THE BRAIN LADY IS BACK with 100 more must-read insights into what motivates people’s behavior and how you can use that knowledge to improve your design work. Thousands of designers, marketers, and product managers have already come to rely on the original 100 Things Every Designer Needs to Know About People as a go-to guide on how to use the latest findings in psychology and neuroscience to create better websites, applications, products, and brands. Research hasn’t stopped since the book was written, and new design challenges have emerged. 100 MORE Things Every Designer Needs to Know About People continues the journey into human psychology, neuroscience, and brain research to provide you with bite-sized, practical advice you can use to create intuitive and engaging work that resonates with how people really behave.

LEARN TO INCREASE THE EFFECTIVENESS of your websites, applications, designs, and products by finding the answers to questions like these:

- How do you grab and hold a viewer’s attention in a video ad?
- How much text on a screen do people actually read?
- What one simple thing can you do to enhance the believability of your content?
- When is it better NOT to give your audience choices?
- Why does laughing enhance learning for kids?
- Do certain fonts help people learn information better?
- Where is the worst spot on a smartphone screen to place frequently used controls?
- What’s the best way for people to process big data?

These are just a few of the questions that Susan explores in this deep-dive exploration of what makes people tick.

SUSAN M. WEINSCHENK, Ph.D.

Susan M. Weinschkenk has a Ph.D. in psychology and over 30 years of experience as a behavioral scientist. She is a consultant to Fortune 1000 companies, startups, government agencies, and non-profits. Her clients call her “The Brain Lady” because she applies research on brain science to predict, understand, and explain what motivates people and how they behave.
This page intentionally left blank
ACKNOWLEDGEMENTS

Many thanks to all the readers of the original *100 Things Every Designer Needs to Know About People*. Your enthusiasm, comments, and ideas gave me the inspiration to come up with *100 More*!

DEDICATION

This book is dedicated to my friends and family, who were patient with me and helped me with lots of other tasks so I could concentrate on the writing of this book.
Susan Weinschenk has a Ph.D. in psychology and more than thirty years of experience as a behavioral scientist. She is a consultant to Fortune 1000 companies, start-ups, government agencies, and nonprofits. Her clients call her “The Brain Lady,” because she applies research on brain science to predict, understand, and explain what motivates people and how they behave.
# CONTENTS

## THE DESIGNER AS BEHAVIORAL SCIENTIST

## HOW PEOPLE SEE

1. PEOPLE PREFER CURVED SHAPES  
2. PEOPLE PREFER SYMMETRY  
3. SOME PEOPLE HAVE AN EXTRA COLOR CONE  
4. PERIPHERAL VISION DETERMINES WHERE CENTRAL VISION SHOULD LOOK  
5. PERIPHERAL VISION SEES DANGER AND PROCESSES EMOTIONS FASTER  
6. PERIPHERAL VISION IS LIKE A LOW-RESOLUTION IMAGE  
7. EMOTION VS. GAZE DIRECTION: EMOTION WINS  
8. DIRECT GAZE CAN BACKFIRE  
9. PEOPLE DECIDE ABOUT A DESIGN IN A SPLIT SECOND

## HOW PEOPLE THINK AND REMEMBER

10. PEOPLE USE TWO KINDS OF THINKING  
11. SOME MEMORIES CHANGE EASILY  
12. REPETITION STRENGTHENS SOME MEMORIES  
13. MUSIC EVOKE MEMORIES AND MOODS

## HOW PEOPLE DECIDE

14. PEOPLE MAKE DECISIONS WITH SYSTEM 1 (TRUTHINESS) THINKING  
15. PEOPLE CHOOSE WHAT’S BRIGHTEST
| 16 | WHEN FACED WITH A COMPLEX DECISION, PEOPLE FOLLOW THEIR FEELINGS | 54 |
| 17 | THE PUPILS DILATE DURING A DIFFICULT DECISION | 61 |
| 18 | CONFIDENCE TRIGGERS DECISIONS | 63 |
| 19 | THE SURPRISING EFFECTS OF STRESS ON DECISION MAKING | 66 |
| 20 | PEOPLE MAKE DECISIONS AT CERTAIN CALENDAR EVENTS | 70 |
| 21 | PEOPLE MAKE DECISIONS BASED ON SPECIFIC MEMORIES | 72 |
| 22 | BRAIN ACTIVITY PREDICTS DECISIONS BEFORE THEY’RE CONSCIOUSLY MADE | 74 |

**HOW PEOPLE READ AND INTERPRET INFORMATION**

| 23 | IF TEXT IS HARD TO READ, THE MATERIAL IS EASIER TO LEARN | 78 |
| 24 | NOUNS SPUR ACTION MORE THAN VERBS SPUR ACTION | 82 |
| 25 | HOMOPHONES CAN PRIME BEHAVIOR | 86 |
| 26 | PEOPLE READ ONLY 60 PERCENT OF AN ONLINE ARTICLE | 90 |
| 27 | READING ONLINE MAY NOT BE READING | 92 |
| 28 | THE MULTISENSORY EXPERIENCE OF PHYSICAL BOOKS IS IMPORTANT TO READING | 95 |
| 29 | PEOPLE ARE READY TO MOVE ON FROM “OLD” MEDIA | 99 |

**HOW PEOPLE ARE INFLUENCED BY STORIES**

| 30 | THE BRAIN IS MORE ACTIVE WITH STORIES | 106 |
| 31 | DRAMATIC ARC STORIES CHANGE BRAIN CHEMICALS | 108 |
| 32 | STORIES FOCUS ATTENTION | 112 |
| 33 | PEOPLE’S SELF-STORIES AFFECT THEIR BEHAVIOR | 114 |
| 34 | SMALL STEPS CAN CHANGE SELF-STORIES | 116 |
| 35 | A PUBLIC COMMITMENT LEADS TO STRONGER SELF-STORIES | 119 |
| 36 | CHANGE THE STORY AND YOU WILL CHANGE THE BEHAVIOR | 121 |
## HOW PEOPLE RELATE TO OTHER PEOPLE AND TO TECHNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>EMOTIONS ARE CONTAGIOUS</td>
</tr>
<tr>
<td>38</td>
<td>PEOPLE DON’T LIKE VIDEO ADS</td>
</tr>
<tr>
<td>39</td>
<td>JOY AND SURPRISE GRAB AND HOLD ATTENTION IN VIDEO ADS</td>
</tr>
<tr>
<td>40</td>
<td>SURPRISE, BUT NOT SHOCK, ENCOURAGES SHARING</td>
</tr>
<tr>
<td>41</td>
<td>OXYTOCIN IS THE BONDING CHEMICAL</td>
</tr>
<tr>
<td>42</td>
<td>WHEN PEOPLE FEEL CONNECTED, THEY WORK HARDER</td>
</tr>
<tr>
<td>43</td>
<td>DEVICES WITH ALERTS LOWER COGNITIVE PERFORMANCE</td>
</tr>
<tr>
<td>44</td>
<td>CELL PHONES NEARBY NEGATIVELY AFFECT PERSON-TO-PERSON COMMUNICATION</td>
</tr>
<tr>
<td>45</td>
<td>PEOPLE TRUST MACHINES THAT HAVE SOME HUMAN-LIKE CHARACTERISTICS</td>
</tr>
<tr>
<td>46</td>
<td>PEOPLE CAN FEEL EMPATHY FOR MACHINES</td>
</tr>
</tbody>
</table>

## HOW CREATIVITY INFLUENCES DESIGN

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>EVERYONE CAN BE CREATIVE</td>
</tr>
<tr>
<td>48</td>
<td>CREATIVITY STARTS WITH THE EXECUTIVE ATTENTION NETWORK</td>
</tr>
<tr>
<td>49</td>
<td>TO BE CREATIVE, ENGAGE THE BRAIN’S DEFAULT NETWORK</td>
</tr>
<tr>
<td>50</td>
<td>INDUCE AN “AHA” MOMENT</td>
</tr>
<tr>
<td>51</td>
<td>DAYDREAMING ENCOURAGES CREATIVITY</td>
</tr>
<tr>
<td>52</td>
<td>SLEEPING ENCOURAGES CREATIVITY</td>
</tr>
<tr>
<td>53</td>
<td>NOISE AND MUSIC INCREASE CREATIVITY</td>
</tr>
<tr>
<td>54</td>
<td>PEOPLE ARE MORE CREATIVE WITHIN SOME CONSTRAINTS</td>
</tr>
<tr>
<td>55</td>
<td>THE RIGHT KIND OF COLLABORATION INCREASES CREATIVITY</td>
</tr>
<tr>
<td>56</td>
<td>BEING A PERFECTIONIST CAN RUIN CREATIVE WORK</td>
</tr>
</tbody>
</table>
## HOW PEOPLE’S BODIES AFFECT DESIGN

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>PEOPLE THINK AND FEEL WITH THEIR BODIES</td>
<td>172</td>
</tr>
<tr>
<td>58</td>
<td>PEOPLE NATURALLY GESTURE</td>
<td>175</td>
</tr>
<tr>
<td>59</td>
<td>PEOPLE HAVE PHYSICAL LIMITATIONS OF MOVEMENT</td>
<td>177</td>
</tr>
<tr>
<td>60</td>
<td>THUMBS CAN REACH ONLY SO FAR</td>
<td>179</td>
</tr>
<tr>
<td>61</td>
<td>DISTANCE FROM THE SCREEN IS CRITICAL</td>
<td>182</td>
</tr>
</tbody>
</table>

## HOW PEOPLE SHOP AND BUY

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>PEOPLE DON’T SEPARATE SHOPPING ONLINE FROM SHOPPING IN A STORE</td>
<td>188</td>
</tr>
<tr>
<td>63</td>
<td>PEOPLE SPEND LESS WHEN THEY USE CASH</td>
<td>190</td>
</tr>
<tr>
<td>64</td>
<td>PEOPLE COMMIT TO PURCHASES BECAUSE OF COGNITIVE DISSONANCE</td>
<td>192</td>
</tr>
<tr>
<td>65</td>
<td>COGNITIVE DISSONANCE MAKES PEOPLE BUY</td>
<td>194</td>
</tr>
<tr>
<td>66</td>
<td>PEOPLE ARE AFFECTED BY ARBITRARY NUMBERS</td>
<td>196</td>
</tr>
<tr>
<td>67</td>
<td>ONLINE SHOPPING INCREASES ANTICIPATION</td>
<td>198</td>
</tr>
</tbody>
</table>

## HOW GENERATIONS, GEOGRAPHY, AND GENDER INFLUENCE DESIGN

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>EVERYONE USES SMARTPHONES FOR NEWS AND IMPORTANT LIFE EVENTS</td>
<td>204</td>
</tr>
<tr>
<td>69</td>
<td>GENERATIONAL DIFFERENCES IN SMARTPHONE USE DEPEND ON THE ACTIVITY</td>
<td>205</td>
</tr>
<tr>
<td>70</td>
<td>IF THE TASK TAKES LESS THAN 5 MINUTES, PEOPLE WILL USE THEIR SMARTPHONES</td>
<td>207</td>
</tr>
<tr>
<td>71</td>
<td>NOT EVERYONE WITH A CELL PHONE HAS A SMARTPHONE</td>
<td>208</td>
</tr>
<tr>
<td>72</td>
<td>IN MANY COUNTRIES, WOMEN LACK ONLINE ACCESS</td>
<td>209</td>
</tr>
<tr>
<td>73</td>
<td>GAMERS ARE ALL AGES AND ALL GENDERS</td>
<td>210</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>WHAT PEOPLE FIND VISUALLY APPEALING DEPENDS ON AGE, GENDER, AND GEOGRAPHY</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>PEOPLE WANT FEWER CHOICES AS THEY GET OLDER</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>THE MENTAL MODEL OF “ONLINE” AND “OFFLINE” IS DIFFERENT FOR DIFFERENT GENERATIONS</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>OVER HALF OF THE PEOPLE OVER AGE 65 IN THE US USE THE INTERNET</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>PEOPLE OVER 40 HAVE PRESBYOPIA</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>THE COLOR BLUE FADES WITH AGE</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>NEARLY 100 MILLION PEOPLE OVER AGE 65 HAVE HEARING PROBLEMS</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>MOTOR SKILLS DON’T DECLINE UNTIL THE MID-60S</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>OLDER PEOPLE MAY NOT HAVE ANSWERS TO THOSE SECURITY QUESTIONS</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>AS PEOPLE AGE, THEY BECOME LESS CONFIDENT ABOUT THEIR OWN MEMORIES</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>GENERATION Z WILL ACCOUNT FOR 40 PERCENT OF ALL CONSUMERS IN 2020</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>MORE THAN ONE-THIRD OF ONE-YEAR-OLDS CAN USE A TOUCH SCREEN</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>WHEN TODDLERS LAUGH, THEY LEARN MORE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOW PEOPLE INTERACT WITH INTERFACES AND DEVICES</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>PEOPLE WANT TO SKIM AND SCAN VIDEOS</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>PEOPLE INTERACT WITH CAROUSEL S</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>PEOPLE SCROLL</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>PEOPLE CAN’T EVEN TALK TO THE CAR WHILE DRIVING</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>PEOPLE DON’T ALWAYS ENGAGE MORE WHEN YOU’VE USED “GAMIFICATION”</td>
<td></td>
</tr>
</tbody>
</table>
You wake up in the morning and while you sip your coffee, you slip on your headset. A few gestures with your hand and fingers and you are skimming the news and your calendar on the screen that has appeared in front of you. As you walk to the train to go to work, you run your hand down your arm to call someone at your office.

When you get to work you might spend some time in the immersive room. Data appears on a screen, you hear sounds, and feel pulses through the vibrating floor, or a vest you have put on over your clothes. Your unconscious processes these sensory data so that you can make decisions. That’s not so far in the future. That’s what is about to become mainstream in the next 1–2 years.

This is a great time for designers—there are so many things that can, and need, to be designed! We still need software and websites and mobile apps, and now we also need to design how people will use technology that lives in clothing, headsets, and robots.

Technology is growing and changing, and what we know about people has also exploded. When I wrote the first *100 Things Every Designer Needs To Know About People*, it was 2011. I had summed up the essential information on what designers need to know about people in those 100 things. If you had asked me then if I thought there were another 100 things people need to know, I would have probably laughed and said, of course not!

But a lot has happened in the last four years. Our understanding of the brain and the body has exploded almost as fast as the technology has exploded. Now we know that:

- How we read online is different than how we read text on a page.
- We are not born with brains that know how to read—our brains repurpose other areas of the brain to learn how to read.
- Our unconscious processes big data better than our conscious mind does, and we can actually use something called sensory addition to feed data to the unconscious.
- Our peripheral vision decides where our central vision should look.
- Older people aren’t slow to learn and use technology because they can’t remember, but more because they aren’t confident about their memories.

- People who are blind can see by hooking up a camera to their tongues.

And, well, 94 other amazing things.

I hope you enjoy this book as much as I’ve enjoyed researching and writing it. I can’t wait to see what we all design in the next few years. And I hope that this book will help you design so that your creations fit the way people learn, work, think, and play.

Susan Weinschenk, Ph.D.

_Edgar, Wisconsin, USA_

_July 16, 2015_
It’s 11:00 a.m. on a Saturday and you’re at home in front of your laptop, browsing the Internet. You open your favorite news site and scan the headlines. You click on a story and read for a bit, then go back to the main page and scan some more. You choose another story, look at the picture, and read some more—just normal scanning and reading online behavior, right?

What you may not realize as you do this is that your two types of vision, central and peripheral, are multitasking.

**BUT ISN’T MULTITASKING A MYTH?**

If you’ve read any of my other books or blog posts, you know that I’m fond of saying that multitasking doesn’t exist; most of the time what people think of as multitasking is actually fast “task switching.” People switch really quickly from one thing to another, from one focus to another. This quick task switching takes a toll on attention and mental processing.

But central and peripheral vision multitasking is different. People really are capable of multitasking when it comes to vision.

**A QUICK DEFINITION OF CENTRAL AND PERIPHERAL VISION**

The fovea is a small depression at the back of the retina that affords very clear, detailed vision. Foveal vision, or central vision, covers only a very small area—about the size of two thumbnails—but it takes up half of the processing in the brain’s visual cortex.

The rest of the visual field is peripheral vision. Peripheral vision takes in a much broader and larger view. The visual cortex can process both central and peripheral vision at the same time.

**EYES TAKE LOTS OF VISUAL SAMPLES AT THE SAME TIME**

People take in visual information in little bites. This is called visual sampling. Central and peripheral vision are working at the same time. When you’re scanning that page online and a headline grabs your attention, you move your head and your gaze so that
the headline is in view of your fovea—your central vision. But how do your head and eye know to look at that exact spot?

**PERIPHERAL VISION CALLS THE SHOTS**

Casimir Ludwig, J. Rhys Davies, and Miguel Eckstein’s research (2014) showed that it is peripheral vision—what it sees, and how that information is processed in the brain—that tells the central vision where to focus next. This is a largely unconscious process. People are consciously aware of their central vision and what it’s processing, but they’re likely not consciously aware of what’s in their peripheral vision, or that their peripheral vision is calling the shots for where to look next.

**TWO VISIONS ARE BETTER THAN ONE**

You would think that all this multitasking would slow down visual processing, but Ludwig’s research shows that central and peripheral vision are processed independently to a large extent, and, therefore, both can be done quickly.

**DON’T BASE EVERY DESIGN DECISION ON EYE-TRACKING STUDIES**

Most eye-tracking research measures only central vision; it doesn’t address what’s going on in peripheral vision. Yet there’s a tendency to make design decisions based on eye-tracking results (“No one looked at this picture, therefore it’s not effective and we should remove it.”). Now that you know that peripheral vision is calling the shots, you can avoid making decisions based solely on eye-tracking data.

**PAY ATTENTION TO PERIPHERAL VISION**

Since peripheral vision directs where central vision should go, it’s important to pay attention to what people will see in their peripheral vision when they focus on certain parts of a page with their central vision. Peripheral vision isn’t just dead space to be left blank. As a designer, you need to design flexibly to allow for different monitor sizes and devices (large screen, laptop, tablet, smartphone). There’s a tendency to use only the middle part of the screen and leave the edges blank. This might be easiest for creating one screen that translates to multiple devices, but it means that you’re leaving peripheral vision with nothing to look at. Figure 4.1 shows a website for a restaurant that makes full use of peripheral vision to grab attention and help people know what the site is about.
FIGURE 4.1 A website that makes full use of peripheral vision.

Takeaways

☑ Don’t base design decisions solely on eye-tracking studies.
☑ Don’t leave peripheral areas blank. Instead, include information that helps people decide where to look (with central vision) next.
A
Aaker, Jennifer, 131
Abrams, Daniel, 44
Accessibility, devices for the impaired, 253
Action
  music moving people to act, 44
  nouns vs. verbs in stimulating, 82–85
  role of gaze direction in getting person to act, 25
  triggering mechanisms in brain, 65
Ads
  joy and surprise as attention grabbers in, 129–130
  overcoming people’s dislike of, 128
Age. see Generational differences
Alerts, device alerts lowering cognitive performance, 138–139
Allport, Floyd, 136
Alter, Adam, 70
Amazon one-click purchasing, 190
Anchoring
  avoid anchoring effect of brainstorming, 168
  on numbers, 196
Andics, Attila, 100
Anthropomorphism
  confiding in anthropomorphic robots, 146
  trust and, 142–143
Anticipation, increased by online shopping, 198–202
Anticipatory design (Shapiro), 241–242
Antico, Concetta, 12
Asymmetry, when to use, 9–10
Attention
  executive attention network, 153–154
  focused by stories, 112
  joy and surprise as attention grabbers in ads, 129–130
Attention minutes, as advertising metric, 90
Audiences, tailoring design by, 31
Audio
  combining with video, 101
  for effective online communication, 99–100
  hearing issues in those over 65 and, 220
Audio books, increasing creativity, 163
Auditory cues, conditioned responses to, 138
Auditory devices
  devices for the impaired, 253
  sensory substitution and sensory addition, 254–255
Augmented reality
  devices, 251–252
  virtual reality compared with, 177–178
Autobiographical memories, changeable nature of, 38
B
Baby boomers, smartphone task duration and, 207.
  see also Generational differences
Balachander, Neeraja, 4
Bar, Moshe, 2–3, 4, 8
Barona, Christopher, 3
Bayle, Dimitri, 17
Behavior
  changing behavior by changing the story, 121–123
  impact of self-stories on personal behavior, 114–115
Behavior scientists, designers as, xiii–xiv
Berger, Jonah, 131
Bionic implants, 245
Body
  gestures for device manipulation, 175
  impact on design, 171
  importance of distance from screen, 182–185
  natural vs. forced gestures, 176
  physical limitations of movement, 177–178
  thinking and feeling with, 172–174
  thumb and hand limitations, 179–181
Body posture, neurochemicals and, 127
Bonding, role of neurochemical (oxytocin) in, 133–135
Books, importance of multisensory experience of physical books, 95–98
Brain, 92
  brain activity predicting decisions, 74–76
  chemistry of dramatic arc stories, 108–109
  creation of new neuron structures in adults, 239–240
  curves stimulating, 4–5
  fusiform facial area (FFA) of, 99
  mechanisms triggering actions, 65
  myth regarding hemispheres and functions, 151–152
  neuroplasticity of, 92, 94
  stories increasing activity of, 106–107
Brain implants, for technology control, 247–248
Brain networks
creative process using all three networks together, 157–158
default network, 155–156
executive attention network, 153–154
overview of, 153
salience network, 157
BrainPort device, for visually impaired, 253
Brainstorming, right approach to, 167–168
Brainwriting, avoid anchoring effect of brainstorming, 168
Brand
dislike of logos in ads, 128
shopping by brand rather than by store type, 188
“Brand pulsing,” 128
Breaks, taking a break as aid to creative process, 156
Bressler, Steven, 153
Brightness, preference impacting decision making, 52–53
Brown, Brené, 169
Bryan, Christopher, 84
Buckner, Randy, 155

C
Calendar events, impact on decision making, 70–71
Campbell, Joseph, 110
Carney, Dana R., 101
Carousels, pros/cons, 232–233
Carr, Priyanda, 137
Cash, payment transparency and, 190–191
Cell phones. see also Smartphones
demographics of use of, 208–209
device alerts lowering cognitive performance, 138–139
proximity negatively affecting interpersonal communication, 140–141
Central vision
definition of, 14
designing for both vision states, 22–23
eye-tracking research not measuring, 15
guideline for designing for screen size, 23
peripheral vision compared with, 19–21
peripheral vision determining focus of, 15
Certainty (confidence), relationship to evidence and elapsed time, 63–64
Chang, Remco, 31
Checks, payment transparency impacting spending, 190
Chen, Frances, 28
Choice
benefits of offering fewer, 241–242
elderly prefer fewer, 214
endogenous (internal) and exogenous (external) influences, 52–53
information vs. feelings, 58–59
satisfaction with and confidence in, 56–57
Chuong, Amy, 40
Clicks, vs. reading, 90
Climax stage, in dramatic story arc, 109
Cognitive dissonance (Festinger)
creating or highlighting a problem, 194–195
post-purchase, 192–193
pre-purchase, 194
Cognitive performance
catching a fly ball, 172–173
distraction of device alerts lowering, 138–139
strategy games increasing cognitive flexibility, 240
Collaboration
increases creativity, 167–168
perfectionists fearing, 169
Color, foregrounds and backgrounds and, 81
Color vision
blue color vision declining with age, 219
color blindness, 11–12
people with extra color cone, 11–13
Commitment
importance of quick commitment in decision making, 59–60
public commitment increasing strength of self-stories, 119–120
Communication
media options for effective online communication, 99–100
proximity of cell phones negatively affecting interpersonal communication, 140–141
Community, need to belong and, 237
Conditioned responses
distracting nature of alerts, 138
proximity of cell phones negatively affecting interpersonal communication, 140–141
Cones, of eye, 11
Confidence
decision making and, 63–65
satisfaction with decisions and, 56–57
Connectedness, feeling connected leads to harder work, 136–137
Conor, Ed, 4
Constraints, creativity and, 165–166
Contagious (Berger), 131
Cooperation, synchronous behavior and, 134
Corpus callosum, connecting hemispheres of brain, 151
Correll, Jon, 25
Creativity
  collaboration increasing, 167–168
  constraints enhancing, 165–166
  daydreaming encouraging, 159–160
  definition of, 150
  engaging the default network, 155–156
  executive attention network as starting point, 153–154
  inducing aha moments, 157–158
  influence on design, 149
  myths regarding, 151–152
  noise and music increasing, 163–164
  perfectionism ruining, 169–170
  sleeping encouraging, 161–162
Credit cards, payment transparency impacting spending, 190
Cuddy, Amy J. C., 101, 126
Curved shapes
  balance not impacting preference for, 3–4
  brain stimulated by, 4–5
  visual preference for, 2–3
Cwir, David, 136
Dal, Hengchen, 70
Danger
  peripheral vision processing faster than central vision, 17–18
  peripheral vision seeing danger and processing emotions, 17–18
Darling, Kate, 146
DARPA (Defense Advanced Research Projects Agency), 247–248
Davies, J. Rhys, 15
Davis, Derick, 87–88
Daydreaming, encourages creativity, 159–160
De Gee, Jan Willem, 61
de Vries, H. L., 11
Decision making
  brain activity predicting decisions, 74–76
  calendar events impacting, 70–71
  choices regarding information vs. feelings, 58–59
  common mistakes, 59–60
  confidence and, 63–65
  deliberation time impacting, 57–58
  dilation of pupils reflecting difficult decisions, 61–62
  logic vs. feelings in, 54–56
  memories impacting, 72–73
  preference for brightness, 52–53
  satisfaction with choice and confidence, 56–57
  speeding up, 64
  stress impacting, 66–69
  system 1 thinking impacting, 48–51
  visual design decisions made in split second, 30–32
Deep reading (Wolf), 93–94
Default network, role in creativity, 155–156
Defense Advanced Research Projects Agency (DARPA), 247–248
Deliberation
  decision making impacted by time spent, 57–58
  logic vs. feelings in decision making, 54–56
  preference of elderly for intuition, 60
Demographics
  blue color vision declining with age, 219
  cellphone uses, 208–209
  elderly difficulty in choosing security question when setting up accounts, 222–223
  elderly less confident in own memories, 224–225
  elderly prefer fewer choices, 214
  gamers cut across all ages and genders, 210
  generation Z accounting for 40% of all consumers by 2020, 226
  generational differences in mental model of online and offline, 215
  generational differences in smartphone use, 205–207
  hearing issues in those over 65, 220
  Internet use in US by people over 65, 216–217
  motor skill issues beginning in mid-60s, 221
  online access lacking for women, 209
  overview of, 203
  presbyopia in people over 40, 218
  smartphone uses, 204
  toddlers learning more when laughing, 228
  touch screen use by 1-year-olds, 227
  visual appeal depends on age, gender, and geography, 211–213
Denouement stage, in dramatic story arc, 109
Devices
  alerts lowering cognitive performance, 138–139
  brain implants for technology control, 247–248
  gestures for manipulating, 175
  health monitoring, 243–244
  implanted health-related devices, 245–246
  interaction with, 229
  interfaces built into clothing, 249–250
  mixed-reality, 251–252
placing controls to take into account body, 180–181
sensory substitution and sensory addition, 254–256
visual or auditory, 253
Diemand-Yauman, Connor, 78–80
Dilation of pupils, during difficult decisions, 61–62
Direct gaze, when to use/when not to use, 28–29
Disfluency effect, making difficult material easier to
learn, 78–81
Distraction, vs. deliberation in decision making, 58
Dogs, similar voice-processing to humans, 100
Don’t Make Me Think (Krug), 35
Dopamine, anticipation and, 198–201
The Dragonfly Effect (Aaker), 131
Dramatic arc stories, brain chemistry of, 108–109

E
Eagleman, David, 254–255
Eckstein, Miguel, 15
Egocentrics, in sharing subgroup, 131
Elderly. see Generational differences
Ellenbogen, Jeffrey, 161
Embodied cognition
  catching a fly ball example, 172–173
  natural vs. forced gestures, 176
  robotic proof, 173
  role of gestures in thinking, 175
Emotions
  attention cycle in stories and, 112
  choices regarding information vs. feelings, 58–59
  contagious nature of, 101, 126–127
  impact of stories on brain chemistry, 108
  joy and surprise as attention grabbers in ads, 129–130
  logic vs. feelings in decision making, 54–56
  music evoking memories and moods, 44–45
  peripheral vision processing, 17–18
  role in getting person to act, 25–27
  role of neurochemical (oxytocin) in bonding, 133–135
  stories stimulating release of neurochemicals, 106
  strong emotions make strong memories, 39
  surprise but not shock encouraging sharing, 131–132
Empathy
  ability of humans to feel empathy with
  machines, 146–147
  attention cycle in stories and, 112
Endogenous (internal) influences, on choice, 52–53
Epley, Nicholas, 142
E-readers, compared with multisensory experience
  of physical books, 95–98
Ericsson, Kirk, 43
Esseily, Rana, 228
Ethics, of priming with homophones, 88–89
Evidence (information), relationship of certainty to, 63–64
Excitement, online shopping and, 198–202
Executive attention network, in creative process, 153–154
Exemplar theory, impact of memory on decision
  making, 72–73
Exercise, physical exercise improving memory, 43
Exogenous (external) influences, on choice, 52–53
eXperience Induction Machine (XIM), 255
Exposition stage, in dramatic story arc, 109
Extroverts, in sharing subgroup, 131
Eye-tracking research, measures only central vision, 15

F
Faces, attractiveness of symmetrical, 6–8
Facts, memorizing, 41
Failure, fear of failure impacting creativity, 169–170
Falling action stage, in dramatic story arc, 109
Farsightedness, onset of presbyopia in people over
  40, 218
Fear
  fear of failure impacting creativity, 169–170
  peripheral vision processing, 17–18
Feedback, decision making and, 64–65
Feeling, with body, 172–174
Feelings. see Emotions
Festinger, Leon, 192, 194
FFA (Fusiform facial area), of brain interpreting
  faces, 99
Fingers, physical limitations of, 179–181
First impressions, making decisions regarding
  visual design, 30–32
FitBark, health monitoring device, 243
Fluency, disfluency compared with, 78
Focus, creativity and, 153
Fonts
  choices regarding, 80–81
  comparing fluency and disfluency, 79–80
Fowler, James, 126
Freeman, Jonathan, 255
Frenza, Steven, 49
Fresh Start effect, calendar events impacting
  decision making, 70
Freytag, Gustav, 108
Fuller, Buckminster, 241
Fusiform facial area (FFA), of brain interpreting faces, 99

G
Gajos, Krzysztof, 213
Galfano, Giovanni, 24
Gamers, cut across all ages and genders, 210
Games, improving perceptual learning, 239–240
“Gamification,” of website interfaces, 237–238
Gangestad, Steven, 6
Gaulin, John, 167
Gaze
influences on gaze direction, 24–27
uses of direct gaze, 28–29
Gen Xers, smartphone task duration and, 207. see also Generational differences
Gender
gamers cut across all ages and genders, 210
impact of stress on decision making, 67–68
Internet use in US, 216–217
online access for women, 209
visual appeal depends on age, gender, and geography, 211–213
Generation Z, accounting for 40% of all consumers by 2020, 226
Generational differences
blue color vision declining with age, 219
elderly have difficulty in choosing security question when setting up accounts, 222–223
elderly less confident of own memories, 224–225
elderly prefer fewer choices, 214
gamers cut across all ages and genders, 210
generation Z accounting for 40% of all consumers by 2020, 226
hearing issues in those over 65, 220
Internet use in US by people over 65, 216–217
mental model of online and offline, 215
motor skill issues beginning in mid-60s, 221
onset of presbyopia in people over 40, 218
smartphone use, 205–208
toddlers learning more when laughing, 228
touch screen use, 227
visual appeal and, 211–213
Geography, demographics of visual appeal, 211–213
Gestures
for device manipulation, 175
natural vs. forced, 176
Glass, Brian, 239
Gu, Yangjie, 174
H
Haidt, Jonathan, 134
Halle, Tony, 88–89
Hand, physical limitations of, 179–181
Happiness, synchronous behavior supporting, 134
Harrison, Lane, 30, 31
Hasher, Lynn, 48
Heafner, Joy, 142
Health
devices for monitoring, 243–244
implanted devices, 245–246
Hearing
auditory devices, 253–255
conditioned responses to auditory cues, 138
issues in those over 65, 220
Heart rates, group activities syncing, 134
Heath, Chip, 134
The Hero with a Thousand Faces (Campbell), 110
Hero’s story, 110
Herr, Paul, 87–88
Hershfield, Hal, 70
HoloLens, 251
Homophones, priming with, 86–89
Hoober, Steven, 179
Horizontal scrolling, avoiding, 234
How to Get People to Do Stuff (Weinschenk), 85
Hurst, William, 39
I
Image balance, importance of, 3–4
Income, demographics of smartphone use, 204
Infographics, testing visual appeal, 31
Information
breaking into small chunks and giving feedback, 64–65
choices regarding information vs. feelings, 58–59
combining photo with increases trustability, 49–51
consolidating during sleep, 161–162
logic vs. feelings in decision making, 54–56
reading, see Reading and interpreting information
Instant gratification, in anticipation/gratification continuum, 201
Interactions, human. see Social interaction
Interfaces
built into clothing, 249–250
carousels, 232–233
“gamification” of, 237–238
interaction with, 229
multi-modal, 249–250
scrolling use in interface design, 234
talking to vehicle voice systems, 235–236
video interface for skimming and scanning, 230–231
Internet, use in US by people over 65, 216–217. see also Online
Intimidation, direct gaze and, 28
Intuition
preference of elderly for intuition over deliberation, 60
system 1 thinking and, 48
Isaksen, Scott, 167

J
Jabr, Ferris, 96
Jeffries, Adrienne, 90
Jordan, Gabriele, 12
Joy, as attention grabber in ads, 129–130
June, health monitoring device, 243

K
Kabali, Hilda, 227
Kahneman, Daniel, 35, 78, 196
Kearney, A. T., 188
Kinematic information, 173
Klanl, Roozbeh, 63
Kramer, Adam, 127
Krug, Steve, 35
Kvrivishvili, Michael, 21

L
“Large-scale brain networks” (Menon and Bressler), 153
Leder, Helmut, 4
Lethal, health monitoring device, 243
Levitin, Daniel, 164
Lighthall, Nichole, 66
Logic, vs. feelings in decision making, 54–56
Logos
dislike of logos in ads, 128
use of curves in, 4
Looser, Christine, 144
Lucas, George, 110
Ludwig, Casimir, 15

M
Machines
ability of humans to feel empathy with, 146–147
trust given to machines with human-like characteristics, 142–145
Mack, Michael, 72
Mangen, Anne, 96
“Map puzzle” study, of cooperation, 137
Margulis, Elizabeth, 44
Mather, Mara, 66
McMillan, Rebecca, 159
Mediated reality devices, 251–252
Medical devices
health monitoring, 243–244
implanted devices, 245–246
Memory
elderly confidence in, 224–225
elderly difficulty in choosing security question when setting up accounts, 222–223
erasability of, 39–40
how people think and remember, 33
impact on decision making, 72–73
music evoking, 44–45
repetition strengthening, 41–43
strong emotions make strong memories, 39
types that change easily, 38–39
Men. see also Gender
demographics of visual appeal, 213
gamers cut across all ages and genders, 210
Internet use in US, 216–217
Menon, Vinod, 153
Mikels, Joseph, 54, 60
Milestone years, 70
Milksman, Katherine, 70
Milosavljevic, Milica, 52
Mimicry, emotions and, 126
Mixed-reality devices, 251–252
Mollon, John, 12
Monitoring function, of salience network, 157
Moods, music evoking, 44–45
The Moral Molecule (Zak), 133
Mori, Masahiro, 143
Motivators, intrinsic and extrinsic, 237
Motor area, of brain, 65
Motor movements, decision making and, 74
Motor skills
duration/changeability of, 41–43
issues beginning in mid-60s, 221
Movement, physical limitations of, 177–178
Mozart effect, debunking, 163
Multi-modal interfaces, 249–250
Multitasking, with central and peripheral vision, 14–15
Muscle memory, duration/changeability of, 41–43
Music
evoking memories and moods, 44–45
increases creativity, 163–164
MyTenslo, health monitoring device, 243
N
Nakamura, Kimihiro, 92
Neta, Maital, 2–3
Neural implants, for technology control, 247–248
Neurochemicals
  body postures effecting, 126
  role of oxytocin in bonding, 133–135
  stories stimulating release of, 106
Neuroplasticity
  creation of new neuron structures in adults, 239–240
  declines with age, 224–225
  of human brain, 92
NeuroSky headsets, 247
Newman, Erin, 50
Noise, increases creativity, 163–164
Nordgren, Loran, 168
Nouns
  nouns vs. verbs impact on voting, 84–85
  nouns vs. verbs in stimulating action, 82–84
Numbers, impact on people, 196–197

O
Offline, mental model of online and offline differs by generation, 215
Omnichannel retailers, 188–189
One-click purchasing (Amazon), payment transparency and, 190
Online
  data regarding reading online articles, 90–91
  mental model of online and offline differs by generation, 215
  people not separating store shopping from online shopping, 188
  shopping online increasing anticipation, 198–202
  women lacking online access in many countries, 209
Order effects, in numbers, 196–197
The Organized Mind (Levitin), 164
Oxytocin, as bonding chemical, 133–135

P
Pavlov, Ivan, 138
Payment transparency, impacting spending, 190–191
Peatt, Kyle, 232–233
Perceptual learning, games improving, 239–240
Perfectionism, ruining creativity, 169–170
Peripheral vision
  central vision compared with, 19–21
definition of, 14
designing for both vision states, 22–23
designing for screen size and, 23
focus of central vision and, 15
seeing danger and processing emotions, 17–18
similar to low-resolution image, 19–22
websites making use of, 16
Personality, decision making and, 63
Personalization, anticipatory design going beyond, 242
Photos, combining with information increases trustability, 49–51
Plots, commonly used in stories, 110–111
Posture, neurochemicals and, 127
Presbyopia, onset in people over 40, 218
Priming, with homophones, 86–89
Productivity, daydreaming and, 159
Project Jacquard, 249
Prototype theory, impact of memory on decision making, 72–73
Proust and Squid: The Story and Science of the Reading Brain (Wolf), 92
Przybylski, Andrew, 140
Pupil dilation, during difficult decisions, 61–62

Q
Quiet, not necessarily good for creative process, 163

R
Ratcliffe, Victoria, 100
Reading and interpreting information
  alternatives to “old media,” 99–103
  changing nature of, 94
  data regarding reading online articles, 90–91
  difluency effect making difficult material easier to learn, 78–81
  multisensory experience of physical books, 95–98
  neuroplasticity and, 92
  nouns vs. verbs in stimulating action, 82–85
  priming with homophones, 86–89
  skimming and scanning vs. reading, 92–94
Reben, Alexander, 146
Reber, Rolf, 81
Reby, David, 100
Reed, Andrew, 214
Reimer, Bryan, 235
Reinecke, Katharina, 30, 31, 213
Repetition
  influence on trustworthiness of information, 48–49
  strengthening memory, 41–43
Retailers. see Shopping Reviews
cognitive dissonance and, 192
public commitment increasing strength of self-stories, 119–120
Rewards, as extrinsic motivation, 237–238
Rigby, Darrell, 188
Rils, Jason, 70
Rising action stage, in dramatic story arc, 109
Risk, gender differences regarding, 67–68
Robotics
confiding in anthropomorphic robots, 146
proof of embodied cognition, 173
trust given to machines with human-like characteristics, 142–145
uncanny valley, 143–144
Rosenholtz, Ruth, 19
Rosenthal-von der Pütten, Astrid, 146
Runyon, Erik, 232

S
Salience network, monitoring function of, 157
Sapolsky, Robert, 198
Satisfaction, with decisions, 56–57
Sawyer, Keith, 165
Scaleofuniverse.com, 101–102
Scanning, vs. reading, 92–94
Scanning video, 230–231
Schwartz, Josh, 90
Schwarz, Norbert, 81
Screen
compared with paper or physical books for reading, 97
guideline for screen size, 23
importance of distance from, 182–185
touch screen use by 1-year-olds, 227
Scroll depth, analyzing for advertising, 90
Scrolling, use in interface design, 234
Security questions, elderly have difficulty in choosing, 222–223
Self stories
impact on personal behavior, 114–115
public commitment increasing strength of, 119–120
small step approach to changing self stories, 116–118
Semantic memory, of facts, 41
Senses, multisensory experience of physical books, 95–98
Sensory addition, 254–256
Sensory memory, duration/changeability of, 41–43
Sensory room (Freeman and Verschure), 255
Sensory substitution (Eagleman), 254–256
Shapes, visual preferences and, 3–4
Shapiro, Aaron, 241
Sharing, surprise but not shock encouraging, 131–132
Shepherd, Kathrine, 8
Shipping, free overnight shipping balanced with controlling timing of delivery, 201
Shopping
committing to purchases based on cognitive dissonance, 192–193
impact of numbers on people, 196–197
omnichannel retailers, 188–189
online shopping increasing anticipation, 198–202
overview of, 187
people not separating store shopping from online shopping, 188
role of cognitive dissonance in purchasing, 194–195
spending less when using cash, 190–191
Silva, Paul, 3
Singer, Jerome, 159
Skimming, vs. reading, 92–94
Skimming video, 230–231
Skulpt Aim health monitoring device, 243
Sleeping, encourages creativity, 161–162
Smart contact lenses, 243
Smartphones. see also Cell phones
cell phone use and, 208
demographics of use of, 204
proximity negatively affecting interpersonal communication, 140–141
talking to vehicle voice systems, 235–236
thumb and hand limitations, 179–180
Social facilitation effect, 136
Social interaction
ability of humans to feel empathy with machines, 146–147
contagious nature of emotions, 126–127
designing for, 125
distraction of device alerts lowering cognitive performance, 138–139
feeling connected leads to harder work, 136–137
joy and surprise as attention grabbers in ads, 129–130
overcoming people’s dislike of ads, 128
proximity of cell phones negatively affecting interpersonal communication, 140–141
role of neurochemical (oxytocin) in bonding, 133–135
surprise but not shock encouraging sharing, 131–132
deserving of, 131–132
trust given to machines with human-like characteristics, 142–145
Social media
effective communication, 99–100
extroverts and egocentric sharing via, 131
Soon, Chun Siong, 74
Speech recognition, use in vehicle voice systems, 235
Speed reading, subvocalization and, 87
Spoken word, in effective communication, 99–100
Stickgold, Robert, 161
Stores, people not separating store shopping from online shopping, 188. see also Shopping
Stories
attention focused by, 112
brain chemistry of dramatic arc stories, 108–109
changing behavior by changing the story, 121–123
common stories and plots, 110–111
designer use of storyboards, 113
impact of self-stories on personal behavior, 114–115
importance of, 105
motivational value of, 237
public commitment increasing strength of self-stories, 119–120
small step approach to changing self stories, 116–118
why brain more active with, 106–107
Storyboards, designer use of, 113
“Story-editing” (Wilson), 121
Stress, impact on decision making, 66–69
SUB-NETS (Systems-Based Neurotechnology for Emerging Therapies), DARPA, 247–248
Subscriptions, payment transparency and, 190
Subvocalization, during reading, 87
Sullivan, Brian, 169
Surprise
as attention grabber in ads, 129–130
but not shock encouraging sharing, 131–132
The Surprising New Science of Psychological Change (Wilson), 121
Symmetry
attractiveness of faces and, 6–8
comparing men and women’s preferences, 8
uses of asymmetry, 9–10
why people prefer, 9
Synchronous behavior
coopration and, 134
designing for, 135
System 1 thinking
comparing with System 2 thinking, 35
decision making imacted by, 48–51
System 2 thinking
comparing with System 1 thinking, 35
disfluency and, 78–79
Systems-Based Neurotechnology for Emerging Therapies (SUB-NETS), DARPA, 247–248
T
tactile experience, multisensory experience of physical books, 95–98
technology control, brain implants for, 247–248
testimonials, public commitment increasing strength of self-stories, 119–120
tetrahromacy, people with extra color cone, 11–12
text, combining photo with increases trustability, 49–51
Thinking
with body, 172–174
how people think and remember, 33
music evoking memory and moods, 44–45
repetition strengthening memories, 41–43
two types of, 34–37
types of memories that change easily, 38–40
Thinking, Fast and Slow (Kahneman), 35, 78, 196
Thornton, Bill, 138
Thumb, physical limitations of, 179–181
Tinio, Pablo, 4
toddlers, learning more when laughing, 228
Tourot, Dayna, 224–225
“Transportation,” identifying with character in a story, 112
Trust
combining photo with information increases trustability, 49–51
given to machines with human-like characteristics, 142–145
trusting you gut, 48–49
Truthiness, 48–49
Tversky, Amos, 196
u
Uncanny valley (Mori), in anthropomorphism, 143–144
Unconscious processing, decision making and, 75
V
Vehicle voice systems, talking to, 235–236
Verbs
nouns vs. verbs impact on voting, 84–85
nouns vs. verbs in stimulating action, 82–84
Verschure, Paul, 255
Vertical scrolling, use in interface design, 234
Vickhoff, Björn, 45, 134
Video
combining with audio, 101
for effective online communication, 99–100
impact of stories on brain chemistry, 108
interface for skimming and scanning, 230–231
video games improving perceptual learning, 239
Video digest interface, 230–231
Virtual reality
augmented reality compared with, 177–178
interacting with mixed reality, 251–252
Vision issues
blue color vision declining with age, 219
onset of presbyopia in people over 40, 218
Visual appeal, demographics of, 211–213
Visual cues, conditioned responses to, 138
Visual data, how people see
designing for both vision states, 22–23
influences on gaze direction, 24–27
overview of, 1
people with extra color cone, 11–13
peripheral vision determining focus of central vision, 14–16
peripheral vision seeing danger and processing emotions, 17–18
peripheral vision similar to low-resolution image, 19–22
preference for curved shapes, 2–5
preference for symmetry, 6–10
split second decisions regarding, 30–32
uses of direct gaze, 28–29
Visual devices
for the impaired, 253
sensory substitution and sensory addition, 254–255
Visual saliency, preference for brightness, 52
Visual sampling, 14
Voice systems, use in vehicles, 235–236
Voting, study regarding impact of noun vs. verb use on, 84–85

W
Walton, Gregory, 82–84, 136, 137
Waytz, Adam, 142
Wearables, health monitoring devices, 243–244
Websites
carousel use on, 232–233
factors in visual appeal, 30
gamification to make more engaging, 237
scrolling use in interface design, 234
Weinstein, Netta, 140
Wilson, Matthew, 161
Wilson, Timothy, 121
Wiltermuth, Scott, 134
Wolf, Maryanne, 92–94
Women. see also Gender
gamers cut across all ages and genders, 210
Internet use in US, 216–217
online access lacking in many countries, 209
visual appeal depends on age, gender, and geography, 213
Work, feeling connected leads to harder work, 136–137
Wrobleswski, Luke, 182

X
XIM (eXperience Induction Machine), 255

Y
Yap, Andy J., 101

Z
Zak, Paul, 108, 133
Zig Zag: The Surprising Path To Greater Creativity (Sawyer), 165