SPORTS PERFORMANCE MEASUREMENT and ANALYTICS

THE SCIENCE OF ASSESSING PERFORMANCE, PREDICTING FUTURE OUTCOMES, INTERPRETING STATISTICAL MODELS, AND EVALUATING THE MARKET VALUE OF ATHLETES
Sports Performance Measurement and Analytics

The Science of Assessing Performance,
Predicting Future Outcomes,
Interpreting Statistical Models,
and Evaluating the Market Value of Athletes

LORENA MARTIN
Contents

Preface \hfill v
Figures \hfill ix
Tables \hfill xi
Exhibits \hfill xiii
1 Anatomy and Physiology \hfill 1
2 Assessing Physical Variables \hfill 15
3 Sport Psychological Measures \hfill 41
4 Selecting Statistical Models \hfill 53
5 Touchdown Analytics \hfill 69
6 Slam Dunk Analytics \hfill 95
7 Home Run Analytics \hfill 117
8 Golden Goal Analytics \hfill 137
9 Game, Set, Match Analytics \hfill 157
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Performance and Market Value</td>
<td>173</td>
</tr>
<tr>
<td>Statistics Glossary</td>
<td>187</td>
</tr>
<tr>
<td>Football Glossary</td>
<td>193</td>
</tr>
<tr>
<td>Basketball Glossary</td>
<td>201</td>
</tr>
<tr>
<td>Baseball Glossary</td>
<td>209</td>
</tr>
<tr>
<td>Soccer Glossary</td>
<td>227</td>
</tr>
<tr>
<td>Tennis Glossary</td>
<td>241</td>
</tr>
<tr>
<td>Bibliography</td>
<td>247</td>
</tr>
<tr>
<td>Index</td>
<td>289</td>
</tr>
</tbody>
</table>
“Impossible is just a big word thrown around by small men who find it easier to live in the world they’ve been given than to explore the power they have to change it. Impossible is not a fact. It’s an opinion. Impossible is not a declaration. It’s a dare. Impossible is potential. Impossible is temporary. Impossible is nothing.”

—Muhammad Ali

I have played sports my entire life. I began playing the sport of tennis at the age of thirteen, too late in the eyes of many tennis experts to become a top professional tennis player. I trained six hours a day from the first day that I won a match against a boy at a neighborhood tennis court. In an instant, I was addicted to the sport.

I dreamed of becoming a professional tennis player. I spent countless hours on the court, skipping hangouts, holidays, and dates just to hit tennis balls. I went on to play high school and college tennis. I dropped out of college to play professional tennis. I worked for an airline so I could travel inexpensively to compete in professional tennis tournaments around the world. Tournaments were (and still are) scattered across the globe, giving a person of lower socioeconomic status a very slim chance of making it. Through my tennis training and competition, I reached a Florida state ranking of number three and a top 200 women’s professional ranking in the USA.

As an undergraduate, I majored in psychology. I wanted to learn about the psychological and behavioral profiles of successful professional athletes. I went on to get a master’s degree in psychology.
After studying psychology, I wanted to obtain a deeper understanding of the importance of physiology and physical fitness variables in sports, such as muscular strength, power, endurance, anaerobic power, cardiorespiratory endurance, and flexibility. I felt it was essential to learn as much as possible about the processes going on inside an elite athlete’s mind and body. I earned a doctorate in exercise physiology from the University of Miami and was recruited to conduct postdoctoral research in behavioral medicine at the University of California, San Diego.

I have always been driven to learn about statistics, about what is and is not being said by the numbers. I wanted to see which variables could be used to predict sport performance and to answer a simple question: “What are the qualities a person must have to become a world class athlete?” This question and many more may be answered through research, measurement, statistics, and analytics.

I went on to teach research methods and statistical design at Florida International University. Later I joined Northwestern University, where I currently teach introduction to statistical analysis as well as sports performance analytics.

As a teacher of sports performance analytics, I tried to find a book that encompassed sports-relevant anatomy and physiology and described athletic performance measures. I wanted a book that included statistical analyses and models used in various individual and team sports, along with statistics adopted by the sports industry. But I found no such book.

I chose to write this book to give athletes, coaches, and managers a better understanding of measurement and analytics as they relate to sport performance. To develop accurate measures, we need to know what we want to measure and why. This book provides new insights into constructs and variables that have often been neglected in sports to this day. It also reviews fundamentals of sports anatomy and physiology, sport measurement, and performance analytics.

This book serves many readers. People involved with sports, including players, coaches, and trainers, will gain an appreciation for performance measures and analytics. People involved with analytics will gain new insights into sports performance and see what it takes to become a competitive athlete. And students eager to learn about sports analytics will have a
practical introduction to the field. Data sets and programs in the book are available from the book’s website http://www.ftpress.com/martin/.

Many thanks to Thomas W. Miller, my consulting editor, for making this book happen, as it would not have been possible to complete without him. And special thanks go to my editor, Jeanne Glasser Levine, and publisher, Pearson/FT Press, for giving me the opportunity to publish my first book. Of course, any writing issues, errors, or items of unfinished business are my responsibility alone.

I want to give a special thank you to my brother and professional tennis player, Juan J. Martin Jr., who constantly provides me with insightful information based on his experience in professional sports and exercise physiology. I would also like to thank the Dallas Cowboys’ Director of Football Research, Tom Robinson, for his instrumental remarks and comments. Thanks to Roy Sanford, a lead faculty member in Northwestern University’s Master’s Program in Predictive Analytics, who provided constructive critiques on statistical methods. I want to thank my mother, Estela Martin, for being there day and night and offering continued support. También, gracias a mi padre, Juan J. Martin Sr., for providing me with a sports-like motivation, impelling me to complete this book. In addition, I would like to mention my dogs, which are always there for me and brought a smile to my face while working on this book.

Most of all, I want to thank God for making this possible.

Lorena Martin
San Diego, California
December 2015
This page intentionally left blank
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Three-Cone Agility Drill by Player Position (NFL)</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>20-Yard Shuttle by Player Position (NFL)</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Vertical Jump by Player Position (NFL)</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>40-Yard Dash by Player Position (NFL)</td>
<td>80</td>
</tr>
<tr>
<td>5.5</td>
<td>Broad Jump by Player Position (NFL)</td>
<td>81</td>
</tr>
<tr>
<td>5.6</td>
<td>Bench Press by Player Position (NFL)</td>
<td>81</td>
</tr>
<tr>
<td>6.1</td>
<td>Lane Agility Drill by Player Position (NBA)</td>
<td>104</td>
</tr>
<tr>
<td>6.2</td>
<td>Bench Press by Player Position (NBA)</td>
<td>104</td>
</tr>
<tr>
<td>6.3</td>
<td>Max Vertical Leap by Player Position (NBA)</td>
<td>105</td>
</tr>
<tr>
<td>6.4</td>
<td>Standing Vertical Leap by Player Position (NBA)</td>
<td>105</td>
</tr>
<tr>
<td>6.5</td>
<td>Three Quarter Sprint by Player Position (NBA)</td>
<td>106</td>
</tr>
<tr>
<td>6.6</td>
<td>Shuttle Run by Player Position (NBA)</td>
<td>106</td>
</tr>
<tr>
<td>6.7</td>
<td>Steals by Player Position (NBA)</td>
<td>107</td>
</tr>
<tr>
<td>6.8</td>
<td>Defensive Rebounds by Player Position (NBA)</td>
<td>107</td>
</tr>
<tr>
<td>6.9</td>
<td>Offensive Rebounds by Player Position (NBA)</td>
<td>108</td>
</tr>
<tr>
<td>6.10</td>
<td>Assists by Player Position (NBA)</td>
<td>108</td>
</tr>
<tr>
<td>6.11</td>
<td>Shooting Percentage by Player Position (NBA)</td>
<td>109</td>
</tr>
<tr>
<td>6.12</td>
<td>Player Efficiency Rating by Player Position (NBA)</td>
<td>109</td>
</tr>
<tr>
<td>7.1</td>
<td>Hits by Player Position (MLB)</td>
<td>126</td>
</tr>
<tr>
<td>7.2</td>
<td>RBIs by Player Position (MLB)</td>
<td>126</td>
</tr>
<tr>
<td>7.3</td>
<td>Runs by Player Position (MLB)</td>
<td>127</td>
</tr>
<tr>
<td>7.4</td>
<td>Home Runs by Player Position (MLB)</td>
<td>127</td>
</tr>
<tr>
<td>8.1</td>
<td>Number of Assists by Player Position (UEFA)</td>
<td>149</td>
</tr>
<tr>
<td>8.2</td>
<td>Number of Goals Scored by Player Position (UEFA)</td>
<td>149</td>
</tr>
<tr>
<td>8.3</td>
<td>Number of Passes Attempted by Player Position (UEFA)</td>
<td>150</td>
</tr>
<tr>
<td>8.4</td>
<td>Number of Passes Completed by Player Position (UEFA)</td>
<td>150</td>
</tr>
<tr>
<td>9.1</td>
<td>Professional Tennis Player Earnings by Nationality (ATP, WTA)</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>Professional Tennis Player Earnings by Rank and Sex (ATP, WTA)</td>
<td>168</td>
</tr>
</tbody>
</table>
This page intentionally left blank
8.1 UEFA Champions League Tournament Phase Leading Scorers 146
8.2 UEFA Champions League Tournament Phase Leaders in Assists 147
8.3 Soccer Performance Measures 148
9.1 Tennis Performance Measures 164
9.2 Annual Cost for Playing Professional Tennis 165
9.3 Annual Expenses for the 100th-Ranked Tennis Player 165
9.4 U.S. Minority Group Income and Education 166
10.1 Salaries of Top MLB Players 179
10.2 Salaries of Top NBA Players 180
10.3 Salaries of Top NFL Players 181
10.4 Salaries of Top ATP Players 182
10.5 Salaries of Top WTA Players 183
10.6 Salaries of Top MLS Players 184
10.7 Salaries of Top FIFA Players 185
<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Analyzing NFL Combine Measures (R)</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>Analyzing NFL Game Time Performance Data (R)</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>Analyzing NBA Draft Data (R)</td>
<td>110</td>
</tr>
<tr>
<td>6.2</td>
<td>Analyzing NBA Game Time Performance Data (R)</td>
<td>114</td>
</tr>
<tr>
<td>7.1</td>
<td>Analyzing MLB Player Performance (R)</td>
<td>128</td>
</tr>
<tr>
<td>7.2</td>
<td>Analyzing MLB Game Time Batting Performance (R)</td>
<td>130</td>
</tr>
<tr>
<td>8.1</td>
<td>Analyzing UEFA Assists and Goals Scored (R)</td>
<td>151</td>
</tr>
<tr>
<td>8.2</td>
<td>Analyzing UEFA Passes Attempted and Completed (R)</td>
<td>154</td>
</tr>
<tr>
<td>9.1</td>
<td>Analyzing ATP and WTA Player Earnings by Country (R)</td>
<td>169</td>
</tr>
<tr>
<td>9.2</td>
<td>Analyzing ATP and WTA Player Earnings by Rank and Sex (R)</td>
<td>172</td>
</tr>
</tbody>
</table>
“A muscle is like a car. If you want it to run well early in the morning, you have to warm it up.”

—FLORENCE GRIFFITH JOYNER

Understanding the basics of anatomy and physiology is fundamental to obtaining a more comprehensive knowledge of what it means to be an athlete. Let us start by answering the question, “What is an athlete?” We can think of an athlete as a person who is skilled at a sport, trains, and possesses physical attributes such as muscular strength, power, endurance, speed, and agility, to name a few.

The physical attributes and variables of an athlete will be detailed and explained in chapter 2. This chapter focuses on the fundamental anatomy and physiology of an athlete. The objective of this chapter is to help the sports data analyst, as well as athletes themselves, understand the human body and how its machinery functions during athletic events in order to comprehend how performance is affected by physiology. This chapter will open your eyes to new ways of thinking about number crunching and sports analytics. Knowledge of the main physiological mechanisms will make you a more competitive and insightful sports data scientist.
Let us review the basic bone structure and anatomical information you should be aware of. The human body is made up of 206 bones and more than 430 skeletal muscles. The topic of anatomy alone could take several books to do it justice. We will cover the part of human anatomy and physiology most relevant to sports performance.

The study of bones is called osteology. Osteologists dedicate their lives to understanding how bones function. Bones are responsible for providing constant renewal of red and white blood cells, and are vital not only to our organs, but to gaining a competitive edge in sports performance. There are several types of bones: long bones, short bones, flat bones, irregular bones, and sesamoid bones. Long bones are associated with greater movement due to the lever length, compared to short bones which have limited mobility, but are known to be stronger. Please refer to table 1.1 for examples of each type of bone.

The musculoskeletal system is integral to human movement, as it is comprised of ligaments that connect bone to bone and tendons that connect muscles to bone. Consequently, when the muscle pulls on the bone, motion occurs. Depending on the method of classification or grouping, estimates of the number of muscles in the body range between 430 to over 900. In fact, each skeletal muscle is considered an organ that contains muscle tissue, connective tissue, nerves, and blood vessels. Much of the debate is a matter of definition in terms of how the muscles are quantified.

Table 1.1. Types of Bones

<table>
<thead>
<tr>
<th>Type of Bone</th>
<th>Example of Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long bones</td>
<td>Femur, Humerus, Tibia</td>
</tr>
<tr>
<td>Short bones</td>
<td>Tarsals of the foot, Carpals of the hand and wrist</td>
</tr>
<tr>
<td>Flat bones</td>
<td>Scapula, Sternum, Cranium</td>
</tr>
<tr>
<td>Irregular bones</td>
<td>Vertebrae, Sacrum, Mandible</td>
</tr>
<tr>
<td>Sesamoid bones</td>
<td>Knee Cap, there are four sesamoid bones in the hand, there are two sesamoid bones in the foot</td>
</tr>
</tbody>
</table>
Like bones, muscles may be classified by type: smooth muscle is found in the blood vessels and organs, cardiac muscle is found in the heart, and skeletal muscle is abundant throughout the human body and is responsible for our daily movement.

Upper body muscles and muscle groups to become familiar with include the latissimus dorsi, trapezius, deltoids, rotator cuff, pectorals, biceps, triceps, and brachioradialis. Midsection muscles involved in sports performance include the rectus abdominus, external and internal obliques, and the transversus abdominis. Lower body muscles vital for many sports include the quadriceps, hamstrings, gluteus (maximus, minimus, medius), gastrocnemius, and the soleus. Please refer to table 1.2 for the locations of these muscles and their function in sports.

Many of you have heard of fast twitch and slow twitch muscle fibers. Most people are only aware of two fiber types, fast and slow, or white and red. However, it is much more accurate to say that there are hybrid fiber types that lie within the spectrum of Type I and Type II muscle fibers. More recently, the scientific field revealed three distinct categories of muscle fibers. These are Type I, Type IIa, and Type IIx muscle fibers. Type I fibers are commonly referred to as slow-twitch while both Type IIa and Type IIx are recognized as fast-twitch muscle fibers.

To facilitate understanding, we will focus on the differences between Type I and Type II because they are inherently different as they relate to the following characteristics: ability to utilize oxygen and glycogen as determined by aerobic enzyme content, myoglobin content, capillary density, and mitochondria size and density.

Typically, slow-twitch muscle fibers tend to be high in all the criteria mentioned above. In comparison, fast-twitch muscle fibers tend to be low in these characteristics, while having greater nerve conduction velocity, speed of muscle contractility, anaerobic enzyme content, and power output. Fast twitch fibers are known to have high glycolytic activity, meaning they utilize glycogen (the storage form of glucose, which many call sugar) at high levels, whereas slow-twitch muscle fibers rely on their oxidative capacity. Please refer to table 1.3 for additional muscle fiber type characteristics.
Table 1.2: Muscles in Sport

<table>
<thead>
<tr>
<th>Name of Muscle</th>
<th>Location of Muscle</th>
<th>Function in Sport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Body Muscles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latissimus dorsi</td>
<td>located in the posterior part of the body, largest muscle group in the upper body, also called the back</td>
<td>involved in extension and adduction of the shoulder as well as pulling motions; relevant for all sports</td>
</tr>
<tr>
<td>Rhomboids</td>
<td>located in the upper back underneath the trapezius and consists of two muscles; rhomboid major and minor</td>
<td>involved in retraction of shoulder blades relevant for all sports</td>
</tr>
<tr>
<td>Trapezius</td>
<td>located above and superficial to rhomboids extends from shoulders to neck muscles</td>
<td>involved in distributing loads away from the neck and keeping the shoulders stabilized</td>
</tr>
<tr>
<td>Deltoids</td>
<td>commonly referred to as the shoulders used extensively in overhead athletes</td>
<td>involved in throwing motions</td>
</tr>
<tr>
<td>Rotator Cuff</td>
<td>located in the shoulder area deep under the deltoids, muscles that hold the shoulder in place</td>
<td>involved in throwing motions; quarterbacks, pitchers, and tennis players when serving</td>
</tr>
<tr>
<td>Pectorals</td>
<td>commonly referred to as the chest includes pectoralis major and minor</td>
<td>involved in chest press strength, and abduction of the shoulder and pushing movements</td>
</tr>
<tr>
<td>Biceps</td>
<td>located in anterior part of the arm and called biceps because of the two heads of the muscle</td>
<td>involved in swinging motion; tennis players forehand and baseball swings; also involved in bending of the elbow and for picking up motions</td>
</tr>
<tr>
<td>Triceps</td>
<td>located in posterior part of the arm and called triceps because of the three heads of the muscle</td>
<td>extension of elbow; used to straighten the elbow; used in stiff-arm movement in football players</td>
</tr>
<tr>
<td>Brachioradialis and Pronator Teres</td>
<td>forearm muscles</td>
<td>utilized in sports using the wrist</td>
</tr>
<tr>
<td>Core and Midsection Muscles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectus Abdominus</td>
<td>located in the anterior part of the body under the abdomen</td>
<td>utilized for flexion of the spine and core stabilization; relevant for all sports</td>
</tr>
<tr>
<td>External Obliques</td>
<td>located above and superficial to the internal obliques on each side of the trunk</td>
<td>utilized for sideways bending and rotation of the torso; integral for tennis strokes</td>
</tr>
<tr>
<td>Internal Obliques</td>
<td>located underneath the external abdominal oblique on each side of the trunk</td>
<td>utilized for flexion of the spine, sideways bending, trunk rotation and compression of the abdomen; relevant for all sports</td>
</tr>
<tr>
<td>Transversus Abdominis</td>
<td>located in the deepest layer of abdominal muscles that wraps around the torso</td>
<td>utilized for respiration and core stabilization; relevant for all sports</td>
</tr>
<tr>
<td>Lower Body Muscles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadriceps</td>
<td>located in anterior part of thigh consisting of four muscles</td>
<td>responsible for extension of the knee; major source of strength for soccer players; relevant for all sports</td>
</tr>
<tr>
<td>Hamstrings</td>
<td>located in posterior part of thigh consisting of three muscles</td>
<td>responsible for flexion and bending of the knee; relevant for all sports</td>
</tr>
<tr>
<td>Gluteus Maximus, Gluteus Medius, and Gluteus Minimus</td>
<td>located in the area usually called the buttocks</td>
<td>utilized in explosive first step movements; integral for lower body strength and power</td>
</tr>
<tr>
<td>Gastrocnemius</td>
<td>located in the lower leg area and typically referred to as part of the calf muscle</td>
<td>utilized in jumping and tip-toe motions including being on the ball of your feet</td>
</tr>
<tr>
<td>Soleus</td>
<td>located in the lower leg area and typically referred to as part of the calf muscle</td>
<td>utilized in jumping and tip-toe motions including being on the ball of your feet</td>
</tr>
</tbody>
</table>
Table 1.3. Characteristics of Fiber Types

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Type I</th>
<th>Type IIa</th>
<th>Type IIx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor neuron size</td>
<td>Small</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Nerve conduction velocity</td>
<td>Slow</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Contraction speed</td>
<td>Slow</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Relaxation speed</td>
<td>Slow</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Fatigue resistance</td>
<td>High</td>
<td>Intermediate/Low</td>
<td>Low</td>
</tr>
<tr>
<td>Force production</td>
<td>Low</td>
<td>Intermediate</td>
<td>High</td>
</tr>
<tr>
<td>Power output</td>
<td>Low</td>
<td>Intermediate/High</td>
<td>High</td>
</tr>
<tr>
<td>Endurance</td>
<td>High</td>
<td>Intermediate/Low</td>
<td>Low</td>
</tr>
<tr>
<td>Aerobic enzyme content</td>
<td>High</td>
<td>Intermediate/Low</td>
<td>Low</td>
</tr>
<tr>
<td>Anaerobic enzyme content</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Capillary density</td>
<td>High</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>Myoglobin content</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Mitochondria size/density</td>
<td>High</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>Fiber diameter</td>
<td>Small</td>
<td>Intermediate</td>
<td>Large</td>
</tr>
<tr>
<td>Color</td>
<td>Red</td>
<td>White/Red</td>
<td>White</td>
</tr>
</tbody>
</table>

Adapted from Baechle and Earle (2008).
Table 1.4. Muscle Fiber Types and Sports

<table>
<thead>
<tr>
<th>Sport</th>
<th>Type I Contribution</th>
<th>Type II Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 meter sprint</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>800 meter sprint</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Marathon</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Soccer</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>American Football Wide Receiver and Linemen</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Basketball</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Baseball Pitcher</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Tennis</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Adapted from Baechle and Earle (2008).

It is evident that anatomy and physiology play a major role in sports performance. A sprinter may benefit from a greater number of fast twitch muscle fibers, whereas a long-distance runner will benefit much more from having a greater distribution of slow twitch muscle fibers. Refer to table 1.4 for Type I and Type II muscle fiber contribution in a variety of sports.

In addition to the controversy over the number of muscle fiber types, there also remains the question of whether one can train and modify one’s own fiber type through conditioning. Several animal studies have shown that enzymes that would otherwise be dormant are activated through physical training, implying that there is a possibility of changing the fiber type to a certain degree.

Now that we have the basics of the skeletal and muscular system, let us consider the physiology of sports performance. First, we must realize that human metabolism includes both anabolic and catabolic processes that are ongoing in our bodies. Anabolic processes involve the synthesis of larger molecules from smaller molecules. Conversely, catabolic processes involve the breakdown of larger molecules into smaller ones, and are associated with the release of energy. Energy released in a biological reaction is quantified by the amount of heat that is generated. The amount of heat required to raise one kilogram of water one degree Celsius is called a kilocalorie. This corresponds to the energy found in food that is broken down within our bodies and stored in the form of adenosine triphosphate (ATP).
In the body, energy systems are responsible for providing the ATP (energy) that is utilized under varying intensities and durations of sport performance. There are three main energy systems at play during sports performance. They are the phosphagen (ATP-PCr) system, the glycolytic system, and the oxidative phosphorylation system. All three systems are constantly at work and interacting with each other, functioning on some level as they are not “all or nothing” systems. The predominance of one system is largely determined by the intensity and duration of the sporting activity, as well as the substrate (food source) that the athlete has consumed. Substrate utilization is a fancy term for the food that is being consumed by the athlete. Correspondingly, these three energy systems are also sometimes referred to as bioenergetics systems.

The athlete’s ability to perform is based on his or her muscles’ capacity to function and depends on the oxygen or glucose (substrate) availability. What does this mean? Well, if an athlete is sprinting, muscles within the body do not necessarily have the time required to be able to utilize oxygen, as a body at rest does. This causes the body to shift into an anaerobic state in which it can extract energy in the form of ATP, without the use of oxygen. However, when the human machine is running at a slower pace, the standard metabolic processes that utilize oxygen are allowed to occur in the mitochondria (the engine of the cell). Some might say that the human body is inherently intelligent and can be compared to a computer, in that after the program is built and algorithm established, it knows what to do on its own.

To simplify, the three energy systems will be referred to as the phosphagen, glycolytic, and oxidative systems. These systems produce ATP and replenish ATP stores within the human body. The body naturally stores ATP sufficient for basic cellular functions, not the amount necessary for sports. The phosphagen system utilizes an enzyme, creatine kinase, to maintain ATP levels during intense, explosive movements of short duration, allowing for the release of one mole of ATP or the equivalent of 0.6 kilocalories. The phosphagen system is heavily involved in sports that consist of high intensity, short-term explosive movements. This system is used in all sports at the point of initiation of activity—at the shift from sedentary to active.
Table 1.5. Rate/ Capacity of Adenosine Triphosphate (ATP)

<table>
<thead>
<tr>
<th>Energy System</th>
<th>Rate of ATP production</th>
<th>Capacity of ATP production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphagen</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Fast Glycolysis</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Slow Glycolysis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Oxidation of Carbohydrates</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Oxidation of Fats and Proteins</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: 1 = fastest/greatest; 5 = slowest/least

Adapted from Baechle and Earle (2008).

The glycolytic system is responsible for controlling glycolysis (breakdown of glycogen) for energy production, as well as the onset of lactate formation. Glycolysis is the term for the processes that break down glycogen stored in the muscles to glucose, ultimately yielding ATP. Remarkably, intensity and duration of the sport also dictates the type of glycolysis that occurs. There are two possible pathways: The shorter path, termed anaerobic (fast) glycolysis, consists of fewer steps that lead to lactate; the other path, aerobic (slow) glycolysis, has a longer trajectory and yields two to three moles of ATP or the equivalent of 1.2 to 1.8 kilocalories. Aerobic glycolysis is a slower process. It requires sufficient quantities of oxygen to operate, compared to anaerobic glycolysis which can function with limited amounts of oxygen.

Finally, the oxidative system is responsible for breaking down glycogen, fat, and protein. It is also responsible for producing ATP when the body is at rest or during long lasting, low intensity sporting activities. It is a commonly held belief that when training at low intensity, the body utilizes more fat than other sources (carbohydrates or protein) of energy. This concept is the result of a simplified interpretation of this third system.

The oxidative system’s primary source of fuel is fat, since it initiates the release of triglycerides from fat cells. This leads to the roaming of free fatty acids in the blood, which are transported to the muscle fibers for oxidation (burned for energy). The breakdown of fat to glucose is called lipolysis and yields between thirty-six to forty moles of ATP or the equivalent of 21.6 to 24 kilocalories.
Additionally, this system is able to oxidize protein, however, protein is not its favored source of fuel. The mechanism of breaking down protein into energy is less than efficient. Proteolysis requires several steps to break down protein into amino acids, and eventually converts the products to glucose through another process called gluconeogenesis. A greater span of time is needed to synthesize ATP. Therefore, fat and carbohydrate are the preferred fuels for sport, because they yield energy at a much faster rate over longer periods. Please refer to table 1.5 for the rate and capacity of ATP production for each energy system.

The athlete’s predominant energy system differs not only by sport, but also by player position or style of play within a particular sport. For instance, when a tennis player sprints to hit a forehand, a basketball player jumps explosively to slam dunk, a baseball player sprints to get on base, a quarterback throws the football, or a striker shoots to score a goal, their bodies are using the phosphagen system as the primary energy mechanism. If, on the other hand, a wide receiver is sprinting down the field for more than six seconds, his body has shifted from using the phosphagen system to a hybrid state consisting of both the phosphagen and glycolytic (anaerobic glycolysis) systems.

A soccer midfielder running non-stop, back and forth at a fast pace for the duration of one to two minutes is in a true state of anaerobic glycolysis. If the soccer player were to continue running for a longer period of time, ranging from two to three minutes, they are likely to be in a hybrid state of fast glycolysis and oxidative phosphorylation. Finally, a long distance runner who runs for prolonged periods of time at a slower rate is using the oxidative system as the primary mechanism for producing ATP. Refer to table 1.6 for the ranges of intensity and duration typical of each energy system.

In summary, the phosphagen energy system primarily supplies ATP for high-intensity activities of short duration. The glycolytic system is associated with moderate- to high-intensity activities of short to medium duration. And the oxidative system is the primary system at work during low-intensity activities of long duration.
Table 1.6. Primary Energy System Duration and Intensity

<table>
<thead>
<tr>
<th>Duration</th>
<th>Intensity</th>
<th>Primary Energy System</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 seconds</td>
<td>Extremely High</td>
<td>Phosphagen</td>
</tr>
<tr>
<td>6-30 seconds</td>
<td>Very High</td>
<td>Phosphagen and Fast Glycolysis</td>
</tr>
<tr>
<td>30 seconds to 2 minutes</td>
<td>High</td>
<td>Fast Glycolysis</td>
</tr>
<tr>
<td>2-3 minutes</td>
<td>Moderate</td>
<td>Fast Glycolysis and Oxidative System</td>
</tr>
<tr>
<td>>3 minutes</td>
<td>Low</td>
<td>Oxidative System</td>
</tr>
</tbody>
</table>

Adapted from Baechle and Earle (2008).

Table 1.7. Limiting Factors for Energy Systems

<table>
<thead>
<tr>
<th>Degree of Exercise</th>
<th>ATP and Creatine Phosphate</th>
<th>Muscle Glycogen</th>
<th>Liver Glycogen</th>
<th>Fat Stores</th>
<th>Lower pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light (Marathon)</td>
<td>1</td>
<td>5</td>
<td>4-5</td>
<td>2-3</td>
<td>1</td>
</tr>
<tr>
<td>Moderate (1,500 m run)</td>
<td>1-2</td>
<td>3</td>
<td>2</td>
<td>1-2</td>
<td>2-3</td>
</tr>
<tr>
<td>Heavy (400 m run)</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4-5</td>
</tr>
<tr>
<td>Very intense (discus)</td>
<td>2-3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Very intense and Repetitive Motions</td>
<td>4-5</td>
<td>4-5</td>
<td>1-2</td>
<td>1-2</td>
<td>4-5</td>
</tr>
</tbody>
</table>

Note: 1 = Least Probable Limiting Factor; 5 = Most Probable Limiting Factor

Adapted from Baechle and Earle (2008).

Table 1.7 describes the limiting factors of the bioenergetics systems. It shows how athletes, depending on the sport they play, involuntarily utilize bioenergetics systems. If we take a look at the discus thrower, it is important for their performance to have enough ATP and creatine phosphate in order to throw the discus in a powerful manner. On the other hand, if we take a look at marathon runners, they are much more limited by the amounts of glycogen (large amounts of glucose grouped together) stored in the muscles and liver because of its role in glycolysis and oxidative phosphorylation. Thereby, if they are limited in muscle or liver glycogen their performance will be hindered greatly.

Table 1.8 describes the primary system that will be utilized by percent maximum power and duration of exercise (sport). With this information we can learn to train our bodies to utilize different systems. For example, if you are an athlete that wants to improve utilization of the phosphagen system, then you would train one time (sprint) at 90 percent intensity for five seconds in...
Table 1.8. Athletic Training and Energy Systems

<table>
<thead>
<tr>
<th>Percent Range of Maximum Power</th>
<th>Primary System Utilized</th>
<th>Typical Exercise Time</th>
<th>Range of Work-to-rest Period Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>Phosphagen</td>
<td>5-10 seconds</td>
<td>1:12 to 1:20</td>
</tr>
<tr>
<td>75-90</td>
<td>Fast Glycolysis</td>
<td>15-30 seconds</td>
<td>1:3 to 1:5</td>
</tr>
<tr>
<td>30-75</td>
<td>Fast Glycolysis and Oxidative</td>
<td>1-3 minutes</td>
<td>1:3 to 1:4</td>
</tr>
<tr>
<td>20-30</td>
<td>Oxidative</td>
<td>> 3 minutes</td>
<td>1:1 to 1:3</td>
</tr>
</tbody>
</table>

Adapted from Baechle and Earle (2008).

duration at a work to rest ratio of one to twenty, meaning you would rest \((5 \times 20)\) 100 seconds, or a minute forty. If however, you would want to improve your cardiorespiratory endurance, you would train at 20–30 percent for longer duration at a work to rest ratio of one to three at most.

Table 1.9 details physiological markers of performance outcomes. It is well documented in the literature that testosterone, growth hormone, and IGF-1 are strongly related to muscle mass development and maintenance as well as bone density. Lactate levels are commonly used to assess whether the athlete is fatigued. Training that requires high level of technique or skill should not be performed since coordination is significantly decreased and risk of injury is increased when high amounts of lactate are present in the blood. Additionally, the hormone cortisol is known to be extremely elevated when an athlete is overtraining causing inflammation and stress in the body, which chronically, may lead to injury.

More recently there has been extensive research on delaying aging. Telomeres are located at the end of our chromosomes within our DNA. You may ask, “Why is this relevant to sport?” Professional athletes are interested in prolonging their athletic careers and since telomeres have been shown to be strongly related to physical aging, this is a relevant marker of having an extended athletic career. Many studies have already shown that longer telomeres are associated with healthier and longer lifespans in both animal and human models. A newer method of assessing aging is Methylome analysis. It has been shown to have an even stronger correlation to physical aging than telomere length. It is now recognized as a measure of biological age and can have major implications for injury prevention and the extension of athletic careers.
Heart function is important to athletic performance. The ability of the heart to distribute blood and oxygen to the muscles is fundamental for optimal performance. Heart rate is commonly used to assess intensity. For instance, many strength and conditioning experts utilize heart rate zones as indicators of exercise intensity (training). It is important to assess heart functionality by not only measuring heart rate, but also stroke volume, heart rate variability, and cardiac output.

Anaerobic and aerobic thresholds are also important to assess. Based on the sport, it is recommended that respiratory rate and VO\textsubscript{2} max be examined. Respiratory rate assessment is especially relevant for sprinters, whereas VO\textsubscript{2} max would be most appropriate for marathoners.

In order to obtain an accurate predictive model of sport performance, it is important to include cardiovascular physiological measures, such as heart rate, resting heart rate, heart rate variability, stoke volume, cardiac output,
put, and blood pressure. It is also important to include measures of lactate threshold, insulin and glucose levels, a vision assessment, and markers of cellular aging. Physiological variables reflect the internal state of the body and yield a picture of the body’s engine and how and why it runs the way it does.

Now you can begin to see the whole picture and conduct more relevant exploratory analyses. Knowledge of anatomy and physiology will make you a more marketable and competitive sports data analyst against those who only see the numbers, whether those numbers come from a laboratory setting, training facility, or wearable technology in the field. Wearable technology provides measurements related to anatomy and physiology, as well as physical measures discussed in chapter 2.

This chapter drew on various sources in anatomy and physiology, including *Essentials of Strength Training and Conditioning* (Baechle and Earle 2008) and the *Laboratory Manual for Exercise Physiology* (Haff and Dumke 2012). Those who want to pursue these subjects further may want to consult Tanner, Gore, et al. (2013) and Sherwood (2015) as well.
This page intentionally left blank
Index

A
accessibility, see measurement, accessibility
adenosine triphosphate, see anatomy/physiology, adenosine triphosphate (ATP)
Adidas miCoach, see wearable technology, Adidas miCoach
aerobic capacity, see physical measures, aerobic power (aerobic capacity)
aerobic power, see physical measures, aerobic power (aerobic capacity)
aggressive baseliner, see tennis, aggressive baseliner
aggressiveness, see psychology, aggressiveness
agility, see physical measures, agility
all-court player, see tennis, all-court player
anaerobic power, see physical measures, anaerobic power
analysis of covariance, see statistics, analysis of covariance (ANCOVA)
analysis of variance, see statistics, analysis of variance (ANOVA)
anatomy/physiology, 1–13
adenosine triphosphate (ATP), 7–9
bioelectrical impedance analysis machine, 19
body composition, 17–19
body density, 18
body fat, 17–19
body fat percentage, 17, 19
body mass index (BMI), 16–18
bone density, 19
bone types, 2
bones, 2
fibers, 5, 6
glycolysis, 8
glycolytic system, 7, 9
Methylome analysis, 11
muscle types, 3, 6
muscles, 2–4
osteochemistry, 2
oxidative phosphorylation system, 7–9
phosphagen system (ATP-PCr), 7, 9
physiological markers, 11, 12
skinfold body fat testing, 19
underwater weighing (hydrodensitometry), 18
ANCOVA, see statistics, analysis of covariance (ANCOVA)
anger, see psychology, anger
Anger Rumination Scale, see psychology, Anger Rumination Scale (ARS)
ANOVA, see statistics, analysis of variance (ANOVA)
anxiety, see psychology, anxiety
APQ, see psychology, Autonomic Perception Questionnaire (APQ)
ARS, see psychology, Anger Rumination Scale (ARS)
Association of Tennis Professionals, see tennis, ATP
ATP, see anatomy/physiology, adenosine triphosphate (ATP), see tennis, ATP
ATP-PCr, see anatomy/physiology, phosphagen system (ATP-PCr)
Autonomic Perception Questionnaire, see psychology, Autonomic Perception Questionnaire (APQ)

B
Babolat Play, see wearable technology, Babolat Play
back, see football, back (running back)
back row, see physical measures, back row
back scratch test, see physical measures, back scratch test
BAI, see psychology, Beck Anxiety Inventory (BAI)
balance, see physical measures, balance
Balance Error Scoring System, see physical measures, Balance Error Scoring System (BESS)

baseball
“out”, 218
“play ball”, 220
“safe”, 222

All Star Game, 209
American League, 209
around the horn, 209
at bats (AB), 209
bailing out, 209
ball, 209
base, 209
base coach, 210
base hit, 210
base on balls (BB), 209
base runner, 210
baserunner, 210
baserunning error, 210
bases loaded, 210
batter, 210
batter in the hole, 210
batter on deck, 210
batter’s box, 210
battery, 210
batting average (BA, AVG), 210
batting stance, 210
batting team, 210
behind in the count, 210
bench, 211
big leagues, 211
bloop single, 211
bunt, 211
call, 211
called game, 211
catcher, 123, 211
catch looking, 211
catch off base, 211
catch stealing (CS), 211
center fielder, 211
Championship Series, 211
changeup, 211
check swing, 211
choking up, 212
chop single, 212
closed batting stance, 212
closer, 212
clutch hitter, 212
coach, 212
command, 212
control, 212
cover the bases, 212
crowd the plate, 212
curveball (curve), 212
cut fastball (cutter), 212
cut-off position, 212
defense, 213
defensive indifference, 213
designated hitter (DH), 213
diamond, 213
dig in, 213
Division Series, 213
double (2B), 213
double play, 213
double-header, 213
double-switch, 213
dugout, 213
earned run average (ERA), 213
expected runs, 213
extra-base hit, 213
fair ball, 214
fair territory, 214
fan, 214
fantasy baseball, 214
fastball, 214
fielder, 214
fielder’s choice, 214
fielding error, 214
first base, 214
first baseman, 214
five-tool player, 214
fly ball, 214
fly out, 214
force out, 214
forfeited game, 214
foul ball, 214
foul territory, 214
foul tip, 214
frame (a pitch), 215
free agent, 215
full count, 215
game (G), 215
grand slam, 215
ground ball, 215
ground out, 215
ground-rule double, 215
hit (H), 126, 215
hitter, 215
hitting for power, 215
hitting slump, 215
hitting streak, 215
holding runner on base, 215
home plate, 215
home run (HR), 127, 215
illegal pitch, 216
in the hole, 216
infielder, 216
inning, 216
intentional base on balls, 216
interference, 216
knuckleball, 216
lead-off hitter, 216
leave the yard (go yard), 216
left fielder (LF), 216
left on base (LOB), 216
lefty, 216
line drive, 216
lineup, 216
live ball, 216
live ball era, 216
making the turn, 217
manager, 217
manufactured run, 217
men on base, 217
middle infielder, 217
middle reliever, 217
MLB, 122, 217
National League, 217
neighborhood play, 217
no hitter, 217
no-no, 217
obstruction, 217
offense, 217
official scorer, 217
on the field (team), 217
on-base percentage (OBP), 217
open batting stance, 218
out, 218
outfielder, 123, 218
overslide, 218
pace of play, 218
passed ball, 218
PECOTA, 219
perfect game, 219
pick off assignment, 219
pick off play, 219
pinch hitter, 219
pinch runner, 219
pitch, 219
pitch count, 219
pitcher (P), 122, 123, 219
pitcher’s duel, 219
pitcher’s park, 219
pitcher’s plate, 219
pitching depth, 220
pitching from the stretch, 220
pitching mound, 220
pitching rotation, 220
pivot foot, 220
place hitter, 220
plate, 220
plate appearance, 220
platooning, 220
pop-up, 220
position number, 220
position player, 220
power hitter, 220
productive at bat, 220
pull hitter, 221
pull the string, 221
quick pitch, 221
reaching for the fences, 221
regulation game, 221
relief pitcher, 221
replay review, 221
retouch, 221
reverse curve, 221
right fielder (RF), 221
rounding the bases, 221
run, 127, 221
run batted in (RBI), 126, 221
run down, 221
runner, 221
Sabermetrics, 119, 175
sacrifice bunt, 221
sacrifice fly, 222
scoring position, 222
screwball, 222
season, 222
second base, 222
second baseman, 222
secondary lead, 222
semi-intentional walk, 222
shadow ball, 222
shift, 222
shine ball, 222
shortstop, 123, 222
shutout, 222
side-arm delivery, 223
single (1B), 223
slider, 223
slugging percentage (SLG), 223
small ball, 223
spin rate, 223
spitball, 223
squeeze play, 223
starting pitcher, 223
steal (stolen base, SB), 223
stepping in the bucket, 223
strike, 223
strike zone, 224
strikeout (K), 224
suspended game, 224
sweep, 224
switch hitter, 224
switch pitcher, 224
tag out, 224
tagging up, 224
take a lead (off base), 224
tax a pitcher deep, 224
Texas Leaguer, 224
third base, 225
third baseman, 225
three-bagger, 225
throw, 225
throwing error, 225
tie game, 225
tip a pitch, 225
total bases (TB), 225
triple (3B), 225
triple crown, 225
triple-play, 225
two-bagger, 225
umpire, 225
umpire-in-chief, 225
up the middle, 225
up to bat (team), 226
VORP, 226
walk, 226
walk-off balk, 226
walk-off hit, 226
walk-off home run, 226
WAR (WARP), 226
WHIP, 226
Wild Card Game, 226
wild pitch, 226
windup position, 226
World Series, 226
baseball analytics, 117–137
baseliner, see tennis, baseliner
basketball
center, 97, 100
FIBA, 95, 97
NBA, 96, 97
point guard, 97, 98, 100
power forward, 97, 99, 100
shooting guard, 97, 100
small forward, 97, 98, 100
tip-off, 97
basketball analytics, 95–117
basketball term
air ball, 201
alley-oop pass, 201
assist, 201
assist percentage, 201
backcourt, 201
backdoor play, 201
bank shot, 201
baseline (endline), 201
basket, 201
bench, 201
block, 202
block percentage, 202
bonus, 202
bounce pass, 202
box out, 202
brick, 202
charging, 202
coast-to-coast, 202
collective bargaining agreement, 202
cut, 202
dead-ball foul, 202
deny the ball, 202
double dribble, 202
double foul, 202
double-team, 202
downtown, 202
DPOY, 202
draft, 203
dribble, 203
dunk (slam dunk), 203
fast break, 203
field goal, 203
flagrant foul, 203
foul, 203
foul out, 203
foul trouble, 203
free agent, 203
free throw, 203
frontcourt, 203
give-and-go, 204
goaltending, 204
gunner, 204
hang time, 204
high post, 204
hook shot, 204
hoop, 204
jump ball, 204
jump hook, 204
jump shot, 204
lane, 204
loose-ball foul, 204
lottery, 204
low post, 204
man-to-man defense, 204
NBA, 204
NBPA, 204
net, 204
open shot, 205
outlet pass, 205
over the limit (penalty situation), 205
overtime, 205
pace factor (pace of play), 205
pick (set a pick), 205
pick-and-roll, 205
pivot, 205
player control foul, 205
point guard, 205
possessions, 205
power forward, 205
press, 205
quadruple-double, 205
quarter (period), 205
rebound, 206
rejection, 206
sag, 206
salary cap, 206
screen, 206
set-shot, 206
shot clock, 206
sixth man, 206
sky-hook, 206
skywalk, 206
sagging up, 206
SRS, 206
steal percentage, 206
strength of schedule, 206
stutter, 206
switch, 206
team fouls, 207
technical foul, 207
three-point field goal percentage, 207
three-point field goals, 207
three-point shot, 207
three-point shot attempts, 207
three-second violation, 207
three-sixty (360), 207
tip-in, 207
tip-off, 207
trailer, 207
transition, 207
traveling, 207
triple-double, 207
turnover, 207
two-point attempts, 207
two-point field goal attempts, 207
two-point field goal percentage, 207
veteran free agent, 208
weakside, 208
wing, 208
zone defense, 208
BATAK light board reaction test, see physical measures, BATAK light board reaction test
Bayesian statistics, see statistics, Bayesian statistics
BDI, see psychology, Beck Depression Inventory (BDI)
BEAST90 protocol, see soccer, BEAST90 protocol
Beck Anxiety Inventory, see psychology, Beck Anxiety Inventory (BAI)
Beck Depression Inventory, see psychology, Beck Depression Inventory (BDI)
BESS, see physical measures, Balance Error Scoring System (BESS)
biceps curl, see physical measures, biceps curl
binary variable, see statistics, binary variable
bioelectrical impedance analysis machine, see anatomy/physiology, bioelectrical impedance analysis machine
BMI, see anatomy/physiology, body mass index (BMI)
body composition, see anatomy/physiology, body composition
body composition, see physical measures, body composition
body density, see anatomy/physiology, body density
body fat, see anatomy/physiology, body fat
body fat percentage, see anatomy/physiology, body fat percentage
body mass index, see anatomy/physiology, body mass index (BMI)
bone density, see anatomy/physiology, bone density
bone types, see anatomy/physiology, bone types
bones, see anatomy/physiology, bones
Bonferroni correction, see statistics, Bonferroni correction
bootstrap sampling, see statistics, bootstrap sampling
Bosco sixty-second continuous jump test, see physical measures, Bosco sixty-second continuous jump test
Bosu ball, see physical measures, Bosu ball
broad jump, see physical measures, broad jump

C
CAAS, see psychology, Competitive Aggressiveness and Anger Scale (CAAS)
cardiorespiratory endurance, see physical measures, cardiorespiratory endurance
cardiorespiratory fitness, see physical measures, cardiorespiratory fitness (CRF)
cardiovascular endurance, see physical measures, cardiovascular endurance
Catapult, see wearable technology, Catapult
catastrophe model, see psychology, catastrophe model
catcher, see baseball, catcher
categorical variable, see measurement, nominal scale (categorical variable)
Cattell Sixteen Personality Factor Questionnaire, see psychology, Sixteen Personality Factor Questionnaire
center, see basketball, center
characteristics, see measurement, characteristics
chest press, see physical measures, chest press
chi-square distribution, see statistics, chi-square distribution
chi-square test, see statistics, chi-square test
classical statistics, see statistics, classical statistics
cognitive ability, see psychology, cognitive ability
Colley rating method, see market value, Colley rating method
comma-delimited text, see statistics, comma-delimited text (csv)
Competitive Aggressiveness and Anger Scale, see psychology, Competitive Aggressiveness and Anger Scale (CAAS)
Competitive State Anxiety inventory, see psychology, Competitive State Anxiety inventory (CSAI-2R)
comprehensibility, see measurement, comprehensibility
compression attire, see wearable technology, compression attire
confidence, see psychology, confidence
confusion, see psychology, confusion
constraint, see psychology, constraint
continuous jump test, see physical measures, continuous jump test
coordination, see physical measures, coordination
correlation, see statistics, Pearson product-moment correlation
countermovement jump test, see physical measures, countermovement jump test
counterpuncher, see tennis, counterpuncher
creativity, see psychology, flow
CRF, see physical measures, cardiorespiratory fitness (CRF)
cross-sectional data, see statistics, cross-sectional data
cross-validation, see statistics, cross-validation
CSAI-2R, see psychology, Competitive State Anxiety inventory (CSAI-2R)
csv, see statistics, comma-delimited text (csv)

data visualization, see statistics, data visualization
defensive tackle, see football, defensive tackle
dependent variable, see statistics, dependent variable
depression, see psychology, depression
descriptive statistics, see statistics, descriptive statistics
Dot-Probe Task, see psychology, Dot-Probe Task (DPT)
DPT, see psychology, Dot-Probe Task (DPT)
drive theory, see psychology, drive theory
dynamic flexibility, see physical measures, dynamic flexibility
dynamic strength, see physical measures, dynamic strength

EA Sports Player Performance Index, see market value, EA Sports Player Performance Index
Elo Ratings, see market value, Elo Ratings
ESE, see psychology, Exercise Self-Efficacy (ESE)
Exercise Self-Efficacy, see psychology, Exercise Self-Efficacy (ESE)
experimental research, see statistics, experimental research
explanatory model, see statistics, explanatory model
explanatory variable, see statistics, explanatory variable
explosive strength, see physical measures, explosive strength
extent flexibility, see physical measures, extent flexibility
extraversion/intraversion, see psychology, extraversion/intraversion
extrinsic motivation, see psychology, extrinsic motivation

F distribution, see statistics, F distribution
F-test, see statistics, F-test
Fédération Internationale de Football Association, see soccer, FIFA
fatigue, see psychology, fatigue
FIBA, see soccer, FIBA
fibers, see anatomy/physiology, fibers
flexibility, see physical measures, flexibility
flow, see psychology, flow
Flow Questionnaire, see psychology, Flow Questionnaire (FQ)
Flow State Scale, see psychology, Flow State Scale (FSS)
football
AstroTurf, 193
audible, 193
back (running back), 193
backfield, 193
ball carrier, 193
beat, 193
blackout, 193
blitz, 193
blocking, 193
call a play, 193
clipping, 193
complete pass, 193
call a play, 193
conference, 193
controlling the game clock, 193
coverage, 194
cut back, 194
defense (defensive team), 194
defensive players, 75, 194
defensive tackle, 75
division, 194
double coverage, 194
down, 73, 194
down the field, 194
draft choice, 194
drive, 194
drop back, 194
drop kick, 194
eligible receiver, 194
encroachment, 194
end line, 194
end zone, 194
extra point, 195
fair catch, 195
fair catch free kick, 195
field, 195
field goal, 73, 195
field position, 195
first down, 195
forward pass, 195
forward progress, 195
foul, 195
franchise, 195
free agent, 195
free kick, 195
fumble, 74, 195
goal line, 195
goal post, 196
going for it, 196
hand-off, 196
hang time, 196
holding, 196
huddle, 196
in bounds, 196
incomplete pass, 196
intentional grounding, 196
interception, 74, 196
kickoff, 196
lateral, 196
line of scrimmage, 196
live ball, 196
loose ball, 196
loss of possession on downs, 197
midfield, 197
moving the ball, 197
necessary line, 197
neutral zone, 197
NFL (National Football League), 69, 70, 72, 197
NFL Championship, 197
NFL Combine, 77, 79–81, 101
offending team, 197
offense (offensive team), 197
offensive guard, 77
offensive players, 77, 197
offside, 197
open receiver, 197
out of bounds, 197
pass, 197
pass defender, 198
pass protection, 198
pass route, 198
pass rush, 198
personal foul, 198
picked off, 198
pitch-out, 198
place kick, 198
play, 198
play clock, 198
play-action pass, 198
players, 198
playoffs, 198
possession, 198
previous spot, 198
punt, 73, 198
quarterback, 73–75, 198
reading the defense, 198
receiver, 199
recovery, 199
red zone, 199
return, 199
roll out, 199
rookie, 199
run, 199
rush, 199
sacks, 199
safety, 199
scoring, 199
scrambling, 199
series, 199
sideline, 199
single-elimination, 199
snap, 199
special teams, 199
spike, 199
spiral, 199
spot, 200
stiff arm (straight arm), 200
Super Bowl, 200
tackle, 200
tackling, 200
territory, 200
third-and-long, 200
tied game, 200
touchback, 200
touchdown (TD), 73, 200
turnover, 200
two-point conversion, 200
Wild Card, 200
winning percentage, 200
football analytics, 69–94
FQ, see psychology, Flow Questionnaire (FQ)
FSS, see psychology, Flow State Scale (FSS)
functional reach test, see physical measures, functional reach test

G
Games-Howell test, see statistics, Games-Howell test
gender equality, see market value, gender equality
generalized linear model, see statistics, generalized linear model
glycolysis, see anatomy/physiology, glycolysis
glycolytic system, see anatomy/physiology, glycolytic system
goalie, see soccer, goalie
Golden Slam, see tennis, Golden Slam
goniometer, see physical measures, goniometer
GPQ, see psychology, Group Environment Questionnaire (GPQ)
Grand Slam, see tennis, Grand Slam
gross body coordination, see physical measures, gross body coordination

Group Environment Questionnaire, see psychology, Group Environment Questionnaire (GPQ)

H
Hochbaum rating method, see market value, Hochbaum rating method
home run, see baseball, home run
homogeneity of slopes, see statistics, homogeneity of slopes
homogeneity of variance, see statistics, homogeneity of variance
homogeneity of variances, see statistics, homogeneity of variances
homoscedasticity, see statistics, homoscedasticity
hydrodensitometry, see anatomy/physiology, underwater weighing (hydrodensitometry)

I
IAT, see psychology, Implicit Association Test (IAT)
Iceberg Profile, see psychology, Iceberg Profile
Implicit Association Test, see psychology, Implicit Association Test (IAT)
income disparity, see market value, income disparity
independent observations, see statistics, independent observations
independent variable, see statistics, independent variable
individual zones of optimal functioning, see psychology, individual zones of optimal functioning (IZOF)
inferential statistics, see statistics, inferential statistics
infielder, see baseball, infielder
injury, see physical measures, injury
instrumental aggression, see psychology, instrumental aggression
intelligence, see psychology, intelligence
International Tennis Federation, see tennis, ITF
interval scale, see measurement, interval scale
intrinsic motivation, see psychology, intrinsic motivation
inverted-U hypothesis, see psychology, inverted-U hypothesis
ITF, see tennis, ITF
IZOF, see psychology, individual zones of optimal functioning (IZOF)
K
Keener rating method, see market value, Keener rating method
Kendall’s tau, see statistics, Kendall’s tau
Kolmogorov-Smirnov test, see statistics, Kolmogorov-Smirnov test
Kruskal-Wallis test, see statistics, Kruskal-Wallis test
K
lane agility drill, see physical measures, lane agility drill
lat pull-down, see physical measures, lat pull-down
leg curl, see physical measures, leg curl
leg extension, see physical measures, leg extension
leg press, see physical measures, leg press
level of measurement, see measurement, scale (level of measurement)
levels of measurement, see statistics, levels of measurement
Levene test, see statistics, Levene test
Levene’s test, see statistics, Levene’s test
light board reaction timer, see physical measures, light board reaction timer
linear mixed effects model, see statistics, linear mixed effects model
linear regression, see statistics, linear regression
logistic regression, see statistics, logistic regression
longitudinal data, see statistics, longitudinal data

M
machine learning, see statistics, machine learning
Major League Baseball, see baseball, MLB
MANCOVA, see statistics, multivariate analysis of covariance (MANCOVA)
MANOVA, see statistics, multivariate analysis of variance (MANOVA)
market value, 173–186
Colley rating method, 175
EA Sports Player Performance Index, 175
Elo Ratings, 176
gender equality, 178
Hochbaum rating method, 176
income disparity, 177, 178
Keener rating method, 177
Markov model, 176
Massey rating method, 175
Park-Newman rating method, 176
performance ranking, 173–175
performance rating, 173–175
socioeconomic status, 163, 165, 166
tennis player earnings, 167, 168
Markov model, see market value, Markov model, see statistics, Markov model
Massey rating method, see market value, Massey rating method
maximal oxygen consumption, see physical measures, maximal oxygen consumption (VO2 max)
maximal vertical reach, see physical measures, maximal vertical reach
maximum vertical leap, see physical measures, maximum vertical leap
measurement, 49–52
accessibility, 51
comprehensibility, 51
interval scale, 54
nominal scale (categorical variable), 54, 55
ordinal scale, 54, 55
ratio scale, 54, 55
reliability, 51
scale (level of measurement), 54
standardization, 51
tractability, 51
transparency, 51
validity, 51
measurement theory, see psychology, measurement theory
Methylome analysis, see anatomy/physiology, Methylome analysis
midfielder, see soccer, midfielder
Minnesota Multiphasic Personality Inventory, see psychology, Minnesota Multiphasic Personality Inventory (MMPI)
MLB, see baseball, MLB
MMPI, see psychology, Minnesota Multiphasic Personality Inventory (MMPI)
model, see statistics, model
Monte Carlo simulation, see statistics, Monte Carlo simulation
motivation, see psychology, motivation
Motus Sleeve, see wearable technology, Motus Sleeve
multi-level categorical variable, see statistics, multi-level categorical variable
multicollinearity, see statistics, multicollinearity
multidimensional anxiety theory, see psychology, multidimensional anxiety theory
multiple imputation, see statistics, multiple imputation
multiple limb coordination, see physical measures, multiple limb coordination
multivariate analysis of covariance, see statistics, multivariate analysis of covariance (MANCOVA)
multivariate analysis of variance, see statistics, multivariate analysis of variance (MANOVA)
muscle types, see anatomy/physiology, muscle types
muscles, see anatomy/physiology, muscles
muscular endurance, see physical measures, muscular endurance
muscular power, see physical measures, muscular power
muscular strength, see physical measures, muscular strength
Myontec Mbody Pro, see wearable technology, Myontec Mbody Pro

narcissism, see psychology, narcissism
Narcissistic Personality Inventory, see psychology, Narcissistic Personality Inventory (NPI)
National Basketball Association, see basketball, NBA
National Basketball Players Association, see basketball, NBPA
National Football League, see football, NFL
NBA, see basketball, NBA
NBPA, see basketball, NBPA
neuroticism, see psychology, neuroticism
NFL, see football, NFL
NFL Combine, see football, NFL Combine
nominal scale, see measurement, nominal scale (categorical variable)
nonlinear mixed model, see statistics, nonlinear mixed model
nonparametric, see statistics, nonparametric
normality, see statistics, normality
normality of distribution, see statistics, normality of distribution
NPI, see psychology, Narcissistic Personality Inventory (NPI)

observational research, see statistics, observational research
offensive guard, see football, offensive guard
on-base percentage plus slugging (OPS), 218
OptimEye S5, see wearable technology, OptimEye S5

ordinal scale, see measurement, ordinal scale
osteology, see anatomy/physiology, osteology
outfielder, see baseball, outfielder
outlier, see statistics, outlier
oxidative phosphorylation system, see anatomy/physiology, oxidative phosphorylation system

parameter, see statistics, parameter
parametric, see statistics, parametric
Park-Newman rating method, see market value, Park-Newman rating method
Pearson product-moment correlation, see statistics, Pearson product-moment correlation
performance ranking, see market value, performance ranking
performance rating, see market value, performance rating
phosphagen system, see anatomy/physiology, phosphagen system (ATP-PCr)
physical measures, 15–40
aerobic power, 31
aerobic power (aerobic capacity), 31, 32, 159, 161
agility, 16, 34, 77, 79, 99, 104, 122, 162
anaerobic power, 29–31, 34, 80, 81, 105, 106, 141, 142, 159
back row, 24
back scratch test, 23
balance, 16, 26, 28, 29, 160
Balance Error Scoring System (BESS), 28
BATAK light board reaction test, 34
biceps curl, 25
body composition, 16
Bosco sixty-second continuous jump test, 30
Bosu ball, 33
broad jump, 81
cardiorespiratory endurance, 16, 141
cardiorespiratory fitness (CRF), 31, 32
cardiovascular endurance, 31, 32
chest press, 24
continuous jump test, 30
coordination, 16, 35, 36, 160
countermovement jump test, 30
countermovement vertical jump test, 142
dynamic flexibility, 16
dynamic strength, 16
explosive strength, 16
extent flexibility, 16, 23, 26
flexibility, 16, 23, 26
functional reach test, 26
goniometer, 26
Index

299

gross body coordination, 16
injury, 26
lane agility drill, 34
lat pull-down, 25
leg curl, 24
leg extension, 24
leg press, 24
light board reaction timer, 33
lower strength, 20
maximal oxygen consumption (VO2 max), 31, 32
maximal vertical reach, 99
maximum vertical leap, 34, 105, 161
multiple limb coordination, 16
muscular endurance, 16, 22, 81, 99, 104, 122, 123, 160
muscular power, 22, 30, 99, 122, 123, 160
muscular strength, 16, 20, 81, 99, 160
power, 30
Proprio reactive balance test, 26, 29
reaction time, 33–35, 76
reaction time ruler test, 33
recovery from injury, 26
repeated-sprint ability (RSA), 140
running speed, 16
SAFTE, 39
shoulder press, 25
shoulder flexibility, 23
shuttle run, 34, 79
single leg stand, 26, 28
SPARQ rating system, 33
speed, 35, 79, 80, 106, 122
sport-specific skills, 35, 38
sprints, 29, 79, 80, 106
squats, 25
standing vertical leap, 34, 105
Star Excursion Balance Test (SEBT), 28
static squat jump, 30, 141
static strength, 16
strength, 16, 20
strength testing repetitions, 20, 21
SVT reaction test, 34
three-quarter-court sprint, 34
triiceps dips, 25
upper body strength, 20, 77
vertical jump test, 30, 80, 99, 105, 106
Wingate anaerobic cycle test, 31
physiological markers, see anatomy/physiology, physiological markers
pitcher, see baseball, pitcher
player expenses, see tennis, player expenses
PlaySight, see wearable technology, PlaySight
point guard, see basketball, point guard
Poisson distribution, see statistics, Poisson distribution
Poisson regression, see statistics, Poisson regression
population, see statistics, population
population distribution, see statistics, population distribution
post hoc analyses, see statistics, post hoc analyses
posterior distribution, see statistics, posterior distribution
power, see physical measures, power
power forward, see basketball, power forward
predictive model, see statistics, predictive model
prior distribution, see statistics, prior distribution
probability, see statistics, probability
proportion, see statistics, proportion
Proprio reactive balance test, see physical measures, Proprio reactive balance test
ProZone image recognition system, see soccer, ProZone image recognition system
psychographics, see statistics, psychographics
psychological toughness, see psychology, psychological toughness
psychology, 41–52
aggressiveness, 47, 50
anger, 46, 50
Anger Rumination Scale (ARS), 47, 50
anxiety, 44, 45, 50, 99
Autonomic Perception Questionnaire (APQ), 50
Beck Anxiety Inventory (BAI), 45, 50
Beck Depression Inventory (BDI), 50, 98
catastrophe model, 45
Cattell’s Sixteen Personality Factor Questionnaire, 75, 98, 99
cognitive ability, 50
Competitive Aggressiveness and Anger Scale (CAAS), 47, 50, 75, 76, 99, 162
Competitive State Anxiety inventory (CSAI-2R), 50, 75, 76, 98, 99, 123, 161, 162
certainty, 42, 50, 99
confidence, 42, 50, 99
corrision, 46, 50
constraint, 50
depression, 46, 50, 141
Dot-Probe Task (DPT), 50
drive theory, 45
Exercise Self-Efficacy (ESE), 50
extraversion/introversion, 50
extrinsic motivation, 42
fatigue, 46, 50
flow, 46
Flow Questionnaire (FQ), 50
Flow State Scale (FSS), 46, 50
Group Environment Questionnaire (GPQ),
50, 98
Iceberg Profile, 46, 50
Implicit Association Task (IAT), 75, 76, 98,
123, 163
Implicit Association Test (IAT), 49, 50
individual zones of optimal functioning
(IZOF), 45
instrumental aggression, 47
intelligence, 48, 50
intrinsic motivation, 42
inverted-U hypothesis, 45
Minnesota Multiphasic Personality Inven-
tory (MMPI), 43, 50
motivation, 42, 50, 52
multidimensional anxiety theory, 45
narcissism, 43, 50
Narcissistic Personality Inventory (NPI), 43,
50
neuroticism, 50
psychological toughness, 44
psychoticism, 50
reactive aggression, 47
Rosenberg Self-Esteem Scale (RSES), 48, 50,
52
self-efficacy, 42, 50
self-esteem, 50, 52
situation-specific motivation , 42, 50
Situational Motivation Scale (SIMS), 42, 50
Sixteen Personality Factor Questionnaire,
47, 50, 52
Sport Competition Anxiety Test (SCAT), 45,
50, 99
Sport Motivation Scale (SMS), 42, 50, 99
Sport Orientation Questionnaire (SOQ), 43,
50, 98, 123, 161
Sports Anxiety Scale (SAS), 50
state confidence, 50
State Sport Confidence Inventory (SCSI),
43, 50
State Trait Anxiety Index (STAI), 44, 45, 50
tension, 46, 50, 141
Thematic Apperception Test (TAT), 43, 50,
99
Trait Sport Confidence Inventory (TSCI), 43,
50
vigor, 46, 50
Wechsler Adult Intelligence Scale-III (WAIS-
III), 50
Wonderlic Cognitive Ability Test, 50, 74, 75,
163
psychoticism, see psychology, psychoticism

Q
quarterback, see football, quarterback

R
R, see statistics, R
ratio scale, see measurement, ratio scale
reaction time, see physical measures, reaction
time
reaction time ruler test, see physical measures,
reaction time ruler test
reactive aggression, see physical measures,
reactive aggression
Readiband, see wearable technology, Read-
iband
receiver, see football, receiver
recovery from injury, see physical measures,
recovery from injury
regression, see statistics, regression
reliability, see measurement, reliability
repeated-sprint ability, see physical measures,
repeated-sprint ability (RSA)
resampling, see statistics, resampling
Rosenberg Self-Esteem Scale, see psychology,
Rosenberg Self-Esteem Scale (RSES)
RSA, see physical measures, repeated-sprint
ability (RSA)
RSES, see psychology, Rosenberg Self-Esteem
Scale (RSES)
running back, see football, back (running back)
running speed, see physical measures, running
speed

S
Sabermetrics, see baseball, Sabermetrics
SAFTE, see physical measures, SAFTE
sampling, see statistics, sampling
sampling distribution, see statistics, sampling
distribution
SAS, see psychology, Sports Anxiety Scale
(SAS)
scale, see psychology, Sports Anxiety Scale
(SAS)
scale, see measurement, scale (level of mea-
surement)
SCAT, see psychology, Sport Competition Anx-
iety Test (SCAT)
scatter plot, see statistics, scatter plot
SEBT, see physical measures, Star Excursion
Balance Test (SEBT)
self-efficacy, see psychology, self-efficacy
self-esteem, see psychology, self-esteem
Self-Esteem Scale , see psychology, Rosenberg
Self-Esteem Scale (RSES)
serve and volleyer, see tennis, serve and
volleyer
Shapiro-Wilk test, see statistics, Shapiro-Wilk test
shooting guard, see basketball, shooting guard
ShoTracker, see wearable technology, ShoTracker
shoulder press, see physical measures, shoulder press
shoulder flexibility, see physical measures, shoulder flexibility
shuttle run, see physical measures, shuttle run
SIMS, see psychology, Situational Motivation Scale (SIMS)
simulation, see statistics, simulation
single leg stand, see physical measures, single leg stand
situation-specific motivation, see psychology, situation-specific motivation
Situational Motivation Scale, see psychology, Situational Motivation Scale (SIMS)
Sixteen Personality Factor Questionnaire, see psychology, Sixteen Personality Factor Questionnaire
skinfold body fat testing, see anatomy/physiology, skinfold body fat testing
slam dunk, see basketball, slam dunk
small forward, see basketball, small forward
SMS, see psychology, Sport Motivation Scale (SIMS)
soccer
 added time, 227
 advantage rule, 227
 against the run of play, 227
 aggregate score, 227
 anchorman, 227
 angle of the pass, 227
 angle of the run, 227
 angling, 227
 arc (penalty arch), 227
 area chica, 227
 assist, 149, 150, 228
 assistant referee, 228
 attacker, 228
 attacking half, 228
 attacking midfielder, 228
 attacking team, 228
 auto goal, 228
 away, 228
 away goal, 228
 away goals rule, 228
 AYSO, 228
 B team, 228
 back, 228
 back and face, 228
 back four, 228
 back header, 228
 back heel, 228
 back pass (pass back), 228
 back pass rule, 228
 back tackle, 228
 ball watching, 229
 banana kick, 229
 BEAST90 protocol, 140, 141
 bench, 229
 bend, 229
 booking, 229
 box, 229
 box-to-box midfielder, 229
 break, 229
 breakaway, 229
 burn, 229
 captain, 229
 cards, 229
 center, 229
 center back (central defender), 229
 center circle, 229
 center forward, 140, 229
 center half (center back), 140, 229
 center line, 229
 center midfielder, 140, 229
 challenge, 229
 channels, 229
 charge, 230
 chest (chest trap), 230
 chilena, 230
 chip, 230
 chip pass, 230
 clear, 230
 cleats, 230
 closing down, 230
 club, 230
 combination play, 230
 commit, 230
 conditioned play, 230
 Confederations Cup, 230
 control, 230
 control (the ball), 230
 corner, 230
 corner arc, 230
 corner ball, 231
 corner flag, 231
 corner kick, 231
 corridor of uncertainty, 231
 counterattack, 231
 cover, 230
 cross, 230
 crossbar, 231
 cul-de-sac, 231
 cup-tied, 231
Index | 301
danger zone, 231
decoy run, 231
defend deep, 231
defender (defenseman), 142, 231
defensive half, 231
defensive midfielder, 231
deflection, 231
diamond, 231
direct free kick, 231
disallow, 231
dive, 232
diving header, 232
draw (D), 232
dribble, 232
dribbling, 232
drop back, 232
dummy, 232
eyearl ball, 232
eighteen-yard line, 232
El Clasico, 232
end line, 232
equalizer, 232
European Champions League, 232
expulsion, 232
extra time, 232
FA, 232
fair charging, 232
fair play, 233
fake (feint), 233
fakeover, 233
FC, 233
FIFA, 142, 233
FIFA Ballon d'Or, 233
FIFA World Cup, 233
final whistle, 233
first half, 233
first team, 233
first touch, 233
fist (boxing), 233
fixture, 233
flat four, 233
flick pass, 233
footwork, 233
formation, 233
forward, 234
forward line, 234
foul, 234
free agent, 234
free kick, 234
front block tackle, 234
front header, 234
front tackle, 234
full back, 234
full time, 234
Futebol, 234
Galácticos, 234
give and go (one-two pass, wall pass), 234
goal, 149, 234
goal area (penalty box, 234
goal average, 234
goal kick, 234
goal line, 234
goal posts, 234
goal side, 235
goalaso, 235
goalie (goalkeeper, keeper), 235
golden goal, 235
ground ball, 235
hacking, 235
half, 235
half volley, 235
half-time (interval, break), 235
halfback, 235
halfway line, 235
hand ball, 235
hat-trick, 235
head, 235
head coach, 235
high press, 235
hits the post, 235
holding midfielder, 236
holding the line, 235
horseshoe formation, 236
indirect kick, 236
injury time, 236
intercept, 236
jockeying, 236
kick-off, 236
last defender, 236
Laws of the Game, 236
league, 236
League Cup, 236
left back, 236
left winger, 236
line of recovery, 236
linesman, 236
lineup, 236
lofted pass, 236
long ball, 237
long shot, 237
man short, 237
man-on, 237
manager, 237
mark (marking), 237
match, 237
match officials, 237
measured ball, 237
metodo system, 237
Index

midfield, 237
midfield anchor, 237
midfielder, 142, 237
mistimed tackle, 237
multiball system, 237
Mundial, 237
narrowing the angle, 237
netting, 237
obstruction, 238
off the ball, 238
off-season, 238
offensive player, 238
official caution, 238
offside, 238
olympic goal, 238
on offense, 238
one-touch, 238
one-touch pass, 238
one-touch soccer, 238
one-two, 238
open space, 238
out of bounds (out of play), 238
pace, 238
pass, 238
pass and move, 238
pass back (back pass), 239
penalty area, 239
penalty kick, 239
penetration, 239
peripheral vision, 239
play maker, 239
plyometrics, 239
pressure training, 239
ProZone image recognition system, 140
receiving, 239
running with the ball, 239
save, 239
shadow play, 239
shielding, 239
show, 239
sliding tackle, 239
soccer ball, 239
support play, 239
sweeper, 142, 239
switching play, 239
tackle, 239
tackling, 239
taking a player on, 240
target man, 240
through pass, 240
throw-in, 240
trials, 240
turning an opponent, 240

volley, 240
world rankings, 175
soccer analytics, 137–157
socioeconomic status, see market value, socioeconomic status
SOQ, see psychology, Sport Orientation Questionnaire (SOQ)
SPARQ rating system, see physical measures, SPARQ rating system
spatial data, see statistics, spatial data
Spearman rank-order correlation, see statistics, Spearman rank-order correlation
Spearman’s rho, see statistics, Spearman’s rho
speed, see physical measures, speed
Sport Competition Anxiety Test, see psychology, Sport Competition Anxiety Test (SCAT)
Sport Motivation Scale, see psychology, Sport Motivation Scale (SMS)
Sport Orientation Questionnaire, see psychology, Sport Orientation Questionnaire (SOQ)
sport-specific skills, see physical measures, sport-specific skills
Sports Anxiety Scale, see psychology, Sports Anxiety Scale (SAS)
SportsVU, see wearable technology, SportsVU
sprints, see physical measures, sprints
squats, see physical measures, squats
SSCI, see psychology, State Sport Confidence Inventory (SSCI)
STAI, see psychology, State Trait Anxiety Index (STAI)
standardization, see measurement, standardization
standing vertical leap, see physical measures, standing vertical leap
Star Excursion Balance Test, see physical measures, Star Excursion Balance Test (SEBT)
state confidence, see psychology, state confidence
State Sport Confidence Inventory, see psychology, State Sport Confidence Inventory (SSCI)
State Trait Anxiety Index, see psychology, State Trait Anxiety Index (STAI)
static squat jump, see physical measures, static squat jump
static strength, see physical measures, static strength
statistics, 53–67
analysis of covariance (ANCOVA), 187
analysis of variance (ANOVA), 60, 61, 64, 187
Bayesian statistics, 67, 187
binary variable, 187
Bonferroni correction, 64
bootstrap sampling, 187
chi-square distribution, 187
chi-square test, 64, 187
classical statistics, 67, 187
comma-delimited text (csv), 187
cross-sectional data, 187
cross-validation, 188
data visualization, 188
dependent variable, 66
descriptive statistics, 188
experimental research, 188
explanatory model, 188
explanatory variable, 188
F distribution, 188
F-test, 188
Games-Howell test, 61
generalized linear model, 188
homogeneity of slopes, 188
homogeneity of variance, 57, 61
homogeneity of variances, 189
homoscedasticity, 65, 66
independent observations, 60, 65
independent variable, 66
inferential statistics, 189
Kendall’s tau, 57, 58
Kolmogorov-Smirnov test, 59
Kruskal-Wallis test, 61
levels of measurement, 189
Levene’s test, 59, 61, 189
linear mixed effects model, 67, 189
linear regression, 189
logistic regression, 66, 189
longitudinal data, 189
machine learning, 67
Markov model, 189
model, 189
Monte Carlo simulation, 189
multi-level categorical variable, 189
multicollinearity, 63, 66
multiple imputation, 189
multivariate analysis of covariance (MANCOVA), 190
multivariate analysis of variance (MANOVA), 64, 66, 190
nonlinear mixed model, 190
nonparametric, 61, 67
normality, 57, 61, 65
normality of distribution, 190
observational research, 190
outlier, 60, 66, 190
parameter, 190
parametric, 67
Pearson product-moment correlation, 55, 57, 190
Poisson distribution, 190
Poisson regression, 190
population, 190
population distribution, 190
posterior distribution, 190
predictive model, 191
prior distribution, 191
probability, 191
proportion, 191
psychographics, 191
R, 77, 82, 92, 101, 102, 110, 114, 124, 128, 130, 145, 151, 154, 166, 169, 172, 191
regression, 64–66, 191
resampling, 191
sampling, 191
sampling distribution, 191
scatter plot, 191
Shapiro-Wilk test, 59
simulation, 192
spatial data, 192
Spearman rank-order correlation, 192
Spearman’s rho, 57, 58
t distribution, 192
t-test, 58–60, 192
time series, 192
traditional statistics, 192
Tukey test, 61
strength, see physical measures, strength
strength testing repetitions, see physical measures, strength testing repetitions
Super Bowl, see football, Super Bowl
Super Slam, see tennis, Super Slam
SVT reaction test, see physical measures, SVT reaction test

T

t distribution, see statistics, t distribution
t-test, see statistics, t-test
tackle, see football, tackle
TAT, see psychology, Thematic Apperception Test (TAT)
tennis
ace, 241
ad court, 241
advantage, 241
aggressive baseliner, 160, 162
all, 241
all-court player, 160, 162, 241
alley, 241
alternate, 241
angles, 241
approach shot, 241
ATP, 166–168, 241
Australian Formation, 241
backhand, 241, 242
backswing, 241
bagel, 242
ball toss, 242
ballperson, 242
baseline, 242
baseliner, 160, 162, 242
break, 242
breakpoint, 242
bye, 242
call, 242
center line, 242
challenge, 242
Challenger Tour, 242
change-over, 242
chip and charge, 242
clip the line, 242
code violation, 242
counterpuncher, 160–162, 242
court, 242
crosscourt, 243
Davis Cup, 243
deep, 243
deuce, 243
double bagel, 243
double fault, 243
doubles, 243
down the line, 243
drop shot, 243
Entry System, 243
fault, 243
Fed Cup, 243
flat, 243
follow-through, 243
foot fault, 243
forced error, 243
forehand, 243
Futures, 243
game, 243
Golden Slam, 158, 244
Grand Slam, 158, 244
groundstroke, 244
Hawk-Eye, 244
hold, 244
I-Formation, 244
inside out, 244
International Tennis Federation, 160
ITF, 244
let, 244
linesmen (line judge), 244
lob, 244
love, 244
Match Point, 244
miss-hit, 244
mixed doubles, 244
natural gut, 244
net, 245
no man’s land, 245
NTRP Rating, 245
out, 245
overhead (smash), 245
overrule, 245
passing shot, 245
player expenses, 163, 165
racquet, 245
racquet head, 245
rally, 245
receiver, 245
referee, 245
return, 245
second serve, 245
serve, 245
serve and volleyer, 160, 161
set, 245
set point, 245
singles, 245
slice, 245
spin, 246
split step, 246
stance, 246
stroke, 246
Super Slam, 158
T, 246
tennis ball, 246
Tennis Hall of Fame, 246
tiebreaker, 246
toppin, 246
umpire (official), 246
underspin, 246
unforced error, 246
volley, 246
Wildcard, 246
winner, 246
WTA, 166–168, 246
tennis analytics, 157–173
tennis player earnings, see market value, tennis player earnings
tension, see psychology, tension
Thematic Apperception Test, see psychology, Thematic Apperception Test (TAT)
three-quarter-court sprint, see physical measures, three-quarter-court sprint
time series, see statistics, time series
touchdown, see football, touchdown
tractability, see measurement, tractability
traditional statistics, see statistics, traditional statistics
Trait Sport Confidence Inventory, see psychology, Trait Sport Confidence Inventory (TSCI)
transparency, see measurement, transparency triceps dips, see physical measures, triceps dips
TSCI, see psychology, Trait Sport Confidence Inventory (TSCI)
Tukey test, see statistics, Tukey test

U
U, see psychology, inverted-U hypothesis underwater weighing, see anatomy/physiology, underwater weighing (hydrodensitometry)
upper body strength, see physical measures, upper body strength

V
validity, see measurement, validity value, see market value
Vert, see wearable technology, Vert vertical jump test, see physical measures, vertical jump test
vigor, see psychology, vigor
VO2 max, see anatomy/physiology, VO2 max, see physical measures, maximal oxygen consumption (VO2 max)

W
WAIS-III, see psychology, Wechsler Adult Intelligence Scale-III (WAIS-III)
wearable technology
Adidas miCoach, 37
Babolat Play, 37, 39
Catapult, 37
compression attire, 39
Motus Sleeve, 39
Myontec Mbody Pro, 39
OptimEye S5, 39
PlaySight, 37, 39
Readiband, 39
ShotTracker, 39
SportsVU, 37
Vert, 37
Zebra, 37
wearable technology (wearables), 37–40
Wechsler Adult Intelligence Scale-III, see psychology, Wechsler Adult Intelligence Scale-III (WAIS-III)
Wingate anaerobic cycle test, see physical measures, Wingate anaerobic cycle test
Women’s Tennis Association, see tennis, WTA
Wonderlic Cognitive Ability Test, see psychology, Wonderlic Cognitive Ability Test
World Series, see baseball, World Series
WTA, see tennis, WTA

Z
Zebra, see wearable technology, Zebra