

ANDROID™ 6 FOR
PROGRAMMERS

AN APP-DRIVEN APPROACH
THIRD EDITION

DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information re-
garding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13428936-6
ISBN-10: 0-13-428936-6

Text printed in the United States at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, November 2015

http://www.pearsoned.com/permissions/

Paul Deitel • Harvey Deitel • Alexander Wald
Deitel & Associates, Inc.

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Capetown • Dubai • London • Madrid • Milan • Munich
Paris • Montreal • Toronto • Deli • Mexico City • Sao Paulo • Sidney

Hong Kong • Seoul • Singapore • Taipei • Tokyo

ANDROID™ 6 FOR
PROGRAMMERS

AN APP-DRIVEN APPROACH

THIRD EDITION
DEITEL® DEVELOPER SERIES

Deitel® Ser ies Page
Deitel® Developer Series
Android™ 6 for Programmers: An App-Driven

Approach, 3/E
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2015 for Programmers
iOS® 8 for Programmers: An App-Driven Approach

with Swift™

Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

How To Program Series
Android™ How to Program, 3/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2015 How to Program, 7/E
Visual C#® 2015 How to Program, 6/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
(continued in next column)

(continued from previous column)
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2015 How to Program, 6/E
Visual Basic® 2012 How to Program, 5/E
Visual C#® 2015 How to Program, 5/E
Visual C#® 2012 How to Program, 4/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android™ 6 App Development Fundamentals, 3/e
C++ Fundamentals
Java™ Fundamentals, 2/e
C# 2015 Fundamentals
C# 2012 Fundamentals
iOS® 8 App Development Fundamentals, 3/e
JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—youtube.com/DeitelTV

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:

 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:

 www.deitel.com/ResourceCenters.html

http://www.deitel.com/books/CourseSmart/
http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

To the Android software-engineering community:

For creating and evolving a platform that challenges
app developers to test the limits of their imagination
Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Google, Android, Google Play, Google Maps, Google Wallet, Nexus, YouTube, AdSense and AdMob
are trademarks of Google, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screenshots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Preface xxi

Before You Begin xxxi

1 Introduction to Android 1
1.1 Introduction 2
1.2 Android—The World’s Leading Mobile Operating System 3
1.3 Android Features 3
1.4 Android Operating System 6

1.4.1 Android 2.2 (Froyo) 7
1.4.2 Android 2.3 (Gingerbread) 7
1.4.3 Android 3.0 through 3.2 (Honeycomb) 8
1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich) 8
1.4.5 Android 4.1–4.3 (Jelly Bean) 9
1.4.6 Android 4.4 (KitKat) 10
1.4.7 Android 5.0 and 5.1 (Lollipop) 11
1.4.8 Android 6 (Marshmallow) 12

1.5 Downloading Apps from Google Play 13
1.6 Packages 14
1.7 Android Software Development Kit (SDK) 16
1.8 Object-Oriented Programming: A Quick Refresher 18

1.8.1 The Automobile as an Object 19
1.8.2 Methods and Classes 19
1.8.3 Instantiation 19
1.8.4 Reuse 19
1.8.5 Messages and Method Calls 19
1.8.6 Attributes and Instance Variables 20
1.8.7 Encapsulation 20
1.8.8 Inheritance 20
1.8.9 Object-Oriented Analysis and Design (OOAD) 20

1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD) 21
1.9.1 Opening the Tip Calculator App’s Project in Android Studio 22
1.9.2 Creating Android Virtual Devices (AVDs) 24
1.9.3 Running the Tip Calculator App on the Nexus 6 Smartphone AVD 25
1.9.4 Running the Tip Calculator App on an Android Device 30

1.10 Building Great Android Apps 30

Contents

viii Contents

1.11 Android Development Resources 32
1.12 Wrap-Up 34

2 Welcome App 35
Dive-Into® Android Studio: Introducing Visual GUI Design, Layouts, Accessibility
and Internationalization
2.1 Introduction 36
2.2 Technologies Overview 37

2.2.1 Android Studio 37
2.2.2 LinearLayout, TextView and ImageView 37

2.2.3 Extensible Markup Language (XML) 38
2.2.4 App Resources 38
2.2.5 Accessibility 38
2.2.6 Internationalization 38

2.3 Creating an App 38
2.3.1 Launching Android Studio 39
2.3.2 Creating a New Project 39
2.3.3 Create New Project Dialog 40
2.3.4 Target Android Devices Step 40
2.3.5 Add an Activity to Mobile Step 42
2.3.6 Customize the Activity Step 43

2.4 Android Studio Window 44
2.4.1 Project Window 45
2.4.2 Editor Windows 46
2.4.3 Component Tree Window 46
2.4.4 App Resource Files 46
2.4.5 Layout Editor 47
2.4.6 Default GUI 48
2.4.7 XML for the Default GUI 49

2.5 Building the App’s GUI with the Layout Editor 49
2.5.1 Adding an Image to the Project 50
2.5.2 Adding an App Icon 51
2.5.3 Changing RelativeLayout to a LinearLayout 52
2.5.4 Changing the LinearLayout’s id and orientation 53
2.5.5 Configuring the TextView’s id and text Properties 54
2.5.6 Configuring the TextView’s textSize Property—Scaled Pixels

and Density-Independent Pixels 56
2.5.7 Setting the TextView’s textColor Property 57
2.5.8 Setting the TextView’s gravity Property 58
2.5.9 Setting the TextView’s layout:gravity Property 59
2.5.10 Setting the TextView’s layout:weight Property 60
2.5.11 Adding an ImageView to Display the Image 60
2.5.12 Previewing the Design 64

2.6 Running the Welcome App 65
2.7 Making Your App Accessible 66

Contents ix

2.8 Internationalizing Your App 67
2.8.1 Localization 67
2.8.2 Naming the Folders for Localized Resources 68
2.8.3 Adding String Translations to the App’s Project 68
2.8.4 Localizing Strings 68
2.8.5 Testing the App in Spanish on an AVD 69
2.8.6 Testing the App in Spanish on a Device 70
2.8.7 TalkBack and Localization 71
2.8.8 Localization Checklist 71
2.8.9 Professional Translation 71

2.9 Wrap-Up 72

3 Tip Calculator App 73
Introducing GridLayout, EditText, SeekBar, Event Handling, NumberFormat,
Customizing the App’s Theme and Defining App Functionality with Java
3.1 Introduction 74
3.2 Test-Driving the Tip Calculator App 75
3.3 Technologies Overview 76

3.3.1 Class Activity 76
3.3.2 Activity Lifecycle Methods 77
3.3.3 AppCompat Library and Class AppCompatActivity 77
3.3.4 Arranging Views with a GridLayout 78
3.3.5 Creating and Customizing the GUI with the Layout Editor

and the Component Tree and Properties Windows 78
3.3.6 Formatting Numbers as Locale-Specific Currency and

Percentage Strings 78
3.3.7 Implementing Interface TextWatcher for Handling EditText

Text Changes 79
3.3.8 Implementing Interface OnSeekBarChangeListener for

Handling SeekBar Thumb Position Changes 79
3.3.9 Material Themes 79
3.3.10 Material Design: Elevation and Shadows 80
3.3.11 Material Design: Colors 80
3.3.12 AndroidManifest.xml 81
3.3.13 Searching in the Properties Window 81

3.4 Building the GUI 81
3.4.1 GridLayout Introduction 81
3.4.2 Creating the TipCalculator Project 82
3.4.3 Changing to a GridLayout 83
3.4.4 Adding the TextViews, EditText and SeekBar 83
3.4.5 Customizing the Views 86

3.5 Default Theme and Customizing Theme Colors 88
3.5.1 parent Themes 88
3.5.2 Customizing Theme Colors 89
3.5.3 Common View Property Values as Styles 91

x Contents

3.6 Adding the App’s Logic 92
3.6.1 package and import Statements 93
3.6.2 MainActivity Subclass of AppCompatActivity 94
3.6.3 Class Variables and Instance Variables 94
3.6.4 Overriding Activity Method onCreate 95
3.6.5 MainActivity Method calculate 97
3.6.6 Anonymous Inner Class That Implements Interface

OnSeekBarChangeListener 98
3.6.7 Anonymous Inner Class That Implements Interface TextWatcher 99

3.7 AndroidManifest.xml 100
3.7.1 manifest Element 101
3.7.2 application Element 101
3.7.3 activity Element 102
3.7.4 intent-filter Element 102

3.8 Wrap-Up 103

4 Flag Quiz App 105
Fragments, Menus, Preferences, Explicit Intents, Handler, AssetManager, Tweened
Animations, Animators, Toasts, Color State Lists, Layouts for Multiple Device
Orientations, Logging Error Messages for Debugging
4.1 Introduction 106
4.2 Test-Driving the Flag Quiz App 108

4.2.1 Configuring the Quiz’s Settings 108
4.2.2 Taking the Quiz 110

4.3 Technologies Overview 113
4.3.1 Menus 113
4.3.2 Fragments 113
4.3.3 Fragment Lifecycle Methods 114
4.3.4 Managing Fragments 114
4.3.5 Preferences 114
4.3.6 assets Folder 115
4.3.7 Resource Folders 115
4.3.8 Supporting Different Screen Sizes and Resolutions 116
4.3.9 Determining the Device Orientation 117
4.3.10 Toasts for Displaying Messages 117
4.3.11 Using a Handler to Execute a Runnable in the Future 117
4.3.12 Applying an Animation to a View 117
4.3.13 Using ViewAnimationUtils to Create a Circular Reveal Animator 118
4.3.14 Specifying Colors Based on a View’s State Via a Color State List 118
4.3.15 AlertDialog 118
4.3.16 Logging Exception Messages 119
4.3.17 Launching Another Activity Via an Explicit Intent 119
4.3.18 Java Data Structures 120
4.3.19 Java SE 7 Features 120
4.3.20 AndroidManifest.xml 120

Contents xi

4.4 Creating the Project, Resource Files and Additional Classes 121
4.4.1 Creating the Project 121
4.4.2 Blank Activity Template Layouts 121
4.4.3 Configuring Java SE 7 Support 122
4.4.4 Adding the Flag Images to the Project 122
4.4.5 strings.xml and Formatted String Resources 123
4.4.6 arrays.xml 124
4.4.7 colors.xml 126
4.4.8 button_text_color.xml 126
4.4.9 Editing menu_main.xml 127
4.4.10 Creating the Flag Shake Animation 128
4.4.11 preferences.xml for Specifying the App’s Settings 129
4.4.12 Adding Classes SettingsActivity and

SettingsActivityFragment to the Project 131
4.5 Building the App’s GUI 132

4.5.1 activity_main.xml Layout for Devices in Portrait Orientation 132
4.5.2 Designing fragment_main.xml Layout 132
4.5.3 Graphical Layout Editor Toolbar 138
4.5.4 content_main.xml Layout for Tablet Landscape Orientation 138

4.6 MainActivity Class 140
4.6.1 package Statement and import Statements 140
4.6.2 Fields 141
4.6.3 Overridden Activity Method onCreate 141
4.6.4 Overridden Activity Method onStart 143
4.6.5 Overridden Activity Method onCreateOptionsMenu 144
4.6.6 Overridden Activity Method onOptionsItemSelected 145
4.6.7 Anonymous Inner Class That Implements

OnSharedPreferenceChangeListener 145
4.7 MainActivityFragment Class 147

4.7.1 package and import Statements 147
4.7.2 Fields 148
4.7.3 Overridden Fragment Method onCreateView 149
4.7.4 Method updateGuessRows 151
4.7.5 Method updateRegions 152
4.7.6 Method resetQuiz 152
4.7.7 Method loadNextFlag 154
4.7.8 Method getCountryName 156
4.7.9 Method animate 156
4.7.10 Anonymous Inner Class That Implements OnClickListener 158
4.7.11 Method disableButtons 160

4.8 SettingsActivity Class 161
4.9 SettingsActivityFragment Class 161
4.10 AndroidManifest.xml 162
4.11 Wrap-Up 164

xii Contents

5 Doodlz App 165
2D Graphics, Canvas, Bitmap, Accelerometer, SensorManager, Multitouch Events,
MediaStore, Printing, Android 6.0 Permissions, Gradle
5.1 Introduction 167
5.2 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 168
5.3 Technologies Overview 173

5.3.1 Activity and Fragment Lifecycle Methods 173
5.3.2 Custom Views 174
5.3.3 Using SensorManager to Listen for Accelerometer Events 174
5.3.4 Custom DialogFragments 174
5.3.5 Drawing with Canvas, Paint and Bitmap 175
5.3.6 Processing Multiple Touch Events and Storing Lines in Paths 175
5.3.7 Saving to the Device 175
5.3.8 Printing and the Android Support Library’s PrintHelper Class 176
5.3.9 New Android 6.0 (Marshmallow) Permissions Model 176
5.3.10 Adding Dependencies Using the Gradle Build System 176

5.4 Creating the Project and Resources 176
5.4.1 Creating the Project 176
5.4.2 Gradle: Adding a Support Library to the Project 177
5.4.3 strings.xml 177
5.4.4 Importing the Material Design Icons for the App’s Menu Items 178
5.4.5 MainActivityFragment Menu 179
5.4.6 Adding a Permission to AndroidManifest.xml 181

5.5 Building the App’s GUI 181
5.5.1 content_main.xml Layout for MainActivity 181
5.5.2 fragment_main.xml Layout for MainActivityFragment 181
5.5.3 fragment_color.xml Layout for ColorDialogFragment 182
5.5.4 fragment_line_width.xml Layout for LineWidthDialogFragment 185
5.5.5 Adding Class EraseImageDialogFragment 187

5.6 MainActivity Class 187
5.7 MainActivityFragment Class 188

5.7.1 package Statement, import Statements and Fields 188
5.7.2 Overridden Fragment Method onCreateView 189
5.7.3 Methods onResume and enableAccelerometerListening 190
5.7.4 Methods onPause and disableAccelerometerListening 191
5.7.5 Anonymous Inner Class for Processing Accelerometer Events 192
5.7.6 Method confirmErase 193
5.7.7 Overridden Fragment Methods onCreateOptionsMenu and

onOptionsItemSelected 193
5.7.8 Method saveImage 195
5.7.9 Overridden Method onRequestPermissionsResult 196
5.7.10 Methods getDoodleView and setDialogOnScreen 197

5.8 DoodleView Class 198
5.8.1 package Statement and import Statements 198
5.8.2 static and Instance Variables 198
5.8.3 Constructor 199

Contents xiii

5.8.4 Overridden View Method onSizeChanged 200
5.8.5 Methods clear, setDrawingColor, getDrawingColor,

setLineWidth and getLineWidth 200
5.8.6 Overridden View Method onDraw 201
5.8.7 Overridden View Method onTouchEvent 202
5.8.8 touchStarted Method 203
5.8.9 touchMoved Method 204
5.8.10 touchEnded Method 205
5.8.11 Method saveImage 205
5.8.12 Method printImage 206

5.9 ColorDialogFragment Class 207
5.9.1 Overridden DialogFragment Method onCreateDialog 208
5.9.2 Method getDoodleFragment 209
5.9.3 Overridden Fragment Lifecycle Methods onAttach and onDetach 209
5.9.4 Anonymous Inner Class That Responds to the Events of the

Alpha, Red, Green and Blue SeekBars 210
5.10 LineWidthDialogFragment Class 211

5.10.1 Method onCreateDialog 213
5.10.2 Anonymous Inner Class That Responds to the Events of the

widthSeekBar 214
5.11 EraseImageDialogFragment Class 214
5.12 Wrap-Up 216

6 Cannon Game App 217
Manual Frame-By-Frame Animation, Graphics, Sound, Threading,
SurfaceView and SurfaceHolder, Immersive Mode and Full-Screen
6.1 Introduction 218
6.2 Test-Driving the Cannon Game App 220
6.3 Technologies Overview 220

6.3.1 Using the Resource Folder res/raw 220
6.3.2 Activity and Fragment Lifecycle Methods 220
6.3.3 Overriding View Method onTouchEvent 220
6.3.4 Adding Sound with SoundPool and AudioManager 220
6.3.5 Frame-by-Frame Animation with Threads, SurfaceView and

SurfaceHolder 221
6.3.6 Simple Collision Detection 221
6.3.7 Immersive Mode 222

6.4 Building the GUI and Resource Files 222
6.4.1 Creating the Project 222
6.4.2 Adjusting the Theme to Remove the App Title and App Bar 223
6.4.3 strings.xml 223
6.4.4 Colors 223
6.4.5 Adding the Sounds to the App 223
6.4.6 Adding Class MainActivityFragment 224
6.4.7 Editing activity_main.xml 224
6.4.8 Adding the CannonView to fragment_main.xml 224

xiv Contents

6.5 Overview of This App’s Classes 225
6.6 MainActivity Subclass of Activity 226
6.7 MainActivityFragment Subclass of Fragment 226
6.8 Class GameElement 228

6.8.1 Instance Variables and Constructor 229
6.8.2 Methods update, draw, and playSound 229

6.9 Blocker Subclass of GameElement 230
6.10 Target Subclass of GameElement 230
6.11 Cannon Class 231

6.11.1 Instance Variables and Constructor 231
6.11.2 Method align 232
6.11.3 Method fireCannonball 232
6.11.4 Method draw 233
6.11.5 Methods getCannonball and removeCannonball 234

6.12 Cannonball Subclass of GameElement 234
6.12.1 Instance Variables and Constructor 234
6.12.2 Methods getRadius, collidesWith, isOnScreen, and

reverseVelocityX 235
6.12.3 Method update 236
6.12.4 Method draw 236

6.13 CannonView Subclass of SurfaceView 237
6.13.1 package and import Statements 237
6.13.2 Instance Variables and Constants 238
6.13.3 Constructor 239
6.13.4 Overriding View Method onSizeChanged 241
6.13.5 Methods getScreenWidth, getScreenHeight, and playSound 241
6.13.6 Method newGame 242
6.13.7 Method updatePositions 244
6.13.8 Method alignAndFireCannonball 245
6.13.9 Method showGameOverDialog 246
6.13.10 Method drawGameElements 247
6.13.11 Method testForCollisions 248
6.13.12 Methods stopGame and releaseResources 249
6.13.13 Implementing the SurfaceHolder.Callback Methods 250
6.13.14 Overriding View Method onTouchEvent 251
6.13.15 CannonThread: Using a Thread to Create a Game Loop 252
6.13.16 Methods hideSystemBars and showSystemBars 253

6.14 Wrap-Up 254

7 WeatherViewer App 256
REST Web Services, AsyncTask, HttpUrlConnection, Processing JSON Responses,
JSONObject, JSONArray, ListView, ArrayAdapter, ViewHolder Pattern,
TextInputLayout, FloatingActionButton
7.1 Introduction 257

Contents xv

7.2 Test-Driving the WeatherViewer App 258
7.3 Technologies Overview 259

7.3.1 Web Services 259
7.3.2 JavaScript Object Notation (JSON) and the org.json Package 261
7.3.3 HttpUrlConnection Invoking a REST Web Service 263
7.3.4 Using AsyncTask to Perform Network Requests Outside the

GUI Thread 263
7.3.5 ListView, ArrayAdapter and the View-Holder Pattern 263
7.3.6 FloatingActionButton 264
7.3.7 TextInputLayout 265
7.3.8 Snackbar 265

7.4 Building the App’s GUI and Resource Files 265
7.4.1 Creating the Project 265
7.4.2 AndroidManifest.xml 265
7.4.3 strings.xml 266
7.4.4 colors.xml 266
7.4.5 activity_main.xml 266
7.4.6 content_main.xml 267
7.4.7 list_item.xml 268

7.5 Class Weather 269
7.5.1 package Statement, import Statements and Instance Variables 270
7.5.2 Constructor 270
7.5.3 Method convertTimeStampToDay 271

7.6 Class WeatherArrayAdapter 272
7.6.1 package Statement and import Statements 272
7.6.2 Nested Class ViewHolder 273
7.6.3 Instance Variable and Constructor 273
7.6.4 Overridden ArrayAdapter Method getView 273
7.6.5 AsyncTask Subclass for Downloading Images in a Separate Thread 275

7.7 Class MainActivity 277
7.7.1 package Statement and import Statements 277
7.7.2 Instance Variables 278
7.7.3 Overridden Activity Method onCreate 279
7.7.4 Methods dismissKeyboard and createURL 280
7.7.5 AsyncTask Subclass for Invoking a Web Service 281
7.7.6 Method convertJSONtoArrayList 283

7.8 Wrap-Up 284

8 Twitter® Searches App 286
SharedPreferences, SharedPreferences.Editor, Implicit Intents, Intent
Choosers, RecyclerView, RecyclerView.Adapter, RecyclerView.ViewHolder,
RecyclerView.ItemDecoration
8.1 Introduction 287
8.2 Test-Driving the App 288

8.2.1 Adding a Favorite Search 288

xvi Contents

8.2.2 Viewing Twitter Search Results 291
8.2.3 Editing a Search 291
8.2.4 Sharing a Search 293
8.2.5 Deleting a Search 294
8.2.6 Scrolling Through Saved Searches 295

8.3 Technologies Overview 295
8.3.1 Storing Key–Value Data in a SharedPreferences File 295
8.3.2 Implicit Intents and Intent Choosers 296
8.3.3 RecyclerView 296
8.3.4 RecyclerView.Adapter and RecyclerView.ViewHolder 297
8.3.5 RecyclerView.ItemDecoration 297
8.3.6 Displaying a List of Options in an AlertDialog 297

8.4 Building the App’s GUI and Resource Files 297
8.4.1 Creating the Project 298
8.4.2 AndroidManifest.xml 298
8.4.3 Adding the RecyclerView Library 298
8.4.4 colors.xml 298
8.4.5 strings.xml 299
8.4.6 arrays.xml 299
8.4.7 dimens.xml 299
8.4.8 Adding the Save Button Icon 300
8.4.9 activity_main.xml 300
8.4.10 content_main.xml 300
8.4.11 RecyclerView Item’s Layout: list_item.xml 302

8.5 MainActivity Class 303
8.5.1 package and import Statements 304
8.5.2 MainActivity Fields 304
8.5.3 Overriden Activity Method onCreate 305
8.5.4 TextWatcher Event Handler and Method updateSaveFAB 307
8.5.5 saveButton’s OnClickListener 308
8.5.6 addTaggedSearch Method 309
8.5.7 Anonymous Inner Class That Implements

View.OnClickListener to Display Search Results 310
8.5.8 Anonymous Inner Class That Implements

View.OnLongClickListener to Share, Edit or Delete a Search 311
8.5.9 shareSearch Method 313
8.5.10 deleteSearch Method 314

8.6 SearchesAdapter Subclass of RecyclerView.Adapter 315
8.6.1 package Statement, import statements, Instance Variables and

Constructor 315
8.6.2 Nested ViewHolder Subclass of RecyclerView.ViewHolder 316
8.6.3 Overridden RecyclerView.Adapter Methods 317

8.7 ItemDivider Subclass of RecyclerView.ItemDecoration 318
8.8 A Note on Fabric: Twitter’s New Mobile Development Platform 320
8.9 Wrap-Up 320

Contents xvii

9 Address Book App 322
FragmentTransactions and the Fragment Back Stack, SQLite, SQLiteDatabase,
SQLiteOpenHelper, ContentProvider, ContentResolver, Loader, LoaderManager,
Cursor and GUI Styles
9.1 Introduction 324
9.2 Test-Driving the Address Book App 326

9.2.1 Adding a Contact 326
9.2.2 Viewing a Contact 327
9.2.3 Editing a Contact 327
9.2.4 Deleting a Contact 327

9.3 Technologies Overview 328
9.3.1 Displaying Fragments with FragmentTransactions 328
9.3.2 Communicating Data Between a Fragment and a Host Activity 329
9.3.3 Manipulating a SQLite Database 329
9.3.4 ContentProviders and ContentResolvers 329
9.3.5 Loader and LoaderManager—Asynchronous Database Access 330
9.3.6 Defining Styles and Applying Them to GUI Components 331
9.3.7 Specifying a TextView Background 331

9.4 Building the GUI and Resource Files 331
9.4.1 Creating the Project 331
9.4.2 Creating the App’s Classes 331
9.4.3 Add the App’s Icons 333
9.4.4 strings.xml 333
9.4.5 styles.xml 334
9.4.6 textview_border.xml 335
9.4.7 MainActivity’s Layout 335
9.4.8 ContactsFragment’s Layout 337
9.4.9 DetailFragment’s Layout 338
9.4.10 AddEditFragment’s Layout 339
9.4.11 DetailFragment’s Menu 341

9.5 Overview of This Chapter’s Classes 341
9.6 DatabaseDescription Class 342

9.6.1 static Fields 342
9.6.2 Nested Class Contact 343

9.7 AddressBookDatabaseHelper Class 344
9.8 AddressBookContentProvider Class 346

9.8.1 AddressBookContentProvider Fields 346
9.8.2 Overridden Methods onCreate and getType 347
9.8.3 Overridden Method query 348
9.8.4 Overridden Method insert 350
9.8.5 Overridden Method update 352
9.8.6 Overridden Method delete 353

9.9 MainActivity Class 354
9.9.1 Superclass, Implemented Interfaces and Fields 354
9.9.2 Overridden Method onCreate 355
9.9.3 ContactsFragment.ContactsFragmentListener Methods 356

xviii Contents

9.9.4 Method displayContact 357
9.9.5 Method displayAddEditFragment 358
9.9.6 DetailFragment.DetailFragmentListener Methods 358
9.9.7 AddEditFragment.AddEditFragmentListener Method 359

9.10 ContactsFragment Class 360
9.10.1 Superclass and Implemented Interface 360
9.10.2 ContactsFragmentListener 360
9.10.3 Fields 361
9.10.4 Overridden Fragment Method onCreateView 361
9.10.5 Overridden Fragment Methods onAttach and onDetach 363
9.10.6 Overridden Fragment Method onActivityCreated 363
9.10.7 Method updateContactList 364
9.10.8 LoaderManager.LoaderCallbacks<Cursor> Methods 364

9.11 ContactsAdapter Class 365
9.12 AddEditFragment Class 368

9.12.1 Superclass and Implemented Interface 368
9.12.2 AddEditFragmentListener 369
9.12.3 Fields 369
9.12.4 Overridden Fragment Methods onAttach, onDetach and

onCreateView 370
9.12.5 TextWatcher nameChangedListener and Method

updateSaveButtonFAB 372
9.12.6 View.OnClickListener saveContactButtonClicked and

Method saveContact 373
9.12.7 LoaderManager.LoaderCallbacks<Cursor> Methods 374

9.13 DetailFragment Class 376
9.13.1 Superclass and Implemented Interface 376
9.13.2 DetailFragmentListener 377
9.13.3 Fields 377
9.13.4 Overridden Methods onAttach, onDetach and onCreateView 378
9.13.5 Overridden Methods onCreateOptionsMenu and

onOptionsItemSelected 379
9.13.6 Method deleteContact and DialogFragment confirmDelete 380
9.13.7 LoaderManager.LoaderCallback<Cursor> Methods 381

9.14 Wrap-Up 382

10 Google Play and App Business Issues 384
10.1 Introduction 385
10.2 Preparing Your Apps for Publication 385

10.2.1 Testing Your App 386
10.2.2 End User License Agreement 386
10.2.3 Icons and Labels 387
10.2.4 Versioning Your App 387
10.2.5 Licensing to Control Access to Paid Apps 388
10.2.6 Obfuscating Your Code 388

Contents xix

10.2.7 Getting a Private Key for Digitally Signing Your App 388
10.2.8 Featured Image and Screenshots 388
10.2.9 Promotional App Video 390

10.3 Pricing Your App: Free or Fee 390
10.3.1 Paid Apps 391
10.3.2 Free Apps 391

10.4 Monetizing Apps with In-App Advertising 392
10.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods 393
10.6 Registering at Google Play 394
10.7 Setting Up a Google Payments Merchant Account 395
10.8 Uploading Your Apps to Google Play 395
10.9 Launching Play Store from Within Your App 397
10.10 Managing Your Apps in Google Play 398
10.11 Other Android App Marketplaces 398
10.12 Other Mobile App Platforms and Porting Your Apps 398
10.13 Marketing Your Apps 399
10.14 Wrap-Up 403

Index 405

This page intentionally left blank

Welcome to the dynamic world of Android smartphone and tablet app development with
the Android Software Development Kit (SDK), the Java™ programming language and
the rapidly evolving Android Studio Integrated Development Environment (IDE). Many
of the Android techniques we present also apply to Android Wear and Android TV app
development, so after reading this book, you’ll be well prepared to investigate developing
apps for these platforms.

Android 6 for Programmers: An App-Driven Approach presents leading-edge mobile
computing technologies for professional software developers. In our app-driven approach,
we present concepts in complete working Android apps, rather than using code snippets.
Chapters 2–9 each present one app. Each chapter begins with an introduction to the app,
an app test-drive showing one or more sample executions and an overview of the technol-
ogies we used to build the app. Then we present a detailed source-code walkthrough. All
of the source code is available at

We recommend that you view each app’s source code in the IDE as you read the chapter.
The opportunities for Android app developers are enormous. Sales of Android devices

and app downloads have been growing exponentially. The first-generation Android
phones were released in October 2008. According to IDC, after the first three months of
2015, Android had 78% of the global smartphone market share, compared to 18.3% for
Apple, 2.7% for Microsoft and 0.3% for Blackberry.1 Over one billion Android devices
shipped in 2014 alone.2 At the 2015 Google I/O conference, Google announced that in
the prior 12 months there had been 50 billion app installs from Google Play™—Google’s
marketplace for Android apps.3 Fierce competition among popular mobile platforms and
carriers is leading to rapid innovation and falling prices. In addition, competition among
the hundreds of Android device manufacturers is driving hardware and software innova-
tion within the Android community.

Copyright Notice and Code License
All of the Android code and Android apps in the book are copyrighted by Deitel & Associates,
Inc. The sample Android apps in the book are licensed under a Creative Commons Attribution
3.0 Unported License (http://creativecommons.org/licenses/by/3.0), with the excep-
tion that they may not be reused in any way in educational tutorials and textbooks, whether in
print or digital format. Additionally, the authors and publisher make no warranty of any kind,

http://www.deitel.com/books/AndroidFP3

1. http://www.idc.com/prodserv/smartphone-os-market-share.jsp.
2. http://www.businessinsider.com/android-1-billion-shipments-2014-strategy-

analytics-2015-2.
3. http://bit.ly/2015GoogleIOKeynote.

Preface

http://www.deitel.com/books/AndroidFP3
http://creativecommons.org/licenses/by/3.0
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2
http://www.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2
http://bit.ly/2015GoogleIOKeynote

xxii Preface

expressed or implied, with regard to these programs or to the documentation contained in this
book. The authors and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these pro-
grams. You’re welcome to use the apps in the book as shells for your own apps, building on their
existing functionality (within the terms of the preceding license). If you have any questions, con-
tact us at deitel@deitel.com.

Intended Audience
We assume that you’re a Java programmer with object-oriented programming experience.
We also assume that you’re familiar with XML—as you’ll see, Android projects contain
many XML files, though you’ll often interact with them through editors that hide much
or all of the XML from you. We use only complete, working apps, so if you don’t know
Java but have object-oriented programming experience in a C-based language such as C++,
C#, Swift or Objective-C you should be able to master the material quickly, learning a
good amount of Java and Java-style object-oriented programming along the way.

This book is not a Java tutorial. If you’re interested in learning Java, you may want to
check out our publications:

• Java for Programmers, 3/e (http://www.deitel.com/books/javafp3)

• Java Fundamentals, 2/e LiveLessons videos. These videos are available to Safari-
BooksOnline.com subscribers and may be purchased from Informit.com and
Udemy.com. Visit http://www.deitel.com/LiveLessons for subscription and
purchase links.

• Java How to Program, 10/e (http://www.deitel.com/books/jhtp10; ISBN# 0-
13-380780-0)

If you’re not familiar with XML, many free online tutorials are available, including:

• http://www.ibm.com/developerworks/xml/newto

• http://www.w3schools.com/xml/default.asp

• http://bit.ly/DeitelXMLBasics

• http://bit.ly/StructureXMLData

Features
Here are some of this book’s key features:

App-Driven Approach. Chapters 2–9 each present one completely coded app—we discuss
what the app does, show screenshots of the app in action, test-drive it and overview the
technologies and architecture we used to build it. Then we build the app’s GUI and re-
source files, present the complete code and do a detailed code walkthrough. We discuss
the programming concepts and demonstrate the functionality of the Android APIs used
in the app.

Android 6 SDK. We cover various new Android 6 Software Development Kit (SDK) features.

Android Studio IDE. The free Android Studio (based on IntelliJ IDEA Community Edi-
tion) is now Google’s preferred IDE for Android app development (the original Android

http://www.deitel.com/books/javafp3
http://www.deitel.com/LiveLessons
http://www.deitel.com/books/jhtp10
http://www.ibm.com/developerworks/xml/newto
http://www.w3schools.com/xml/default.asp
http://bit.ly/DeitelXMLBasics
http://bit.ly/StructureXMLData

 Features xxiii

development tools were based on the Eclipse IDE). Android Studio, combined with the
free Android Software Development Kit (SDK) and the free Java Development Kit (JDK),
provide all the software you’ll need to create, run and debug Android apps, export them
for distribution (e.g., upload them to Google Play™) and more. See the Before You Begin
section after this Preface for download and installation instructions for all this software.

Material Design. With Android 5, Google introduced its new Android look-and-feel,
based on their material design specification:

In the specification, Google overviews the goals and principles of material design, then
provides details on animation techniques, styling on-screen elements, positioning ele-
ments, uses of specific user-interface components, user-interaction patterns, accessibility,
internationalization and more. Google now uses material-design principles in its mobile
and browser-based apps.

Material design is a massive topic. In this book, we focus on the following aspects of
material design:

• Using Android’s built-in Material themes—these give Android’s built-in user-in-
terface components a look-and-feel that’s consistent with material design princi-
ples.

• Using built-in Android Studio app templates—these are designed by Google to
adhere to material design principles.

• Using user-interface components, as appropriate, that are recommended by the ma-
terial design guidelines for specific purposes, such as FloatingActionButtons,
TextInputLayouts and RecyclerViews.

In addition to Google’s material design specification, you may want to read the book
Android User Interface Design: Implementing Material Design for Developers, 2nd Edition:

by our professional colleague and past Android for Programmers reviewer Ian Clifton. From
Ian: “Google announced the material design guidelines in 2014, creating a design system
that suggested how an app should look as well as behave. The goal was to provide a design
framework that would improve the visual appearance of all apps and create a behavioral
consistency that did not exist previously across apps. Android User Interface Design: Imple-
menting Material Design for Developers, 2nd Edition covers material design in detail, mak-
ing user-centered design, color theory, typography, interaction patterns and other aspects
of design accessible to all developers.”

Support and App Compatibility Libraries. A big challenge developers face when using new
Android features is backward compatibility with earlier Android platforms. Many new
Android features are now introduced via support libraries. These enable you to use new
features in apps targeting current and past Android platforms. One such library is the App-
Compat library. Android Studio’s app templates have been updated to use the AppCompat
library and its themes, enabling the new apps you create to run on most Android devices.
By creating apps with the AppCompat library from the start, you avoid having to reimple-
ment your code if you decide to support older Android versions to target a wider audience.

http://www.google.com/design/spec/material-design/introduction.html

http://bit.ly/IanCliftonMaterialDesign

http://www.google.com/design/spec/material-design/introduction.html
http://bit.ly/IanCliftonMaterialDesign

xxiv Preface

In addition, at the 2015 Google I/O developer conference, Google introduced the
Android Design Support Library

for using material design in Android 2.1 and higher. Material design support also is built
into most of Android Studio’s app templates.

REST Web Services and JSON. Chapter 7 presents the Weather Viewer app, which dem-
onstrates how to invoke Representational State Transfer (REST) web services—in this
case, the 16-day weather-forecast service from OpenWeatherMap.org. This web service re-
turns the weather forecast in JavaScript Object Notation (JSON)—a popular text-based
data-interchange format used to represent objects as key–value pairs of data. The app also
use classes from the org.json package to process the web service’s JSON response.

Android 6.0 Permissions. Android 6.0 has a new permissions model that’s designed for a
better user experience. Before Android 6.0, a user was required at installation time to grant
in advance all permissions that an app would ever need, which often discouraged users
from installing apps. With the new model, the app is installed without asking for any per-
missions. Instead, the user is asked to grant a permission only the first time the correspond-
ing feature is used. Chapter 5 introduces the new permissions model and uses it to request
permission from the user to store an image on the device’s external storage.

Fragments. Starting with Chapter 4, we use Fragments to create and manage portions of
each app’s GUI. You can combine several fragments to create user interfaces that take ad-
vantage of tablet screen sizes. You also can easily interchange fragments to make your GUIs
more dynamic, as you’ll do in Chapter 9.

View-Holder Pattern, ListView and RecyclerView. The apps in Chapters 7–9 each dis-
play scrollable lists of data. Chapter 7 presents the data in a ListView and introduces the
view-holder pattern, which improves scrolling performance by reusing GUI components
that scroll off-screen. With ListViews, using the view-holder pattern is recommended.
Chapters 8 and 9 each present a list of data in the more flexible and more efficient Recy-
clerView for which the view-holder pattern is required.

Printing. We demonstrate class PrintHelper (Chapter 5) from Android’s printing frame-
work for printing from an app. Class PrintHelper provides a user interface for selecting a
printer, has a method for determining whether a given device supports printing and pro-
vides a method for printing a Bitmap. PrintHelper is part of the Android Support Library.

Immersive Mode. The status bar at the top of the screen and the menu buttons at the bot-
tom can be hidden, allowing your apps to fill more of the screen. Users can access the status
bar by swiping down from the top of the screen, and the system bar (with the back button,
home button and recent apps button) by swiping up from the bottom.

Testing on Android Smartphones, Tablets and the Android Emulator. For the best app-de-
velopment experience and results, you should test your apps on actual Android smart-
phones and tablets. You can still have a meaningful experience using just the Android
emulator (see the Before You Begin section); however, it’s processor intensive and can be
slow, particularly with games that have a lot of moving parts. In Chapter 1, we mention
some Android features that are not supported on the emulator.

http://android-developers.blogspot.com/2015/05/android-design-
support-library.html

http://android-developers.blogspot.com/2015/05/android-design-support-library.html
http://android-developers.blogspot.com/2015/05/android-design-support-library.html

 Pedagogic Features xxv

Cloud Test Lab. Google is working on a new Cloud Test Lab—an online site for testing
your apps across a wide range of devices, device orientations, locales, spoken languages and
network conditions. You’ll be able to run automated tests and receive detailed reports con-
taining screenshots and videos of your app in action, as well as error logs to help you find
problems and improve your apps. For more information and to sign up to be notified
when Cloud Test Lab becomes available, visit:

Android Wear and Android TV. Android Wear runs on smart watches. Android TV runs
directly on some smart TVs and media players that you can connect to your TV (typically
via HDMI cables). Many Android techniques we present also apply to Android Wear and
Android TV app development. The Android SDK provides Android Wear and Android
TV emulators, so you can test your apps for these platforms, even if you don’t have devices.
To learn more about these technologies from the developer perspective, visit:

for Android Wear and

for Android TV.

Multimedia. The apps use a range of Android multimedia capabilities, including graphics,
images, frame-by-frame animation and audio.

Uploading Apps to Google Play. Chapter 10, Google Play and App Business Issues, dis-
cusses Google Play and setting up a merchant account so you can sell your apps. You’ll
learn how to prepare apps for submission to Google Play, find tips for pricing your apps,
and find resources for monetizing them with in-app advertising and in-app sales of virtual
goods. You’ll also find resources for marketing your apps. Chapter 10 can be read after
Chapter 1.

Pedagogic Features
Syntax Coloring. For readability, we syntax color the code, similar to Android Studio’s use
of syntax coloring. Our syntax-coloring conventions are as follows:

Code Highlighting. We emphasize the key code segments in each program by enclosing
them in yellow rectangles.

Using Fonts for Emphasis. We use various font conventions:

• The defining occurrences of key terms appear bold maroon for easy reference.

• On-screen IDE components appear in bold Helvetica (e.g., the File menu).

• Program source code appears in Lucida (e.g., int x = 5;).

http://developers.google.com/cloud-test-lab/

http://developer.android.com/wear/index.html

http://developer.android.com/tv/index.html

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears like this

http://developers.google.com/cloud-test-lab/
http://developer.android.com/wear/index.html
http://developer.android.com/tv/index.html

xxvi Preface

In this book you’ll create GUIs using a combination of visual programming (point-
and-click, drag-and-drop) and writing code. We use different fonts when we refer to GUI
elements in program code versus GUI elements displayed in the IDE:

• When we refer to a GUI component that we create in a program, we place its class
name and object name in a Lucida font—e.g., Button saveContactButton.

• When we refer to a GUI component that’s part of the IDE, we place the compo-
nent’s text in a bold Helvetica font and use a plain text font for the component’s
type—e.g., “the File menu” or “the Run button.”

Using the > Character. We use the > character to indicate selecting a menu item from a
menu. For example, we use the notation File > New to indicate that you should select the
New menu item from the File menu.

Source Code. All of the book’s source code is available for download from

Documentation. All the Android documentation you’ll need to develop Android apps is
available at

An overview of Android Studio is available at

Chapter Objectives. Each chapter begins with a list of learning objectives.

Figures. Numerous tables, source-code listings and screenshots are included.

Software Engineering. We stress program clarity and performance, and we concentrate on
building well-engineered, object-oriented software.

Index. We include an extensive index for reference. The page number of the defining oc-
currence of each key term is highlighted in bold maroon.

Working with Open-Source Apps
The numerous free, open-source Android apps available online are excellent resources for
learning Android app development. We encourage you to download open-source apps and
read their source code to understand how they work.

Caution: The terms of open-source licenses vary considerably. Some allow you to
use the app’s source code freely for any purpose, while others stipulate that the code is
available for personal use only—not for creating for-sale or publicly available apps. Be sure
to read the licensing agreements carefully. If you wish to create a commercial app based
on an open-source app, you should consider having an intellectual-property attorney
read the license; be aware that these attorneys charge significant fees.

Android 6 App-Development Fundamentals LiveLessons Video
Training Products
Our Android 6 App-Development Fundamentals LiveLessons videos show you what you need
to know to start building robust, powerful Android apps with Android 6, the Java™ pro-

http://www.deitel.com/books/AndroidFP3

http://developer.android.com

http://developer.android.com/tools/studio/index.html

http://www.deitel.com/books/AndroidFP3
http://developer.android.com
http://developer.android.com/tools/studio/index.html

 Join the Deitel & Associates, Inc. Social Networking Communities xxvii

gramming language and Android Studio. Included are approximately 16–20 hours of expert
training synchronized with Android 6 for Programmers: An App-Driven Approach. For addi-
tional information about Deitel LiveLessons video products, visit

or contact us at deitel@deitel.com. You also can access our LiveLessons videos if you
have a subscription to SafariBooksOnline.com. For a free 10-day trial, register at

Join the Deitel & Associates, Inc. Social Networking Communities
To receive updates on this and our other publications, new and updated apps, online
Resource Centers, instructor-led on-site training courses and more, join the Deitel social
networking communities on

• Facebook®—http://facebook.com/DeitelFan

• LinkedIn®—http://bit.ly/DeitelLinkedIn

• Twitter®—http://twitter.com/deitel

• Google+™—http://google.com/+DeitelFan

• YouTube®—http://youtube.com/DeitelTV

and subscribe to the Deitel® Buzz Online newsletter

Contacting the Authors
We’d sincerely appreciate your comments, criticisms, corrections and suggestions for im-
provement. Please address all questions and other correspondence to

We’ll respond promptly and post corrections and clarifications as Android evolves at:

and on Facebook, LinkedIn, Twitter, Google+ and the Deitel® Buzz Online.
Visit http://www.deitel.com to

• download code examples

• check out the growing list of online programming Resource Centers

• receive updates for this book, subscribe to the free Deitel® Buzz Online e-mail
newsletter at http://www.deitel.com/newsletter/subscribe.html

• receive information on our Dive Into® Series instructor-led programming-lan-
guage training courses offered at customer sites worldwide.

Acknowledgments
Thanks to Barbara Deitel for long hours devoted to this project—she created all of our
Android Resource Centers and patiently researched hundreds of technical details.

http://www.deitel.com/livelessons

http://www.safaribooksonline.com/register

http://www.deitel.com/newsletter/subscribe.html

deitel@deitel.com

http://www.deitel.com/books/AndroidFP3

http://www.deitel.com/livelessons
http://www.safaribooksonline.com/register
http://facebook.com/DeitelFan
http://bit.ly/DeitelLinkedIn
http://twitter.com/deitel
http://google.com/+DeitelFan
http://youtube.com/DeitelTV
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/books/AndroidFP3
http://www.deitel.com
http://www.deitel.com/newsletter/subscribe.html

xxviii Preface

We appreciate the efforts and 20-year mentorship of our friend and professional col-
league Mark L. Taub, Editor-in-Chief of the Pearson Technology Group. Mark and his
team publish all of our professional books and LiveLessons video products. Michelle
Housley recruited distinguished members of the Android community to review the man-
uscript. We selected the cover art and Chuti Prasertsith designed the cover. John Fuller
manages the production of all of our Deitel Developer Series books.

We thank Michael Morgano, a former colleague of ours at Deitel & Associates, Inc.,
now an Android developer at PHHHOTO, who co-authored the first editions of this
book and our book, iPhone for Programmers: An App-Driven Approach. Michael is an
extraordinarily talented software developer.

Finally, we thank Abbey Deitel, former President of Deitel & Associates, Inc., and a
graduate of Carnegie Mellon University’s Tepper School of Management where she
received a B.S. in Industrial Management. Abbey managed the business operations of
Deitel & Associates, Inc. for 17 years, along the way co-authoring a number of our publi-
cations, including the previous editions’ versions of Chapters 1 and 10.

Reviewers of the Content from Android 6 for Programmers: An App-Driven Ap-
proach and Android How to Program Recent Editions
We’d like to thank the following professionals and academics who reviewed this book and/
or its previous editions. They scrutinized the text and the code and provided countless sug-
gestions for improving the presentation: Paul Beusterien (Principal, Mobile Developer So-
lutions), Eric J. Bowden, COO (Safe Driving Systems, LLC), Tony Cantrell (Georgia
Northwestern Technical College), Ian G. Clifton (Independent Contractor, Android App
Developer and author of Android User Interface Design: Implementing Material Design for
Developers, 2nd Edition), Daniel Galpin (Android Advocate and author of Intro to Android
Application Development), Jim Hathaway (Application Developer, Kellogg Company),
Douglas Jones (Senior Software Engineer, Fullpower Technologies), Charles Lasky (Na-
gautuck Community College), Enrique Lopez-Manas (Lead Android Architect, Sixt, and
Computer Science Teacher at the University of Alcalá in Madrid), Sebastian Nykopp
(Chief Architect, Reaktor), Michael Pardo (Android Developer, Mobiata), Luis Ramirez
(Lead Android Engineer at Reverb), Ronan “Zero” Schwarz (CIO, OpenIntents), Arijit
Sengupta (Wright State University), Donald Smith (Columbia College), Jesus Ubaldo
Quevedo-Torrero (University of Wisconsin, Parkside), Dawn Wick (Southwestern Com-
munity College) and Frank Xu (Gannon University).

Well, there you have it! Android 6 for Programmers: An App-Driven Approach will
quickly get you started developing Android apps with Android 6 and Android Studio. We
hope you enjoy reading the book as much as we enjoyed writing it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Java Certified Program-
mer and Java Certified Developer designations and is an Oracle Java Champion. Paul was
also named as a Microsoft® Most Valuable Professional (MVP) for C# in 2012–2014.

 About Deitel & Associates, Inc. xxix

Through Deitel & Associates, Inc., he has delivered hundreds of programming courses
worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity,
NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands
Missile Range, Rogue Wave Software, Boeing, SunGard, Nortel Networks, Puma, iRobot,
Invensys and many more. He and his co-author, Dr. Harvey Deitel, are the world’s best-
selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before they spun off Com-
puter Science departments. He has extensive college teaching experience, including
earning tenure and serving as the Chairman of the Computer Science Department at
Boston College before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The
Deitels’ publications have earned international recognition, with translations published in
Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Tradi-
tional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered
hundreds of programming courses to corporate, academic, government and military cli-
ents.

Alexander Wald, a Deitel summer intern, helped us convert the book and our
Android apps from Android 4.3 and 4.4 using Eclipse to Android 6 using Android Studio.
Alexander is currently pursuing a B.S. in Computer Science at Worcester Polytechnic
Institute with a minor in Electrical Engineering. He became interested in mathematics and
the sciences at an early age and has been writing code for approximately 9 years. He’s moti-
vated by his passion to be creative and innovative and his interest in sharing his knowledge
with others.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in Android and
iOS app development, computer programming languages, object technology and Internet
and web software technology. The company’s clients include many of the world’s largest
corporations, government agencies, branches of the military, and academic institutions.
The company offers instructor-led training courses delivered at client sites worldwide on
major programming languages and platforms, including Android app development, iOS
app development, Swift™, Java™, C++, C, Visual C#®, Visual Basic®, Internet and web
programming and a growing list of additional programming and software-development
courses.

Through its 40-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.deitel.com/training

xxx Preface

To request a proposal for worldwide on-site, instructor-led training at your organization,
send an e-mail to deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
via links posted at http://www.deitel.com. Bulk orders by corporations, the govern-
ment, the military and academic institutions should be placed directly with Pearson. For
more information, visit

http://www.informit.com/store/sales.aspx

http://www.deitel.com
http://www.informit.com/store/sales.aspx

In this section, you’ll set up your computer for use with this book. Google frequently up-
dates the Android™ development tools, so before reading this section, check the book's
website

to see if we’ve posted an updated version of this Before You Begin section.

Software and Hardware System Requirements
To develop Android apps, you need a Windows®, Linux® or Mac® OS X® system. To
view the latest operating-system requirements visit

and scroll down to the System Requirements heading. We developed the apps in this book
using the following software:

• Java SE 7 Software Development Kit

• Android Studio 1.4 Integrated Development Environment (IDE)

• Android 6 SDK (API 23)

You’ll see how to obtain each of these in the following sections.

Installing the Java Development Kit (JDK)
Android requires the Java Development Kit version 7 (JDK 7). All Java language features
in JDK 7 are supported in Android Studio, but the try-with-resources statement is sup-
ported only for Android platform versions with API levels 19 and higher. To download
JDK 7 for Windows, OS X or Linux, go to

Choose the appropriate 32-bit or 64-bit version for your computer hardware and operat-
ing system. Be sure to follow the installation instructions at

Android does not yet support Java 8 language features, such as lambda expressions, new
interface features and the stream APIs. You can use JDK 8 (as we did when developing this
book’s apps), provided that you use no Java 8 language features in your code.

http://www.deitel.com/books/AndroidFP3

http://developer.android.com/sdk/index.html#Requirements

http://www.oracle.com/technetwork/java/javase/downloads/java-
archive-downloads-javase7-521261.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before You Begin

http://www.deitel.com/books/AndroidFP3
http://developer.android.com/sdk/index.html#Requirements
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

xxxii Before You Begin

Installing Android Studio
Google’s Android Studio comes with the latest Android Software Development Kit (SDK)
and is based on the popular Java IDE from JetBrains called IntelliJ® IDEA. To download
Android Studio, go to

and click the Download Android Studio button. When the download completes, run the
installer and follow the on-screen instructions to complete the installation. If you previ-
ously installed an earlier Android Studio version, a Complete Installation window will ap-
pear at the end of the install process and give you the option to import your previous
settings. At the time of this writing, Android Studio 1.4 is the current released version and
Android Studio 1.5 is available as an early access release.

Using Early Access Releases
When building apps for release to Google Play or other app stores, it’s best to use the cur-
rently released version of Android Studio. If you’d like to work with new features in An-
droid Studio early access and beta releases, Google releases these versions in the so-called
Canary Channel and Beta Channel. You can configure Android Studio to obtain updates
from these channels. To update Android Studio to the latest early access or beta release:

1. Open Android Studio.

2. In the Welcome to Android Studio window, click Configure.

3. Click Check for Update.

4. In the Platform and Plugin Updates dialog, click the Updates link.

5. In the Updates dialog, select Canary Channel or Beta Channel from the drop-
down to the right of the Automatically check updates for checkbox.

6. Click OK, then click Close.

7. Click Check for Update again.

8. The IDE will check for updates and tell you whether there are updates to apply.

9. Click Update and Restart to install the latest Android Studio version.

If you’ve previously opened a project in Android Studio and did not close the project, the
IDE skips the Welcome to Android Studio window and opens the last project. In this case,
you can access the Updates dialog on a Mac via Android Studio > Check for Updates… or
on Windows/Linux via Help > Check for Update…. Then continue from Step 4 above. For
a Google’s list of Android Studio Tips and Tricks, visit:

Configure Android Studio to Show Line Numbers
By default, Android Studio does not show line numbers next to the code that you write.
To turn on line numbers to make it easier to follow our line-numbered code examples:

1. Open Android Studio ().

http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/installing/studio-tips.html

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/studio-tips.html

 Configure Android Studio to Disallow Code Folding xxxiii

2. When the Welcome to Android Studio window appears, click Configure, then click
Settings to open the Default Settings window. If the Welcome to Android Studio
window does not appear, use the menus on Mac to select Android Studio > Pref-
erences… or on Windows/Linux to select File > Other Settings > Default Set-
tings….

3. Expand the Editor > General node and select Appearance, then ensure that Show
line numbers is selected and click OK.

Configure Android Studio to Disallow Code Folding
By default, Android Studio’s code-folding feature is enabled. This feature collapses multi-
ple lines of code into a single line so you can focus on other aspects of the code. For exam-
ple, all the import statements in a Java source-code file can be collapsed into a single line
to hide them, or an entire method can be collapsed into a single line. You can expand these
lines if you need to look at the code in detail. We disabled this feature in our IDE. If you
wish to do so, follow the steps in the preceding section, then under Editor > General > Code
Folding uncheck Show code folding outline.

Android 6 SDK
This book’s code examples were written using Android 6. At the time of this writing, the
Android 6 SDK was bundled with Android Studio. As new Android versions are released,
the latest version will be bundled, which may prevent our apps from compiling properly.
When you work with this book, we recommend using Android 6. You can install prior
Android platform versions as follows:

1. Open Android Studio ().

2. When the Welcome to Android Studio window appears, click Configure, then click
SDK Manager to display the Android SDK manager. If a project window appears
rather than the Welcome to Android Studio window, you can access the Android
SDK manager via Tools > Android > SDK Manager.

3. In the SDK Platforms tab, check the versions of Android you wish to install, then
click Apply and OK. The IDE then downloads and installs the additional platform
versions. The IDE also will help you keep your installed versions up-to-date.

Creating Android Virtual Devices (AVDs)
The Android SDK’s Android emulator allows you to test apps on your computer rather
than on an Android device—this is essential, of course, if you do not have Android devices.
To do so, you create Android Virtual Devices (AVDs) that run in the emulator. The emu-
lator can be slow, so most Android developers prefer testing on actual devices. Also, the em-
ulator does not support various features, including phone calls, USB connections,
headphones and Bluetooth. For the latest emulator capabilities and limitations, visit

That page’s Using Hardware Acceleration section discusses features that can improve emu-
lator performance, such as using the computer’s graphics processing unit (GPU) to in-

http://developer.android.com/tools/devices/emulator.html

http://developer.android.com/tools/devices/emulator.html

xxxiv Before You Begin

crease graphics performance, and using the Intel HAXM (hardware accelerated execution
manager) emulator to increase overall AVD performance. There are also faster third-party
emulators, such as Genymotion.

After you’ve installed the Android Studio and before you run an app in the emulator,
you must create at least one Android Virtual Device (AVD) for Android 6. Each AVD
defines the characteristics of the device you wish to emulate, including

• its screen size in pixels

• its pixel density

• its screen’s physical size

• the size of the SD card for data storage

• and more.

To test your apps for multiple Android devices, you can create AVDs that emulate each
unique device. You also can use Google’s new Cloud Test Lab

a website that will enable you to upload your app and test it on many of today’s popular
Android devices. By default, Android Studio creates for you one AVD that’s configured
to use the version of Android bundled with the IDE. For this book, we use AVDs for two
of Google’s Android reference devices—the Nexus 6 phone and the Nexus 9 tablet—
which run standard Android without the modifications made by many device manufac-
turers. It’s easiest to create AVDs in Android Studio once you already have a project open
in the IDE. For this reason, we’ll show how to create the Android 6 AVDs in Section 1.9.

Setting Up an Android Device for Testing Apps
Testing apps on Android devices tends to be quicker than using AVDs. In addition, recall
that there are some features you can test only on actual devices. To execute your apps on
Android devices, follow the instructions at

If you’re developing on Microsoft Windows, you’ll also need the Windows USB driver for
Android devices that you installed earlier in this Before You Begin section. In some cases
on Windows, you may also need the manufacturer’s device-specific USB drivers. For a list
of USB driver sites for various device brands, visit

Downloading the Book’s Code Examples
The source code for Android 6 for Programmers: An App-Driven Approach is available for
download at

Click the Download Code Examples link to download a ZIP archive file containing the ex-
amples to your computer. Depending on your operating system, double click the ZIP file

https://developers.google.com/cloud-test-lab/

http://developer.android.com/tools/device.html

http://developer.android.com/tools/extras/oem-usb.html

http://www.deitel.com/books/AndroidFP3/

https://developers.google.com/cloud-test-lab/
http://developer.android.com/tools/device.html
http://developer.android.com/tools/extras/oem-usb.html
http://www.deitel.com/books/AndroidFP3/

 A Note Regarding Android Studio and the Android SDK xxxv

to unzip the archive or right click and select the option to extract the archive’s contents. Re-
member where the extracted files are located on your system so you can access them later.

A Note Regarding Android Studio and the Android SDK
If you import one of our apps into Android Studio and it does not compile, this could be
the result of updates to Android Studio or the Android platform tools. For such issues,
please check Android questions and answers on StackOverflow at:

and the Google+ Android Development community at:

or write to us at

You’ve now installed all the software and downloaded the code examples you’ll need
to study Android app development with Android 6 for Programmers: An App-Driven
Approach and to begin developing your own apps. Enjoy!

http://stackoverflow.com/questions/tagged/android

http://bit.ly/GoogleAndroidDevelopment

deitel@deitel.com

http://stackoverflow.com/questions/tagged/android
http://bit.ly/GoogleAndroidDevelopment

This page intentionally left blank

3
Tip Calculator App

Introducing GridLayout, EditText, SeekBar, Event
Handling, NumberFormat, Customizing the App’s Theme

and Defining App Functionality with Java

O b j e c t i v e s
In this chapter you’ll:

■ Change the default GUI theme.

■ Customize the GUI theme’s colors.

■ Design a GUI using a GridLayout.

■ Use the IDE’s Component Tree window to add views to a
GridLayout.

■ Use TextViews, an EditText and a SeekBar.

■ Use Java object-oriented programming capabilities,
including classes, objects, interfaces, anonymous inner
classes and inheritance to add functionality to an app.

■ Programmatically change the text in a TextView.

■ Use event handling to respond to user interactions with an
EditText and a SeekBar.

■ Specify that the keypad should display by default when the
app executes.

■ Specify that the app supports only portrait orientation.

74 Chapter 3 Tip Calculator App
O

u
tl

in
e

3.1 Introduction
The Tip Calculator app (Fig. 3.1(a)) calculates and displays the tip and total for a restaurant
bill amount. As you touch the numeric keypad to enter the bill amount’s digits, the app
calculates and displays the tip and total bill amounts for the current tip percentage (15%
by default). You specify a tip percentage from 0% to 30% by moving the SeekBar
thumb—this updates the displayed tip percentage and recalculates the tip and total. All nu-
meric values are displayed using locale-specific formatting. Figure 3.1(b) shows the app af-
ter the user enters the amount 56.32 and changes the tip percentage to 25%.

You’ll begin by test-driving the app. Then we’ll overview the technologies you’ll use
to create the app. You’ll build the app’s GUI using Android Studio’s layout editor and the
Component Tree window. Finally, we’ll present the complete Java code for the app and do
a detailed code walkthrough.

Note Regarding the Keyboard in Our Screen Captures
The keypad in Fig. 3.1 may differ, based on your AVD’s or device’s Android version or
whether you’ve installed and selected a custom keyboard on your device. We configured
our AVD to display the dark keyboard for better contrast in our screen captures. To do so:

1. Touch the home () icon on your AVD or device.

3.1 Introduction
3.2 Test-Driving the Tip Calculator App
3.3 Technologies Overview

3.3.1 Class Activity
3.3.2 Activity Lifecycle Methods
3.3.3 AppCompat Library and Class

AppCompatActivity
3.3.4 Arranging Views with a GridLayout
3.3.5 Creating and Customizing the GUI

with the Layout Editor and the
Component Tree and Properties
Windows

3.3.6 Formatting Numbers as Locale-
Specific Currency and Percentage
Strings

3.3.7 Implementing Interface
TextWatcher for Handling
EditText Text Changes

3.3.8 Implementing Interface
OnSeekBarChangeListener for
Handling SeekBar Thumb Position
Changes

3.3.9 Material Themes
3.3.10 Material Design: Elevation and

Shadows
3.3.11 Material Design: Colors
3.3.12 AndroidManifest.xml
3.3.13 Searching in the Properties Window

3.4 Building the GUI
3.4.1 GridLayout Introduction
3.4.2 Creating the TipCalculator Project

3.4.3 Changing to a GridLayout
3.4.4 Adding the TextViews, EditText

and SeekBar
3.4.5 Customizing the Views

3.5 Default Theme and Customizing
Theme Colors

3.5.1 parent Themes
3.5.2 Customizing Theme Colors
3.5.3 Common View Property Values as

Styles
3.6 Adding the App’s Logic

3.6.1 package and import Statements
3.6.2 MainActivity Subclass of

AppCompatActivity
3.6.3 Class Variables and Instance

Variables
3.6.4 Overriding Activity Method

onCreate
3.6.5 MainActivity Method calculate
3.6.6 Anonymous Inner Class That

Implements Interface
OnSeekBarChangeListener

3.6.7 Anonymous Inner Class That
Implements Interface TextWatcher

3.7 AndroidManifest.xml
3.7.1 manifest Element
3.7.2 application Element
3.7.3 activity Element
3.7.4 intent-filter Element

3.8 Wrap-Up

3.2 Test-Driving the Tip Calculator App 75

2. On the home screen, touch the launcher () icon, then open the Settings app.

3. In the Personal section, touch Language and Input.

4. On an AVD, touch Android Keyboard (AOSP). On a device touch Google Key-
board—we assume you’re using the standard Android keyboard.

5. Touch Appearance & layouts, then touch Theme.

6. Touch Material Dark to change to the keyboard with the dark background.

3.2 Test-Driving the Tip Calculator App
Opening and Running the App
Perform the steps in Sections 1.9.1 and 1.9.3 to open the Tip Calculator app project in An-
droid Studio and run the app on the Nexus 6 AVD. If you prefer, perform the steps in
Section 1.9.4 to run the app on an Android phone.

Entering a Bill Total
Enter the bill total 56.32 by touching numbers on the numeric keypad. If you make a mis-
take, press the keypad’s delete button () to erase the last digit you entered. Even though
the keypad contains a decimal point, the app is configured so that you may enter only the

Fig. 3.1 | Entering the bill total and calculating the tip.

Move the SeekBar
thumb to change

the tip percentage

a) Initial GUI
b) GUI after user enters the amount 56.32 and
changes the tip percentage to 25%

Touch the keypad’s
numbers to enter the

bill amount as a
whole number of

pennies—the app
divides your input by
100.0 to calculate the

bill amount

Selected tip
percentage is

displayed here

Touch to
delete digits from

right to left

76 Chapter 3 Tip Calculator App

digits 0 through 9—other input buttons on the keypad are ignored and an Android device
will vibrate to indicate when you touch an invalid input button. Each time you touch a
digit or delete a digit, the app reads what you’ve entered so far, and

• converts it to a number

• divides the number by 100.0 and displays the new bill amount

• recalculates the tip and total amounts, based on the current tip percentage (15%
by default) and

• displays in the Tip and Total TextViews the new tip and total amounts.

If you delete all the digits, the app redisplays Enter Amount in the blue TextView and dis-
plays 0.00 in the orange TextViews. The app divides the value by 100.0 and displays the
result in the blue TextView. The app then calculates and updates the tip and total amounts
in the orange TextViews.

All monetary amounts are displayed in locale-specific currency formats and the tip
percentage is displayed in a locale-specific percentage format. For the U.S. locale, as you
enter the four digits 5, 6, 3 and 2, the bill total is displayed successively as $0.05, $0.56,
$5.63 and $56.32, respectively.

Selecting a Tip Percentage
Use the Seekbar—often called a slider in other GUI technologies—to specify the tip per-
centage. Drag the Seekbar’s thumb until the percentage reads 25% (Fig. 3.1(b)). As you
drag the thumb, the tip and total update continuously. By default, the Seekbar allows you
to select values from 0 to 100, but we specified a maximum value of 30 for this app.

3.3 Technologies Overview
This section introduces the IDE and Android features you’ll use to build the Tip Calculator
app. We assume that you’re already familiar with Java object-oriented programming—we
present Java in our book Java SE 8 for Programmers (http://bit.ly/JavaSE8FP). You’ll

• use various Android classes to create objects

• call methods on classes and objects

• define and call your own methods

• use inheritance to create a class that defines the Tip Calculator’s functionality and

• use event handling, anonymous inner classes and interfaces to process the user’s
GUI interactions.

3.3.1 Class Activity
Android apps have four types of executable components—activities, services, content provid-
ers and broadcast receivers. In this chapter, we’ll discuss activities, which are defined as sub-
classes of Activity (package android.app). An app can have many activities, one of which
is the first you see after launching the app. You interact with an Activity through views—
GUI components that inherit from class View (package android.view).

Before Android 3.0, a separate Activity was typically associated with each screen of
an app. As you’ll see, starting in Chapter 4, an Activity can manage multiple Fragments.

http://bit.ly/JavaSE8FP

3.3 Technologies Overview 77

On a phone, each Fragment typically occupies the entire screen and the Activity switches
between the Fragments, based on user interactions. On a tablet, activities typically display
multiple Fragments per screen to take advantage of the larger screen size.

3.3.2 Activity Lifecycle Methods
Throughout its life, an Activity can be in one of several states—active (i.e., running),
paused or stopped. The Activity transitions between these states in response to various
events:

• An active Activity is visible on the screen and “has the focus”—that is, it’s in the
foreground. You can interact with the Activity currently in the foreground.

• A paused Activity is visible on the screen but does not have the focus—such as
when an alert dialog is displayed. You cannot interact with the paused activity un-
til it becomes active—for example, after the user dismisses an alert dialog.

• A stopped activity is not visible on the screen—it’s in the background and is likely
to be killed by the system when its memory is needed. An Activity is stopped
when another Activity enters the foreground and becomes active. For example,
when you answer a phone call, the phone app becomes active and the app you
previously were using is stopped.

As an Activity transitions among these states, the Android runtime calls various
Activity lifecycle methods—all of which are defined by the Activity class in package
android.app. You’ll override the onCreate method in every activity. This method is called
by the Android runtime when an Activity is starting—that is, when its GUI is about to
be displayed so you can interact with the Activity. Other lifecycle methods include
onStart, onPause, onRestart, onResume, onStop and onDestroy. We’ll discuss most of
these in later chapters. Each activity lifecycle method you override must call the superclass’s
version; otherwise, an exception will occur. This is required because each lifecycle method
in superclass Activity contains code that must execute in addition to the code you define
in your overridden lifecycle methods. For more on the Activity lifecycle see

3.3.3 AppCompat Library and Class AppCompatActivity
A big challenge developers face when using new Android features is backward compatibil-
ity with earlier Android platforms. Google now introduces many new Android features via
the Android Support Library—a set of libraries that enable you to use newer Android fea-
tures in apps targeting current and past Android platforms.

One such library is the AppCompat library, which enables apps to provide an app bar
(formerly called an action bar) and more on devices running Android 2.1 (API 7) and
higher—app bars were originally introduced in Android 3.0 (API 11). Android Studio’s
app templates have been updated to use the AppCompat library, enabling the new apps you
create to run on almost all Android devices.

Android Studio’s Empty Activity app template defines the app’s MainActivity class as
a subclass of AppCompatActivity (package android.support.v7.app)—an indirect sub-
class of Activity that supports using newer Android features in apps running on current
and older Android platforms.

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

78 Chapter 3 Tip Calculator App

For more details on Android Support Libraries, including when to use them and how
to set them up, visit:

3.3.4 Arranging Views with a GridLayout
Recall that you arrange a GUI’s views in layouts. We’ll use a GridLayout (package
android.widget) to arrange views into cells in a rectangular grid. Cells can occupy multi-
ple rows and columns, allowing for complex layouts. Normally, GridLayout requires API
level 14 or higher. However, the Android Support Library provides alternate versions of
GridLayout and many other views and layouts so that you can use them in older Android
versions. For more information on this library and how to use it in your apps, visit

We’ll cover more layouts and views in later chapters—for a complete list, visit

3.3.5 Creating and Customizing the GUI with the Layout Editor and the
Component Tree and Properties Windows
You’ll create TextViews, an EditText and a SeekBar using the layout editor (that you used
in Chapter 2) and Component Tree window, then customize them with the IDE’s Proper-
ties window.

An EditText—often called a text box or text field in other GUI technologies—is a sub-
class of TextView (presented in Chapter 2) that can display text and accept text input from
the user. You’ll specify an EditText for numeric input, allow users to enter only digits and
restrict the maximum number of digits that can be entered.

A SeekBar represents an integer in the range 0–100 by default and allows the user to
select a number in that range by moving the SeekBar’s thumb. You’ll customize the
SeekBar so the user can choose a tip percentage from the more limited range 0 to 30.

3.3.6 Formatting Numbers as Locale-Specific Currency and Percentage
Strings
You’ll use class NumberFormat (package java.text) to create locale-specific currency and
percentage strings—an important part of internationalizing your apps. You also can add

Software Engineering Observation 3.1
By creating apps with the AppCompat library from the start, you avoid having to
reimplement your code if you decide to support older Android versions to target a wider
potential audience for your app.

Software Engineering Observation 3.2
Some Android features are not available in earlier Android versions, even if you use the
AppCompat libraries. For example, Android’s printing capabilities are available only in
Android 4.4 and higher. If you use such features in your app, you must either restrict the
app to the supported platforms or disable those features on Android versions that do not
support them.

http://developer.android.com/tools/support-library

http://developer.android.com/tools/support-library/index.html

http://developer.android.com/reference/android/widget/package-
summary.html

http://developer.android.com/tools/support-library
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/reference/android/widget/package-summary.html
http://developer.android.com/reference/android/widget/package-summary.html

3.3 Technologies Overview 79

accessibility strings and internationalize the app’s other text using the techniques you
learned in Sections 2.7–2.8.

3.3.7 Implementing Interface TextWatcher for Handling EditText
Text Changes
To respond to events when the user changes the text in this app’s EditText, you’ll use an
anonymous inner class to implement the TextWatcher interface (from package
android.text). In particular, you’ll use method onTextChanged to display the currency-
formatted bill amount and to calculate the tip and total as the user enters each digit. If
you’re not familiar with anonymous inner classes, visit

3.3.8 Implementing Interface OnSeekBarChangeListener for
Handling SeekBar Thumb Position Changes
You’ll use another anonymous inner class to implement the SeekBar.OnSeekBarChange-
Listener interface (from package android.widget) to respond to the user moving the
SeekBar’s thumb. In particular, you’ll use method onProgressChanged to display the select-
ed tip percentage and to calculate the tip and total as the user moves the SeekBar’s thumb.

3.3.9 Material Themes
A theme gives an app a look-and-feel that’s consistent with Android. Projects that you create
for Android 5 and higher use themes that adhere to Google’s material design guidelines.
There are several predefined material design themes:

• The “light” theme has a white app bar, a white app background and text that is
black or shades of dark gray.

• The “light” theme with a dark app bar is the same as above, but the app bar is
black with white text by default.

• The “dark” has a black app bar, a dark gray app background and text that is white
or shades of light gray.

For each of these themes, there is

• a Theme.Material version (e.g., Theme.Material.Light) for apps that do not use
any AppCompat libraries and run on Android 5 and higher, and

• a Theme.AppCompat version (e.g., Theme.AppCompat.Light) for apps that use
AppCompat libraries and run on Android 2.1 and higher.

When designing a GUI, you can choose from the predefined themes, or even create
your own new ones. For this chapter, we’ll use Theme.AppCompat.Light.DarkActionBar,
which is the default theme in Android Studio’s app templates. Apps that use the App-
Compat libraries must use one of the AppCompat themes; otherwise, some views will not
render correctly. For more information about each theme and to see sample screen cap-
tures, visit

http://bit.ly/AnonymousInnerClasses

http://www.google.com/design/spec/style/color.html#color-themes
http://developer.android.com/training/material/theme.html

http://bit.ly/AnonymousInnerClasses
http://www.google.com/design/spec/style/color.html#color-themes
http://developer.android.com/training/material/theme.html

80 Chapter 3 Tip Calculator App

3.3.10 Material Design: Elevation and Shadows
Google’s material design guidelines recommend that objects in your user interfaces cast
shadows just as real-world objects do. When you set a view’s elevation property, Android
automatically casts a shadow for that view. Larger elevation values result in more pro-
nounced shadows. For this app, we’ll set the elevation of the blue and orange TextViews
that display monetary amounts.

The material design guidelines contain elevation recommendations for various on-
screen components—for example, a dialog’s recommended elevation is 24dp and a menu’s
is 8dp. For other recommended elevations, see:

3.3.11 Material Design: Colors
App developers often customize a theme’s colors to match a company’s branding. If you
need to customize theme colors, Google’s material design guidelines for color1 recom-
mend that you choose a color palette consisting of a primary color—with no more than
three hues (shades)—and an accent color. The primary colors typically are used to color
the status bar and the app bar at the top of the screen and also can be used in your GUI.
The accent color is used to tint various views in your GUI, such as SeekBars, CheckBoxes
and RadioButtons. Once you choose a palette, you can use Android Studio’s Theme Editor
(Section 3.5.2) to modify a theme’s colors.

You can find recommended sample color swatches from the material design color pal-
ette at

For palette color recommendations, visit

This site enables you to click two colors from Google’s material design color palette, then
it recommends three shades of the primary color, one secondary color and colors for your
app’s text and icons.

In this app, we’ll use color swatches displayed in the Android Studio Theme Editor to
select

• a blue primary color for app bar’s background color

• a darker blue dark primary color for the status bar that appears above the app bar,
and

• an orange accent color used to tint the SeekBar.

Performance Tip 3.1
Many of today’s Android phones use AMOLED displays. On such displays, a black pixel
is turned off and does not consume power. Apps that use mostly black themes can reduce
power consumption by approximately 40% (http://bit.ly/AndroidAMOLEDDisplay).

http://www.google.com/design/spec/what-is-material/elevation-
shadows.html

1. http://www.google.com/design/spec/style/color.html.

http://www.google.com/design/spec/style/color.html#color-color-
palette

http://www.materialpalette.com/

http://bit.ly/AndroidAMOLEDDisplay
http://www.google.com/design/spec/what-is-material/elevation-shadows.html
http://www.google.com/design/spec/what-is-material/elevation-shadows.html
http://www.google.com/design/spec/style/color.html#color-color-palette
http://www.materialpalette.com/
http://www.google.com/design/spec/style/color.html
http://www.curious-creature.org/category/android/

3.4 Building the GUI 81

For the amount TextView’s light blue color and the tip and total TextViews’ light orange
color, we used Google’s material design color palette to choose lighter shades of the pri-
mary and accent colors.

3.3.12 AndroidManifest.xml
The AndroidManifest.xml file is created by the IDE when you create a new app project.
This file contains many of the settings that you specify in the Create New Project dialog—
the app’s name, package name and Activity name(s) and more. You’ll edit this file’s XML
to add a new setting that forces the soft keyboard to be displayed when the app begins exe-
cuting. You’ll also specify that the app supports only portrait orientation—that is, the de-
vice’s longer dimension is vertical.

3.3.13 Searching in the Properties Window
The Properties window allows you to search for properties by their names or portions of
their names, which can help you find and set properties faster. To do so, click the Proper-
ties window’s title bar and begin typing. At the top of the property list, a Search for tooltip
appears showing what you’ve typed so far, and Android Studio highlights parts of every
property name in the list that matches all or part of what you’ve typed. Then you can scroll
through the list looking at the property names containing highlights.

The window will also scroll to the specific property that best matches what you type.
For example, when searching a TextView’s properties, if you type "text co" or "textco",
the Properties window will highlight portions of many properties, but it specifically scrolls
to and highlights the textColor property.

3.4 Building the GUI
In this section, we’ll show the precise steps for building the Tip Calculator’s GUI, including
how to customize the Material theme’s primary and accent colors.

3.4.1 GridLayout Introduction
This app uses a GridLayout (package android.widget) to arrange views into four rows and
two columns, each indexed from 0 like the elements in an array. You can specify a Grid-
Layout’s number of rows and columns in the Properties window. Each cell can be empty
or can hold one or more views, including layouts containing other views. A row’s height is
determined by the row’s tallest view. Similarly, a column’s width is defined by the column’s
widest view. Figure 3.2 shows the Tip Calculator’s GridLayout labeled by its rows and col-
umns—we drew horizontal lines to delineate the rows and a vertical line to delineate the
columns. Views can span multiple rows and/or columns—for example, the Enter Amount
TextView in Fig. 3.2 spans both columns in row 0.

When you drag a view onto a GridLayout in the Component Tree, the view occupies
the next available grid cell—cells populate the GridLayout left-to-right until a given row
is full, then the next view appears in the first column of the next row. As you’ll see, you
also can specify the exact row and column in which to place a view. We’ll discuss other
GridLayout features as we present the GUI-building steps.

82 Chapter 3 Tip Calculator App

id Property Values for This App’s Views
Figure 3.3 shows the views’ id property values. For clarity, our naming convention is to
use the view’s class name in the id property and the corresponding Java variable name. In
the first row, there are actually two components in the same grid cell—the amountTextView
(which initially displays Enter Amount) hides the amountEditText that receives the user in-
put. As you’ll soon see, we restrict the user’s input to whole-number values entered as in-
teger digits, so the user enters the bill amount $34.56 as 3456. This ensures the user cannot
enter invalid input. However, this amount should be displayed as currency. As the user en-
ters each digit, we divide the amount by 100.0 and display in the amountTextView the lo-
cale-specific, currency-formatted amount.

3.4.2 Creating the TipCalculator Project
Follow the steps in Section 2.3 to create a new project using the Empty Activity template.
Specify the following values in the Create New Project dialog’s New Project step:

• Application name: Tip Calculator

• Company Domain: deitel.com (or specify your own domain name)

Fig. 3.2 | Tip Calculator GUI’s GridLayout labeled by its rows and columns.

Fig. 3.3 | Tip Calculator views labeled with their id property values.

column 0 column 1

row 0

row 1

row 2

row 3

percentTextView

tipLabelTextView

totalLabelTextView

percentSeekBar

amountTextView (as you’ll soon see, the
amountEditText is hidden behind this TextView)

tipTextView

totalTextView

3.4 Building the GUI 83

For the remaining steps in the Create New Project dialog, use the same settings as in
Section 2.3. Also, follow the steps in Section 2.5.2 to add an app icon to your project.

Once the project is open in Android Studio, in the layout editor, select Nexus 6 from
the virtual-device drop-down list (Fig. 2.11). Once again, we’ll use this device as the basis for
our design. Also, delete the Hello world! TextView.

3.4.3 Changing to a GridLayout
Recall that the default layout for an Empty Activity is a RelativeLayout. Here, you’ll
change that to a GridLayout:

1. Click the Text tab at the bottom of the layout editor to switch from the Design
view to the layout’s XML text.

2. At the top of the XML, change RelativeLayout to GridLayout.

3. Switch back to the layout editor’s Design tab.

Specifying Two Columns and Default Margins for the GridLayout
Recall that the GUI in Fig. 3.2 consists of two columns. To specify this, select GridLayout
in the Component Tree window, then change its columnCount property to 2—this property
appears near the top of the Properties window with the other layout properties. You do
not need to set the rowCount—it will be increased as we build the GUI.

By default, there are no margins—spacing that separates views—around a GridLayout’s
cells. The material design guidelines recommend 8dp minimum spacing between views:

GridLayout can enforce this recommended spacing. With the GridLayout selected in the
Component Tree, in the Properties window, check the GridLayout’s useDefaultMargins
property (which sets it to true) to use the recommended margins around the layout’s cells.

3.4.4 Adding the TextViews, EditText and SeekBar
You’ll now build the GUI in Fig. 3.2. You’ll start with the basic layout and views in this
section. In Section 3.4.5, you’ll customize the views’ properties to complete the design.
Then, in Section 3.5, you’ll change the default theme and customize two of its colors. As
you add each view to the GUI, immediately set its id property using the names in Fig. 3.3.
You’ll add views to the GridLayout using the Component Tree window. If you drop a view
in the wrong location in the Component Tree, you can drag it to the correct location.

You may also drag views directly onto the layout editor. For a GridLayout, the layout
editor displays a grid of green guidelines to help you position the view. As you drag a view
over the grid, the layout editor displays a tooltip indicating the row and column in which
the view will be placed if you drop the view at that location.

http://developer.android.com/design/style/metrics-grids.html.

Error-Prevention Tip 3.1
The cells in the layout editor’s grid of green guidelines are small. If you drop a view in the
wrong location, the layout editor might change the GridLayout’s rowCount and column-
Count property values and incorrectly set the view’s layout:row and layout:column
property values, causing your GUI to lay out incorrectly. If so, reset the GridLayout’s row-
Count and columnCount, based on your design, and change the view’s layout:row and
layout:column property values to the correct row and column for your design.

http://developer.android.com/design/style/metrics-grids.html

84 Chapter 3 Tip Calculator App

Step 1: Adding Views to the First Row
The first row consists of the amountTextView and the amountEditText—both occupy the
same cell and span two columns. Each time you drop a view onto the GridLayout in the
Component Tree window, the view is placed in the layout’s next open cell, unless you specify
otherwise by setting the view’s layout:row and layout:column properties. You’ll do that
in this step so that the amountEditText and amountTextView appear in the same cell with
the amountTextView in the foreground.

This app’s TextViews use the medium-sized font from the app’s theme. The layout
editor’s Palette provides preconfigured TextViews named Plain Text, Large Text, Medium
Text and Small Text (in the Widgets section) for various text sizes. The Plain Text TextView
uses the theme’s default font size. For the others, the IDE configures the TextView’s text-
Appearance property using the Material theme’s styles for the corresponding font sizes.

Perform the following steps to add to the GridLayout an EditText and a TextView
for receiving and displaying the bill amount:

1. This app allows you to enter only nonnegative integers, which the app divides by
100.0 to display the bill amount. The Palette’s Text Fields section provides precon-
figured EditTexts for various forms of input, including person names, passwords,
e-mail addresses, phone numbers, times, dates and numbers. When the user inter-
acts with an EditText, an appropriate keyboard is displayed, based on the Edit-
Text’s input type. From the Palette’s Text Fields section, drag and drop a Number
EditText onto the GridLayout node in the Component Tree window—this creates
an EditText with the id editText in the GridLayout. Change the id to amount-
EditText. The EditText is placed in the first column of the GridLayout’s first
row. Set the EditText’s layout:column to 0 and the layout:columnSpan to 2—
these settings ensure that the TextView spans both columns of row 0.

2. Drag a Medium Text TextView from the Palette’s Widgets section over the amount-
EditText in the Component Tree window—a horizontal black line appears below
amountEditText, indicating that the TextView will be placed after amountEdit-
Text. The IDE creates a new TextView named textView and nests it in the Grid-
Layout node. The default text "Medium Text" appears in the layout editor. You’ll
change this in Step 5 (Section 3.4.5). Change the TextView’s id to amountText-
View, then set the layout:row to 0, the layout:column to 0 and the layout:col-
umnSpan to 2—these settings ensure that the TextView spans both columns of row
0, as you’ll see once we change the TextView’s background color.

Step 2: Adding Views to the Second Row
Next, add the percentTextView and percentSeekBar to the GridLayout for displaying
and selecting the tip percentage (be sure to set each view’s id to the name we specify):

1. Drag a Medium TextView (percentTextView) from the Palette’s Widgets section
over the amountTextView in the GridLayout node in the Component Tree win-
dow. The new view becomes the first view in row 1 (the second row).

2. Drag a SeekBar (percentSeekBar) from the Palette’s Widgets section over the
percentTextView in the GridLayout node in the Component Tree window. The
new view becomes the second view in row 1.

3.4 Building the GUI 85

Step 3: Adding Views to the Third Row
Next, add the tipLabelTextView and the tipTextView to the GridLayout for displaying
the tip amount:

1. Drag a Medium TextView (tipLabelTextView) over the percentSeekBar in the
GridLayout node. The new view becomes the first view in row 2 (the third row).

2. Drag a Medium TextView (tipTextView) over the tipLabelTextView in the
GridLayout node. The new view becomes the second view in row 2.

Step 4: Adding Views to the Fourth Row
Next, add the totalLabelTextView and the totalTextView to the GridLayout for dis-
playing the tip amount:

1. Drag a Medium TextView (totalLabelTextView) over the tipTextView in the
GridLayout node. This becomes the first view in row 3 (the fourth row).

2. Drag a Medium TextView (totalTextView) over the totalLabelTextView in the
GridLayout node. This becomes the second view in row 3.

Reviewing the Layout So Far
The GUI and Component Tree window should now appear as shown in Fig. 3.4. The
warning symbols shown in the layout editor and the Component Tree window will go away
as you complete the GUI design in Section 3.4.5.

A Note Regarding the EditText’s Virtual Keyboard
When the virtual keyboard is displayed, the device’s back button () changes to a down
button () that enables you to dismiss the keyboard. If you do so, the down button ()
changes to a back button () that you can touch to return to the previous Activity—
possibly a prior app or the device’s home screen.

Normally, you’d touch the EditText to redisplay the virtual keyboard. In this app,
however, the EditText is hidden behind a TextView. If you were to dismiss this app’s key-
board, you’d have to leave the app and return to it to redisplay the keyboard. We could
programmatically force the keyboard to stay on the screen, but this would prevent the back

Fig. 3.4 | GUI and the Component Tree window after adding the views to the GridLayout.

a) GUI design so far
b) Component Tree window showing the Tip
Calculator’s layout and views

86 Chapter 3 Tip Calculator App

button from ever being displayed in this app. This, in turn, would prevent you from
returning to the previous Activity—a basic Android feature that every user expects.

We used an Android virtual keyboard to demonstrate how to choose the keyboard dis-
played for a given EditText. Another approach would be to provide Buttons representing
the digits 0–9 that always remain on the screen. We could handle their click events and
use String manipulation rather than an EditText to keep track of the user input.

3.4.5 Customizing the Views
You’ll now customize additional view properties. As you did in Section 2.5, you’ll also cre-
ate several String, dimension and color resources.

Step 5: Specifying Literal Text
Next, you’ll specify the literal text for the amountTextView, percentTextView, tipLabel-
TextView and totalLabelTextView. When a TextView’s text property is empty, its hint
property’s value (if you specify one) is displayed—this property is commonly used with an
EditText (a subclass of TextView) to help the user understand the EditText’s purpose.
We’re using it similarly in the amountTextView to tell the user to enter a bill amount:

1. In the Component Tree, select amountTextView and locate its hint property in the
Properties window.

2. Click the ellipsis (…) button to the right of the property’s value to display the
Resources dialog.

3. In the dialog, click New Resource, then select New String Value… to display the
New String Value Resource dialog and set the Resource name to enter_amount
and Resource value to "Enter Amount". Leave the other settings and click OK to
create the new String resource and set it as amountTextView’s hint.

Repeat these steps to set the text property for the percentTextView, tipLabelTextView
and totalLabelTextView using the values shown in Fig. 3.5.

Step 6: Right Aligning the TextViews in the Left Column
In Fig. 3.2, the percentTextView, tipLabelTextView and totalLabelTextView are right
aligned. You can accomplish this for all three TextViews at once as follows:

1. Select the percentTextView.

2. Hold Ctrl on Windows/Linux or Command on Mac and click the tipLabelText-
View and totalLabelTextView. Now all three TextViews are selected.

3. Expand the layout:gravity property’s node and check the right checkbox.

View Resource name Resource Value

percentTextView tip_percentage 15%

tipLabelTextView tip Tip

totalLabelTextView total Total

Fig. 3.5 | String resource values and names.

3.4 Building the GUI 87

Step 7: Configuring the amountEditText
In the final app, the amountEditText is hidden behind the amountTextView and is config-
ured to allow only digits to be entered by the user. Select the amountEditText and set the
following properties:

1. Set the digits property to 0123456789—this allows only digits to be entered,
even though the numeric keypad contains other characters, such as minus (-),
comma (,) and period (.).

2. Set the maxLength property to 6. This restricts the bill amount to a maximum of
six digits—so the largest supported bill amount is 9999.99.

Step 8: Configuring the amountTextView
To complete the amountTextView’s formatting, select it and set the following properties:

1. Delete the default value of the text property ("Medium Text")—we’ll program-
matically display text here, based on the user’s input.

2. Expand the layout:gravity property’s node and set the fill to horizontal.
This indicates that the TextView should occupy all remaining horizontal space in
this GridLayout row.

3. Set the background property (which specifies the view’s background color) to a
new color resource named amount_background with the value #BBDEFB—a light
blue color chosen from Google’s material design color palette.

4. Add padding around the TextView. A view’s padding specifies extra space around
a view’s content. The all property specifies that the padding amount should be
applied to the top, right, bottom and left of the view’s contents. You may also set
the padding for each of these individually. Expand the padding property’s node,
click the all property, then click the ellipsis button. Create a new dimension re-
source named textview_padding with the value 12dp. You’ll use this resource
again shortly.

5. Finally, add a shadow to the view by setting the elevation property to a new di-
mension resource named elevation with the value 4dp. We chose this value for
demonstration purposes to emphasize the shadow effect.

Step 9: Configuring the percentTextView
Notice that the percentTextView is aligned higher than the percentSeekBar. This looks
better if it’s vertically centered. To do this, expand the layout:gravity property’s node,
then set the center value to vertical. Recall that you previously set the layout:gravity
to right. The combination of these settings appears in the layout XML as

A vertical bar (|) is used to separate multiple layout:gravity values—in this case indicat-
ing that the TextView should be centered vertically and right aligned within the grid cell.

Step 10: Configuring the percentSeekBar
Select percentSeekBar and configure the following properties:

1. By default, a SeekBar’s range is 0 to 100 and its current value is indicated by its
progress property. This app allows tip percentages from 0 to 30 and specifies a

android:layout_gravity="center_vertical|right"

88 Chapter 3 Tip Calculator App

default of 15 percent. Set the SeekBar’s max property to 30 and the progress
property to 15.

2. Expand the layout:gravity property’s node and set the fill to horizontal so
the SeekBar occupies all horizontal space in the SeekBar’s GridLayout column.

3. Set the layout:height property to a new dimension resource (seekbar_height)
with the value 40dp to increase vertical space in which the SeekBar is displayed.

Step 11: Configuring the tipTextView and totalTextView
To complete the formatting of the tipTextView and totalTextView, select both and set
the following properties:

1. Delete the default value of the text property ("Medium Text")—we’ll program-
matically display the calculated tip and total.

2. Expand the layout:gravity property’s node and set the fill to horizontal so
each TextView occupies all horizontal space in the TextViews’ GridLayout column.

3. Set the background property to a new color resource named result_background
with the value #FFE0B2—a light orange color chosen from Google’s material de-
sign color palette.

4. Set the gravity property to center so the calculated tip and total amounts will
be centered within these TextViews.

5. Expand the padding property’s node, click the ellipsis button for the all value,
then select the dimension resource named textview_padding that you created
previously for the amountTextView.

6. Finally, add a shadow to each view by setting the elevation property to the
elevation dimension resource you created earlier.

3.5 Default Theme and Customizing Theme Colors
Each app has a theme that defines the default look-and-feel of the standard views you use.
The theme is specified in the app’s AndroidManifest.xml file (Section 3.7). You can cus-
tomize aspects of the theme, such those that define an app’s color scheme, by defining
style resources in the styles.xml file located in the in the app’s res/values folder.

3.5.1 parent Themes
The style.xml resource file contains a style with the name "AppTheme" that’s referenced
from the app’s AndroidManifest.xml file to specify the app’s theme. This style also spec-
ifies a parent theme, which is similar to a superclass in Java—the new style inherits its
parent theme’s attributes and their default values. Just as in a Java subclass, a style can
override parent theme attributes with values customized for specific apps. A company
might do this, for example, to use the company’s branding colors. We’ll use this concept
in Section 3.5.2 to customize three colors used in the app’s theme.

As we mentioned previously, Android Studio’s app templates now include support for
the AppCompat libraries that enable you to use newer Android features in older Android
versions. By default, Android Studio sets the parent theme to

Theme.AppCompat.Light.DarkActionBar

3.5 Default Theme and Customizing Theme Colors 89

one of several predefined themes from the AppCompat library—apps that use this theme
have a light background, except for the dark app bar at the top of the app. Each AppCompat
theme uses Google’s material design recommendations to style your apps’ GUIs.

3.5.2 Customizing Theme Colors
Section 3.3.11 discussed where a theme’s primary, dark primary and accent colors are ap-
plied in an app’s on-screen elements. In this section, you’ll use the new Android Studio
Theme Editor to change the app’s primary, dark primary and accent colors, thus overriding
the values of the android:colorPrimary, android:colorPrimaryDark and android:col-
orAccent theme attributes shown in Fig. 3.6. These are three of many theme attributes
you can override. For the complete list, visit:

Modifying the Theme’s Primary, Dark Primary and Accent Colors
To customize the colors:

1. Open styles.xml. In the editor’s upper-right corner, click the Open editor link
to display the Theme Editor (Fig. 3.7) showing the current colors for colorPri-
mary (dark blue), colorPrimaryDark (a darker shade of colorPrimary) and col-
orAccent (bright pink)—these are the default colors specified in Android
Studio’s Empty Activity app template. For this app, we’ll change colorPrimary
and colorPrimaryDark to lighter blues and change colorAccent to orange.

2. Customize the app’s colorPrimary value by clicking its color swatch (Fig. 3.7)
to display the Resources dialog (Fig. 3.8). In the dialog, click the Material Blue
500 color swatch, then click OK to change colorPrimary’s value—hovering the
mouse cursor over a color swatch displays its color name in a tooltip. The number
500 represents a particular shade of the Material Blue color. Shades of each color
range from 50 (a light shade) to 900 (a dark shade)—you can view samples of
each color’s shades at

http://developer.android.com/reference/android/R.attr.html

Fig. 3.6 | Theme attributes for the primary, primary dark and accent colors.

 https://www.google.com/design/spec/style/color.html#color-
color-palette

android:colorPrimary
 is used in the app bar

android:colorAccent
 is used to tint various controls,

including SeekBars

android:colorPrimaryDark
 is used in the status bar

http://developer.android.com/reference/android/R.attr.html
https://www.google.com/design/spec/style/color.html#color-color-palette
https://www.google.com/design/spec/style/color.html#color-color-palette

90 Chapter 3 Tip Calculator App

Fig. 3.7 | Theme Editor shows styled view previews on the left and theme attributes on the right.

Fig. 3.8 | Selecting the Material Blue 500 color swatch for colorPrimary.

Color swatches for the theme’s colorPrimary, colorPrimaryDark and colorAccent attributes

Selecting Material
Blue 500 as the new
colorPrimary
value

Hexadecimal value of
the currently selected
color—the material
design specification
shows hexadecimal
values for the
recommended colors
and their shades

3.5 Default Theme and Customizing Theme Colors 91

3. Next, click the colorPrimaryDark color swatch in the Theme Editor to display the
Resources dialog. The Theme Editor recognizes the new colorPrimary value and
automatically displays a color swatch containing the recommended darker
colorPrimary shade you should use for colorPrimaryDark—in this case, Mate-
rial Blue 700. Click that color swatch (Fig. 3.9), then click OK.

4. Next, click the colorAccent color swatch in the Theme Editor to display the Re-
sources dialog. Again, the Theme Editor recognizes that you changed the color-
Primary value and displays swatches for various complementary accent colors. In
the dialog, click the Orange accent 400 color swatch, then click OK to change
colorAccent’s value (Fig. 3.10), then click OK.

You’ve now completed the app’s design, which should appear as shown in Fig. 3.11.

3.5.3 Common View Property Values as Styles
As you’ll see in later apps, style resources can define common property values that should
be applied to multiple views. You apply a style resource to a given view by setting its
style property. Any subsequent changes you make to a style are automatically applied
to all views using the style. For example, consider the tipTextView and totalTextView
that we configured identically in Step 11 of Section 3.4.5. We could have defined a style
resource specifying the layout:gravity, background, gravity, padding and elevation
properties’ values, then set both TextViews’ style properties to the same style resource.

Fig. 3.9 | Selecting the Material Blue 700 color swatch for colorPrimaryDark.

Selecting Material
Blue 700 as the new
colorPrimaryDark
value

Value before the new
color is selected

92 Chapter 3 Tip Calculator App

3.6 Adding the App’s Logic
Class MainActivity (Figs. 3.12–3.18) implements the Tip Calculator app’s logic. It calcu-
lates the tip and total bill amounts, then displays them in locale-specific currency format.
To view the file, in the Project window, expand the app/Java/com.deitel.tipcalcula-

Fig. 3.10 | Selecting the Orange accent 400 color swatch for colorAccent.

Fig. 3.11 | Completed design.

Selecting Orange
accent 400 as the
new colorAccent
value

3.6 Adding the App’s Logic 93

tor node and double click MainActivity.java. You’ll need to enter most of the code in
Figs. 3.12–3.18.

3.6.1 package and import Statements
Figure 3.12 shows the package statement and import statements in MainActivity.java.
The package statement in line 3 was inserted when you created the project. When you
open a Java file in the IDE, the import statements are collapsed—one is displayed with a

 to its left. You can click the to see the complete list of import statements.

Lines 5–14 import the classes and interfaces the app uses:

• Class Bundle of package android.os (line 5) stores key–value pairs of informa-
tion—typically representing an app’s state or data that needs to be passed be-
tween activities. When another app is about to appear on the screen—e.g., when
the user receives a phone call or launches another app—Android gives the currently
executing app the opportunity to save its state in a Bundle. The Android runtime
might subsequently kill the app—e.g., to reclaim its memory. When the app re-
turns to the screen, the Android runtime passes the Bundle of the previously
saved state to Activity method onCreate (Section 3.6.4). Then, the app can use
the saved state to return the app to the state it was in when another app became
active. We’ll use Bundles in Chapter 8 to pass data between activities.

• Class AppCompatActivity of package android.support.v7.app (line 6) provides
the basic lifecycle methods of an app—we’ll discuss these shortly. AppCompat-
Activity is an indirect subclass of Activity (package android.app) that sup-
ports using newer Android features apps running on current and older Android
platforms.

• Interface Editable of package android.text (line 7) allows you to modify the
content and markup of text in a GUI.

• You implement interface TextWatcher of package android.text (line 8) to re-
spond to events when the user changes the text in an EditText.

1 // MainActivity.java
2 // Calculates a bill total based on a tip percentage
3 package com.deitel.tipcalculator;
4
5 import android.os.Bundle; // for saving state information
6 import android.support.v7.app.AppCompatActivity; // base class
7 import android.text.Editable; // for EditText event handling
8 import android.text.TextWatcher; // EditText listener
9 import android.widget.EditText; // for bill amount input

10 import android.widget.SeekBar; // for changing the tip percentage
11 import android.widget.SeekBar.OnSeekBarChangeListener; // SeekBar listener
12 import android.widget.TextView; // for displaying text
13
14 import java.text.NumberFormat; // for currency formatting
15

Fig. 3.12 | MainActivity’s package and import statements.

94 Chapter 3 Tip Calculator App

• Package android.widget (lines 9, 10 and 12) contains the widgets (i.e., views)
and layouts that are used in Android GUIs. This app uses EditText (line 9),
SeekBar (line 10) and TextView (line 12) widgets.

• You implement interface SeekBar.OnSeekBarChangeListener of package an-
droid.widget (line 11) to respond to the user moving the SeekBar’s thumb.

• Class NumberFormat of package java.text (line 14) provides numeric formatting
capabilities, such as locale-specific currency and percentage formats.

3.6.2 MainActivity Subclass of AppCompatActivity
Class MainActivity (Figs. 3.13–3.18) is the Tip Calculator app’s Activity subclass. When
you created the TipCalculator project, the IDE generated this class as a subclass of App-
CompatActivity (an indirect subclass of Activity) and provided an override of class
Activity’s inherited onCreate method (Fig. 3.15). Every Activity subclass must override
this method. We’ll discuss onCreate shortly.

3.6.3 Class Variables and Instance Variables
Figure 3.14 declares class MainActivity’s variables. The NumberFormat objects (lines 20–
23) are used to format currency values and percentages, respectively. NumberFormat’s
static method getCurrencyInstance returns a NumberFormat object that formats values
as currency using the device’s locale. Similarly, static method getPercentInstance for-
mats values as percentages using the device’s locale.

The bill amount entered by the user into amountEditText will be read and stored as
a double in billAmount (line 25). The tip percentage (an integer in the range 0–30) that
the user sets by moving the Seekbar thumb will be divided by 100.0 to create a double for

16 // MainActivity class for the Tip Calculator app
17 public class MainActivity {
18

Fig. 3.13 | Class MainActivity is a subclass of Activity.

19 // currency and percent formatter objects
20 private static final NumberFormat currencyFormat =
21 NumberFormat.getCurrencyInstance();
22 private static final NumberFormat percentFormat =
23 NumberFormat.getPercentInstance();
24
25 private double billAmount = 0.0; // bill amount entered by the user
26 private double percent = 0.15; // initial tip percentage
27 private TextView amountTextView; // shows formatted bill amount
28 private TextView percentTextView; // shows tip percentage
29 private TextView tipTextView; // shows calculated tip amount
30 private TextView totalTextView; // shows calculated total bill amount
31

Fig. 3.14 | MainActivity class’s instance variables.

extends Activity

3.6 Adding the App’s Logic 95

use in calculations, then stored in percent (line 26). For example, if you select 25 with the
SeekBar, percent will store 0.25, so the app will multiply the bill amount by 0.25 to cal-
culate the 25% tip.

Line 27 declares the TextView that displays the currency-formatted bill amount. Line
28 declares the TextView that displays the tip percentage, based on the SeekBar thumb’s
position (see the 15% in Fig. 3.1(a)). The variables in line 29–30 will refer to the Text-
Views in which the app displays the calculated tip and total.

3.6.4 Overriding Activity Method onCreate
The onCreate method (Fig. 3.15)—which is autogenerated with lines 33–36 when you
create the app’s project—is called by the system when an Activity is started. Method on-
Create typically initializes the Activity’s instance variables and views. This method
should be as simple as possible so that the app loads quickly. In fact, if the app takes longer
than five seconds to load, the operating system will display an ANR (Application Not Re-
sponding) dialog—giving the user the option to forcibly terminate the app. You’ll learn
how to prevent this problem in Chapter 9.

Software Engineering Observation 3.3
For precise monetary calculations, use class BigDecimal (package java.math)—rather
than type double—to represent the monetary amounts and perform calculations.

32 // called when the activity is first created
33
34
35 super.onCreate(savedInstanceState); // call superclass's version
36
37
38 // get references to programmatically manipulated TextViews
39
40 percentTextView = (TextView) findViewById(R.id.percentTextView);
41 tipTextView = (TextView) findViewById(R.id.tipTextView);
42 totalTextView = (TextView) findViewById(R.id.totalTextView);
43 tipTextView.setText(currencyFormat.format(0)); // set text to 0
44 totalTextView.setText(currencyFormat.format(0)); // set text to 0
45
46 // set amountEditText's TextWatcher
47 EditText amountEditText =
48 (EditText) findViewById(R.id.amountEditText);
49
50
51 // set percentSeekBar's OnSeekBarChangeListener
52 SeekBar percentSeekBar =
53 (SeekBar) findViewById(R.id.percentSeekBar);
54
55 }
56

Fig. 3.15 | Overriding Activity method onCreate.

@Override
protected void onCreate(Bundle savedInstanceState) {

setContentView(R.layout.activity_main); // inflate the GUI

amountTextView = (TextView) findViewById(R.id.amountTextView);

amountEditText.addTextChangedListener(amountEditTextWatcher);

percentSeekBar.setOnSeekBarChangeListener(seekBarListener);

96 Chapter 3 Tip Calculator App

onCreate’s Bundle Parameter
During the app’s execution, the user could change the device’s configuration—for exam-
ple, by rotating the device, connecting to a Bluetooth keyboard or sliding out a hard keyboard.
For a good user experience, the app should continue operating smoothly through such
configuration changes. When the system calls onCreate, it passes a Bundle argument con-
taining the Activity’s saved state, if any. Typically, you save state in Activity methods
onPause or onSaveInstanceState (demonstrated in later apps). Line 35 calls the super-
class’s onCreate method, which is required when overriding onCreate.

Generated R Class Contains Resource IDs
As you build your app’s GUI and add resources (such as strings in the strings.xml file
or views in the activity_main.xml file) to your app, the IDE generates a class named R
that contains nested classes representing each type of resource in your project’s res folder.
The nested classes are declared static, so that you can access them in your code with
R.ClassName. Within class R’s nested classes, the IDE creates static final int constants
that enable you to refer to your app’s resources programmatically (as we’ll discuss momen-
tarily). Some of the nested classes in class R include

• class R.drawable—contains constants for any drawable items, such as images,
that you put in the various drawable folders in your app’s res folder

• class R.id—contains constants for the views in your XML layout files

• class R.layout—contains constants that represent each layout file in your project
(such as, activity_main.xml), and

• class R.string—contains constants for each String in the strings.xml file.

Inflating the GUI
The call to setContentView (line 36) receives the constant R.layout.activity_main
which indicates the XML file that represents MainActivity’s GUI—in this case, the con-
stant represents the activity_main.xml file. Method setContentView uses this constant
to load the corresponding XML document, which Android parses and converts into the
app’s GUI. This process is known as inflating the GUI.

Getting References to the Widgets
Once the layout is inflated, you can get references to the individual widgets so that you can
interact with them programmatically. To do so, you use class Activity’s findViewById
method. This method takes an int constant representing a specific view’s Id and returns a
reference to the view. The name of each view’s R.id constant is determined by the com-
ponent’s Id property that you specified when designing the GUI. For example, amount-
EditText’s constant is R.id.amountEditText.

Lines 39–42 obtain references to the TextViews that we change programmatically in
the app. Line 39 obtains a reference to the amountTextView that’s updated when the user
enters the bill amount. Line 40 obtains a reference to the percentTextView that’s updated
when the user changes the tip percentage. Lines 41–42 obtain references to the TextViews
where the calculated tip and total are displayed.

3.6 Adding the App’s Logic 97

Displaying Initial Values in the TextViews
Lines 43–44 set tipTextView’s and totalTextView’s text to 0 in a locale-specific currency
format by calling the currencyFormat object’s format method. The text in each of these
TextViews will change as the user enters the bill amount.

Registering the Event Listeners
Lines 47–49 get the amountEditText and call its addTextChangedListener method to
register the TextWatcher object that responds to events generated when the user changes
the EditText’s contents. We define this listener (Fig. 3.18) as an anonymous-inner-class
object and assign it to the amountEditTextWatcher instance variable. Though we could
have defined the anonymous inner class in place of amountEditTextWatcher in line 49,
we chose to define it later in the class so that the code is easier to read.

Lines 52–53 get a reference to the percentSeekBar. Line 54 calls the SeekBar’s
setOnSeekBarChangeListener method to register the OnSeekBarChangeListener object
that responds to events generated when the user moves the SeekBar’s thumb. Figure 3.17
defines this listener as an anonymous-inner-class object that’s assigned to the instance vari-
able seekBarListener.

Note Regarding Android 6 Data Binding
Android now has a Data Binding support library that you can use with Android apps tar-
geting Android 2.1 (API level 7) and higher. You now can include in your layout XML
files data-binding expressions that manipulate Java objects and dynamically update data in
your apps’ user interfaces.

In addition, each layout XML file that contains views with ids has a corresponding
autogenerated class. For each view with an id, the class has a public final instance vari-
able referencing that view. You can create an instance of this “Binding” class to replace all
calls to findViewById, which can greatly simplify your onCreate methods in Activity
and Fragment classes with complex user interfaces. Each instance variable’s name is the id
specified in the layout for the corresponding view. The “Binding” class’s name is based on
the layout’s name—for activity_main.xml, the class name is ActivityMainBinding.

At the time of this writing, the Data Binding library is an early beta release that’s sub-
ject to substantial changes, both in the syntax of data-binding expressions and in the
Android Studio tool support. You can learn more about Android data binding at

3.6.5 MainActivity Method calculate
Method calculate (Fig. 3.16) is called by the EditText’s and SeekBar’s listeners to up-
date the tip and total TextViews each time the user changes the bill amount. Line 60 dis-
plays the tip percentage in the percentTextView. Lines 63–64 calculate the tip and total,
based on the billAmount. Lines 67–68 display the amounts in currency format.

Software Engineering Observation 3.4
Rather than defining anonymous inner classes in large methods, define them as private
final instance variables to make your code easier to debug, modify and maintain.

https://developer.android.com/tools/data-binding/guide.html

https://developer.android.com/tools/data-binding/guide.html

98 Chapter 3 Tip Calculator App

3.6.6 Anonymous Inner Class That Implements Interface
OnSeekBarChangeListener
Lines 72–87 (Fig. 3.17) create the anonymous-inner-class object that responds to percent-
SeekBar’s events. The object is assigned to the instance variable seekBarListener. Line 54
(Fig. 3.15) registered seekBarListener as percentSeekBar’s OnSeekBarChangeListener
event-handling object. For clarity, we define all but the simplest event-handling objects in
this manner so that we do not clutter the onCreate method with this code.

Overriding Method onProgressChanged of Interface OnSeekBarChangeListener
Lines 75–86 (Fig. 3.17) implement interface OnSeekBarChangeListener’s methods.
Method onProgressChanged is called whenever the SeekBar’s thumb position changes.
Line 78 calculates the percent value using the method’s progress parameter—an int rep-

57 // calculate and display tip and total amounts
58 private void calculate() {
59 // format percent and display in percentTextView
60 percentTextView.setText(percentFormat.format(percent));
61
62 // calculate the tip and total
63 double tip = billAmount * percent;
64 double total = billAmount + tip;
65
66 // display tip and total formatted as currency
67 tipTextView.setText(currencyFormat.format(tip));
68 totalTextView.setText(currencyFormat.format(total));
69 }
70

Fig. 3.16 | MainActivity Method calculate.

71 // listener object for the SeekBar's progress changed events
72 private final OnSeekBarChangeListener seekBarListener =
73 new OnSeekBarChangeListener() {
74 // update percent, then call calculate
75
76
77
78 percent = / 100.0; // set percent based on progress
79 calculate(); // calculate and display tip and total
80 }
81
82 @Override
83 public void onStartTrackingTouch(SeekBar seekBar) { }
84
85 @Override
86 public void onStopTrackingTouch(SeekBar seekBar) { }
87 };
88

Fig. 3.17 | Anonymous inner class that implements interface OnSeekBarChangeListener.

@Override
public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {

progress

3.6 Adding the App’s Logic 99

resenting the SeekBar’s thumb position. We divide this by 100.0 to get the percentage.
Line 79 calls method calculate to recalculate and display the tip and total.

Overriding Methods onStartTrackingTouch and onStopTrackingTouch of Inter-
face OnSeekBarChangeListener
Java requires that you override every method in an interface that you implement. This app
does not need to know when the user starts moving the SeekBar’s thumb (onStartTrack-
ingTouch) or stops moving it (onStopTrackingTouch), so we simply provide an empty
body for each (lines 82–86) to fulfill the interface contract.

Android Studio Tools for Overriding Methods
Android Studio can create for you empty methods that override inherited methods from
the class’s superclasses or that implement interface methods. When you place the cursor
in a class’s body, then select the Code > Override Methods… menu option, the IDE displays
a Select Methods to Override/Implement dialog that lists every method you can override in
the current class. This list includes all the inherited methods in the class’s hierarchy and
the methods of any interfaces implemented throughout the class’s hierarchy.

3.6.7 Anonymous Inner Class That Implements Interface TextWatcher
Lines 90–114 of Fig. 3.18 create an anonymous-inner-class object that responds to amount-
EditText’s events and assign it to the instance variable amountEditTextWatcher. Line 49
(Fig. 3.15) registered this object to listen for amountEditText’s events that occur when the
text changes.

Error-Prevention Tip 3.2
Using Android Studio’s Code > Override Methods… menu option helps you write code
faster and with fewer errors.

89 // listener object for the EditText's text-changed events
90 private final TextWatcher amountEditTextWatcher = new TextWatcher() {
91 // called when the user modifies the bill amount
92
93
94
95
96 try { // get bill amount and display currency formatted value
97 billAmount = Double.parseDouble(s.toString()) / 100.0;
98 amountTextView.setText(currencyFormat.format(billAmount));
99 }
100 catch (NumberFormatException e) { // if s is empty or non-numeric
101 amountTextView.setText("");
102 billAmount = 0.0;
103 }
104
105 calculate(); // update the tip and total TextViews
106 }
107

Fig. 3.18 | Anonymous inner class that implements interface TextWatcher. (Part 1 of 2.)

@Override
public void onTextChanged(CharSequence s, int start,
 int before, int count) {

100 Chapter 3 Tip Calculator App

Overriding Method onTextChanged of Interface TextWatcher
The onTextChanged method (lines 92–106) is called whenever the text in the amount-
EditText is modified. The method receives four parameters. In this example, we use only
CharSequence s, which contains a copy of amountEditText’s text. The other parameters
indicate that the count characters starting at start replaced previous text of length before.

Line 97 converts the user input from amountEditText to a double. We allow users to
enter only whole numbers in pennies, so we divide the converted value by 100.0 to get the
actual bill amount—e.g., if the user enters 2495, the bill amount is 24.95. Line 98 displays
the updated bill amount. If an exception occurs, lines 101–102 clear the amountTextView
and set the billAmount to 0.0. Lines 105 calls calculate to recalculate and display the
tip and total, based on the current bill amount.

Other Methods of the amountEditTextWatcher TextWatcher
This app does not need to know what changes are about to be made to the text (before-
TextChanged) or that the text has already been changed (afterTextChanged), so we simply
override each of these TextWatcher interface methods with an empty body (lines 108–113)
to fulfill the interface contract.

3.7 AndroidManifest.xml
In this section, you’ll modify the AndroidManifest.xml file to specify that this app’s
Activity supports only a device’s portrait orientation and that the virtual keyboard
should always be displayed when the Activity first appears on the screen or navigates back
to the Activity. To open the manifest, double click AndroidManifest.xml in the Project
window’s manifests folder. Figure 3.19 shows the completed manifest with our changes
highlighted—the rest of the file was autogenerated by Android Studio when we created
the app’s project. We’ll discuss some aspects of the manifest here. For a list of all the ele-
ments a manifest may contain, their attributes and their values, visit

108 @Override
109 public void afterTextChanged(Editable s) { }
110
111 @Override
112 public void beforeTextChanged(
113 CharSequence s, int start, int count, int after) { }
114 };
115 }

http://developer.android.com/guide/topics/manifest/manifest-
intro.html

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="com.deitel.tipcalculator" >
4

Fig. 3.19 | AndroidManifest.xml contents. (Part 1 of 2.)

Fig. 3.18 | Anonymous inner class that implements interface TextWatcher. (Part 2 of 2.)

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

3.7 AndroidManifest.xml 101

3.7.1 manifest Element
The manifest element (lines 2–24) indicates that this XML file’s contents represent the
app’s manifest. This element’s package attribute specifies the app’s Java package name that
was configured when you created the app’s project (Section 3.4.2). Recall that for apps you
submit to the Google Play store, the package name is used as the app’s unique identifier.

3.7.2 application Element
The manifest element’s nested application element (lines 5–21) specifies attributes of
the application, including

• android:allowBackup—Whether or not the app’s data should be backed up au-
tomatically by Android so that the data can be restored to the device or a new de-
vice at a later time.

• android:icon—The app icon that you touch in the launcher to execute the app.

• android:label—The app’s name that’s typically displayed below the icon in the
launcher and often displayed in the app bar when the app is executing.

• android:supportsRtl—Whether or not the app’s interface can be flipped hori-
zontally to support right-to-left languages like Arabic and Hebrew.

• android:theme—The theme that determines the default look-and-feel of the
app’s views.

Elements nested in the application element define the app’s components, such as its ac-
tivities.

5 <application
6 android:allowBackup="true"
7 android:icon="@mipmap/ic_launcher"
8 android:label="@string/app_name"
9 android:supportsRtl="true"

10 android:theme="@style/AppTheme" >
11 <activity
12 android:name=".MainActivity"
13 android:label="@string/app_name"
14
15 >
16 <intent-filter>
17 <action android:name="android.intent.action.MAIN" />
18
19 <category android:name="android.intent.category.LAUNCHER" />
20 </intent-filter>
21 </activity>
22 </application>
23
24 </manifest>

Fig. 3.19 | AndroidManifest.xml contents. (Part 2 of 2.)

android:screenOrientation="portrait"
android:windowSoftInputMode="stateAlwaysVisible"

102 Chapter 3 Tip Calculator App

3.7.3 activity Element
The application element’s nested activity element (lines 10–20) describes an Activi-
ty. An app can have many activities, one of which is designated as the Activity that’s dis-
played when the user touches the app’s icon in the launcher to execute the app. Each
activity element specifies at least the following attributes:

• android:name—The Activity’s class name. The notation ".MainActivity" is
shorthand for "com.deitel.MainActivity" (where com.deitel is the reverse of
the domain name you specified when creating the app’s project).

• android:label—The Activity’s name. This is often displayed in the app bar
when the Activity is on the screen. For single Activity apps, this name is typ-
ically the same as the app’s name.

For MainActivity, we added the following attributes:

• android:screenOrientation—In general, most apps should support both por-
trait and landscape orientations. In portrait orientation, the device’s longer di-
mension is vertical. In landscape orientation, the device’s longer dimension is
horizontal. In the Tip Calculator app, rotating the device to landscape orientation
on a typical phone would cause the numeric keypad to obscure most of the Tip
Calculator’s GUI. For this reason, we set this property to "portrait" to support
only portrait orientation.

• android:windowSoftInputMode—In the Tip Calculator app, the soft keypad
should be displayed immediately when the app executes and should reappear each
time the user returns to the Tip Calculator app. For this reason we set this property
to "stateAlwaysVisible". This will not display the soft keyboard if a hard key-
board is present.

3.7.4 intent-filter Element
Intents are Android’s mechanism for communicating between executable components—
such as activities, background services and the operating system. You state your intent, then
Android uses intent messaging to coordinate the executable components to accomplish
what you intend to do. This loose coupling makes it easy to mix and match parts of different
applications. You tell Android what you want to accomplish, then let Android find the in-
stalled applications with activities that can handle the task.

Inter-App Communication
One example of how Intents are used is coordinating efforts between separate apps. Consider
how photo sharing can be handled in Android:

• Most social-networking Android apps provide their own photo-sharing capabili-
ties. Each app can advertise in its manifest its specific Activity that uploads a
photo to the user’s account.

• Other apps can use these photo-sharing capabilities, rather than implementing
their own. For example, a photo-editing app can provide a Share Photo option.
The app can respond to a user’s photo-sharing request by stating its intent to share
a photo—that is, creating a photo-sharing Intent and passing it to Android.

3.8 Wrap-Up 103

• Android looks at the Intent to determine which installed applications provide
activities that can share photos.

• If there’s only one such app, Android executes that app’s photo-sharing Activity.

• If there are many such apps, Android displays a list of apps and asks the user to
decide which app’s photo-sharing Activity should execute.

A key benefit of this loosely coupled approach is that the photo-editing app’s developer
does not need to incorporate support for every possible social-networking site. By issuing
a photo-sharing Intent, the app automatically supports any app that declares a photo-
sharing Activity in its manifest, including those apps the user has already installed and
any the user chooses to install in the future. For a list of the items that can be used with
Intents, visit

Executing Apps
Another example of how Intents are used is in launching activities. When you touch an
app’s icon in the device’s launcher app, your intent is to execute the app. In this case, the
launcher issues an Intent to execute that app’s main Activity (discussed momentarily).
Android responds to this Intent by launching the app and executing the specific Activity
designated in the app’s manifest as the main Activity.

Determining Which Activity to Execute
Android uses information in the manifest to determine the activities that can respond to In-
tents and which Intents each Activity can handle. In the manifest, the activity ele-
ment’s nested intent-filter element (Fig. 3.19, lines 16–20) determines which Intent
types can launch an Activity. If an Intent matches only one Activity’s intent-filter,
Android executes that Activity. If there are multiple matches, Android presents a list from
which the user can choose an app, then executes the appropriate Activity in that app.

Android also passes the Intent to the Activity, because an Intent often contains
data the Activity can use to perform its task. For example, a photo-editing app can
include in a share-photo Intent the specific photo to share.

The intent-filter element must contain one or more action elements. The action
"android.intent.action.MAIN" in line 17 of Fig. 3.19 indicates that MainActivity is
the Activity to execute when the app launches. The optional category element in line
19 specifies what initiates the Intent—for "android.intent.category.LAUNCHER", it’s
the device’s launcher. This category also indicates that the Activity should appear as an
icon in the device’s launcher with the icons for the user’s other installed apps.

We’ll discuss and program with Intents in the next chapter. For more information
on Intents and Intent filters, visit

3.8 Wrap-Up
In this chapter, you created the interactive Tip Calculator app. We discussed the app’s ca-
pabilities, then you test-drove it to calculate the tip and total, based on the bill amount.

http://developer.android.com/reference/android/content/
Intent.html#constants

http://developer.android.com/guide/components/intents-filters.html

http://developer.android.com/reference/android/content/Intent.html#constants
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html#constants

104 Chapter 3 Tip Calculator App

You built the app’s GUI using Android Studio’s layout editor, Component Tree window
and Properties window. You also edited the layout’s XML and used the Theme Editor to
customize the Theme.AppCompat.Light.DarkActionBar theme’s primary, dark primary
and accent colors that were set by the IDE when you created the project. We presented
the code for class MainActivity, a subclass of AppCompatActivity (and an indirect sub-
class of Activity) that defined the app’s logic.

In the app’s GUI, you used a GridLayout to arrange the views into rows and columns.
You displayed text in TextViews and received input from an EditText and a SeekBar.

The MainActivity class required many Java object-oriented programming capabili-
ties, including classes, objects, methods, interfaces, anonymous inner classes and inheri-
tance. We explained the notion of inflating the GUI from its XML file into its screen
representation. You learned about Android’s Activity class and part of the Activity life-
cycle. In particular, you overrode the onCreate method to initialize the app when it’s
launched. In the onCreate method, you used Activity method findViewById to get ref-
erences to each of the views the app interacts with programmatically. You defined an anon-
ymous inner class that implements the TextWatcher interface so the app can calculate new
tips and totals as the user enters the bill amount in the EditText. You also defined an
anonymous inner class that implements the OnSeekBarChangeListener interface so the
app can calculate a new tip and total as the user changes the tip percentage by moving the
SeekBar’s thumb.

Finally, you edited the AndroidManifest.xml file to specify that the MainActivity
supports only portrait orientation and that the MainActivity should always display the
keypad. We also discussed the other elements that Android Studio placed in the manifest
when you created the project.

In Chapter 4, you’ll build the Flag Quiz app in which the user is shown a graphic of a
country’s flag and must guess the country from 2, 4, 6 or 8 choices. You’ll use a menu and
checkboxes to customize the quiz, specifying the number of guess options and limiting the
flags to specific regions of the world.

Numerics
100 Destinations 5

A
accelerometer 17

listening 190
accelerometer sensor 174, 192
access Android services 142
Accessibility

TalkBack 36, 38, 66
TalkBack localization 71

accessibility 32, 36, 38, 66
contentDescription

property 67
Explore by Touch 9, 36, 38,

66
Accessibility APIs 9
accessing Android content

providers 15
action bar 77
action element of the manifest

file 103
ACTION_SEND constant of class

Intent 313
ACTION_VIEW constant of

classIntent 311
Activity

states 77
activity 76
Activity class 76, 77, 93, 94

findFragmentById method
114, 143

getFragmentManager

method 114, 159
getMenuInflater method

144
getResources method 143,

144
getString method with

mulitple arguments 313

Activity class (cont.)
getSystemService method

190
host a Fragment 114
lifecycle methods 173, 220
onCreate method 77, 95,

173
onCreateOptionsMenu

method 113, 144
onDestroy method 173,

220
onOptionsItemSelected

method 113, 145
onPause method 173
onResume method 173
onStart method 143, 173
onStop method 173
runOnUiThread method 247
sent to background 226
setContentView method 96
setRequestedOrientation

method 143
setVolumeControlStream

method 221, 226
<activity> element

activity element in
AndroidManifest.xml 102

Activity Not Responding
(ANR) dialog 263, 330

Activity templates 43
activity_main.xml 49
ActivityNotFoundException

class 119, 296
Adapter class 263
AdapterView class 263
add method of class

FragmentTransaction 356
addCallback method of class

SurfaceHolder 240
addItemDecoration method of

class RecyclerView 307

addPreferencesFromResource

method of class
PreferenceFragment 161

addToBackStack method of
class FragmentTransaction
357

adjustViewBounds property of
an ImageView 135

AdMob 392
advertising revenue 392
airplane mode 283
AlertDialog class 118, 174
AlertDialog.Builder class 118

setItems method 297, 313
alpha (transparency) values 57
alpha animation for a View 128
alpha method of class Color 209
alternative-resource naming

conventions 68
Amazon Mobile app 392
analysis 20
Android 2.2 (Froyo) 7
Android 2.3 (Gingerbread) 7
Android 3.x

Honeycomb 8
Android 4.0 (Ice Cream

Sandwich) 8
Android 6.0

permissions 167, 176, 195
Android 6.0 (Marshmallow)

permissions 176, 181
Android APIs 4
Android app marketplaces 398

Amazon Appstore 398
AndroidPIT 398
Appitalism 398
GetJar 398
Moborobo 398
Opera Mobile Store 398
SlideMe 398

Android Beam 9, 10

Index

406 Index

Android Cloud to Device
Messaging (C2DM) 7

Android Design Support
Library xxiv, 121, 122, 264,
265, 298

Android developer
documentation
(developer.android.com)
xxvi

Android Developers Blog 388
Android device manufacturers

xxi
Android Device Monitor 389
Android device type for a project

40
Android emulator xxxiii, 16, 36
Android for Programmers website

xxi, xxvi
Android Jelly Bean 9
Android KitKat 10
Android Lint 60
Android Lollipop 11
Android Market

language 396
location 397
price 397

Android Marshmallow 12
Android Newsgroups

Android Discuss 33
Android project

res folder 46, 54
values folder 55

Android SDK xxi, xxii, xxxi,
xxxiii, 2, 16
versions and API levels 42

Android services
access 142

Android Software Development
Kit (SDK) xxxii

Android source code and
documentation
FAQs 4
licenses 4
source code 3, 4

Android Studio xxxi, xxxii, 2,
16, 36, 37
Component Tree window 74,

78
documentation 33

Android Studio (cont.)
layout editor 36, 37, 38, 44,

46, 47, 49, 52, 60, 67
Screen Record tool 390
Tips and Tricks xxxii

Android Support Library xxiv,
77, 78, 114, 176, 177, 206

Android TV xxv
Android versions

Android 1.5 (Cupcake) 7
Android 1.6 (Donut) 7
Android 2.0–2.1 (Eclair) 7
Android 2.2 (Froyo) 7
Android 2.3 (Gingerbread) 7
Android 3.0–3.2 7
Android 4.0 (Ice Cream

Sandwich) 7
Android 4.1–4.3 7
Android 4.4 7
Android 5 7
Android 6 7

Android Virtual Device (AVD)
xxxiv, 16
Setting hardware emulation

options 30
Android Virtual Device Manager 24
Android Virtual Devices

(AVDs) xxxiii, 24
Android Wear xxv
android XML namespace 179
android:allowBackup attribute

of the manifest application
element 101

android:background attribute
of a TextView 335

android:colorAccent 89
android:colorPrimary 89
android:colorPrimaryDark

89
android:duration attribute of

a translate animation 129
android:fromXDelta attribute

of a translate animation
129

android:icon attribute of the
manifest application
element 101

android:id attribute 54

android:label attribute of the
manifest activity element
102

android:label attribute of the
manifest application
element 101

android:layout_gravity

attribute 60
android:name attribute of the

manifest activity element
102

android:screenOrientation

attribute of the manifest
activity element 102

android:startOffset attribute
of a translate animation
129

android:supportsRtl attribute
of the manifest application
element 101

android:theme attribute of the
manifest application
element 101

android:toXDelta attribute of
a translate animation 129

android:windowSoftInputMod

e attribute of the manifest
activity element 102

android.app package 76, 113,
114, 118, 330

android.content package 115,
142, 175, 330, 343

android.content.res package
115, 117, 143

android.database package
329

android.database.sqlite

package 329, 348
android.graphics package 175
android.graphics.drawable

package 155
android.intent.action.MAIN

103
android.intent.category.LA

UNCHER 103
android.media package 220,

221
android.net package 311
android.os package 93, 117,

263

Index 407

android.permission.WRITE_

EXTERNAL_PERMISSION 176
android.preference package

113
android.provider package

329, 344
android.support.design.widget

package 265
android.support.v4.app

package 113, 114
android.support.v7.app

package 77, 93
android.support.v7.widget

package 296
android.text package 79, 93
android.util package 119,

239
android.view package 113,

220
android.view.animation

package 117
android.view.inputmethod

package 280
android.widget package 78,

81, 94, 117, 263, 264
Android@Home framework 9
AndroidLicenser 398
AndroidManifest.xml 81, 120,

121
action element 103
activity element 102
application element 101
category element 103
intent-filter element 103
manifest element 101
provider element 332

anim folder of an Android
project 46, 115, 116

animation xxv, 110
alpha animation for a View

128
framework 8
manual 221
options in an XML file 117
rotate animation for a View

128
scale animation for a View

128
set 128
thread 221

animation (cont.)
translate animation for a

View 128
tween 128
View based 128

animation circular reveal 156
Animation class 117

setRepeatCount method
117, 151

AnimationUtils class 117, 151
loadAnimation method

117, 151
Animator class

circular reveal 118
setDuration method 118
start method 118

animator folder of an Android
project 46, ❚

AnimatorListenerAdapter
class 157
onAnimationEnd method

157
anonymous inner class 76, 79
ANR (activity not responding)

dialog 263, 330
ANR (Application Not

Responding) dialog 95, 296
anti-aliasing 199
API key (web services) 260
.apk file (Android application

package file) 388
app xxxi
app bar 43, 77, 107
app development xxxi
app icon

adding 51
app linking 13
app platforms

Android 399
iPhone 399
Windows 399

app resources 38, 46
app review sites

Android and Me 401
Android App Review Source

401
Android Police 401
AndroidGuys 401
AndroidLib 401
AndroidPIT 401

app review sites (cont.)
Androinica 401
AppBrain 401
Appolicious 401
Appstorm 401
AppZoom 401
Best Android Apps Review

401
Phandroid 401

app review video sites
Appolicious 401
Crazy Mike’s Apps 401
Life of Android 401
State of Tech 401

app templates xxiii
app XML namespace 179
AppCompatActivity class 77,

93, 94
app-driven approach xxii, 2
appendWhere method of a

SQLiteQueryBuilder 349
application element in

AndroidManifest.xml 101
Application Not Responding

(ANR) dialog 95, 296
application resource 15
apply method of class

SharedPreferences.Editor
146, 310

ARGB 207
ARGB color scheme 169
argb method of class Color 210
ARGB_8888 constant 200
ArrayAdapter class 263, 272

getView method 273
ArrayList class 120, 263
ART runtime 12
asset 395
AssetManager class 115

list method 152
assets folder of an Android app

115
AsyncTask class 263, 276, 276,

277, 282, 282, 330
execute method 275

AsyncTaskLoader class 330
attribute

in the UML 20
of a class 18
of an object 20

408 Index

AttributeSet class 239
audio xxv, 15
audio stream

music 226
audio streams 220

music 221
audio volume 221
AudioAttributes class 221

setUsage method 221, 240
AudioAttributes.Builder

class 240
setAudioAttributes

method 240
AudioManager class 221, 226
authority (ContentProvider)

342
automatic backup 13
AVD (Android Virtual Device)

xxxiv, 16

B
back stack 328, 356, 357, 358,

359
pop 356, 357
push 357

background
activity sent to 226

background property of a view
87, 88

base Uri of a ContentProvider
342

BaseColumns interface 344
beginTransaction method of

class FragmentManager 356
behavior

of a class 18
Bezier curve 204
bind data to a ListView 263
Bitmap class 175, 214

bitmap encoding 200
createBitmap method 200
eraseColor method 214
recycle method 200

Bitmap.Config.ARGB_8888
constant 200

BitmapFactory class 277
decodeStream method 277

Blank Activity template 43
blue method of class Color 209
Bluetooth Health Devices 9

bluetooth stylus support 13
brand awareness 392
branding apps

Amazon Mobile 392
Bank of America 392
Best Buy 392
CNN 392
Epicurious Recipe 392
ESPN ScoreCenter 392
NFL Mobile 392
NYTimes 392
Pocket Agent 392
Progressive Insurance 392
UPS Mobile 392
USA Today 392
Wells Fargo Mobile 392
Women’s Health Workouts

Lite 392
broadcast receiver 76
Build.VERSION_SDK_INT 253
Bundle class 93, 96

for an Intent 314
putParcelable method 357

Button class
lines property 137
textColor property 137

C
C2DM (Android Cloud to

Device Messaging) 7
Calendar API 9
callback methods 329
camera 5
Cannon Game app 17
Canvas class 175, 175

drawBitmap method 201
drawCircle method 236
drawLine method 233
drawPath method 201, 205
drawRect method 247
drawText method 248

carrier billing 391
case-insensitive sort 307
category element of the

manifest file 103
cell in a GridLayout 81
characteristics of great apps 31
check-in 400
circular reveal animation 156
circular reveal Animator 118

class 15, 19
instance variable 20

class library 4
classes

Activity 76, 77, 93
ActivityNotFoundExcepti

on 119, 296
Adapter 263
AdapterView 263
AlertDialog 118
AlertDialog.Builder 118
Animation 117
AnimationUtils 117, 151
AnimatorListenerAdapter

157
AppCompatActivity 77, 93
ArrayAdapter 263, 272
ArrayList 120, 263
AssetManager 115
AsyncTask 263, 330
AsyncTaskLoader 330
AttributeSet 239
AudioManager 221, 226
Bitmap 175, 214
BitmapFactory 277
Bundle 93, 96
Canvas 175, 175
Collections 120
Color 209
Configuration 117, 143
ContentProvider 329, 346
ContentResolver 175, 330,

342, 347, 350, 351, 353,
354, 374, 380

ContentUris 343
ContentValues 350, 374
Context 142
CoordinatorLayout 121
Cursor 329
CursorFactory 345
CursorLoader 330
DialogFragment 114, 159,

160
DialogInterface 119
Drawable 155
EditText 78, 94, 265
FloatingActionButton

264
Fragment 113
FragmentManager 114, 328

Index 409

classes (cont.)
FragmentTransaction 114,

328, 356, 357
FrameLayout 224
GridLayout 78, 81
Handler 117
HttpURLConnection 277
ImageView 38, 60
InputMethodManager 280
InputStream 155
Intent 102, 119
JSONArray 263
JSONObject 262
LayoutInflater 114
LinearLayout 37, 48
LinearLayoutManager 297
ListPreference 115
Loader 330, 363
LoaderManager 330, 360,

363
Log 119, 152
MediaStore 175
MediaStore.Images.Media

175
Menu 113, 144
MenuInflater 144
MotionEvent 175, 202, 220,

251
MultiSelectListPreferen

ce 115
NumberFormat 78, 94, 270
Paint 175
Path 175
Preference 115
PreferenceFragment 113,

115, 161
PreferenceManager 115,

141, 142
PrintHelper 206
R 96
R.drawable 96
R.id 96
R.layout 96
R.string 96
RecyclerView 296, 307
RecyclerView.Adapter

297, 307, 332
RecyclerView.ItemDecora

tion 297, 307, 332

classes (cont.)
RecyclerView.LayoutMana

ger 297
RecyclerView.ViewHolder

297
RelativeLayout 48
Resources 143
ScrollView 338
SeekBar 74, 78, 94
Sensor 174
SensorEvent 193
SensorManager 190
SharedPreferences 115,

295, 305
SharedPreferences.Edito

r 115, 146, 296, 309, 310
Snackbar 265, 267, 280
SoundPool 220, 240
SQLiteDatabase 329
SQLiteOpenHelper 329
SQLiteQueryBuilder 348
SurfaceHolder 221, 240
SurfaceView 221, 240
TextView 38, 54, 78, 94
Thread 221, 252
Toast 117, 147
Uri 311, 330
UriMatcher 346
View 76, 221
ViewAnimationUtils 118
ViewGroup 338

client area 37
cloud computing 7
Cloud Test Lab xxv, xxxiv, 386
code file 395
code highlighting xxv, 2
code license xxi
code walkthrough 2
code-completion 46
code-completion window 53
code-folding xxxiii
collection

shuffle 155
Collections class 120

shuffle method 120
sort method 307

collision detection 221, 235, 244
color 175

hue 80
shade 80

Color class 209
alpha method 209
argb method 210
blue method 209
green method 209
red method 209

color folder of an Android
project 46, 115, 116

color state list 118
color state list resource 126
color state list resource file 118
colorAccent 89
colorPrimary 89
colorPrimaryDark 89
colors.xml 126
columnCount property of a

GridLayout 83
commit method of class

FragmentTransaction 356
commit method of class

SharedPreferences.Editor
147

company domain name used in
a package 40

Comparator<String> object
String.CASE_INSENSITIVE

_ORDER 307
compiling apps 386
component 18
Component Tree window in

Android Studio 45, 74, 78,
83, 136

concurrent documents and
activities 12

Configuration class 117, 143,
144
orientation instance

variable 117
Constants

MODE_PRIVATE 306
MODE_WORLD_READABLE 306
MODE_WORLD_WRITABLE 306

content provider 76
contentDescription property

67
contentDescription property

of a View 135
ContentProvider

base Uri 342

410 Index

ContentProvider authority
342

ContentProvider class 329,
346
delete method 353
getType method 348
insert method 350
onCreate method 347
query method 348
update method 352

ContentResolver class 175,
330, 342, 347, 350, 351,
353, 354, 374, 380
delete method 380
insert method 374
update method 374

ContentUris class 343
ContentValues class 350, 374
Context class 142

getSharedPreferences
method 306

getSystemService method
280

startActivity method 311
ContextWrapper class

getAssets method 152,
155

control 17
coordinating efforts between

separate apps 102
CoordinatorLayout class 121
corners element of a shape 335
crash report 398
create a new layout 139
Create New Project dialog 39, 82,

83, 121, 176, 222, 265, 298,
331

createBitmap method of class
Bitmap 200

createChooser method of class
Intent 314

createCircularReveal
method of class
ViewAnimationUtils 118,
157

createFromStream method of
class Drawable 155

creating a dimension resource
56

creative commons public license
260

cryptographic key 385
CT

Google Play and App
Business Issues 384

Cursor class 329
getColumnIndex method

368
getLong method 368
getString method 368
moveToFirst method 375,

381
moveToPosition method

368
setNotificationUri

method 350
CursorFactory class 345
CursorLoader class 330
custom subclass of View 237
custom view 174
customize the keyboard 339

D
dark keyboard 74
data binding 263
Data Binding support library 97
database version number 345
Daydream 10
DDMS perspective

LogCat tab 119
debugging

logging exceptions 119, 152
decodeStream method of class

BitmapFactory 277
default preferences 141
default resources 68
define a new style 334
Deitel Buzz Online Newsletter

403
Deitel Facebook page 400
Deitel Training 404
delete method of a

ContentProvider 353
delete method of a

ContentResolver 380
delete method of class

SQLiteDatabase 354
density-independent pixels

dp 56, 56

dependencies
adding to project 298

design preview in layout XML
editor 46

design process 20
Design tab in the layout editor

37
developer documentation

Core App Quality 386
Keeping Your App Responsive

33
Launch Checklist 386
Localization Checklist 386
Performance Tips 33
Signing Your Applications 388
Tablet App Quality 386

developer options 10
developer registration 394
device configuration 15
Device Screen Capture window

389
dialog

negative action 118
neutral action 118
positive action 118

DialogFragment class 114, 159,
160
onCreateDialog method

159
show method 159

DialogInterface class 119
DialogInterface.OnClickLis

tener interface 119, 160
digital certificate 388
digitally sign your app 388
digits property of an EditText

87
@dimen resource 56
dimens.xml 134
dimension resource 56, 134

creating 56
Direct Share 13
disabilities 38, 66
disconnect method of class

HttpURLConnection 277
divider property of a

LinearLayout 336
documentation

Android Design 33
App Components 32

Index 411

documentation (cont.)
Class Index 32
Data Backup 33
Debugging 33
Getting Started with

Publishing 33
Google Play Developer

Distribution Agreement 33
Launch Checklist (for Google

Play) 33
Managing Your App’s Memory

33
Package Index 32
Security Tips 33
Tools Help 33
Using the Android Emulator

32
doInBackground method of

class AsyncTask 276, 282,
282

domain name used in a package
40

downloading source code xxvi
dp (density-independent pixels)

56
drag event 204
draw

circles 175
lines 175
text 175

Drawable class 155
createFromStream method

155
drawable folder of an Android

project 47
Drawable resource

shape element 335
drawBitmap method of class

Canvas 201
drawCircle method of class

Canvas 236
drawing characterstics 175

color 175
font size 175
line thickness 175

drawLine method of class
Canvas 233

drawPath method of class
Canvas 201, 205

drawRect method of class
Canvas 247

drawText method of class
Canvas 248

drive sales 392

E
e method of class Log 152
edit method of class

SharedPreferences 146,
309

Editable interface 93
EditText

imeOptions 339, 340
inputType 339, 340

EditText class 78, 94, 265
digits property 87
input type 84
maxLength property 87
restrict maximum number of

digits 78
elevation 122
elevation property of a view

80, 87, 88
emulator 16, 386

gestures 17
emulator functionality 17
emulator gestures and controls

17
encapsulation 20, 20
End User License Agreement

(EULA) 386
eraseColor method of class

Bitmap 214
event handling 76
events 4
execSQL method of class

SQLiteDatabase 345
executable components

activity 76
broadcast receiver 76
content provider 76
service 76

execute method of class
AsyncTask 275

explicit Intent 119, 145, 296
Explore by Touch 36, 38, 66
Extensible Markup Language

(XML) 38
externalizing resources 54

F
FAB (floating action button)

264
Fabric (Twitter’s mobile

development platform) 320
face detection 9
Facebook 293, 400

Deitel 400
Deitel page 400

featured image 388
final local variable for use in an

anonymous inner class 312
financial transaction 394
findFragmentById method of

class Activity 114, 143
floating action button (FAB)

264
FloatingActionButton class

122, 264
hide method 308
show method 308

folders
assets 115
res/drawable 335
res/raw 220, 223

font size 175
format method of class

NumberFormat 97
format specifier

multiple in a String
resource 124

numbering in a String
resource 124

forums 33
Android Forums 33
Stack Overflow 33

fragment 8, 113
Fragment class 76, 113

getActivity method 151
getLoaderManager method

363
getString method 146,

151
onActivityCreated

method 226, 363
onAttach method 174, 209,

363, 370, 378
onCreate method 114
onCreateOptionsMenu

method 114, 193

412 Index

Fragment class (cont.)
onCreateView method 114,

149, 226
onDestroy method 220,

227
onDetach method 174, 209,

363, 370, 378
onOptionsItemSelected

method 114, 193
onPause lifecycle method

191
onPause method 173, 226
onRequestPermissionsRes

ult method 196
onResume lifecycle method

190
requestPermissions

method 195, 196
setArguments method 357
setHasOptionsMenu

method 189
shouldShowRequestPermis

sionRationale method
195

Fragment layout 132
Fragment lifecycle 174, 363,

370, 378
fragment lifecycle 114
Fragment lifecycle methods 209
FragmentActivity class

getSupportFragmentManag

er method 114, 143, 145
FragmentManager class 114,

328
beginTransaction method

356
getFragmentByTag method

159
popBackStack method 356

FragmentTransaction class
114, 328, 356, 357
add method 356
addToBackStack method

357
commit method 356
replace method 357

FrameLayout class 224
free app 390
Froyo (Android 2.2) 7
Fullscreen Activity template 43

fully qualify a custom View’s
class name in an XML layout
174

future proof 32

G
game loop 221, 244, 253
games 31
gaming console 5
gesture 5

double tap 5
double touch 5
drag 5
long press 5
pinch 5
pinch zoom 5
Swipe 5
tap 5
touch 5

getActionIndex method of
class MotionEvent 203

getActionMasked method of
class MotionEvent 202

getActivity method of class
Fragment 151

getAll method of class
SharedPreferences 307

getAssets method of class
ContextWrapper 152, 155

getColumnIndex method of
class Cursor 368

getConfiguration method of
class Resources 143, 144

getDefaultSensor method of
class SensorManager 190

getDouble method of class
JSONObject 284

getFragmentByTag method of
class FragmentManager 159

getFragmentManager method
of class Activity 114, 159

getHolder method of class
SurfaceView 240

getItemCount method of class
RecyclerView.Adapter 318,
368

getItemID method of class
MenuItem 193

getJSONArray method of class
JSONObject 284

getJSONObject method of class
JSONArray 284

getLastPathSegment method
of class Uri 349

getLoaderManager method of
class Fragment 363

getLong method of class Cursor
368

getLong method of class
JSONObject 284

getMenuInflater method of
class Activity 144

getPointerCount method of
class MotionEvent 204

getReadableDatabase method
of class SQLiteOpenHelper
350

getResources method of class
Activity 143, 144

getSharedPreferences
method of class Context 306

getString method of class
Activity 313

getString method of class
Cursor 368

getString method of class
Fragment 146, 151

getString method of class
JSONObject 284

getString method of class
SharedPreferences 311

getStringSet method of class
SharedPreferences 146

getSupportFragmentManager
method of class
FragmentActivity 114,
143, 145

getSystemService method of
class Context 280

getSystemService method of
clsdd Activity 190

getTag method of class View
264

getType method of a
ContentProvider 348

getView method of class
ArrayAdapter 273

getWritableDatabase method
of class SQLiteOpenHelper
351

Index 413

getX method of class
MotionEvent 204

getY method of class
MotionEvent 204

Go to next state button 64
Google APIs 4
Google Cloud Messaging 7
Google Maps 5
Google Payments 385, 395
Google Payments merchant

account 391, 393
Google Play 13, 385, 391, 394

countries 397
crash report 398
high-resolution app icon 395
promotional graphic 395
promotional video 390, 396
publish 395
Publish an Android App on

Google Play 395
publisher account 393
screenshots 395

Google Play Developer Console
398

Google Play Developer Program
Policies 394

Google Wallet 391
Google+ 293
Gradle build system 176
Graphical Layout editor in the

Android Developer Tools 38
graphics xxv, 15
graphics processing unit (GPU)

xxxiii
gravity property of a TextView

58, 88
gravity sensor 174
green guide lines in layout editor

60
green method of class Color

209
GridLayout

columnCount property 83
layout:column of a view 84
layout:columnSpan of a

view 84
layout:row of a view 84
rowCount property 83
useDefaultMargins

property 83

GridLayout class 78, 81
guesture 17
GUI

layout 46
view (component) 46

GUI component
view 37

GUI components
EditText 78
ImageView 38, 49, 60
naming convention 82
programmatically create 114
ScrollView 338
SeekBar 74, 78
TextView 38, 49, 54
ViewGroup 338

GUI design 31
screen type 47

GUI thread 117, 263, 330
guide lines in layout editor 60
gyroscope sensor 174

H
Handler class 117

postDelayed method 117,
160

hardware accelerated execution
manager (HAXM) xxxiv

hardware support 15
hashtag 400
height of a table row 81
hide method of class

FloatingActionButton 308
hide the soft keyboard 308
hideSoftInputFromWindow

method of class
InputMethodManager 280

hierarchical parent of an
Activity 163

hint property of a TextView 86
Holo user interface 8
host a Fragment in an Activity

114
HttpURLConnection class 277

disconnect method 277
openConnection method

277
hues of a color 80
HyperText Transfer Protocol

(HTTP) 260

I
i-Newswire 402
icon 386, 387
icon design firms

99designs 387
Elance 387
glyphlab 387
Iconiza 387

id property of a layout or
component 53

images xxv
ImageView 38, 49, 60
ImageView class

adjustViewBounds property
135

scaleType property 135
src property 53, 62

imeOptions of an EditText
339, 340

immersive mode 222, 247, 253,
254

implicit Intent 119, 296, 311
in-app advertising 390, 392
in-app billing 393

security best practices 393
in-app purchase 390, 394
<include> element in a layout

XML file 122
inflate method of class

LayoutInflater 149
inflate method of class

MenuInflater 144
inflate the GUI 241
inflating a GUI 96
information hiding 20
inheritance 20
in-memory database 345
input type of an EditText 84
InputMethodManager class 280

hideSoftInputFromWindow
method 280

InputStream class 155
setImageDrawable method

155
inputType of an EditText 339,

340
insert method of a

ContentProvider 350
insert method of a

ContentResolver 374

414 Index

insert method of class
SQLiteDatabase 351

insertImage method of class
MediaStore.Images.Media
175

instance 19
instance variable 20
Intel HAXM emulator xxxiv
IntelliJ® IDEA xxxii
intent chooser 293, 314
Intent class 102, 119

ACTION_SEND constant 313
ACTION_VIEW constant 311
Bundle 314
createChooser method 314
explicit 119, 296
implicit 119, 296
putExtra method 314
resolveActivity method

119
intent extras 314
intent filter 119
intent messaging 102, 119
intent-filter element in

AndroidManifest.xml 103
intents

coordinating efforts between
separate apps 102

launching activities 103
interfaces

BaseColumns 344
DialogInterface.OnClick

Listener 119, 160
Editable 93
implementing methods in

Java 99
List 120
LoaderManager.LoaderCal

lbacks 330
OnLongClickListener 311
OnSeekBarChangeListener

98
Runnable 117
SeekBar.OnSeekBarChange

Listener 79, 94, 210
SensorEventListener 192
Set 120
SurfaceHolder.Callback

221, 240, 250
TextWatcher 79, 93, 307

interfaces (cont.)
View.OnClickListener 151
View.OnLongClickListener

311
internationalization 37, 38, 67,

78
Internet public relations

resources
ClickPress 402
eReleases 402
Marketwired 402
Mobility PR 402
Newswire 402
openPR 402
PR Leap 402
PRLog 402
PRWeb 402

invalidate method of class
View 200

invoke a REST web service 282

J
Java xxii, 4
Java for Programmers xxii
Java Fundamentals xxii
Java How to Program xxii
Java SE 7 Software

Development Kit xxxi
java.io package 155
java.text package 78, 94
java.util package 120
JavaScript Object Notation

(JSON) 261
JDK 7 xxxi
JetBrains xxxii
join operations 349
JSON (JavaScript Object

Notation) 257, 261
JSONArray class 263

getJSONObject method 284
length method 284

JSONObject class 262
getDouble method 284
getJSONArray method 284
getLong method 284
getString method 284

K
keyboard 5
keyboard types 339

keySet method of interface Map
307

key–value pairs associated with
an app 114, 295

L
landscape mode 241
landscape orientation 102
landscapeorientation 36
large-screen device 8
launch another app 311
launching activities 103
launchMode of the <activity>

element 163
"singleTop" 163
"standard" 163

layout 16, 37
create new 139

layout (GUI) 46
layout editor 36, 37, 38, 44, 46,

47, 49, 52, 60, 67
Design tab 37, 46
guide lines 60
Palette 48
Text tab 37, 46
tooltip 61

layout folder of a project 47
layout XML editor

design preview 46
layout:column of a view in a

GridLayout 84
layout:columnPan of a view in

a GridLayout 84
layout:gravity property of a

view 59, 61, 86, 87, 88, 134
layout:margin property of a

view 134
layout:row of a view in a

GridLayout 84
layout:weight property of a

view 60, 61, 134
LayoutInflater class 114

inflate method 149
layouts

activity_main.xml 49
GridLayout 78, 81
LinearLayout 37, 48
RelativeLayout 48

length method of class
JSONArray 284

Index 415

license for Android 4
licensing policy 388
licensing service 388
lifecycle methods 173, 220
lifecycle methods of an app 93
light sensor 174
line thickness 175
linear acceleration sensor 174
LinearLayout 37, 48

orientation property 53
LinearLayoutManager class (for

RecyclerViews) 297, 307
lines property of a Button 137
linking your apps 397
Lint, Android 60
Linux 16
List interface 120
list method of class

AssetManager 152
ListPreference class 115
ListView class 360

data binding 263
performance 264
setAdapter method 279
smoothScrollToPosition

method 283
load method of class SoundPool

241
loadAnimation method of class

AnimationUtils 117, 151
Loader class 330, 363
LoaderManager class 330, 360,

363
LoaderManager.LoaderCallba

cks interface 330
onCreateLoader method

365, 374, 381
onLoaderReset method

365, 375, 381
onLoadFinished method

365, 374, 381
localization 37, 38, 54, 67, 124
Localization Checklist 71
localized resources 68
lock screen widgets 10
lockCanvas method of class

SurfaceHolder 253
Log class 119, 152

e method 152
LogCat in Android Studio 119

LogCat tab in the Android
DDMS perspective 119

logcat tool 119
logging 119
logging exceptions 119, 152
long press 291
long-running operations 263,

330

M
Mac OS X 16
magnetic field sensor 174
main thread 117
makeText method of class Toast

147
manifest activity element

android:label attribute
102

android:name attribute 102
android:screenOrientati

on attribute 102
android:windowSoftInput

Mode attribute 102
manifest application element

android:allowBackup
attribute 101

android:icon attribute 101
android:label attribute

101
android:supportsRtl

attribute 101
android:theme attribute

101
manifest element in

AndroidManifest.xml 101
manifest file 395
manually perform an animation

221
Map interface

keySet method 307
mashup 5
Master/Detail Flow template 43
material design 11, 12, 264

color palette 38, 57
icons 127
Material themes xxiii
specification xxiii
vector icons 178

max property of a SeekBar 88

maxLength property of an
EditText 87

media files 220
MediaStore class 175
MediaStore.Images.Media

class 175
insertImage method 175

medium sized font 84
Menu class 113, 144, 193
menu folder of an Android

project 46, 115, 116
menu item

showAsAction 128, 179
MenuInflater class 144, 193

inflate method 144
MenuItem class

getItemID method 193
merchant account 391, 395
method 19
method call 19
micro blogging 399, 400
MIME type 314
minimum screen width qualifier

116
mipmap 51
mipmap folder of an Android

project 46
mipmap resource folder 51
mobile advertising 391
mobile advertising network 392

AdMob 392
mobile advertising networks

402
AdMob 403
InMobi 403
Medialets 403
Millennial Media 403
mMedia 403
Smaato 403
Tapjoy 403

mobile payment provider 394
Boku 394
PayPal Mobile Libraries 394
Samsung In-App Purchase

394
mobile payment providers 394
modal dialog 118
MODE_PRIVATE constant 306
MODE_WORLD_READABLE constant

306

416 Index

MODE_WORLD_WRITABLE constant
306

monetizing apps 385, 392
MotionEvent class 175, 202,

220, 251
getActionIndex method

203
getActionMasked method

202
getPointerCount method

204
getX method 204
getY method 204

moveTo method of class Path
203

moveToFirst method of class
Cursor 375, 381

moveToPosition method of
class Cursor 368

MP3 player 5
multimedia xxv
multiple format specifiers 124
MultiSelectListPreference

class 115
multitouch 202
multitouch screen 5
music audio stream 221, 226

N
naming convention

GUI components 82
near-field communication

(NFC) 8
negative action in a dialog 118
network access 15
neutral action in a dialog 118
New String Value Resource dialog

55, 86
newsgroups 33

Android Developers 33
newsletter

Deitel Buzz 403
notifyDataSetChanged

method 263, 283, 310
notifyDataSetChanged

method of class
ArrayAdapter 263, 283, 310

NumberFormat class 78, 94, 270
format method 97

numbering format specifiers
124

numeric input 78
numeric keypad 74

O
obfuscate code 388
object 18
object (or instance) 20
object-oriented analysis and

design (OOAD) 20
object-oriented language 20
object-oriented programming

(OOP) 21
Oceania 109
OEM original equipment

manufacturer 4
offset method of class Rect

236
onActivityCreated method of

class Fragment 226, 363
onAnimationEnd method of

class
AnimatorListenerAdapter
157

onAttach method of class
Fragment 174, 209, 363,
370, 378

onBindViewHolder method of
class RecyclerView.Adapter
318, 368

onCreate method of a
ContentProvider 347

onCreate method of class
Activity 77, 95, 173

onCreate method of class
Fragment 114

onCreate method of class
SQLiteOpenHelper 345

onCreateDialog method of
class DialogFragment 159

onCreateLoader method of
interface
LoaderManager.Loader-

Callbacks 365, 374, 381
onCreateOptionsMenu method

of class Activity 113, 144
onCreateOptionsMenu method

of class Fragment 114, 193,
379

onCreateView method of class
Fragment 114, 149, 226

onCreateViewHolder method
of class
RecyclerView.Adapter 318,
368

onDestroy method of class
Activity 173, 220

onDestroy method of class
Fragment 220, 227

onDetach method of class
Fragment 174, 209, 363,
370, 378

onDowngrade method of class
SQLiteOpenHelper 345

onDraw method of class View
201

onLoaderReset method of
interface LoaderManager.
LoaderCallbacks 365, 375,
381

onLoadFinished method of
interface LoaderManager.
LoaderCallbacks 365, 374,
381

onLongClick method of
interface OnLongClick-
Listener 311

OnLongClickListener interface
onLongClick method 311

OnLongClickListener nested
interface of class View 311

onOptionsItemSelected
method of class Activity
113, 145

onOptionsItemSelected
method of class Fragment
114, 193, 379

onPause method of class
Activity 173, 173

onPause method of class
Fragment 173, 191, 226

onPostExecute method 277,
282

onPostExecute method of class
AsyncTask 277, 282

onProgressChanged method of
interface SeekBar.OnSeek-
BarChangeListener 79

Index 417

onProgressUpdate method of
class AsyncTask 277, 282

onRequestPermissionsResult
method of class Fragment
196

onResume method of class
Activity 173, 173

onResume method of class
Fragment 190

OnSeekBarChangeListener
interface 98

onSensorChanged method 192
onSensorChanged method of

interface SensorEvent-
Listener 192

onSizeChanged method of class
View 200, 241

onStart method of class
Activity 143, 173

onStop method of class
Activity 173

onTextChanged method of
interface TextWatcher 79

OnTouchEvent method of class
View 202

onTouchEvent method of class
View 175, 220, 251

onUpgrade method of class
SQLiteOpenHelper 345

OOAD (object-oriented
analysis and design) 20

OOP (object-oriented
programming) 21

Open Handset Alliance 6
open source 3
open source apps 4
Open Source Project discussion

groups 3
openConnection method of

class HttpURLConnection
277

openPR 402
operating system 6
operating system requirements

xxxi
operating systems services 15
options menu 27, 113, 167, 168
orange guide lines in layout

editor 60
org.json package 262

orientation
landscape 36
portrait 36

orientation instance variable
of class Configuration 117

orientation property of a
LinearLayout 53

orientation qualifier 116
orientation sensor 174
ORIENTATION_LANDSCAPE

constant 117
ORIENTATION_PORTRAIT

constant 117
original equipment

manufacturer (OEM) 4
overflow options menu 167,

168

P
package 14
package name 40
packages

android.animation 15
android.app 15, 76, 113,

114, 118, 330
android.content 15, 115,

142, 175, 330, 343
android.content.res 15,

115, 117, 143
android.database 15, 329
android.database.sqlite

15, 329, 348
android.graphics 15, 175
android.graphics.drawab

le 15, 155
android.hardware 15
android.media 15, 220,

221
android.net 15, 311
android.os 15, 93, 117
android.preference 15,

113
android.provider 15, 329,

344
android.support.design.

widget 265
android.support.v4.app

113, 114
android.support.v7.app

77, 93

packages (cont.)
android.support.v7.widg

et 296
android.text 16, 79, 93
android.util 16, 119, 239
android.view 16, 113, 220
android.view.animation

117
android.view.inputmetho

d 280
android.widget 16,78, 81,

94, 117
java.io 155
java.util 120
java.text 78, 94
org.json 262

padding element of a shape 335
padding property of a view 87,

87, 88
paid app

average price 391
Paint class 175

filled shape with a border
199

filled shape without a border
199

line 199
setAntiAlias method 199
setStrokeCap method 199,

214
setStrokeWidth method

199
setStyle method 199
styles 199

Palette in the layout editor 48
parent of an Activity 163
parse method of class Uri 311
Path class 175

moveTo method 203
quadTo method 204
reset method 203

payment processor 391
permission in Android 6.0

(Marshmallow) 176, 181
WRITE_EXTERNAL_PERMISSI

ON 176
photo sharing 400
Photo Sphere 10
pixel density 50

418 Index

play method of class SoundPool
241

Play Store app 397
pointer (finger) in touch events

175, 198
pointer (for touch events) 202
pop the back stack 356
popBackStack method of class

FragmentManager 356
portrait orientation 36, 81, 102
positive action in a dialog 118
postDelayed method of class

Handler 117, 160
PR Leap 402
Preference class 115
PreferenceFragment class 113,

115, 161
addPreferencesFrom-

Resource method 161
PreferenceManager class 115,

141, 142
setDefaultValues method

141, 142
Preparing for Release 385
pressure sensor 174
prevent the soft keyboard from

being displayed at app startup
298

Preview All Screen Sizes 64, 138
price 391
pricing your app 390
primary key 344
printBitmap method of class

PrintHelper 206
PrintHelper class 206

printBitmap method 206
SCALE_MODE_FILL 206
SCALE_MODE_FIT 206

private key 388
PRLog 402
product icon

size 387
programmatically create GUI

components 114
progress property of a SeekBar

87
ProGuard 388
project 39

dependencies 298

project templates
Blank Activity 43
Fullscreen Activity 43
Master-Detail Application 43

Project Volta 12
Project window 45
Properties window 45, 52, 55,

56, 86
property animation 116, 129
PROTECTION_NORMAL

permissions 266
<provider> element in

AndroidManifest.xml 332
proximity sensor 174
public relations 401
publish a new version of an app

398
publishing data on an Android

device 15
push onto the back stack 357
putExtra method of class

Intent 314
putParcelable method of class

Bundle 357
putString method of class

SharedPreferences.Editor
310

putStringSet method of class
SharedPreferences.Editor
146

Q
quadratic bezier curve 204
quadTo method of class Path

204
query method of a

ContentProvider 348
query method of class

SQLiteQueryBuilder 350

R
R class 96
R.drawable class 96
R.id class 96
R.layout class 96
R.layout.activity_main

constant 96
R.string class 96
raw folder of an Android project

46, 115, 116

Rect class
offset method 236

recycle method of class Bitmap
200

RecyclerView class 296, 307
addItemDecoration

method 307
format of a list item 302
setAdapter method 307
setLayoutManager method

307
RecyclerView.Adapter class

297, 307, 332
for a Cursor 365
getItemCount method 318,

368
onBindViewHolder method

318, 368
onCreateViewHolder

method 318, 368
RecyclerView.ItemDecoratio

n class 297, 307, 332
RecyclerView.LayoutManager

class 297
RecyclerView.ViewHolder

class 297
red method of class Color 209
redraw a View 201
registerListener method of

class SensorManager 190
registerOnSharedPreference

ChangeListener method of
class SharedPreferences
142

RelativeLayout 48
release method of class

SoundPool 250
remove apps from Market 398
rendering and tracking text 16
replace method of class

FragmentTransaction 357
reporting bugs 3
Representational State Transfer

(REST) 260
requestFocus method of class

View 308
requestPermissions method

of class Fragment 195, 196
requirements 20

Index 419

res folder of an Android project
46, 54

res/drawable-mdpi folder 335
res/raw folder of an Android

project 220, 223
reset method of class Path 203
resolveActivity method of

class Intent 119
resource 395
resource files 38
resource folders

qualified names 116
resources

alternative-resource naming
conventions 68

default 68
Localization Checklist 71
localized 68
style 88, 331

Resources class 143
getConfiguration method

143, 144
Resources dialog 55, 56, 86
REST (Representational State

Transfer) web service 260
invoke 282

restrict maximum number of
digits in an EditText 78

reusable software components
18

Reuse 19
reuse 19
reverse engineering 388
RGB 169
RGB value 57
rotate animation for a View

128
rotation vector sensor 174
rowCount property of a

GridLayout 83
Runnable interface 117, 247
runOnUiThread method of class

Activity 247

S
saved state 96
scalable vector graphic 127
scale animation for a View 128
scale mode 206
SCALE_MODE_FILL 206

SCALE_MODE_FIT 206
scale-independent pixels (sp) 56
scaleType property of an

ImageView 135
screen capture 389
screen capturing and sharing 12
Screen Record tool in Android

Studio 390
screen resolution 50
screen size 50
screen type for a GUI’s design

47
screenshot specifications 389
ScrollView class 338
SDK versions and API levels 42
search operators (Twitter) 287
SeekBar

max property 88
progress property 87

SeekBar class 74, 78, 94
SeekBar.OnSeekBarChange-

Listener interface 79, 94,
210
onProgressChanged

method 79
send a message to an object 19
Sensor class 174
SENSOR_DELAY_NORMAL constant

of class SensorManager 190
Sensor.TYPE_ACCELEROMETER

constant 190
SensorEvent class 193
SensorEventListener interface

192
SensorEventListener listener

192
SensorManager class 190

getDefaultSensor method
190

registerListener method
190

unregisterListener
method 191

SensorManager.SENSOR_

DELAY_NORMAL constant 190
sensors

accelerometer 174, 192
gravity 174
gyroscope 174
light 174

sensors (cont.)
linear acceleration 174
magnetic field 174
orientation 174
pressure 174
proximity 174
rotation vector 174
temperature 174

service 76
set in an animation 128
Set interface 120
setAdapter method of class

ListView 279
setAdapter method of class

RecyclerView 307
setAntiAlias method of class

Paint 199
setArguments method of class

Fragment 357
setAudioAttributes method

of class
AudioAttributes.Builder
240

setBackgroundColor method
210

setBackgroundColor method
of class View 210

setContentView method of
class Activity 96

setDefaultValues method of
class PreferenceManager
141, 142

setDuration method of class
Animator 118

setDuration method of class
ViewAnimationUtils 157

setHasOptionsMenu method of
class Fragment 189

setImageBitmap method of
class View 214

setImageDrawable method of
class InputStream 155

setItems method of class
AlertDialog.Builder 297,
313

setLayoutManager method of
class RecyclerView 307

setNotificationUri method
of class Cursor 350

420 Index

setRepeatCount method of
class Animation 117, 151

setRequestedOrientation
method of class Activity
143

setStrokeCap method of class
Paint 199, 214

setStrokeWidth method of
class Paint 199

setStyle method of class Paint
199

setSystemUiVisibility
method of class View 253

setTables method of a
SQLiteQueryBuilder 348,
349

setTag method of class View
264

Setting hardware emulation

options 30
settings icon 107, 108
setUsage method of class

AudioAttributes 221, 240
setVolumeControlStream

method of class Activity
221, 226

shades of a color 80
shape element 335
SharedPreferences class 115,

295, 305
edit method 146, 309
getAll method 307
getString method 311
getStringSet method 146
registerOnSharedPrefere

nceChangeListener
method 142

SharedPreferences.Editor
class 115, 146, 296, 309, 310
apply method 146, 310
commit method 147
putString method 310
putStringSet method 146

shouldShowRequestPermissio

nRationale method of class
Fragment 195

show method of class
DialogFragment 159

show method of class
FloatingActionButton 308

showAsAction attribute of a
menu item 128, 179

showDividers property of a
LinearLayout 336

shuffle a collection 155
shuffle method of class

Collections 120
signing apps 386
simple collision detection 235
simple touch events 220
simple_list_item_1 368
single-screen app 43
slider (SeekBar) 76
smoothScrollToPosition

method of class ListView 283
SMS 293
Snackbar class 265, 267, 280
Social API 9
social media sites 399
social networking 399, 400
soft buttons 27
soft keyboard

prevent display at app
startup 298

remain on screen 81
types 339

sort
case insensitive 307

sort method of class
Collections 307

sound effects 220
sound files 223
SoundPool class 220, 240

load method 241
play method 241
release method 250

SoundPool.Builder class 221,
240

sounds 220
source code 2
source-code listing 2
sp (scale-independent pixels) 56
SQL (Structured Query

Language) 329
SQLite 15, 324, 329
SQLiteDatabase class 329

delete method 354
execSQL method 345
insert method 351
update method 352

SQLiteOpenHelper class 329,
344
getReadableDatabase

method 350
getWritableDatabase

method 351
onCreate method 345
onDowngrade method 345
onUpgrade method 345

SQLiteQueryBuilder class 348
appendWhere method 349
join 349
query method 350
setTables method 348,

349
src property of a ImageView 53,

62
star ratings for apps 398
start method of class Animator

118
startActivity method of class

Context 311
startAnimation method of

class View 117
stateAlwaysHidden (virtual

keyboard mode) 298
states of an Activity 77
stream for playing music 226
@string resource 55
String resource

containing multiple format
specifiers 124

string resource 55
String.CASE_INSENSITIVE_OR

DER Comparator<String>
object 307

strings.xml 55
stroke element of a shape 335
Structured Query Language

(SQL) 329
style (define new) 334
style attribute of a GUI

component 331
style property of a View 339
style property of a view 91
style resource 331, 339
style resources 88
styles.xml 334
support library

FragmentManager 114

Index 421

surfaceChanged method of
interface SurfaceHolder.
Callback 250

surfaceCreated method of
interface SurfaceHolder.
Callback 250

surfaceDestroyed method of
interface
SurfaceHolder.Callback
250

SurfaceHolder class 221, 240
addCallback method 240
lockCanvas method 253

SurfaceHolder.Callback
interface 221, 240, 250
surfaceChanged method

250
surfaceCreated method

250
surfaceDestroyed method

250
SurfaceView class 221, 240

getHolder method 240
synchronized 253
syntax coloring xxv, 2
system bar 37
SYSTEM_UI_FLAG_IMMERSIVE

254

T
tablet 8
TalkBack 36, 38, 66, 135

enable/disable 66
Localization 71

temperature sensor 174
text box 78
text field 78
text property of a TextView 53,

55, 134
Text tab in the layout editor 37
textAppearance property of a

TextView 84
textColor property of a Button

137
textColor property of a

TextView 58
textSize property of a

TextView 56, 136
textStyle property of a

TextView 136

Text-to-Speech API 9
TextView

gravity property 58, 88
text property 53, 55
textAppearance property 84
textColor property 58
textSize property 56

TextView class 38, 54, 78, 94
hint property 86
text property 134
textSize property 136
textStyle property 136

TextView component 49
TextWatcher interface 79, 93,

307
onTextChanged method 79

theme 88
Theme Editor 80
Theme.AppCompat.Light.Dark

ActionBar 79, 88
thread (for animation) 221
Thread class 252
Threadr class 221
Tip Calculator app 17
Toast class 117, 147

makeText method 147
Tools: logcat 119
tooltip in layout editor 61
touch event 175, 202
touch events

simple 220
track app installs 398
training from Deitel 404
translate animation

android:duration attribute
129

android:fromXDelta
attribute 129

android:startOffset
attribute 129

android:toXDelta attribute
129

translate animation for a View
128

tweened animation 116, 128
tweet 400
Twitter 5, 293, 400

@deitel 400
hashtag 400
tweet 400

Twitter Fabric (mobile
development platform) 320

Twitter search 287
operators 288

TYPE_ACCELEROMETER constant
of class Sensor 190

U
UI thread 117
Uniform Resource Identifier

(URI) 311
Uniform Resource Locator

(URL) 311
unique identifier for an app 40
unregisterListener method

of class SensorManager 191
up button 131, 161
update method of a

ContentProvider 352
update method of a

ContentResolver 374
update method of class

SQLiteDatabase 352
URI (Uniform Resource

Identifier) 311
Uri class 311, 330

getLastPathSegment
method 349

parse method 311
UriMatcher class 346
URL (Uniform Resource

Locator) 311
URL encoded String 311
USB debugging 30
useDefaultMargins property

of a GridLayout 83
utilities 31

V
values folder of an Android

project 47, 55
vector asset

add to project 127
Vector Asset Studio 113, 127,

178
version code 387
version name 387
VERSION_SDK_INT 253
versioning your app 386
Versioning Your Applications 387

422 Index

video 15
video sharing 400
view 76

GUI component 37
view (GUI component) 46
View animations 128
View class 76, 210, 221

contentDescription

property 135
custom subclass 237
getTag method 264
invalidate method 200
layout:gravity property

134
layout:margin property 134
layout:weight property 134
onDraw method 201
onSizeChanged method

200, 241
onTouchEvent method 175,

202, 220, 251
redraw a View 201
requestFocus method 308
setImageBitmap method

214
setSystemUiVisibility

method 253
setTag method 264
size changes 241
startAnimation method

117
View.OnClickListener

interface 151
View.OnLongClickListener

interface 311
View.SYSTEM_UI_FLAG_IMMERS

IVE 254
ViewAnimationUtils class 118

createCircularReveal

method 118, 157
setDuration method 157

ViewGroup class 338
view-holder pattern 264
view–holder pattern 297
views

ImageView 38, 49, 60
TextView 38, 49, 54

viral marketing 399, 400
viral video 400
virtual camera operator 9
virtual goods 393
virtual keyboard mode

stateAlwaysHidden 298
visual impairment 36
Voice Interaction API 13
volume 221

W
WeatherBug 6
web service 259

API key 260
host 259
REST 260

web services 5
Amazon eCommerce 6
eBay 6
Facebook 6
Flickr 6
Foursquare 6
Google Maps 6
Instagram 6
LinkedIn 6
Microsoft Bing 6
Netflix 6
PayPal 6
Salesforce.com 6
Skype 6
Twitter 6
Wikipedia 6
Yahoo Search 6
YouTube 6
Zillow 6

weightSum property of a
LinearLayout 336

Welcome app 17
Welcome window in Android

Studio 39
widget 16, 94
width of a column 81
Wi-Fi Direct 9
wildcard in a Uri 347
Windows 16
windowSoftInputMode option

298
WRITE_EXTERNAL_PERMISSION

176
www.deitel.com/training

404

X
XML 49
xml folder of an Android project

46, 115, 116
XML namespace

android 179
app 179

XML resource files 38
XML utilities 16

Y
YouTube 390

http://www.deitel.com/training

	Contents
	Preface
	Before You Begin
	3 Tip Calculator App
	3.1 Introduction
	3.2 Test-Driving the Tip Calculator App
	3.3 Technologies Overview
	3.3.1 Class Activity
	3.3.2 Activity Lifecycle Methods
	3.3.3 AppCompat Library and Class AppCompatActivity
	3.3.4 Arranging Views with a GridLayout
	3.3.5 Creating and Customizing the GUI with the Layout Editor and the Component Tree and Properties Windows
	3.3.6 Formatting Numbers as Locale-Specific Currency and Percentage Strings
	3.3.7 Implementing Interface TextWatcher for Handling EditText Text Changes
	3.3.8 Implementing Interface OnSeekBarChangeListener for Handling SeekBar Thumb Position Changes
	3.3.9 Material Themes
	3.3.10 Material Design: Elevation and Shadows
	3.3.11 Material Design: Colors
	3.3.12 AndroidManifest.xml
	3.3.13 Searching in the Properties Window

	3.4 Building the GUI
	3.4.1 GridLayout Introduction
	3.4.2 Creating the TipCalculator Project
	3.4.3 Changing to a GridLayout
	3.4.4 Adding the TextViews, EditText and SeekBar
	3.4.5 Customizing the Views

	3.5 Default Theme and Customizing Theme Colors
	3.5.1 parent Themes
	3.5.2 Customizing Theme Colors
	3.5.3 Common View Property Values as Styles

	3.6 Adding the App’s Logic
	3.6.1 package and import Statements
	3.6.2 MainActivity Subclass of AppCompatActivity
	3.6.3 Class Variables and Instance Variables
	3.6.4 Overriding Activity Method onCreate
	3.6.5 MainActivity Method calculate
	3.6.6 Anonymous Inner Class That Implements Interface OnSeekBarChangeListener
	3.6.7 Anonymous Inner Class That Implements Interface TextWatcher

	3.7 AndroidManifest.xml
	3.7.1 manifest Element
	3.7.2 application Element
	3.7.3 activity Element
	3.7.4 intent-filter Element

	3.8 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

