THE DIGITAL REVOLUTION
How Connected Digital Innovations Are Transforming Your Industry, Company, and Career

INDER SIDHU
with T.C. DOYLE
Praise for

The Digital Revolution

“By 2020, 75 percent of businesses will be fully digital, yet only a few have a real digital strategy. *The Digital Revolution* provides powerful insights and practical examples of how to develop a digital roadmap. Countries, cities, and companies must disrupt themselves or be disrupted in this new digital world.”

—John Chambers, Executive Chairman, Cisco Systems

“The online digital revolution is affecting all parts of our world. This timely book is filled with interesting scenarios of disruption and discusses a variety of challenges arising in the new information age. Reading it will help you understand how this revolution will affect your job, your company, and your future.”

—John Hennessy, President, Stanford University
Board Member, Google and Cisco

The Digital Revolution is a thoughtful and creative addition to the conversation on one of the major forces shaping our world—digital disruption. Inder Sidhu explores both the challenges and opportunities arising from new technologies. He offers valuable insight into the ways in which organizations will need to adapt and change—from becoming radically transparent, to engaging connected consumers, to increasing asset utilization, to redesigning the organization, to innovating at speed.”

—Dominic Barton, Global Managing Director, McKinsey & Company

“Inder Sidhu has his finger on the pulse of ‘The Internet of Everything’—not only today’s cutting edge from Tesla to Uber, but also where the digital revolution will take us. He has convinced me that the best is yet to come, indeed that we are only at the beginning of the transformative impact of digitization.”

—Geoffrey Garrett, Dean, The Wharton School
The Digital Revolution

How Connected Digital Innovations Are Transforming Your Industry, Company, and Career

Inder Sidhu
with T.C. Doyle
To my wife, Deepna
You make everything possible.

and

To Sonia, Sabrina, and Neal
The digital revolutionaries.
This page intentionally left blank
Contents

Part I Opening

Introduction There's Something Happening Here 1
Chapter 1 The Digital Revolution: Why You Should Care 7

Part II Transforming Industries

Chapter 2 Healthcare: The Patient Will See You 15
Chapter 3 Education: The Learner Triumphs 43
Chapter 4 Retail: Get 'Em In, Get 'Em Thru, Get 'Em Back 73
Chapter 5 Smart Cities: Bustling with Activity, Brimming with Opportunity 95

Part III Addressing Challenges

Chapter 6 Privacy: Wait, Am I the Product? 119
Chapter 7 Security: Before, During, and After an Attack 143
Chapter 8 Governance: New Game in Town, Clear Rules Needed 167

Part IV Transforming Organizations

Chapter 9 Financial Performance: Making Money the Old-Fashioned Way 191
Chapter 10 Customer Experience: Happier Than Ever 211
Chapter 11 Employee Experience: Productive, Creative, Engaged 237
Part V Closing

Chapter 12 The Digital Revolution: Only the Beginning.
 Only Just the Start .. 259

 Endnotes .. 265

 Index ... 297

 About the Authors 307
Acknowledgments

For their guidance, support, and sponsorship, I am grateful to John Chambers, Rob Lloyd, Wim Elfrink, and Chuck Robbins.

Writing this book required me to draw upon the best and the brightest practitioners who are leading the digital revolution from the front lines today. For the countless hours they spent in discussions with me, I am deeply indebted to

• John Hennessy, President of Stanford University and Board Member of Google & Cisco
• Rick Levin, President Emeritus of Yale University and CEO of Coursera
• Geoffrey Garrett, Dean of the Wharton School, University of Pennsylvania
• Daphne Koller, Co-founder and President of Coursera
• Salman Khan, Founder and CEO of Khan Academy
• Bernard Tyson, CEO of Kaiser Permanente
• Dr. Charles Sorenson, CEO of Intermountain Healthcare
• Dr. Martin Harris, Chief Information Officer of Cleveland Clinic
• Vance Moore, Head of Operations at Mercy
• Greg Poulsen, Chief Strategy Officer of Intermountain Healthcare
• Suja Chandrasekaran, Chief Technology Officer and Chief Data Officer of Walmart Stores
• Malachy Moynihan, Vice President of Digital Products at Amazon (Lab 126)
• Rachael Antalek, Vice President of Concept Innovation at Starbucks
• Prof. Carlo Ratti, Director of Senseable City Laboratory at MIT
• Dr. Anil Menon, President of Smart Connected Communities at Cisco
• David Hoffman, Global Privacy Officer of Intel
• Michelle Dennedy, Chief Privacy Officer of Cisco
• Prof. Alex “Sandy” Pentland of Massachusetts Institute of Technology (MIT), Co-creator of the MIT Media Lab, and Chair of the World Economic Forum’s Data Driven Development Council
• Mark Chandler, Chief Legal Officer of Cisco
• Amit Yoran, President of RSA
• Chris Young, President of Intel Security
• John Stewart, Chief Security Officer of Cisco
• Michael Siegel, Principal Research Scientist and Associate Director of MIT’s Interdisciplinary Consortium for Improving Critical Infrastructure Cybersecurity, known as MIT-(IC)³
• Michael Timmeny, Senior VP of Government and Community Relations at Cisco
• Travis LeBlanc, Bureau Chief of the Enforcement Division at the Federal Communications Commission (FCC)
• Dr. Robert Pepper, Vice President of Public Policy at Cisco
• Kelly Kramer, Chief Financial Officer of Cisco
• Saori Casey, Vice President and Head of Corporate Finance at Apple
• Doug Davis, General Manager of the Internet of Things Group at Intel
• Prof. Peter Fader of the Wharton School at the University of Pennsylvania and Co-director of the Wharton Customer Analytics Initiative
• Ed Jimenez, Director of the Customer Experience Practice at Cisco
• Carlos Dominguez, President of Sprinklr, a social media management leader
• Lori Goler, Head of Human Resources at Facebook
• Prasad Setty, Vice President of HR and Head of People Analytics at Google
• Fran Katsoudas, Chief Human Resources Officer of Cisco

For helping shape every chapter in this book through their insightful discussions, I am deeply grateful to Vijeev Verma and Mukundh Thirumalai—great guys, amazing friends, awesome thinkers.

For helping me every working day for the last fifteen years—always with a pleasant disposition, and positive, can-do attitude—I owe a deep debt of eternal gratitude to my assistant, Heather Scharnow.

I also owe a debt of gratitude to my Cisco colleagues who shared ideas and provided ongoing encouragement along the journey, including Nick Adamo, Kelly Ahuja, Graham Allen, Mala Anand, Wendy Bahr, Joel Barbier, Jeanne Beliveau-Dunn, Ravi Bhavanasi, Roger Biscay, Kevin Bloch, Ken Boal, Phyllis Bond, Jordi Botifoll, Bruce Botto, Joseph Bradley, John Brigden, Nancy Cam-Winget, Sean Caragata, Barbara Casey, Owen Chan, Ravi Chandrasekaran, Blair Christie, Howard Charney, Enrico Conedera, Chris Dedicoat, Guillermo Diaz, Paula Dowdy, Debbie Dunnam, Nick Earle, John Earnhardt, Par Edin, Pat Finn, Larisa Fong, Lance Ford, John Garrity, Alison Gleeson, Michael Ganser, Michael Glickman, David Goecckeler, Chris Gow, Debbie Gross, Jim Grubb, Ward Hamilton, Faisal Hanafi, Rick Heller, Caspar Herzberg, Sandy Hogan, Rebecca Jacoby, Prem Jain, Soni Jiandani, Brian Jin, John Kern, Munish Khetrapal, Shaun Kirby, Bruce Klein, Leon Kofman, Oliver Kohler, Maciej Kranz, Vijay Krish, Jill Larsen, Inbar Lasser-Raab, Rhonda Le, Su Le, Gerard Lithgow, Anand Malani, Dinesh Malkani, John Manville, Kim Marcelis, Lorena Marciano, Brian Marlier, Steve Martino, Alan McGinty, Joe McMorrow, Doug McNitt, Martin McPhee, Angel Mendez, Anil Menon, Duncan Mitchell, Gary Moore, Neils Munster-Hansen, Plamen Nedeltchev, Andy Noronha, John O’Connor, Edzard Overbeek,

I also want to thank the team at Pearson including Paul Boger, Amy Neidlinger, Olivia Basegio, Alan Clements, Kristy Hart, Gloria Schurick, Dan Uhrig, Debbie Williams, and Betsy Gratner for all their efforts in making this book a reality.

No one has had a greater impact on the ideas in this book than my coauthor, T.C. Doyle. Our partnership started several years ago, when we collaborated on our first book, and I firmly believe that if it were not for him, this book would not exist. From writing to researching to arguing to shaping the content, T.C.’s contributions have been invaluable.

For the endless support and unconditional love that make everything in my life possible, I am lucky to have my wonderful wife, Deepna. She also provided many insightful suggestions on the manuscript and researched many topics. She is the best thing that ever happened to me. And our three wonderful children—Sonia, Sabrina, and Neal—their enthusiastic and unwavering belief in me (except for my fashion sense) gives meaning to my every effort. Seeing them every day reminds me of all that is good in the world. While I wrote about the digital revolution, they lived it.
This page intentionally left blank
The Digital Revolution

Why You Should Care

The best ever.

Ask people to name the best of anything—be it a sports hero, vacation destination, U.S. President, and so on—and they will no doubt volunteer an array of opinions. But if you were to ask car enthusiasts what is the most technologically advanced automobile on the road today—and quite possibly the best ever—they will most likely zero in on a single vehicle. The car?

The Tesla Model S.

If you live near a major metropolitan center, you’ve surely seen this car though you may not have heard it as it silently drove by. This is because the car is an all-electric vehicle built from the ground up not only to compete with the world’s best carbon-fueled vehicles, but to beat them in every aspect of driving.

With a range of more than 250 miles, the car can travel three times the distance of other electric vehicles and rival some gas-powered vehicles in terms of driving range. And the Tesla can do so without producing any emissions.

As for performance, the Tesla Model S P85D, when used in “ludicrous mode,” can accelerate from 0 to 60 mph in less than 3 seconds.¹ That’s faster than a Ferrari F12 Berlinetta,² which is the fastest road car ever produced by the famed Italian sports car manufacturer.

When it comes to convenience, the Tesla is equally impressive. The entire vehicle, for example, can be controlled via a 17-inch touchscreen display that is handily mounted in the center console. Think of it as an over-sized iPad that can adjust everything from the temperature to the music to the stiffness of the suspension. When connected
to your calendar on your smart phone, the touchscreen will automatically display a driving map to your next appointment, complete with up-to-the-minute traffic conditions.

By almost any measure, the Model S, which was unveiled in 2012, has become the most successful alternatively powered car of the last 100 years. Since its debut, the company has sold more than 50,000 Model S cars. Though priced at nearly $100,000 each, consumers buy them as fast as Tesla can make them (there is currently a waiting list to get one), while journalists heap on the praise.

In 2013, *MotorTrend* named the Model S its “Car of the Year”—the first in the 64-year history of the award to not feature a traditional gasoline engine. Not to be outdone, *Consumer Reports* said the Tesla Model S sedan was “the best performing car ever tested” in the history of the magazine. It gave the car a score of 100 out of 100 in a road test, a score that had never been achieved by any car. And car reviewer Dan Neil of *The Wall Street Journal* said, “The Model S is a daring public experiment in automotive vision that has the impudence to make the finest, fastest luxury cars feel like Edwardian antiques.”

Unquestionably, the Model S is the best electric car on the planet. But to its owners and inventors, the Tesla Model S is remarkable not only because it is electric, but because it is digital.

While that may not sound like a big distinction, it’s literally the difference between 20th-century ingenuity and 21st-century innovation.

Virtually everything in the car that can be measured has an active sensor on it that is connected to the car’s digital network. You can tell your Tesla Model S to park itself neatly into your garage, so you don’t have to wedge your body out when finished. And with its mobile app, you can remotely check the cabin temperature on a hot day and tell the vehicle to power up the AC, so it will be at a desired temperature when you get to the car.

The car has dozens of other cool features that leverage digital technology. But there’s one feature that sets it apart from virtually any other vehicle on the road. Aside from a handful of parts that need routine replacement—think tires and wiper blades—the bulk of the vehicle’s components and functions were designed to be upgraded, not by mechanics wielding wrenches, but by software engineers working in Tesla’s Silicon Valley research and development labs. Like an
iPhone, the Tesla S gets better every time the company releases a new software update over the Internet. They can make the car safer, more reliable, and even more pleasurable.

Take driving in San Francisco, which is something engineer and entrepreneur Robert Bigler, the inventor of the SmartMotor and Hoverboard, does quite frequently. Like a lot of successful people who work in Silicon Valley, Bigler was drawn to the Tesla Model S the moment that it was introduced. He bought one not long after it became available.

The more he drove the car, the more Bigler became a fan. But one thing bugged him about the vehicle, especially when he drove it around the streets of San Francisco, where street grades can exceed 30 percent. When he drove his car over the famed hills of the city, he noticed it would roll back unnervingly when he stopped uphill at intersections for stop signs and street lights.

“It reminded me of driving an old manual transmission VW Beetle. Without a mechanical clutch, the Tesla wants to roll back on steep hills,” Bigler says. Concerned about his safety, not to mention that of fellow Tesla drivers, he turned to Tesla for more information and discovered that other Tesla drivers had already alerted Tesla of the problem. A few days later, a message appeared on the touchscreen console when he started his car one morning. A fix, the message informed him, was automatically downloaded to Bigler’s car (and every other Tesla) overnight while it charged in his garage.

Sure enough, when he next found himself stopped on an upward slope in San Francisco, the problem was gone. Tesla engineers had written some code that programmed the car to automatically engage the safety brake whenever it was stopped on a hill. When the vehicle begins to move forward now, the brake stays engaged for a few seconds until the motor can put sufficient torque on the wheels to give it the forward momentum it needs to prevent the vehicle from rolling backwards.

Much to the delight of Bigler and other Tesla drivers, the manufacturer has addressed other concerns and desires, too. He, for example, is excited that his vehicle’s display can now show maps in the “track up” position. (As a pilot, he prefers his map to be shown in the direction that he is traveling.)
In addition to convenience, software upgrades have also improved safety. When one battery caught fire after being pierced by a piece of road debris, Tesla engineers made several changes. One reset the default height setting on the vehicle and raised it by a few inches with a simple software patch delivered wirelessly. No recall was required, and no fires have been reported since.

A recent software upgrade gave owners Blind Spot Warning and Automatic Emergency Braking. It also provided guidance for locating charging stations on road trips and improved the range monitoring while providing owners more options for safeguarding their cars, including speed restrictions when handing them over to parking valets.

With its front-mounted camera, rear-mounted radar, and a phalanx of ultrasonic sensors, the car can start, stop, steer, drive, navigate, park, and avoid obstacles. With the AutoPilot software downloaded to the car recently, the Tesla can also operate like one of Google’s much ballyhooed semi-autonomous driverless cars, leading Steven Colbert, host of The Late Show, to exclaim, “Tesla owners woke up to find that their cars could drive themselves.” If and when the law allows for driverless cars, Tesla will be ready, much to the delight of its owners, who realize that the car they purchased is unlike any other.

“With my Tesla, I feel like I get a new car every time there’s an upgrade. There are new features and new capabilities, and as a result the car just gets better and better,” says Bigler.

A car that improves with age? That hasn’t happened since mechanical cars were invented more than 100 years ago. But in the new world of digital transportation, this will become commonplace.

Look around you. If you haven’t noticed, virtually everything is going digital. This includes things like cars, industries like transportation, and careers like driving. With each passing day, more of these are being connected to the Internet in ways we are only beginning to understand.

Unlike the first 14 billion things that were connected to the Internet, the remaining 99 percent of items on earth were never designed to be connected to the Internet. These atom-based things cannot be reduced to a “0” or a “1”—the DNA of all digital objects and
devices—so easily and thus require a steep effort to connect them securely and efficiently. But once they go digital, the benefits to mankind will be transformational.

Why? Because everything that gets connected to the Internet has the potential to produce data, which can yield revolutionary insights about the world around us. This includes the whereabouts of a bus you’re waiting for, the temperature of a donor organ in transit, or the level of methane gas underground in a mine. When you consider the potential value of every sensor update, every electronic medical record, and every Twitter tweet, you begin to realize how transformative this information could be when leveraged intelligently. And this is only a sampling.

Once everything is connected to the Internet, we will have at our fingertips data on every activity, interaction, and condition known to man. Translating this data into information, of course, will require an immense effort. But thanks to infinitely scalable resources now available to everyone via the Internet and cloud, we now have the power required to collect, store, and process this information. With better analytical tools now being developed, we increasingly have the capability to translate this information into actionable knowledge and insights required for solving our problems and addressing our aspirations.

Again, take driving, which is being transformed by a multitude of technologies, including the ordinary mobile device in your backpack or purse. The smart device that you use for taking selfies, responding to emails, or sending texts is also helping you get home faster and helping municipal planners reduce traffic congestion and improve highway safety. How? By providing insights into our world.

Unbeknownst to you, the GPS device inside your smart phone sends a signal to every cell tower you pass as you move along your daily commute. This information is aggregated and anonymized by technology companies including Google to determine how congested local thoroughfares are at any one moment. After crunching the data, these third parties send this information back to consumers’ smart devices and connected cars, revealing where traffic congestion is worst, the whereabouts of construction hazards, and even the exact locations of traffic accidents reported on social media. With this information,
which is often presented in the form of a color-coded map, consumers can reroute their courses, reducing fuel costs, emissions, and travel times. And city planners can ensure better traffic flow.

Although this might sound like a nice convenience to an individual commuter, it has the potential to be transformative to society as a whole. According to the 2012 Urban Mobility Report, the amount of fuel wasted in congested traffic each year would fill the New Orleans Superdome four times over. The cost of this fuel is estimated to be more than $120 billion annually, or more than $800 for every person who commutes daily in the U.S. For perspective, that total is more than the amount of revenue that United Airlines, Nike, McDonald’s, and Starbucks generate in a year combined.

The implications of this example and other similar developments on transportation cannot be overestimated. The ridesharing company Uber, for example, is not only transforming the taxi industry, it is also influencing the automotive industry as a whole. In many cities, young men and women are not just asking themselves whether they want to drive or take Uber for a specific trip, they are wondering if they should take Uber for every trip. Why own a car if a reliable service is cost-effective, ubiquitous, and safe? many Millennials wonder.

For driving a transformation in their industries, these digital revolutionaries are being richly rewarded. For example, Tesla, as of this writing, has a market capitalization of approximately $32 billion, which is roughly half of what Ford and GM are each worth, despite the fact that Tesla commands less than 1 percent of the U.S. market. Similarly Uber, which is now valued at more than $50 billion, engages more than 1 million drivers worldwide and expects to double that figure to 2 million by the end of 2015.9

In this chapter, I’ve focused on automobiles, traffic, and getting around. But equally transformative changes are occurring in virtually every industry you can think of. In Part II, “Transforming Industries,” I showcase several transformations underway in healthcare, education, retail, and government. In the examples, connected digital innovations are being leveraged to improve patient outcomes, increase access to learning, elevate shopping convenience, and support better living in smart cities.
The same is true when it comes to major business objectives. By connecting people, processes, and things, businesses are improving financial performance, enhancing customer experiences, and increasing employee engagement.

Add it all up, and you realize that we are in the early stages of a full-fledged digital revolution that will impact every industry, organization, business function, and career.

In terms of economic activity, the amount of commerce that will be generated from this digital revolution will be enormous. McKinsey’s report on the Internet of Things estimates the potential economic impact between $4 trillion and $11 trillion a year by 2025.10 Between 2013 and 2022, Cisco estimates that digital transformation will generate $19 trillion11 in economic activity, nearly half of which will be from the replacement of activities or things that will simply fade away like the local travel agent, printed encyclopedia, and classified newspaper ad.

To put this into perspective, that’s as much as the GDPs of Japan, Germany, UK, France, India, Brazil and South Korea combined—simply a staggering sum, in other words.

More than money, the digital revolution promises to have as big an impact on people’s lives as their formal education, choice of careers, and physical activity. That’s because digital technology will reshape virtually every facet of how we learn, work, and live.

While there are significant privacy, security, and regulatory issues to be sorted out, which I cover in detail in Part III, “Addressing Challenges,” digital transformation may well turn out to be the single, biggest idea impacting humankind. The reason is simple: This digital revolution isn’t just occurring in Silicon Valley or in long-overlooked nooks and crannies of our economy, such as the taxi and limousine industry. It’s also happening in the industries and organizations that touch your life. This includes your bank, shopping mall, school, doctor’s office, and more.

In the case of Tesla and Uber, the change is obvious. But in other instances, it is less apparent, at least for now. Take the work of GE, one of the oldest industrial companies on the Fortune 500 list. Although the company has spent billions of dollars preparing to lead the digital revolution in the industrial economy, the company recognizes that few
outside the world of heavy industry understand how transformative
digital innovation could be to heavy industry. To increase awareness,
the company launched a series of ads in the fall of 2015 depicting a
fictional college graduate named “Owen” who struggles to impress his
family and friends with his cutting-edge work. When Owen excitedly
tells one group of friends that he is going to work on software that will
transform machines such as locomotives, one puzzled friend wonders
aloud if Owen has taken a job to “work on a train.”

While the self-deprecating GE ads are funny, the message behind
them is serious: The digital revolution has the potential to transform
all parts of our world, including the operations, functions, and pro-
cesses we rarely consider.

Which brings me to you. No matter where you work, the revolu-
tion is surely happening inside your industry. For better or for worse,
whether you like it or not, it will affect your organization, if it hasn’t
already. Now is the right moment to join the digital revolution and
help transform your own company and your career. How you think
about digital innovation, leverage it, and master it will determine how
you survive and thrive.

While some will be tempted to ignore or even thwart the advance
of digital innovation where they work, they do so at their own peril.
Widespread innovation will make it next to impossible to slow the
digital revolution. By 2020, 75 percent of businesses will become fully
digital. Will yours be one of them?

This book will put you in the driver’s seat of the digital revolution
so you can transform your industry, company, and career.

Hop on for the ride of your life.
Index

Numbers
10 Minute Rule, 68
2012 Urban Mobility Report, 12
2012 World Expo (South Korea), 54
2014 American Customer Satisfaction Index, 216-217
2015 National League of Cities, 98
60 Minutes, 121

A
Aaker, Jennifer, 218
access
to education, 54-63
to healthcare, 15
Acxiom, 125
Adams, John, 141
Advanced Threat Detection (ATD) tools, 158
AeroScout Industrial, 207
Affordable Care Act (ACA), 18, 187, 243
agendas, business, 179-184
AirAsia, 203, 208-209
Airbnb, 167-169
air pollution, 112
Air Quality Egg, 113
Alexander, Dan, 192
algorithms, 79, 250
Allen and Sedition Act of 1798, 141
Amazon.com, 78-80
American Council on Education, 57, 59
American Customer Satisfaction Index (ACSI), 84-85
American Education Week, 1961, 43
American Enterprise Institute, 210
Anheuser-Busch, 248
Annan, Kofi, 44
Antalek, Rachael, 73, 225
anticipatory package shipping, 78
Apple, 214
apps, 226
efficiency, 84
iTunes, 229
privacy, 134

apps
Apple, 226
Bank of America (BofA), 205
Citizens Connect, 104
Five Guys, 88
glasses.com, 91
Government Information Systems (GIS), 105
Home Depot, 88
MonkeyParking, 109
NYC BigApps, 104
parking, 109
Starbucks, 225
Uber, 171-179
Argueta, Carlos, 102
Arizona State University, 59
Asset Performance Solutions technology (GE), 203
asset utilization, 204-208
Bank of America (BofA), 205-206
Goldcorp, 206-208
Association of American Railroads, 192
attacks. See also security
Cisco, 157-160
denial-of-service (DOS), 154, 158
eBay, 160-163
Morgan Stanley, 154
post-attack processes, 160-163
processes during, 154-160
Sony, 155, 165
Target, 143-148
Web application, 154
Audi, 73-76, 93
Auto Engine Start Stop (AESS) devices, 192
Automatic Emergency Braking (Tesla), 10
automobiles
buying, 94
parking, 106-109
safety, 10
AutoWeek, 73
INDEX

B
Bang & Olufsen, 74
Bank of America (BoA), asset utilization, 205-206
Barcelona, Spain (smart parking in), 107
Beall’s, 80
Beats Music, 229
Bellarmine College Preparatory high school (San Jose, California), 52
Ben-Joseph, Eran, 106
Bessen, James, 181
Bigbelly trash bins, 96
Big data, 3
Amazon.com, 80
customer experiences, 213
financial performance, 194
smart cities, 104
smart phone data, 85
Bigler, Robert, 9
Big Star, 230
Bikyni, 223
Bill of Rights, 141
Blind Spot Warning (Tesla), 10
Blumenthal, Neil, 221
Bombell, customer experiences, 227-228
Bonin, Mike, 109
Bose-Einstein condensation, 66
Boston, MA (smart cities), 104
Boyle, Joe, 224
Brain Rules, 68
branding, 59, 90. See also retail
Branson, Richard, 238
Breathe, 113
Brill, Julie, 121
Bristol Robotics Laboratory, 111
Brookings Institute, 140-141
Brown, Jerry, 141
Burberry, 199
customer experiences, 231-233
Bush, George H.W., 44
Bush, George W., 122
business agendas, 179-184

C
Caley, Allison, 198
California Labor Commissioner Office, 171
Campbell Collaboration, 102
Car and Driver, 73
Carnegie Foundation, 66
Casey, Saori, 191
Catherine the Great, 212
cell phones. See mobile phones
Centers for Medicare & Medicaid Services (CMS), 18
Chalfin, Max, 222
Chandler, Mark, 119, 182
Chandrasekaran, Suja, 73
Chess Computer, 260
Chief Information Officer (CIO), 151
China
air pollution, 112
hackers, 156
outsourcing, 239
Cisco
cost reductions, 200-202
customer experiences, 219
employee experiences, 245-247, 249-251
Global Technology Policy, 185
patents, 182
security attacks, 157-160
Cisco Connected Classroom, 51
Cisco Smartzone, 255
Cisco Systems Annual Security Report, 153
Cisco TelePresence technology, 206, 247-249
cities (smart), 95-100
citizen engagement (smart cities), 117
Citizens Connect app, 104
City of New Orleans, 191
Civil War, 141
Clarke, Richard, 122
Clarke, Ruthbea Yesner, 115
Class Dojo, 69
Cliff, Jimmy, 229
cloud computing, 3, 137, 200-202
Clubcard loyalty card (Tesco), 83
CNET, 195
Cohan, Peter, 238
Colbert, Steven, 10
collaboration, employee experiences, 247-251
Colorado State University, 59
Comcast Ventures, 197
Comey, James, 134-135, 156
Computer Weekly, 206
Connected Recognition (Cisco), 255
connections, Internet, 11
copyright, 124-129
consumer behavior, privacy, 140-141
consumer protection, 171-179
The Content Strategist Web site, 241
Contingent Workforce Management
2014-2015 Guidebook, 243
Cook, Tim, 134
Cornell Law Review, 181
Costco, 144
cost reductions, 199-204
Coursera, 55-57
Courtin, Guy, 80
Cox, Samuel, 113
Cox, Sarah, 75
creativity, employee experiences, 251-256
credit cards, Target data breach, 143-148
Cruz, Ted, 187
cubic feet per minute (CFM), 208
Custom Critical White Glove Services team (FedExs), 212
customer experiences, 211-214
big data, 213
Bombfell, 227-228
Burberry, 231-233
engagement, 215-220
GoPro, 219
Hyatt Regency, 218-219
JetBlue, 217-218
Luxottica, 221
Netflix, 230
personalization, 227-234
satisfaction, 221-227
social media, 216
Spotify, 228-230
Starbucks, 224-226
United Airlines, 215-217
Warby Parker, 221-224
cyberattacks, 154. See also attacks;
security
cyber espionage, 154

digitization, results of, 208-210
dinosaur bones, shipment of, 211-214
Disney, 92, 214
Disney-ABC, 241
disruption, 183, 195
DMEautomotive (DMEa), 94
Doerr, Ann, 64
Doerr, John, 64
Dollar General, 84
Dominguez, Carlos, 58, 211
Drug Enforcement Agency (DEA), 137
Dubner, Stephen, 169
durability of data on search engines, 129-133

eBay, post-attack processes, 160-163
Echo, 79
economic viability of smart cities, 105-110
economies, changes in, 48
Edmodo, 69
Edmunds.com, 195
education, 43-46
access to, 54-63
future of, 52
Internet of Everything (IoE) as tool, 71-72
MOOCs, 54-56
quality of, 46-53
reform, 71
relevance, 63-71
edX, 57
efficiency
retail, 84-89
trains, 191-194
Einstein, Albert, 262
Elance, 242
electronic article surveillance (EAS), 88
Electronic Frontier Foundation, 180
Éléonore mine, 206-208
Elle, 232
employee experiences, 237-240
Cisco, 245-247, 249-251
collaboration, 247-251
creativity, 251-256
freelancing, 243-245
future workforce, building, 240-247
LinkedIn, 242-243
Marriott Corp., 240-241
Renascence IT Consulting, Inc., 244
enabling smart cities, 100-105
encryption, end-to-end, 134
End-of-life (EoL) care, 18
digital innovation, 51
digital revolution, 259-263
end-to-end encryption, 134
energy use in Europe, 98
INDEX

Enevo, 96
engagement, customer experiences, 215-220
engineering, 2, 10
environmental sustainability (smart cities), 110-114
Equipment Detection, Event Notification (EDEN), 213
Esurance, 196
Ethan Allen, 197
EU (European Union), privacy, 123
Europe
energy use in, 98
search engines, 130
European Union, 123
evolution of privacy, 139-141
ExitTicket, 53
experience innovations, retail, 89-93
Explore NYC Parks team, 104

F
Facebook, 216
monetization, 127
privacy, 119
user agreements, 124-125
Fader, Peter, 211, 227
Fair Credit Reporting Act (FCRA), 133
fashion brands, 90
Fast Company, 222
Fazio Mechanical Services, 144
FDA (U.S. Food and Drug Administration), 20
Federal Communications Commission (FCC), 187
Federal Trade Commissioner, 121
FedEx, 211-214
Fields, Mark, 172
Final Frontier Medical Devices, 19
financial performance, 191-194
asset utilization, 204-208
big data, 194
cost reduction, 199-204
digitization, results of, 208-210
railroads, 191-194
revenue increases, 195-199
Fire TV, 79
firewalls, 152
First Amendment (U.S. Constitution), 133
Five Guys, 88, 226
Forbes, 65, 192, 244
Ford, Henry, 172
Ford, market capitalization of, 12
Ford, Nathaniel, 108
Fortune Magazine, 59
Freakonomics, 169
Freelancers Union, 244
freelancing, employee experiences, 243-245
free-speech advocacy, 132
fuel, 12, 203
future workforce, building, 240-247

G
Gallagher, Sean, 71
Garrett, Geoffrey, 43, 51, 71
Gates, Bill, 64
Gattety, Barbara, 215
Gawande, Atul, 18
GDP (gross domestic product), 13, 44, 76
GE (General Electric), 14, 208-209
Asset Performance Solutions technology, 203
cost reductions, 202-204
General Electric. See GE (General Electric)
General Motors, 12
George Mason University, 17
Georgia Tech University, 60-62
gig economy, 243-245
glasses.com, 91
global positioning system. See GPS (global positioning system)
Global Risks 2015, 111
Global Technology Policy (Cisco), 185
Global Technology Resources, Inc. (GTRI), 153
GM (General Motors), market capitalization of, 12
Goldcorp, asset utilization, 206-208
Goler, Lori, 237
González, Mario Costeja, 130
Goody’s, 80
Google, 125
international regulations and, 132
monetization, 127
GoPro, customer experiences, 219
governance, 167-170
business agendas, 179-184
consumer protection, 171-179
Internet of Everything (IoE), 170
policies, 189-190
role of governments, 184-189
Uber, 171-179
governmental oversight, 135
Government Information Systems (GIS), 105
governments, role of, 184-189
Gow, Chris, 128
GPS (global positioning system), 12
Starbucks, 225
Greece, protests in, 54
Green Horizon, 112
Gross, Terry, 145
gross domestic product, 13, 44, 76
growth of spending, 15
Guatemala City, Guatemala, 101-102
Guilford, Gwynn, 112
Gupta, Sanjay, 64
Guthrie, Arlo, 191

H
Haldane, Craig, 110
Harris, Basil, 19
Harris, George, 19
Harris, Martin, 15
Harry’s, 223
Harvard Business School, 52
The Digital Initiative, 198
Harvard University, 55, 63
Hawking, Stephen, 70
HBO, 187
headphones, 260
healthcare, 15-21
 access to, 15
 costs in Norway, 17
 government involvement in, 17-18
 inflation, 15
 remedies to improve, 18-21
heating, ventilation, and air-conditioning (HVAC) systems, 144
Hennessy, John, 43, 57
Hockfield, Susan, 55
Hoffman, David, 119, 133, 138
Hogg, Scott, 153
Holtsclaw, Steve, 248
Home Depot, 88, 144
Horowitz, Sara, 244
Houzz, 196
Hoverboard, 9
Howe, Kathryn, 87
Hoyt, David, 218
Hunter, Steve, 80
Hurricane Sandy (2012), 54
Hyatt Regency, customer experiences, 218-219

I
IBIS Capital, 44
IBM, 112, 199
 creativity at, 254
 Watson Cognitive Computer, 260
IDC, 115
IEEE Security & Privacy journal, 150
Illegal Hotel Law, 169. See also Airbnb;
governance implementation of smart cities, 114-118
Inc. magazine, 168
independent contractor status, 171
India, outsourcing to, 239
industrialization, change in economy from, 48
infectious diseases, 16
inflation in healthcare, 15
information and communications technology (ICT), 210
information sharing, 125. See also privacy
innovation, 19, 189-190
 digital, 51
 disruption, 195
 Internet as platform for, 188
 retail, 89-93
 Starbucks, 225
Instagram, 216, 221
Institute of Medicine in Washington, 18
Intel, 133, 148
Intelligent Context Aware Monitoring (ICAM), 158
interior design, 196
international regulations and Google, 132
Internet, 11, 185, 188
Internet of Everything (IoE), 19, 46, 49
 as an education tool, 71-72
 efficiency of retail, 85
 governance, 170
 lighting, 116
 parking, 106
 privacy, 123, 131, 139
 retail, 78
 security, 149, 159
 smart cities, 90, 104
 software, 53
Internet of Things (IoT), 3, 13
iPhone, 1
Israel, life expectancy in, 17
iTunes, 124, 229

J
Jacob, Beth, 146
Japan, life expectancy in, 17
Jay H. Baker Retailing Center, 222
Jefferson, Thomas, 43
Jennings, Ken, 260
Jeopardy!, 260
JetBlue, 217-218, 234
Jimenez, Ed, 211
Jin, Andrew, 63
jobs, freelance, 242
Jobs, Steve, 70
John Deere, 199
Johns Hopkins University, 56
judicial review, 132

K
Kahn, Barbara, 222
Kalanick, Travis, 174
Kanka, Megan, 130
Kaspersky Labs, 153
Katsoudas, Fran, 237, 255
Kennedy, Dave, 162
Kennedy, John F., 43
Kenny, David, 199
Khan, Salman, 43, 70
Khan Academy, 63-71
Kleiner Perkins Caufield & Byers, 197
Knewton, 69
knowledge transfer, 48
Kodak, 219
Koh, Yoree, 196
Kohl’s, 84
Koller, Daphne, 43, 56, 58
Kramer, Kelly, 191
Krebs, Brian, 145, 147, 164
Kroft, Steve, 121
Kroger, 84, 144
Krueger, Liz, 169
KUER Radio, 47

L
Larsen, Jill, 245
Laskowski, Nicole, 253
La Vanguardia, 130
LeBlanc, Travis, 167
LED lighting systems, 98
LegalZoom, 196
Leslie, Sara, 218
Lesser, Kurt, 244
Levin, Rick, 43, 55, 59, 71
lighting
 Internet of Everything (IoE), 116
 LED lighting systems, 98
street, 99
Lincoln, Abraham, 141, 184
LinkedIn, 127, 242-243
Locomotive Engineer Assist/Display &
 Event Recorder (LEADER), 193
London Olympics (2012), 54
Lowes, 86
Lumosity, 69
Luohu District Financial Center, 150
Luxottica, 91-92, 221
Lyft, 175. See also Uber

M
MacArthur Fellowship, 56
Macy’s, 80, 84
Madison, James, 43
malnutrition, deaths from, 16
Malphrus, Benjamin, 212
malware, 143, 154
Mandela, Nelson, 44
Marie Claire, 129
market capitalization of Tesla, 12
Marriott Corp., employee experiences, 240-241
Marsh, Charlie, 70
Martino, Steve, 157
Massachusetts Institute of Technology (MIT), 114
Massive Open Online Courses
 (MOOCs), 54-56, 71, 245
Mass Transit Authority (MTA), 108
Mastery Connect, 69
Matheson, Rob, 250
Mayer, Marissa, 237-238
McKinsey & Co., 94
McLuhan, Marshall, 48
measles, deaths from, 16
Medicare, 18
Medicare Hospital Insurance Trust Fund, 18
Medina, John, 68
Menon, Anil, 95, 100
menswear, 228
meters, parking, 108. See also parking
Meurer, Michael, 181
Microsoft
 privacy, 140
 security, 152
Microsoft Security Intelligence Report,
 153
Millennials (in the workforce), 239
Minkoff, Rebecca, 89-90, 93
mobile phones, 2, 239
 privacy, 135
Molina, Jesus, 150-152
Molina, Otto Pérez, 101-102
monetization, 124-129
MonkeyParking, 109
Moody’s Analytics, 18
Moore, Vance, 15
Morehead State University, 212
Morgan Stanley, security attacks, 154
Morran, Chris, 84
Morrison, Sean, 218
Most Likely to Succeed, 47
Motorola, patents, 182
Moynihan, Malachy, 73, 79
Mulligan, John, 146
music, 229. See also Apple; Spotify, customer experiences
Music Genome Project, 230
Mutual Legal Assistance Treaty (MLAT), 138
MyMagic+, 92

N
National Health Expenditure Accounts (NHEA), 17
National Institute of Standards and Technology (NIST), 149, 165
National Retail Federation, 76
National Sciences Foundation (NSF), 67, 150
Netlix, 188
customer experiences, 230
NetGear, patents, 182
Net Neutrality, 186
New York Air Brake (NYAB), 193
New York City, NY
smart cities, 104
taxi, 114	rash removal, 97
New York Daily News, 215
The New Yorker, 18, 130-131
The New York Times, 77, 91
data brokers, 125
privacy, 133
Nike, 59
Noer, Michael, 65
Nohria, Nitin, 52
non-communicable diseases, 15
non-practicing entities (NPEs), 181
Nordstrom, 84
Norway, healthcare costs in, 17
NSA (National Security Agency), 134
NYC BigApps, 104

O
Obama, Barack, 17, 54, 98, 122
Obamacare, 18, 187, 243
Oculus Rift VR platform, 74
Odesk, 242
OkCupid, 120
monetization, 127
Olbermann, Keith, 215
Oliver, John, 138, 187
omni-channel world of retail, 78
One Kings Lane, 197
online courses, 59. See also Massive Open Online Courses (MOOCs)
Online Master of Science in Computer Science (OMSCS) program, 61
online travel agents (OTAs), 195
Organization for Economic Cooperation and Development (OECD), 15, 17, 44
Osuru, Oleyo, 175
outsourcing, 239
Overseas Security Advisory Council (OSAC), 101

P
Palais Royal, 80
Palo Alto Research Center (PARC), 252
Pandora, 229
Panera Bread, 188
parking, 106-109
Pascal, Brian, 136
patent protection, 16, 179-184
payment card skimmers, 154
PayPal, 161
Pearl Harbor, attack on, 141
Peebles, 80
Peking University, 56
Penn Wharton China Center, 50
Pentland, Alex “Sandy,” 119, 154
Pepper, Robert, 167, 185
Perry, Mark, 210
personalization, 234
customer experiences, 227-233
personal styling, 228
Petraeus, David, 136
Platte Retail Institute, 82
Pogue, David, 91
point-of-sale (POS) devices, 144
point-of-sale systems, 82
policies
Global Technology Policy, 185
governance, 189-190
Net Neutrality, 186
Ponemon Institute report, 153
population, growth of, 99
Poreh.com, 197
Port of Hamburg, Germany, 116
post-attack processes, 160-163
Pottruck, David, 50, 51
Poulsen, Greg, 15, 17
Predix, 203
Prescott, Nikki, 129
preventable diseases, deaths from, 16
Princeton University, 55, 70
principals, 71-72
privacy, 119-123
Apple, 134
cell phones, 135
and cloud computing, 137
consent and monetization, 124-129
customer behavior, 140-141
evolution of, 139-141
Facebook, 119
Internet of Everything (IoE), 123, 131, 139
Microsoft, 140
The New York Times, 133
rights to, 134-138
search engines, durability of data on, 129-133
The Wall Street Journal, 136
product cycles, 260
Program for International Student Assessment (PISA) tests, 44
Progressive, 196
Progressive Railroading, 192
public-private partnerships (PPPs), 117

Q-R
Q-codes, 86
Qualcomm Tricorder XPRIZE Competition, 19
quality of education, 46-53
Quizlet, 69
Radio Shack, 76
railroads, 191-194
Randall Park Mall (Cleveland, Ohio), 77
Ratti, Carlo, 95, 114, 117
Reagan, Ronald, 17
reassurance, security, 164-165
Redwood City, California, 60
reform, education, 71
regulations, 189-190. See also governance
international regulations and Google, 132
Uber, 171-179
relevance of education, 63-71
relevancy, retail, 93-94
Renascence IT Consulting, Inc., 244
ReportsnReports, 249
retail
compelling offers, 78-84
efficiency, 84-89
experience innovations, 89-93
overview of, 73-75
relevancy, 93-94
ReThinking a Lot: The Design and Culture of Parking, 106
revenue
generating, 127. See also monetization increases, 195-199

revolutions
developments in transportation, 7-12
healthcare, 15-21
Internet, 11
Tesla Model S, 7-10
RFID systems, 82, 88
rights to privacy, 134-138
Roberts, John, 135
robotics
Bristol Robotics Laboratory, 111
retail efficiency and, 86
Rodriguez, Frank, 129-133
Rogier, David, 218
role of governments, 184-189
Romney, Mitt, 54
Roosevelt, Franklin D., 141
Rose, Charlie, 134
Rowling, JK, 70
rules, 167. See also governance
Rutgers University, 59

S
safety, 10, 189-190
Saltzman, Marc, 91
Sandberg, Sheryl, 120
San Francisco (smart parking), 108
satisfaction, customer experiences, 221-227
Saviance Technologies, 126
Sawhorse Media, 216
Scaglotti, Dario, 91
Schmidt, Eric, 64
Schneiderman, Eric, 162
Scholastic Aptitude Test (SAT), 44
Schrage, Michael, 83
Schwab, Charles, 50
search engines, durability of data on, 129-133
Seattle-Pacific University, 67
Securities and Exchange Commission (SEC), 50
security, 143-149
Internet of Everything (IoE), 149, 159
Microsoft, 152
post-attack processes, 160-163
processes during attacks, 154-160
reassurance, 164-165
Target, 143-148
trackers, 88
trust, building, 149-154
SenseAware sensors, 212
sensors, 96. See also smart cities
September 11, 2001, 134
Sequoia Capital, 197
Setty, Prasad, 237, 246
sex offender lists, 129-133
SFpark, 108
Shah, Anup, 15
Shah, Chintan, 98
sharing economy, 168
shop-by-mail destination Web sites, 228
Shorty Awards, 216
Shoup, Donald, 105
Shouraboura, Nadia, 86
Sia, 215
Sidewalk, 175. See also Uber
Siegel, Michael, 143
Silicon Valley, 262
smart cities, 95-100
 economic viability, 105-110
 environmental sustainability, 110-114
 implementation, 114-118
 Internet of Everything (IoE), 104
 social development, 100-105
SMART Future Mobility team, 114
SmartMotor, 9
Smartzone (Cisco), 255
Smith, Brad, 140, 141
Smithsonian Institution, 211
Snowden, Edward, 135, 138
social development, 100-105
social media, 2, 216
Social Security, 18
software
 engineering, 2
 Internet of Everything (IoE), 53
 Kaspersky Labs, 153
Songdo, Korea, 102-103
Sony, security attacks, 155, 165
Sood, Amit, 74
Sorenson, Charles, 15
Sotomayor, Sonya, 139
Spain, 17, 54
spending growth, 15-16
Spotify, customer experiences, 228-230
Stage Stores, 80-82
Standard Issue NYC, 228
Stanford University, 55, 238
Starbucks, customer experiences, 224-226
Star Trek, 20
Starwood, 151
Statista, 167
Steinhafel, Greg, 144, 146
Stella, Rick, 229
Stewart, John, 143, 154
strategies
 retail, 78-84
 revenue increases, 195-199
street lighting, 99
St. Regis Shenzhen, 150-152
sunglasses, 221

T
Target, 83-84
 post-attack processes, 160
 security breach, 143-148
 use of data mining information, 126
taxi, 114. See also Uber
teachers, strategies of, 49
technology, disruption of, 183
TechTarget, 253-254
TelePresence systems (Cisco), 206, 247-249
telemetry, 169
terrorism, 194
tesla, 83
tesla Model S, 7-10, 263
Thomson Reuters Corp., 253
timmeny, Michael, 167
Toobin, Jeffrey, 131
tracking, 121
Train Dynamic Systems (TDS), 193-194
train, 191-194
transportation. See also Uber
devolutions in, 12
Train, 191-194
tax, 97
travel, Airbnb, 167-170
Travelocity, 195
Tretikov, Lila, 132
trolls, patent, 179-184
T. Rowe Price, 197
trust, building, 149-154
Trusted Computing Group, 150
TrustedSec, 162
Tumblr, 216
Turbulence Auto-PIREP System (TAPS), 198
Turing Lecture Series (2015), 185
Twitter, 124, 127, 216
Tynker, 69

U
Uber, 1, 12, 14, 171-179, 197
Udacity, 57, 61
Ulanoff, Lance, 79
UNESCO Institute for Statistics, 44
unified threat management tools (UTMs), 152
Uniqlo, 228
United Airlines, customer experiences, 215-217
United Arab Emirates (UAE), 110
United Nations (UN), 45, 99
University of Bath, 111
University of California at Berkeley, 47
University of California at Los Angeles (UCLA), 105
University of Edinburgh, 56
University of Florida, 59
University of Illinois, 238
University of Pennsylvania, 221
U.N. Office on Drugs and Crime, 101
UpCounsel, 242
urban planners, 106
urban population, growth of, 99
U.S. Bureau of Labor Statistics, 76
U.S. Department of Commerce, 76, 149
U.S. Department of Justice, 137
U.S. Department of Transportation, 108
user agreements, 124
U.S. Food and Drug Administration (FDA), 20
US News & World Report, 49, 61
U.S. Patent and Trademark Office (USPTO), 78, 179
U.S. State Department, 101
U.S. Supreme Court, 135, 139
Utah House of Representatives, 134

Watson Cognitive Computer (IBM), 260
The Weather Company, 198
Web application attacks, 154
Weber, Gerry, 88
WebMD, 196
Wegert, Tessa, 241
Wenig, Devin, 162
Wharton San Francisco, 50
Wharton School of the University of Pennsylvania, 49, 221
Whiteley, Greg, 47
Wieman, Carl, 66
Wikimedia Foundation, 132
Wired, 161
workforce, building future, 240-249
Work Market, 242, 244
World Bank, 45, 97
World Economic Forum (WEF), 111
Writ of Habeas Corpus, 141
WyzAnt, 69
Yahoo, 127, 237
Yale University, 55, 56
YogaGlo, 179-181
Yoran, Amit, 143, 148, 154, 163
Young, Chris, 143, 148
YouTube, 64, 68, 216, 241
Zuckerberg, Mark, 125

V-W-X-Y-Z

Variety, 241
Verizon Data Breach Investigations Report, 153
Vernon, Mona, 253
Vine, 216
Virgin Atlantic, 238
Virtual Mirror capabilities, 224
virtual private networks (VPNs), 152
Virtual Reality (VR), 74
Oculus Rift VR platform, 74
Vives, Tony, 107
Vokos, Stamatis, 67
Wald, Jeff, 244
The Wall Street Journal, 86
Airbnb, 168
interior design, 196
privacy, 122, 136
Walmart, 80, 144
Wankel, Kathy, 211
Warby Parker, 221, 234
warehouse retailing, 76
water, environmental sustainability, 110
About the Authors

Inder Sidhu is a Silicon Valley senior executive with a career spanning three decades in the technology industry.

He has spent twenty years helping build Cisco from $1 billion to $50 billion in annual revenue, most recently as Senior Vice President of Strategy and Planning for Worldwide Operations. Inder has co-led Cisco’s highly profitable $16 billion Enterprise business and its fast-growing $7 billion Emerging Countries business. Additionally, he has served as the Vice President and General Manager for Worldwide Professional Services, Vice President and General Manager for Advanced Engineering Services, and Vice President for Strategy and Business Development for Cisco Services.

In his journey, Inder has also been a consultant with McKinsey & Company, an engineer with Intel, and an entrepreneur with a successful Silicon Valley start-up.

In 2013, Inder was honored to be the commencement speaker at his alma mater, the Wharton School of Business of the University of Pennsylvania.

Inder channels his passion for education by guest lecturing at Harvard Business School, Stanford University, the Wharton School, and the Haas School of Business at the University of California, Berkeley.

He serves on the Graduate Executive Board of the Wharton School and on the Board of Directors of Goodwill of Silicon Valley.

Inder is a graduate of the Advanced Management Program at Harvard Business School and holds an MBA from the Wharton School of Business of the University of Pennsylvania. He also holds a Master’s
degree in Electrical and Computer Engineering from the University of Massachusetts, Amherst, and a Bachelor’s degree in Electrical Engineering from the Indian Institute of Technology, Delhi, India.

T.C. Doyle is a writer, editor, and storyteller who has covered the technology industry for more than two decades. When he’s not in Silicon Valley or pursuing a story elsewhere around the globe, he can be found in Park City, Utah, where he resides with his wife and two sons.