
es You Feel SMART

• Learn programming basics fast

• Understand with well-illustrated
figures and examples

• Practice with games, exercises,
and puzzles

• Write your first C++ program

• Refer to summaries, appendices,
and C++l4 notes

BRIAN OVERLAND

. '
'' .

I

.

FREE SAMPLE CHAPTER

SHARE WITH OTHERS

_f ¥1 ®1 � �

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134314303
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134314303
https://plusone.google.com/share?url=http://www.informit.com/title/9780134314303
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134314303
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134314303/Free-Sample-Chapter

C++ Without Fear
Third Edition

This page intentionally left blank

C++ Without Fear
Third Edition

A Beginner’s Guide That
Makes You Feel Smart

Brian Overland

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Overland, Brian, 1958– author.
 C++ without fear : a beginner’s guide that makes you feel smart / Brian Overland.—Third
edition.

pages cm
 Includes index.

ISBN 978-0-13-431430-3 (pbk. : alk. paper)—ISBN 0-13-431430-1 (pbk. : alk. paper)
1. C++ (Computer program language) I. Title.

QA76.73.C153O838 2016
005.13’3—dc23

2015033385

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-431430-3
ISBN-10: 0-13-431430-1
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2015

http://www.pearsoned.com/permissions/

Once more, for Colin

This page intentionally left blank

vii

Contents

Preface xxiii

We’ll Have Fun, Fun, Fun… xxiii

Why C and C++? xxiv

C++: How to “Think Objects” xxiv

Purpose of the Third Edition xxiv

Where Do I Begin? xxv

Icons and More Icons xxvi

Anything Not Covered? xxvii

A Final Note: Have Fun! xxviii

Acknowledgments xxix

About the Author xxxi

Chapter 1 Start Using C++ 1

Install Microsoft Visual Studio 1

Create a Project with Microsoft 2

Writing a Program in Microsoft Visual Studio 5

Running a Program in Visual Studio 5

Compatibility Issue #1: stdafx.h 6

Compatibility Issue #2: Pausing the Screen 8

If You’re Not Using Microsoft 8
Example 1.1. Print a Message 9
How It Works 9

Contentsviii

Exercises 11
Interlude What about the #include and using? 11

Advancing to the Next Print Line 12
Example 1.2. Print Multiple Lines 13
How It Works 14
Exercises 15
Interlude What Is a String? 15

Storing Data: C++ Variables 16

Introduction to Data Types 17
Interlude Why Double Precision, Not Single? 19
Example 1.3. Convert Temperatures 19
How It Works 21
Optimizing the Program 23
Exercises 25

A Word about Variable Names and Keywords 26
Exercise 26

Chapter 1 Summary 27

Chapter 2 Decisions, Decisions 29

But First, a Few Words about Data Types 29

Decision Making in Programs 31
Interlude What about Artificial Intelligence (AI)? 31
if and if-else 32
Interlude Why Two Operators (= and ==)? 35
Example 2.1. Odd or Even? 36
How It Works 37
Optimizing the Code 38
Exercise 39

Introducing Loops 39
Interlude Infinite Loopiness 42
Example 2.2. Print 1 to N 43
How It Works 44
Optimizing the Program 45
Exercises 46

True and False in C++ 46
Interlude The bool Data Type 47

The Increment Operator (++) 48

Statements versus Expressions 49

Contents ix

Introducing Boolean (Short-Circuit) Logic 51
Interlude What Is “true”? 53
Example 2.3. Testing a Person’s Age 53
How It Works 54
Exercise 54

Introducing the Math Library 55
Example 2.4. Prime-Number Test 55
How It Works 57
Optimizing the Program 58
Exercise 58
Example 2.5. The Subtraction Game (NIM) 58
How It Works 61
Exercises 61

Chapter 2 Summary 62

Chapter 3 And Even More Decisions! 65

The do-while Loop 65
Example 3.1. Adding Machine 67
How It Works 68
Exercises 69

Introducing Random Numbers 69
Example 3.2. Guess-the-Number Game 72
How It Works 74
Optimizing the Code 76
Exercises 77

The switch-case Statement 77
Example 3.3. Print a Number 80
How It Works 81
Exercises 82

Chapter 3 Summary 83

Chapter 4 The Handy, All-Purpose “for” Statement 85

Loops Used for Counting 85

Introducing the “for” Loop 86

A Wealth of Examples 88
Interlude Does “for” Always Behave Like “while”? 90
Example 4.1. Printing 1 to N with “for” 90

Contentsx

How It Works 91
Exercises 92

Declaring Loop Variables “On the Fly” 92
Example 4.2. Prime-Number Test with “for” 93
How It Works 95
Exercise 96

Comparative Languages 101: The Basic “For” Statement 96

Chapter 4 Summary 97

Chapter 5 Functions: Many Are Called 99

The Concept of Function 99

The Basics of Using Functions 101
Step 1: Declare (Prototype) the Function 101
Step 2: Define the Function 102
Step 3: Call the Function 102
Example 5.1. The avg() Function 103
How It Works 104
Function, Call a Function! 105
Exercises 106
Example 5.2. Prime-Number Function 106
How It Works 108
Exercises 109

Local and Global Variables 109
Interlude Why Global Variables at All? 111

Recursive Functions 112
Example 5.3. Prime Factorization 113
How It Works 115
Interlude Interlude for Math Junkies 117
Exercises 117
Example 5.4. Euclid’s Algorithm for GCF 118
How It Works 119
Interlude Who Was Euclid? 121
Exercises 121
Interlude Interlude for Math Junkies: Rest of the Proof 122
Example 5.5. Beautiful Recursion: Tower of Hanoi 122
How It Works 125
Exercises 126
Example 5.6. Random-Number Generator 127

Contents xi

How It Works 128
Exercises 129

Games and More Games 129

Chapter 5 Summary 131

Chapter 6 Arrays: All in a Row... 133

A First Look at C++ Arrays 133

Initializing Arrays 135

Zero-Based Indexing 135
Interlude Why Use Zero-Based Indexes? 136
Example 6.1. Print Out Elements 137
How It Works 137
Exercises 138
Example 6.2. How Random Is Random? 139
How It Works 141
Exercises 143

Strings and Arrays of Strings 144
Example 6.3. Print a Number (from Arrays) 145
How It Works 147
Exercises 147
Example 6.4. Simple Card Dealer 148
How It Works 150
Exercises 152

2-D Arrays: Into the Matrix 152

Chapter 6 Summary 153

Chapter 7 Pointers: Data by Location 155

What the Heck Is a Pointer, Anyway? 155

The Concept of Pointer 156
Interlude What Do Addresses Look Like? 157

Declaring and Using Pointers 158
Example 7.1. Print Out Addresses 161
Example 7.2. The double_it Function 162
How It Works 163
Exercises 164

Data Flow in Functions 165

Swap: Another Function Using Pointers 165
Example 7.3. Array Sorter 166

Contentsxii

How It Works 170
Exercises 172

Reference Arguments (&) 172

Pointer Arithmetic 173

Pointers and Array Processing 175
Example 7.4. Zero Out an Array 177
How It Works 178
Writing More Compact Code 178
Exercises 179

Chapter 7 Summary 180

Chapter 8 Strings: Analyzing the Text 181

Text Storage on the Computer 181
Interlude How Does the Computer Translate Programs? 182

It Don’t Mean a Thing if It Ain’t Got that String 183

String-Manipulation Functions 184
Example 8.1. Building Strings 186
How It Works 187
Exercises 189
Interlude What about Escape Sequences? 189

Reading String Input 190
Example 8.2. Get a Number 192
How It Works 193
Exercise 195
Example 8.3. Convert to Uppercase 195
How It Works 196
Exercises 197

Individual Characters versus Strings 197
Example 8.4. Breaking Up Input with strtok 198
How It Works 200
Exercises 201

The C++ String Class 201
Include String-Class Support 202
Declare and Initialize Variables of Class string 203
Working with Variables of Class string 203
Input and Output 205
Example 8.5. Building Strings with the string Class 205
How It Works 206

Contents xiii

Exercises 207
Example 8.6. Adding Machine #2 207
How It Works 208
Exercises 209

Other Operations on the string Type 209

Chapter 8 Summary 210

Chapter 9 Files: Electronic Storage 213

Introducing File—Stream Objects 213
How to Refer to Disk Files 215
Example 9.1. Write Text to a File 216
How It Works 217
Exercises 219
Example 9.2. Display a Text File 219
How It Works 221
Exercises 222

Text Files versus “Binary” Files 222
Interlude Are “Binary Files” Really More Binary? 224

Introducing Binary Operations 225
Example 9.3. Random-Access Write 227
How It Works 229
Exercises 230
Example 9.4. Random-Access Read 230
How It Works 232
Exercises 233

Chapter 9 Summary 233

Chapter 10 Classes and Objects 237

OOP, My Code Is Showing 237

What’s an Object, Anyway? 238
Interlude OOP…Is It Worth It? 240

Point: A Simple Class 241
Interlude Interlude for C Programmers: Structures and Classes 242

Private: Members Only (Protecting the Data) 243
Example 10.1. Testing the Point Class 246
How It Works 247
Exercises 248

Contentsxiv

Introducing the Fraction Class 248

Inline Functions 251

Find the Greatest Common Factor 253

Find the Lowest Common Denominator 254
Example 10.2. Fraction Support Functions 255
How It Works 256
Exercises 258
Example 10.3. Testing the Fraction Class 258
How It Works 260
Interlude A New Kind of #include? 261
Exercises 262
Example 10.4. Fraction Arithmetic: add and mult 262
How It Works 266
Exercises 267

Chapter 10 Summary 267

Chapter 11 Constructors: If You Build It… 269

Introducing Constructors 269

Multiple Constructors (Overloading) 270

C++11/C++14 Only: Initializing Members 271

The Default Constructor—and a Warning 272
Interlude Is C++ Out to Trick You with the Default Constructor? 273

C++11/C++14 Only: Delegating Constructors 274
Example 11.1. Point Class Constructors 275
How It Works 277
Exercises 277
Example 11.2. Fraction Class Constructors 278
How It Works 280
Exercises 281

Reference Variables and Arguments (&) 281

The Copy Constructor 282
Interlude The Copy Constructor and References 284

A Constructor from String to Fract 285

Chapter 11 Summary 286

Contents xv

Chapter 12 Two Complete OOP Examples 289

Dynamic Object Creation 289

Other Uses of new and delete 290

Blowin’ in the Wind: A Binary Tree App 291

The Bnode Class 294

The Btree Class 296
Example 12.1. Names in Alpha Order 298
How It Works 299
Exercises 300
Interlude Recursion versus Iteration Compared 301

Tower of Hanoi, Animated 302
After Mystack Class Design 304
Using the Cstack Class 304
Example 12.2. Animated Tower 305
How It Works 308
Exercises 311

Chapter 12 Summary 311

Chapter 13 Easy Programming with STL 313

Introducing the List Template 313
Interlude Writing Templates in C++ 314
Creating and Using a List Class 315
Creating and Using Iterators 316
C++11/C++14 Only: For Each 318
Interlude Pointers versus Iterators 319
Example 13.1. STL Ordered List 319
How It Works 320
A Continually Sorted List 321
Exercises 323

Designing an RPN Calculator 323
Interlude A Brief History of Polish Notation 325
Using a Stack for RPN 325
Introducing the Generalized STL Stack Class 327
Example 13.2. Reverse Polish Calculator 329
How It Works 330
Exercises 332

Contentsxvi

Correct Interpretation of Angle Brackets 333

Chapter 13 Summary 333

Chapter 14 Object-Oriented Monty Hall 335

What’s the Deal? 335

TV Programming: “Good Deal, Bad Deal” 337
Example 14.1. The PrizeManager Class 339
How It Works 340
Optimizing the Code 341
Exercises 342
Example 14.2. The DoorManager Class 343
How It Works 344
Exercises 346
Example 14.3. The Full Monty Program 347
How It Works 349
Exercises 350

The Monty Hall Paradox, or What’s Behind the Door? 351

Improving the Prize Manager 353

Chapter 14 Summary 356

Chapter 15 Object-Oriented Poker 359

Winning in Vegas 359

How to Draw Cards 361

The Card Class 363

The Deck Class 364

Doing the Job with Algorithms 366
Example 15.1. Primitive Video Poker 368
How It Works 369
Exercises 370

The Vector Template 371

Getting Nums from the Player 372
Example 15.2. Draw Poker 373
How It Works 376
Exercises 378

How to Evaluate Poker Hands 378
Example 15.3. Draw-Poker Payout! 383

Contents xvii

How It Works 385
Exercises 386

Chapter 15 Summary 387

Chapter 16 Polymorphic Poker 389

Multiple Decks 389

Switching Decks at Runtime 391

Polymorphism Is the Answer 392
Example 16.1. A Virtual Dealer 396
How It Works 397
Exercises 399
Interlude What Is the Virtual Penalty? 399

“Pure Virtual” and Other Abstract Matters 401

Abstract Classes and Interfaces 402

Object Orientation and I/O 403
cout Is Endlessly Extensible 404
But cout Is Not Polymorphic 404
Example 16.2. True Polymorphism: The IPrintable Class 405
How It Works 408
Exercises 409

A Final Word (or Two) 410

An (Even More) Final Word 411

Chapter 16 Summary 412

Chapter 17 New Features of C++14 415

The Newest C++14 Features 415
Digit-Group Separators 416
String-Literal Suffix 417
Binary Literals 418
Example 17.1. Bitwise Operations 421
Exercises 421

Features Introduced in C++11 422

The long long Type 422
Interlude Why a “Natural” Integer? 424
Working with 64-Bit Literals (Constants) 424
Accepting long long Input 425

Contentsxviii

Formatting long long Numbers 426
Example 17.2. Fibonacci: A 64-Bit Example 427
How It Works 430
Exercises 431
Localizing Numbers 431
Interlude Who Was Fibonacci? 432

Range-Based “for” (For Each) 433
Example 17.3. Setting an Array with Range-Based “for” 435
How It Works 437
Exercises 437

The auto and decltype Keywords 438

The nullptr Keyword 439

Strongly Typed Enumerations 440
enum Classes in C++11 Onward 442
Extended enum Syntax: Controlling Storage 442

Raw-String Literals 443

Chapter 17 Summary 444

Chapter 18 Operator Functions: Doing It with Class 447

Introducing Operator Functions 447

Operator Functions as Global Functions 450

Improve Efficiency with References 452
Example 18.1. Point Class Operators 454
How It Works 456
Exercises 457
Example 18.2. Fraction Class Operators 457
How It Works 460
Optimizing the Code 461
Exercises 462

Working with Other Types 463

The Class Assignment Function (=) 463

The Test-for-Equality Function (==) 465

A Class “Print” Function 466
Example 18.3. The Completed Fraction Class 467
How It Works 470
Exercises 471

Contents xix

A Really Final Word (about Ops) 471

Chapter 18 Summary 472

Appendix A Operators 475

The Scope (::) Operator 478

The sizeof Operator 478

Old- and New-Style Type Casts 479

Integer versus Floating-Point Division 480

Bitwise Operators (&, |, ^, ~, <<, and >>) 480

Conditional Operator 481

Assignment Operators 482

Join (,) Operator 482

Appendix B Data Types 483

Precision of Data Types 484

Data Types of Numeric Literals 485

String Literals and Escape Sequences 486

Two’s-Complement Format for Signed Integers 487

Appendix C Syntax Summary 491

Basic Expression Syntax 491

Basic Statement Syntax 492

Control Structures and Branch Statements 493
The if-else Statement 493
The while Statement 493
The do-while Statement 494
The for Statement 494
The switch-case Statement 495
The break Statement 496
The continue Statement 496
The goto Statement 497
The return Statement 497
The throw Statement 497

Contentsxx

Variable Declarations 498

Function Declarations 500

Class Declarations 502

Enum Declarations 503

Appendix D Preprocessor Directives 505

The #define Directive 505

The ## Operator (Concatenation) 507

The defined Function 507

The #elif Directive 507

The #endif Directive 508

The #error Directive 508

The #if Directive 508

The #ifdef Directive 509

The #ifndef Directive 510

The #include Directive 510

The #line Directive 511

The #undef Directive 511

Predefined Constants 512

Appendix E ASCII Codes 513

Appendix F Standard Library Functions 517

String (C-String) Functions 517

Data-Conversion Functions 518

Single-Character Functions 519

Math Functions 520

Randomization Functions 521

Time Functions 521

Formats for the strftime Function 523

Contents xxi

Appendix G I/O Stream Objects and Classes 525

Console Stream Objects 525

I/O Stream Manipulators 526

Input Stream Functions 528

Output Stream Functions 528

File I/O Functions 529

Appendix H STL Classes and Objects 531

The STL String Class 531

The <bitset> Template 533

The <list> Template 534

The <vector> Template 536

The <stack> Template 538

Appendix I Glossary of Terms 541

Index 559

This page intentionally left blank

xxiii

Preface

It’s safe to say that C++ is the most important programming language in the
world today.

This language is widely used to create commercial applications, ranging from
operating systems to word processors. There was a time when big applications
had to be written in machine code because there was little room in a computer
for anything else. But that time has long passed. Gone are the days in which
Bill Gates had to squeeze all of BASICA into 64K!

C++, the successor to the original C language, remains true to the goal of
producing efficient programs while maximizing programmer productivity.
It typically produces executable files second in compactness only to machine
code, but it enables you to get far more done. More often than not, C++ is the
language of choice for professionals.

But it sometimes gets a reputation for not being the easiest to learn. That’s
the reason for this book.

We’ll Have Fun, Fun, Fun…
Anything worth learning is worth a certain amount of effort. But that doesn’t
mean it can’t be fun, which brings us to this book.

I’ve been programming in C since the 1980s and in C++ since the 1990s, and
have used them to create business- and systems-level applications. The pitfalls
are familiar to me—things like uninitialized pointers and using one equal sign (=)
instead of two (==) in an “if” condition. I can steer you past the errors that
caused me hours of debugging and sweat, years ago.

But I also love logic problems and games. Learning a programming language
doesn’t have to be dull. In this book, we’ll explore the Tower of Hanoi and the
Monty Hall paradox, among other puzzles.

Learning to program is a lot more fun and easy when you can visualize con-
cepts. This book makes heavy use of diagrams and illustrations.

Prefacexxiv

Why C and C++?
There’s nothing wrong with other programming languages. I was one of the
first people in the world to write a line of code in Visual Basic (while a project
lead at Microsoft), and I admire Python as a high-level scripting tool.

But with a little care, you’ll find C++ almost as easy to learn. Its syntax is
slightly more elaborate than Visual Basic’s or Python’s, but C++ has long been
seen as a clean, flexible, elegant language, which was why its predecessor, C,
caught on with so many professionals.

From the beginning, C was designed to provide shortcuts for certain lines of
code you’ll write over and over; for example, you can use “++n” to add 1 to a
variable rather than “n = n + 1.” The more you program in C or C++, the more
you’ll appreciate its shortcuts, its brevity, and its flexibility.

C++: How to “Think Objects”
A systems programmer named Dennis Ritchie created C as a tool to write oper-
ating systems. (He won the Turing Award in 1983.) He needed a language that
was concise and flexible, and could manipulate low-level things like physical
addresses when needed. The result, C, quickly became popular for other uses
as well.

Later, Bjarne Stroustrup created C++, originally as a kind of “C with classes.”
It added the ability to do object orientation, a subject I’ll devote considerable
space to, starting in Chapter 10. Object orientation is a way of building a pro-
gram around intelligent data types. A major goal of this edition is to showcase
object orientation as a superior, more modular way to program, and how to
“think objects.”

Ultimately, C++ became far more than just “C with classes.” Over the years,
support was added for many new features, notably the Standard Template
Library (STL). The STL is not difficult to learn and this book shows you how
to use it to simplify a lot of programming work. As time goes on, this library is
becoming more central to the work of C++ programmers.

Purpose of the Third Edition
The purpose of the third edition is simple: double down on the strengths of past
editions and correct limitations.

In particular, this edition aims at being more fun and easier to use than ever.
Most of the features of the previous edition remain, but the focus is more on

Preface xxv

the practical (and entertaining) use of C++ and object orientation, and not as
much on esoteric features that see little use. For example, I assume you won’t
want to write your own string class, because all up-to-date C++ compilers have
provided this feature for a long time now.

In this edition, I also put more stress on “correct” programming practices
that have become standard, or nearly so, in the C++ community.

This edition of the book starts out by focusing on successful installation and
usage of the Microsoft C++ compiler, Community Edition. If you have another
C++ compiler you’re happy with, fine. You can use that because the great
majority of examples are written in generic C++. The first chapter, however,
guides you through the process of using the Microsoft compiler with Visual
Studio, if you’ve never used them before.

Other features of this edition include:

◗ Coverage of new features in C++11 and C++14: This edition brings you up to
date on many of the newest features introduced since C++11, as well as intro-
ducing some brand-new features in C++14. It’s assumed you have a C++
compiler at least as up to date as the Microsoft Community Edition, so I’ve
purged this edition of the book of some out-of-date programming practices.

 ◗ Even more puzzles, games, exercises, and figures: These features, all a suc-
cessful part of the second edition, show up even more frequently in this edition.

◗ More focus on the “whys” and “how tos” of object orientation: The class and
object features of C++ have always held great promise. A major goal in revising
this edition was to put greater emphasis on the practical value of classes and
objects, and how to “think objects.”

 ◗ More on the STL: The Standard Template Library, far from being difficult to
learn, can make your life much easier and make you more productive as a pro-
grammer. This edition explores more of the STL.

◗ Useful reference: This edition maintains the quick-reference appendixes in the
back of the book and even expands on them.

Where Do I Begin?
This edition assumes you know little or nothing about programming. If you
can turn on a computer and use a menu system, keyboard, and mouse, you can
begin with Chapter 1. I’ll lead you through the process of installing and using
Microsoft C++ Community version.

Prefacexxvi

You should note that this version of C++ runs on recent versions of Microsoft
Windows. If you use another system, such as a Macintosh, you’ll need to down-
load different tools. But the rules of generic C++ still apply, so you should be
able to use most of the book without change.

Icons and More Icons
Building on the helpful icons in the first two editions, this edition provides
even more—as signposts on the pages to help you find what you need. Be sure
to look for these symbols because they call out sections to which you’ll want to
pay special attention.

These sections take apart program examples and explain, line by line,
how and why the examples work. You don’t have to wade through long
programming examples—I do that for you! (Or, rather, we go through
the examples together.)

After each full programming example, I provide at least one exercise,
and usually several, that build on the example in some way. These
encourage you to alter and extend the programming code you’ve just
seen. This is the best way to learn. The answers to the exercises can be
found on my Web site (brianoverland.com).

These sections develop an example by showing how it can be improved,
made shorter, or made more efficient.

As with “Optimizing,” these sections take the example in new direc-
tions, helping you learn by showing how the example can be varied or
modified to do other things.

This icon indicates a place where a keyword of the language is intro-
duced and its usage clearly defined. These places in the text summarize
how a given keyword can be used.

The purpose of this icon is similar to “Keyword,” but instead it calls
attention to a piece of C++ syntax that does not involve a keyword.

“Pseudocode” is a program, or a piece of a program, in English-language
form. By reading a pseudocode summary, you understand what a pro-
gram needs to do. It then remains only to translate English-language
statements into C++ statements.

H
ow

 It
 Works

Ex
er

cis
es

Op
ti

m

izing

Va
ria

tion

K
ey

wo
rd

Ke
y

Sy

ntax

Ps
eu

do

code

Preface xxvii

This book also uses “Interludes,” which are side topics that—while highly illu-
minating and entertaining—aren’t always crucial to the flow of the discussion.
They can be read later.

Note � Finally, some important ideas are sometimes called out with notes; these
notes draw your attention to special issues and occasional “gotchas.” For example,
one of the most common types of notes deals with version issues, pointing out
that some features require a recent compiler:

C++14 � This note is used to indicate sections that apply only to versions of C++
compliant with the more recent C++ specifications.

Anything Not Covered?
Nothing good in life is free—except maybe love, sunsets, breathing air, and
puppies. (Well actually, puppies aren’t free. Not long ago I looked at some Great
Dane puppies costing around $3,000 each. But they were cute.)

To focus more on topics important to the beginner-to-intermediate pro-
grammer, this edition has slightly reduced coverage of some of the more esoteric
subjects. For example, operator overloading (a feature you might never get
around to actually programming into your classes) is still present but moved to
the last chapter.

Most other topics—even relatively advanced topics such as bit manipulation—
are at least touched upon. But the focus is on fundamentals.

C++ is perhaps the largest programming language on earth, much as English
has the largest vocabulary of natural languages. It’s a mistake for an introduc-
tory text to try to cover absolutely everything in a language of this size. But
once you want to learn more about advanced topics in C++, there are plenty of
resources.

Two of the books I’d recommend are Bjarne Stroustrup’s The C++ Program-
ming Language, Fourth Edition (Addison-Wesley, 2013), which is by the original
author of the C++ language. This is a huge, sophisticated, and exhaustive text,
and I recommend it after you’ve learned to be comfortable writing C++ code.
As for an easy-to-use reference, I recommend my own C++ for the Impatient
(Addison-Wesley, 2013), which covers nearly the whole language and almost
every part of the Standard Template Library.

Graphical-user-interface (GUI) programming is specific to this or that platform
and is deserving of its own—or rather many—books. This book introduces you
to the core C++ language, plus its libraries and templates, which are platform
independent.

Prefacexxviii

A Final Note: Have Fun!
There’s nothing to fear about C++. There are a few potholes here and there, but
I’m going to steer you around them. Occasionally, C++ can be a little harder on
you if you’re not careful or don’t know what you’re doing, but you’ll be better off
in the long run by being made to think about these issues.

C++ doesn’t have to be intimidating. I hope you use the practical examples
and find the puzzles and games entertaining. This is a book about learning and
about taking a road to new knowledge, but more than that, it’s about enjoying
the ride.

xxix

Acknowledgments

This edition is largely the result of a conversation between editor Kim
Boedigheimer and myself while we had tea in a shop next to Seattle’s Pike Place
Market. So I think of this book as being as much hers as mine. She brought in an
editorial and production team that made life easy for me, including Kesel Wilson,
Deborah Thompson, Chris Zahn, Susan Brown Zahn, and John Fuller.

I’m especially indebted to Leor Zolman (yes, that’s “Leor”), who provided the
single finest technical review I’ve ever seen. Also providing useful input were
John R. Bennett, a software developer emeritus from Microsoft, and online
author David Jack (“the logic junkie”), who suggested some useful diagrams.

This page intentionally left blank

xxxi

About the
Author

Brian Overland published his first article in a
professional math journal at age 14.

After graduating from Yale, he began working on
large commercial projects in C and Basic, includ-
ing an irrigation-control system used all over the
world. He also tutored students in math, computer
programming, and writing, as well as lecturing to
classes at Microsoft and at the community-college
level. On the side, he found an outlet for his life-
long love of writing by publishing film and drama
reviews in local newspapers. His qualifications as
an author of technical books are nearly unique

because they involve so much real programming and teaching experience, as
well as writing.

In his 10 years at Microsoft, he was a tester, author, programmer, and manager.
As a technical writer, he became an expert on advanced utilities, such as the
linker and assembler, and was the “go-to” guy for writing about new technology.
His biggest achievement was probably organizing the entire documentation set
for Visual Basic 1.0 and having a leading role in teaching the “object-based”
way of programming that was so new at the time. He was also a member of the
Visual C++ 1.0 team.

Since then, he has been involved with the formation of new start-up companies
(sometimes as CEO). He is currently working on a novel.

This page intentionally left blank

1

1
Start Using C++

Nothing succeeds like success. This chapter focuses on successfully installing
and using the C++ compiler—the tool that translates C++ statements into an
executable program (or application).

I’m going to assume at first that you’re using Microsoft Visual Studio, Com-
munity Edition. This includes an excellent C++ compiler—it’s powerful, fast,
and has nearly all of the up-to-date features. However, the Microsoft compiler
raises some special issues, and one of the purposes of this chapter is to acquaint
you with those issues so you can successfully use C++.

If you’re not using this compiler, skip ahead to the section, “If You’re Not
Using Microsoft.”

I’ll get into the more abstract aspects of C++ later, but first let’s get that com-
piler installed.

Install Microsoft Visual Studio
Even if you have an older version of Microsoft Visual Studio, you should con-
sider updating to the current Community Edition, because it has nearly all the
up-to-date features presented in this book. If you’re already running Enterprise
Edition, congratulations, but make sure it’s up to date.

Here are the steps for installing Microsoft Visual Studio Community Edition:

1 Regardless of whether you’re downloading from the Internet (you can use a search
engine to look up “Visual Studio download”) or, using the CD accompanying this
book’s Barnes & Noble Special Edition, get a copy of the file vc_community on
your computer. If you’re downloading, this will be found in your Download folder
after using the site.

2 Double click the file vc_community. This launches the installation program. The
following screen appears:

Chapter 1 Start Using C++2

Install button

 Used with permission from Microsoft.

3 Click the Install button in the lower-right corner. Installation should begin right
away.

4 If you’re downloading from the Internet, be prepared for a long wait! If you’re using
the CD, installation will be many, many times faster.

If all goes well, Microsoft Visual Studio, which includes the Microsoft C++
compiler, should be installed on your computer, and you’re ready to start pro-
gramming. First, however, you need to create a project.

Create a Project with Microsoft
There are some files and settings you need for even the simplest program, but
Visual Studio puts all the items you need into something called a project.

With Visual Studio, Microsoft makes things easy by providing everything
you need when you create a project. Note that you will need to create a new proj-
ect for each program you work on.

1
Create a Project with Microsoft 3

So let’s create a project.

1 Launch Visual Studio. After you’ve installed it, you should find that Visual Studio is
available on the Start menu (assuming you’re running Windows). Visual Studio
should then appear onscreen.

2 From the File menu (the first menu on the menu bar), choose the New Project com-
mand. The New Project window then appears.

Step 4

Step 3

Step 5

Used with permission from Microsoft.

3 In the left pane, select Visual C++.

4 In the central windowpane, select Win32 Console Application.

5 There are four text boxes at the bottom of the window. You need only fill out one.
In the Name box, type the name of the program: in this case, “print1.” The Solution
name box will automatically display the same text.

6 Click OK in the bottom right corner or just press ENTER.

Chapter 1 Start Using C++4

The Application Wizard appears, asking if you’re ready to go ahead. (Of course
you are.) Click the Finish button at the bottom of the window.

 Used with permission from Microsoft

After you complete these steps, a new project is opened for you. The major
area on the screen is a text window into which you can enter a program. Visual
Studio provides a skeleton (or boilerplate) for a new program containing the
following:

// print1.cpp: Defines the entry point...
//

#include "stdafx.h"

int _tmain(int arg, _TCHAR* argv[])
{
 return 0;
}

You’re probably asking, what is all this stuff? The first thing to be aware of is
that any line that begins with double slashes (//) is a comment and is ignored by
the compiler.

1
Running a Program in Visual Studio 5

Comments exist for the benefit of the programmer, presumably to help a
human read and understand the program better, but the C++ compiler com-
pletely ignores comments. For now, we’re going to ignore them as well.

So the part you care about is just:

#include "stdafx.h"

int _tmain(int arg, _TCHAR* argv[])
{
 return 0;
}

Writing a Program in Microsoft Visual Studio
Now—again, assuming you’re using Microsoft Visual Studio—you’re ready to
write your first program. The previous section showed the skeleton (or boiler-
plate) that’s already provided. Your task is to insert some new statements.

In the following example, I’ve added the new lines and placed them in bold—
so you know exactly what to type:

#include "stdafx.h"

#include <iostream>
using namespace std;

int _tmain(int arg, _TCHAR* argv[])
{
 cout << "Never fear, C++ is here!";
 return 0;
}

For now, just leave #include "stdafx.h" and t_main alone, but add new state-
ments where I’ve indicated. These lines are Microsoft specific, and I’ll have
more to say about them in the section “Compatibility Issue #1: stdafx.h.” First,
however, let’s just run the program.

Running a Program in Visual Studio
Now you need to translate and run the program. In Visual Studio, all you do is
press Ctrl+F5 or else choose the Start Without Debugging command from the
Debug menu.

Chapter 1 Start Using C++6

Visual Studio will say that the program is out of date and ask if you want to
rebuild it. Say yes by clicking the Yes button.

Note � You can also build and run the program by pressing F5, but the output of
the program will “flash” and not stay on the screen. So use Ctrl+F5 instead.

If you received error messages, you probably have mistyped something. One
of the intimidating aspects of C++, until you get used to it, is that even a sin-
gle mistyped character can result in a series of “cascading errors.” So, don’t get
upset, just check your spelling. In particular, check the following:

◗ The two C++ statements (and most lines of code you type in will be C++ state-
ments), end with a semicolon (;), so be careful not to forget those semis.

 ◗ But make sure the #include directives do not end with semicolons(;).

◗ Case sensitivity absolutely matters in C++ (although spacing, for the most part,
does not). Make sure you did not type any capital letters except for text enclosed
in quotation marks.

After you’re sure you’ve typed everything correctly, you can rebuild the pro-
gram by pressing Ctrl+F5 again.

Compatibility Issue #1: stdafx.h
If you’re like me, you’d prefer not to deal with compatibility issues but get right
to programming. However, there are a couple of things you need to keep in
mind to make sure you succeed with Microsoft Visual Studio.

In order to support something called “precompiled headers,” Microsoft
Visual Studio inserts the following line at the beginning of your programs.
There’s nothing wrong with this, unless you paste sample code over it and then
wonder why nothing works.

#include "stdafx.h"

The problem is that other compilers will not work with this line of code, but
programs built with Microsoft Visual Studio require it, unless you make the
changes described in this section.

You can adopt one of several strategies to make sure your programs compile
inside Microsoft Visual Studio.

1
Compatibility Issue #1: stdafx.h 7

◗ The easiest thing to do is to make sure this line of code is always the first line
in any program created with Visual Studio. So, if you copy generic C++ code
listings into a Visual Studio project, make sure you do not erase the directive
#include "stdafx.h".

 ◗ If you want to compile generic C++ code (nothing Microsoft-specific), then,
when creating a project, do not click the Finish button when the Application
Wizard window appears. Instead, click Next. Then, in the Application Settings
window, click the “Precompiled Headers” button to de-select it.

◗ After a project is created, you can still change settings by doing the following:
First, from the Project menu, choose the Properties command (Alt + F7). Then,
in the left pane, select Precompiled Headers. (You may first have to expand
“Configuration Properties” and then expand “C/C++” by clicking on these
words.) Finally, in the right pane, choose “Not Using Precompiled Headers”
from the top drop-down list box.

With the last two options, Microsoft-specific lines such as #include
"stdafx.h" still appear! However, after the Precompiled Headers option box is
de-selected, the Microsoft-specific lines can be replaced with generic C++ code.

Also note that Visual Studio uses the following skeleton for the main
function:

int _tmain(int arg, _TCHAR* argv[])
{

}

instead of:

int main()
{

}

Both of these work fine with Visual Studio, but if you keep the version that
features the word _tmain, remember that it requires #include stdafx.h as well.

The items inside the parentheses, just after _tmain, support access to
 command-line arguments. But since this book does not address command-line
arguments, you won’t need them for the examples in this book. Just leave them
as they are.

Chapter 1 Start Using C++8

Compatibility Issue #2: Pausing the Screen
As stated earlier, if you build and run the program by pressing Ctrl+F5, your
results should be satisfactory, but if you press F5, you’ll get the problem of the
program output flashing on the screen and disappearing.

If you’re using Microsoft Visual Studio, the easiest solution is to just press
Ctrl+F5 (Start Without Debugging) every time you build and run the program.
However, not all compilers offer this option.

Another way to deal with the problem of output flashing on the screen and
disappearing is to add the following line of code, just above “return 0;”:

 system("PAUSE");

When this statement is executed, it has roughly the same effect as pressing
Ctrl+F5. It causes the program to pause and print “Press any key to continue.”

The problem with this statement is that it is system specific. It does what you
want in Windows, but it might not work on another platform. Only put this
statement in if you’re reasonably sure you want your program to run just on
Windows-based systems.

If you’re working on another platform, you’ll need to look for another solu-
tion. Check your compiler documentation for more information.

Now, if you’re using Microsoft Visual Studio, skip ahead to Exercise 1.1.

If You’re Not Using Microsoft
If you’re not using Microsoft Visual Studio as your compiler, most of the steps
described in the previous sections won’t apply. If any documentation comes
with your compiler, make sure you read it in case, like Microsoft Visual Studio,
it has idiosyncrasies of its own.

With compilers other than Visual Studio, do not put in the line #include
"stdafx.h" and make sure you use the simpler program skeleton:

int main() {

}

Beginning with the next section, this book is going to adhere fairly closely to
generic C++, which has nothing that is platform or vendor specific. But in this
chapter, I’ll keep reminding you of what you need to do for Visual Studio.

1
If You’re Not Using Microsoft 9

Example 1.1. Print a Message
Here is the program introduced earlier, written in generic C++ (except for the
comment, which indicates what you have to do to run it in Visual Studio).

print1.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 cout << "Never fear, C++ is here! ";
 return 0;
}

Remember that exact spacing does not matter, but case-sensitivity does.
Also remember that if and only if you are working with Microsoft Visual

Studio, then, at the beginning of the program, you must leave in the following
line:

#include "stdafx.h"

After entering the program, build and run it (from within Microsoft Visual
Studio, press Ctrl+F5). Here’s what the program prints when correctly entered
and run:

Never fear, C++ is here!

However, this output may be run together with the message “Press any key to
continue.” In the upcoming sections, we’re going to correct that.

H
ow

 It
 Works

 How It Works
Believe it or not, this simple program has only one real statement. You can think
of the rest as “boilerplate” for now—stuff you have to include but can safely
ignore. (If you’re interested in the details, the upcoming “Interlude” discusses
the #include directive.)

Chapter 1 Start Using C++10

Except for the one line in italics, the lines below are “boilerplate”: these are
items that always have to be present, even if the program doesn’t do anything.
For now, don’t worry about why these lines are necessary; their usage will
become clearer as you progress with this book. In between the braces ({}), you
insert the actual lines of the program—which in this case consist of just one
important statement.

#include <iostream>
using namespace std;

int main()
{

Enter_your_statements_here!
 return 0;
}

This program has one only real statement. Don’t forget the semicolon (;) at
the end!

cout << "Never fear, C++ is here!";

What is cout? This is an object—that’s a concept I’ll discuss a lot more in
the second half of the book. In the meantime, all you have to know is that cout
stands for “console output.” In other words, it represents the computer screen.
When you send something to the screen, it gets printed, just as you’d expect.

In C++, you print output by using cout and a leftward stream operator (<<)
that shows the flow of data from a value (in this case, the text string “Never fear,
C++ is here!”) to the console. You can visualize it this way:

"Never fear, C++ is here!"

cout << "Never fear, C++ is here! " ;

Console
(output)

Don’t forget the semicolon (;). Every C++ statement must end with a semico-
lon, with few exceptions.

For technical reasons, cout must always appear on the left side of the line
of code whenever it’s used. Data in this case flows to the left. Use the leftward
“arrows,” which are actually a pair of less-than signs (<<).

1
If You’re Not Using Microsoft 11

The following table shows other simple uses of cout:

STATEMENT ACTION

cout << "Do you C++?"; Prints the words “Do you C++?”

cout << "I think,"; Prints the words “I think,”

cout << "Therefore I program."; Prints the words “Therefore I program.”

Ex
er

cis
es

 EXERCISES

Exercise 1.1.1. Write a program that prints the message “Get with the program!” If
you want, you can work on the same source file used for the featured example
and alter it as needed. (Hint: Alter only the text inside the quotation marks;
otherwise, reuse all the same programming code.)

Exercise 1.1.2. Write a program that prints your own name.

Exercise 1.1.3. Write a program that prints “Do you C++?”

What about the #include and using?

I said that the fifth line of the program is the first “real” statement of the
program. I glossed over the first line:

#include <iostream>

This is an example of a C++ preprocessor directive, a general instruction
to the C++ compiler. A directive of the form

#include <filename>

loads declarations and definitions that support part of the C++ standard
library. Without this directive, you couldn’t use cout.

If you’ve used older versions of C++ and C, you may wonder why no
specific file (such as an .h file) is named. The filename iostream is a virtual
include file, which has information in a precompiled form.

If you’re new to C++, just remember you have to use #include to turn on
support for specific parts of the C++ standard library. Later, when we start
using math functions such as sqrt (square root), you’ll need to switch on
support for the math library:

#include <cmath>

▼ continued on next page

Interlude

Chapter 1 Start Using C++12

▼ continued

Is this extra work? A little, yes. Include files originated because of a dis-
tinction between the C language and the standard runtime library. (Pro-
fessional C/C++ programmers sometimes avoid the standard library and
use their own.) Library functions and objects—although they are indis-
pensable to beginners—are treated just like user-defined functions, which
means (as you’ll learn in Chapter 4) that they have to be declared. That’s
what include files do.

You also need to put in a using statement. This enables you to refer
directly to objects such as std::cout. Without this statement, you’d have to
print messages this way:

 std::cout << "Never fear, C++ is here!";

We’re going to be using cout (and its cousin, cin) quite a lot, so for now
it’s easier just to put a using statement at the beginning of every program.

Advancing to the Next Print Line
With C++, text sent to the screen does not automatically advance to the next
physical line. You have to print a newline character to do that. (Exception: If
you never print a newline, the text may automatically “wrap” when the current
physical line fills up, but this produces an ugly result.)

The easiest way to print a newline is to use the predefined constant endl. For
example:

cout << "Never fear, C++ is here!" << endl;

Note � The endl name is short for “end line”; it is therefore spelled “end ELL,” not
“end ONE.” Also note that endl is actually std::endl, but the using statement
saves you from having to type std::.

Another way to print a newline is to insert the characters \n. This is an escape
sequence, which C++ interprets as having a special meaning rather than inter-
preting it literally. The following statement has the same effect as the previous
example:

cout << "Never fear, C++ is here!\n";

Interlude

1
Advancing to the Next Print Line 13

Example 1.2. Print Multiple Lines
The program in this section prints messages across several lines. If you’re fol-
lowing along and entering the programs, remember once again to use upper-
case and lowercase letters exactly as shown—although you can change the
capitalization of the text inside quotation marks and the program will still run.

If you’re working with Visual Studio, the only lines you should add are the
ones shown here in bold. Leave #include stdafx.h and _tmain alone. If you’re
working with another compiler, the code should look as follows, minus the
comments (//).

print2.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 cout << "I am Blaxxon," << endl;
 cout << "the godlike computer." << endl;
 cout << "Fear me!" << endl;
 return 0;
}

Remember that exact spacing does not matter, but case-sensitivity does.
The resulting program, if you’re working with Visual Studio, should be as

follows. The lines in bold are what you need to add to the code Visual Studio
provides for you.

#include "stdafx.h"

#include <iostream>
using namespace std;

int _tmain(int arg, _TCHAR* argv[])
{
 cout << "I am Blaxxon," << endl;
 cout << "the godlike computer." << endl;

Chapter 1 Start Using C++14
 cout << "Fear me!" << endl;
 return 0;
}

After entering the program, compile and run it. Here’s what the program
prints when correctly entered and run:

I am Blaxxon,
the godlike computer.
Fear me!

H
ow

 It
 Works

 How It Works
This example is similar to the first one I introduced. The main difference is this
example uses newline characters. If these characters were omitted, the program
would print

I am Blaxxon, the godlike computer.Fear me!

which is not what we wanted.
Conceptually, here’s how the statements in the program work:

"I am Blaxxon, "

cout << "I am Blaxxon, " << endl;

Console
(output)

Newline

You can print any number of separate items this way, though again, they
won’t advance to the next physical line without a newline character (endl). You
could send several items to the console with one statement

cout << "This is a " << "nice " << "C++ program.";

which prints the following when run:

This is a nice C++ program.

Or, you can embed a newline, like this

cout << "This is a" << endl << "C++ program.";

1
Advancing to the Next Print Line 15

which prints the following:

This is a
C++ program.

The example, like the previous one, returns a value. “Returning a value” is
the process of sending back a signal—in this case to the operating system or
development environment.

You return a value by using the return statement:

return 0;

The return value of main is a code sent to the operating system, in which 0
indicates success. The examples in this book return 0, but they could return an
error code sometimes (−1 for example) if you found that to be useful. However,
I would ignore that for now.

Ex
er

cis
es

 EXERCISES

Exercise 1.2.1. Remove the newlines from the example in this section, but put in
extra spaces so that none of the words are crammed together. (Hint: Remem-
ber that C++ doesn’t automatically insert a space between output strings.) The
resulting output should look like this:

I am Blaxxon, the godlike computer. Fear me!

Exercise 1.2.2. Alter the example so that it prints a blank line between each two
lines of output—in other words, make the results double-spaced rather than
single-spaced. (Hint: Print two newline characters after each text string.)

Exercise 1.2.3. Alter the example so that it prints two blank lines between each of
the lines of output.

What Is a String?

From the beginning, I’ve made use of text inside of quotes, as in this
statement:

cout << "Never fear, C++ is here!";

Everything outside of the quotes is part of C++ syntax. What’s inside the
quotes is data.

▼ continued on next page

Interlude

Chapter 1 Start Using C++16

▼ continued

In actuality, all the data stored on a computer is numeric, but depending
on how data is used, it can be interpreted as a string of printable characters.
That’s the case here.

You may have heard of “ASCII code.” That’s what kind of data “Never
fear, C++ is here!” is in this example. The characters “N”, “e”, “v”, “e”, “r”,
and so on, are stored in individual bytes, each of which is a numeric code
corresponding to a printable character.

I’ll talk a lot more about this kind of data in Chapter 8. The important
thing to keep in mind is that text enclosed in quotes is considered raw data,
as opposed to a command. This kind of data is considered a string of text
or, more commonly, just a string.

Storing Data: C++ Variables
If all you could do was print messages, C++ wouldn’t be useful. The funda-
mental purpose of nearly any computer program is usually to get data from
 somewhere—such as end-user input—and then do something interesting with it.

Such operations require variables. These are locations into which you can
place data. You can think of variables as magic boxes that hold values. As
the program proceeds, it can read, write, or alter these values as needed. The
upcoming example uses variables named ctemp and ftemp to hold Celsius and
Fahrenheit values, respectively.

ctemp ftemp

10.5 50.9

How are values put into variables? One way is through console input. In
C++, you can input values by using the cin object, representing (appropriately
enough) console input. With cin, you use a stream operator showing data flow-
ing to the right (>>):

ctemp
Console
(input)

cin >> ctemp ;

Interlude

1
Introduction to Data Types 17

Here’s what happens in response to this statement. (The actual process is a
little more complicated, but don’t worry about that for now.)

1 The program suspends running and waits for the user to enter a number.

2 The user types a number and presses ENTER.

3 The number is accepted and placed in the variable ctemp (in this case).

4 The program resumes running.

So, if you think about it, a lot happens in response to this statement:

cin >> ctemp;

But before you can use a variable in C++, you must declare it. This is an
absolute rule and it makes C++ different from Basic, which is sloppy in this
regard and doesn’t require declaration (but generations of Basic programmers
have banged their heads against their terminals as they discovered errors crop-
ping up as a result of Basic’s laxness about variables).

This is important enough to justify restating, so I’ll make it a cardinal rule:

 ✱ In C++, you must declare a variable before using it.

To declare a variable, you first have to know what data type to use. This is a
critical concept in C++ as in most other languages.

Introduction to Data Types
A variable is something you can think of as a magic box into which you can
place information—or, rather, data. But what kind of data?

All data on a computer is ultimately numeric, but it is organized into one of
three basic formats: integer, floating-point, and text string.

5 -33 106

-8.7 2.003 387.1

"Call me Ishmael"

Integer

Floating-point

Text String

Chapter 1 Start Using C++18

There are several differences between floating-point and integer format. But
the main rule is simple:

✱ If you need to store numbers with fractional portions, use a floating-point
variable; otherwise, use integer types.

The principal floating-point data type in C++ is double. This may seem
like a strange name, but it stands for “double-precision floating point.” There
is also a single-precision type (float), but its use is relatively infrequent. When
you need the ability to retain fractional portions, you’ll get better results—and
fewer error messages—if you stick to double.

aFloat

A double declaration has the following syntax. Note that this statement is
terminated with a semicolon (;), just as most kinds of statements are.

double variable_name;

You can also use a double declaration to create a series of variables:

double variable_name1, variable_name2, ...;

For example, this statement creates a double variable named aFloat:

double aFloat;

This statement creates a variable of type double.
The next statement declares four double variables named b, c, d, and amount:

double b, c, d, amount;

The effect of this statement is equivalent to the following:

double b;
double c;
double d;
double amount;

The result of these declarations is to create four variables of type double.

b c d amount

K
ey

wo
rd

1
Introduction to Data Types 19

An important rule of good programming style is that variables should usu-
ally be initialized, which means giving them a value as soon as you declare
them. The declarations just shown should really be:

double b = 0.0;
double c = 0.0;
double d = 0.0;
double amount = 0.0;

Starting in the next chapter, I’ll have a lot more to say about issues such as
data types and initialization. But for the next program, I’ll keep the code sim-
ple. We’ll worry about initialization in Chapter 2 onward.

Why Double Precision, Not Single?

Double precision is like single precision, except better. Double precision
supports a greater range of values, with better accuracy: It uses 8 bytes
rather than 4.

C++ converts all data to double precision when doing calculations,
which makes sense given that today’s PCs include 8-byte co-processors.
C++ also stores floating-point constants in double precision unless you
specify otherwise (for example, by using the notation 12.5F instead of 12.5).

Double precision has one drawback: it requires more space. This is a fac-
tor only when you have large amounts of floating-point values to be stored
in a disk file. Then, and only then, should you consider using the single-pre-
cision type, float.

Example 1.3. Convert Temperatures
Every time I go to Canada, I have to convert Celsius temperatures to Fahrenheit
in my head. If I had a handheld computer, it would be nice to tell it to do this
conversion for me; computers are good at that sort of thing.

Here’s the conversion formula. The asterisk (*), when used to combine two
values, means “multiply by.”

Fahrenheit = (Celsius * 1.8) + 32

Now, a useful program will take any value input for Celsius and then convert
it. This requires the use of some new features:

 ◗ Getting user input

 ◗ Storing the value input in a variable

Interlude

Chapter 1 Start Using C++20

Here is the complete program. Create a new project called “convert.” Then
enter the new program, and compile and run (press Ctrl + F5 if you’re using
Microsoft).

convert.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 double ctemp, ftemp;

 cout << "Input a Celsius temp and press ENTER: ";
 cin >> ctemp;
 ftemp = (ctemp * 1.8) + 32;
 cout << "Fahrenheit temp is: " << ftemp;
 return 0;
}

Remember, yet again (!), that if and only if you’re working with Microsoft
Visual Studio, you must leave the following line in at the beginning of the
program:

#include "stdafx.h"

Programs are easier to follow when you add comments, which in C++ are
notated by double slashes (//). Comments are ignored by the compiler (they
have no effect on program behavior), but they are useful for humans. Here is
the more heavily commented version:

convert2.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

1
Introduction to Data Types 21

int main()
{

 double ctemp; // Celsius temperature
 double ftemp; // Fahrenheit temperature

 // Get value of ctemp (Celsius temp).

 cout << "Input a Celsius temp and press ENTER: ";
 cin >> ctemp;

 // Calculate ftemp (Fahrenheit temp) and output.

 ftemp = (ctemp * 1.8) + 32;
 cout << "Fahrenheit temp is: " << ftemp << endl;

 return 0;
}

This commented version, although it’s easier for humans to read, takes more
work to enter. While following the examples in this book, you can always omit
the comments or choose to add them later. Remember this cardinal rule for
comments:

 ✱ C++ code beginning with double slashes (//) is a comment and is ignored by
the C++ compiler to the end of the line.

Using comments is always optional, although it is a good idea, especially if
any humans (including you) are going to ever look at the C++ code.

H
ow

 It
 Works

 How It Works
The first statement inside main declares variables of type double, ctemp
and ftemp, which store Celsius temperature and Fahrenheit temperature,
respectively.

double ctemp, ftemp;

This gives us two locations at which we can store numbers. Because they
have type double, they can contain fractional portions. Remember that double
stands for “double-precision floating point.”

convert2.cpp, cont.

Chapter 1 Start Using C++22

ctemp ftemp

The next two statements prompt the user and then store input in the variable
ctemp. Assume that the user types 10. Then the numeric value 10.0 is put into
ctemp.

"Enter a Celsius temp and press ENTER: "

cout << "Enter a Celsius temp and press ENTER: " ;

Console
(output)

cin >> ctemp;

Console
(input)

ctemp

10.0

In general, you can use similar statements in your own programs to print a
prompting message and then store the input. The prompt is very helpful because
otherwise the user may not know when he or she is supposed to do something.

Note � Although the number entered in this case was 10, it is stored as 10.0. In
purely mathematical terms, 10 and 10.0 are equivalent, but in C++ terms, the
notation 10.0 indicates that the value is stored in floating-point format rather
than integer format. This turns out to have important consequences.

The next statement performs the actual conversion, using the value stored in
ctemp to calculate the value of ftemp:

ftemp = (ctemp * 1.8) + 32;

1
Introduction to Data Types 23

This statement features an assignment: the value on the right side of the equal
sign (=) is evaluated and then copied to the variable on the left side. This is one
of the most common operations in C++.

Again, assuming that the user input 10, this is how data would flow in the
program:

ftemp = (ctemp * 1.8) + 32 ;

ctemp

10.0

ftemp

50.0
(ctemp * 1.8) + 32
(10.0 * 1.8) + 32

Finally, the program prints the result—in this case, 50.

"Fahrenheit temp is: "

cout << "Fahrenheit temp is: " << ftemp ;

Console
(output)

ftemp

50.0

Op
ti

m

izing

 Optimizing the Program
If you look at the previous example carefully, you might ask yourself, was it
really necessary to declare two variables instead of one?

Actually, it wasn’t. Welcome to the task of optimization. The following ver-
sion improves on the first version of the program by getting rid of ftemp and
combining the conversion and output steps:

Chapter 1 Start Using C++24

convert3.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 double ctemp; // Celsius temperature

 // Prompt and input value of ctemp.

 cout << "Input a Celsius temp and press ENTER: ";
 cin >> ctemp;

 // Convert ctemp and output results.

 cout << "Fahr. temp is: " << (ctemp * 1.8) + 32;
 cout << endl;

 return 0;
}

Do you detect a pattern by now? With the simplest programs, the pattern is
usually as follows:

1 Declare variables.

2 Get input from the user (after printing a prompt).

3 Perform calculations and output results.

For example, the next program does something different but should look
familiar. This program prompts for a number and then prints the square. The
statements are similar to those in the previous example but use a different vari-
able (x) and a different calculation.

1
Introduction to Data Types 25

square.cpp

// If you're using Microsoft V.S. leave in this line:
// #include "stdafx.h"

#include <iostream>
using namespace std;

int main()
{
 double x = 0.0;

 // Prompt and input value of x.

 cout << "Input a number and press ENTER: ";
 cin >> x;

 // Calculate and output the square.

 cout << "The square is: " << x * x << endl;
 return 0;
}

Ex
er

cis
es

 EXERCISES

Exercise 1.3.1. Rewrite the example so it performs the reverse conversion: Input a
value into ftemp (Fahrenheit) and convert to ctemp (Celsius). Then print the
results. (Hint: The reverse conversion formula is ctemp = (ftemp − 32) / 1.8.)

Exercise 1.3.2. Write the Fahrenheit-to-Celsius program using only one variable,
ftemp. This is an optimization of Exercise 1.3.1.

Exercise 1.3.3. Write a program that inputs a value into a variable x and outputs the
cube (x * x * x). Make sure the output statement uses the word cube rather than
square.

Exercise 1.3.4. Rewrite the example square.cpp using the variable name num rather
than x. Make sure you change the name everywhere “x” appears.

Chapter 1 Start Using C++26

A Word about Variable Names and Keywords
This chapter has featured the variables ctemp, ftemp, and n. Exercise 1.3.4 sug-
gested that you could replace “x” with “num,” as long as you do the substitution
consistently throughout the program. So “num” is a valid name for a variable
as well.

There is an endless variety of variable names I could have used instead. I could,
for example, give some variables the names killerRobot or GovernorOfCalifornia.

What variable names are permitted, and what ones are not? You can use any
name you want, as long as you follow these rules:

 ◗ The first character should be a letter. It cannot be a number. The first character
can be an underscore (_), but the C++ library uses that naming convention
internally, so it’s best to avoid starting a name that way.

 ◗ The rest of the name can be a letter, a number, or an underscore (_).

 ◗ You must avoid words that already have a special, predefined meaning in C++,
such as the keywords.

It isn’t necessary to sit down and memorize all the C++ keywords. You need
to know only that if you try using a name that conflicts with one of the C++
keywords, the compiler will respond with an error message. In that case, try a
different name.

Ex
er

cis
e

 EXERCISE

Exercise 1.3.5. In the following list, which of the words are legal variable names in
C++, and which are not? Review the rules just mentioned as needed.

x1

EvilDarkness

PennslyvaniaAve1600

1600PennsylvaniaAve

Bobby_the_Robot

Bobby+the+Robot

whatThe???

amount

1
27Chapter 1 Summary

count2

count2five

5count

main

main2

Chapter 1 Summary
Here are the main points of Chapter 1:

◗ Creating a program begins with writing C++ source code. This consists of C++
statements, which bear some resemblance to English. (Machine code, by con-
trast, is completely incomprehensible unless you look up the meaning of each
combination of 1s and 0s.) Before the program can be run, it must be translated
into machine code, which is all the computer really understands.

 ◗ The process of translating C++ statements into machine code is called compiling.

◗ After compiling, the program also has to be linked to standard functions stored
in the C++ library. This process is called linking. After this step is successfully
completed, you have an executable program.

 ◗ If you have a development environment, the process of compiling and linking
a program (building) is automated so you need only press a function key. With
Microsoft Visual Studio, press Ctrl+F5 to build programs.

◗ If you’re working with Microsoft Visual Studio, make sure you leave #include
"stdafx" at the beginning of every program. If you start a project by going
through the New Project command, the environment will always put this in for
you. Just make sure you don’t delete #include "stdafx" when pasting code into
the environment.

#include "stdafx.h"

◗ Simple C++ programs have the following general form:

#include <iostream>
using namespace std;

int main()
{

Chapter 1 Start Using C++28
Enter_your_statements_here!
return 0;

}

 ◗ To print output, use the cout object. For example:

cout << "Never fear, C++ is here!";

 ◗ To print output and advance to the next line, use the cout object and send a
newline character (endl). For example:

cout << "Never fear, C++ is here!" << endl;

 ◗ Most C++ statements are terminated by a semicolon (;). Directives—lines
beginning with a pound sign (#)—are a major exception.

 ◗ Double slashes (//) indicate a comment; all text to the end of the line is ignored
by the compiler itself. But comments can be read by humans who have to main-
tain the program.

 ◗ Before using a variable, you must declare it. For example:

double x; // Declare x as a floating-pt variable.

 ◗ Variables that may store a fractional portion should have type double. This
stands for “double-precision floating point.” The single-precision type (float)
should be used only when storing large amounts of floating-point data on disk.

 ◗ To get keyboard input into a variable, you can use the cin object. For example:

cin >> x;

 ◗ You can also put data into a variable by using assignment (=). This operation
evaluates the expression on the right side of the equal sign (=) and places the
value in the variable on the left side. For example:

x = y * 2; // Multiply y times 2, place result in x.

559

Index
Symbols
-- (decrement operator), 53–54
// (double slashes), 4, 20
-> (arrow operator), 290, 395
+ (addition-operator function), 452–454
+= (add and assign), 477, 482
–= (subtract and assign), 477, 482
*= (multiply and assign), 477, 482
/= (divide and assign), 477, 482
?: (conditional operator), 481
, (join operator), 482
< and > (angle brackets), 333
= (assignment operator)

== vs., 35–36
for classes, 463–465
in decision making, 35–36
introduction to, 32
overview of, 482
for values, 45

* (asterisk)
as indirection operator, 159–160, 179
as “multiply by” operator, 19

\ (backslash notations), 216
{} (braces), 102
' (digit separator)

example of, 425
introduction to, 415–417
in literal constants, 415
summary of, 444

/ (forward slash notations), 216

! (not operator), 51, 218
% (percent sign)

as modulus division operator, 36–39, 71
as remainder-division operator, 71, 122

:: (scope operator), 478, 555
| OR operator, bitwise, 480–481
|| OR operator, logical, 51–53
++ (increment operator)

introduction to, 48–49
logical, 52–54
statements vs. expressions and, 49–51
zero-out-array function and, 179

++i prefix expression, 48–51
== (equality operator), 32, 35–36
<= (less-than-or-equal operator), 44–45
== (test-for-equality operator), 465–466
& (ampersand)

as bitwise operator, 480–481
creating reference variables with,

281–282, 287
getting addresses with, 159–162
in “and operator,” 51–54
reference arguments and, 172–173

&,|,^,~,<<,>> (bitwise operators),
480–481

&& (AND operator, logical)
introduction to, 51–52
testing ages example of, 53–54
true values and, 53

(concatenation operator), 507

Index560
Numbers
2-D arrays, 152–153
32-bit architecture

as default, 31
limits of storage on, 42
long integers in, 422–424
as standard on PCs, 158

64-bit architecture
adoption of, 158
literals in, example of, 427–431
literals in, generally, 424–425
long long integers in, 422–424

A
abs (absolute value) function, 254
Abstract classes

defined, 541
in polymorphic poker, 402–403
pure virtual functions in, 402, 412

Access
levels of, defined, 541
restricting, 243–246

Access class member operator (->), 290, 395
add function, 262–266, 460–462
Add-and-assign operator (+=), 477, 482
Adding machines

do-while loops in, 67–69
strings for text analysis in, 207–209

Addition-operator (+) function, 452–454
Addresses

appearance of, 157–158
defined, 541
pointers and, 155–158
printing, 161–162
of variables, 161–162

AI (artificial intelligence), 31–32
Algorithms

by Euclid, 119–122, 253
#include directive for, 367, 387
in poker games, 366–367
random_shuffle, 367, 387

selection sort, 167–168
swap, 367, 387

Alphabetical sorting, 298–300
Alt + F7 (properties command), 7
American National Standards Institute

(ANSI), 541
The American Statistician, 351
Ampersand (&). See & (ampersand)
AND operator, bitwise (&), 480–481
AND operator, logical (&&), 51–53
Angle brackets (< and >), 333
ANSI (American National Standards Insti-

tute), 541
Applications, defined, 541
argument_list, 101
Arguments

constructors and, 281–282
defined, 99, 542
passing, 102–103
reference, 172–173, 555

Arithmetic
in Fraction class, 262–267
modular, 353
in pointers, 173–175

Arrays
2-D, 152–153
in C++, generally, 133–135
defined, 542
evaluating poker hands with, 378–379
in Good Deal, Bad Deal game, 341–342
initializing, 135
introduction to, 133
matrix and, 152–153
pointers and, 175–180
in poker games, 148–152, 387
in print out elements, 137–139
printing numbers from, 145–147
processing, 175–180
random numbers and, 139–144
sorting, 165–166
strings and, 144–148, 183–184

Index 561

summary of, 153–154
in text analysis, 183–184
zero-based indexing in, 135–139

Arrow operator (->), 290, 395
Artificial intelligence (AI), 31–32
ASCII code

defined, 542
extended, 515
overview of, 513–515
standard, 514
strings and, 181–184, 190
in text files, 222–224

Assignment, defined, 23
Assignment (=) operator. See = (assignment

operator)
Associativity, 542
Asterisk (*)

as indirection operator, 179
as “multiply by” operator, 19

atof function, 195
atoi function

64-bit literals and, 425
in Good Deal, Bad Deal game, 350
strings and, 195

atoll function, 425
auto keyword, 422
avg () function

calling, 100, 102–103
main function and, 105
overview of, 103–106

B
Backslash (\) notations, 216
Backward compatibility, defined, 542
Base 2 (binary) radix. See Binary (base 2) radix
Base classes, defined, 542
Basic, 96, 240
Basic Input Output System (BIOS), 419
begin function, 317–318
Big Blue, 31
Binary (base 2) radix

bitwise operations and, 421

introduction to, 416
radix, defined, 554
summary of, 444

Binary digits, 157–158
Binary files, writing to, 226
Binary literals, 416, 418–420
Binary operations

examples of, 227–232
exercises in, 233
introduction to, 225–227
random-access read, 230–233
random-access write, 227–230

Binary Tree app
alphabetical sorting in, 298–300
Bnode class in, 294–296
Btree class in, 296–301
overview of, 291–294

BIOS (Basic Input Output System), 419
Bits, defined, 542
Bitset, defined, 543
<bitset> template, 533–534
Bitwise operations

in C++14, 421
defined, 543
operators for, 52, 419–420, 480–481

Blocks, 32–33, 543
Bnode class, 294–296
Bonacci, Leonardo, 432
Book of Calculation (Liber Abaci), 432
bool (Boolean) data type

in decision making, generally, 47
logical operators and, 53
prime-number functions and, 107–108
random numbers and, 76

Boole, George, 51
Boolean operations

data type in. See bool (Boolean) data type
in decision making, generally, 51–53
defined, 543
example of, 53–54
logical operators in, 51–52
true values in, 53

Index562

braces ({}), 102
Branch statements, 493–497
break statements

in decision making, 46–47
keywords in, 42
prime-number functions and, 108–109
switch-case statements and, 78–79
syntax of, 496

Btree class, 296–301
Building programs, defined, 27
Building strings, 186–189
Bytes, defined, 543

C
C++ class string

building strings with, 205–209
declaring/initializing variables of, 203
other operations using, 209–210
for text analysis, generally, 201–205

C++ compilers
data types in, 17–19
defined, 544
double vs. single precision in, 19
#include in, 11–12
introduction to, 1, 27
keywords in, 26–27
non-Microsoft Visual Studio, 8
optimizing programs in, 23–25
printing messages in, generally,

9–11
printing multiple lines in, 13–15
printing newline characters in, 12
storing data in, 16–17
strings in, generally, 15–16
summary of, 27–28
temperature conversions in, 19–23
using statements in, 12
variable names in, 26–27
variables in, generally, 16–17
Visual Studio. See Visual Studio, Com-

munity Edition
C++ for the Impatient, 415

C-strings
accessing characters inside, 209–210
in Adding Machine #2, 207–209
cstring for. See cstring
defined, 543
introduction to, 181–182
as null-terminated strings, 201–202
strcmp and, 204
string literals in, 204–205

C++11
64-bit literals in, example of, 427–431
64-bit literals in, generally, 424–425
auto keyword in, 438–439
decltype keyword in, 438–439
defined, 543
delegating constructors in, 274–281
for each in, generally, 318, 433–435
for each in, setting arrays with, 435–437
enum classes in, 442–443
extended enum syntax, controlling stor-

age with, 442–443
Fibonacci numbers in, 427–432
initializing members in, 271–274
localizing numbers in, 431–432
long long type in, 64-bit literals and,

424–425
long long type in, accepting input

from, 425–426
long long type in, formatting num-

bers in, 426–427
long long type in, generally, 422–424
natural integers in, 424
new features in, generally, 422, 444–445
nullptr keyword in, 439–440
range-based for in, generally, 433–435
range-based for in, setting arrays with,

435–437
raw-string literals in, 443–444
strongly typed enumerations in, 440–443

C++14
binary literals in, 416, 418–420
bitwise operations in, 421

Index 563

defined, 543
delegating constructors in, 274–281
digit-group separators in, 415–417
for each in, 318
initializing members in, 271–274
list templates in, 316
literal constants in, 415–417
new features in, exercises for, 421–422
new features in, generally, 415, 444–445
specifications for, 75
string-literal suffixes in, 415, 417–418

Calculators. See RPN (Reverse Polish Nota-
tion)

Callback functions, defined, 543–544
Calling functions

introduction to, 99–100
multiple functions, 105–106
overview of, 102–103

Card class
drawing cards and, 361–362
introduction to, 238
overview of, 363–364
in primitive video poker, 368–370

Card games
arrays in, 148–152
poker. See Poker
polymorphic poker. See Polymorphic

poker
Cascading errors, 5
case labels, 80
Case sensitivity, 5
Casts

defined, 544
operators for, 76–77, 479
reinterpret_cast operator, 225
static_cast operator, 76–77
type. See Type casts

Celsius temperature conversions, 19–25
Central processing units (CPUs), 545
char*. See also C-strings

constructors and, 285–286
converting to long long integers, 425

converting to numeric values, 211
raw string literals and, 443
as string type, 144
in text analysis, 184
type cast, 226–227, 235

char
building strings and, 186–188
C-strings and, 182
in expressions, 475
in file storage, 226–227, 235
single value of type, 373
size of, 423
string-literal suffixes and, 415
strings and, generally, 181–188

cin (console input)
file-stream objects in, generally, 213
introduction to, 16–17
strings for text analysis and, 190–192
summary of use of, 27–28

Clarity of instructions, 31
Class assignment (=) operator. See also =

(assignment operator), 463–465
Class-operator functions

class assignment, 463–465
exercises in, 462, 471
in Fraction class, completed code for,

467–471
in Fraction class, generally, 457–462
in Fraction class, print function,

466–467
as global functions, 450–452
integers and, 463
introduction to, 447–450
operator overloading and, 472
optimizing code for, 461–462
in Point class, 454–457
printing with, 466–467
references, improving efficiency with,

452–454
summary of, 472–474
test-for-equality, 465–466
types, working with other, 463

Index564

Class string. See C++ class string
Classes

abstract. See Abstract classes
access restrictions and, 243–246
add in, 262–266
base, 542
constructors and. See Constructors
container, 314
declaration of. See Declaration of classes
defined, 544
derived, 546
exercises in, 248, 258, 262
Fraction. See Fraction class
greatest common factors in, 253–260
I/O stream, 525–530
#include in, 261
inline functions in, 251–253
introduction to, 237
<list>, 315–316
list container, 333
mult in, 262–266
objects and. See Objects
operator functions and. See Class-opera-

tor functions
pair container, 314
Point. See Point class
private, 243–246
public, 241–242
stack. See Stack classes
in Standard Template Library, 531–539
static storage, 556
storage, 556
structures and, 242–243, 267
subclasses, 556–557
summary of, 267–268
support for functions in, 255–258
testing, 246–248, 258–261
virtual base, 393–396

class_name, 270
clear function, 372, 388
Code, defined, 544

Comments
in decision making, 37
double-precision floating data type and,

20–21
introduction to, 4–5

Comparative languages, 96–97
Compatibility issues

in C++11. See C++11
in C++14. See C++14
in Visual Studio, 5–8

Compilers. See C++ compilers
Compound statements, 32–33, 544
Concatenation operator (##), 507
Condition expressions

example of, 91, 95–96
introduction to, 86–88

Conditional operator (?:), 481
Conditions

expressions for. See Condition
expressions

introduction to, 40
true vs. false, 46–47

Console input (cin). See cin (console input)
Console output (cout). See cout (console

output)
Console stream objects, 525–526
const keyword, 454–457, 462
Constants

in 64-bit architecture, 424–431
defined, 545
digit-group separators in, 415
literal, 415, 424–431
predefined, 512

Constructors
arguments and, 281–282
copy. See Copy constructors
default. See Default constructors
defined, 545
delegating, 274–281
in Fraction class, 278–281, 285–286
initializing members in, 271–274

Index 565

introduction to, 269–270
multiple, 270–271
overloading, 270–271
in Point class, 275–278, 283–284
reference variables and, 281–282, 284
returning objects from functions with,

381–387
strings and, 285–286
summary of, 286–287
warnings about, 272–274

Container classes, 314
Containers, 434–435
Content vs. address of variables, 161–162
Continually sorted lists, 321–322
continue statements, 90, 496
Control structures

defined, 545
do-while loops. See do-while loops
introduction to, 65
summary of, 83
switch-case statements, 77–82
syntax of, 493–497

Converting characters to uppercase, 195–197
Copy constructors

class assignment function and, 464
defined, 545
introduction to, 281–284
reference variables and, 287

cout (console output)
file-stream objects in, generally, 213
introduction to, 10–14
ostream and, 466–467
in polymorphic poker, 404–405
summary of use of, 28–29

CPUs (central processing units), defined, 545
Creating projects with Microsoft, 2–5
Cstack class, 304–305
c_str method, 212
cstring. See also C-strings

building strings with, 186–187
converting characters to uppercase, 195

defined, 517–518
getting numbers with, 192–194
#include directive and, 285
in RPN calculators, 329
support for, 203

Ctrl+F5 (Start Without Debugging), 5–6, 8
Cube vs. square, 25

D
Data-conversion functions, defined, 518
Data declarations, 241–242
Data flow in functions, 165
Data members, 241–246, 545
Data types

in C++, generally, 17–19
in decision making, 29–31
escape sequences, 486–487
intrinsic, 484
of numeric literals, 485–486
overview of, 483
precision of, 484
signed integers, 487–489
string literals, 486–487
two’s-complement format for, 487–489

Dealing cards
arrays in, 148–152
deal_a_card function for, 392–393
Deck class in. See Deck class

Decision making
artificial intelligence in, 31–32
bool data type in, 47
Boolean logic in, example of, 53–54
Boolean logic in, generally, 51–53
control structures in. See Control

structures
data types and, 29–31
if and if-else statements in, 32–35
increment operators in, 48–49
infinite loops in, 42, 47
introduction to, 29
loops in, example of, 42–45

Index566

Decision making (continued)
loops in, generally, 39–42
loops in, optimizing program for, 45–46
math library in, example of, 55–57
math library in, generally, 55
math library in, optimizing program for,

57–58
odd-or-even programs in, 36–39
prime number test in, generally, 55–57
prime number test in, optimizing pro-

gram for, 57–58
printing 1 to N in, 43–46
in programs, generally, 31–34
statements vs. expressions in, 49–51
in Subtraction Game, 58–61
summary of, 62–63
testing ages in, 53
true vs. false in, 46–47, 53
= vs. == operators in, 35–36

Deck class
drawing cards and, 361–363
introduction to, 237
multiple decks and, 389–391
overview of, 364–367
in primitive video poker example,

368–370
switching decks at runtime and, 391–396

Declaration
of class strings, 203
of classes. See Declaration of classes
defined, 545
of functions, 101, 104
of pointers, 158–160

Declaration of classes
Fraction class, 249, 267
introduction to, 241–242
syntax in, 502–503

decltype keyword, 422
Deconstructors, defined, 546
Decrement operator (--), 53–54

Default constructors
class assignment function and, 463
defined, 545–546
introduction to, 272–274

Default statements, 79–80
#define directives

defined, 505–506
localizing numbers with, 431–432
in polymorphic poker, 392

defined function, 507
Definition of functions, 102–104, 546
Delegation

of constructors, 274–281
of tasks, 337–339

delete keyword, 290–291, 312
Deprecation, defined, 546
Dereferencing, defined, 546
Derived classes, defined, 546
Dice games, 127
Digit separator ('). See ' (digit separator)
Directives

#define. See #define directives
defined, 546
#elif, 507–508
#endif, 508
#error, 508
#if, 508–509
#ifdef, 509–510
#ifndef, 510
#include. See #include directives
#line, 511
preprocessor. See Preprocessor directives
#undef, 511

Directories, 215
Disk files

file-stream objects in, generally, 213–214
referring to, 215–216
storage and, 213

Displaying text files, 219–222
Divisors, 108

Index 567

do-while loops
adding machine example of, 67–69
guess-the-number game example of,

72–77
introduction to, 65–67
random numbers and, 69–77

do-while statements, 494
DoorManager class

inserted in game code, 347–350
introduction to, 343–346

double (double-precision floating data
type)
declaring arrays with, 133–134
defined, 18–19
example of, 20–21
in file storage, 225
inefficiency of, 29
overview of, 29–30
single precision vs., 19
summary of use of, 28

Double slashes (//), 4, 20
Double value, 195
Double_it function, 162–164
Draw-poker payout, 383–386
Drawing cards, 361–363, 373–378
Dynamic memory allocation, 289
Dynamic object creation, 289–290

E
Electronic storage. See File storage
Elements, 121
Elements of arrays, 133–134
#elif directive, defined, 507–508
Encapsulation, 214, 546
end function, 317–318
End users, 547
#endif directive, defined, 508
endl object, 13–14
enum declarations, 503–504
Equality (==) operator, 32, 35–36
#error directive, defined, 508

Escape sequences
data types and, 486–487
introduction to, 188
strings for text analysis and, 189–190

Euclid’s algorithm, 119–122, 253
Eval class, 379–386
Exceptions, defined, 547
Expressions, 324, 491–492
Extensibility, 404–405

F
Factors, 108, 116
Fahrenheit temperature conversions, 19–25
false

bool data type and, 47
Boolean logical operators and, 51–53
in decision making, 46–47, 53
is_prime for, 95–96
predefined, 57
random numbers and, 75–76
setting do_more to, 73–76
testing for equality and, 35
true vs., 254
while statements and, 40, 44

Fibonacci numbers, 427–432
File I/O functions, 529–530
File storage

binary operations, examples of, 227–232
binary operations, exercises in, 230, 233
binary operations, generally, 225–227
disk files, referring to, 215–216
displaying text files, exercises, 222
displaying text files, generally, 219–221
file-stream objects in. See File-stream

objects
introduction to, 213
random-access read, 230–233
random-access write, 227–230
summary of, 233–235
text vs. binary files in, 222–224
writing text to files in, 216–218

Index568

File-stream objects
disk files, referring to, 215–216
exercises in, 219
introduction to, 213–215
writing text to files and, 216–218

float (single-precision data type), 28
FloatFraction, 400
Floating point data

defined, 17–19, 547
double-precision. See double (dou-

ble-precision floating data type)
example of, 20–21
single-precision, 28

Floating-point division operator, 480
Flush hands, 360
Folders, 215
for each, 422
for loops

introduction to, 86–88
printing elements in arrays with,

137–138
for statements in, 88–90, 92–96

for statements
in comparative languages, 96–97
exercises in, 92
introduction to, 85
in for loops, declaring variables, 92–96
in for loops, examples of, 88–91
in for loops, generally, 86–88
prime number tests with, 93–96
printing 1 to N with, 90–91
summary of, 97
while loops vs., 90

FORTRAN, 95, 136
Forward Polish Notation, 325
Forward slash (/) notations, 216
fout, 214–215
Fraction class

add in, 262–266
arithmetic functions in, 262–267
class operator functions and, 457–462

completed code for, 467–471
constructors in, 278–281
dynamic object creation in, generally, 289
exercises in, 258, 262, 267, 462
greatest common factors in, 253–260
#include in, 261
inline functions in, 251–253
introduction to, 248–251
lowest common denominators in,

254–260
mult in, 262–266
objects in, 285–286
optimizing code for, 461–462
print function and, 466–467
private access to, 249, 267
public members in, 249, 267
support for functions in, 255–258
testing in, 258–261

Friend functions, 451–452
fstream, 214
Full house hands, 360
Functions. See also specific functions

avg(). See avg () function
calling. See Calling functions
class-operator. See Class-operator

functions
concept of, 99–101
declaring, 101, 104, 500–501
defining, 102, 104, 546
Euclid’s algorithm and, 119–122
Fraction class supporting, 255–258
global, 109–112, 450–452
greatest common factors and, 119–122
inline, 251–253, 458
introduction to, 99
library. See Library functions
local vs. global variables in, 109–112
prime factorization in, 113–118
prime-number, 106–109
prototyping, 101
pure virtual. See Pure virtual functions

Index 569

random-number generator, 127–129
recursive, 112–113, 122–126
returning objects from, 362–365,

381–387
in Subtraction Game, 129–130
summary of, 131–132
Tower of Hanoi puzzle and, 122–126
using, generally, 101

G
Games

dice, 127
Good Deal, Bad Deal. See Good Deal, Bad

Deal game
Guess-the-number, 72–77
poker. See Poker
polymorphic poker. See Polymorphic

poker
Subtraction, 58–61, 129–130
video. See Video games

Garbage, 135
GCFs (greatest common factors). See Greatest

common factors (GCFs)
get_divisors function, 114–117
get_good_prize, get_bad_prize,

339–342
getline method, 188–192
get_number function, 190–195
Global functions, 450–452
Global variables, 547
Golden Ratio, 432
Good Deal, Bad Deal game

delegating tasks in, 337–339
DoorManager class in, generally,

343–346
DoorManager class, inserting in game

code, 347–350
example of complete code for, 347–350
exercises in, 342, 346–347, 350
introduction to, 335–337
optimizing code for, 341–342
paradox in, 351–353

PrizeManager class in, generally,
339–342

PrizeManager class in, optimizing,
353–356

PrizeManager class, inserted in game
code, 347–350

summary of, 356–357
Goto statements, 497
Graphical-user-interfaces (GUIs), 240
Greatest common factors (GCFs)

defined, 547
in Fraction class, 253–260
main function and, 119–122

Guess-the-number game, 72–77
GUIs (Graphical-user-interfaces), 240

H
Hall, Monty. See also Good Deal, Bad Deal

game, 335
Hard-coded array sizes, 341–342
Header files, defined, 547
Hexadecimal notation, 157

I
I/O (input/output) stream

console stream objects, 525–526
file I/O functions, 529–530
input stream functions, 528
manipulators, 526–527
objects and classes, generally, 525
output stream functions, 528
in polymorphic poker, 403–410

i++ postfix expression, 48–51
IDEs (integrated development environments),

548
#if directive, 508–509
if-else statements

arrays vs., 147
example of, 36–37
explanation of, 37–38
introduction to, 32–35
syntax of, 493

Index570

if statements, 32–35, 38
#ifdef directive, defined, 509–510
#ifndef directive, defined, 510
ifstream

displaying text files and, 219
introduction to, 214
summary of, 234

Implementation, defined, 548
#include directives

<algorithm>, 367, 387
<cmath>, 55
defined, 510–511
in Fraction class, 261
<fstream>, 213–214, 233
<list>, 315, 333
semicolons and, 6
<stack>, 327, 330, 334
"stdafx.h," 5–7, 12, 28–29
<string> class, 202–203

Increment expressions, 41–42, 86–91, 95–97
Increment operator (++). See ++ (increment

operator)
Independent, self-contained objects, 410–411
Index numbers

defined, 548
of elements in arrays, 136
in one-based indexing, 552
in zero-based indexing, 135–139, 558

Indirection, defined, 548
Indirection operator (*), 159–160
Individual characters vs. strings, 197–198
Infinite loops

in decision making, 42, 47
defined, 548

Infix notation, 324
Inheritance

defined, 548
polymorphism and, 392–396

Initialization
of arrays, 135
constructors for, 269

expressions for, 86–88, 91, 95–97
of Fraction objects from strings,

285–286
of members, 271–272
of objects, 283

Inline functions
defined, 548
in Fraction class, 251–253

Input, getting with cin, 16, 22, 526
Input, getting from a file, 220–221, 528
Input/output (I/O) stream. See I/O (input/

output) stream
Input stream functions, 528
insert function, 319–322
Installation of Visual Studio. See also Visual

Studio, Community Edition, 1–2
Instances/instantiation, defined, 548
int (integer) data type

class operator functions and, 463
declaring arrays with, 134–135
in file storage, 226
introduction to, 17–18, 29
long long, 31, 42
operators and, 480
pointers to variables of, 158
size limitations on variables in, 42
summary of, 62
variables in, generally, 30

Integers. See also int (integer) data type
defined, 548
value of, 175
variables of, 37

Integrated development environments (IDEs),
548

Intelligent data structures, 238
Interfaces

defined, 549
in polymorphic poker, 402–403

International formats, 431–432
Intrinsic data types, 484
ios::in/ios::out, 229–234

Index 571
iostream (virtual include files), 211
IPrintable class, 405–409
is_prime, 95, 106–108
Iteration/iterative computing, defined, 549
Iterators

in Binary Tree app, 298
defined, 549
listing, 321–322, 334
in STL, creating/using, 316–318
in STL, pointers vs., 319

iVec (vector of integers), 371–372

J
Join (,) operator, 482

K
Kasparov, Gary, 31
Keywords

auto, 422
case, 78–80
class, 241
const, 454–457
decltype, 422
defined, 549
delete, 290–291, 312
do, 65–66
else, 33–34
for, 65–83
if, 32–35, 38
new, 289–291, 312
nullptr, 331, 422
return, 102–108
struct, 272–273
this, 464
in Visual Studio, 26–27
while, 40

L
Labeled statements, 80
Last-in-first-out (LIFO)

in calling functions, 113
defined, 549

in RPN calculators, 325
in Standard Template Library, 334

Late binding
defined, 549, 557
in polymorphic poker, 412

Law of Large Numbers, 140
LCD (lowest common denominator), 254–

260, 262–266
LCM (lowest common multiple), 262–266,

549
Left value (Lvalue), 550
Less-than-or-equal operator (<=), 44–45
Let’s Make a Deal, 335
Liber Abaci (Book of Calculation), 432
Library functions

<cstring>, 517–518
data-conversion, 518
math, 520
overview of, 517
randomization, 521
single-character, 519
strftime, formats for, 523–524
string, 517–518
time, 521–523

LIFO (last-in-first-out) mechanisms. See Last-
in-first-out (LIFO)

#line directive, defined, 511
Linking, 27
<list> classes, 315–316
List container classes, 333
<list> template

in C++11/C++14 , for each, 318
continually sorted lists in, 321–322
iterators in, creating/using, 316–318
<list> classes in, creating/using,

315–316
ordered list example in, 319–321
pointers vs. iterators in, 319
in Standard Template Library,

534–536
in STL, generally, 313–314
writing templates in C++ and, 314–315

Index572

Literal constants, 415
Literals

binary, 416, 418–420
defined, 549–550
numeric, 485–486
operator, 447–461
public, 241
raw string, 422
return, 47, 102
string, 415–418, 486–487, 556
switch, 78–80
virtual, 394
while, 40

Local variables
defined, 550
global variables vs., 109–112

Localizing numbers, 431–432
Location of data. See Pointers
Logical (Boolean) operators. See also Boolean

operations, 51–53
Logical negation operator (!), 51, 218
Logical operations, defined, 550
long integer data type (time_t), 76
long long int data type

in 64-bit architecture, 424–425,
427–431

accepting from C++11, 425–426
in C++14, 417
formatting in C++11, 426–427
infinite loops and, 42
introduction to, 31

Loop counters, defined, 550
Loops

break keyword and, 58, 61
for counting numbers, 85–86
defined, 550
exercises in, 46
explanation of example of, 44
for. See for loops
infinite, 42
introduction to, 39–42

optimizing program for, 45–46
in prime number test, 57
printing 1 to N example of, 42–45

Lowest common denominator (LCD), 254–
260, 262–266

Lowest common multiple (LCM), 262–266,
549

Lukasiewicz, Jan, 324
Lvalue (left value), 550

M
Machine code

compiling C++ statements into, 27
defined, 550–551
linking to C++ functions, 27

main function
avg function and, 105
building strings and, 188
defined, 551
functions in, generally, 100–101
get_divisors function and, 115
greatest common factors and, 119–120
introduction to, 74–75
local vs. global variables in, 109–112
Point class and, 247
rand_0toN1 function and, 140–143

Main memory, defined, 551
Manipulators, I/O stream, 526–527
Math

algorithms for. See Algorithms
arithmetic functions in. See Arithmetic
functions for, defined, 520

Math library
of decision making, 55–57
introduction to, 11
optimizing program for, 57–58

matrix, 152–153
Member functions, 268, 551
Members, defined, 551
Memory, 291, 551
Messages, printing, 9–11

Index 573

Methods
c_str, 212
defined, 551
getline, 188–192

Microsoft
code developed at, 424
Foundation Classes by, 240
Visual Studio by. See Visual Studio,

Community Edition
MOD 3 operation, 344–345
Modular arithmetic, 353
Modules, defined, 551
Modulus division (%)operator, 36–39, 71
Monty Hall game. See Good Deal, Bad Deal game
Monty Hall Paradox, 351–353
mult (multiplication) function, 19, 262–266,

460–462
Multiple constructors, 270–271
Multiple decks, 389–391
Multiple lines, printing, 13–15

N
Nested loops, 171
Nesting, defined, 551
new keyword, 289–291, 312
New-style type casts, 479
Newline characters

defined, 551
printing, 12–15

NIM (Subtraction Game), 58–61, 129–130
No-ops, 37
Non-Microsoft Visual Studio, 8
normalize function

in Fraction class constructors, 278–280
in Fraction class, generally, 255–261
in Fraction class, math functions, 264
virtual function calls and, 399–401

Not (!)operator, 51, 218
Null pointers

in Binary Tree app, 292–296
defined, 551–552
introduction to, 71

nullptr keyword
in C++11/C++14, 422
introduction to, 142
in RPN calculators, 331

Number-printing program, 80–82
Numeric literals, 485–486

O
Object code, defined, 552
Object-oriented programming (OOP)

alphabetical sorting in, 298–300
binary tree apps in, 291–294
Bnode class in, 294–296
Btree class in, 296–301
Cstack class in, 304–305
defined, 552
delete keyword in, 290–291
dynamic object creation in, 289–290
examples of, 289
exercises in, 300–301
general steps in, 238–240
Monty Hall game in. See Good Deal, Bad

Deal game
new keyword in, 289–291
objects in, generally, 237–238, 240
poker in. See Poker
polymorphic poker in, 403–411
pros vs. cons of, 240
recursion vs. iteration in, 301–302
stack classes in, 304
summary of, 311–312
Tower of Hanoi animation in, 302–311

Object-oriented programming systems
(OOPS), 552

Objects. See also Classes
defined, 238–240, 552
I/O stream, 525–530
independent and self-contained, 410–411
introduction to, 237
in OOP, generally, 237–238, 240
in Standard Template Library, 531–539
strings and, 191

Index574

Odd-or-even programs, 36–39
Offsets, 136
ofstream, 214–215, 233
Old-style type casts, 479
One-based indexing, defined, 552
OOP (object-oriented programming). See

Object-oriented programming (OOP)
OOPS (Object-oriented programming

systems), 552
Operands, defined, 553
Operator overloading, 447, 472
Operators. See also specific operators

assignment, See = (assignment
operator)

bitwise, 52, 419–420, 480–481
cast, 76–77, 479
classes and. See Class-operator functions
conditional, 481
defined, 553
floating-point division, 480
increment. See ++ (increment operator)
integer, 480
join, 482
new-style type casts, 479
old-style type casts, 479
overview of, 475
by precedence level, 476–478
scope, 478
sizeof. See sizeof operator
type casts, 479

Optimizing programs, in Visual Studio, 23–25
OR operator, bitwise (|), 480–481
OR operator, logical (||), 51–53
Ordered lists, 319–321
ostream (output stream)

defined, 528
IPrintable class and, 408
print function and, 466–467

Output, printing to the console, 10–12, 512
Output stream (ostream). See ostream

(output stream)
Output, writing to a file, 213–218, 529–530

Overloading
constructors and, 270–271
defined, 553
operator, 447, 472

P
p = arr statements, 174
Pair container classes, 314
Parade magazine, 351
Paradoxes

in Monty Hall game, 351–353
Russell’s, 295

Pascal, 240
Pass by reference, 165–172
Passing arguments, 102–103
Passing pointers, 165–173
Pausing screens, 7–8
Penrose, Roger, 32
Percent sign (%). See % (percent sign)
Persistent memory, 553
Pinochle, 389–396
Point class

class operator functions and, 454–457
constructors in, 275–278, 283–284
declaration of, 241–242
delegating constructors in, 274–275
initializing members in, 271–274
private access to, 243–248
public access in, 241–242
testing, 246–248

Pointer-indirection (*) operator, 179
Pointers

addresses, appearance of, 157–158
arithmetic in, 173–175
array processing and, 175–180
array sorting and, 165–166
in Binary Tree app, 292–298, 309
concept of, 156–157
content vs. address of variables, 161–162
data flow in functions and, 165
declaring, generally, 158–160
defined, 155–156, 553

Index 575
double_it function and, 162–164
in dynamic object creation, 289–290
introduction to, 155
iterators vs., 319
printing addresses and, 161–162
reference arguments and, 172–173
reference variables and, 281
summary of, 180
swap function and, generally, 165–166
swap function for sorting arrays and,

166–172
using, generally, 158–160

Poker
algorithms for, 366–367
arrays in, 148–152
Card class in, 363–364
Deck class in, 364–366
draw-poker payout in, 383–386
drawing cards in, example of code for,

373–378
drawing cards in, generally, 361–363
evaluating hands in, 378–382
exercises in, 370, 378, 386–387
getting numbers from players in, 373
introduction to, 359
polymorphic. See Polymorphic poker
primitive version of, 368–370
strategy for winning, 359–360
summary of, 387–388
vector template for, 371–377

Polish Notation. See also RPN (Reverse Polish
Notation), 325

Polymorphism
abstract classes/interfaces in, 402–403
cout in, 404–405
#define directives in, 392
exercises in, 399, 409–410
extensibility in, 404–405
I/O in, 403–410
independent, self-contained objects in,

410–411

introduction to, 389
multiple decks in, 389–391
OOP in, 403–411
polymorphism in, cout vs., 404–405
polymorphism in, generally, 392–396
polymorphism in, IPrintable class for,

405–409
pure virtual functions in, 401–402
summary of, 412–413
switching decks at runtime in, 391–392
virtual dealers in, 396–399
virtual penalties in, 399–400

Polymorphism, defined, 412, 553
Pop function

introduction to, 309–310
in RPN calculators, 328–331
in Standard Template Library, 334

Precedence levels
defined, 553
operators by, 476–478

Precision of data types, 484
Precompiled headers, 6–7
Predefined constants, 512
Preprocessor directives

concatenation operator, 507
#define, 505–506
defined, 507
#elif, 507–508
#endif, 508
#error, 508
#if, 508–509
#ifdef, 509–510
#ifndef, 510
#include, 510–511
#line, 511
overview of, 505
predefined constants, 512
#undef, 511

Prime factorization, 113–118
Prime number functions, 106–109
Prime number tests, 55–57, 93–96

Index576

printf, 403
Printing

1 to N, 43–46, 90–91
addresses, 161–162
with class operator functions, 466–467
elements in, 137–139
messages, 9–11
multiple lines, 13–15
newline characters, 12–15
number-printing program for, 80–82
numbers, 145–147
output with cout, 10–12, 525
square roots, 190–195
with for statements, 90–91

PrizeManager class
inserted in game code, 347–350
introduction to, 339–342
optimizing, 353–356

Procedures. See Functions
Processors, 545
Programs. See also specific programs

building, generally, 27
decision making in, 31–34
defined, 554
odd-or-even, 36–39
optimizing, generally, 23–25
translation of, 182–183
writing, generally, 5

Promoting values, 103
Properties command (Alt + F7), 7
Prototypes, defined, 554
Prototyping functions, 101
Pseudo-random numbers, 128
Pure virtual functions

defined, 554
in polymorphic poker, 401–402, 412

push function, 309–310
push_back function, 371, 388
push_back member function, 315, 328, 333–334
push_front member function, 315, 328,

333–334

Q
query_door function, 339

R
Radix, defined. See also Binary (base 2) radix,

554
rand function, 71–75
rand_0toN1 function, 139–143
Random-access read, 230–233
Random-access write, 227–230
Random numbers

arrays and, 139–144
do-while loops and, 69–77
generator for, 127–129
guess-the-number game example of,

72–76
introduction to, 69–71
optimizing code for, 76–77

Randomization functions, defined, 521
random_shuffle algorithm, 367, 387
Range-based “for,” 422, 554
Range, defined, 554
Raw pointers, 319
Raw string literals, 422
read function, 190, 226, 230–234
Records, 229–230
Recursion

in Binary Tree app, 294, 297–298, 312
defined, 554
functions for, generally, 112–113
iteration vs., 301–302
prime factorization in, 114
in Tower of Hanoi puzzle, 122–126

Reference arguments
defined, 555
pointers and, 172–173
swap behavior with, 282

Reference variables
constructors and, 281–282, 284
copy constructors and, 287
defined, 555

Index 577

References
arguments. See Reference arguments
class operator functions and, 452–454
passing by, 165–172
variables in. See Reference variables

reinterpret_cast operator, 225
Relational operators, 44
Remainder division, 37–39, 59–61
Remainder-division operator (%), 71, 122
return statements

functions and, generally, 102
get_divisors function and, 116
introduction to, 47
prime-number functions and, 108
syntax of, 494–495, 497

Return values
introduction to, 99–102
local vs. global variables in, 111–112
passing pointers and, 165
in poker games, 375–377, 381–387

Returning objects from functions, 362–365,
381–387

return_type data, 101
Reverse Polish Notation (RPN). See RPN

(Reverse Polish Notation)
Rings, moving, 302–303
Royal flush hands, 360
RPN (Reverse Polish Notation)

design of, generally, 323–325
example of code for, 329–332
exercises in design of, 332
stack classes for, 327–328
stacks for, 325–327

Running programs, 5–6
Russell, Bertrand, 295

S
s (string-literal suffix), 415, 417–418
Scaling integers, 174–177
Scope, defined, 555
Scope (::) operator, 478, 555
Searle, John, 183

Seed, 70–71
Seekp member function, 211, 234–235
Select door functions, 339–346
Selection sort algorithm, 167–168
Selvin, Steve, 351
Semicolons

blocks and, 33
C++ statements and, 10
class/data declarations and, 242, 268
data declarations and, 135
function prototypes and, 135
#include directives and, 6
statements vs. expressions and, 49–50
summary of use of, 28

set_sel_door function, 343
Short-circuit (Boolean) logic. See also Boolean

operations, 51–54
Shuffling cards, 148–152
Side effects, 50
Signed integers, 487–489
Simula, 240
Single-character functions, 519
Single-precision data type (float), 28
size function, 371, 388
sizeof operator

defined, 478–479
in file storage, 227, 235
in Good Deal, Bad Deal game, 341–342
in poker games, 357

Smalltalk, 240, 410
sort functions, 319–322
Sorting arrays, 167–171
Source files, defined, 555
sqrt (square root) function, 11, 99
Square vs. cube, 25
Squirt function, 55
srand, 70–76
Stack classes

design of, 304
in object-oriented programming, 304–305
in RPN calculator design, 327–328
use of, 304–305

Index578
<stack> template, 538–539
Stacks

of calls, 112–113
classes in. See Stack classes
defined, 555
in RPN calculator design, 325–327

Standard Template Library (STL). See STL
(Standard Template Library)

Start Without Debugging (Ctrl+F5), 5–6, 8
start_new_game function, 339
Statement blocks, 32–33, 544
Statements. See also specific statements

branch, 493–497
compound, 32–33, 544
default, 79–80
defined, 555–556
expressions vs., 49–51
labeled, 80
syntax of basic, 492

Static storage classes, defined, 556
static_cast operator, 76–77
std namespace, 314–315
std:: prefix, 12, 328
stdafx.h, 6–7
STL (Standard Template Library)

angle brackets in, 333
<bitset> template in, 533–534
in C++11/C++14, 318
classes and objects in, generally, 531
continually sorted lists in, 321–322
defined, 555
for each in, 318
introduction to, 313
iterators in, 316–318
<list> classes in, 315–316
<list> template in, 313–314,

534–536
ordered list example in, 319–321
pointers vs. iterators in, 319
Polish Notation and, 325
prerequisites for using, 240

RPN calculators, designing generally,
323–325

RPN calculators, example of code for,
329–332

RPN calculators, exercises in design of, 332
RPN calculators, stack classes for,

327–328
RPN calculators, stacks for, 325–327
<stack> template in, 538–539
string class in, 531–533
summary of, 333–334
<vector> template in, 536–538
writing templates in, 314–315

Storage
classes, 556
of files. See File storage
in Visual Studio, 16–17

Straight flush hands, 360
Straight hands, 360
strcat (string concatenation), 185–188
strcmp (string compare), 219
strcpy (string copy), 185–188
Streams

file-stream objects. See File-stream
objects

I/O. See I/O (input/output) stream
introduction to, 213
iostream, 211
stringstream, 426–427

strftime functions, 523–524
String class

introduction to, 144–145
in Standard Template Library, 531–533

String functions
compare (strcmp), 219
concatenation (strcat), 185–188
copy (strcpy), 185–188
defined, 517–518

String-literal suffix (s), 415, 417–418
String literals, 486–487, 556
String-manipulation functions, 184–190

Index 579

Strings
arrays and, 144–148
building, 186–189
C-strings, 543
class. See C++ class string
constructors, 285–286
defined, 556
for text analysis. See Strings, for text

analysis
in Visual Studio, generally, 15–16

Strings, for text analysis
Adding Machine #2, 207–209
arrays and, 183–184
building, 186–189
building strings, 205–209
C++ class string in, generally, 201–205,

209–210
converting characters to uppercase,

195–197
declaring/initializing variables in, 203
escape sequences and, 189–190
getting numbers with, 190–195
#include <string> class support,

202–203
individual characters vs., 197–198
introduction to, 181
printing square roots with, 190–195
reading input and, generally, 190
string-manipulation functions and,

184–190
strtok in, 198–201
summary of, 210–211
text storage on computers and, 181–182
translation of programs, 182–183
variables of class string, 203–205

stringstream class, 426–427
Strongly typed enumerations, 422
Stroustrup, Bjarne, 240, 472
strtok function

for breaking up input, 198–201
in RPN calculators, 323, 329–331

struct keyword, 272–273
Structures, 242–243, 267
Subclasses, defined, 556–557
Subroutines. See Functions
Subtract-and-assign operator (–=), 477,

482
Subtraction Game (NIM), 58–61, 129–130
Subtraction operator (–), 476
swap algorithm, 367, 387
Swap function

pointers and, generally, 165–166
for sorting arrays, 166–172

switch-case statements
arrays vs., 145, 147
introduction to, 77–82
number-printing program example of,

80–82
in RPN calculators, 331–332
syntax of, 495–496

switch statements, 142
Switching decks at runtime, 391–392
Symbols, defined, 557
Syntax

of basic expressions, 491–492
of basic statements, 492
of branch statements, 493–497
of break statements, 496
of class declarations, 502–503
of continue statements, 496
of control structures, 493–497
of do-while statements, 494
of enum declarations, 503–504
of function declarations, 500–501
of goto statements, 497
of if-else statements, 493
of return statements, 497
of for statements, 494–495
of switch-case statements, 495–496
of throw statements, 497
of variable declarations, 498–500
of while statements, 493–494

Index580
T
Temperature conversions, 19–25
Templates. See also specific templates

defined, 557
in Standard Template Library. See STL

(Standard Template Library)
Test-for-equality (==) operator, 465–466
Tests

of ages, 53
for equality, 465–466
prime number, 55–57, 93–96

Text
analyzing with strings. See Strings, for

text analysis
binary files vs., 222–224
displaying, 222
storage of, 181–182
string data, generally, 17–18
strings. See Strings
writing to files, 216–218

this keyword, 464
throw statements, 497
Time functions, defined, 521–523
time_t (long integer data type), 76
t_main, 5, 7
Tokens, defined, 557
Top and pop operations, 328–331, 334
Top of Stack (tos), 302–303, 309
Tower of Hanoi puzzle

animating, example of, 305–311
animating, exercises in, 311
animating, generally, 302–304
Cstack class in, using, 304–305
functions in, 122–126
stack classes in, designing, 304

Translation of programs, 182–183
true

as absolute value function, 254
in Boolean logic, 51–54, 108–109
Boolean variables and, 75–76, 83

break statements and, 42
in decision making, 46–47, 53
if statements and, 32–35
is_prime for, 95
nonzero values as, 97
in prime number tests, 55–57
random numbers and, 75–76
reversing, 218
in strings, 204
in Subtraction Game, 59–61
while statements and, 40–44
while(true), 69, 107–108, 130

TV programs. See Good Deal, Bad Deal
game

Two pair hands, 360
Two’s-complement

defined, 557
format for data types, 487–489
introduction to, 29

Type casts
defined, 544
in file storage, 225
new-style, 479
old-style, 479
operators, 479

Types
casts of. See Type casts
class operator functions and, 463
of data. See Data types
double-precision floating. See double

(double-precision floating data type)
integer, See int (integer) data type
Single-precision floating, 28
in STL, generally, 313

U
#undef directive, defined, 511
Unsigned long long integers, 425
Unsigned short/unsigned long integers, 423
Uppercase characters, 195–197

Index 581

using statements
namespace std, 328, 333
printing messages and, 12

V
Values

absolute value function, 254
assignment operator for, 45
double, 195
false. See false
left, 550
pointers and, generally, 156
random numbers and, 75–76
return. See Return values
true. See true

Variables
in C++, generally, 16–17
data types in, 17–19
declaring, 498–500
defined, 557
names of, 26–27
pointers as, 156
summary of use of, 28

Vector of integers (iVec), 371–372
vector template

in poker, generally, 371–377
in polymorphic poker, 388
in Standard Template Library, 536–538

Vectors, defined, 557
Video games

poker, generally. See Poker
polymorphic poker. See Polymorphic

poker
Vinci, Leonardo da, 432
virtual base classes, 393–396
Virtual dealers, 396–399
Virtual dice, 69–70
Virtual functions

address resolution for, 412
defined, 557–558

Virtual include files (iostream), 211
Virtual keyword, 394
Virtual penalty, 399–400, 412
Visibility, defined, 558
Visual Studio, Community Edition

compatibility issues and, 5–8
creating projects with Microsoft and, 2–5
data types in, 17–19
double vs. single precision in, 19
installation of, 1–2
introduction to, 1
keywords in, 26–27
optimizing programs in, 23–25
pausing screens in, 7–8
printing messages in, generally, 9–11
printing multiple lines in, 13–15
printing newline characters in, 12
running, generally, 5–6
running programs in, 5–6
stdafx.h in, 6–7
storing data in, 16–17
strings in, generally, 15–16
summary of, 27–28
temperature conversions in, 19–23
variable names in, 26–27
variables in, 16–17
writing programs in, 5

Visual Studio, Non-Microsoft, 8
Vitruvian Man, 432
void pointers, 404–405
vos Savant, Marilyn, 351–353
vtable pointers (vtpr), 400

W
while loops

do-while loops vs., 65–67
for loops vs., 90
printing 1 to N with, 43–45
zero-out-array function and, 178

while statements, 40, 493–494

Index582

while(true), 69
write function

generally, 226
random-access, 227–230, 234–235

Writing programs, in Visual Studio, 5
Writing templates, in STL, 314–315

Writing text to files, 216–218
Writing to a binary file, 226

Z
Zero-based indexing, 135–139, 558
zero-out-array function, 177–179

This page intentionally left blank

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certification • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Learn about InformIT community events and programs.

http://www.InformIT.com
http://www.InformIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.InformIT.com
http://www.InformIT.com/register

	Contents
	Preface
	We’ll Have Fun, Fun, Fun…
	Why C and C++?
	C++: How to “Think Objects”
	Purpose of the Third Edition
	Where Do I Begin?
	Icons and More Icons
	Anything Not Covered?
	A Final Note: Have Fun!

	Acknowledgments
	About the Author
	Chapter 1 Start Using C++
	Install Microsoft Visual Studio
	Create a Project with Microsoft
	Writing a Program in Microsoft Visual Studio
	Running a Program in Visual Studio
	Compatibility Issue #1: stdafx.h
	Compatibility Issue #2: Pausing the Screen
	If You’re Not Using Microsoft
	Example 1.1. Print a Message
	How It Works
	Exercises
	Interlude What about the #include and using?

	Advancing to the Next Print Line
	Example 1.2. Print Multiple Lines
	How It Works
	Exercises
	Interlude What Is a String?

	Storing Data: C++ Variables
	Introduction to Data Types
	Interlude Why Double Precision, Not Single?
	Example 1.3. Convert Temperatures
	How It Works
	Optimizing the Program
	Exercises

	A Word about Variable Names and Keywords
	Exercise

	Chapter 1 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

