
final spine = 0.4375"

ADAPTIVE W
EB DESIGN

SECOND EDITION
Gustafson

SECOND EDITION

LeveL Beginning / Intermediate
Covers Web Design
Cover Design Veerle Pieters

US $34.99 CAN $43.99

www.newriders.com

Building an elegant, functional website requires more than just knowing how to code. In Adaptive Web Design,

Second Edition, you’ll learn how to use progressive enhancement to build websites that work anywhere, won’t

break, are accessible by anyone—on any device—and are designed to work well into the future.

This new edition of Adaptive Web Design frames even more of the web design process in the lens of progressive

enhancement. You will learn how content strategy, UX, HTML, CSS, responsive web design, JavaScript,

server-side programming, and performance optimization all come together in the service of users on whatever

device they happen to use to access the web.

Understanding progressive enhancement will make you a better web professional, whether you’re a content

strategist, information architect, UX designer, visual designer, front-end developer, back-end developer, or

project manager. It will enable you to visualize experience as a continuum and craft interfaces that are capable of

reaching more users while simultaneously costing less money to develop. When you’ve mastered the tenets

and concepts of this book, you will see the web in a whole new way and gain web design superpowers that will

make you invaluable to your employer, clients, and the web as a whole. Visit http://adaptivewebdesign.info to

learn more.

The web is the first truly flexible design medium. But its flexibility affects more than our layouts: we’re

designing for networks both fast and slow, for devices both modern and not, for users who may not see a

screen at all. In this second edition of Adaptive Web Design, Aaron shows us how progressive enhancement

is the solution to all these challenges, and more.

— Ethan Marcotte, Designer; Author of Responsive Web Design

Adaptive Web Design should be one of the first books on the shelf of anyone building for the web. Showing

a deep understanding of the web, Aaron manages to cram nearly 20 years of insight into a book that is an

absolute pleasure to read. I dare you to try and read this book without a highlighter handy.

— Tim Kadlec, Author of Implementing Responsive Design

About the Author

As would be expected from a former manager of the Web Standards Project, Aaron Gustafson is passionate

about web standards and accessibility. He has been working on the web for nearly two decades and is a web

standards advocate at Microsoft, working closely with their browser team. He writes about whatever’s on his

mind at aaron-gustafson.com.

ADAPTIVE WEB DESIGN SECOND EDITION
Crafting Rich Experiences with Progressive Enhancement

9780134216140_AdaptiveWebDesign_Cvr.indd 1 10/19/15 11:12 AM

Adaptive Web Design, Second Edition
Crafting Rich Experiences with Progressive Enhancement
Aaron Gustafson

New Riders
Find us on the Web at www.newriders.com
New Riders is an imprint of Peachpit, a division of Pearson Education.
To report errors, please send a note to errata@peachpit.com

Copyright © 2016 by Aaron Gustafson

Acquisitions Editor: Nikki Echler McDonald
Production Editor: Tracey Croom
Development Editor: Stephanie Troeth
Copy Editor: Kim Wimpsett
Proofer: Patricia Pane
Compositor: Danielle Foster
Indexer: James Minkin
Cover Design: Veerle Pieters
Interior Design: Ben Dicks
Technical Editors: Chris Casciano, Craig Cook, and Steve Faulkner

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission for
reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While
every precaution has been taken in the preparation of the book, neither the author nor
Peachpit shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Peachpit
was aware of a trademark claim, the designations appear as requested by the owner of
the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of
infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 9780134216140
ISBN 10: 0134216148

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.newriders.com

For Kelly

This page intentionally left blank

ACKNOWLEDGMENTS
Without the mentorship and assistance of so many of my friends and
colleagues in this industry, not only would this book have never been
written, but I would not have been in a position to write it. I’d like to take
a moment to extend them my sincerest gratitude.

To Molly Holzschlag and Jeffrey Zeldman for taking me under their
wings and helping me hone my skills as both a speaker and writer. And
to the numerous conference organizers and publishers who’ve given me
the opportunity to apply those skills.

To Steph Troeth for helping me organize my thoughts and the flow of this
book. Her support, encouragement, and mangement of this project made
the whole experience incredibly fulfilling and—dare I say—enjoyable!

To Chris Casciano, Craig Cook, and Steve Faulkner for keeping my code
on the straight and narrow, highlighting my oversights, and ensuring I
explained complex topics both simply and clearly. Their contributions
were incredibly thoguhtful and appreciated.

To Tim Kadlec, Jeremy Keith, and Ethan Marcotte for reading my early
drafts and saying such nice things about them.

To Veerle Pieters for making time in her busy schedule to update the look
and feel of this book and design me an even more beautiful cover than
she did for the first edition.

To Ben Dicks for his fantastic work on the interior layout and all the
custom illustration work.

To Jeff, Matt, Adam, and the rest of the Perma team for creating a system
to maintain web citations in perpetuity and for allowing me to add the
links I referenced to their permenant collection.

To the fine folks at Pearson/New Riders: Nikki McDonald for championing
this book’s move to Pearson and Tracey Croom and Mimi Heft for their
invaluable help with the production of the book.

And, of course, to Kelly, for granting me the time to write this book,
keeping me focused, and pushing me to get it done.

This page intentionally left blank

ABOUT THE AUTHOR
As would be expected from a former manager of
the Web Standards Project, Aaron Gustafson is
passionate about web standards and accessibility.

In his nearly two decades working on the Web,
Aaron has worked with a number of companies
you’ve probably heard of, including Box, Happy
Cog, Major League Baseball, McAfee, The New York Times, SAS,
StubHub, the U.S. Environmental Protection Agency, Vanguard,
Walgreens, and Yahoo. He joined Microsoft as a web standards
advocate to work closely with their browser team.

Aaron loves to share his knowledge and insights in written form.
His three-part series on progressive enhancement for A List Apart is
a perennial favorite and his seminal book on the subject, Adaptive
Web Design, has earned him numerous accolades and honors. When
he’s not writing, Aaron is frequently on the road presenting at con-
ferences and running workshops across the globe.

Back home in Chattanooga, Tenn., Aaron is the proprietor of
the Chattanooga Open Device Lab and helps organize the Code
& Creativity talk series with his partner Kelly McCarthy. He is a
longtime member of Rosenfeld Media’s “experts” group and writes
about whatever’s on his mind at aaron-gustafson.com.

This page intentionally left blank

CONTENTS
 Foreword xiii

 Introduction xv

 CHAPTER 1: Designing Experiences for People 1

Smart Code, Dumb Phones 2

When the Web Was Young 4

Technology vs. Experience 7

You Can’t Please Everyone 11

Support the Past, Optimize for the Future 12

Serving More for Less 16

Universal Accessibility 18

Thinking in Layers 20

This Is a Philosophy 23

 CHAPTER 2: Content Is the Foundation 25

Avoid Zombie Copy 28

Design Meaningful Content 29

Craft the Conversation 31

Plan for the Unknown 35

Write for Real People 38

x CONTENTS

Consider Content Beyond Copy 39

Keep Data Entry Conversational 47

Don’t Fill Space 48

Let Content Lead the Way 51

 CHAPTER 3: Markup Is an Enhancement 53

Learn from the Past 55

Illuminate Your Content 57

Mean What You Say 57

Embrace Classification and Identification 63

Make Deliberate Markup Choices 71

Clarify Interfaces with ARIA 83

Understand Fault Tolerance 86

Markup Conveys Meaning 91

 CHAPTER 4: Visual Design Is an Enhancement 93

Design Systems, Not Pages 94

Don’t Design Yourself Into a Corner 100

Understand How CSS Works 104

Start Small and Be Responsive 121

Focus on Standards 133

Design Defensively 137

Hide Content Responsibly 139

The Flip Side: Generated Content 143

xiCONTENTS

Consider the Experience with Alternate Media and Inputs 145

Embrace Default Styles 152

Embrace the Continuum 155

 CHAPTER 5: Interaction Is an Enhancement 157

Get Familiar with Potential Issues So You Can Avoid Them 160

Design a Baseline 165

Program Defensively 168

Establish Minimum Requirements for Enhancement 175

Cut Your Losses 177

Build What You Need 178

Describe What’s Going On 180

Write Code That Takes Declarative Instruction 182

Adapt the Interface 185

Apply No Styles Before Their Time 190

Enhance on Demand 192

Look Beyond the Mouse 195

Don’t Depend on the Network 201

Wield Your Power Wisely 206

 CHAPTER 6: Crafting a Continuum 209

Map the Experience 210

Learn From the Past, Look to the Future 223

Be Ready for Anything 228

xii CONTENTS

 Progressive Enhancement Checklist 230

Content 230

Markup 232

Design 233

Interaction 234

 Further Reading 236

 Index 241

FOREWORD
I remember well when I got my hands on a copy of the first edition
of Adaptive Web Design. I knew it would be good, but I didn’t expect
to be quite so blown away after just one chapter. In that first chapter,
Aaron managed to perfectly crystallize what I had been struggling to
articulate for years on the true meaning of progressive enhancement.

In hindsight, I shouldn’t have been so surprised. Aaron is a multi-
talented worker for the Web and has cultivated a deep knowledge
of many areas—particularly accessibility. But his real talent lies not
in his way with technology but in his way with people.

It’s all too easy for us—web designers and developers—to get
caught up in the details of technical implementations. If we’re not
careful, we can lose sight of the reasons why we’re designing and
developing on the Web in the first place. Aaron can take you on a
deep dive into the minutiae of markup, the secrets of CSS, and the
jargon of JavaScript, while at the same time reminding you of why
any of it matters: the people who will be accessing your work.

I suspect that Aaron struggles to come up with a title to describe
what he does. Developer? Evangelist? Author? All those terms
describe parts Aaron’s work, but they all fall short. I think the title
that best describes Aaron Gustafson is…teacher.

Good teachers can work magic. They impart knowledge while
weaving an entertaining tale at the same time. That’s exactly what
Aaron does with this book.

You’re in for a treat. You’re about to read a story that is as instruc-
tional as it is engrossing.

Take it away, teacher…

Jeremy Keith, Clearleft
August 2015

This page intentionally left blank

INTRODUCTION
Most web design books are filled with great techniques and exam-
ples that you can pick up and use right away. They’re often filled with
reams of documentation on which HTML tags to use in which situa-
tion and what each and every CSS property does. And most include
some sort of sample project or projects for you to work along with in
order to see how the code examples come together.

This is not that kind of book. This is a philosophy book about
designing for the ever-changing, ever-evolving Web.

There are thousands of technique books out there for you to buy
and hundreds of thousands of technique-based articles for you to
read. Many of them are quite good. Sadly, however, most of them
have a shelf life measured in months.

Technologies…browsers…toolsets…they’re constantly changing.
I struggle to keep up and often find myself overwhelmed, adrift
on a churning sea of far too many options and ways I could be
building websites. When I’m being tossed hither and thither by
the waves, I affix my gaze on the one thing that helps me get my
bearings and make sense of what’s happening: the philosophy of
progressive enhancement.

This philosophy—which is the heart and soul of an adaptive
approach to web design—grounds me and helps me put any new
technology, technique, or idea in perspective. Furthermore, it
makes my sites more robust and capable of reaching more users
with fewer headaches. It has made me a better web designer, and I
know it can do the same for you.

“Anyone who slaps a ‘this page
is best viewed with Browser X’
label on a Web page appears
to be yearning for the bad old
days, before the Web, when
you had very little chance of
reading a document written on
another computer, another word
processor, or another network.”

—TIM BERNERS LEE

CHAPTER 1:
DESIGNING
EXPERIENCES
FOR PEOPLE
The one constant on the Web is change. There’s always a new
design fad; a new darling language, framework, or tool; a shiny
new device to view it on; or new ideas of what it means to be
“on the Web.”

It’s exceptionally difficult to wrap your head around an industry
that is constantly in flux. It makes my head hurt, and if you’ve been
working on the web for a while, I suspect you might feel the same.

Having worked on the Web for nearly two decades, I’ve seen
the cycle play out over and over. Java applets, Shockwave, Flash,
Prototype, jQuery, 960gs, Bootstrap, Angular, React…. Technologies
come and go, but the Web remains. Screens went from tiny to huge
and then back to tiny again, but the Web remains. Walled gardens
were built and then torn asunder to make way for “app” stores and
(yes) more walled gardens, but the Web remains.

The Web remains because it is not a fixed screen size. The Web
remains because it is not a specific device. The Web doesn’t need to be
installed. The Web is inherently resilient and infinitely malleable. The
Web has the capacity to go anywhere, do anything, and reach anyone.

2 ADAPTIVE WEB DESIGN

SMART CODE, DUMB PHONES
In early 2012, my company began working with a client who
was struggling with the security of their mobile apps. They had
numerous native apps that all followed the common convention of
using a web service to authenticate users. They are a very security-
conscious organization, and this setup was creating a bottleneck
in deploying new security features. To roll out a new security
feature to their users (for example, a security question like “What
was the name of your first school?”), they had to go through an
excruciatingly long, arduous, multistep process:

1. Implement the new security feature.
2. Expose it via the web service.
3. Update each app to use the new web service (which might

include user interface changes, and so on).
4. Submit each app for approval.
5. Hope their users downloaded the new version of the app.

They brought us in to reimagine the authentication flow as a web-
based process that would launch inside an app—they had separate
iPhone, iPad, and Android apps—and handle letting the app
know whether and when the user had successfully logged in. This
approach meant they could roll out new security features immedi-
ately because the apps and the authentication flow would be loosely
coupled. Letting users sign in through a web page within the native
app would be a huge win for everyone involved.

Despite that the project was aimed at handling authentication for
mobile apps on three specific platforms, we built the web pages
without getting hung up on technology or screen sizes. Instead, we
focused on the purpose of every interface component and every
screen. The layouts were responsive from tiny screens all the way
up to large ones, and we implemented HTML5 and JavaScript in
completely unobtrusive ways. We wanted to take advantage of cool
new things (such as native form validation) while still keeping
the file sizes small and ensuring the pages would function in the
absence of either technology.

3DESigNiNg ExPERiENCESfOR PEOPlE

A few months after completing the project, our client came back to
us with a second project: They wanted to roll out the authentication
flow to their “m-dot” users (people who visited their mobile-only
website). They gave us a list of nearly 1,400 unique User Agent
strings that had accessed the login screen over a two-day period
and asked whether we could handle it. We parsed the list1 and were
able to come up with a more manageable aggregate list of devices
and device types to use in our testing. It was something like 25
devices that would cover roughly 97 percent of their 1,400 device
spectrum. The last 3 percent was at the end of a long tail when it
came to device usage, and we were comfortable assuming that fix-
ing issues in the other 97 percent would likely cover them as well.
That said, we were prepared to fix any additional issues when and
if they cropped up.

Our budget for adding support for 1,400 new devices, includ-
ing some heinous old browsers (for example, BlackBerry 4 and
Openwave), was about one-third the budget of the original project
that targeted only three.

Let that soak in for a second.

Now here’s the kicker: When all was said and done, we came in at
roughly half of our proposed budget, in terms of both actual hours
billed and time to completion. It was awesome for us because we
delivered ahead of schedule—which made us look good—and it
earned our client contact major kudos from his bosses because
he’d saved the company serious money on the project (which rarely
happens in the corporate world).

It’s worth noting that this accomplishment had nothing to do with
our bug-squashing prowess or our speed—we just followed the
philosophy of progressive enhancement.

1 With the help of a little script I cooked up: http://perma.cc/4EAE-Y9H5.

http://perma.cc/4EAE-Y9H5

4 ADAPTIVE WEB DESIGN

Progressive enhancement is a web design philosophy that embrac-
es the very nature of the Web. It isn’t about devices or browsers,
and it’s not about which version of HTML or CSS you can use.
Using progressive enhancement means you craft experiences
that serve your users by giving them access to content without
technological restrictions.

It sounds pretty amazing, and anything that amazing must be a
lot of work, right? Actually, it’s not. Once you understand how pro-
gressive enhancement works, or more importantly why it works,
you’ll see it’s quite simple. As we often say, progressive enhance-
ment just works.

During a presentation at the South by Southwest Interactive
Festival in 2003, Steve Champion of the Web Standards Project
offered the term progressive enhancement to describe his vision for
a new way to think about web design—starting with the content
and building out from there. Once you understand what progres-
sive enhancement is all about, it’s hard to imagine approaching a
project in any other way. It just makes sense. And yet, it took nearly
a decade after the Web’s creation for this approach to web design to
be proposed, let alone embraced.2

WHEN THE WEB WAS YOUNg
In the beginning there was text:3 the line mode browser.4 It has a
black screen with green text (Figure 1.1). You know, it was the kind
of program hackers use in the movies.

2 We’re still working on that one, which is the reason for this book.
3 Well, technically, in the beginning there was a graphical browser called

WorldWideWeb (later Nexus), but it was available only on the NeXT
operating system and never made it into general use.

4 Some of my friends and colleagues ventured back to CERN in 2013 to
re-create the line mode browser using modern web technologies. They
wrote about it, and you can try it out at http://perma.cc/2UYR-HVWP.

http://perma.cc/2UYR-HVWP

5DESigNiNg ExPERiENCESfOR PEOPlE

Figure 1.1 The line mode browser as re-created in 2013.

The line mode browser supported basic formatting such as
indentation, centering, and the like, but that was about it. But
it didn’t matter. It was 1990. The Web was an infant and was all
about publishing and reading text-based content, so it didn’t need
to look pretty.

By the time I got online five years later, things were a bit different.
The National Center for Supercomputing Application’s Mosaic
had brought the graphical side of the Web to the masses two years
earlier, and Netscape’s Navigator was already a year old.5

But my experience of the Web in 1995 was not graphical. I was
attending New College in Sarasota, Florida, and had to dial in to
the campus’s server in order to access the Internet. It was all done
over the command line, and I saw my first website—sony.com—in
stark black and white (Figure 1.2).

I thought to myself This web thing is bullshit! and quickly discon-
nected my modem in disgust.

5 Microsoft’s Internet Explorer had just been born.

6 ADAPTIVE WEB DESIGN

Figure 1.2 My best approximation of what I saw the first time I used Lynx
to access sony.com: a black screen with white text saying nothing.

You know what? I was right: That experience was bullshit! Here
was a website whose purpose was to disseminate information about
Sony products and musicians and it had—effectively—no content.
In other words, its purpose was lost.

How did this happen? Well, the folks who designed that version of
sony.com had used images instead of actual page content. All the
page text was rendered in JPEGs and GIFs. When they assembled
the images onto the page, they failed to author alt text that
provided access to that content. Anyone who couldn’t partake
of what I’m sure was the pinnacle of mid–1990s web design was
pretty much screwed.

7DESigNiNg ExPERiENCESfOR PEOPlE

And so there I was, taking my first tentative steps onto the Web
and I was denied access to a site because the technology I was
using to access it was not advanced enough. I felt like the short kid
at the amusement park, feigning disinterest in the Tilt-a-Whirl be-
cause I was the only one of my friends who was too small to ride it.

And just like my childhood height, my browser choice was not
something I had control over. I couldn’t have just downloaded
Mosaic or bought a copy of Netscape at my local Babbage’s and
been on my merry way. Our school’s server didn’t support Point-
to-Point Protocol (PPP) at the time, so I could browse only on the
command line via Lynx.

That experience colored my perception of the Web and has
stuck with me ever since, guiding my decisions as a web designer.
I always think about my experience and the lack of accessibility
the Web—well, sony.com specifically—had for me at the time.
It sucked. I never want to make someone else feel like that.

TECHNOlOgY VS. ExPERiENCE
When the Web was young, the technologies we used to create
experiences for it were rapidly evolving. HTML was not standard-
ized like it is today, and Microsoft and Netscape were taking turns
adding new elements and behaviors in a seemingly eternal game of
one-upmanship. We also had things like Java applets,6 RealMedia,
Shockwave, Flash, and a host of other proprietary technologies
that served only to complicate the page construction process and
heaped additional requirements on our users.

6 Did you ever use one to make your content look like it was reflected in a pool
of water? That was so cool!

8 ADAPTIVE WEB DESIGN

As an industry, we adopted the engineering concept of graceful
degradation, which ensures a system can continue to work with
a reduced service level even when part of it is unavailable or
destroyed. In other words, it’s a philosophy meant to avoid
catastrophe. In practice on the Web, this meant we assumed older
browsers, or those without the necessary plug-ins, would get a poor
experience. We rarely made the time to test in these scenarios, so
we erected signs for our users:

This page works best in Internet Explorer.

This page looks best in Netscape.

You need Flash to use our website.

Keep out ye undesirables!

The graceful degradation philosophy amounted to giving the latest
and greatest browsers the experience of a full-course meal, while
tossing a few scraps to the sad folk unfortunate enough to be using
an older or less-capable browser.

And when we really didn’t feel like testing in a browser, we’d just
read the User Agent string on the server and erect a roadblock
(Figure 1.3). 7 After all, we told ourselves, if we stop the user before
they experience an error, we’re avoiding delivering a bad experience.

But is no experience better than a less than ideal experience?
I don’t think so.

7 Of course, few of us even did that well. A lot of User Agent sniffing
(as it’s called) is poorly done and results in false positives. It’s been the
driving factor for the “evolution” of the User Agent string. Nicholas Zakas
wrote a brilliant piece chronicling that: http://perma.cc/BR7M-JEDH.

http://perma.cc/BR7M-JEDH

9DESigNiNg ExPERiENCESfOR PEOPlE

Figure 1.3 An example roadblock page from Kodak.

lessons learned at the Bleeding Edge
Some time ago I worked on a Chrome app for WikiHow.8 As a
Chrome app and a showpiece for the then-new Chrome Web
Store, our client wanted it to have fancy CSS3 animations and tran-
sitions, web fonts, a WebSQL database, offline support, and lots of
other “HTML5” bells and whistles. And, as our target was a single
browser, we relented when asked to go the single-page app route.
The app was built to degrade gracefully (it blocked non-WebKit
browsers), but it was not progressively enhanced.

Skip ahead about a year and our client returned, asking us to add
support for Firefox and Internet Explorer (IE) 9+. Oh boy.

8 http://perma.cc/5KE9-GK88.

http://perma.cc/5KE9-GK88

10 ADAPTIVE WEB DESIGN

Having built the site purely for WebKit, it was a bit of a challenge.
In addition to implementation differences with the experimental
CSS features, we also had to deal with the DOM (document object
model) and JavaScript API (application programming interface)
variance among the browsers. But the single biggest issue we ran
into was the lack of WebSQL support in Firefox and IE.

You see, in the intervening year, WebSQL had been abandoned at
the W3C (World Wide Web Consortium)—the organization that
oversees most web standards—because of pushback (primarily from
Mozilla and Microsoft). It was not available in either Firefox or IE,
nor would it ever be. IndexedDB, the new replacement for WebSQL,
had yet to be implemented in any production browser. So we ended
up writing a wrapper on top of localStorage that looked a lot like
SQL. Thankfully, that allowed us to avoid rewriting the bulk of the
app. Incidentally, it also made the app a lot faster.

The total cost of the new compatibility project was around 40 percent
of the budget to build the app the first time around. Without access
to an alternate timeline, I can’t be certain, but my experience tells me
it would have added less than 40 percent to the original project had
we been given the leeway to build it using progressive enhancement.
Plus, the end result would have been even better because it would
have been able to function without JavaScript.

Based on conversations I’ve had with other designers, the 40
percent number seems pretty accurate—possibly even a bit low.
I remember one conversation several years ago about Google
Maps. When the team originally built Maps—in all of its Ajax-y
glory—they didn’t make it accessible, and it required JavaScript.
According to the source of this anecdote (who I have long forgot-
ten), it took them almost twice as long to retrofit Maps as it would
have taken had they built it from the ground up following progres-
sive enhancement. As it’s purely anecdotal, you should take that
with a grain of salt, but it’s food for thought.

Now consider this story in light of the one I shared earlier. Given
the choice between a 40 percent budget increase to add support for
2 browsers and a 15 percent increase to add 1,400 browsers, I know

11DESigNiNg ExPERiENCESfOR PEOPlE

which option I’d choose. Progressive enhancement does require a bit
more thoughtful consideration up front. But the extra time required
diminishes with practice, and the philosophy pays huge dividends in
the long run. More reach, less overhead, fewer headaches.

Progressive enhancement trounces graceful degradation when it
comes to reaching more browsers, devices, and (ultimately) users
for less money (and fewer headaches). But how?

For starters, progressive enhancement recognizes that experience
is a continuum.

YOU CAN’T PlEASE EVERYONE
Providing a pixel-perfect, wholly identical experience for each and
every human being who tries to access your site would be impossi-
ble. There are simply far too many factors to consider.

On the technical side of things, you’ve got screen size, display
density, CPU (central processing unit) speed, amount of RAM
(random-access memory), sensor availability, feature availability,
interface methods…breathe…operating system, operating system
version, browser, browser version, plug-ins, plug-in versions, net-
work speed, network latency, network congestion, firewalls, proxies,
routers, and probably a dozen other factors my mind is incapable of
plucking from the whirlwind of technological considerations.

And that doesn’t even take into account your users’ experiences
interacting with your work.

When it comes to people, you have to consider literacy level, read-
ing level, amount of domain knowledge, cognitive impairments
such as learning disabilities and dyslexia, attention deficit issues,
environmental distractions, vision impairment, hearing impair-
ment, motor impairment, how much they understand how to use
their device, how much they understand how to use their browser,
how well-versed in common web conventions they are, and a ton of
other “human factors.”

12 ADAPTIVE WEB DESIGN

Every person is different, and everyone comes to the Web with
their own set of special needs. Some needs develop over time and
persist—blindness, for example. Others are transient, such as
breaking your mousing arm. Still others are purely situational and
dependent on the device you are using at the time and its technical
capabilities or constraints.

Trying to devise one monolithic experience for each and every
person to have in every context that considers every factor would
be impossible. Given unlimited time and budget, you could proba-
bly make it happen, but how often do you get to work under those
conditions?9 Designing for a monolithic experience is a form of
arrogance—it assumes you will always know your users’ context
and what’s best for them. In reality, you often know far less than
you think you do.

And yet, Sir Tim Berners Lee—the guy who invented the World
Wide Web—had a vision for a Web that was portable, capable of
going anywhere.10 Was he delusional?

SUPPORT THE PAST,
OPTiMiZE fOR THE fUTURE
Back in middle school, I wrote every paper in Word for MS-DOS.
It was a piece of software that did one thing really well: It allowed
the user to focus on writing.11 You didn’t have a whole lot of op-
tions for formatting text, but it did what it needed to do, and it did
it with aplomb.

9 If you do, in fact, get to work under these conditions, please let me
know if you’re hiring.

10 You can read his proposal here: http://perma.cc/H8HW-DACS.
11 In many ways, iA Writer—which I am using to write these very

words—reminds me a lot of it.

http://perma.cc/H8HW-DACS

13DESigNiNg ExPERiENCESfOR PEOPlE

More than two decades later, it’s next to impossible for me to read
the DOC files Word created for me. As an application, Word long
abandoned support for reading and editing that generation of the
DOC format.

Now I’m not saying that the stuff I wrote in middle school is
really worth reading today (I’m sure it’s not), but I am only one
of millions of people who authored content in Word for DOS.
That content is largely lost to history because the format evolved
in a way that made newer versions of Word incapable of reading
those older files.

And that’s just one piece of software. We see these sort of
“breaking changes” all the time in software, even on the Web. The
popular JavaScript framework Angular changed so much between
its 1.0 and 2.0 versions that developers had to rewrite their apps
almost entirely to take advantage of its new features.

This is a huge challenge for archivists because even if they manage
to hang on to a copy of the programs that originally authored these
files, they also need to maintain machines capable of running the
software (which is equally challenging).

When he conceived of the World Wide Web, Sir Tim Berners Lee
wanted to avoid this problem. He wanted content on the Web to be
robust and future-proof, so he made that a guiding principle of the
web’s lingua franca, HTML. To wit, the HTML 2.0 spec says this:12

To facilitate experimentation and interoperability between
implementations of various versions of HTML, the installed
base of HTML user agents supports a superset of the HTML 2.0
language by reducing it to HTML 2.0: markup in the form of a
start-tag or end-tag, whose generic identifier is not declared is
mapped to nothing during tokenization. Undeclared attributes
are treated similarly. The entire attribute specification of an
unknown attribute (i.e., the unknown attribute and its value,
if any) should be ignored.

12 http://perma.cc/H8HW-DACS

http://perma.cc/H8HW-DACS

14 ADAPTIVE WEB DESIGN

In other words, browsers are instructed to ignore what they don’t
understand. This is fault tolerance (another carry-over term from
the world of engineering), and it’s central to the design of HTML
as a language and CSS as well.13

Both languages were designed to be “forward compatible,” mean-
ing everything you write today will work tomorrow and next year
and in ten years. These languages were designed to evolve over
time. By ignoring anything they don’t understand, browsers give
these languages room to grow and adapt without ever reaching a
point where the content they encapsulate and style would no longer
be readable or run the risk of causing a browser to crash.

Fault tolerance makes it possible to browse an HTML5-driven
website in Lynx and allows you to experiment with CSS3 fea-
tures without worrying about breaking Internet Explorer 6.
Understanding fault tolerance is the key to understanding pro-
gressive enhancement. Fault tolerance is the reason progressive
enhancement works and makes it possible to ensure all content
delivered on the Web is accessible and available to everyone.

Maintaining Your Sanity
Trying to give everyone the same experience across the myriad
device and browser combinations, especially considering the
variety of human factors that affect how they interact with a page,
would be a fool’s errand. It’s important to pick your battles. Web
developer Brad Frost beautifully couched this approach as “support
vs. optimization.”

Unless you want to hole yourself up in a cabin for the foreseeable
future, you’re not going to be able to optimize your web
experience for every single browser. What I’m really asking
for here is consideration.

13 http://perma.cc/MW47-P99F

http://perma.cc/MW47-P99F

15DESigNiNg ExPERiENCESfOR PEOPlE

You don’t have to treat these browsers as equals to iOS and
Android and no one is recommending that we have to serve up
a crappy WAP site to the best smartphones on the market. It’s
just about being more considerate and giving these people who
want to interact with your site a functional experience. That
requires removing comfortable assumptions about support and
accounting for different use cases. There are ways to support
lesser platforms while still optimizing for the best of the best.14

By following this approach, you enable your content to go as far
as possible, unencumbered by the requirements of some partic-
ular technology or capability. You can do this rather easily by
focusing on the content and building up the experience, layer
by layer, because the browser and device can adequately support
that experience.

Progressive enhancement isn’t about browsers or devices or
technologies. It’s about crafting experiences that serve your users
by giving them access to content without technological restric-
tions. Progressive enhancement doesn’t require that you provide
the same experience to every user, nor does it preclude you from
using the latest and greatest technologies; it simply asks that you
honor your site’s purpose and respect your users by applying
technologies in an intelligent way, layer upon layer, to craft an
amazing experience.

Browsers, devices, and technologies will come and go. Marrying
progressive enhancement with your desire to be innovative and
do incredible things is entirely possible—as long as you’re smart
about your choices and don’t allow yourself to be so distracted
by the shiny and new that you lose sight of your site’s purpose or
your users’ needs.

14 http://perma.cc/D9ZP-H953

http://perma.cc/D9ZP-H953

16 ADAPTIVE WEB DESIGN

SERViNg MORE fOR lESS
Of course, there are many folks who consider progressive enhance-
ment—especially insofar as creating a non-JavaScript experience
goes—a total waste of time. Take this comment a reader left on
web developer Tim Kadlec’s blog post “Crippling the Web:”15

This is all fine and dandy, but not very real world. A cost-benefit
analysis has to happen—what does that next user/visitor cost,
and more importantly earn you? This idealistic approach would
leave most broke if they had to consider “every user” when
building a site. That’s why clothes come in small, medium,
large, and extra-large. Most of us have to buy them that way
because not everyone can afford a tailor made suit, much less
an entire wardrobe. Your approach only works for those who
can see the return.

Tim’s response was dead-on:

I think that’s where the difference between ‘support’ and
‘optimization’ comes into play. I’m certainly not saying to go out
and buy every device under the sun, test on them, make sure
things look and behave the same. You don’t necessarily have to
optimize for all these different devices and scenarios (that’s where
the cost-benefit analysis has to come in), but it’s often not very
time consuming to at least support them on some level.

Progressive enhancement can get you a long way towards
accomplishing that goal. Sometimes it’s as simple as doing
something like ‘cutting the mustard’ to exclude older devices
and browsers that might choke on advanced JS from having to try
and deal with that. The experience isn’t the same, but if you’ve
used progressive enhancement to make sure the markup is solid
and not reliant on the JavaScript, it’s at least something that is
usable for them.

15 http://perma.cc/AR56-T6GD

http://perma.cc/AR56-T6GD

17DESigNiNg ExPERiENCESfOR PEOPlE

You can’t test every scenario, every browser, and every device. There
just aren’t enough hours in the day even if someone was willing to
spend the money on doing it—and guess what, they aren’t. You need
to balance your desired reach with your realistic resources.

This is why progressive enhancement is so helpful. You can provide a
baseline experience that anyone can use and then look for ways to im-
prove it on the browsers and devices that are part of your test matrix.

As an added bonus, you’ll be able to reach new devices as they roll
out with little to no extra effort. Case in point: The TechCrunch re-
design of 2013 did not prioritize the browsing experience on a tiny
screen, but they allowed for it; as a result, the site looks and works
just as well on a smart watch (Figure 1.4) as it does on a phone or
a desktop screen.

Progressive enhancement is inherently future friendly.16

Figure 1.4 TechCrunch viewed on an
Android Wear device.

16 http://perma.cc/EG2P-DLGS

http://perma.cc/EG2P-DLGS

18 ADAPTIVE WEB DESIGN

UNiVERSAl ACCESSiBiliTY
Sir Tim’s vision for the Web was that content could be created
once and accessed from anywhere. Disparate but related pieces of
“hypermedia”17 scattered across the globe could be connected to
one another via links. Moreover, they would be retrievable by
anyone on any device capable of reading HTML. For free.

Ultimately, Sir Tim’s vision is about accessibility.

For a great many of us, ensuring our websites are accessible is
an afterthought. We talk a good game when it comes to “user
centered” this or that but often treat the word accessibility as a
synonym for “screen reader.”

Sure, people with visual impairments often use a screen reader to con-
sume content. But they might also use a braille touch feedback device
or a braille printer. They probably also use a keyboard. Or they may
use a touchscreen in concert with audio cues. Or they may even use a
camera to allow them to “read” content via optical character recogni-
tion (OCR) and text-to-speech. And yes, visual impairment affects a
decent percentage of the populace (especially as we age, which we all
do), but it is only part of the “accessibility” puzzle.

We all benefit when designers consider accessibility. We all have
special needs. “Accessibility” is about recognizing that fact and
taking steps to address them.

People consume content and use interfaces in many different
ways, some similar and some quite dissimilar to how you do it.
Designing for universal accessibility means not imposing a certain
world view—yours, your boss’s, or your client’s—on how or where
someone is going to access your website, giving your users ultimate
control on how they choose to consume your content.

The dimensions of interactive elements—links, buttons, and so
on—and their proximity to one another is an important factor in

17 Sir Tim used the term hypermedia because he knew the Web would need to
contain more than just text.

19DESigNiNg ExPERiENCESfOR PEOPlE

ensuring an interface actually registers your intent. Have you ever
injured your dominant arm and had to mouse with your other
one? It’s frustrating, especially when links are small or buttons are
too close together. Visual design is an accessibility concern.

The color contrast between text and the background is an im-
portant factor in ensuring content remains readable in different
lighting situations. Some websites are nearly impossible to read on
your phone while outside on a sunny day or when you’ve turned
down the screen brightness to sip that last 5 percent of your battery
life. Color choice is an accessibility concern.

The language you use on your sites and in your interfaces directly
affects how easy it is for your users to understand what you do, the
products you’re offering, and why it matters. It also affects how you
make your users feel about themselves, their experience, and your
company. Terms of service are a perfect example of this: No one
reads them because they are alienating and unfriendly.18 Language
is an accessibility concern.

The size of your web pages and their associated assets has a direct
effect on how long your pages take to download, how much it costs
your customers to access them, and (sometimes) even whether the
content can be reached. One time I unwittingly played 30 minutes
of a high-definition video while tethered to my phone, traveling
abroad, thanks to YouTube’s auto-play “feature.”19 It cost me about
$30. Bandwidth use and performance are accessibility concerns.

I could keep going, but I’m sure you get the point.

To me, accessibility is ultimately about ensuring people have equal
opportunity to access your content while simultaneously recogniz-
ing that we all have special needs—physical limitations, bandwidth
limitations, device limitations—that may require each of us to have
different experiences of the same web page.

18 Except Medium’s; they’re awesome! See http://perma.cc/EDS6-5VZC.
19 http://perma.cc/CS5G-S72K

http://perma.cc/EDS6-5VZC
http://perma.cc/CS5G-S72K

20 ADAPTIVE WEB DESIGN

When I load a website on my phone, for example, I am visually lim-
ited by my screen resolution (especially if I am using a browser that
encourages zooming), and I am limited in my ability to interact with
buttons and links because I am browsing with my fingertips, which
are far larger and less precise than a mouse cursor. On a touch-
screen, I may need the experience to be slightly different, but I still
need to be able to do whatever it is I came to the page to do. I need
an experience, but moreover, I need the appropriate experience.

Experience doesn’t need to be one hulking, monolithic ideal. It can
be different for different people. That may be hard to wrap your
head around at times, but embracing it will help you reach more
people with fewer headaches.

Experience can—and should—be crafted as a continuum.
Progressive enhancement embraces that continuum.

THiNKiNg iN lAYERS
One analogy I like to use for progressive enhancement are Peanut
M&M’s (Figure 1.5). At the center of each Peanut M&M’s candy
is, well, the peanut. The peanut itself is a rich source of protein and
fat—a great food that everyone can enjoy (except those with an
allergy, of course). In a similar sense, the content of your website
should be able to be enjoyed without embellishment.

Figure 1.5 A confectionary continuum from peanut to Peanut M&M’s.

21DESigNiNg ExPERiENCESfOR PEOPlE

Slather that peanut with some chocolate and you create a mouth-
watering treat that, like the peanut, also tastes great. So too,
content beautifully organized and arranged using CSS is often
easier to understand and certainly more fun to consume.

By coating your nutty confection with a sugary candy shell, the
experience of this treat is improved yet again. In a similar sense,
you can cap off your beautiful designs with engaging JavaScript-
driven interactions that ease your user’s movement through the
content or bring it to life in unique and entertaining ways.

This is, of course, an oversimplification of progressive enhance-
ment, but it gives you a general sense of how it works. Technologies
applied as layers can create different experiences, each one equally
valid (and tasty). And at the core of it all is the nut: great content.

Progressive enhancement asks you to begin with the core expe-
rience that is universally accessible and improve that experience
when you can. Benjamin Hoh eloquently put it this way: 20

[Progressive enhancement] keeps the design open to possibilities
of sexiness in opportune contexts, rather than starting with a
‘whole’ experience that must be compromised.

More often than not, experience begins with content. Clear,
well-written, and well-organized content provides solid footing for
any web project. It’s important to ensure that content is universally
available too, which means it needs to be addressable via HTTP.21

To enhance the meaning of your content, to make it more expres-
sive, you use markup. Every element has a purpose. Some elevate
the importance of a word or phrase, others clarify the role a
selection of content is playing in the interface, and still others ag-
gregate collections of elements into related sections of a document.
Markup gives more meaning to your content.

20 http://perma.cc/MZK5-5AL9
21 As web developer Tantek Çelik puts it, “If it’s not curlable, it’s not on the

Web.” See http://perma.cc/6Y8C-AZB6.

http://perma.cc/MZK5-5AL9
http://perma.cc/6Y8C-AZB6

22 ADAPTIVE WEB DESIGN

Visual design is a means of establishing hierarchy on a page.
Contrast, repetition, proximity, and alignment help to guide users
through your content quickly and easily. Visual design also helps
you reinforce your brand and provide the most appropriate reading
experience given the amount of screen real estate available to you.

You can use interaction as a means of reducing the friction of an
interface. Hiding content until it is needed, providing real-time
feedback based on user input, and enabling your users to accom-
plish more on a single page without constant page refreshes go a
long way in humanizing an interface. They help your users be more
productive and, when done well, can even make your creations
delightful to use.

These levels, when stacked upon one another, create an experience
that grows richer with every step, but they are by no means the
only experiences that will be had by a user. In fact, they are simply
identifiable milestones on the path from the most basic experience
to the most exceptional one (Figure 1.6). A user’s actual experi-
ence may vary at one or more points along the path and that’s all
right; as long as you keep progressive enhancement in mind, your
customers will be well served.

A website built following the philosophy of progressive enhance-
ment will be usable by anyone on any device, using any browser.
A user on a text-based browser like Lynx won’t necessarily have
the same experience as a user surfing with the latest version of
Chrome, but the key is that the user will have a positive experience
rather than no experience at all. The content of the website will be
available, albeit with fewer bells and whistles.

In many ways, progressive enhancement is a Zen approach to web
design: Control what you can up until the point at which you must
relinquish control and let go.

23DESigNiNg ExPERiENCESfOR PEOPlE

BROWSER CAPABILITIES

U
S

E
R

 E
XP

E
R

IE
N

C
E

EnhancedBaseline

Figure 1.6 Progressive enhancement visualized: the user experience gets better as
opportunity allows.

THiS iS A PHilOSOPHY
Progressive enhancement is a philosophy that pays huge dividends
in terms of time, cost, and reach. It reminds you to embrace the
Web’s inherent “webbiness” and helps you reach your users where
they are, in the most appropriate way possible.

It all begins with embracing the concept of experience as a con-
tinuum. In the following chapters, you’ll explore what that means
and how to integrate the progressive enhancement philosophy into
your web design process.

This page intentionally left blank

INDEX
audio element, 88
audit, design, 96
Autoprefixer, 137

B
back link, 117, 119, 120
background-color declaration, 111
bandwidth use, 19
Barebones software, 99
Berners-Lee, Tim, 12, 13, 18, 236
Block-Element-Modifier (BEM)

methodology, 65n
blogs

planning for content on, 36
source order on, 80–81

Boston Globe website, 127–131, 193
Boulton, Mark, 35
Bowman, Doug, 53n
Bradley, Adam, 217
Brand, Zach, 37
breakpoints, 131–132
browsers

fault tolerance of, 14, 86–91
hiding content from, 177–178
line mode, 4–5
native rendering by, 153–154

button creation, 57–60
button element, 58

C
Canon website, 187, 188
cascade in CSS, 104, 106
Cederholm, Dan, 238
Çelik, Tantek, 21n, 66, 239
Champion, Steve, 4
checklist of key concepts, 230–235
Chimero, Frank, 228, 236
Chrome app, 8–9
Clark, Joe, 46n, 238
class attribute, HTML, 63–66
class selector, CSS, 107, 108, 109n
click event, 198–199

A
A List Apart website, 126
abbreviation (abbr) element, 57
accessibility, 18–20, 239
accordion interfaces, 189–190, 221
addEventListener method,

172–173, 176
Adobe Typekit, 190–191
ads, Wi-Fi, 159
Airbnb, 167
alert role, 85
Allsopp, John, 208, 236
alternate media, 148
alternative interactions, 148–150
AlzForum, 82, 178, 180, 181, 186, 194–195
analytics and testing, 239
anchor (a) element, 56, 58
Andreessen, Marc, 86n
Angular JavaScript, 13
any-hover value, 150
any-pointer and any-hover

values, 150
Application Cache, 205
ARIA, 59–60

clarifying interfaces with, 83–85
describing states with, 180–182
first rule of using, 84
potential issues with, 61
roles available in, 83, 84, 85
styles triggered with, 191–192
tabbed interfaces and, 179

aria-controls attribute, 179
aria-describedby attribute, 179, 180
aria-labelledby attribute, 179
aria-selected attribute, 180–181
article element, 72, 77
at-rules, 115–116
attachEvent method, 172–173
“Attack of the Zombie Copy” (Kissane), 28
attributes
class and id, 63–66
data, 182–185

242 ADAPTIVE WEB DESIGN

client-side storage, 201–204
CMS (content management system), 36–37
collapsed elements, 141
color declaration, 105
color selection

accessibility and, 19
CSS examples of, 105–107, 110–111
defensive design and, 137–138

Comcast, 159, 164
comments, conditional, 177–178
concert hall analogy, 127, 130
Conditional Comments, 177–178
conditional logic, 168
consistency of design, 96
content, 25–51

cost-benefit analysis of, 39–43
crafting conversation with, 31–35
designing meaningful, 29–31
empty space vs., 48–50
enhancing with markup, 53–91
fake text vs., 30
generated, 143–145
hiding, 139–143
importance of, 21, 27
key concepts checklist on, 230–231
leading the way with, 51
media used as, 39–47
navigation vs., 77–78, 80
performance related to, 42
planning for unknown, 35–38
problem situations and, 33–35
providing alternate forms of, 44–47
questions on forms as, 47–48
recommended reading on, 237
thinking about structured, 37–38
visual design related to, 100–103
writing for real people, 38
zombie copy vs., 28–29

content management system (CMS), 36–37
Contents Magazine, 79–80, 117
continuum of experience, 20
conversation

guidelines for crafting, 31–33
problem situations and, 33–35
questions on forms as, 47–48
user interactions based on, 29

cookies, 201–202

copy
content equated with, 27
guidelines for crafting, 31–32
zombie or robotic, 28–29

cost-benefit analysis, 39–43
crafting the conversation, 31–35
“Crippling the Web” (Kadlec), 16
Crockford, Douglas, 156
CSS (Cascading Style Sheets), 104–121

at-rules in, 115–116
cascade in, 104, 106
fault tolerance and, 109–116
feature detection for, 138–139
hiding rule sets in, 112–116
potential issues with, 61
progressive navigation example,

116–121
property fallbacks in, 110–111
proximity in, 104–107
recommended reading on, 238
specificity in, 107–109

CSS gradients, 134–136
CSS preprocessors, 137
CSS Zen Garden, 112, 113

D
Dale, Tom, 166, 167
data attributes, 182–185
datalist element, 90
dataset property, 184
data-title attribute, 143–144
Davidson, Mike, 53n
declarative instruction, 182–185
default styles, 152–154
defensive design, 137–139
defensive programming, 168–175

delegating behavior, 170–172
isolating DOM manipulation, 169–170
testing for feature support, 172–174
verifying JQuery library, 174–175

delegating behavior, 170–172
design, etymology of word, 29

See also visual design
desktop first approach, 124
devices

mobile first approach to, 124, 125
optimizing design for specific, 132–133
See also mobile devices

243Index

dial-up modems, 223
display property, 140
div element, 58, 59, 215
document outline, 72–77, 81
document.querySelector

element, 176
DOM manipulation, 169–170
download attribute, 88
Duckett, Jon, 238

E
embed element, 86–87
embedded style sheets, 105, 106, 107
Ember FastBoot, 167
empty space, 48–50
errors

CSS handling of, 109–116
parsing, 109–110, 112, 125, 135
types of JavaScript, 164
See also fault tolerance

event bubbling phase, 170–171
event capturing phase, 170–171
event delegation, 170–172
experience vs. technology, 7–11
experimental features, 136
explicit sectioning, 72, 73, 76

F
Facebook

Open Graph protocol, 69–70
photo-reporting tool, 25–26

fake text, 30
Faulkner, Steve, 238, 239
fault tolerance, 14

CSS and, 109–116
defensive design and, 137–139
HTML and, 86–91
JavaScript and, 168

feature detection
CSS-based, 138–139
JavaScript, 172–174

Feliz, Teylor, 239
Fenton, Nicole, 237
Fidelity website, 183, 184
fieldset element, 72
figcaption element, 108
The Filament Group, 193
filling space, 48–50

Flash movies, 86, 87
flexible media, 122
flowcharts, 210, 211
fluid grids, 122
font stacks, 191
fonts, embedded, 190–191
Forbes website, 49, 50
forks, program, 173
forms

client-side storage of, 204
conversational questions on, 47–48

forward compatibility, 14
Friedman, Vitaly, 238
Frost, Brad, 14
future friendliness, 17
future-proof content, 13–14

G
Gawker Media, 157–158
generated content, 143–145
getActiveMQ function, 218
getComputedStyle method, 218
Give Central website, 187, 188
Google

Maps development, 10
semantic markup used by, 56
Social Graph product, 67
structured data testing tool, 70

graceful degradation, 8, 11
gradients, CSS, 134–136
Grigsby, Jason, 238
Guardian website, 41, 42, 213

H
Hagans, Andy, 239
Hawking, Stephen, 227
Hay, Stephanie, 31
Hay, Stephen, 95, 131, 237
heading levels, 73
Heilmann, Christian, 239
Henry, Shawn Lawton, 46n, 239
hiding content, 139–143

recommended approach to, 142–143
techniques to avoid for, 140–141
techniques to use sparingly for, 141–142

Hoh, Benjamin, 21
horizontal scrolling tabs, 187
Horton, Sarah, 239

244 ADAPTIVE WEB DESIGN

HTML
class and id attributes, 63–66
fault tolerance and, 14, 86–91
future-proofing, 13–14
heading levels, 73
JavaScript and, 82
microformats, 66–68
recommended reading on, 238
semantic markup, 56, 57
See also markup

HTML5, 57
explicit sectioning, 72, 73, 76
first-class elements, 71

HTML5 Boilerplate, 174
human factors, 11
Hutchinson, Grant, 130
Hyatt, Dave, 134
hypermedia, 18

I
iA Writer, 12n
IBM Simon, 197
id attribute, HTML, 63–66, 79
id selector, CSS, 107, 108
img element, 89, 214
indented elements, 141–142
indexedDB, 10, 205
inline styles, 106–107
input element, 58, 89
installable websites, 205–206
interaction, 157–207

adapting interfaces for, 185–190
alternative methods of, 148–150
applying styles for, 190–192
building what you need for, 178–180
Conditional Comments and, 177–178
conversation as basis for, 29
declarative instruction and, 182–185
defensive programming for, 168–175
describing using ARIA states, 180–182
designing a baseline for, 165–168
enhancement requirements for, 175–176
feature detection and, 172–174, 175
key concepts checklist on, 234–235
keyboard functions for, 195–197
lazy loading and, 192–195
network issues and, 201–206
potential problems with, 160–165

progressive enhancement and, 206–207
recommended reading on, 238–239
touchscreen functions for, 197–201
voice-based, 225–228

Interface Experience Maps. See Ix Maps
interface inventory, 96
interfaces

accordion, 189–190, 221
adapting for screens, 185–190
clarifying with ARIA, 83–85
describing with ARIA states, 180–182
tabbed, 81–83, 178–180, 220–222

Internet Explorer (IE), 93, 125, 177–178
invisible elements, 140
isomorphic JavaScript, 166–167
Ix Maps, 210–222

benefits of using, 212
lazy loading images example, 213–220
tabbed interface example, 220–222

J
Java applets, 7
JavaScript

avoiding on some browsers, 177–178
data attributes accessed in, 184
establishing minimum requirements

for, 175–176
feature detection for, 172–174, 175
HTML manipulated by, 82
isomorphic, 166–167
Ix Maps and, 214, 215, 217–220
jQuery library and, 158, 174–175
lazy loading of, 193, 195, 216–220
localStorage property, 202–204
network issues and, 201–204
noscript element, 163–164
potential problems with, 61, 160–165
programming defensively with, 168–175
progressive enhancement and, 162–165,

206–207
recommended reading on, 238–239
stories illustrating problems with,

157–159
tabbed interfaces and, 82–83,

178–180, 220
tabindex juggling, 196–197

Jehl, Scott, 237
Jing software, 96

245Index

jQuery library, 158, 174–175
jQuery Validation script, 183
jump link, 116, 117

K
Kadlec, Tim, 16, 42, 237, 239
Kaminsky, Dan, 159
Keith, Jeremy, 52, 90, 217n, 236, 238, 239
key concepts checklist, 230–235
keyboard interactions, 195–197
Kinect interactions, 148
King, Liam, 30
Kissane, Erin, 28, 237
Klatt, Dennis, 227
Kloos, Egor, 112
Koch, Peter Paul, 239
Kratzenstein, Christian, 227
Krug, Steve, 237

L
language, accessibility of, 19
Lawson, Bruce, 152, 238
layer-applied technologies, 21
lazy loading, 43, 192–195

Ix Maps example of, 213–220
progressive enhancement and, 195

Lee, Kate Kiefer, 33, 237
line lengths, 150
line mode browser, 4–5
link element, 191
linked style sheets, 106
links

anchor elements as, 58
CSS example of, 116–117
navigational, 84

list attribute, 90
localStorage property, 202–204
Lorem Ipsum copy, 30, 31
Lynx browser, 6, 7, 22

M
MacGrane, Karen, 30n
MailChimp, 33–35
main element, 57, 84
ManifoldJS tool, 206
man-in-the-middle attack, 159
Mann, Merlin, 50
mapping process. See Ix Maps

Marcotte, Ethan, 121, 237, 238
markup, 53–91

ARIA used in, 83–85
avoiding unnecessary, 81–83
choosing elements for, 57–63
class and id attributes in, 63–66
deliberate choices using, 71–83
document outline and, 72–77
enhancing content using, 21, 55
fault tolerance and, 86–91
illuminating content with, 57
key concepts checklist for, 232
learning from the past with, 55–56
meaning conveyed through, 91
microformats and, 66–68
potential issues using, 61
RDFa and microdata, 68–70
recommended reading on, 238
source order in, 77–81

Martin, George R. R., 39
max-width media query, 120–121,

122–123
McGrane, Karen, 237
meaning

content conveying, 29–31
markup conveying, 91

media assignments, 145–146
media content, 39–47

cost-benefit analysis of, 39–43
max-width query for, 120–121
providing alternates of, 44–47

media queries, 122, 125, 131, 149
@media block, 121, 145, 148
Meyer, Eric, 53n, 66, 146, 147, 238
microdata, 68–69
microformats, 66–68
min-width media query, 123
mobile devices

content vs. navigation on, 77–78
mobile first approach and, 124, 125
performance optimization for, 223–224

Mobile First (Wroblewski), 77
Modernizr, 138, 173
Molero, Gorka, 237
Mosaic browser, 5
MOSe technique, 112
motion-based controls, 148
mouse interactions, 195, 198

246 ADAPTIVE WEB DESIGN

Mullenweg, Matt, 66
MVC framework, 166, 167

N
namespacing, 185
native rendering, 153–154
natural-language processing, 225–226
navigation

content vs., 77–78, 80
progressive, 116–121

negatively indented elements, 141
Nelson, Sarah B., 210
Netscape Navigator, 5, 126
network issues, 201–206
New York Times website, 40, 71, 213
Nichols College website, 80, 116–121,

214–219
noscript element, 163–164, 194
NPR website, 37, 143–145

O
object element, 86–87
offscreen elements, 142
OmniGraffle software, 212
on-demand enhancements, 192–195
Open Graph protocol, 69–70
operating system (OS) look/feel, 153–154
optimization vs. support, 14–15, 16
outline, document, 72–77, 81
overdesigning websites, 95

P
Page, Larry, 56n
page performance, 42
PageRank algorithm, 56
parsing errors, 109–110, 125
parsing script, 3n
Pattern Lab, 99, 132
pattern libraries, 98–99
Pattern Primer, 99
PDFs, challenge of using, 46–47
performance

accessibility related to, 19
media content and, 42
optimizing for mobile, 223–224
user experience and, 42

picture element, 88–89
Pinterest, 70
placeholder text, 30n

Pointer Events, 200–201
pointer-based interactions, 200–201
Point-to-Point Protocol (PPP), 7
Portis, Eric, 238
positively indented elements, 141–142
post-processors for CSS, 137
PouchDB tool, 204
Powazek, Derek, 237
preprocessors for CSS, 137
presentation role, 85
printer-friendly pages, 146–148
progressive enhancement, 3–4

benefits of, 228–229
Boston Globe example of, 130–131
continuum of experience and, 20
cost effectiveness of, 10–11
CSS example of, 116–121
fault tolerance and, 14, 86–91
future friendliness of, 17
Ix Maps for exploring, 210–222
JavaScript and, 162–165, 206–207
key concepts checklist for, 230–235
layer-applied technologies and, 21
lazy loading and, 195
mapping the experience of, 210–222
mobile connections and, 223–224
navigation example of, 116–121
recommended reading on, 236–239
screen size and, 224–225
support vs. optimization and, 15, 16
user experience and, 22–23

progressive navigation, 116–121
property fallbacks, 110–111
proximity in CSS, 104–107

Q
queries, media, 122, 125, 131
Quesenbery, Whitney, 239

R
race condition, 169
Raggett, Dave, 64
RDFa tags, 68, 69–70
Redish, Janice, 237
rel attribute, 66–67
Responsive Design Workflow (Hay), 95
responsive web design, 122–133

basic formula for, 122
Boston Globe example of, 127–131

247Index

embracing fluidity in, 131–133
recommended reading on, 237
support vs. optimization in, 125–127

RGB color values, 111
RGBa color values, 111
Rieger, Bryan, 125
roadblocks, 8, 9
role attribute, 59–60, 83, 84, 85
rule sets, hiding in CSS, 112–116

S
Sambells, Jeffrey, 238
Samuels, Jason, 93, 132, 239
Schema.org website, 69
screen readers, 18, 227
screen size

adapting the interface for, 185–190
progressive enhancement and, 224–225
visual design and, 124, 150–152

screen-capture software, 96
script element, 174
scripts

parsing, 3n
Service Worker, 205
validation, 183

scroll jacking, 187
search engine optimization (SEO), 78–79
section element, 72, 77
sectioning elements, 72, 73, 76–77
select box, 153
selectors in CSS, 107–109, 112, 114–115
semantic markup

Google’s use of, 56
illuminating content with, 57
recommending reading on, 238

SEO (search engine optimization), 78–79
server-rendered apps, 168
Service Worker scripts, 205
sessionStorage property, 202–204
Sharp, Remy, 238
Shea, Dave, 112n
Simmons, Amber, 237
skins, 154
Skitch software, 96
Sky Broadband, 158–159, 174
small screen first approach, 124
source order, 77–81
space, empty, 48–50
specificity in CSS, 107–109

speech synthesis, 225, 227
Squirrel.js plugin, 203
states, ARIA, 180–182
Sticka, Tyler, 238
structured content, 37–38
structured data testing tool, 70
style guides, 98
Style Prototype, 99
style tiles, 97–98
styles

conservative use of, 138–139
default, 152–154
inline, 106–107
tiles and guides for, 97–98
when to apply, 190–192

support vs. optimization, 14–15, 16
@supports block, 138–139

T
tabbed interfaces, 81–83

adapting for screens, 185–190
ARIA attributes for, 179–180
Ix maps example of, 220–222
JavaScript and, 82–83, 178–180, 220
keyboard navigation of, 196–197
markup for building, 81

tabindex juggling, 196–197
table element, 55–56
:target pseudoclass, 118–119
TechCrunch website, 17
technology vs. experience, 7–11
testing and analytics, 239
text

fake or placeholder, 30
line mode browser for, 4–5
video games based on, 225, 226
voice-based interactions and, 225–228

thumbnail images, 41, 43, 213–214
touchend event, 198–199
touchscreen interactions, 197–201
transition property, 120, 133
Turing Test, 226
Twitter, 70, 167
Typekit service, 190–191

U
UI construction flows, 210
universal accessibility, 18–20
User Agent sniffing, 8n

248 ADAPTIVE WEB DESIGN

user experience
content strategy and, 43
controlled by Web users, 161–162
crafting the conversation for, 33
page performance related to, 42
progressive enhancement and, 22–23
recommended reading on, 237

V
van der Merwe, Rian, 30n
Vanguard website, 44, 45
Veen, Jeffrey, 92, 100
vendor prefixes, 133–137
video element, 87–88
viewport width (vw) units, 151–152
virtual personal assistants, 227
visibility property, 140
visual design, 93–155

accessibility and, 19
altered aesthetics and, 153
conducting an audit of, 96
conservative use of styles in, 138–139
content as basis for, 100–103
CSS overview for, 104–121
default styles for, 152–154
defensive design in, 137–139
embracing the continuum in, 155
finding the edges in, 102–103
fluidity in, 131–133
generated content in, 143–145
hiding content in, 139–143
interaction methods and, 148–150
key concepts checklist for, 233–234
larger screens and, 150–152
media assignments for, 145–146
page hierarchy and, 22
pattern libraries for, 98–99
printed page and, 146–148
progressive navigation example,

116–121
recommended reading on, 238
responsive web design and, 122–133
screen resolution and, 94
specific devices and, 132–133
standards considered in, 133–137
style guides for, 98
style tiles for, 97–98
system vs. page, 94–99

Voice and Tone website, 33–34
voice-based interactions, 225–228

W
W3C (World Wide Web Consortium), 10
Wachter-Boettcher, Sara, 237
Walton, Trent, 237
Warren, Samantha, 97
watchResize function, 218
Web, the

constancy of change on, 1
early experiences on, 4–7
installable sites on, 205–206
recommended reading about, 236

web browsers. See browsers
web design process. See responsive

web design
Web Developer Toolbar, 72n
Web Standards Project, 53
Web Standards Sherpa site, 74
“Web’s Grain, The” (Chimero), 228
WebSQL support, 10
What Does My Site Cost? tool, 42
Wi-Fi hotspots, 159
window.addEventListener

method, 176
window.localStorage method, 176
Word for MS-DOS, 12–13
words, power of, 27, 29, 31
writing for real people, 38
Wroblewski, Luke, 77, 237

X
XFN microformat, 66–67
XMLHttpRequest, 204

Y
YouTube, 19, 46n, 101

Z
Zakas, Nicholas, 8n
Zeldman, Jeffrey, 24, 126, 237
z-index property, 119
zombie copy, 28–29
Zork video game, 225, 226

	Contents
	Foreword
	Introduction
	CHAPTER 1: Designing Experiences for People
	Smart Code, Dumb Phones
	When the Web Was Young
	Technology vs. Experience
	You Can’t Please Everyone
	Support the Past, Optimize for the Future
	Serving More for Less
	Universal Accessibility
	Thinking in Layers
	This Is a Philosophy

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

