, 399

Built-in layout classes

FrameLayout view, 193–195
GridLayout view, 198–202
LinearLayout view, 187–189
overview of, 185–187
RelativeLayout view, 189–193
TableLayout view, 196–198

Button objects

adding action buttons to ActionBar, 
252–253

creating layout using XML  
resources, 186

defining for applying state list resource, 
132–133
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stepping through, 67
working with Java code, 533–537

Colors

adding simple resource values,  
116–120

in application branding, 277–279
attributes, 273
defining by RGB values, 288–289
styles and themes, 272–273
working with, 126
working with color state lists, 131–133

colors.xml file, 288–289

Compatibility

creating alternative resources,  
325–326

designing user interfaces, 321–322
extending applications to watches  

and cars, 338–339
leveraging Android Support library 

APIs, 323
maintaining backward compatibility, 

374–375
maximizing application compatibility, 

319–321
Nine-Patch Stretchable Graphics  

and, 324
organizing alternative resources, 

334–335
organizing alternative resources with 

qualifiers, 326–331
programmatic use of alternative 

resources, 333–334
providing alternative resources for 

different screen orientations,  
331–333

reasons for including alternative 
resources, 324–325

SafetyNet ensuring, 339–340
screen type support, 323–324
summary, Q&A, and references, 

340–342

CardView class

animating circular reveal, 297
grouping View widgets, 286
implementing ViewHolder class, 

296–297
showing dataset in list, 288
types of user interface controls, 210

Cars, extending applications to,  
338–339

CharacterPickerDialog, 258

CheckBox control, 161–163

Child views, view controls, 184–185

Chronometer control, 174

Circular reveal, animation of, 297

Classes. See also by individual types

built-in classes for layouts, 185–187
importing required packages, 70
modeling in planning user  

experiences, 440
Clean starting states, in testing  

applications, 470

Click

click handlers for RadioButton 
control, 165

organizing application navigation, 90
Client/server applications, testing, 424

Closing unwanted tabs, in  
Android Studio, 531

Cloud-friendly applications, testing, 424

Code

creating run configuration for testing, 
485–489

delivering quality code, 461–463
Google initiative making Android 

source code available, 11
instructions in Android applications, 111
for packaging and distribution of 

applications, 503
preparing for distribution of 

applications, 503



640 Compatibility

ContactsContract content provider, 
400–402

Cursor objects and, 205–206
deleting records, 405–406
exploring, 393
MediaStore content provider,  

394–396
<providers> tag, 109
Settings content provider, 399
summary, Q&A, and references, 

406–407
third-party, 406
updating records, 404–405
UserDictionary content  

provider, 399
Voicemail content provider, 399

ContentProviderOperation class

deleting records, 405–406
updating records, 404–405

Context class

defined, 77
file access methods, 366–367
openFileOutput(), 367
retrieving and using application 

context, 78–79
Context menu, 251

Contextual action mode, 256

Contextual links, creating in text, 150–152

Control of test releases, in development 
workflow, 431–432

Controls. See also by individual types, 147–148

Copying files, to/from emulators/ 
devices, 577

Core app quality guidelines, 454–455

Coverage of tests, 471–477

Crash reports, in development workflow, 433

CRM (customer relationship management), 
397–398

CursorAdapter control, binding columns of 
data to views, 205–206

targeting tablet devices, 336–337
targeting TV devices, 337–338
working with fragments, 323

Compatibility Test Suite, AOSP, 339

<compatible-screens> tag, 102

Configuration changes

handling, 335
retaining data across, 335

Configuration file. See Manifest file

Conformance standards, in testing 
applications, 476

Console, Developer, 509–512, 515–517

Console, Emulator. See Emulator console

ContactsContract content provider

adding records to, 402–404
data column classes, 402
overview of, 400
updating records, 404–405
working with, 400–402

Container class controls, in layouts

AdapterView controls, 206–207
ArrayAdapter binding array element 

to views, 204–205
CursorAdapter binding columns of 

data to views, 205–206
data-driven containers, 204
list of, 209–210
ListView controls, 207–208
overview of, 203

Content areas, actions originating from 
application, 257–258

Content providers

accessing when permissions  
required, 396

adding records to, 402–404
built-in, 394
CalendarContract content provider, 

398–399
CallLog content provider, 397–398



 Developers, reasonable learning curve for 641

Debug class, 476

Debugging

configuring hardware debugging, 
34–35

configuring operating system for 
device debugging, 34

in Device Monitor, 569
new application on hardware, 71–73
new project in emulator, 66–69
reporting bugs, 37–38

Default resources

defined, 324
using, 115–116

Defect-tracking systems, 467–469

Defects, redefining for mobile applications, 
468–469

Deleting

cards, 313–317, 388–390
files from emulators/devices,  

577–578
preferences, 348–349
records, 405–406

Dependencies, adding to application,  
286–287

Deploying Android applications, 432

Descendant navigation, 238–239

Design

architecting with patterns. See 
Architectural design patterns

designing Android applications in 
development workflow, 427–430

of developmental process, 460
material design. See Material design
planning user experiences, 444
tools for, 458–459

Dev Channel, options for upgrading Android 
Studio, 35

Developer Console, 477, 509–512,  
515–517

Developers, reasonable learning curve for, 18

CursorLoader class, performing cursor 
queries, 393

Custom dialogs, 263–264

Custom log filters, 532

Customer relationship management (CRM), 
397–398

Cyanogen OS, 27

D
Data. See also Resources

retaining across configuration  
changes, 335

storing application data on devices, 
363–364

Data access object, creating, 381–382

Data-driven containers, 204

Data types

supported as preference-setting  
values, 346

utilities for handling different file 
types, 366

value types, 112–114
Databases. See also SQLite

accessing, 379–380
adding cards, 384, 386–387
creating, 377–379
deleting cards, 388–390
in development workflow, 417–418
operations off main UI thread,  

383–384
querying (getAll) cards, 385–386
storing device data in, 419–420
third-party, 420–421
tracking devices in, 419
updating cards, 387–388
using device data from, 420

DatePicker control, 166–168

DatePickerDialog, 257

Dates, retrieving using pickers, 166–168



642 Development, setting up for

developing Android applications, 430
device databases, 417–421
documentation, 425–426, 433
exercises for, 435
extensibility, 428–429
feasibility of application  

requirements, 423
Google Play Staged Rollouts, 432
interoperability of applications, 430
introduction to, 411
iterative process, 413
limitations of Android devices, 428
live server changes, 434
low-risk porting opportunities, 434
lowest common denominator method, 

413–414, 416
maintaining Android applications, 

433–434
maintenance, designing for, 428–429
maintenance, documentation for, 426
maximizing application compatibility, 

319–320
overview of, 411–412
porting documentation in, 426
private controlled testing, 431
private group testing, 431–432
project risk assessment, 421–424
quality assurance, risk assessment for, 

423–424
quality assurance, test plans for,  

425–426
releases of devices, 422
retirement (sunset) of devices, 422
software methodologies, 412–413
source control systems, 426–427
summary, Q&A, and references, 

434–436
supporting Android applications, 

433–434

Development, setting up for

accessing Android SDK 
documentation, 40

configuring development 
environment, 31–34

configuring hardware debugging, 
34–35

configuring operating system for 
device debugging, 34

exploring Android emulator, 44–46
exploring Android sample applications, 

45–47
exploring Android SDK and AVD 

managers, 43–45
exploring Android Studio, 42
exploring core features of Android 

SDK core, 40–42
IntelliJ IDEA as alternative to Android 

Studio, 38
overview of, 31
reporting Android SDK bugs, 37–38
reporting Android Studio bugs, 37
summary, Q&A, and references, 

48–49
understanding Android SDK license 

agreement, 38–39
upgrading Android SDK, 37
upgrading Android Studio, 35–36

Development workflow

application requirements, 413–421
application version systems, 427
architecture of Android devices, 428
bug reports, 433
configuration management systems, 

426–427
controlling test releases, 431–432
crash reports, 433
customization method, 414–416
deploying Android applications, 432
designing Android applications, 427–430



 Digital signatures, in distribution of applications 643

stopping processes, 570
summary, Q&A, and references, 

582–583
System Information pane, 580
thread activity, 570
using with Android Studio, 567–568

Devices. See also Hardware

debugging applications on, 71–73
extending applications to watches and 

cars, 338–339
maximizing application compatibility, 

320–321
specifying device features with 

manifest file, 101–102
storing application data on, 363–364
support for adoptable storage, 372
targeting tablet devices, 336–337
targeting TV devices, 337–338

Diagnostics, in quality Android applications, 
456–457

Dialog class

implementing dialogs, 259
overview of, 258
summary, Q&A, and references, 

267–268
types of dialogs, 257, 259–260
working with Android Support 

package dialog fragments, 264–267
working with custom dialogs,  

263–264
working with dialogs and dialog 

fragments, 260–263
DialogFragment class

lifecycle of, 261
managing dialogs for use with user 

interface, 261
working with special types of 

fragments, 218
Digital signatures, in distribution of 

applications, 504–508

target devices, acquiring, 422–423
target devices, identifying, 421–422
target markets, 432
testing applications, 424, 431–432
testing firmware upgrades, 433
third-party documentation 

requirements, 426
third-party requirements/

recommendations, 417
third-party testing facilities, 426
use cases in, 416
user interface documentation, 425
waterfall approaches to, 412–413

Device configuration, in testing applications, 
469–470

Device databases. See also Databases

in development workflow, 417–418
selecting devices for tracking, 419
storing data, 419–420
third-party, 420–421
using data from, 420

Device Monitor

Allocation Tracker, 573–574
debuggers in, 569
debugging applications, 590–591
Emulator Control pane, 578–579
File Explorer pane, 575–578
Garbage Collection, 571–572
heap activity, 570–571
HPPROF files, 572–573
interacting with processes, 569
key features of, 568–569
LogCat tool, 581–582
Network Statistics, 574–575
Quick-Start, 567
screen captures of emulators/device 

screens, 580–581
as stand-alone application, 567–568



644 Dimensions

permissions, verifying, 504
publishing to alternative  

marketplaces, 520
required resources in, 508
self-publishing applications for,  

520–521
servers/services in, preparing, 508
summary, Q&A, and references, 

522–523
target platforms, verifying, 503
testing release versions in, 508
translating applications for, 519
versioning applications, 503

Dividers, for visual appeal, 279–280

Documentation

accessing Android SDK 
documentation, 40

for Android SDK tools, 585–588
in development workflow, 425–426
Javadoc-style documentation in 

Android Studio, 537
Domain modeling, 440

Dot (.) character, shortcut in package 
specification, 98

Drawable resources

adding simple resource values in 
Android Studio, 116–120

defining circle-shape, 270–271
working with, 128–129

<drawable> tag, 128

DrawerLayout control, 210

Drawers, organizing application  
navigation, 90

E
E-mail apps, implementing service for, 91

Eclipse

ADT facilitating Android development 
with, 18

Dimensions

adding simple resource values in 
Android Studio, 116–120

designing user interfaces for 
compatibility, 322

working with, 126–128
Directories

core, 62–64
creating and writing to files in default 

application directory, 367–368
default resource directories, 112
exploring, 366–367
reading from files in default application 

directory, 369
retrieving and using application 
Context, 79

viewing, 61
working with other directories and 

files on Android file system, 372–373
DisplayMetrics utility, getting information 

about screen, 322

Distribution of applications

ad revenues in, 502
Android manifest for filtering in, 

503–504
billing users, 501–502
code preparation for, 503
details in Google Play, 515
digital signatures in, 504–508
disabling debugging/logging for, 504
distribution channels and, 508–509
file packages, 504–508
Google Play policies, 501
Google Play requirements, 504
intellectual property protection in, 500
introduction to, 499
models for, 499–502
name/icons of applications in, 503
packaging applications for publication 

and, 502–509



 External storage 645

simulating reality, 539–541
summary, Q&A, and references, 

565–566
testing applications, 472–473

Emulator console

manipulating power settings,  
562–563

monitoring network status, 562
sending GPS coordinates, 561
simulating incoming call, 559–560
simulating SMS message, 560–561

Emulator Control pane, 579

introduction to, 578
location fixes in, 579

simulating incoming SMS messages, 579
telephony status in, 578–579

Encryption, 453

End User License Agreement (EULA), 453

Entity discovery/organization,  
440–441

Entity relationship modeling, 440

Entry navigation, 238

Environment class, accessing external 
storage, 374

Environments, managing test environments, 
469–471

Errors, debugging new project in emulator, 
66–69

Espresso, 497

EULA (End User License Agreement), 453

Events, handling selection events,  
206–207

Exerciser Monkey, 497

Experience, user. See Planning user 
experience

Extensibility, in development workflow, 
428–429

External navigation, 240

External storage, 374

ADT plugin no longer supported,  
32, 527

Android Support Library for use  
with, 231

choosing source control system, 426
Editor windows

controlling, 531
resizing, 528
viewing side by side, 529

Editors/editing

card activity, 310–313
card transitions, 306–310
layout editor, 591–592
manifest file, 96–99
preference editor, 348
video editing, 91

EditText boxes, 481–485, 490

EditText controls

constraining user input with input 
filters, 154–155

retrieving text input, 152–154
Education guidelines, 455

ems, measuring width of TextView, 150

Emulator. See also Android Virtual Device 
Manager; Android Virtual Devices (AVD)

Android SDK tools and, 588–589
calling between two instances in, 

557–558
debugging new project, 66–69
exploring, 44–46
GPS locations of, 555–556
limitations of, 563–564
messaging between two instances, 

558–559
personalizing, 563
Quick-Start for, 539
running BorderlessButtons 

application in, 55–57
running new project in, 64–66



646 Feasibility

referencing animation files by 
filenames, 114

retrieving and using application 
Context, 79

storing, 111–112, 114
storing application data on devices, 

363–364
summary, Q&A, and references, 

375–376
support for adoptable storage  

devices, 372
viewing, 61
working with, 366
working with other directories and 

files on Android file system, 372–373
Filters

application filtering options, 102
configuring intent filters, 103–104
constraining user input with input 

filters, 154–155
packaging applications and, 503–504

Fingerprint, permissions for fingerprint 
authentication, 108

Fire OS (Amazon), 26–27

Firmware upgrades, 433

Fixed tabs, navigation design patterns, 
246–247

Flavors, Gradle builds, 611–614

Floating action buttons

adding primary action to material 
application, 297–301

adding to main layout, 289–290
overview of, 256–257
styles and themes and, 275–276

Fonts, typography, 280–282

Forks, custom uses of Android, 26–28

Format strings, 121

Fragment class

adding Fragment support to legacy 
applications, 229

F
Feasibility

of application requirements, 423
testing, 460

Features

specifying device features with 
manifest file, 101–102

targeting tablet devices, 336
targeting TV devices, 338

File Explorer pane

browsing files of emulators/devices, 
575–576

copying files to/from emulators/
devices, 577

deleting files from emulators/devices, 
577–578

directories in, 576
finding preferences data, 349–350
introduction to, 575

File objects, 372–373

Files

core, 62–64
creating and writing to external 

storage, 374
creating and writing to in default 

application directory, 367–368
file package in distribution, 504–508
finding preferences data in file system, 

349–350
good management practices, 364–365
in Gradle, 603–604
maintaining backward compatibility, 

374–375
permissions, 365
reading from files in default application 

directory, 369
reading raw files byte by byte,  

369–370
reading XML files, 370–371



 Google Mobile Services (GMS) 647

understanding, 213–214
working with dialog fragments,  

260–263
Fragmentation issues. See also  

Compatibility, 319

FragmentTransaction, 216

Frame-by-frame animation, 133–134

FrameLayout view

attributes, 195
using, 193–195

G
Games

Google Play Game Services, 15, 516
implementing service for, 91
typical activities in, 80

Gaps, for visual appeal, 279–280

Garbage Collection, 571–572

GCM (Google Cloud Messaging), 516

getAll(), querying cards in database, 
385–386

getQuantityString(), working with 
quantity strings, 123

getResources(), retrieving application 
resources, 79, 121–122

Global Positioning System (GPS),  
locations of emulators, 555–556

GMS (Google Mobile Services), 13

GNU General Public License Version 2 
(GPLv2), 17

Goals, of testing applications, 485

Google

list of Google services, 26
mobile first philosophy, 12
role Open Handset Alliance, 13

Google Cloud Messaging (GCM), 516

Google Experience devices, 423

Google Maps, 555–556

Google Mobile Services (GMS), 13

adding Fragment support to new 
applications targeting older platforms, 
229–230

Android Support Library package  
and, 228

attaching/detaching with activities, 
216–217

creating reusable behavior components 
without a user interface, 231–232

defining, 215–216
defining Activity classes for hosting 
Fragment components, 227–228

defining layout resource files for, 
225–226

designing compatible applications, 323
designing Fragment-based applications, 

218–219
designing user interfaces for 

compatibility, 322
dialog fragments in Support package, 

264–267
implementing ListFragment,  

219–223
implementing WebViewFragment, 

223–225
lifecycle of, 214–215
linking Android Support package to 

project, 230–231
ListFragment control, 207–208
managing modifications, 216
master detail flows, 249–250
navigation with, 241–242
nested, 232
organizing Activity components 

with, 85–87
organizing application navigation, 90
overview of, 78
special types of, 217–218
summary, Q&A, and references, 

232–234
targeting tablet devices, 336



648 Google Play

module settings in, 606–609
project settings in, 604–605
Quick-Start for, generally, 603
summary, Q&A, and references, 

620–621
support library dependencies in, 

606–609
wrappers in, 606–609

Gradle builds, Android Studio for

adding library dependencies, 615–616
APK variants, 616–618
configuring Android properties in, 

609–611
configuring application  

dependencies, 615
configuring build flavors in, 611–614
configuring build types in, 614–615
introduction to, 603, 609
running tasks in, 618–620
signing options in, 611
syncing projects, 609

Graphics

Nine-Patch Stretchable Graphics, 130
referencing by filenames, 114
storing, 114
storing resources files, 112
using alternative resources, 115
working with image resources, 129

GridLayout view

attributes, 200
using, 198–202

GridView controls, 204

Guidelines for Android applications, 454–456

H
HAL (hardware abstraction layer), 21

Hardware

configuring debugging, 34–35

Google Play

Android markets, 20
application filtering options, 102
configuring application options, 516
Developer Console in, 509–512, 

515–517
Developer Distribution Agreement, 

476, 501, 510
developers registering with, 23
distribution details in, 515
in distribution of Android apps, 14–15
distribution policies of, 501
distribution requirements of, 504
Game Services in, 516
for low cost development, 19
managing applications on, 517–518
packaging requirements of, 504
pricing details in, 515
Private Channel in, 518–519
publishing applications to, 509, 516
removing applications from, 518
return policy, 517
SafetyNet service, 339
signing up for, 509–511
Staged Rollouts in, 432, 518
targeting TV devices, 338
uploading application marketing assets 

to, 514
uploading applications to, 511–513

Google Wallet Merchant accounts, 501, 
510–511

GPLv2 (GNU General Public License  
Version 2), 17

GPS (Global Positioning System), locations  
of emulators, 555–556

Gradle build system

adding dependencies to application, 
286–287

files in, 603–604



 Intellectual property protection 649

Images

formats, 130
MediaStore content provider, 394
storing on devices, 363
working with image resources, 129–131

Imports

in Android Studio, 533–534
BorderlessButtons sample, 52–54
Optimize Imports command, 70

<include> statement, including layout 
within other layouts, 274–275

Indicator controls

adding progress indicators to 
ActionBar, 170–171

adjusting progress with seek bars, 
171–172

displaying progress and activity using, 
168–169

indicating activity with activity bars 
and activity circles, 171

Inheritance, styles and themes, 271–272

initCards(), initializing Card data  
object, 292

Input filters, constraining user input with, 
154–155

Input methods, specifying with manifest file, 
100–101

Input mode

targeting tablet devices, 336
targeting TV devices, 337

InputFilter objects, 154–155

Installations, in testing applications, 476

<instrumentation> tag, unit tests, 109

Integer resources, 125–126

Integrated development environments. 
See IDEs (integrated development 
environments)

Integration points, in testing applications, 
474–475

Intellectual property protection, 500

debugging new application (Nexus 4 
example), 71–73

manifest file enforcing application 
platform requirements, 100

maximizing compatibility, 320–321
open source, 27–28
upgrading, 15

hasSystemFeature(), specifying device 
features, 101–102

Headers, organizing preferences, 354–359

Heap activity, in Device Monitor, 570–571

Hierarchies, screen relationships, 242–244

Hierarchy Viewer

introduction to, 592
launching, 593
Layout View mode in, 592–594
Pixel Perfect mode in, 592, 595
user interface optimization in, 594–595

HPPROF files, in Device Monitor, 572–573

HTML

HTML-style attributes, 122
working with layouts, 140

I
IARC (International Age Rating  

Coalition), 516

Icons

placing in ActionBar, 252
setting application icon, 99
working with image resources, 129

Identity, managing application identity, 99

Identity of applications, in planning user 
experience, 442–443

IDEs (integrated development environments). 
See also Android Studio

alternatives to Android Studio, 38
for application development, 18
configuring development 

environment, 32



650 IntelliJ IDEA

Italic attribute, working with string  
resources, 121

itemView

implementing ViewHolder class, 
296–297

OnClickListener of, 306

J
Java

Android Studio and, 533–537
Autocomplete, 533–537
developing Android applications with, 

24, 533–537
documentation, 537
file utilities, 366
imports, 533–534
Intention Actions, 536–537
Method extraction, 536
new classes/methods, 533
refactoring code, 535
reformatting code, 534
Rename tool and, 534
reorganizing code, 536
Variable extraction, 535

Javadoc-style documentation, in Android 
Studio, 537

java.io

reading raw files byte by byte,  
369–370

utilities for handling different file 
types, 366

JDK (Java Development Kit), 31

JetBrains

IntelliJ IDEA. See IntelliJ IDEA
reporting bugs via, 37

JUnit tests. See also Unit tests,  
462–463, 480–481

IntelliJ IDEA

as alternative to Android Studio, 38
Android Studio based on, 18,  

32, 527
Intent class

configuring intent filters, 103–104
creating intents with action and data, 

88–89
defined, 78
designating primary entry point using 

intent filter, 103
managing Activity transitions with, 

87–88
organizing application navigation, 90
passing information using, 89–90
receiving and broadcasting,  

91–92
Intention Actions feature,  

536–537

International Age Rating Coalition  
(IARC), 516

Internationalization, in testing  
applications, 475

Interoperability of applications, 430

Interprocess communication (IPC), 91

Introduction, to book

authors’ contact information, 8
changes to this edition, 3–5
conventions used in book, 6–7
development environments used in 

book, 5–6
how book is structured, 2–3
intended audience, 1–2
key issues addressed, 2
list of useful websites, 7
supplementary materials, 6

IPC (interprocess communication), 91

Issue Tracker website, reporting bugs to, 
37–38
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defining layout files for fragments, 
225–226

designing screens for compatibility, 324
designing with Android Studio, 

141–143
FrameLayout view, 193–195
GridLayout view, 198–202
LinearLayout view, 187–189
list of view containers, 209–210
ListView controls, 207–208
organizing your user interface,  

184–185
RelativeLayout view, 189–193
scrolling support added to, 208–209
styles and themes, 273–274
summary, Q&A, and references, 

210–212
TableLayout view, 196–198
using layout resources 

programmatically, 144
using multiple layouts on a screen, 

202–203
working with, 140–141

LBS (Location-based services), 416,  
555–556

Legacy applications

adding ActionBar to, 255
adding Fragment support to, 229

Libraries. See also Android Support Library 
package

adding library dependencies,  
615–616

adding support libraries to application, 
286–287

License Verification Library (LVL), 500

Licenses

Android, 17
understanding license agreement, 

38–39

K
Keys, 505–506

“Killer apps,” 477

L
Landscape mode, providing alternative 

resources for different orientations,  
332–333

Last-in-first-out order, navigating back stack, 
240–241

Lateral navigation, 238

Launching emulators

from Android Virtual Device 
Manager, 554–555

with Android Virtual Devices,  
548–549

to run applications, 550–554
Launching Hierarchy Viewer, 593

Layout controls, 148, 322

Layout editor, 591–592

Layout View mode, in Hierarchy Viewer, 
592–594

Layouts

AdapterView controls, 206–207
ArrayAdapter binding array element 

to views, 204–205
built-in classes for, 185–187
configuring text layout and size, 

149–150
container class controls in, 203
controls in, 148
creating programmatically, 181–184
creating RelativeLayout, 289–290
creating using XML resources,  

179–181
CursorAdapter binding columns of 

data to views, 205–206
data-driven containers, 204



652 Lifecycle

Logging

adding logging support to application, 
69–70

application information, 67
defect information, 467–468
filtering logging messages, 70
in quality Android applications, 

462–463
viewing log data, 589–590

Logos, 115

Low-risk porting opportunities, 434

LVL (License Verification Library), 500

M
Mac OS X, configuring operating system  

for device debugging, 34

Maintenance of applications

designing for, 428–429
in development process, 433–434
documentation for, 426, 433
ease of, 456

Maintenance of emulator performance, 549

Maker Movement, Android versions, 27–28

Managers

exploring Android SDK and AVD 
managers, 43–44

handling state of system services, 
25–26

Manifest file

configuring Android applications 
using, 95–96

editing, 96–99
enforcing system requirements,  

100–102
list of configurable features, 109
managing application identity, 99
registering activities in, 103–105
registering hardware and software 

requirements, 321

Lifecycle

of an activity, 80–82
of fragments, 214–215

LinearLayout view

attributes, 188–189
creating layout using XML  

resources, 186
defining layout for transitions,  

299–301
instantiating programmatically, 181–184
using, 187–189

Lines, measuring height of TextView, 150

Links, creating contextual links in text, 
150–152

Linux OSs

Android running on, 21
configuring operating system for 

device debugging, 34
SELinux (Security-Enhanced Linux), 

22–23
ListFragment class

designing Fragment-based applications, 
218–219

implementing, 219–223
using ListView control with, 207–208
working with special types of 

fragments, 217
ListView control

binding data to AdapterView, 206
types of data-driven containers, 204
using with ListFragment, 207–208

Live server changes, 434

Location-based services (LBS), 416, 555–556

Location fixes, in Emulator Control, 579

Logcat utility

Device Monitor, 581–582
filtering logging messages, 70
logging application information, 67
for viewing log data, 589–590
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styling applications, 287–288
summary, Q&A, and references, 

317–318
understanding, 285–286
viewing/editing card transition, 

306–310
Material theme support library, 287

MediaController object, 177

MediaStore content provider,  
394–396

Menus

organizing application navigation, 90
styling, 280
types of, 251
working with, 135–137

<merge> tag, including layout within other 
layouts, 274–275

Metadata, 109

Method extraction, in Android  
Studio, 536

Mimicking real-world activities, in testing 
applications, 470–471

Mobile applications

Google’s mobile first philosophy, 12
testing applications, 467

Mobile operators, members of Open  
Handset Alliance, 14

Mockups, 445–446

MODE_APPEND, file permissions, 365

MODE_PRIVATE, file permissions, 365

Module settings, in Gradle, 606–609

Monitoring network status, 562

monkey program (UI/Application Exerciser 
Monkey), 496

monkeyrunner test tool, 472, 496

MultiAutoCompleteTextView,  
155–157

Multimedia, storing application data on 
devices, 363

registering permissions enforced  
by application, 108–109

registering permissions required  
by application, 105–106

requesting permissions at runtime, 
106–108

summary, Q&A, and references, 
109–110

targeting TV devices, 337
Manufacturers, members of Open Handset 

Alliance, 13–14

Markets/marketing. See also Google Play

revenue models and, 19
uploading application marketing assets 

to Google Play, 514
Master detail flows, navigation design 

patterns, 90, 249–250

Material design

adding dependencies to application, 
286–287

adding primary action, 297–301
animating circular reveal, 297
binding application data to 
RecyclerView, 293–296

completing transition and revealing 
new card, 304–306

creating/initializing Card data object, 
291–292

creating layout, 289–290
default themes, 286
defining colors, 288–289
defining string resources, 289
deleting cards, 313–317
editing card activity, 310–313
extending AppCompatActivity  

class, 291
implementing TransitionActivity 

class, 302–304
implementing ViewHolder class, 

296–297
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O
OHA (Open Handset Alliance)

members, 13–15
overview of, 12–13

onActivityResult(), implementing 
material activity, 304

OnClickListener

adding to floating action button, 
298–299

deleting cards, 313–317
viewing/editing card transition, 306

onCreate()

initializing static Activity data, 82
SampleMaterialActivity class, 381
TransitionEditActivity  

class, 310
onDestroy(), destroying static Activity 

data, 84–85

onPause(), stopping, saving, releasing 
Activity data, 83

onResume(), initializing and retrieving 
Activity data, 83

onSaveInstanceState(), saving 
Activity state into a bundle, 84

onStart(), confirming Activity  
features, 83

openFileOupput(), 367

OpenGL ES, 101–102

Optimize Imports command, 70

Options menu, 251

Orientation of screen

providing alternative resources for 
different orientations,  
331–333

targeting tablet devices, 336
targeting TV devices, 337

OS (operating system), configuring for device 
debugging, 34

Overscan margins, targeting TV  
devices, 337

N
N scenarios, navigation, 237–240

Names

distribution of applications and, 503
setting application name, 99

Navigation

with fragments, 241–242
hierarchical relationships between 

screens, 242–244
launching tasks and navigating the 

back stack, 240–241
master detail flows, 249–250
n scenarios, 237–240
navigation drawer, 247–249
organizing application navigation, 90
swipe views, 244–246
tabs, 246–247
targeting tablet devices, 336
targeting TV devices, 337
targets, 243–244

Navigation drawer, 247–249

Nested fragments, 232

Nested layouts, 202

Network Statistics, in Device 
Monitor, 574–575

Networks, downloading content from, 363

New classes/methods, in Android Studio, 533

New Project creation wizard, 58

News apps, implementing service for, 91

Nexus

debugging new application on, 71–73
exploring Android emulator, 46
Google’s Android offering, 14

Nine-Patch Stretchable Graphics

Android SDK tools, 596–598
screen compatibility and, 324
working with, 130

Numbers, retrieving using pickers, 166–168
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PCB (printed circuit board), 27–28

Performance, in testing applications, 476

Permission groups, 108

<permission> tag, for fingerprint 
authentication, 109

Permissions

accessing CallLog content  
provider, 398

accessing content providers that 
require, 396

accessing Settings content  
provider, 399

applications enforcing own, 23
file permissions, 365
registering enforced, 108–109
registering required, 105–106
requesting at runtime, 106–108
verifying, 504

Personalizing emulators, 563

Personas, 439–440

Pickers, retrieving dates, times, and 
numbers, 166–168

Pixel density, specifying, 102

Pixel Perfect mode, in Hierarchy Viewer,  
592, 595

Planning user experience

class modeling, 440
design comps, 444
determining objectives, 437–439
domain modeling, 440
entity discovery/organization,  

440–441
entity relationship modeling, 440
exercises for, 447
focusing on objectives, 439–442
identity of applications, 442–443
introduction to, 437
mockups, 445–446
personas, 439–440

P
Packages

commonly used, 25
file packages in, 504–508
important, 41
naming, 99
shortcut in package specification, 98
views and controls, 147

Packaging applications

code preparation for, 503
digital signatures, 504–508
disabling debugging/logging for, 504
distribution channels and, 508–509
file packages in, 504–508
filtering, 503–504
Google Play requirements, 504
introduction to, 502–503
name/icons of applications in, 503
permissions verification, 504
preparing servers/services, 508
required resources, 508
target platforms, 503
testing release versions, 508
versioning applications, 503

Parent views, view controls, 184–185

Partitioning. See Fragment class

PasswordMatcher application

adding additional tests, 493–496
analyzing test results, 492–493
Android Studio for, 491–496
assertions, 491
goals in testing of, 485
introduction to, 481–485
run configurations of code for,  

485–489
unit-testing APIs for, 491
writing tests for, 489–491
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creating private and shared 
preferences, 346–347

determining when to use, 345
finding preferences data in file system, 

349–350
organizing with headers, 354–359
PreferenceActivity class, 353–354
reacting to changes in, 349
retrieving and using application 
Context, 79

searching and reading, 347
storing preference values, 346
summary, Q&A, and references, 

361–362
Pricing & Distribution tab, 515

Primitive types, storing, 114

Printed circuit board (PCB), 27–28

Private controlled testing, in development 
workflow, 431

Private data, 453

Private group testing, in development 
workflow, 431–432

Private preferences, 346–347

Product Details section, 514

Profit maximization, 453–454

Programmatic approach

accessing Boolean resources, 125
accessing resources, 116
accessing string resources, 121–122
to layouts, 144, 181–184
to menu resources, 136–137
to raw files, 138
to tweened animation, 135
use of alternative resources,  

333–334
using Boolean resources, 125
using color resources, 126
using dimension resources, 127

prototypes, 446
screen layouts, 443–444
screen maps, 441–442
sketches, 443
stakeholder objectives, 438–439
summary, Q&A, and references, 

446–447
target users, feedback from, 445–446
team objectives, 438
testing release builds, 446
UI storyboards, 445
user flows, 441
user objectives, 438
user story mapping, 440
visual feedback, 444–445
wireframes, 443–444

<plurals>, working with quantity  
strings, 123

PNG graphics, 130

Pop-up menu, 251

Porting, documentation for, 426

Portrait mode, providing alternative 
resources for different orientations,  
332–333

Power settings, 562–563

PreferenceActivity class

creating manageable user  
preferences, 350

using, 353–354
PreferenceFragment class, 217

Preferences

accessing application preferences, 79
adding, updating, and deleting,  

348–349
Auto Backup, 359–361
creating manageable user  

preferences, 350
creating preference resource file, 

350–352
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Q
Qualifiers

list of important alternative resource 
qualifiers, 328–331

organizing alternative resources, 
326–327

Quality Android applications

avoiding mistakes in, 459
best practices, 449, 459–460
code quality in delivery of,  

461–463
design tools for, 458–459
designing development process, 460
diagnostics, 456–457
feasibility testing, 460
guidelines for, 454–456
introduction to, 449
logging, 462–463
maintenance, 456
private data in, 453
profit maximizing and, 453–454
responsiveness of applications,  

451–452
security of applications, 453
stability of applications,  

451–452
summary, Q&A, and references, 465
third-party standards for, 456
unit tests, 461–463
upgrades and updates, 456–458
user demands, 450
user interface design, 450–451

Quality assurance

in project risk assessment,  
423–424

test plans for, 425–426
Quantity strings, 123

using drawable resources, 129
using integer resources, 125–126
working with image resources,  

130–131
to XML resources, 137

Programming languages, Android  
options, 24

Progress indicators. See Indicator controls

ProgressBar control

adding to ActionBar or Toolbar, 170
displaying progress, 168–169

ProgressDialog class, 257

ProGuard, 500

Project risk assessment

acquiring target devices, 422–423
in development workflow, 421–424
feasibility of application  

requirements, 423
identifying target devices, 421–422
quality assurance, 423–424
releases of devices, 422
retirement (sunset) of devices, 422
testing client/server applications, 424
testing cloud-friendly applications, 424
testing in, 424

Project settings, in Gradle, 604–605

Project view, comparing Android 
project view with, 62

Properties, configuration of, 609–611

Property animation, 133

Prototypes, in planning user  
experience, 446

<providers> tag, content providers, 109

Publication of applications. See also 
Distribution of applications; Packaging 
applications

to alternative marketplaces, 520
to Google Play, 509–518
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Reporting bugs, 37–38

Repositioning windows, within Android 
Studio, 528

Required resources, in distribution of 
applications, 508

res directory, 112

res/layout directory

defining layout files for fragments, 
225–226

XML resources in, 179
res/value directory

colors subdirectory, 272
string array resources in, 123
string resources in, 120
themes and styles subdirectories, 270, 

287–288
Resolution, designing user interfaces for 

compatibility, 321–322

Resource files (XML)

creating preference resource file, 
350–352

defining layout resource files for 
fragments, 225–226

storing, 111–112
working with XML resource files, 137

Resources

accessing programmatically, 116
adding simple resource values in 

Android Studio, 116–120
alternative. See Alternative resources
default, 115–116, 324
referencing, 138–140, 144–145
retrieving application resources, 79
storing, 111–114
summary, Q&A, and references, 

145–146
using Activity callbacks to manage 

application state and resources,  
81–82

R
RadioButton control, 163–165

RadioGroup control, 163–165

RatingBar control, 172–174

Raw data, storing, 111

Raw files

defining Raw XML resources, 137
reading byte by byte, 369–370
storing, 114
working with, 138

READ_EXTERNAL_STORAGE permission, 396

Reading, preferences, 347

Real-world activity simulation, 470–471

Records, content provider

adding, 402–404
deleting, 405–406
updating, 404–405

RecyclerView

adapter for binding data set to,  
293–296

adding to main layout for application, 
289–290

implementing ViewHolder class, 
296–297

populating list of names into, 286
types of user interface controls,  

209–210
Refactoring code, in Android Studio, 535

Reformatting code, in Android Studio, 534

RelativeLayout view

attributes, 191–193
creating, 289–290
using, 189–191

Releases of devices, in project risk 
assessment, 422

Rename tool, in Android Studio, 534

Reorganizing code, in Android Studio, 536
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Runtime

Android apps running as separate 
process, 21

requesting permissions at, 106–108

S
SafetyNet, ensuring compatibility, 339–340

SAX utilities, for working with XML files, 370

Screen compatibility mode, 324

Screen layouts, in planning user experiences, 
443–444

Screen maps, in planning user experiences, 
441–442

Screens

capturing emulators/device screens, 
580–581

compatibility support, 323–324
designing user interfaces, 322
hierarchical relationships between, 

242–244
maximizing application  

compatibility, 320
providing alternative resources for 

different screen orientations, 331–333
specifying sizes, 102
targeting tablet devices, 336
targeting TV devices, 337
using multiple layouts on a, 202–203

Scripting languages, developing Android 
applications with, 24

Scrollable tabs, navigation design patterns, 
246–247

ScrollView, adding to layout, 208–209

SD cards

creating and writing files to, 374
maintaining backward compatibility, 

374–375
support for adoptable storage  

devices, 372

using default and alternative resources, 
115–116

what they are, 111
working with animation, 133–135
working with Boolean resources, 

124–125
working with color state lists, 131–133
working with colors, 126
working with dimensions, 126–128
working with drawable resources, 

128–129
working with images, 129–131
working with integer resources, 

125–126
working with layouts, 140–144
working with menus, 135–137
working with quantity strings, 123
working with raw files, 138
working with string arrays, 123–124
working with string resources,  

120–122
working with XML files, 137

Responsiveness of applications, 451–452

Return policy, Google Play, 517

Reuse, creating reusable behavior 
components without a user interface, 
231–232

RGB color values

defining color resources, 126,  
288–289

styles and themes, 272
Risk assessment. See Project risk 

assessment

R.java class file, accessing resources 
programmatically, 116–117

RSA key, 71–73

Rubin, Andy, 13

Run/Debug Configurations, 485–489, 
550–553



660 SDK (software development kit). See Android SDK

Size attributes, TextView control, 149–150

Sketches, 443

Smartwatch, 15

Smoke test design, 471–472

SMS messages

Emulator console and, 560–561
Emulator Control and, 579
sending between two emulator 

instances, 558–559
Social networking app, implementing service 

for, 91

Software

manifest file enforcing application 
platform requirements, 100

methodologies for, 412–413
upgrading, 15

Software development kit (SDK). See  
Android SDK

Source control

integrating services for, 527–528
systems for, 426–427

Spinner control, 157–158

SQLite. See also Databases

accessing databases, 379–380
adding card to database, 384, 386–387
creating databases, 377–379
creating new data access object, 

381–382
database operations off main UI 

thread, 383–384
deleting cards, 388–390
querying (getAll) cards in database, 

385–386
summary, Q&A, and references, 390–391
updating cards, 387–388

SQLiteOpenHelper, 377, 380

Stability of applications, 451–452

Stable Channel, options for upgrading 
Android Studio, 35

SDK (software development kit). See  
Android SDK

Searches

preferences, 347
project search, 532

Security

Android platform and, 22–23
of applications, 453

Security-Enhanced Linux (SELinux), 22–23

SeekBar control, adjusting progress with 
seek bars, 171–172

Selections, handling selection events,  
206–207

<selector> resource type, 131

Self-publishing applications, for distribution, 
520–521

SELinux (Security-Enhanced Linux), 22–23

Servers

packaging and distributing 
applications, 508

testing applications, 473–474
Service class

defined, 78
working with services, 90–91

Set up, for development. See Development, 
setting up for

Settings content provider, 399

Shared preferences

creating, 346–347
reacting to changes in, 349

SharedPreferences interface

methods, 347–348
overview of, 346
reading, 347

Signing options, in Gradle, 611

Signing up, for Google Play, 509–511

Simulation of reality

in emulators, 539–541
in testing applications, 470–471
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defining default application themes, 
270–271

divider and gap use, 279–280
for FloatingActionButton,  

275–276
inheritance, 271–272
layout, 273–274
menu styles, 280
merge and include, 274–275
summary, Q&A, and references, 

282–284
support libraries for, 269
TextInputLayout, 275
toolbar use as bottom bar, 276–277
typography, 280–282

Subclasses, ViewGroup, 185

Sunset of devices, in project risk 
assessment, 422

Support Library. See Android Support Library 
package

<supports-gl-texture> tag, 102

<supports-screens> tag, 102

Swipe

navigation design patterns, 244–246
organizing application navigation, 90

SwipeRefreshLayer, 209

Syncing projects, in Gradle, 609

System Information, 580

System requirements, 100–102

System resources, 144–145

T
TabLayout, adding, 246–247

TABLE_CREATE, SQL statement, 379

TableLayout view

attributes, 197
using, 196–198

TableRow view, 197

Stack

Activity, 80–81
launching tasks and navigating back 

stack, 240–241
Stakeholder objectives, 438–439

Stand-alone applications, Device Monitor, 
567–568

startActivity(), managing Activity 
transitions with intents, 87–89

State, callbacks for managing application 
state, 81–82

Stopping processes, in Device Monitor, 570

Storage

creating and writing files to external 
storage, 374

device data in databases, 419–420
limited capacity of Android  

devices, 364
of preference values, 346
of resources, 111–114
support for adoptable storage  

devices, 372
Store Listing tab, 514

Stretchable graphics. See Nine-Patch 
Stretchable Graphics

StrictMode class, 476

String resources

accessing programmatically, 116
defining <string-array>, 289
using programmatically, 121–122
working with, 120–121
working with quantity strings, 123
working with string arrays, 123–124

strings.xml file, 288–289

Styles

application branding, 277–279
applying to application, 287–288
colors, 272–273
compared with themes, 269–270
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on emulators, 472–473
Espresso for, 497
exercises for, 498
goals of, 485
in-app billing, 477
installation, 476
integration points, 474–475
internationalization of, 475
introduction to, 467
JUnit for, 480–481
“killer apps,” 477
logging defect information, 467–468
managing environments, 469–471
maximizing testing coverage, 471–477
mimicking real-world activities, 

470–471
mobile application defects, 468–469
monkey for, 496
monkeyrunner for, 496
PasswordMatcher for, 481–485
performance, 476
on real devices, 365
release builds, 446
risk assessment and, 424
run configurations of code for,  

485–489
servers and services, 473–474
smoke test design, 471–472
specializing scenarios in, 474
summary, Q&A, and references, 

497–498
UiAutomation, 497
unexpected scenarios, 477
unit tests, 480–481, 491
upgrades, 475
visual appeal/usability, 474
white-box testing, 473
writing tests for, 489–491

Tablet devices

app quality guidelines, 455
targeting, 336–337

Tabs, navigation design patterns, 246–247

Targets

acquiring target devices, 422–423
identifying target devices, 421–422
market targets, 432
navigation design patterns, 243–244
user target, 445–446
verifying target platforms, 503

Tasks

launching, 240–241
organizing, 532–533

TDD (Test-Driven Development), 481

Team objectives, 438

Telephony status, in Emulator Control, 
578–579

Test-Driven Development (TDD), 481

Testing applications, 467

adding additional tests, 493–496
analyzing results, 492–493
Android SDK tools for, 477–480
Android Studio for, 491–496
AndroidJUnitRunner for, 497
assertions in, 491
automated testing programs/APIs, 

496–497
automation of, 472
backups in, 476
best practices, 467
black-box testing, 473
build validation, 471–472
clean starting states, 470
conformance standards, 476
defect-tracking systems, 467–469
in development workflow, 431–432
device configuration, 469–470
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content providers, 406
device databases, 420–421
documentation requirements, 426
firmware, 469
standards, 456
testing facilities, 426

Threads

database operations off main UI 
thread, 383–384

in Device Monitor, 570
Time

displaying, 175
retrieving using pickers, 166–168
showing passage of time with 
Chronometer, 174

TimePicker control, 167–168

TimePickerDialog, 258

TODO windows, 528, 532

ToggleButton control, 161–163

Tokenizer, assigning to 
MultiAutoCompleteTextView, 156–157

Tool windows, resizing, 528–529

Toolbar

as action bar, 255–256
adding progress indicators to,  

170–171
application branding and, 277–279
as bottom bar, 276–277
defining themes, 270
types of user interface control,  

209–210
Tracking devices, 419

TrafficStats class, 574

TransitionActivity class

completing transition and revealing 
new card, 304–306

editing card activity, 310–313
implementing, 302–304

Testing release versions

in distribution of applications, 508
in packaging applications, 508

testMatchingPasswords() method, 
493–494

testPreConditions() method, 490–493

Text

configuring text layout and size, 
149–150

creating contextual links in, 150–152
displaying with TextView, 148–149
editors. See EditText controls
examples of string resources, 120
retrieving text input using EditText 

control, 152–154
TextClock control, displaying time, 175

TextInputLayout, styles and themes  
and, 275

TextView control

configuring text layout and size, 
149–150

creating layout using XML resources, 
180

defining layout for transitions, 300
displaying text with, 148–149
instantiating LinearLayout 

programmatically, 181–183
in PasswordMatcher, 483–485
writing tests for PasswordMatcher 

application, 489–491
Themes

<application> tag attributes, 109
compared with styles, 269–270
default theme in material design, 

286–287
defining default, 270–271
inheritance, 271–272

Third-party

applications, 24
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ease of maintenance in, 456–458
firmware, 433
testing, 475

Uploads

application marketing assets to Google 
Play, 514

applications to Google Play,  
511–513

USB, connecting Android device to computer, 
71–73

User interface (UI)

adding progress indicators to 
ActionBar, 170–171

adjusting progress with seek bars, 
171–172

autocomplete feature, 155–157
buttons, 158–161
CheckBox and ToggleButton controls, 

161–163
configuring text layout and size, 

149–150
constraining user input with input 

filters, 154–155
creating contextual links in text, 

150–152
creating in Android, 179
creating reusable behavior components 

without a user interface, 231–232
current Android focus, 16
database operations off main UI 

thread, 383–384
design of, 450–451
designing for compatibility, 321–322
displaying progress and activity using 

indicator controls, 168–169
displaying rating data with RatingBar, 

172–174
displaying text with TextView,  

148–149
displaying time, 175

viewing/editing card transition, 
306–310

TransitionAddActivity class

defining layout for, 299
implementing, 302

TransitionEditActivity class

onCreate(), 310
viewing/editing card transition, 307

Translating applications, for distribution  
of applications, 519

Trust relationships, application signing  
for, 23

TV

app quality guidelines, 455
targeting TV devices, 337–338

Tweened animation, 134–135

Typography, styles, 280–282

U
UI/Application Exerciser Monkey, 496

UI storyboards, 445

UiAutomation, 497

uiautomator, 497

Underlining attribute, working with string 
resources, 121

Unit tests

APIs for, 491
delivering quality Android 

applications, 461–463
<instrumentation> tag, 109
testing applications, 480–481

Updates

ease of, 457–458
preferences, 348–349

Upgrades

Android SDK, 37
Android Studio, 35–36
current Android focus, 15
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V
Value types

resource types, 112–113
storing primitive types, 114

Variable extraction, in Android Studio, 535

Version systems

development workflow and, 427
distribution of applications and, 503

Video

implementing service for video 
editing, 91

MediaStore content provider, 394
playing with VideoView, 175–177
storing application data on devices, 363

VideoView control, 175–177

View container controls

AdapterView controls, 206–207
ArrayAdapter control, 204–205
CursorAdapter control, 205–206
data-driven containers, 204
ListView control, 207–208
using container control classes, 203

View controls

adding to ActionBar, 252
designing user interfaces for 

compatibility, 322
parent and child views, 184–185
ViewGroup classes. See ViewGroup 

classes
ViewGroup containers, 203

ViewGroup classes

built-in classes for layouts, 185–187
FrameLayout view, 193–195
GridLayout view, 198–202
LinearLayout view, 187–189
organizing user interface, 184–185
RelativeLayout view, 180, 189–193

documentation for, 425
in Hierarchy Viewer, 594–595
indicating activity with activity bars 

and activity circles, 171
navigating Android system UI, 237
organizing, 184–185
playing video with VideoView, 175–177
RadioGroup and RadioButton 

controls, 163–165
retrieving dates, times, and numbers 

using pickers, 166–168
retrieving text input using EditText 

control, 152–154
showing passage of time with 
Chronometer, 174

Spinner control for user choices, 
157–158

summary, Q&A, and references, 
177–178

targeting tablet devices, 336
types of user interface controls,  

209–210
UI elements, 257
views and layouts for, 147–148

User story mapping, 440

UserDictionary content provider, 399

Users

Android apps associated with user 
profiles, 22

creating manageable preferences, 350
meeting objectives of, 438
meeting quality demands of, 450
members of Open Handset Alliance, 14
multiple users with restricted profiles, 23
planning user experience. See Planning 

user experience
<uses-configuration> tag, 100–101

<uses-features> tag, 101–102

<uses-permissions> tag, 105–106, 396
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Windows OSs, configuring for device 
debugging, 34

Wireframes, 443–444

Workflow. See Development workflow

Workspaces, organizing, 527

Wrappers, in Gradle, 606–609

WRITE_SECURE_SETTINGS permission, 399

WRITE_SETTINGS permission, 399

Writing tests, 489–491

X
XML

colors.xml file, 272
creating layout using XML resources, 

179–181
defining Boolean resources, 125
defining color resources, 126
defining dimension resources, 127
defining drawable resources, 128
defining fragments, 215–216
defining menu resources, 135–136
defining tweened animation sequences, 

134–135
editing manifest file, 96
manifest file as, 95
reading XML files, 370–371
resource files. See Resource files 

(XML)
resources stored as, 111–112
storing XML files, 114
utilities, 371
working with layouts, 140

XML Pull Parser, 370

subclasses used in layout design, 185
TableLayout view, 195–198
TextView control, 180
types of, 179

ViewGroup containers, 203

ViewHolder class, 296–297

ViewPager control, 210

Views

android.view package, 147–148
displaying text with TextView, 148–149
VideoView, 175–177

Visual appeal/usability, in testing 
applications, 474

Visual feedback, in planning user experience, 
444–445

Voicemail content provider, 399

W
Watches, extending applications to, 338–339

Wear applications

extending applications to watches and 
cars, 338

quality guidelines, 455
Weather apps, implementing service for, 91

Web applications, 24

WebViewFragment class

implementing, 223–225
working with special types of 

fragments, 218
Welcome to Android Studio dialog, 58

White-box testing, 473

Widgets

grouping View widgets, 286
TextInputLayout, 275
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