Analysis, Synthesis, and Design of Chemical Processes

Fifth Edition
This page intentionally left blank
To the memory of Richard (Dick) C. Bailie (1928–2014)
Colleague, Friend, and Mentor
Contents

Preface xxv
About the Authors xxix
List of Nomenclature xxxi

Chapter 0 Outcomes Assessment 1
 0.1 Student Self-Assessment 2
 0.2 Assessment by Faculty 4
 0.3 Summary 6
 References 6

SECTION I Conceptualization and Analysis of Chemical Processes 7

Chapter 1 Diagrams for Understanding Chemical Processes 9
 1.1 Block Flow Diagram (BFD) 11
 1.1.1 Block Flow Process Diagram 11
 1.1.2 Block Flow Plant Diagram 12
 1.2 Process Flow Diagram (PFD) 14
 1.2.1 Process Topology 14
 1.2.2 Stream Information 18
 1.2.3 Equipment Information 21
 1.2.4 Combining Topology, Stream Data, and Control Strategy to Give a PFD 21
 1.3 Piping and Instrumentation Diagram (P&ID) 27
 1.4 Additional Diagrams 32
 1.5 Three-Dimensional Representation of a Process 34
 1.6 The 3-D Plant Model 41
 1.7 Operator and 3-D Immersive Training Simulators 43
 1.7.1 Operator Training Simulators (OTS) 43
 1.7.2 3-D Immersive Training Simulators (ITS) 45
 1.7.3 Linking the ITS with an OTS 46
 1.8 Summary 48
 References 49
 Short Answer Questions 49
 Problems 50

Chapter 2 The Structure and Synthesis of Process Flow Diagrams 55
 2.1 Hierarchy of Process Design 55
 2.2 Step 1—Batch versus Continuous Process 56
Contents

2.3 Step 2—The Input/Output Structure of the Process 60

2.3.1 Process Concept Diagram 60

2.3.2 The Input/Output Structure of the Process Flow Diagram 61

2.3.3 The Input/Output Structure and Other Features of the Generic Block Flow Process Diagram 63

2.3.4 Other Considerations for the Input/Output Structure of the Process Flowsheet 65

2.3.5 What Information Can Be Determined Using the Input/Output Diagram for a Process? 68

2.4 Step 3—The Recycle Structure of the Process 70

2.4.1 Efficiency of Raw Material Usage 70

2.4.2 Identification and Definition of the Recycle Structure of the Process 71

2.4.3 Other Issues Affecting the Recycle Structure That Lead to Process Alternatives 75

2.5 Step 4—General Structure of the Separation System 83

2.6 Step 5—Heat-Exchanger Network or Process Energy Recovery System 83

2.7 Information Required and Sources 83

2.8 Summary 83

References 85

Chapter 3 Batch Processing 91

3.1 Design Calculations for Batch Processes 91

3.2 Gantt Charts and Scheduling 97

3.3 Nonoverlapping Operations, Overlapping Operations, and Cycle Times 98

3.4 Flowshop and Jobshop Plants 101

3.4.1 Flowshop Plants 101

3.4.2 Jobshop Plants 103

3.5 Product and Intermediate Storage and Parallel Process Units 106

3.5.1 Product Storage for Single-Product Campaigns 106

3.5.2 Intermediate Storage 108

3.5.3 Parallel Process Units 110

3.6 Design of Equipment for Multiproduct Batch Processes 111

3.7 Summary 113

References 114

Short Answer Questions 114

Problems 114

Chapter 4 Chemical Product Design 123

4.1 Strategies for Chemical Product Design 124

4.2 Needs 125

4.3 Ideas 127

4.4 Selection 128

4.5 Manufacture 130

4.6 Batch Processing 131

4.7 Economic Considerations 131

4.8 Summary 132

References 132
Chapter 5 Tracing Chemicals through the Process Flow Diagram 135
5.1 Guidelines and Tactics for Tracing Chemicals 135
5.2 Tracing Primary Paths Taken by Chemicals in a Chemical Process 136
5.3 Recycle and Bypass Streams 142
5.4 Tracing Nonreacting Chemicals 145
5.5 Limitations 145
5.6 Written Process Description 146
5.7 Summary 147
Problems 147

Chapter 6 Understanding Process Conditions 149
6.1 Conditions of Special Concern for the Operation of Separation and Reactor Systems 150
6.1.1 Pressure 150
6.1.2 Temperature 150
6.2 Reasons for Operating at Conditions of Special Concern 152
6.3 Conditions of Special Concern for the Operation of Other Equipment 155
6.4 Analysis of Important Process Conditions 158
6.4.1 Evaluation of Reactor R-101 158
6.4.2 Evaluation of High-Pressure Phase Separator V-102 164
6.4.3 Evaluation of Large Temperature Driving Force in Exchanger E-101 164
6.4.4 Evaluation of Exchanger E-102 164
6.4.5 Pressure Control Valve on Stream 8 164
6.4.6 Pressure Control Valve on Stream from V-102 to V-103 164
6.5 Summary 165
References 165
Short Answer Questions 165
Problems 166

SECTION II Engineering Economic Analysis of Chemical Processes 169

Chapter 7 Estimation of Capital Costs 171
7.1 Classifications of Capital Cost Estimates 172
7.2 Estimation of Purchased Equipment Costs 175
7.2.1 Effect of Capacity on Purchased Equipment Cost 175
7.2.2 Effect of Time on Purchased Equipment Cost 179
7.3 Estimating the Total Capital Cost of a Plant 182
7.3.1 Lang Factor Technique 184
7.3.2 Module Costing Technique 185
7.3.3 Bare Module Cost for Equipment at Base Conditions 186
7.3.4 Bare Module Cost for Non-Base-Case Conditions 189
7.3.5 Combination of Pressure and MOC Information to Give the Bare Module Factor, \(F_{BM} \), and Bare Module Cost, \(C_{BM} \) 199
7.3.6 Algorithm for Calculating Bare Module Costs 200
7.3.7 Grassroots (Green Field) and Total Module Costs 201
7.3.8 A Computer Program (CAPCOST) for Capital Cost Estimation Using the Equipment Module Approach 204
7.4 Estimation of Plant Costs Based on Capacity Information 206
Chapter 10 Profitability Analysis 285
10.1 A Typical Cash Flow Diagram for a New Project 285
10.2 Profitability Criteria for Project Evaluation 287
 10.2.1 Nondiscounted Profitability Criteria 287
 10.2.2 Discounted Profitability Criteria 291
10.3 Comparing Several Large Projects: Incremental Economic Analysis 295
10.4 Establishing Acceptable Returns from Investments: The Concept of Risk 298
10.5 Evaluation of Equipment Alternatives 299
 10.5.1 Equipment with the Same Expected Operating Lives 299
 10.5.2 Equipment with Different Expected Operating Lives 300
10.6 Incremental Analysis for Retrofitting Facilities 305
 10.6.1 Nondiscounted Methods for Incremental Analysis 305
 10.6.2 Discounted Methods for Incremental Analysis 308
10.7 Evaluation of Risk in Evaluating Profitability 309
 10.7.1 Forecasting Uncertainty in Chemical Processes 310
 10.7.2 Quantifying Risk 314
10.8 Profit Margin Analysis 325
10.9 Summary 326
 References 327
 Short Answer Questions 327
 Problems 328

SECTION III Synthesis and Optimization of Chemical Processes 343

Chapter 11 Utilizing Experience-Based Principles to Confirm the Suitability of a Process Design 347
11.1 The Role of Experience in the Design Process 348
 11.1.1 Introduction to Technical Heuristics and Shortcut Methods 348
 11.1.2 Maximizing the Benefits Obtained from Experience 349
11.2 Presentation of Tables of Technical Heuristics and Guidelines 351
11.3 Summary 354
 List of Informational Tables 354
 References 368
 Problems 368

Chapter 12 Synthesis of the PFD from the Generic BFD 369
12.1 Information Needs and Sources 370
 12.1.1 Interactions with Other Engineers and Scientists 370
 12.1.2 Reaction Kinetics Data 370
 12.1.3 Physical Property Data 371
12.2 Reactor Section 372
12.3 Separator Section 373
 12.3.1 General Guidelines for Choosing Separation Operations 374
 12.3.2 Sequencing of Distillation Columns for Simple Distillation 376
 12.3.3 Azeotropic Distillation 378
Chapter 13 Synthesis of a Process Using a Simulator and Simulator Troubleshooting 397
13.1 The Structure of a Process Simulator 398
13.2 Information Required to Complete a Process Simulation: Input Data 401
 13.2.1 Selection of Chemical Components 401
 13.2.2 Selection of Physical Property Models 401
 13.2.3 Selection and Input of Flowsheet Topology 404
 13.2.4 Selection of Feed Stream Properties 404
 13.2.5 Selection of Equipment Parameters 405
 13.2.6 Selection of Output Display Options 411
 13.2.7 Selection of Convergence Criteria and Running a Simulation 411
 13.2.8 Common Errors in Using Simulators 412
13.3 Handling Recycle Streams 413
13.4 Choosing Thermodynamic Models 415
 13.4.1 Pure-Component Properties 416
 13.4.2 Enthalpy 416
 13.4.3 Phase Equilibria 416
 13.4.4 Using Thermodynamic Models 424
13.5 Case Study: Toluene Hydrodealkylation Process 426
13.6 Electrolyte Systems Modeling 428
 13.6.1 Fundamentals of Modeling Electrolyte Systems 429
 13.6.2 Steps Needed to Build the Model of an Aqueous Electrolyte System and the Estimation of Parameters 435
13.7 Solids Modeling 440
 13.7.1 Physical Properties 440
 13.7.2 Parameter Requirements for Solids Model 442
Appendix 13.1 445
 Calculation of Excess Gibbs Energy for Electrolyte Systems 445
Appendix 13.2 447
 Steps to Build a Model of a Distillation Column for an Electrolyte System Using a Rate-Based Simulation with a Film Model for Mass Transfer, the Parameters Required at Each Stage, and Possible Sources of These Parameters 447
13.8 Summary 450
References 451
Short Answer Questions 454
Problems 455
Chapter 14 Process Optimization 463

14.1 Background Information on Optimization 463
 14.1.1 Common Misconceptions 465
 14.1.2 Estimating Problem Difficulty 467
 14.1.3 Top-Down and Bottom-Up Strategies 468
 14.1.4 Communication of Optimization Results 468

14.2 Strategies 469
 14.2.1 Base Case 469
 14.2.2 Objective Functions 470
 14.2.3 Analysis of the Base Costs 471
 14.2.4 Identifying and Prioritizing Key Decision Variables 471

14.3 Topological Optimization 473
 14.3.1 Introduction 473
 14.3.2 Elimination of Unwanted Nonhazardous By-Products or Hazardous Waste Streams 473
 14.3.3 Elimination and Rearrangement of Equipment 475
 14.3.4 Alternative Separation Schemes and Reactor Configurations 477

14.4 Parametric Optimization 479
 14.4.1 Single-Variable Optimization: A Case Study on T-201, the DME Separation Column 480
 14.4.2 Two-Variable Optimization: The Effect of Pressure and Reflux Ratio on T-201, the DME Separation Column 481
 14.4.3 Flowsheet Optimization Using Key Decision Variables 484

14.5 Lattice Search, Response Surface, and Mathematical Optimization Techniques 489

14.6 Process Flexibility and the Sensitivity of the Optimum 489

14.7 Optimization in Batch Systems 490
 14.7.1 Problem of Scheduling Equipment 490
 14.7.2 Problem of Optimum Cycle Time 495

14.8 Summary 497

References 498
 Short Answer Questions 498
 Problems 498

Chapter 15 Pinch Technology 509

15.1 Introduction 509

15.2 Heat Integration and Network Design 510

15.3 Composite Temperature-Enthalpy Diagram 523

15.4 Composite Enthalpy Curves for Systems without a Pinch 524

15.5 Using the Composite Enthalpy Curve to Estimate Heat-Exchanger Surface Area 525

15.6 Effectiveness Factor (F) and the Number of Shells 529

15.7 Combining Costs to Give the EAOC for the Network 534

15.8 Other Considerations 536
 15.8.1 Materials of Construction and Operating Pressure Issues 536
 15.8.2 Problems with Multiple Utilities 539
 15.8.3 Handling Streams with Phase Changes 539
15.9 Heat-Exchanger Network Synthesis Analysis and Design (HENSAD) Program 540
15.10 Mass-Exchange Networks 541
15.11 Summary 550
References 550
Short Answer Questions 551
Problems 552

Chapter 16 Advanced Topics Using Steady-State Simulators 561
16.1 Why the Need for Advanced Topics in Steady-State Simulation? 562
16.2 User-Added Models 562
 16.2.1 Unit Operation Models 563
 16.2.2 User Thermodynamic and Transport Models 564
 16.2.3 User Kinetic Models 568
16.3 Solution Strategy for Steady-State Simulations 571
 16.3.1 Sequential Modular (SM) 572
 16.3.2 Equation-Oriented (EO) 585
 16.3.3 Simultaneous Modular (SMod) 586
16.4 Studies with the Steady-State Simulation 589
 16.4.1 Sensitivity Studies 589
 16.4.2 Optimization Studies 589
16.5 Estimation of Physical Property Parameters 601
16.6 Summary 605
References 605
Short Answer Questions 607
Problems 607

Chapter 17 Using Dynamic Simulators in Process Design 617
17.1 Why Is There a Need for Dynamic Simulation? 618
17.2 Setting Up a Dynamic Simulation 619
 17.2.1 Step 1: Topological Change in the Steady-State Simulation 619
 17.2.2 Step 2: Equipment Geometry and Size 622
 17.2.3 Step 3: Additional Dynamic Data/Dynamic Specification 624
17.3 Dynamic Simulation Solution Methods 633
 17.3.1 Initialization 634
 17.3.2 Solution of the DAE System 634
17.4 Process Control 639
17.5 Summary 647
References 647
Short Answer Questions 648
Problems 649

Chapter 18 Regulation and Control of Chemical Processes with Applications Using Commercial Software 655
18.1 A Simple Regulation Problem 656
18.2 The Characteristics of Regulating Valves 657
18.3 Regulating Flowrates and Pressures 660
18.4 The Measurement of Process Variables 662
Section 18: Control Strategies Used in Chemical Processes

18.5 Common Control Strategies Used in Chemical Processes 663
 18.5.1 Feedback Control and Regulation 663
 18.5.2 Feed-Forward Control and Regulation 665
 18.5.3 Combination Feedback and Feed-Forward Control 667
 18.5.4 Cascade Regulation 668
 18.5.5 Ratio Control 669
 18.5.6 Split-Range Control 671

18.6 Exchanging Heat and Work between Process and Utility Streams 674
 18.6.1 Increasing the Pressure of a Process Stream and Regulating Its Flowrate 674
 18.6.2 Exchanging Heat between Process Streams and Utilities 676
 18.6.3 Exchanging Heat between Process Streams 679

18.7 Logic Control 680

18.8 Advanced Process Control 682
 18.8.1 Statistical Process Control (SPC) 682
 18.8.2 Model-Based Control 683

18.9 Case Studies 683
 18.9.1 The Cumene Reactor, R-801 683
 18.9.2 A Basic Control System for a Binary Distillation Column 685
 18.9.3 A More Sophisticated Control System for a Binary Distillation Column 687

18.10 Putting It All Together: The Operator Training Simulator (OTS) 688

18.11 Summary 689

References 690

Problems 690

Section IV: Chemical Equipment Design and Performance

Chapter 19: Process Fluid Mechanics

19.1 Basic Relationships in Fluid Mechanics 697
 19.1.1 Mass Balance 698
 19.1.2 Mechanical Energy Balance 700
 19.1.3 Force Balance 703

19.2 Fluid Flow Equipment 703
 19.2.1 Pipes 703
 19.2.2 Valves 705
 19.2.3 Pumps 706
 19.2.4 Compressors 707

19.3 Frictional Pipe Flow 709
 19.3.1 Calculating Frictional Losses 709
 19.3.2 Incompressible Flow 712
 19.3.3 Compressible Flow 719
 19.3.4 Choked Flow 720

19.4 Other Flow Situations 723
 19.4.1 Flow Past Submerged Objects 723
 19.4.2 Fluidized Beds 728
 19.4.3 Flowrate Measurement 730
19.5 Performance of Fluid Flow Equipment

- **19.5.1 Base-Case Ratios**
- **19.5.2 Net Positive Suction Head**
- **19.5.3 Pump and System Curves**
- **19.5.4 Compressors**
- **19.5.5 Performance of the Feed Section to a Process**

References

- **Short Answer Questions**
- **Problems**

Chapter 20 Process Heat Transfer

- **20.1 Basic Heat-Exchanger Relationships**
 - **20.1.1 Countercurrent Flow**
 - **20.1.2 Cocurrent Flow**
 - **20.1.3 Streams with Phase Changes**
 - **20.1.4 Nonlinear Q versus T Curves**
 - **20.1.5 Overall Heat Transfer Coefficient, \(U \), Varies along the Exchanger**

- **20.2 Heat-Exchange Equipment Design and Characteristics**
 - **20.2.1 Shell-and-Tube Heat Exchangers**

- **20.3 LMTD Correction Factor for Multiple Shell and Tube Passes**
 - **20.3.1 Background**
 - **20.3.2 Basic Configuration of a Single-Shell-Pass, Double-Tube-Pass (1–2) Exchanger**
 - **20.3.3 Multiple Shell-and-Tube-Pass Exchangers**
 - **20.3.4 Cross-Flow Exchangers**
 - **20.3.5 LMTD Correction and Phase Change**

- **20.4 Overall Heat Transfer Coefficients—Resistances in Series**

- **20.5 Estimation of Individual Heat Transfer Coefficients and Fouling Resistances**
 - **20.5.1 Heat Transfer Resistances Due to Fouling**
 - **20.5.2 Thermal Conductivities of Common Metals and Tube Properties**
 - **20.5.3 Correlations for Film Heat Transfer Coefficients**

- **20.6 Extended Surfaces**
 - **20.6.1 Rectangular Fin with Constant Thickness**
 - **20.6.2 Fin Efficiency for Other Fin Geometries**
 - **20.6.3 Total Heat Transfer Surface Effectiveness**

- **20.7 Algorithm and Worked Examples for the Design of Heat Exchangers**
 - **20.7.1 Pressure Drop Considerations**
 - **20.7.2 Design Algorithm**

- **20.8 Performance Problems**
 - **20.8.1 What Variables to Specify in Performance Problems**
 - **20.8.2 Using Ratios to Determine Heat-Exchanger Performance**
 - **20.8.3 Worked Examples for Performance Problems**

- **Appendix 20.A Heat-Exchanger Effectiveness Charts**
- **Appendix 20.B Derivation of Fin Effectiveness for a Rectangular Fin**
- **Short Answer Questions**
- **Problems**
Chapter 21 Separation Equipment

21.1 Basic Relationships in Separations
- **Mass Balances**
- **Energy Balances**
- **Equilibrium Relationships**
- **Mass Transfer Relationships**
- **Rate Expressions**

21.2 Illustrative Diagrams
- **TP-xy Diagrams**
- **McCabe-Thiele Diagram**
- **Dilute Solutions—The Kremser and Colburn Methods**

21.3 Equipment
- **Drums**
- **Tray Towers**
- **Packed Towers**
- **Tray Tower or Packed Tower?**
- **Performance of Packed and Tray Towers**

21.4 Extraction Equipment
- **Mixer-Settlers**
- **Static and Pulsed Columns**
- **Agitated Columns**
- **Centrifugal Extractors**

21.5 Gas Permeation Membrane Separations
- **Equipment**
- **Models for Gas Permeation Membranes**
- **Practical Issues**

References

Short Answer Questions

Problems

Chapter 22 Reactors

22.1 Basic Relationships
- **Kinetics**
- **Equilibrium**
- **Additional Mass Transfer Effects**
- **Mass Balances**
- **Energy Balances**
- **Reactor Models**

22.2 Equipment Design for Nonisothermal Conditions
- **Nonisothermal Continuous Stirred Tank Reactor**
- **Nonisothermal Plug Flow Reactor**
- **Fluidized Bed Reactor**

22.3 Performance Problems
- **Ratios for Simple Cases**
- **More Complex Examples**

References

Short Answer Questions

Problems
Chapter 23 Other Equipment 1015

23.1 Pressure Vessels 1016
 23.1.1 Material Properties 1016
 23.1.2 Basic Design Equations 1016
23.2 Knockout Drums or Simple Phase Separators 1024
 23.2.1 Vapor-Liquid (V-L) Separation 1025
 23.2.2 Design of Vertical V-L Separators 1029
 23.2.3 Design of Horizontal V-L Separators 1032
 23.2.4 Mist Eliminators and Other Internals 1036
 23.2.5 Liquid-Liquid (L-L) Separation 1044
23.3 Steam Ejectors 1049
 23.3.1 Estimating Air Leaks into Vacuum Systems and the Load for
 Steam Ejectors 1050
 23.3.2 Single-Stage Steam Ejectors 1051
 23.3.3 Multistage Steam Ejectors 1054
 23.3.4 Performance of Steam Ejectors 1057
References 1058
Short Answer Questions 1059
Problems 1060

Chapter 24 Process Troubleshooting and Debottlenecking 1065

24.1 Recommended Methodology 1067
 24.1.1 Elements of Problem-Solving Strategies 1067
 24.1.2 Application to Troubleshooting Problems 1069
24.2 Troubleshooting Individual Units 1071
 24.2.1 Troubleshooting a Packed-Bed Absorber 1071
 24.2.2 Troubleshooting the Cumene Process Feed Section 1074
24.3 Troubleshooting Multiple Units 1076
 24.3.1 Troubleshooting Off-Specification Acrylic Acid Product 1076
 24.3.2 Troubleshooting Steam Release in Cumene Reactor 1078
24.4 A Process Troubleshooting Problem 1081
24.5 Debottlenecking Problems 1085
24.6 Summary 1091
References 1091
Problems 1091

SECTION V The Impact of Chemical Engineering Design on Society 1101

Chapter 25 Ethics and Professionalism 1103

25.1 Ethics 1104
 25.1.1 Moral Autonomy 1105
 25.1.2 Rehearsal 1105
 25.1.3 Reflection in Action 1106
 25.1.4 Mobile Truth 1107
 25.1.5 Nonprofessional Responsibilities 1108
 25.1.6 Duties and Obligations 1110
 25.1.7 Codes of Ethics 1110
SECTION VI Interpersonal and Communication Skills 1173

Chapter 28 Teamwork 1175

28.1 Groups 1175
 28.1.1 Characteristics of Effective Groups 1176
 28.1.2 Assessing and Improving the Effectiveness of a Group 1178
 28.1.3 Organizational Behaviors and Strategies 1180

28.2 Group Evolution 1184
 28.2.1 Forming 1184
 28.2.2 Storming 1184
 28.2.3 Norming 1185
 28.2.4 Performing 1186

28.3 Teams and Teamwork 1186
 28.3.1 When Groups Become Teams 1186
 28.3.2 Unique Characteristics of Teams 1187

28.4 Misconceptions 1189
 28.4.1 Team Exams 1189
 28.4.2 Overreliance on Team Members 1189

28.5 Learning in Teams 1189

28.6 Other Reading 1190

28.7 Summary 1191
 References 1192
 Problems 1192

Chapter 29 Written and Oral Communication 1195

29.1 Audience Analysis 1196

29.2 Written Communication 1196
 29.2.1 Design Reports 1197
 29.2.2 Transmittal Letters or Memos 1198
 29.2.3 Executive Summaries and Abstracts 1198
 29.2.4 Other Types of Written Communication 1199
 29.2.5 Exhibits (Figures and Tables) 1200
 29.2.6 References 1200
 29.2.7 Strategies for Writing 1201
 29.2.8 WVU and Auburn University Guidelines for Written Design Reports 1202

29.3 Oral Communication 1209
 29.3.1 Formal Oral Presentations 1210
 29.3.2 Briefings 1211
 29.3.3 Visual Aids 1211
 29.3.4 WVU and Auburn University Oral Presentation Guidelines 1212

29.4 Software and Author Responsibility 1215
 29.4.1 Spell Checkers 1215
 29.4.2 Thesaurus 1215
 29.4.3 Grammar Checkers 1215
 29.4.4 Graphs 1216
 29.4.5 Tables 1217
 29.4.6 Colors and Exotic Features 1217
 29.4.7 Raw Output from Process Simulators 1217

29.5 Other Reading 1218

29.6 Summary 1220
 References 1220

29.7 Problems 1220
B.5 Production of Maleic Anhydride from Benzene, Unit 600 1305
 B.5.1 Process Description 1305
 B.5.2 Reaction Kinetics 1306
 B.5.3 Simulation (CHEMCAD) Hints 1311
 B.5.4 References 1311
B.6 Ethylene Oxide Production, Unit 700 1311
 B.6.1 Process Description [1, 2] 1311
 B.6.2 Reaction Kinetics 1313
 B.6.3 Simulation (CHEMCAD) Hints 1316
 B.6.4 References 1317
B.7 Formalin Production, Unit 800 1317
 B.7.1 Process Description [1, 2] 1317
 B.7.2 Reaction Kinetics 1319
 B.7.3 Simulation (CHEMCAD) Hints 1319
 B.7.4 References 1319
B.8 Batch Production of L-Phenylalanine and L-Aspartic Acid, Unit 900 1323
 B.8.1 Process Description 1323
 B.8.2 Reaction Kinetics 1325
 B.8.3 References 1329
B.9 Acrylic Acid Production via The Catalytic Partial Oxidation of Propylene [1–5], Unit 1000 1329
 B.9.1 Process Description 1330
 B.9.2 Reaction Kinetics and Reactor Configuration 1331
 B.9.3 Simulation (CHEMCAD) Hints 1337
 B.9.4 References 1337
B.10 Production of Acetone via the Dehydrogenation of Isopropyl Alcohol (IPA) [1–4], Unit 1100 1338
 B.10.1 Process Description 1338
 B.10.2 Reaction Kinetics 1338
 B.10.3 Simulation (CHEMCAD) Hints 1344
 B.10.4 References 1344
B.11 Production of Heptenes from Propylene and Butenes [1], Unit 1200 1344
 B.11.1 Process Description 1351
 B.11.2 Reaction Kinetics 1351
 B.11.3 Simulation (CHEMCAD) Hints 1352
 B.11.4 Reference 1352
B.12 Design of a Shift Reactor Unit to Convert CO to CO2, Unit 1300 1352
 B.12.1 Process Description 1352
 B.12.2 Reaction Kinetics 1352
 B.12.3 Simulation (Aspen Plus) Hints 1356
 B.12.4 Reference 1356
B.13 Design of a Dual-Stage Selexol Unit to Remove CO2 and H2S From Coal-Derived Synthesis Gas, Unit 1400 1356
 B.13.1 Process Description 1356
 B.13.2 Simulation (Aspen Plus) Hints 1358
 B.13.3 References 1362
B.14 Design of a Claus Unit for the Conversion of H₂S to Elemental Sulfur, Unit 1500

- **B.14.1 Process Description** 1363
- **B.14.2 Reaction Kinetics** 1369
- **B.14.3 Simulation (Aspen Plus) Hints** 1370
- **B.14.4 References** 1370

B.15 Modeling a Downward-Flow, Oxygen-Blown, Entrained-Flow Gasifier, Unit 1600

- **B.15.1 Process Description** 1371
- **B.15.2 Reaction Kinetics** 1373
- **B.15.3 Simulation (Aspen Plus) Hints** 1375
- **B.15.4 References** 1377

Appendix C Design Projects

Project 1
Increasing the Production of 3-Chloro-1-Propene (Allyl Chloride) in Unit 600

- **C.1.1 Background** 1381
- **C.1.2 Process Description of the Beaumont Allyl Chloride Facility** 1382
- **C.1.3 Specific Objectives of Assignment** 1385
- **C.1.4 Additional Background Information** 1386
- **C.1.5 Process Design Calculations** 1388
 - Fluidized-Bed Reactor, R-601 1388
 - Reference 1393

Project 2
Design and Optimization of a New 20,000-Metric-Tons-per-Year Facility to Produce Allyl Chloride at La Nueva Cantina, Mexico

- **C.2.1 Background** 1394
- **C.2.2 Assignment** 1394
- **C.2.3 Problem-Solving Methodology** 1395
- **C.2.4 Process Information** 1395

Project 3
Scale-Down of Phthalic Anhydride Production at TBWS Unit 700

- **C.3.1 Background** 1401
- **C.3.2 Phthalic Anhydride Production** 1402
- **C.3.3 Other Information** 1403
- **C.3.4 Assignment** 1411
- **C.3.5 Report Format** 1411

Project 4
The Design of a New 100,000-Metric-Tons-per-Year Phthalic Anhydride Production Facility

- **C.4.1 Background** 1412
- **C.4.2 Other Information** 1412
- **C.4.3 Assignment** 1416
- **C.4.4 Report Format** 1416
Project 5
Problems at the Cumene Production Facility, Unit 800 1417

- C.5.1 Background 1417
- C.5.2 Cumene Production Reactions 1417
- C.5.3 Process Description 1417
- C.5.4 Recent Problems in Unit 800 1418
- C.5.5 Other Information 1420
- C.5.6 Assignment 1420
- C.5.7 Report Format 1420
- C.5.8 Process Calculations 1426
 - Calculations for Fuel Gas Exit Line for V-802 1426
 - Calculations for P-801 1427
 - Vapor Pressure of Stream 3 1428
 - Calculations for P-802 1429

Project 6
Design of a New, 100,000-Metric-Tons-per-Year Cumene Production Facility 1430

- C.6.1 Background 1430
- C.6.2 Assignment 1430
- C.6.3 Report Format 1432

Index 1433
Preface

This book represents the culmination of many years of teaching experience in the senior design course at West Virginia University (WVU), Auburn University, and the University of Nevada, Reno. The program at WVU has evolved over the past 30 years and is still evolving, and the authors continue to integrate design throughout the undergraduate curriculum in chemical engineering.

We view design as the focal point of chemical engineering practice. Far more than the development of a set of specifications for a new chemical plant, design is the creative activity through which engineers continuously improve the operations of facilities to create products that enhance the quality of life. Whether developing the grassroots plant, proposing and guiding process modifications, or troubleshooting and implementing operational strategies for existing equipment, engineering design requires a broad spectrum of knowledge and intellectual skills to be able to analyze the big picture and the minute details and, most important, to know when to concentrate on each.

Our vehicle for helping students develop and hone their design skills is process design covering synthesis of the entire chemical process through topics relating to the preliminary sizing of equipment, flowsheet optimization, economic evaluation of projects, and the operation of chemical processes. The purpose of this text is to assist chemical engineering students in making the transition from solving well-posed problems in a specific subject to integrating all the knowledge that they have gained in their undergraduate education and applying this information to solving open-ended process problems.

In the fifth edition, we have replaced the majority of Section IV, Analysis of Process Performance. In previous editions, process performance was explained through a series of increasingly complex case studies. The approach adopted in the fifth edition is to provide a more logical pedagogy for the design of basic process equipment including pipes, pumps, and compressors (Chapter 19); heat exchangers (Chapter 20); separation equipment (Chapter 21); reactors (Chapter 22); and process vessels and steam ejectors (Chapters 23). Each chapter starts out with the design procedure and basic equations needed to design the equipment. At the end of each chapter, examples of performance (or rating) problems are given. The purpose of these chapters is to review the key concepts needed in the design and then show how to analyze systems in which the equipment already exists. It may be tempting to solve the performance of existing equipment using the process simulator, but using steady-state simulators to model these changes in equipment performance can be difficult. Dynamic simulators are the preferred method for simulating performance changes but are rarely used in the undergraduate curriculum. Therefore, we regard the material on equipment performance included in Section IV to be an essential part of the undergraduate design
experience and encourage educators to adopt some if not all of this material in the design course or courses in each specific area that are often taught in the junior year. The content for Chapters 19–23 is taken from the book *Chemical Process Equipment Design* by Turton and Shaeiwitz (ISBN-13: 978-0-13-380447-8).

In addition to the changes in Chapters 19–23, a section on advanced optimization has been added to the chapter on advanced concepts in steady-state simulation (Chapter 16).

The arrangement of chapters into the six sections of the book is similar to that adopted in the fourth edition. These sections are as follows:

- Section I—Conceptualization and Analysis of Chemical Processes
- Section II—Engineering Economic Analysis of Chemical Processes
- Section III—Synthesis and Optimization of Chemical Processes
- Section IV—Chemical Equipment Design and Performance
- Section V—The Impact of Chemical Engineering Design on Society
- Section VI—Interpersonal and Communication Skills

In Section I, the student is introduced first to the principal diagrams that are used to describe a chemical process. Next, the evolution and generation of different process configurations are covered. Key concepts used in evaluating batch processes are included in Chapter 3, and the concepts of product design are given in Chapter 4. Finally, the analysis of existing processes is covered. In Section II, the information needed to assess the economic feasibility of a process is covered. This includes the estimation of fixed capital investment and manufacturing costs, the concepts of the time value of money and financial calculations, and finally the combination of these costs into profitability measures for the process. Section III covers the synthesis of a chemical process. The minimum information required to simulate a process is given, as are the basics of using a process simulator. The choice of the appropriate thermodynamic model to use in a simulation is covered, and the choice of separation operations is covered. Process optimization (including an introduction to optimization of batch processes) and heat integration techniques are covered in this section. In addition, advanced concepts using steady-state process simulators (Chapter 16), the use of dynamic simulators (Chapter 17), and process regulation (Chapter 18) are included in Section III. In Section IV, the analysis of the design of process equipment and the performance of existing process equipment is covered. The presentation of this material has changed substantially from all previous editions and was discussed previously. In Section V, the impact of chemical engineering design on society is covered. The role of the professional engineer in society is addressed. Separate chapters addressing ethics and professionalism, health, safety, and the environment, and green engineering are included. Finally, in Section VI, the interpersonal skills required by the engineer to function as part of a team and to communicate both orally and in written form are covered. An entire chapter is devoted to addressing some of the common mistakes that students make in written reports.

Finally, three appendices are included. Appendix A gives a series of cost charts for equipment. This information is embedded in the CAPCOST program for evaluating fixed capital investments and process economics. Appendix B gives the preliminary design information for 15 chemical processes: dimethyl ether, ethylbenzene, styrene, drying oil, maleic anhydride, ethylene oxide, formalin, batch manufacture of amino acids, acrylic acid, acetone, heptenes production, shift reaction, acid-gas removal by a physical solvent, the removal of H₂S from a gas stream using the Claus process, and finally coal gasification. This information is used in many of the end-of-chapter problems in the book. These processes can also be used as the starting point for more detailed analyses—for example, optimization studies. Other projects, given in Appendix C, are
also included. The reader (faculty and students) is also referred to our Web site at https://richard-turton.faculty.wvu.edu/projects, where a variety of design projects for sophomore-through senior-level chemical engineering courses is provided. In addition, a revised CAPCOST program is also available at https://richardturton.faculty.wvu.edu/publications/analysis-synthesis-and-design-of-chemical-processes-5th-edition as well as the HENSAD program and the virtual plant tour. It should be noted that revisions to the CAPCOST program will appear periodically on the Web site.

The structure of the senior-year design course obviously varies with each instructor. However, the following coverage of materials is offered as suggestions. For a one-semester design course, we recommend including the following core:

- Section I—Chapters 1 through 6
- Section III—Chapters 11, 12, and 13
- Section V—Chapters 25 and 26

For programs in which engineering economics is not covered in a separate course, Section II (Chapters 7–10) should also be included. If students have previously covered engineering economics, Chapters 14 and 15 covering optimization and pinch technology could be substituted. Similarly, for programs that have separate courses on process safety and/or where engineering ethics is treated elsewhere, Chapters 14 and 15 could be substituted.

For the second term of a two-term sequence, we recommend Chapters 19 through 23 (and Chapters 14 and 15 if not included in the first design course) plus a design project. Chapters 19 through 23 could also be the basis for an equipment design course that might precede a process design course. Alternatively, advanced simulation techniques in Chapters 16 and 17 could be covered. If time permits, we also recommend Chapter 18 (Regulation and Control of Chemical Processes with Applications Using Commercial Software) and Chapter 24 (Process Troubleshooting and Debottlenecking), because these tend to solidify as well as extend the concepts of Chapters 19 through 23, that is, what an entry-level process engineer will encounter in the first few years of employment at a chemical process facility. For an environmental emphasis, Chapter 27 could be substituted for Chapters 18 and 24; however, it is recommended that supplementary material be included.

We have found that the most effective way both to enhance and to examine student progress is through oral presentations in addition to the submission of written reports. During these oral presentations, individual students or a student group defends its results to a faculty panel, much as a graduate student defends a thesis or dissertation.

Because design is at its essence a creative, dynamic, challenging, and iterative activity, we welcome feedback on and encourage experimentation with this design textbook. We hope that students and faculty will find the excitement in teaching and learning engineering design that has sustained us over the years.

Finally, we would like to thank those people who have been instrumental to the successful completion of this book. Many thanks are given to all undergraduate chemical engineering students at West Virginia University over the years, particularly the period 1992–2018, and the undergraduate chemical engineering students at Auburn University from 2013–2018. We also acknowledge the many colleagues who have provided, both formally and informally, feedback about this text. In particular, our thanks go to Dr. Susan Montgomery (University of Michigan) and Dr. John Hwalek (University of Maine) for their extensive review of Chapters 19–23 and Dr. Fernando Lima (West Virginia University) for his review of the optimization material in Chapter 16. Finally, RT would like to
thank his wife, Becky; JAS would like to thank his wife, Terry; and DB would like to thank his parents, Sambhunath and Gayatri, wife Pampa, and son Swagat for their continued support, love, and patience during the preparation of this fifth edition.

R.T.
J.A.S.
D.B
W.B.W.
Richard Turton, P.E., has taught the design and design-related courses at West Virginia University for the past 32 years. Prior to this, he spent five years in the design and construction industry. His main interests are in design education and process systems modeling.

Joseph A. Shaeiwitz taught design and design-related classes at WVU for more than 25 years. He now teaches design at Auburn University. His interests include design education and outcomes assessment.

Debansu Bhattacharyya has more than ten years’ work experience in a large petroleum refinery. While in the refinery, he worked in process operations, plant start-up, large-scale process simulation, and process control. His main research interests are in process modeling, dynamic simulation, state estimation, sensor placement, and advanced process control.

Wallace B. Whiting, P.E., is professor emeritus at University of Nevada, Reno. He has been involved in the practice and teaching of chemical process design for more than 24 years.
List of Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Stoichiometric Coefficient</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Interfacial, Mass Transfer Area</td>
<td>m²</td>
</tr>
<tr>
<td>a</td>
<td>Mean Ionic Diameter of an Electrolyte</td>
<td>m</td>
</tr>
<tr>
<td>a'</td>
<td>Interface Area per Unit Volume</td>
<td>m²/m³</td>
</tr>
<tr>
<td>A</td>
<td>Equipment Cost Attribute</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Area, Heat Transfer Surface Area</td>
<td>m²</td>
</tr>
<tr>
<td>A</td>
<td>Absorption Factor</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Annuity Value</td>
<td>$$/time</td>
</tr>
<tr>
<td>A</td>
<td>Constant in Antoine's Equation</td>
<td></td>
</tr>
<tr>
<td>A/F, i, n</td>
<td>Sinking Fund Factor</td>
<td></td>
</tr>
<tr>
<td>A/P, i, n</td>
<td>Capital Recovery Factor</td>
<td></td>
</tr>
<tr>
<td>A_b</td>
<td>Bubbling Area</td>
<td>m²</td>
</tr>
<tr>
<td>A_c</td>
<td>Cross-Sectional Area</td>
<td>m²</td>
</tr>
<tr>
<td>A_t</td>
<td>Total Cross-Sectional Area of Packed Bed</td>
<td>m²</td>
</tr>
<tr>
<td>b</td>
<td>Fin Spacing</td>
<td>m</td>
</tr>
<tr>
<td>B</td>
<td>Constant in Antoine's Equation</td>
<td>°C</td>
</tr>
<tr>
<td>BC</td>
<td>Baffle Cut (% of Shell Diameter)</td>
<td></td>
</tr>
<tr>
<td>B_o</td>
<td>Boiling Number</td>
<td></td>
</tr>
<tr>
<td>BV</td>
<td>Book Value</td>
<td>$</td>
</tr>
<tr>
<td>C</td>
<td>Constant in Antoine's Equation</td>
<td>°C</td>
</tr>
<tr>
<td>C</td>
<td>Molar Density</td>
<td>mol/m³</td>
</tr>
<tr>
<td>C</td>
<td>Equipment Cost</td>
<td>$</td>
</tr>
<tr>
<td>C or c</td>
<td>Molar Concentration</td>
<td>kmol/m³</td>
</tr>
<tr>
<td>C_{bf}</td>
<td>Parameter in Flooding Calculation</td>
<td>m/s</td>
</tr>
<tr>
<td>CA</td>
<td>Corrosion Allowance</td>
<td>m</td>
</tr>
<tr>
<td>CBM</td>
<td>Bare Module Cost</td>
<td>$</td>
</tr>
<tr>
<td>C_D</td>
<td>Drag Coefficient</td>
<td></td>
</tr>
<tr>
<td>C_f</td>
<td>Material Constant for Surfaces Used in Boiling Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>Cost of Manufacture</td>
<td>$$/time</td>
</tr>
<tr>
<td>cop</td>
<td>Coefficient of Performance</td>
<td></td>
</tr>
<tr>
<td>C_p, C_v</td>
<td>Heat Capacities (Constant Pressure, Constant Volume)</td>
<td>kJ/kg°C or kJ/kmol°C</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>CCP</td>
<td>Cumulative Cash Position $</td>
<td></td>
</tr>
<tr>
<td>CCR</td>
<td>Cumulative Cash Ratio</td>
<td></td>
</tr>
<tr>
<td>D_a, D_{AB}</td>
<td>Diffusivity, Diffusion Coefficient of Solute A in Solution B m2/s</td>
<td></td>
</tr>
<tr>
<td>\bar{D}</td>
<td>Diameter m</td>
<td></td>
</tr>
<tr>
<td>D^*</td>
<td>Dimensionless Diameter</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Amount Allowed for Depreciation $</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Distillate Product Flowrate kmol/time</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Yearly Depreciation Allowance $/yr</td>
<td></td>
</tr>
<tr>
<td>DCFROR</td>
<td>Discounted Cash Flow Rate of Return $/time</td>
<td></td>
</tr>
<tr>
<td>DMC</td>
<td>Direct Manufacturing Cost $/time</td>
<td></td>
</tr>
<tr>
<td>DPPB</td>
<td>Discounted Payback Period years</td>
<td></td>
</tr>
<tr>
<td>\bar{D}</td>
<td>Average Diffusivity m2/s</td>
<td></td>
</tr>
<tr>
<td>D_0</td>
<td>Diffusivity at Infinite Dilution m2/s</td>
<td></td>
</tr>
<tr>
<td>D_p, D_s</td>
<td>Particle Diameter, Sphere Diameter m</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Vector of Disturbance Inputs</td>
<td></td>
</tr>
<tr>
<td>d_s</td>
<td>Average Solvent Density kg/m3</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Elementary Charge Columb</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Pipe Roughness Factor m</td>
<td></td>
</tr>
<tr>
<td>e_f</td>
<td>Energy Dissipated by Friction J/kg</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Money Earned $</td>
<td></td>
</tr>
<tr>
<td>$E(t)$</td>
<td>Weld Efficiency s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>E_{act} or E</td>
<td>Activation Energy kJ/kmol</td>
<td></td>
</tr>
<tr>
<td>E_o</td>
<td>Overall Column Efficiency</td>
<td></td>
</tr>
<tr>
<td>EAOC</td>
<td>Equivalent Annual Operating Cost $/yr</td>
<td></td>
</tr>
<tr>
<td>ECC</td>
<td>Equivalent Capitalized Cost $</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Fraction of Stream</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Friction Factor</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Rate of Inflation</td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Factor Used in Convective Boiling Correlation</td>
<td></td>
</tr>
<tr>
<td>f_q</td>
<td>Quantity Factors for Trays</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Faraday’s Constant Columb/kmol</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Future Value $</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Molar Flowrate kmol/s, kmol/h</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Equipment Module Cost Factor</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Correction for Multipass Heat Exchangers</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Force N</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Packing Factor in Packed Beds</td>
<td></td>
</tr>
<tr>
<td>F_p</td>
<td>Parameter in Flooding Calculation</td>
<td></td>
</tr>
<tr>
<td>F_d, F_g, F_p</td>
<td>Drag, Gravitational, and Pressure Force N/m2 or kPa</td>
<td></td>
</tr>
<tr>
<td>$F_{A, n}$</td>
<td>Mass Transfer Coefficients for Liquid (x) or Vapor (y) Phase m/s</td>
<td></td>
</tr>
<tr>
<td>$F/A, i, n$</td>
<td>Uniform Series Compound Amount Factor</td>
<td></td>
</tr>
<tr>
<td>F_{CI}</td>
<td>Fixed Capital Investment $</td>
<td></td>
</tr>
<tr>
<td>$F/P, i, n$</td>
<td>Single Payment Compound Amount Factor</td>
<td></td>
</tr>
<tr>
<td>F_{M}</td>
<td>Fixed Manufacturing Costs $/time</td>
<td></td>
</tr>
<tr>
<td>F_{Lang}</td>
<td>Lang Factor</td>
<td></td>
</tr>
<tr>
<td>f_i</td>
<td>Fugacity of Pure Component i bar or kPa</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>f_i</td>
<td>Fugacity of Component i in Mixture</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>System of Equations (vector)</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Acceleration Due to Gravity</td>
<td></td>
</tr>
<tr>
<td>g_c</td>
<td>Unit Conversion of 32.2 ft lb/lb/sec2</td>
<td></td>
</tr>
<tr>
<td>G, G'</td>
<td>Superficial Mass Velocity</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gibbs Free Energy</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gas Flowrate</td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>General Expenses</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Individual Heat Transfer Coefficient</td>
<td></td>
</tr>
<tr>
<td>H, H_A</td>
<td>Henry's Law Constant</td>
<td></td>
</tr>
<tr>
<td>H, h</td>
<td>Enthalpy, Specific Enthalpy</td>
<td></td>
</tr>
<tr>
<td>H or h</td>
<td>Height or Head</td>
<td></td>
</tr>
<tr>
<td>H, HTU</td>
<td>Height of Transfer Unit</td>
<td></td>
</tr>
<tr>
<td>HETP</td>
<td>Height Equivalent of a Theoretical Plate</td>
<td></td>
</tr>
<tr>
<td>h_f</td>
<td>Height of Froth on a Tray</td>
<td></td>
</tr>
<tr>
<td>h_{mf}</td>
<td>Bed Height at Minimum Fluidization</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Identity Matrix</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Ionic Concentration</td>
<td></td>
</tr>
<tr>
<td>I_x</td>
<td>Ionic Strength on a Mole Fraction Basis</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Cost Index</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>Compound Interest</td>
<td></td>
</tr>
<tr>
<td>i'</td>
<td>Effective Interest Rate Including Inflation</td>
<td></td>
</tr>
<tr>
<td>INPV</td>
<td>Incremental Net Present Value</td>
<td></td>
</tr>
<tr>
<td>IPBP</td>
<td>Incremental Payback Period</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Jacobian Matrix</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Thermal Conductivity</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Ratio of Specific Heat Capacities of a Gas</td>
<td></td>
</tr>
<tr>
<td>k, K</td>
<td>Preexponential Factor for Reaction Rate Constant</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Loss Coefficient for Elbows, Fittings, etc.</td>
<td></td>
</tr>
<tr>
<td>K_p</td>
<td>Equilibrium Constant</td>
<td></td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann Constant</td>
<td></td>
</tr>
<tr>
<td>$\bar{k_m}$</td>
<td>Average Mass Transfer Coefficient</td>
<td></td>
</tr>
<tr>
<td>k_{max} or k_i</td>
<td>Reaction Rate Constant</td>
<td></td>
</tr>
<tr>
<td>k_{SB}</td>
<td>Souders-Brown Constant</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Geometric Factor for Elliptical Heads</td>
<td></td>
</tr>
<tr>
<td>K_c</td>
<td>Proportional Gain</td>
<td></td>
</tr>
<tr>
<td>K_u</td>
<td>Ultimate Controller Gain</td>
<td></td>
</tr>
<tr>
<td>K_{eq}</td>
<td>Equilibrium Constant of a Chemical Reaction</td>
<td></td>
</tr>
<tr>
<td>K_x</td>
<td>Vapor-Liquid Equilibrium Ratio of Species i</td>
<td></td>
</tr>
<tr>
<td>K_x, K_y</td>
<td>Mass Transfer Coefficient (x is Liquid Phase, y is Vapor Phase)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Lean Stream Flowrate</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>Length (also Baffle Spacing), Characteristic Length of a Catalyst Particle</td>
<td></td>
</tr>
<tr>
<td>(L_{eq})</td>
<td>Equivalent Length of Pipe</td>
<td></td>
</tr>
<tr>
<td>(L, \bar{L})</td>
<td>Liquid Flowrate (Over Bar signifies Below Feed in Distillation Column)</td>
<td></td>
</tr>
<tr>
<td>(\dot{m})</td>
<td>Mass Flowrate</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>Equilibrium/Partition Coefficient ((y/x))</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>Molality (\text{kmol/kg})</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>Parameter Used in Fin Effectiveness, (m = (2h / \delta_k)^{1/2}) for Rectangular Fins, etc.</td>
<td></td>
</tr>
<tr>
<td>(m, M)</td>
<td>Ratio of Tube Side and Shell Side Flows in Performance Problems</td>
<td></td>
</tr>
<tr>
<td>(M, mw)</td>
<td>Molecular Weight (\text{kg/kmol})</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>Mass (\text{kg})</td>
<td></td>
</tr>
<tr>
<td>(M_r)</td>
<td>Thiele Modulus</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>Life of Equipment (\text{years})</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>Years of Investment (\text{years})</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>Number of Batches</td>
<td></td>
</tr>
<tr>
<td>(n_c)</td>
<td>Number of Campaigns</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>Number of Streams, Trays, Stages, Transfer Units, Shells, etc.</td>
<td></td>
</tr>
<tr>
<td>(N_u)</td>
<td>Nusselt Number</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>Molar Flowrate or Molar Flux (\text{kmol/s or kmol/m}^2/\text{s})</td>
<td></td>
</tr>
<tr>
<td>(NPSH_{A})</td>
<td>Net Positive Suction Head (Available, Required) (\text{m of liquid (or Pa)})</td>
<td></td>
</tr>
<tr>
<td>(NPSH_{R})</td>
<td>Net Positive Suction Head (Required)</td>
<td></td>
</tr>
<tr>
<td>(\text{NPV})</td>
<td>Net Present Value ($)</td>
<td></td>
</tr>
<tr>
<td>(N_{suG})</td>
<td>Number of Transfer Units</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>Molar Holdup (\text{kmol})</td>
<td></td>
</tr>
<tr>
<td>(OBJ, OF)</td>
<td>Objective Function usually ($) or $/time</td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>Tube Pitch (Distance between Centers of Adjacent Tubes) (\text{m})</td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>Price ($)</td>
<td></td>
</tr>
<tr>
<td>(p_i)</td>
<td>Partial Pressure (\text{Pa})</td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td>Dimensionless Temperature Approach Used in Log-Mean Temperature Correction Factor</td>
<td></td>
</tr>
<tr>
<td>(P, p)</td>
<td>Pressure and Partial Pressure (\text{bar or kPa})</td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td>Present Value ($)</td>
<td></td>
</tr>
<tr>
<td>(P^*)</td>
<td>Vapor Pressure (\text{bar or kPa})</td>
<td></td>
</tr>
<tr>
<td>(P_i)</td>
<td>Membrane Permeability of Component (i) (\text{m}^3/\text{m}^2/\text{s}/\text{kPa})</td>
<td></td>
</tr>
<tr>
<td>(P/A, i, n)</td>
<td>Uniform Series Present Worth Factor</td>
<td></td>
</tr>
<tr>
<td>(PBP)</td>
<td>Payback Period (\text{year})</td>
<td></td>
</tr>
<tr>
<td>(PC)</td>
<td>Project Cost ($)</td>
<td></td>
</tr>
<tr>
<td>(P/E, i, n)</td>
<td>Single Payment Present Worth Factor</td>
<td></td>
</tr>
<tr>
<td>(PVR)</td>
<td>Present Value Ratio</td>
<td></td>
</tr>
<tr>
<td>(P(x))</td>
<td>Probability Density Function of (x)</td>
<td></td>
</tr>
<tr>
<td>(Pr)</td>
<td>Prandtl Number</td>
<td></td>
</tr>
<tr>
<td>(P_u)</td>
<td>Ultimate Period of Oscillation (s)</td>
<td></td>
</tr>
<tr>
<td>(Q) or (q)</td>
<td>Rate of Heat Transfer or Heat Duty (\text{W or MJ/h})</td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td>Fraction of Liquid in Distillation Column Feed</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>Heat Transfer Rate</td>
<td>W or MJ/h</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
<td>m</td>
</tr>
<tr>
<td>r</td>
<td>Reaction Rate</td>
<td>kmol/m³ or kmol/kg cat s</td>
</tr>
<tr>
<td>r</td>
<td>Rate of Production</td>
<td>kg/h</td>
</tr>
<tr>
<td>r_k</td>
<td>Knuckle Radius for Dished Heads</td>
<td>m</td>
</tr>
<tr>
<td>R</td>
<td>Gas Constant</td>
<td>kJ/kmol K</td>
</tr>
<tr>
<td>R</td>
<td>Ratio of Heat Capacities Used in Log-Mean Temperature Correction Factor</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Residual Funds Needed</td>
<td>$</td>
</tr>
<tr>
<td>R</td>
<td>Reflux Ratio</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Heat Transfer Resistance</td>
<td>m²K/W</td>
</tr>
<tr>
<td>R</td>
<td>Restoring Force to Keep Elbow (pipe fitting) Stationary</td>
<td>N</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Number</td>
<td></td>
</tr>
<tr>
<td>Re$_{\text{mf}}$</td>
<td>Reynolds Number at Minimum Fluidization</td>
<td></td>
</tr>
<tr>
<td>Re$_t$</td>
<td>Reynolds Number at Terminal Velocity</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Rich Stream Flowrate</td>
<td>kg/s</td>
</tr>
<tr>
<td>Rand</td>
<td>Random Number</td>
<td></td>
</tr>
<tr>
<td>ROROI</td>
<td>Rate of Return on Investment</td>
<td>% p.a.</td>
</tr>
<tr>
<td>ROROII</td>
<td>Rate of Return on Incremental Investment</td>
<td>% p.a.</td>
</tr>
<tr>
<td>s</td>
<td>Suppression Factor Used in Convective Boiling Correlation</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Entropy</td>
<td>kJ/K</td>
</tr>
<tr>
<td>S</td>
<td>Salvage Value</td>
<td>$</td>
</tr>
<tr>
<td>S</td>
<td>Maximum Allowable Working Pressure</td>
<td>bar</td>
</tr>
<tr>
<td>S</td>
<td>Salt Concentration Factor</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Sensitivity</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Interfacial Surface Area</td>
<td>m²</td>
</tr>
<tr>
<td>S</td>
<td>Stripping Factor</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>Stream Factor</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>Thickness of Wall</td>
<td>m</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>s, min, h, yr</td>
</tr>
<tr>
<td>\bar{T}</td>
<td>Average Time Spent in Reactor</td>
<td>s</td>
</tr>
<tr>
<td>t_m</td>
<td>Membrane Thickness</td>
<td>m</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting Temperature</td>
<td>K</td>
</tr>
<tr>
<td>T</td>
<td>Total Time for a Batch</td>
<td>s, min, h, yr</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>K, R, °C, or °F</td>
</tr>
<tr>
<td>U</td>
<td>Internal Energy</td>
<td>kJ</td>
</tr>
<tr>
<td>u</td>
<td>Vector of Manipulated Inputs</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>Flow Velocity</td>
<td>m/s</td>
</tr>
<tr>
<td>u_t^*</td>
<td>Dimensionless Terminal Velocity</td>
<td></td>
</tr>
<tr>
<td>u_s</td>
<td>Superficial Velocity in Packed or Fluidized Bed</td>
<td>m/s</td>
</tr>
<tr>
<td>u_t</td>
<td>Terminal Velocity of a Particle</td>
<td>m/s</td>
</tr>
<tr>
<td>U</td>
<td>Overall Heat Transfer Coefficient</td>
<td>W/m²K</td>
</tr>
<tr>
<td>U</td>
<td>Internal Energy</td>
<td>J</td>
</tr>
<tr>
<td>v</td>
<td>Molar Volume</td>
<td>m³/mol</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
<td>m³</td>
</tr>
<tr>
<td>V, ∇</td>
<td>Vapor Flow Rate (Over Bar is Below Feed in Distillation Column)</td>
<td>kmol/h</td>
</tr>
<tr>
<td>v_{react}</td>
<td>Specific Volume of Reactor</td>
<td>m³/kg of product</td>
</tr>
<tr>
<td>v_{react}</td>
<td>Specific Volume of Reactor</td>
<td>m³/kg of product</td>
</tr>
</tbody>
</table>
List of Nomenclature

\(v_p \) Velocity \(\text{m/s} \)
\(\dot{v} \) Volumetric Flowrate \(\text{m}^3/\text{s} \)
\(W \) Weight \(\text{kg} \)
\(W \) Total Moles of a Component \(\text{kmol} \)
\(W \) Width of Heat Transfer Fin \(\text{m} \)
\(W \) Work or Shaft Work \(\text{kJ/kg} \)
\(W_s \) Shaft Power \(\text{W} \)
\(WC \) Working Capital \(\text{$} \)
\(X \) Matrix of Independent Variables
\(x \) Vector of Variables
\(x \) Mole or Mass Fraction
\(x \) Wall or Film Thickness \(\text{m} \)
\(x \) Mole Fraction in Liquid Phase
\(X \) Conversion
\(X \) Base-Case Ratio
\(X_{pp} \) Martinelli’s Two-Phase Flow Parameter
\(y \) Mole or Mass Fraction (in Vapor Phase)
\(Y \) Yield
\(YOC \) Yearly Operating Cost \(\text{$/yr} \)
\(YS \) Yearly Cash Flow (Savings) \(\text{$/yr} \)
\(z \) Valence of Ions
\(z \) Solids Mole Fraction, Mole Fraction in Feed Stream
\(z \) Distance or level \(\text{m} \)
\(z \) Coordinate in Direction Opposite Gravity \(\text{M} \)

Greek Symbols

\(\alpha \) Multiplication Cost Factor
\(\alpha_{AB} \) Relative Volatility or Relative Permeability (between Species A and B)
\(\alpha \) NRTL Nonrandomness Factor
\(\alpha \) Parameter in Calculating Pressure Drop in Packed Bed
\(\beta \) Parameter in Calculating Pressure Drop in Packed Bed
\(\beta \) Orifice Diameter/Pipe Diameter
\(\delta \) Thickness of the Ion-Free Layer below
\(\delta \) (Condensing) Film Thickness or Fin Thickness \(\text{m} \)
\(\varepsilon \) Void Fraction
\(\varepsilon \) Pump Efficiency
\(\varepsilon \) Tolerance, Error
\(\varepsilon \) Emissivity
\(\varepsilon \) Effectiveness (for fins)
\(\varepsilon_{ij} \) Lennard-Jones Energy Parameter between Species i and j \(\text{kJ/kmol} \)
\(\varepsilon_i \) Relative Permittivity of the Solvent
\(\varepsilon_i^* \) Relative Permittivity of the Vapor Phase
\(\varepsilon_i \) Permittivity of the Solvent \(\text{Coulomb}^2/\text{kJ m} \)
\(\phi \) Fugacity Coefficient
\(\phi^* \) Fugacity Coefficient in Mixture
\(\phi^* \) Fugacity Coefficient of Saturated Vapor
\(\gamma \) Activity Coefficient
List of Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Ratio of Heat Capacities $= \frac{C_p}{C_v}$</td>
</tr>
<tr>
<td>γ^∞</td>
<td>Activity Coefficient in the Mixture at Infinite Dilution</td>
</tr>
<tr>
<td>γ_\pm</td>
<td>Mean Ionic Activity Coefficient</td>
</tr>
<tr>
<td>κ</td>
<td>Inverse of Debye-Hückel Length m^{-1}</td>
</tr>
<tr>
<td>η</td>
<td>Catalyst Effectiveness Factor</td>
</tr>
<tr>
<td>η</td>
<td>Selectivity</td>
</tr>
<tr>
<td>$\phi, \phi_\pm, \phi_\alpha, \phi_\beta$</td>
<td>Efficiency for Compressor, Separator, Pump, Turbine</td>
</tr>
<tr>
<td>λ</td>
<td>Heat of Vaporization kJ/kg</td>
</tr>
<tr>
<td>λ</td>
<td>Eigenvalue</td>
</tr>
<tr>
<td>λ</td>
<td>Heat of Vaporization/Condensation kJ/kg</td>
</tr>
<tr>
<td>λ_0</td>
<td>Lagrangian Multiplier Vector</td>
</tr>
<tr>
<td>λ</td>
<td>Thermal Conductivity of Pure Solvent W/mK</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity $kg/m s$</td>
</tr>
<tr>
<td>μ_α</td>
<td>Chemical Potential kJ</td>
</tr>
<tr>
<td>μ_0</td>
<td>Viscosity of Pure Solvent $kg/m s$</td>
</tr>
<tr>
<td>ν</td>
<td>Stoichiometric Coefficient</td>
</tr>
<tr>
<td>θ</td>
<td>Parameter Vector</td>
</tr>
<tr>
<td>θ</td>
<td>Ratio of Species Concentration to That of Limiting Reactant $^\circ$ or rad</td>
</tr>
<tr>
<td>θ</td>
<td>Angle $^\circ$ or rad</td>
</tr>
<tr>
<td>σ</td>
<td>Stage Cut in Gas Permeation Membrane</td>
</tr>
<tr>
<td>σ</td>
<td>Statistical Variance</td>
</tr>
<tr>
<td>σ</td>
<td>Collision Diameter m</td>
</tr>
<tr>
<td>σ</td>
<td>Surface Tension $N/m (dyne/cm^2)$</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann Constant W/m^2K^4</td>
</tr>
<tr>
<td>ξ</td>
<td>Selectivity</td>
</tr>
<tr>
<td>ρ, ρ_α</td>
<td>Density, Solid (Particle) Density kg/m^3</td>
</tr>
<tr>
<td>Θ</td>
<td>Stoichiometric Parameter</td>
</tr>
<tr>
<td>Θ</td>
<td>Cycle Time s</td>
</tr>
<tr>
<td>τ</td>
<td>Space Time s</td>
</tr>
<tr>
<td>τ</td>
<td>NRTL Binary Interaction Energy Parameter</td>
</tr>
<tr>
<td>τ_0</td>
<td>Derivative Time Constant s</td>
</tr>
<tr>
<td>τ_i</td>
<td>Integral Time Constant s</td>
</tr>
<tr>
<td>ψ</td>
<td>Density of Water/Density of Liquid in Packed Bed</td>
</tr>
<tr>
<td>Ψ</td>
<td>Sphericity</td>
</tr>
<tr>
<td>Ψ</td>
<td>Inertial Separation Parameter</td>
</tr>
<tr>
<td>Ω</td>
<td>Overall Catalyst Effectiveness (Including Internal and External Resistances)</td>
</tr>
<tr>
<td>Ω</td>
<td>Collision Integral</td>
</tr>
</tbody>
</table>

Subscripts

- **1**: Base Time, Base Case, or Inlet Condition
- **2**: Desired Time, New Case, or Outlet Condition
- **a**: Required Attribute
- **air-leak**: Air Leak Due to Vacuum Conditions
- **A, B, R, S**: Designating Components A, B, R, S
- **ACT, actual**: Actual
- **Active**: Refers to Active Column Area
List of Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux</td>
<td>Auxiliary Buildings</td>
</tr>
<tr>
<td>a, a'</td>
<td>Anion</td>
</tr>
<tr>
<td>b</td>
<td>Base Attribute, Baffle</td>
</tr>
<tr>
<td>b</td>
<td>Bulk or Bubble Phase</td>
</tr>
<tr>
<td>bare</td>
<td>Bare Fin</td>
</tr>
<tr>
<td>base</td>
<td>Fin Base</td>
</tr>
<tr>
<td>B</td>
<td>Bottoms of Distillation Column</td>
</tr>
<tr>
<td>BM</td>
<td>Bare Module</td>
</tr>
<tr>
<td>c, c'</td>
<td>Cation</td>
</tr>
<tr>
<td>c</td>
<td>Cold, Corrected, Critical, Coolant</td>
</tr>
<tr>
<td>cb</td>
<td>Convective Boiling</td>
</tr>
<tr>
<td>cat</td>
<td>Catalyst</td>
</tr>
<tr>
<td>clean</td>
<td>Cleaning</td>
</tr>
<tr>
<td>cocurrent</td>
<td>Designating a Cocurrent Arrangement for an S-T Heat Exchanger</td>
</tr>
<tr>
<td>countercurrent</td>
<td>Designating a Countercurrent Arrangement for an S-T Heat Exchanger</td>
</tr>
<tr>
<td>Cont</td>
<td>Contingency</td>
</tr>
<tr>
<td>C</td>
<td>Refers to Condenser</td>
</tr>
<tr>
<td>cv</td>
<td>Control Volume</td>
</tr>
<tr>
<td>cw</td>
<td>Cooling Water</td>
</tr>
<tr>
<td>cycle</td>
<td>Cycle</td>
</tr>
<tr>
<td>d</td>
<td>Without Depreciation</td>
</tr>
<tr>
<td>dished</td>
<td>Dished Vessel Head</td>
</tr>
<tr>
<td>elliptical</td>
<td>Elliptical Vessel Head</td>
</tr>
<tr>
<td>D, d</td>
<td>Demand</td>
</tr>
<tr>
<td>D</td>
<td>Distillate</td>
</tr>
<tr>
<td>E</td>
<td>Emulsion Phase</td>
</tr>
<tr>
<td>E</td>
<td>Contractor Engineering Expenses</td>
</tr>
<tr>
<td>eff</td>
<td>Effective</td>
</tr>
<tr>
<td>eq</td>
<td>Equivalent</td>
</tr>
<tr>
<td>el</td>
<td>Electrolyte(s)</td>
</tr>
<tr>
<td>eq</td>
<td>Metal in the Equipment</td>
</tr>
<tr>
<td>f</td>
<td>Flooding Conditions</td>
</tr>
<tr>
<td>fb</td>
<td>Film Boiling</td>
</tr>
<tr>
<td>fin</td>
<td>Fin</td>
</tr>
<tr>
<td>film</td>
<td>Film</td>
</tr>
<tr>
<td>f, f</td>
<td>Feed</td>
</tr>
<tr>
<td>Fee</td>
<td>Contractor Fee</td>
</tr>
<tr>
<td>FTT</td>
<td>Transportation, etc.</td>
</tr>
<tr>
<td>g</td>
<td>Gas</td>
</tr>
<tr>
<td>GR</td>
<td>Grass Roots</td>
</tr>
<tr>
<td>h</td>
<td>Hot</td>
</tr>
<tr>
<td>H</td>
<td>Hydraulic</td>
</tr>
<tr>
<td>i</td>
<td>Species</td>
</tr>
<tr>
<td>i</td>
<td>Index, Inside, or Interface</td>
</tr>
<tr>
<td>in</td>
<td>Inlet or Inner</td>
</tr>
<tr>
<td>int</td>
<td>Internal</td>
</tr>
<tr>
<td>k</td>
<td>Year</td>
</tr>
<tr>
<td>lm</td>
<td>Log-Mean</td>
</tr>
<tr>
<td>l-h</td>
<td>Liquid Holdup</td>
</tr>
<tr>
<td>l, L</td>
<td>Liquid</td>
</tr>
</tbody>
</table>
List of Nomenclature

L Installation Labor
L Lean Streams
L Without Land Cost
LF Long-Range Force
m Molality Scale
m Mass Transfer
m Molecular Species
m Heating/Cooling Medium or Membrane
m Number of Years
M Materials for Installation
M Material Cost Factor
max Maximum
MC Matching Costs
mesh Mesh
min Minimum
n Index for Time Instant
nom Nominal Interest
o Outside
out Outlet
O or OH Construction Overhead
Off Offsites and Utilities
OL Operating Labor
OL, OV, ov Overall Liquid and Overall Vapor Transfer Units or Height of Transfer Unit, Respectively
opt Optimum
p Production
p Process Stream or Permeate Stream
pb Pool Boiling
P Equipment at Manufacturer’s Site (Purchased), Pressure Cost Factor, Process or Particle
P&I Piping and Instrumentation
rev Reversible
rxn, r Reaction
r Reduced (Pressure)
r Retenate Stream
rad Radiation
R Rich Stream, Reboiler, Reference
RM Raw Materials
s All Nonwater Solvents, Simple Interest, Surface, or Stream
sat Saturated
s, shell Shell (Side) of Heat Exchanger
S Supply
SB Souders-Brown
Site Site Development
SF Short-Range Force
sph Spherical or Equivalent Spherical
t, tube Tube (Side) of Heat Exchanger
t Terminal
tp Tube Passes
TM Total Module
List of Nomenclature

<table>
<thead>
<tr>
<th>UT</th>
<th>Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>V, v</td>
<td>Vapor</td>
</tr>
<tr>
<td>vap</td>
<td>Vaporization</td>
</tr>
<tr>
<td>ves</td>
<td>Vessel</td>
</tr>
<tr>
<td>wire</td>
<td>Wire</td>
</tr>
<tr>
<td>WT</td>
<td>Waste Treatment</td>
</tr>
<tr>
<td>w</td>
<td>Water or Wall</td>
</tr>
<tr>
<td>y</td>
<td>Designation for Type in Effectiveness Factor for Heat Exchangers, (y = 1-2, 2-4, 3-6, \text{ etc.})</td>
</tr>
<tr>
<td>z</td>
<td>Distance Along Reactor or Tube</td>
</tr>
<tr>
<td>+</td>
<td>Cation</td>
</tr>
<tr>
<td>-</td>
<td>Anion</td>
</tr>
</tbody>
</table>

Superscripts

- \(\alpha, \beta \): Powers of Coefficients in Langmuir-Hinshelwood Kinetics
- \(a, b \): Powers in Simple Rate Laws
- \(DB \): Double Declining Balance Depreciation
- \(E \ or \ ex \): Excess Property
- \(L \): Lower Limit
- \(L, l \): Liquid
- \(* \): Equilibrium Value
- \(o \): Cost for Ambient Pressure Using Carbon Steel
- \(s \): Solid
- \(SL \): Straight Line Depreciation
- \(SOYD \): Sum of the Years Depreciation
- \(U \): Upper Limit
- \(v \): Vapor
- \(\infty \): Aqueous Infinite Dilution
- \(' \): Includes Effect of Inflation on Interest
- \('' \): Signifies Reaction Rate Per Unit Mass of Catalyst

Additional Nomenclature

- Table 1.2: Convention for Specifying Process Equipment
- Table 1.3: Convention for Specifying Process Streams
- Table 1.7: Abbreviations for Equipment and Materials of Construction
- Table 1.10: Convention for Specifying Instrumentation and Control Systems

Note: In this book, matrices are denoted by boldface, uppercase, italicized letters and vectors are denoted by boldface, lowercase, italicized letters.
The previous three sections focused on problems associated with the design, synthesis, and economics of a new chemical process, with less emphasis on equipment design. This section involves the design of new equipment and the performance of existing equipment in a chemical process. Three important factors must be understood:

1. In equipment design, the input and desired output are known, and the piece of equipment is designed to ensure that the output can be obtained from the input.
2. In equipment performance, the input and equipment specifications are known, and the output is calculated. Therefore, changes are limited by the performance of the existing equipment.
3. Any changes in operation of the process cannot be considered in isolation. The impact on the total process must always be considered.

Over the 10 to 30 years or more a plant is expected to operate, process operations may vary. A plant seldom operates at the original process conditions provided on the design PFD. This is due to the following:

- **Design/Construction**: Installed equipment is often oversized. This reduces risks resulting from inaccuracies in design correlations, uncertainties in material properties, and so on.
- **External Effects**: Feed materials, product specifications and flowrates, environmental regulations, and costs of raw materials and utilities all are likely to change during the life of the process.
- **Replacement of Equipment**: New and improved equipment (or catalysts) may replace existing units in the plant.
- **Changes in Equipment Performance**: In general, equipment effectiveness degrades with age. For example, heat transfer surfaces foul, packed towers develop channels, catalysts lose activity, and bearings on pumps and compressors become worn. Plants are shut down periodically for maintenance to restore equipment performance.
To remain competitive, it is necessary to be able to alter process operations in response to changing conditions. Therefore, it is necessary to understand how equipment performs over its complete operating range to quantify the effects of changing process conditions on process performance.

The material provided in this section involves several categories of design and performance problems:

1. **Design Problems**: The design of typical chemical process equipment is presented, and the equipment constraints and limitations are discussed.

2. **Predictive Problems**: An examination of the changes that take place for a change in process or equipment input and/or a change in equipment effectiveness.

3. **Diagnostic/Troubleshooting Problems**: If a change in process output (process disturbance or upset) is observed, the cause (change in process input, change in equipment performance) must be identified.

4. **Debottlenecking Problems**: Often, a process change is necessary or desired, such as scale-up (increasing production capacity) or allowance for a change in product or raw material specifications. Identification of the equipment that limits the ability to make the desired change or constrains the change is necessary.

This section introduces the basic principles by which existing equipment and processes are designed, evaluated, operated, controlled, and subjected to changes in operating conditions. This material is treated in the following chapters.

Chapter 19: Process Fluid Mechanics
The basic design of pumps, pipes, etc., is presented for incompressible and compressible flows. The performance of pumps and existing piping systems is also presented.

Chapter 20: Process Heat Transfer
The basic design of heat exchange equipment is presented. The need for multiple shell-pass heat exchangers is discussed based on the LMTD correction factor. An extensive treatment of heat transfer coefficients for typical process situations, including boiling and condensation, is included. The performance of existing heat transfer equipment is also presented.

Chapter 21: Separation Equipment
The basics of typical chemical engineering separations (distillation, absorption, stripping, extraction) are reviewed, but not with the depth found in standard separation textbooks. The equipment design characteristics are emphasized. The performance of existing separation equipment is also presented.

Chapter 22: Reactors
The basics of reaction engineering are reviewed, but not with the depth found in standard reaction engineering textbooks. “Real” reactor configurations are discussed in depth. The performance of existing reactors is also presented.

Chapter 23: Other Equipment
The design and performance of pressure vessels, knockout drums, and steam ejectors is presented.

Chapter 24: Process Troubleshooting and Debottlenecking
Case studies are presented to introduce the philosophy and methodology for process troubleshooting and debottlenecking.
The purpose of this chapter is to introduce the concepts needed to design piping systems, including pumps, compressors, turbines, valves, and other components, and to evaluate the performance of these systems once designed and implemented. The scope is limited to steady-state situations. Derivations are minimized, and the emphasis is on providing a set of useful, working equations that can be used to design and evaluate the performance of piping systems.

19.1 BASIC RELATIONSHIPS IN FLUID MECHANICS

In expressing the basic relationships for fluid flow, a general control volume is used, as illustrated in Figure 19.1. This control volume can be the fluid inside the pipes and equipment connected by the pipes, with the possibility of multiple inputs and multiple outputs. For the simple case of one input and one output, the subscript 1 refers to the upstream side and the subscript 2 refers to the downstream side.
19.1.1 Mass Balance

At steady state, mass is conserved, so the total mass flowrate \(\dot{m} \), mass/time, in must equal the total mass flowrate out. For a device with \(m \) inputs and \(n \) outputs, the appropriate relationship is given by Equation (19.1). For a single input and single output, Equation (19.2) is used.

\[
\sum_{i=1}^{m} \dot{m}_{in} = \sum_{i=1}^{n} \dot{m}_{out} \quad \text{(19.1)}
\]

\[
\dot{m}_1 = \dot{m}_2 \quad \text{(19.2)}
\]

In describing fluid flow, it is necessary to write the mass flowrate in terms of both volumetric flowrate \(\dot{v} \), volume/time, and velocity \(u \), length/time. These relationships are

\[
\dot{m} = \rho \dot{v} = \rho A u \quad \text{(19.3)}
\]

where \(\rho \) is the density (mass/volume) and \(A \) is the cross-sectional area for flow (length\(^2\)). From Equation (19.3), for an incompressible fluid (constant density) at steady state, the volumetric flowrate is constant, and the velocity is constant for a constant cross-sectional area for flow. However, for a compressible fluid flowing with constant cross-sectional area, if the density changes, the volumetric flowrate and velocity both change in the opposite direction, since the mass flowrate is constant. Accordingly, if the density decreases, the volumetric flowrate and velocity both increase. For problems involving compressible flow, it is useful to define the superficial mass velocity, \(G \) (mass/area/time), as

\[
G = \frac{\dot{m}}{A} = \rho u \quad \text{(19.4)}
\]

The advantage of defining a superficial mass velocity is that it is constant for steady-state flow in a constant cross-sectional area, unlike density and velocity, and it shows that the product of density and velocity remains constant.

For a system with multiple inputs and/or multiple outputs at steady state, as is illustrated in Figure 19.2, the total mass flowrate into the system must equal the total mass flowrate out,
Example 19.1

Two streams of crude oil (specific gravity of 0.887) mix as shown in Figure E19.1. The volumetric flowrate of Stream 1 is 0.006 m3/s, and its pipe diameter is 0.078 m. The volumetric flowrate of Stream 2 is 0.009 m3/s, and its pipe diameter is 0.10 m.

a. Determine the volumetric and mass flowrates of Stream 3.

b. Determine the velocities in Streams 1 and 2.

c. If the velocity is not to exceed 1 m/s in Stream 3, determine the minimum possible pipe diameter.

d. Determine the superficial mass velocity Stream 3 using the pipe diameter calculated in Part (c).

Solution

a. Since the density is constant, the volumetric flowrate of Stream 3 is the sum of the volumetric flowrates of Streams 1 and 2, 0.015 m3/s. To obtain the mass flowrate, $\dot{m} = \rho \dot{V}$, so $\dot{m}_3 = (887 \text{ kg/m}^3) (0.015 \text{ m}^3/\text{s}) = 13.3 \text{ kg/s}$. Alternatively, the mass flowrate of Streams 1 and 2 could be calculated and added to get the same result.

b. From Equation (19.3), at constant density $u = \dot{V}/A$. Therefore,

$$u_1 = \frac{\dot{V}_1}{A_1} = \frac{4 \dot{V}_1}{\pi D_1^2} = \frac{4 (0.006 \text{ m}^3/\text{s})}{\pi (0.078 \text{ m})^2} = 1.26 \text{ m/s}$$ \hspace{1cm} (E19.1a)

$$u_2 = \frac{\dot{V}_2}{A_2} = \frac{4 \dot{V}_2}{\pi D_2^2} = \frac{4 (0.009 \text{ m}^3/\text{s})}{\pi (0.10 \text{ m})^2} = 1.15 \text{ m/s}$$ \hspace{1cm} (E19.1b)

c. The diameter at which $u_3 = 1 \text{ m/s}$ can be calculated from Equation (19.3) at constant density.

$$\dot{V}_3 = u_3 A_3 \Rightarrow 0.015 \text{ m}^3/\text{s} = (1 \text{ m/s}) \left(\frac{\pi D^2}{4} \right) \Rightarrow D = 0.138 \text{ m}$$ \hspace{1cm} (E19.1c)

If the diameter were smaller, the cross-sectional area would be smaller, and from Equation (19.3), the velocity would be larger. Hence, the result in Equation (E19.1c) is the minimum possible diameter. As shown later, actual pipes are available only in discrete sizes, so it is necessary to use the next higher pipe diameter.

d. From Equation (19.4), using the rounded values,

$$G_3 = \frac{\dot{m}_3}{A_3} = \frac{4 \dot{m}_3}{\pi D_3^2} = \frac{4 (13.3 \text{ kg/s})}{\pi (0.138 \text{ m})^2} = 889.2 \text{ kg/m}^3/\text{s}$$ \hspace{1cm} (E19.1d)
19.1.2 Mechanical Energy Balance

The mechanical energy balance represents the conversion between different forms of energy in piping systems. With the exception of temperature changes for a gas undergoing compression or expansion with no phase change, temperature is assumed to be constant. The mechanical energy balance is

\[\int \frac{dP}{\rho} + \frac{1}{2} \Delta \left(<\frac{u^2}{u}> \right) + g\Delta z + e_f - W_s = 0 \]

(19.5)

In Equation (19.5) and throughout this chapter, the difference, \(\Delta \), represents the value at Point 2 minus the value at Point 1, that is, out − in. The units in Equation (19.5) are energy/mass or length²/time². In SI units, since 1 J = 1 kg m²/s², it is clear that 1 J/kg = 1 m²/s². In American Engineering units, since 1 lb f = 32.2 ft lb m/sec², this conversion factor (often called \(g \)) must be used to reconcile the units. The notation \(<> \) represents the appropriate average quantity.

The first term in Equation (19.5) is the enthalpy of the system. On the basis of the constant temperature assumption, only pressure is involved. For incompressible fluids, such as liquids, density is constant, and the term reduces to

\[\int \frac{dP}{\rho} = \Delta P \]

(19.6)

For compressible fluids, the integral must be evaluated using an equation of state.

The second term in Equation (19.5) is the kinetic energy term. For turbulent flow, a reasonable assumption is that

\[\frac{<\frac{u^4}{u}>}{<u^2>^2} \approx <\frac{u^2}{u}>^2 \]

(19.7)

For laminar flow,

\[\frac{<\frac{u^4}{u}>}{<u^2>} = 2 <\frac{u^2}{u}>^2 \]

(19.8)

For simplicity, \(<\frac{u^2}{u}> \) is hereafter represented as \(u^2 \), which is shortened to \(u^2 \).

The third term in Equation (19.5) is the potential energy term. Based on the general control volume, \(\Delta z \) is positive if Point 2 is at a higher elevation than Point 1.

The fourth term in Equation (19.5) is often called the energy “loss” due to friction. Of course, energy is not lost—it is just expended to overcome friction, and it manifests as a change in temperature. The procedures for calculating frictional losses are discussed later.

The last term in Equation (19.5) represents the shaft work, that is, the work done on the system (fluid) by a pump or compressor or the work done by the system on a turbine. These devices are not 100% efficient. For example, more work must be applied to the pump than is transferred to the fluid, and less work is generated by the turbine than is expended by the fluid. In this book, work is defined as positive if done on the system (pump, compressor) and negative if done by the fluid (turbine). This convention is consistent with the flow of energy in or out of the system; however, many textbooks use the reverse sign convention. Equipment such as pumps, compressors, and turbines are described in terms of their power, where power is the rate of doing work. Therefore, a device power \((W_s, \text{ energy/time}) \) is defined as the product of the mass flowrate \((\text{mass/time}) \) and the shaft work \((\text{energy/mass}) \):

\[\dot{W}_s = \dot{m} W_s \]

(19.9)
When efficiencies are included, the last term in Equation (19.5) becomes

\[\eta_p W_p = \frac{\eta_p W_p}{m} \text{ pump/compressor} \]
\[(19.10) \]

\[\frac{W_p}{\eta_p} = \frac{W_t}{\eta_t} \text{ turbine} \]
\[(19.11) \]

Example 19.2

Water in an open (source or supply) tank is pumped to a second (destination) tank at a rate of 5 lb/sec with the water level in the destination tank 25 ft above the water level in the source tank, and it is assumed that the water level does not change with the flow of water. The destination tank is under a constant 30 psig pressure. The pump efficiency is 75%. Neglect friction.

a. Determine the required horsepower of the pump.

b. Determine the pressure increase provided by the pump assuming the suction and discharge lines have the same diameter.

Solution

a. Turbulent flow in the pipes is assumed. The mechanical energy balance is

\[\frac{\Delta P}{\rho} + \frac{1}{2} \Delta u^2 + g \Delta z + e_j - \frac{\eta_p W_p}{m} = 0 \]
\[(E19.2a) \]

Figure E19.2 is an illustration of the system.

![Figure E19.2](image-url)

Figure E19.2 Physical Situation for Example 19.2

The control volume is the water in the tanks, the pipes, and the pump, and the locations of Points 1 and 2 are illustrated. The integral in the first term of Equation (19.2) is simplified to the first term in Equation (E19.2a), since the density of water is a constant. In general, the fluid velocity in tanks is assumed to be zero because tank diameters are much larger than pipe diameters, so the kinetic energy term for the liquid surface in the tank is essentially zero. Any fluid in contact with the atmosphere is at atmospheric pressure, so \(P_1 = 1 \) atm = 0 psig. The friction term is assumed to be zero in this problem, as stated. So, Equation (E19.2a) reduces to

\[\frac{P_2 - P_1}{\rho} + g(z_2 - z_1) - \frac{\eta_p W_p}{m} = 0 \]
\[(E19.2b) \]
and

\[
\frac{(30 - 0) \text{ lb/in}^2(12 \text{ in/ft})^2}{62.4 \text{ lb/ft}^3} + \frac{32.2 \text{ ft/sec}^2}{32.2 \text{ ft lb/lb/sec}^2} - (25 - 0) \text{ ft} - \frac{0.75 W_p}{5 \text{ lb/sec}} = 0
\]

(E19.2c)

so, \(W_p = 628.2 \text{ ft lb/sec} \).

Converting to horsepower yields

\[
W_p = \frac{628.2 \text{ ft lb/sec}}{550 \text{ ft lb/hp/sec}} = 1.14 \text{ hp}
\]

(E19.2d)

b. To determine the pressure rise in the pump, the control volume is now taken as the fluid in

the pump. So, the mechanical energy balance is written between Points 3 and 4. The mechanical

energy balance reduces to

\[
\frac{\Delta P}{\rho} - \frac{\eta W_p}{m} = 0
\]

(E19.2e)

The kinetic energy term is zero because the suction and discharge pipes have the same diameter.
Frictional losses are assumed to be zero in this example. The potential energy term is also assumed to be zero across the pump; however, since the discharge line of a pump may be higher than the suction line, in a more detailed analysis, that potential energy difference might be included. Solving

\[
\frac{P(\text{lb/ft}^2)(12 \text{ in/ft})^2}{62.4 \text{ lb/ft}^3} - \frac{0.75(628.2 \text{ ft lb/sec})}{5 \text{ lb/sec}} = 0
\]

(E19.2f)

gives \(\Delta P = 40.8 \text{ lb/in}^2 \).

Example 19.3

A nozzle is a device that converts pressure into kinetic energy by forcing a fluid through a small-

diameter opening. Turbines work in this way because the fluid (usually a gas) with a high kinetic

energy impinges on turbine blades, causing spinning, and allowing the energy to be converted to

electric power.

Consider a nozzle that forces 2 gal/min of water at 50 psia in a tube of 1-in inside diameter through

a 0.1-in nozzle from which it discharges to atmosphere. Calculate the discharge velocity.

Solution

The system is illustrated in Figure E19.3. It is assumed that the velocity at a small distance from the
end of the nozzle is identical to the velocity in the nozzle, but the contact with the atmosphere makes the pressure atmospheric.

For the case when frictional losses may be neglected, the mechanical energy balance reduces to

\[
\frac{P_2 - P_1}{\rho} + \frac{u_2^2 - u_1^2}{2} = 0
\]

(E19.3a)

![Figure E19.3 Illustration of Nozzle for Example 19.3](image-url)
which yields

\[
\frac{(14.7 - 50) \text{ lb/in}^2 (12 \text{ in/ft})^2}{62.4 \text{ lb/ft}^3} + \frac{u_s^2}{12} \left[\frac{4(2 \text{ gal/min})(1 \text{ ft}^3)/7.48 \text{ gal}(1 \text{ min/60 sec})}{\pi(1/12 \text{ ft})^4} \right] = 0
\]

so \(u_s = 72.4 \text{ ft/sec} \). For a real system, there would be some frictional losses and the actual discharge velocity would be lower than calculated here.

This problem was solved under the assumption of turbulent flow. The criterion for turbulent flow is introduced later; however, for this system, the Reynolds number is about \(2 \times 10^5 \), which is well into the turbulent flow region.

19.1.3 Force Balance

The force balance is essentially a statement of Newton's law. A common form for flow in pipes is

\[
\Delta(m\dot{u}) = \sum F
\]

(19.12)

where \(F \) are the forces on the system. The underlined parameters indicate vectors, since there are three spatial components of a force balance. For steady-state flow and the typical forces involved in fluid flow, Equation (19.12) reduces to

\[
\dot{m}\Delta(u) = F_p + F_d + F_g + R
\]

(19.13)

where \(F_p \) is the pressure force on the system, \(F_d \) is the drag force on the system, \(F_g \) is the gravitational force on the system, and \(R \) is the restoring force on the system, that is, the force necessary to keep the system stationary. The term on the left side of Equation (19.12) is acceleration, confirming that Equation (19.12) is a statement of Newton's law. The most common application of Equation (19.13) is to determine the restoring forces on an elbow. These problems are not discussed here.

19.2 Fluid Flow Equipment

The basic characteristics of fluid flow equipment are introduced in this section. The performance of pumps and compressors is dictated by their characteristic curves and, for pumps, the net positive suction head curve. The performance of these pieces of equipment is discussed in Section 19.5.

19.2.1 Pipes

Pipes and their associated fittings that are used to transport fluid through a chemical plant are usually made of metal. For noncorrosive fluids under conditions that are not of special concern, carbon steel is typical. For more extreme conditions, such as higher pressure, higher temperature, or corrosive fluids, stainless steel or other alloy steels may be needed. It may even be necessary, for very-high-temperature service such as for the flow of molten metals, to use refractory-lined pipes.

Pipes are sized using a nominal diameter and a schedule number. The higher the schedule number, the thicker the pipe walls, making pipes with a higher schedule number more suitable for higher-pressure operations. The nominal diameter is a number such as 2 in; however, there is no dimension of the pipe that is actually 2 in until the diameter reaches 14 in. For pipes with
a diameter of 14 in or larger, the nominal diameter is the outside diameter. Pipes typically have integer nominal diameters; however, for smaller diameters, they can be in increments of 0.25 in. At larger diameters, the nominal diameters may only be even integer values. Table 19.1 shows the dimensions of some schedules of standard pipe.

![Table 19.1 Dimensions of Standard Steel Pipe](image-url)

<table>
<thead>
<tr>
<th>Nominal Size (in)</th>
<th>Outside Diameter in</th>
<th>Outside Diameter mm</th>
<th>Schedule Number</th>
<th>Wall Thickness in</th>
<th>Wall Thickness mm</th>
<th>Inside Diameter in</th>
<th>Inside Diameter mm</th>
<th>Inside Cross-Sectional Area 10^2ft²</th>
<th>Inside Cross-Sectional Area 10^4m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>0.405</td>
<td>10.29</td>
<td>40</td>
<td>0.068</td>
<td>1.73</td>
<td>0.269</td>
<td>6.83</td>
<td>0.040</td>
<td>0.3664</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.095</td>
<td>2.41</td>
<td>0.215</td>
<td>5.46</td>
<td>0.025</td>
<td>0.2341</td>
</tr>
<tr>
<td>1/4</td>
<td>0.540</td>
<td>13.72</td>
<td>40</td>
<td>0.088</td>
<td>2.24</td>
<td>0.364</td>
<td>9.25</td>
<td>0.072</td>
<td>0.6720</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.119</td>
<td>3.02</td>
<td>0.302</td>
<td>7.67</td>
<td>0.050</td>
<td>0.4620</td>
</tr>
<tr>
<td>3/8</td>
<td>0.675</td>
<td>17.15</td>
<td>40</td>
<td>0.091</td>
<td>2.31</td>
<td>0.493</td>
<td>12.52</td>
<td>0.133</td>
<td>1.231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.126</td>
<td>3.20</td>
<td>0.423</td>
<td>10.74</td>
<td>0.098</td>
<td>0.9059</td>
</tr>
<tr>
<td>1/2</td>
<td>0.840</td>
<td>21.34</td>
<td>40</td>
<td>0.109</td>
<td>2.77</td>
<td>0.622</td>
<td>15.80</td>
<td>0.211</td>
<td>1.961</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.147</td>
<td>3.73</td>
<td>0.546</td>
<td>13.87</td>
<td>0.163</td>
<td>1.511</td>
</tr>
<tr>
<td>3/4</td>
<td>1.050</td>
<td>26.67</td>
<td>40</td>
<td>0.113</td>
<td>2.87</td>
<td>0.824</td>
<td>20.93</td>
<td>0.371</td>
<td>3.441</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.154</td>
<td>3.91</td>
<td>0.742</td>
<td>18.85</td>
<td>0.300</td>
<td>2.791</td>
</tr>
<tr>
<td>1</td>
<td>1.315</td>
<td>33.40</td>
<td>40</td>
<td>0.133</td>
<td>3.38</td>
<td>1.049</td>
<td>26.64</td>
<td>0.600</td>
<td>5.574</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.179</td>
<td>4.45</td>
<td>0.957</td>
<td>24.31</td>
<td>0.499</td>
<td>4.641</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1.660</td>
<td>42.16</td>
<td>40</td>
<td>0.140</td>
<td>3.56</td>
<td>1.380</td>
<td>35.05</td>
<td>1.040</td>
<td>9.648</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.191</td>
<td>4.85</td>
<td>1.278</td>
<td>32.46</td>
<td>0.891</td>
<td>8.275</td>
</tr>
<tr>
<td>1 1/2</td>
<td>1.900</td>
<td>48.26</td>
<td>40</td>
<td>0.145</td>
<td>3.68</td>
<td>1.610</td>
<td>40.89</td>
<td>1.414</td>
<td>13.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.200</td>
<td>5.08</td>
<td>1.500</td>
<td>38.10</td>
<td>1.225</td>
<td>11.40</td>
</tr>
<tr>
<td>2</td>
<td>2.375</td>
<td>60.33</td>
<td>40</td>
<td>0.154</td>
<td>3.91</td>
<td>2.067</td>
<td>52.50</td>
<td>2.330</td>
<td>21.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.218</td>
<td>5.54</td>
<td>1.939</td>
<td>49.25</td>
<td>2.050</td>
<td>19.05</td>
</tr>
<tr>
<td>2 1/2</td>
<td>2.875</td>
<td>73.03</td>
<td>40</td>
<td>0.203</td>
<td>5.16</td>
<td>2.469</td>
<td>62.71</td>
<td>3.322</td>
<td>30.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.276</td>
<td>7.01</td>
<td>2.323</td>
<td>59.00</td>
<td>2.942</td>
<td>27.30</td>
</tr>
<tr>
<td>3</td>
<td>3.500</td>
<td>88.90</td>
<td>40</td>
<td>0.216</td>
<td>5.59</td>
<td>3.068</td>
<td>77.92</td>
<td>5.130</td>
<td>47.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.300</td>
<td>7.62</td>
<td>2.900</td>
<td>73.66</td>
<td>4.587</td>
<td>42.61</td>
</tr>
<tr>
<td>3 1/2</td>
<td>4.000</td>
<td>101.6</td>
<td>40</td>
<td>0.226</td>
<td>5.74</td>
<td>3.548</td>
<td>90.12</td>
<td>6.870</td>
<td>63.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.318</td>
<td>8.08</td>
<td>3.364</td>
<td>85.45</td>
<td>6.170</td>
<td>57.35</td>
</tr>
<tr>
<td>4</td>
<td>4.500</td>
<td>114.3</td>
<td>40</td>
<td>0.237</td>
<td>6.02</td>
<td>4.026</td>
<td>102.3</td>
<td>8.840</td>
<td>82.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.337</td>
<td>8.56</td>
<td>3.826</td>
<td>97.18</td>
<td>7.986</td>
<td>74.17</td>
</tr>
<tr>
<td>5</td>
<td>5.563</td>
<td>141.3</td>
<td>40</td>
<td>0.258</td>
<td>6.55</td>
<td>5.047</td>
<td>128.2</td>
<td>13.90</td>
<td>129.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.375</td>
<td>9.53</td>
<td>4.813</td>
<td>122.3</td>
<td>12.63</td>
<td>117.5</td>
</tr>
<tr>
<td>6</td>
<td>6.625</td>
<td>168.3</td>
<td>40</td>
<td>0.280</td>
<td>7.11</td>
<td>6.065</td>
<td>154.1</td>
<td>20.06</td>
<td>186.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0.432</td>
<td>10.97</td>
<td>5.761</td>
<td>146.3</td>
<td>18.10</td>
<td>168.1</td>
</tr>
</tbody>
</table>
Fluid Flow Equipment

19.2 Fluid Flow Equipment

Tubing is commonly used in heat exchangers. The dimensions and use of tubing are discussed in Chapter 20.

Pipes are typically connected by screw threads, flanges, or welds. Welds and flanges are more suitable for larger diameters and higher-pressure operation. Proper welds are stronger and do not leak, whereas screwed or flanged connections can leak, especially at higher pressures. Changes in direction are usually accomplished by elbows or tees, and those changes in direction are usually 90°.

19.2.2 Valves

Valves are found in piping systems. Valves are about the only way to regulate anything in a chemical process. Valves serve several functions. They are used to regulate flow rate, reduce pressure by adding resistance, or isolate (turn flow on/off) equipment.

Two common types of valves are gate valves and globe valves. Figure 19.3 shows illustrations of several common types of valves.

Gate valves are used for on/off control of fluid flow. The flow path through a gate valve is roughly straight, so when the valve is fully open, the pressure drop is very small. However, gate valves are not suitable for flowrate regulation because the flowrate does not change much until the “gate” is almost closed. There are also ball valves, in which a quarter turn opens a flow channel, and they can also be used for on/off regulation.

Globe valves are more suitable than gate valves for flowrate and pressure regulation. Because the flow path is not straight, globe valves have a higher pressure drop even when wide open. Globe valves are well suited for flowrate regulation because the flowrate is responsive to valve position. In a control system, the valve stem is raised or lowered pneumatically (by instrument air) or via

<table>
<thead>
<tr>
<th>Nominal Size (in)</th>
<th>Outside Diameter</th>
<th>Schedule Number</th>
<th>Wall Thickness</th>
<th>Inside Diameter</th>
<th>Inside Cross-Sectional Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in</td>
<td>mm</td>
<td>in</td>
<td>mm</td>
<td>10^2ft2</td>
</tr>
<tr>
<td>8</td>
<td>8.625</td>
<td>219.1</td>
<td>40</td>
<td>0.322</td>
<td>8.18</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.300</td>
<td>12.70</td>
<td>7.625</td>
<td>202.7</td>
</tr>
<tr>
<td>10</td>
<td>10.75</td>
<td>273.1</td>
<td>40</td>
<td>0.365</td>
<td>9.27</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.594</td>
<td>15.09</td>
<td>9.562</td>
<td>242.8</td>
</tr>
<tr>
<td>12</td>
<td>12.75</td>
<td>304.8</td>
<td>40</td>
<td>0.406</td>
<td>10.31</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.688</td>
<td>17.48</td>
<td>11.37</td>
<td>288.8</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>355.6</td>
<td>40</td>
<td>0.438</td>
<td>11.13</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.750</td>
<td>19.05</td>
<td>12.50</td>
<td>317.5</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>406.4</td>
<td>40</td>
<td>0.500</td>
<td>12.70</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.844</td>
<td>21.44</td>
<td>14.31</td>
<td>363.5</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>457.2</td>
<td>40</td>
<td>0.562</td>
<td>14.27</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.938</td>
<td>23.83</td>
<td>16.12</td>
<td>409.4</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>508.0</td>
<td>40</td>
<td>0.597</td>
<td>15.16</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.031</td>
<td>26.19</td>
<td>17.94</td>
<td>455.7</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>635.0</td>
<td>40</td>
<td>0.688</td>
<td>17.48</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.219</td>
<td>30.96</td>
<td>21.56</td>
<td>547.6</td>
</tr>
</tbody>
</table>

an electric motor in response to a measured parameter, such as a flowrate. Pneumatic systems can be designed for the valve to fail open or closed, the choice depending on the service. Failure is defined as loss of instrument air pressure. For example, for a valve controlling the flowrate of a fluid removing heat from a reactor with a highly exothermic reaction, the valve would be designed to fail open so that the reactor cooling is not lost.

Check valves, such as the swing check valve, are used to ensure unidirectional flow. In Figure 19.3(c), if the flow is left to right, the swing is opened and flow proceeds. If the flow is right to left, the swing closes, and there is no flow in that direction. Such valves are often placed on the discharge side of pumps to ensure that there is no flow reversal through the pump.

19.2.3 Pumps

Pumps are used to transport liquids, and pumps can be damaged by the presence of vapor, a phenomenon discussed in Section 19.5.2. The two major classifications for pumps are positive displacement and centrifugal. For a more detailed summary of all types of pumps, see Couper et al. [3] or Green and Perry [4].

Positive-displacement pumps are often called constant-volume pumps because a fixed amount of liquid is taken into a chamber at a low pressure and pushed out of the chamber at a high pressure. The chamber has a fixed volume, hence the name. An example of a positive-displacement pump is a reciprocating pump, illustrated in Figure 19.4(a). Specifically, this is an example of a piston pump in which the piston moves in one direction to pull liquid into the chamber and then moves in the opposite direction to discharge liquid out of the chamber at a higher pressure. There are other variations of positive-displacement pumps, such as rotary pumps in which the chamber moves between the inlet and discharge points. In general, positive-displacement pumps can increase pressure more than centrifugal pumps and run at higher pressures overall. These characteristics define their applicability. Efficiencies tend to be between 50% and 80%. Positive-displacement pumps are preferred for higher pressures, higher viscosities, and anticipated viscosity variations.

In centrifugal pumps, which are a common workhorse in the chemical industry, the pressure is increased by the centrifugal action of an impeller. An impeller is a rotating shaft with blades, and it might be tempting to call it a propeller because an impeller resembles a propeller. (While there might be a resemblance, the term propeller is reserved for rotating shafts with blades that move an object, such as a boat or airplane.) The blades of an impeller have small openings, known as...
vanes, that increase the kinetic energy of the liquid. The liquid is then discharged through a volute in which the kinetic energy is converted into pressure. Figure 19.4(b) shows a centrifugal pump. Centrifugal pumps often come with impellers of different diameters, which enable pumps to be used for different services (different pressure increases). Of course, shutdown is required to change the impeller. Although standard centrifugal pump impellers only spin at a constant rate, variable-speed centrifugal pumps also are available.

Centrifugal pumps can handle a wide range of capacities and pressures, and depending on the exact type of pump, the efficiencies can range from 20% to 90%.

19.2.4 Compressors

Devices that increase the pressure of gases fall into three categories: fans, blowers, and compressors. Figure 19.5 illustrates some of this equipment. For a more detailed summary of all types of pumps, see Couper et al. [3] or Green and Perry [4].

Fans provide very low-pressure increases (<1 psi [7 kPa]) for low volumes and are typically used to move air. Blowers are essentially mini-compressors, providing a maximum pressure of about 30 psi (200 kPa). Blowers can be either positive displacement or centrifugal, and while their general construction is similar to pumps, there are many internal differences. Compressors, which can also be either positive displacement or centrifugal, can provide outlet pressures of 1500 psi (10 MPa) and sometimes even 10 times that much.
In a centrifugal compressor, the impeller may spin at tens of thousands of revolutions per minute. If liquid droplets or solid particles are present in the gas, they hit the impeller blades at such high relative velocity that the impeller blades will erode rapidly and may cause bearings to become damaged, leading to mechanical failure. The compressor casing also may crack. Therefore, it is important to ensure that the gas in a centrifugal compressor does not contain solids and liquids. A filter can be used to keep particles out of a compressor, and a packed-bed adsorbent can also be used, for example, to remove water vapor from inlet air. Knockout drums are often provided between compressor stages with intercooling to allow the disengagement of any condensed drops of liquid and are covered in more detail in Chapter 23, Section 23.2. The seals on compressors are temperature sensitive, so a maximum temperature in one stage of a compressor is generally not exceeded, which is another reason for staged, intercooled compressor systems. It should also be noted that compressors are often large and expensive pieces of equipment that often have a large number of auxiliary systems associated with them. The coverage given in this text is very simplified but allows the estimate of the power required.

Positive-displacement compressors typically handle lower flowrates but can produce higher pressures compared to centrifugal compressors. Efficiencies for both types of compressor tend to be high, above 75%.

19.3 FRICTIONAL PIPE FLOW

19.3.1 Calculating Frictional Losses

The fourth term in Equation (19.5) must be evaluated to include friction in the mechanical energy balance. There are different expressions for this term depending on the type of flow and the system involved. In general, the friction term is

\[\varepsilon_f = \frac{2 f L u^2}{D} = \frac{32 f \rho s^2}{\pi^2 D^5} \]

(19.14)

where \(L \) is the pipe length, \(D \) is the pipe diameter, and \(f \) is the Fanning friction factor. (The Fanning friction factor is typically used by chemical engineers. There is also the Moody friction factor, which is four times the Fanning friction factor. Care must be used when obtaining friction factor values from different sources. It is even more confusing, since the plot of friction factor versus Reynolds number is called a Moody plot for both friction factors.) The friction factor is a function of the Reynolds number \((Re = \frac{D u \rho}{\mu}, \text{where } \mu \text{ is the fluid viscosity}) \), and its form depends on the flow regime (laminar or turbulent), and for turbulent flow, \(f \) is also a function of the pipe roughness factor \(e \), a length that represents small asperities on the pipe wall; values are given at the top of Figure 19.6), which is a tabulated value.

<table>
<thead>
<tr>
<th>Material</th>
<th>Typical Roughness</th>
<th>Relative Roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Iron</td>
<td>0.25 mm</td>
<td>0.001 in</td>
</tr>
<tr>
<td>Commercial Steel</td>
<td>0.046 mm</td>
<td>0.0018 in</td>
</tr>
<tr>
<td>Drawn Tubing</td>
<td>0.0015 mm</td>
<td>0.00006 in</td>
</tr>
<tr>
<td>Wrought Iron</td>
<td>0.045 mm</td>
<td>0.0018 in</td>
</tr>
<tr>
<td>Galvanized Iron</td>
<td>0.15 mm</td>
<td>0.0059 in</td>
</tr>
<tr>
<td>Plastic</td>
<td>0 mm</td>
<td>0 in</td>
</tr>
</tbody>
</table>

Figure 19.6 Moody Plot for the Fanning Friction Factor in Pipes
Historically, the friction factor was measured and the data were plotted in graphical form. Figure 19.6 is such a plot. A key observation from Figure 19.6 is that, with the exception of smooth pipes, the friction factor asymptotically approaches a constant value above a Reynolds number of approximately 10^5. This is called fully developed turbulent flow, and the friction factor becomes constant and can be used to simplify certain calculations, examples of which are presented later. Typical values for the pipe roughness for some common materials are shown at the top of Figure 19.6.

The friction factor for laminar flow is a theoretical result derivable from the Hagen-Poiseuille equation \[\frac{16 \mu}{\rho} \] and is valid for $Re < 2100$.\[f = \frac{16}{Re} = \frac{16 \mu}{Du \rho} \] (19.15)

For turbulent flow, the data have been fit to equations. One such equation is the Pavlov equation ([7] [cited in Levenspiel [8]]):
\begin{equation}
\frac{1}{f^{0.5}} = -4 \log_{10} \left[\frac{e}{3.7D} + \left(\frac{6.81}{Re} \right)^{0.9} \right] \end{equation} (19.16)

The Pavlov equation provides results within a few percent of the measured data. There are more accurate equations; however, they are not explicit in the friction factor. Any of these curve fits provides significantly more accuracy than reading a graph.

For flow in pipes containing valves, elbows, and other pipe fittings, there are two common methods for including the additional frictional losses created by this equipment. One is the equivalent length method, whereby additional pipe length is added to the value of L in Equation (19.14). The other method is the velocity head method, in which a value (K_i) is assigned to each valve, fitting, and so on, and an additional frictional loss term is added to the frictional loss term in Equation (19.14). These terms are of the form
\begin{equation}
\sum_{i} \frac{K_i u_i^2}{2} \end{equation} (19.17)

where the index i indicates a sum over all valves, elbows, and similar components in the system. If there are different pipe diameters within the system, the velocity in Equation (19.17) is specific to each section of pipe, and a term for each section of pipe must be included. It should be noted that the equivalent K_i value for straight pipe (K_{pipe}) is given by
\begin{equation}
K_{pipe} = \frac{4 \beta L}{D} \end{equation} (19.18)

Tables 19.2 and 19.3 show equivalent lengths and K_i values for some common items found in pipe networks, for turbulent flow and for laminar flow, respectively. The values are different for laminar and turbulent flow. Darby [9] presents analytical expressions for the K values that can be used for more exact calculations.

Another common situation involves frictional loss in a packed bed, that is, a vessel packed with solids. One application is if the solids are catalysts, making the packed bed a reactor. The frictional loss term for packed beds is obtained from the Ergun equation, which yields a friction term for a packed bed as
\begin{equation}
\varepsilon_f = \frac{L u_i^2 (1-\varepsilon)}{u_i^2 D_p} \left[\frac{150(1-\varepsilon)\mu}{D_p u_i \rho} + 1.75 \right] \end{equation} (19.19)

where u_i is the superficial velocity (based on pipe diameter, not particle diameter), D_p is the particle diameter (assumed spherical here; corrections are available for nonspherical shape), and ε is the packing void fraction, which is the volume fraction in the packed bed not occupied by solids.
When Equation (19.19) is used in the mechanical energy balance, one unknown parameter, such as velocity, pressure drop, or particle diameter, can be obtained.

For incompressible flow in packed beds, the Ergun equation, Equation (19.19), is used for the friction term in the mechanical energy balance.

For the expansion and contraction losses, \(A_2 \) is the cross-sectional area of the pipe, subscript 1 is the upstream area, and subscript 2 is the downstream area.

<table>
<thead>
<tr>
<th>Type of Fitting or Valve</th>
<th>Frictional Loss, Number of Velocity Heads, (K_f)</th>
<th>Frictional Loss, Equivalent Length of Straight Pipe, in Pipe Diameters, (L_{eq}/D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45° elbow</td>
<td>0.35</td>
<td>17</td>
</tr>
<tr>
<td>90° elbow</td>
<td>0.75</td>
<td>35</td>
</tr>
<tr>
<td>Tee</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Return bend</td>
<td>1.5</td>
<td>75</td>
</tr>
<tr>
<td>Coupling</td>
<td>0.04</td>
<td>2</td>
</tr>
<tr>
<td>Union</td>
<td>0.04</td>
<td>2</td>
</tr>
<tr>
<td>Gate valve, wide open</td>
<td>0.17</td>
<td>9</td>
</tr>
<tr>
<td>Gate valve, half open</td>
<td>4.5</td>
<td>225</td>
</tr>
<tr>
<td>Globe valve, wide open</td>
<td>6.0</td>
<td>300</td>
</tr>
<tr>
<td>Globe valve, half open</td>
<td>9.5</td>
<td>475</td>
</tr>
<tr>
<td>Angle valve, wide open</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>Check valve, ball</td>
<td>70.0</td>
<td>3500</td>
</tr>
<tr>
<td>Check valve, swing</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>Contraction (A_2 << A_1)</td>
<td>(0.55(1 - A_2/A_1))</td>
<td>(27.5(1 - A_2/A_1))</td>
</tr>
<tr>
<td>Expansion (A_1 << A_2)</td>
<td>((1 - A_1/A_2)^2)</td>
<td>(50(1 - A_1/A_2)^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reynolds number</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>1000</th>
<th>Turbulent</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° elbow</td>
<td>17</td>
<td>7</td>
<td>2.5</td>
<td>1.2</td>
<td>0.85</td>
<td>0.75</td>
</tr>
<tr>
<td>Tee</td>
<td>9</td>
<td>4.8</td>
<td>3.0</td>
<td>2.0</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Globe valve</td>
<td>28</td>
<td>22</td>
<td>17</td>
<td>14</td>
<td>10</td>
<td>6.0</td>
</tr>
<tr>
<td>Check valve, swing</td>
<td>55</td>
<td>17</td>
<td>9</td>
<td>5.8</td>
<td>3.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

19.3.2 Incompressible Flow

19.3.2.1 Single-Pipe Systems

Incompressible flow problems fall into three categories:

1. Any parameter unknown in the mechanical energy balance other than velocity (flowrate) or diameter
2. Unknown velocity (flowrate)
3. Unknown diameter

For turbulent flow problems with any unknown other than velocity (or flowrate) or diameter, in the mechanical energy balance, Equation (19.5), there is a second unknown: the friction factor. The friction factor can be calculated from Equation (19.15). The solution method can use a sequential calculation, solving Equation (19.5) for the unknown once the friction factor is calculated. If there are valves, elbows, and so on, the length term in Equation (19.15) can be adjusted appropriately or Equation (19.17) can be used. Alternatively, Equations (19.14) and (19.16) can be solved simultaneously to yield all the unknowns. Example 19.5 shows both of these calculation methods. For laminar flow problems, Equation (19.15) can be combined with Equation (19.14) in the mechanical energy balance to solve any problem analytically.

For turbulent flow, if the velocity is unknown, Equations (19.5) and (19.15) must be solved simultaneously for the velocity or flowrate and the friction factor. When solving for a velocity directly, if the pump work term must be included, it is necessary to express the mass flowrate in terms of velocity. If solving for the volumetric flowrate, the second equality in Equation (19.13) must be used, and if a kinetic energy term is required in the mechanical energy balance, the velocities must be expressed in terms of volumetric flowrate. In the friction factor equation, the Reynolds number also needs to be expressed in terms of the volumetric flowrate as follows:

\[
Re = \frac{Du\rho}{\mu} = \frac{Dp \psi}{\mu L} = \frac{Dp}{\mu \pi D^2} = \frac{4\nu p}{\pi D \mu} \tag{19.20}
\]

For laminar flow, an analytical solution is possible simply by using Equation (19.14) for the friction factor in the mechanical energy balance.

For turbulent flow, if the diameter is unknown, Equations (19.5) and (19.13) (second equality involving flowrate and diameter to the fifth power) must be solved simultaneously, using Equation (19.20) for the Reynolds number. For laminar flow, an analytical solution may once again be possible by using Equation (19.12) for the friction factor in the mechanical energy balance. If kinetic energy terms are involved, an unknown diameter will appear when expressing velocity in terms of flowrate. If minor losses are involved, the equivalent length will include a diameter term, and the K-value method will include a diameter in the conversion between flowrate and velocity.

Examples 19.4 and 19.5 illustrate the methods for solving these types of problems.

Example 19.4

Consider a physical situation similar to that in Example 19.2. The flowrate between tanks is 10 lb/sec. The source-tank level is 10 ft off of the ground, and the discharge-tank level is 50 ft off of the ground. For this example, both tanks are open to the atmosphere. The suction-side pipe is 2-in, schedule-40, commercial steel, and the discharge-side pipe is 1.5-in, schedule-40, commercial steel. The length of the suction line is 25 ft, and the length of the discharge line is 60 ft. The pump efficiency is 75%. Losses due to fittings, expansions, and contractions may be assumed negligible for this problem.
a. Determine the required horsepower of the pump.
b. Determine the pressures before and after the pump.

Solution

a. The physical situation is depicted in Figure E19.4.

For the control volume of the fluid in both tanks, the pipes, and the pump, the mechanical energy balance reduces to

\[g\Delta z + \epsilon_f \eta + \epsilon_f \eta = 0 \]

(E19.4a)

The pressure term is zero, because both tanks are open to the atmosphere \((P_1 = P_2 = 1 \text{ atm})\).

The kinetic energy term is zero, because the velocities of the fluid at the surfaces of both tanks are assumed to be zero. There are two friction terms, one for the suction side of the pump and one for the discharge side of the pump, because the friction factors are different due to the different pipe diameters.

![Figure E19.4](image)

To calculate the friction terms, the Reynolds numbers must be calculated first for each section to determine whether the flow is laminar or turbulent. Since a temperature is not provided, the density is assumed to be 62.4 lb/ft³, and the viscosity is assumed to be 1 cP = 6.72 \times 10^{-4} \text{ lb/ft/sec}.

Using Table 19.1 for the schedule pipe diameter and cross-sectional area, the Reynolds number for the suction side is

\[\text{Re} = \frac{D \rho \nu}{\mu} = \frac{(2.067/12 \text{ ft})(10 \text{ lb/sec})}{(0.0233 \text{ ft}^2)(62.4 \text{ lb/ft}^3)(6.72 \times 10^{-4} \text{ lb/ft/sec})} = 110,000 \]

(E19.4b)

Similarly, the Reynolds number for the discharge side is 141,200. Therefore, the flow is turbulent in both sections of pipe. The friction factor is now calculated for each section of pipe. For the suction side, with commercial-steel pipe \((\epsilon = 0.0018 \text{ in from the top of Figure 19.6})\),

\[\frac{1}{f^{0.5}} = -4 \log_{10} \left[\frac{0.0018 \text{ in}}{3.7(2.067 \text{ in})} + \left(\frac{6.81}{110,000} \right)^{0.8} \right] \]

(E19.4c)

so \(f_{\text{suct}} = 0.0054\). Similarly, \(f_{\text{disch}} = 0.0055\). Now, the mechanical energy balance on the entire system is used to solve for the pump power:
Solving Equation (E19.4d) gives $W_3 = 1.5 \text{ hp}$. If the contribution of each term is enumerated, 0.97 hp is to overcome the potential energy and 0.48 hp is to overcome the discharge line friction, with 0.056 hp to overcome the suction line friction. Generally, potential energy differences and pressure differences are more significant than frictional losses.

b. To obtain the pressure on the suction side of the pump, the mechanical energy balance is written on the control volume of the fluid in the tank and pipes before the pump.

\[
\frac{p_3 - p_1}{\rho} + \frac{u_1^2}{2} + g \Delta z + \epsilon_j = 0
\]

(E19.4e)

\[
\frac{p_3 - (14.7) (144) \text{ lb/ft}^2}{62.4 \text{ lb/ft}^2} + \frac{10 \text{ lb/ft}^2}{2(32.2 \text{ lb/ft}^2)} + \frac{(32.2 \text{ ft/sec})^2 (-10 \text{ ft})}{32.2 \text{ lb/ft}^2} + \frac{2(0.0054)(15 \text{ ft})}{(0.00233 \text{ ft}^2 / 62.4 \text{ lb/ft}^2} = 0
\]

(E19.4f)

So, $P_3 = 17.7 \text{ psi}$. It is observed that the height change in the potential energy term is negative, since the point at the pump entrance is below the liquid level in the tank, noting that the z-coordinate system is positive in the upward direction.

There are two ways to obtain the discharge-side pressure. One is to solve the mechanical energy balance on the control volume between Points 4 and 2. The other method is to write the mechanical energy balance on the fluid in the pump (pressure, kinetic energy, and work terms) to obtain the pressure rise in the pump. Both methods give the same result of $P_4 = 28.9 \text{ psi}$.

The discharge line of a pump is at a slightly higher elevation than the suction line, as illustrated. This height difference is small and is neglected in this analysis.

Example 19.5

Determine the required horsepower of the pump in Example 19.4 if the presence of one 90° elbow and one wide-open gate valve in the suction line and one wide-open gate valve, one half-open globe valve, and two 90° elbows in the discharge line are included.

Solution

The solution to this problem starts with Equation (E19.4d). Friction terms must be added for each item in each section of pipe. Using the equivalent length method for the suction line, $L_{eq} = 25 \text{ ft} + (2.067/12 \text{ ft})$.
(35 + 9 + 27.5) = 37.3 ft, where the equivalent length terms for the elbow, gate valve, and contraction upon leaving the source tank, respectively, are obtained from Table 19.2. For the discharge line, \(L_q = 60 \text{ ft} + (1.61/12 \text{ ft}) (2(35) + 9 + 475 + 50) = 141.04 \text{ ft} \), where the equivalent length terms are for the two elbows, gate valve, globe valve, and expansion upon entering the destination tank, respectively. In terms of friction, these items add significantly to the frictional losses, especially the half-open globe valve in the discharge line. The result is that \(W_s = 2.71 \text{ hp} \).

It is also possible to use the velocity heads method. For the suction side, once again referring to Table 19.2, \(\Sigma K_i = 0.75 + 0.17 + 0.55 = 1.47 \), so a term of \(1.47 u_f^2 / 2/32.2 \) is added to the mechanical energy balance. For the discharge side, \(K = 2(0.75) + 0.17 + 9.5 + 1 = 12.17 \), so a term of \(12.17 u_f^2 / 2/32.2 \) is added to the mechanical energy balance. The result is 2.12 hp, which illustrates that the two methods do not give exactly the same results. The difference is because both methods are empirical and are subject to uncertainties. Either method is within the typical tolerance of a design specification. To provide flexibility and since pumps are typically available at fixed values, at least a 3 hp pump would probably be used here, and valves would be used to adjust the flowrate to the desired value.

Example 19.6

A fuel oil \((\mu = 70 \times 10^{-3} \text{ kg/m/s}, \text{SG} = 0.9)\) is pumped through 2.5-in, schedule-40 pipe for 500 m at 3 kg/s. The discharge point is 5 m above the inlet, and the source and destination are both at 101 kPa. If the pump is 80% efficient, what power is required?

Solution

The situation is shown in Figure E19.6.

![Figure E19.6](image)

The control volume is the fluid in the pipe between the source and destination. The mechanical energy balance contains only the potential energy, friction, and work terms, since there is only one pipe (velocity constant) and since the pressures are identical at the source and destination. The mechanical energy balance is

\[
\eta \Delta \gamma + c - \frac{\eta_p W}{m} = 0 \tag{E19.6a}
\]

As in Example 19.4, the Reynolds number should be calculated first:

\[
Re = \frac{D u p}{\mu} = \frac{(0.06271 \text{ m}) \left(\frac{3 \text{ kg/s}}{(0.003089 \text{ m}^2)(900 \text{ kg/m}^3)} \right) (900 \text{ kg/m}^3)}{70 \times 10^{-3} \text{ kg/m/s}} = 870 \tag{E19.6b}
\]
Therefore, the flow is laminar, and the friction factor \(f = 16/\text{Re} \). A hint that the flow might be laminar is that the fluid is 70 times more viscous than water. This emphasizes the need to check the Reynolds number before proceeding.

The mechanical energy balance is then

\[
(9.8 \text{ m/s}^2)(5 \text{ m}) + 2 \left[\frac{16}{870} \right] (500 \text{ m}) \left(\frac{3 \text{ kg/s}}{(0.003089 \text{ m}^2/\text{kg} \cdot \text{s}) (900 \text{ kg/m}^3)} \right)^2 \left(\frac{0.06271 \text{ m}}{3 \text{ kg/s}} \right) 0.8 \text{W} = 0 \quad (E19.6c)
\]

which gives \(\dot{W} = 1464 \text{ W} \).

Example 19.7

Water flows from a constant-level tank at atmospheric pressure through 8 m of 1-in, schedule-40, commercial-steel pipe. It discharges to atmosphere 4 m below the level in the source tank. Calculate the mass and volumetric flowrates, neglecting entrance and exit losses.

Solution

Since the flowrate is unknown, the velocity is unknown, so the Reynolds number cannot be calculated, which means that the friction factor cannot be calculated initially. A simultaneous solution of the friction factor equation and the mechanical energy balance is necessary. Since the fluid is water, turbulent flow will be assumed, but it must be checked once the velocity or flowrate has been calculated.

The control volume is the fluid in the tank and the discharge pipe. In Figure E19.7, Point 1 is the level in the tank, which is at zero velocity, and Point 2 is the pipe discharge to the atmosphere.

The mechanical energy balance reduces to

\[
\frac{u_1^2}{2} + g\Delta z + \frac{2 f u_1^2}{D} = 0 = \frac{u_2^2}{2} + (9.8 \text{ m/s}^2)(-4 \text{ m}) + 2 f (8 \text{ m}) \frac{u_2^2}{0.02664 \text{ m}} \quad (E19.7a)
\]

and the friction factor is

\[
\frac{1}{f^{0.8}} = -4 \log_{10} \left[\frac{4.6 \times 10^{-3} \text{ m}}{3.7(0.02664 \text{ m})} \left(\frac{6.81(10^{-3} \text{ kg/m/s})}{(0.02664 \text{ m})(u_2)(1000 \text{ kg/m}^3)} \right)^{0.8} \right] \quad (E19.7b)
\]

Equations (E19.7a) and (E19.7b) are solved simultaneously to give \(f = 0.0062 \) and \(u_2 = 3.04 \text{ m/s} \). Using the relationships between velocity, volumetric flowrate, and mass flowrate, the results are
\[\dot{v}_2 = 1.69 \times 10^{-3} \text{ m}^3/\text{s} \quad \text{and} \quad \dot{m} = 1.69 \text{ kg/s} \] Now, the Reynolds number must be checked using the calculated velocity, and \(Re = 80,960 \), so the turbulent flow assumption is valid.

Example 19.8

Number 6 fuel oil \((\mu = 800 \text{ cP}, \rho = 62 \text{ lb/ft}^3)\) flows in a 1.5-in, schedule-40 pipe over a distance of 1000 ft. The discharge point is 20 ft above the inlet, and the source and discharge are both at 1 atm. A 15 hp pump that is 75% efficient is used. What is the flowrate in the pipe?

Solution

The mechanical energy balance reduces to

\[
\pi \eta \rho \Delta + \frac{32 \dot{v}^2}{\pi^2 D^4} - \frac{\eta W_s}{\rho \dot{v}} = 0
\]

(E19.8a)

The friction expression is in terms of the volumetric flowrate, and in the third term, the mass flowrate in the denominator is also expressed in terms of the volumetric flowrate. The volumetric flowrate is the unknown variable. Given the high viscosity, laminar flow is assumed. This assumption must be checked once a flowrate is calculated. For laminar flow, since \(f = \frac{16}{Re} \), Equation (E19.8a) becomes

\[
\pi \mu \rho \Delta + \frac{32 \dot{v}^2}{\pi^2 D^4} - \frac{16 \mu}{4 \rho \dot{v}} = 0
\]

(E19.8b)

where the fourth equality in Equation (19.20) is used for the Reynolds number. All terms are known other than the volumetric flowrate, so

\[
\frac{32 \dot{v}^2}{\pi D^4} - \frac{128 \dot{v} \mu}{\pi
ho \dot{v}} + \frac{128 \dot{v} \mu D}{\pi \rho \dot{v}} = 0
\]

(E19.8c)

The solution is \(\dot{v} = 0.054 \text{ ft}^3/\text{sec} \). Checking the Reynolds number,

\[
Re = \frac{4 \dot{v} \rho}{\pi D \mu} = \frac{4 \times 0.054 \text{ ft}^3/\text{sec} \times 62 \text{ lb/ft}^3}{\pi \times \frac{1.610}{12 \text{ in/ft}} \times 800 \text{ cP}} = 59.1
\]

(E19.8d)

so the flow is indeed laminar.

19.3.2 Multiple-Pipe Systems

For complex, multiple-pipe systems, including branching or mixing pipe systems, as illustrated in Figure 19.7, there are two sets of key relationships.

For pipes in series, the mass flowrate is constant and the pressure differences are additive:

\[\dot{m}_1 = \dot{m}_2 = \dot{m}_3 \quad (19.21) \]

\[\Delta P = \Delta P_1 + \Delta P_2 + \Delta P_3 \quad (19.22) \]
For pipes in parallel, the mass flowrates are additive and the pressure differences are equal:

\[\dot{m} = \dot{m}_1 + \dot{m}_2 = \dot{m}_3 \]
(19.23)

\[\Delta P_1 = \Delta P_2 = \Delta P_3 \]
(19.24)

Equation (19.21) is just the mass balance; the mass flowrate through each section must be constant. Equation (19.22) just means that the pressure drops in all sections in series are additive.

In the case of parallel flow, Equation (19.23) means that the mass flowrates in and out of the parallel section are additive, since mass must be conserved. Equation (19.24) means that the pressure drops in parallel sections are equal. This is because mixing streams must be designed to be at the same pressure, or the flowrates will readjust so the pressures at the mixing point are identical. This concept is discussed in more detail later.

The solution method is to write all of the relevant equations, including the mechanical energy balance, friction factor expression, and mass balance, along with the appropriate constraints from Equations (19.21) through (19.24), and solve the equations simultaneously. It is understood that this method applies to any number of pipes in series or parallel.

Example 19.9

Water flows through a pipe, splits into two parallel pipes, and then the fluids mix into another single pipe, as in Figure 19.7(b). All piping is commercial steel. The equivalent length of Branch 1 is 75 m, and the equivalent length of Branch 2 is 50 m. The elevation at the split point is the same as the elevation at the mixing point. Branch 1 is 2-in, schedule-40 pipe, and Branch 2 is 1.5-in, schedule-40 pipe. The pressure drop across Branch 1 is fixed at 100 kPa. Determine the volumetric flowrate in each branch and the total volumetric flowrate. What information could be obtained if the pressure drop was not provided?

Solution

The mechanical energy balance for both sections reduces to

\[\frac{\Delta P_i}{\rho} + \frac{2f_iL_i u_i^2}{D_i} = 0 \]

(E19.9a)

where the subscript \(i \) denotes a parallel section of pipe. The kinetic energy terms are not present in Equation (E19.9a) because the control volume is the parallel pipes not including the feed pipe, the mixing point, the split point, and the discharge pipe. There are four unknowns, the friction factor
and velocity in each section. The mechanical energy balance for each section is Equation (E19.9a), and there are two expressions for the friction factor, so the problem can be solved. Because the two branches are in parallel and then mix, the pressure drop in each section is the same, as shown in Equation (19.24), and it is negative, since the downstream pressure is less than the upstream pressure. Initially, turbulent flow will be assumed. The equations are

\[
\begin{align*}
-100,000 \text{ Pa} &\quad \frac{f_1 (75 \text{ m}) u_1^2}{0.0525 \text{ m}} = 0 \quad \text{(E19.9b)} \\
-100,000 \text{ Pa} &\quad \frac{f_2 (50 \text{ m}) u_2^2}{0.04089 \text{ m}} = 0 \quad \text{(E19.9c)} \\
\frac{1}{f_1^{0.5}} &\quad = -4 \log_{10} \left[\frac{4.6 \times 10^{-5} \text{ m}}{3.7(0.0525 \text{ m})} \cdot \left(\frac{6.81(10^{-3} \text{ kg/m/s})}{(0.0525 \text{ m})/u_1 / (1000 \text{ kg/m}^3)} \right)^{0.9} \right] \quad \text{(E19.9d)} \\
\frac{1}{f_2^{0.5}} &\quad = -4 \log_{10} \left[\frac{4.6 \times 10^{-5} \text{ m}}{3.7(0.04089 \text{ m})} \cdot \left(\frac{6.81(10^{-3} \text{ kg/m/s})}{(0.04089 \text{ m})/u_2 / (1000 \text{ kg/m}^3)} \right)^{0.9} \right] \quad \text{(E19.9e)}
\end{align*}
\]

Solving Equations (E19.9b) to (E19.9e) simultaneously gives \(f_1 = 0.0053, u_1 = 2.57 \text{ m/s}, f_2 = 0.0056, u_2 = 2.69 \text{ m/s} \). The volumetric flow rates are \(\dot{v}_1 = 0.0056 \text{ m}^3/\text{s} \) and \(\dot{v}_2 = 0.0035 \text{ m}^3/\text{s} \). While Branch 2 is shorter, the smaller diameter has a stronger effect on the friction, as seen by the fifth-power dependence in Equation (19.14), so Branch 2 has a smaller flow rate.

Finally, the Reynolds numbers must be calculated to prove that the flow is turbulent. The results are \(R_{e1} = 134,700 \), and \(R_{e2} = 110,160 \), so the flow is indeed turbulent.

When streams mix, the pressure will be the same. If a pipe system is designed such that the pressures at a mixing point are not the same, the flow rates will adjust (as illustrated in Example 19.9) to make the mixing-point pressures identical, and the flow rates will not be as designed. This is important because steady-state process simulators allow streams to be mixed at different pressures, and the lowest pressure is taken as the outlet pressure unless an outlet pressure or a mixing-point pressure drop is specified. Just because steady-state process simulators allow this to be done does not make it physically correct. Valves are used to reduce higher pressures to make the pressures equal at a mixing point. When using simulators, it is the user’s responsibility to include appropriate devices to make the simulation correspond to reality.

19.3.3 Compressible Flow

For compressible flow, the integral in the mechanical energy balance in Equation (19.5) must be evaluated, since the density is not constant. There are two limiting cases for frictional flow through a pipe section: isothermal flow and adiabatic flow. For isothermal flow of an ideal gas, the density is expressed as

\[
\rho = \frac{PM}{RT} \quad \text{(19.25)}
\]

where \(M \) is the molecular weight, and the integral can be evaluated. For adiabatic, reversible flow of an ideal gas, the temperature in Equation (19.25) is expressed in terms of pressure to evaluate the integral in Equation (19.5) using a relationship obtained from thermodynamics:

\[
T = T_1 \left(\frac{P}{P_1} \right)^{\gamma^{-1}} \quad \text{(19.26)}
\]
where
\[\gamma \frac{C_p}{C_v} = (19.27) \]
where \(C_p \) and \(C_v \) are the constant pressure and constant volume heat capacities, respectively. The results are expressed in terms of the superficial mass velocity, \(G \). For isothermal, turbulent flow, the result, presented without derivation, is
\[\frac{M}{2RT} \left(p_2^2 - p_1^2 \right) + G^2 \ln \left(\frac{p_1}{p_2} \right) + \frac{2 \beta \mu \gamma G^2}{D} = 0 \]
which can be solved for an unknown pressure, superficial mass velocity (\(G \)), diameter (by expressing superficial mass velocity in terms of diameter), or length. For isothermal, laminar flow, the result is
\[\frac{M}{4RT} \left(p_2^2 - p_1^2 \right) + G^2 \ln \left(\frac{p_1}{p_2} \right) + \frac{16 \mu L_{eq}}{D^2} = 0 \]
Equation (19.29) is a quadratic in \(G \), or if \(G \) is known, any other variable can be found. For adiabatic, turbulent flow, the result is
\[\frac{M}{2G^2RT} \left(p_2^2 - p_1^2 \right) + \frac{L(1 - \epsilon)}{D_{eq} \rho} \left[\frac{150 \mu (1 - \epsilon)}{D_{eq} \rho} + 1.75 \right] = 0 \]
For compressible flow in packed beds, the Ergun equation, Equation (19.19), is used for the friction term, and the pressure term in the mechanical energy balance is integrated assuming either isothermal or adiabatic flow. For isothermal flow, the result is
\[\frac{\gamma M}{\gamma + 1 RT_1} \left(p_2^2 - p_1^2 \right) \left[1 - \left(\frac{p_2}{p_1} \right)^{\gamma+1} \right] - \frac{2 \beta \mu \gamma}{D} \ln \left(\frac{p_1}{p_2} \right) = 0 \]
where subscript 1 is upstream and subscript 2 is downstream. Quite often, it is stated that the mechanical energy balance for packed beds, which is the Ergun equation in Equation (19.19), can be used for gases as long as the pressure drop is less than 10% of the average pressure. However, with the computational tools now available, there is really no need for that approximation.

In Equations (19.28) through (19.33), it is assumed that the flow is in a pipe; therefore, there is no work term. The potential energy term is neglected because it is generally negligible for gases due to their low density.

19.3.4 Choked Flow

In evaluating the flow of compressible fluids, there exists a limit for the maximum velocity of the fluid (gas), that is, the speed of sound in the fluid. As an example, consider a pressurized gas in a supply tank (Tank 1) that is connected to a destination tank (Tank 2) via a pipe. Initially, Tank 1 and Tank 2 are at the same pressure, so no gas flows between them. Gradually, the pressure in Tank 2 is reduced and gas starts to flow from Tank 1 to Tank 2. It seems logical that the lower the pressure in Tank 2, the higher the gas flow rate is and the higher is the velocity of gas entering Tank 2. However, at some critical pressure for Tank 2, \(P_2^* \), the flow of gas into Tank 2, reaches sonic velocity (the speed of sound). Decreasing the tank pressure below this critical pressure has no effect on
19.3 Frictional Pipe Flow

the exit velocity of the gas entering Tank 2; that is, it remains constant at the speed of sound. This phenomenon of choked flow occurs because the change in downstream pressure must propagate upstream for the change in flow to occur. The speed at which this propagation occurs is the speed of sound. Thus, when the gas velocity is at the speed of sound, any further decrease in downstream pressure cannot be propagated upstream, and the flow cannot increase further. Therefore, there is a critical (maximum) superficial mass velocity of gas, \(G^* \), that can be transferred from Tank 1 to Tank 2 through the pipe. The relationships for critical flow in pipes under turbulent flow conditions are as follows:

Isothermal flow:

\[
G^* = \frac{P_2^*}{P_1} \sqrt{\frac{\rho_1}{\rho_2}} \tag{19.32}
\]

and

\[
\frac{4 \beta_{\infty}}{D} = \left(\frac{P_1}{P_2} \right)^2 - 2 \ln \left(\frac{P_1}{P_2} \right) - 1 \tag{19.33}
\]

Adiabatic flow:

\[
G^* = \sqrt{\gamma \rho_1 P_1} \left(\frac{P_2^*}{P_1} \right)^{(\gamma+1)/2\gamma} \tag{19.34}
\]

and

\[
\frac{4 \beta_{\infty}}{D} = 2 \left[\frac{\gamma+1}{\gamma} \frac{P_1}{P_2} \right]^{(\gamma+1)/\gamma} - 1 - 2 \ln \left(\frac{P_1}{P_2} \right) \tag{19.35}
\]

When evaluating compressible flows, a check for critical flow conditions in the system should always be done. Usually, critical flow is not an issue when \(P_2 > 0.5 P_1 \), but it is always a good idea to check. The use of Equations (19.32) through (19.35) is illustrated in Example 19.10.

Example 19.10

A fuel gas has an average molecular weight of 18, a viscosity of \(10^{-5} \) kg/m s, and a \(\gamma \) value of 1.4. It is sent to neighboring industrial users through 4-in, schedule-40, commercial-steel pipe. One such pipeline is 100 m long. The pressure at the plant exit is 1 MPa, and the required pressure at the receiver's plant is 500 kPa. It is estimated that the gas maintains a constant temperature of 75°C over the entire length of 100 m. Estimate the volumetric flowrate of the fuel gas, metered at 1 atm and 60°C.

Solution

The conditions for critical flow should be checked first, and this requires the simultaneous solution of Equations (19.32) and (19.33) to find \(P_2^* \). An approximation can be made by assuming that the flow is fully developed turbulent and then checking this assumption. For fully developed turbulent flow, from Equation (19.16),

\[
\frac{1}{f} = -4 \log_{10} \left[\frac{\epsilon}{3.7D} \right] = -4 \log_{10} \left[\frac{4.6 \times 10^{-5} \text{ m}}{3.7(0.0123 \text{ m})} \right] \Rightarrow \frac{1}{f} = 0.00408 \tag{E19.10a}
\]
Substituting in Equation (19.33) gives

\[
\frac{4R}{D} \left(\frac{0.00408(100)}{0.10226} \right) = \left(\frac{P_1}{P_2^*} \right)^2 - 2 \ln \left(\frac{P_1}{P_2^*} \right) - 1
\]

(E19.10b)

Solving gives \(P_2^* = 223.9 \text{ kPa} < 500 \text{ kPa} \); therefore, the flow is not choked. The actual friction factor is within a few percent of that calculated in Equation (E19.10a), and this difference does not affect the result regarding whether the flow is choked.

Equation (19.28) can now be solved for the superficial mass velocity:

\[
G = \left[\frac{M}{2RT} \left(P_1^2 - P_2^* \right) \right]^{0.5}
\]

(E19.10c)

All terms in Equation (E19.10c) are given other than the friction factor, which must be calculated. So,

\[
G = \left[\frac{18 \text{ kg/kmol}}{2(8314 \text{ m}^3/\text{Pa/kmol}/\text{K})(348 \text{ K})} \left(\frac{10^6 \text{ Pa}}{5 \times 10^5 \text{ Pa}} \right)^2 \right]^{0.5}
\]

(E19.10d)

The friction factor, using the \(\varepsilon \) value for commercial steel at the top of Figure 19.6, is

\[
\frac{1}{f} = 4 \log_{10} \left[\frac{4.6 \times 10^{-5} \text{ m}}{3.7(0.10226 \text{ m})} \left(\frac{6.81(10^{-3} \text{ kg/m/s})}{0.10226 \text{ m}G} \right)^{0.5} \right]
\]

(E19.10e)

where the Reynolds number is expressed as \(DG/\mu \). Equations (E19.10d) and (E19.10e) can be solved simultaneously for \(G \). A possible approximation is to assume fully turbulent flow, as was done when checking for choked flow. In that case, the Reynolds number in the Pavlov equation is assumed to be large, so the friction factor asymptotically approaches a value calculated from only the roughness term. In this case, \(f = 0.004077 \). Then, from Equation (E19.10d), \(G = 518.8 \text{ kg/m}^2/\text{s} \). Simultaneous solution of Equations (E19.10d) and (E19.10e) yields \(f = 0.00411 \) and \(G = 516.7 \text{ kg/m}^2/\text{s} \), so the fully turbulent approximation is reasonable, even though an exact solution is possible. The Reynolds number is \(DG/\mu = 5.28 \times 10^6 \), which, from Figure 19.6, is in the fully turbulent, constant-friction-factor region.

Since \(\dot{V} = m/A = \rho \dot{V}/A \), using the exact solution, with the density calculated using the ideal gas law \(\rho = PM/RT \),

\[
\dot{V} = \left(\frac{516.7 \text{ kg/m}^2/\text{s} \times 0.0082124 \text{ m}^3/\text{kg}}{101,325 \text{ Pa} \times 18 \text{ kg/kmol}} \right) = 6.44 \text{ m}^3/\text{s}
\]

(E19.10f)

It is observed that the temperature and pressure used to calculate the density in Equation (E19.10d) are not the conditions in the pipeline, because the flow rate required is at 1 atm and 60°C. Since the density of gases is a function of temperature and pressure obtained through an equation of state, a volumetric flow rate must have temperature and pressure specified. In the gas industry, where American Engineering units are common, the standard conditions, known as standard cubic feet (SCF), are at 1 atm and 60°F.
If the second tank were at a pressure of $P_2 = 223.9 \text{kPa}$ or less, then the superficial mass velocity would be at its maximum value, given by Equation (19.32) (where $\rho_1 = 6.5016 \text{ kg/m}^3$):

$$G^* = \frac{P_2^*}{P_1^*} \sqrt{\frac{P_2^*}{\rho_1}} = \frac{223,900}{10^6} \sqrt{(10^6)(6.5016)} = 570.9 \text{ kg/m}^3/\text{s}$$

19.4 OTHER FLOW SITUATIONS

19.4.1 Flow Past Submerged Objects

Objects moving in fluids and fluids moving past stationary, submerged objects are similar situations that are described by the force balance. When an object is released in a stationary fluid, it will either fall or rise, depending on the relative densities of the object and the fluid. The object will accelerate and reach a terminal velocity. The period of acceleration is found through an unsteady-state force balance, which is

$$m \frac{du}{dt} = -(\rho_s - \rho) g V + F_{\text{drag}}$$ \hspace{1cm} (19.36)

where ρ_s is the object density, and ρ is the fluid density. For solid objects, the density difference most likely will be positive, so the object moves downward due to gravity and the drag force resists that motion—hence the opposite signs of the two terms on the right-hand side of Equation (19.36). However, for a gas bubble in a liquid, for example, the density difference is negative, so the bubble rises and the drag force resists that motion. Since velocity is generally defined as being positive moving away from gravity, because that is the positive direction of the coordinate system, the signs reconcile.

For a sphere, the mass is

$$m = \rho_s V = \rho_s \frac{\pi D_s^3}{6}$$ \hspace{1cm} (19.37)

where D_s is the sphere diameter, and the volume is defined in Equation (19.37). The drag force on an object is defined as

$$F_{\text{drag}} = C_D \frac{\rho u^2}{2} A_{\text{proj}} = C_D \frac{\rho u^2}{2} \frac{\pi D_s^2}{4}$$ \hspace{1cm} (19.38)

where C_D is a drag coefficient that may be thought of as an analog to the friction factor, A_{proj} is the projected area normal to the direction of flow, and u is the velocity of the object relative to the fluid. For a sphere, the projected area is that of a circle, as shown in the second equality of Equation (19.38). For a cylinder with transverse flow, this area is that of a rectangle. Equation (19.37), Equation (19.38), and the volume of a sphere may be substituted into Equation (19.36), and integration between the limits of zero velocity at time zero and velocity u at time t yields the transient velocity. The transient velocity approaches the terminal velocity at $t \to \infty$, which can also be obtained by solving for velocity in Equation (19.36) when $du/dt = 0$, that is, at steady state, when the sum of the forces on the object equal zero. The terminal velocity is

$$u_t^* = \frac{4(\rho_s - \rho) g D_s}{3C_D \rho}$$ \hspace{1cm} (19.39)
An expression for the drag coefficient is now needed, just as an expression for the friction factor was needed for pipe flow. Similar to pipe flow, there are different flow regimes with different drag coefficients. The Reynolds number for a sphere is defined as
\[\text{Re} = \frac{D_s u t}{\mu} \]
where the density and viscosity are always that of the fluid, and if \(\text{Re} \ll 1 \), which is called creeping flow, this is the Stokes flow regime. Stokes' law, which is a theoretical result, states that the drag force in Equation (19.36) is defined as
\[F_d = 3\pi \mu D_s u_t \] (19.40)
which yields
\[C_D = \frac{24}{\text{Re}} \] (19.41)
Stokes' law must be applied only when it is valid, even though its use makes the mathematical results much simpler. In addition to the Reynolds number constraint, the assumptions involved in Stokes' law are a rigid sphere and that gravity is the only body force. An example of another body force is electrostatic force; therefore, Stokes' law may fail for charged objects. Theoretically, there are two drag force components for flow past an object. This is based on the concept that drag is manifested as a pressure drop. Form drag is caused by flow deviations due to the presence of the object. Since the fluid must change direction to flow around the object, energy is "lost," which is manifested as a pressure drop. Frictional drag is analogous to that in a pipe and is due to the contact between the fluid and the object. In Equation (19.40), two-thirds of the total is due to frictional drag and one-third is due to form drag.

Experimental data are usually used as a means to determine the drag coefficient. There are curve fits for the intermediate region, between creeping flow and the constant value observed for \(1000 < \text{Re} < 200,000 \). Haider and Levenspiel [11] provide a curve fit to the data for all values of \(\text{Re} < 200,000 \):
\[C_D = \frac{24}{\text{Re}} + 3.3643 \text{Re}^{-0.3471} + \frac{0.4601 \text{Re}}{\text{Re} + 2682.5} \] (19.42)
and these results are plotted in Figure 19.8.

Equation (19.42) is not convenient for solving the terminal velocity of a sphere falling in a fluid because an iterative solution is required (see Example 19.11). However, this equation may be reformulated in terms of two other dimensionless variables, \(u_t^* \) and \(D^* \):

\[u_t^* = \left(\frac{4 \text{Re}_t}{3 C_D} \right)^{1/3} = u_t \left[\frac{\rho_j^3}{u (\rho_s - \rho_j) g} \right]^{1/3} \] (19.43)

\[D^* = \left(\frac{3}{4 C_n} \text{Re}_t \right)^{1/3} = D_{th} \left[\frac{\rho_j (\rho_s - \rho_j) g}{\mu^2} \right]^{1/3} \] (19.44)

and

\[u_t^* = \left[\frac{18}{(D^*)^{0.8} + 0.591 (D^*)^{0.5}} \right]^{-1} \] (19.45)
If the properties of the fluid and particle are known, then D^* can be calculated using Equation (19.44), and then Equation (19.45) can be used to determine u_t^*, and finally u_t can be calculated from Equation (19.43). This is illustrated in Example 19.11.

Example 19.11

In a particular sedimentation vessel, small particles (SG = 1.2) are settling in water. The particles have a diameter of 0.2 mm. What is the terminal velocity of the particles?

Solution

Since the particles are small, creeping flow will be assumed initially. Substituting Equation (19.41) into Equation (19.39) yields

$$u_t = \frac{gD^2(\rho_f - \rho)}{18\mu} = \frac{(9.8 \text{ m/s}^2)(2\times10^{-3} \text{ m})^2(200 \text{ kg/m}^3)}{18(10^{-3} \text{ kg/m/s})} = 0.0044 \text{ m/s}$$

(E19.11a)

Checking the Reynolds number,
Chapter 19 Process Fluid Mechanics

\[\text{Re} = \frac{(2 \times 10^{-4} \text{ m})(0.0044 \text{ m/s})(1000 \text{ kg/m}^3)}{10^{-3} \text{ kg/m/s}} = 0.87 \]

(E19.11b)

which is not in the creeping flow regime. Therefore, simultaneous solution of Equations (19.39) and (19.42) is required, and the result is \(u_t = 0.0039 \text{ m/s} \) and \(\text{Re} = 0.78 \).

Alternatively, using Equations (19.43), (19.44), and (19.45),

\[D^* = D_{pb} \left(\frac{\rho_f (\rho_r - \rho_f) g}{\mu^2} \right)^{1/3} \]

\[D^* = \left(2 \times 10^{-5} \text{ m} \right) \left[\frac{(1000)(1200 - 1000)(9.81)}{(1 \times 10^{-3})^2} \right]^{1/3} = 2.504 \]

(E19.11c)

\[u_t^* = \left[\frac{18}{(D^*)^3 + (D^*)^3(0.5)} \right]^{1/3} = \left[\frac{18}{(2.504)^3 + (2.504)^3(0.5)} \right]^{1/3} = 0.3082 \]

(E19.11d)

\[u_t^* = u_t + \left(\frac{1}{2} \right) \left(\frac{18}{(D^*)^3 + (D^*)^3(0.5)} \right) \]

\[u_t = 0.3082 \left[\left(\frac{1 \times 10^{-3}}{200} \right) \left(\frac{9.81}{1000} \right) \right]^{1/3} = 0.00385 \text{ m/s} \]

(E19.11e)

For \(\text{Re} > 2 \times 10^5 \), the phenomenon called \textbf{boundary layer separation} occurs. The drag coefficient in this region is \(C_D = 0.22 \).

With the exception of the boundary layer separation region, Figure 19.8 has about the same shape as Figure 19.6. For low Reynolds numbers, the friction factor and drag coefficient are both inversely proportional to the Reynolds number, though the exact proportionality is different. For large Reynolds numbers, what is generally called \textbf{fully turbulent flow}, the friction factor and drag coefficient both approach constant values.

For nonspherical particles, the determination of the drag coefficient and terminal velocity is more complicated. A major challenge is how to account for particle shape. One method is to define the shape in terms of sphericity. Sphericity is defined as

\[\text{Sphericity} = \Psi = \frac{\text{surface area of sphere}}{\text{same volume}} \]

(19.46)

Then, the diameter of a sphere with the same volume as the particle, \(d_v \), is calculated and used in place of the diameter in Equations (19.37) through (19.42). Care is needed when using sphericity, since particles with quite different shapes but similar sphericities may behave quite differently when falling in a fluid.

\[\text{Example 19.12} \]

Determine the sphericity and \(D_v \) of a cube.

\[\text{Solution} \]

Call the dimension of the cube \(x \). Therefore, \(D_v \) is obtained from
\[\frac{\pi D^3}{6} = x^3 \]
(E19.12a)

\[D_x = \left(\frac{6x^3}{\pi} \right)^{\frac{1}{3}} = 1.241x \]
(E19.12b)

and the sphericity is

\[\psi_{sph} = \frac{\pi D^2}{6x^2} = \frac{\pi (1.241x)^2}{6x^2} = 0.806 \]
(E19.12c)

Haider and Levenspiel (1989) have provided a curve fit for previously published experimental data, which were taken for regular geometric shapes. The drag coefficient for different sphericities is illustrated in Figure 19.9, and the curve-fit equation is

\[C_D = \frac{24}{Re} \left[1 + \left(8.1716e^{-4.0635\psi} \right) Re^{0.09640.3566\psi} \right] + \frac{73.69e^{-5.0748\psi} Re}{Re + 5.378e^{0.2122\psi}} \]
(19.47)

where \(Re = D \nu / \mu \).

The equivalent expression in terms of \(D^* \) and \(u^*_t \) is given as

\[u^*_t \left[\frac{18}{\left(D^* \right)^2} + \frac{2.335 - 1.745\psi}{\left(D^* \right)^{0.5}} \right]^{-1} \text{ with } D^* = D_v \left[\frac{\rho_f (|\rho_f - \rho|) g}{\mu^2} \right]^{1/3} \]
(19.48)

where \(D_v \) is the diameter of a sphere with the same volume as the particle.

Equation (19.39) can be solved for one unknown by using either Equation (19.41) or Equation (19.42) for the drag coefficient. For example, the viscosity of a fluid can be determined by measuring the terminal velocity of a falling sphere. Or, the terminal velocity of an object can be determined if all of the fluid and particle physical properties are known. If the Reynolds number is

Figure 19.9 Drag Coefficient Dependence on Reynolds Number and Sphericity from Haider and Levenspiel (1989), Equation (19.47)
unknown, then the flow regime is unknown. Therefore, depending on the type of problem being solved, judgment may be needed to assume a flow regime, the assumption must be checked, and iterations may be required to get the correct answer.

19.4.2 Fluidized Beds

If fluid flows upward through a packed bed, at a high enough velocity, the particles become buoyant and float in the fluid. For this condition, the upward drag on the particles is equal to the weight of the particles and is called the minimum fluidization velocity, and the particles are said to be fluidized. This is one reason why flow through packed beds is usually downward. The benefits of fluidization are that once the particles are fluidized, they can circulate and the bed of solids mixes. If the upward fluid velocity is sufficiently high, then the bed of particles becomes well mixed (like a continuous stirred tank reactor) and approaches isothermal behavior. For highly exothermic reactions, this property is very desirable. Fluidized beds are often used for such reactions and are discussed in Chapter 22, “Reactors.” Fluidized beds are also used in drying and coating operations where the movement of solids is desirable to increase heat and/or mass transfer. As the fluid velocity upward through the bed of particles increases, the mixing of particles becomes more vigorous and there is a tendency for particles to be flung upward and elutriate from the bed. Therefore, a cyclone is typically part of a fluidized bed to remove the entrained particles and recirculate them to the fluidized bed. Another desirable feature of fluidized beds is that they can be used with very small catalyst particles without a large pressure drop. For very small catalyst particles in a packed bed, the pressure drop becomes very large. An example of such a catalyst is the fluid catalytic cracking catalyst used in petroleum refining to make smaller hydrocarbons from large ones.

The general shape of the pressure drop versus superficial fluid velocity in a fluidized bed is shown in Figure 19.10.

The region to the left of u_{mf} is described by the Ergun equation for packed beds because, before fluidization begins, behavior is that of a packed bed. If the particles were restricted, by, say, placing a wire screen on top of the bed, then the bed would continue to behave as a packed bed beyond the u_{mf}. Assuming that the top of the bed is unrestricted, once there is sufficient upward velocity, and hence upward force, the particles begin to lift. This is called minimum fluidization. At minimum fluidization, the upward force is equal to the weight of the particles. Hence, the frictional force equals the weight of the bed, and the pressure drop remains constant. Quantitatively,
Other Flow Situations

\[-\Delta P_f A_t = V_{\text{solid}} (\rho_s - \rho_f) g = A_h h_{mf} (1 - \epsilon_{mf}) (\rho_s - \rho_f) g\] \hspace{1cm} (19.49)

where the subscript \(mf\) signifies minimum fluidization and \(h_{mf}\) is the height of the bed at minimum fluidization, which for a packed bed is called the length of the bed, \(L\). At the instant at which fluidization begins, the frictional pressure drop is equal to that of a packed bed. Combining Equation (19.19), which is the frictional loss in a packed bed and equals \(-\Delta P_f/\rho\), and Equation (19.49) yields

\[h_{mf} (1 - \epsilon_{mf}) (\rho_s - \rho_f) g = \frac{\rho_s h_{mf} u_{mf}^2 (1 - \epsilon_{mf})}{D_p \epsilon_{mf}^3} \left[\frac{150 \mu (1 - \epsilon_{mf})}{D_p \mu_{mf} \rho_f} + 1.75 \right] \] \hspace{1cm} (19.50)

Rearranging Equation (19.50) and defining two dimensionless groups that characterize the fluid flow in a fluidized bed,

\[\text{Re}_{mf} = \frac{D_p u_{mf} \rho_f}{\mu} \] \hspace{1cm} (19.51)

\[\text{Ar} = \frac{D_p \rho (\rho_s - \rho_f) g}{\mu^2} \] \hspace{1cm} (19.52)

where Equation (19.51) is the particle Reynolds number, which characterizes the flow regime, and Equation (19.52) defines the Archimedes number, which is the ratio of gravitational forces/viscous forces, yields

\[\frac{1.75}{\epsilon_{mf}} \text{Re}_{mf}^2 + \frac{150 (1 - \epsilon_{mf})}{\epsilon_{mf}^3} - \text{Re}_{mf} - \text{Ar} = 0 \] \hspace{1cm} (19.53)

Equation (19.53) is a quadratic in \(\text{Re}_{mf}\); so the minimum fluidization velocity can be obtained if the physical properties of the solid and fluid are known. For nonspherical particles, the result is

\[\frac{1.75 \Psi}{\epsilon_{mf}^3} \text{Re}_{mf}^2 + \frac{150 (1 - \epsilon_{mf})}{\Psi \epsilon_{mf}^3} - \text{Re}_{mf} - \text{Ar} = 0 \] \hspace{1cm} (19.54)

If the void fraction at minimum fluidization, which must be measured, and/or the sphericity are not known, Wen and Yu [12] recommend using

\[\Psi \epsilon_{mf} = \frac{1}{14} \] \hspace{1cm} (19.55)

\[\frac{1 - \epsilon_{mf}}{\Psi^2 \epsilon_{mf}^3} = 11 \] \hspace{1cm} (19.56)

and Equation (19.54) reduces to

\[\text{Re}_{mf} \left[(33.7)^2 + 0.0408 \text{Ar} \right]^{1/2} = 33.7 \] \hspace{1cm} (19.57)

Since the volume of solid particles remains constant, it is possible to relate the bed height and void fraction at different levels of fluidization.

\[h_{mf} (1 - \epsilon_{mf}) = h_f (1 - \epsilon_f) \] \hspace{1cm} (19.58)
Equation (19.58) is understood by multiplying each side of the equation by A_t, the total bed area, so each side of the equation is the volume of particles because $(1 - \varepsilon)$ is the solid fraction, and hA_t is the total bed volume. The operation of fluidized beds above u_{mf} varies considerably on the basis of the size of particles and the superficial velocity of gas. One way to describe the behavior of these beds is through the flow map by Kunii and Levenspiel [13] in Figure 19.11. In Figure 19.11, u^* and D^* refer to the dimensionless velocity and particle size introduced in Section 19.4.1, except that the superficial velocity of the gas through the bed (not the particle terminal velocity) is used in u^*.

It is clear from this figure that operation of fluidized beds can occur over a wide range of operating velocities from u_{mf} to several times the terminal velocity. For turbulent (lying above bubbling beds) and fast fluidized beds, internal and external cyclones must be employed, respectively. The gas and solids flow patterns in all these regimes are very complex and can be found only by experimentation or possibly by using complex computational fluid dynamics codes.

19.4.3 Flowrate Measurement

The traditional method for measuring flowrates is to add a restriction in the flow path and measure the pressure drop. The pressure drop can be related to the velocity and flowrate by the mechanical energy balance. More modern instruments include turbine flow meters that measure flowrate directly and vortex shedding devices.

The types of restrictions used are illustrated in Figure 19.12.

The control volume is fluid between an upstream point, labeled 1, and a point in the obstruction, labeled 2. For turbulent flow, the mechanical energy balance written between these two points is

$$\frac{P_2 - P_1}{\rho} + \frac{u_2^2 - u_1^2}{2} + \epsilon_f = 0$$ \hspace{1cm} (19.59)
The friction term is dropped at this point but is incorporated into the problem through a discharge coefficient, \(C_o \). From Equation (19.3), \(u_1 \) is expressed in terms of \(u_2 \), the cross-sectional areas, and then the diameters; solving for the velocity in the obstruction yields

\[
\rho \nu C_0 \left(\frac{2(P_1 - P_2)}{\rho(1 - \beta^4)} \right)^{0.5}
\]

(19.60)

where

\[
\beta = \frac{D_2}{D_1}
\]

(19.61)

The flowrate can then be obtained by multiplying the velocity in the restriction by the cross-sectional area of the restriction. The term \(C_o \), a discharge coefficient, is added to account for the frictional loss in the restriction. Figure 19.13 shows \(C_o \) as a function of \(\beta \) and the bore (restriction) Reynolds number for an orifice, one of the most common restrictions used. Since \(C_o \) is not known, the asymptotic value of 0.61 for high-bore Reynolds number is assumed, and iterations may be required if the bore Reynolds number is not above about 20,000. This calculation method is illustrated in Example 19.13.

Other flow measurement devices are used. One such device is the rotameter that has a float that moves within a variable area vertical tube. The level of the float in the device is related to the flowrate, as illustrated in Figure 19.14. As the fluid flow increases, the drag on the float increases and it moves up, but the annular flow area around the float also increases. Consequently, the float comes to a new equilibrium position at which its weight is just balanced by the upward drag force of the fluid. Rotameters are still found in laboratories and provide accurate measurements for both gas and liquid flows. While there is a theoretical description of how a rotameter works, it is typically calibrated by measuring the flowrate versus the height of the float for the given fluid of interest.

Measuring pressure differences is automated in a chemical plant through the use of various devices. However, manometers may still be found in laboratories. Manometers work by having an immiscible fluid of higher density than the flowing fluid in a U-shaped tube, with one end of the tube connected to the pipe at Location 1 and the other end connected as close as possible to Location 2. The height difference between the levels of the immiscible fluid is a measure of the pressure difference between Locations 1 and 2. Figure 19.15 illustrates a general manometer, where the pipe in which the fluid is flowing may be inclined.

The manometer is an example of fluid statics, so the pressure at any horizontal location must be the same in each manometer leg. For the pressure at height 3 in Figure 19.15,

\[
P_1 + \rho \lambda g(z_1 - z_3) = P_2 + \rho \lambda g(z_2 - z_3) + \rho g(z_4 - z_3)
\]

(19.62)
Figure 19.13 Orifice Discharged Coefficient (From Miller, R. W., Flow Measurement Engineering Handbook [New York: McGraw-Hill, 1983] [14])

Figure 19.14 Illustration of Rotameter
Equation (19.62) can be rearranged into the "general" manometer equation:

\[P_1 - P_2 + gh(\rho_A - \rho_B) + \rho_B g(z_1 - z_2) = 0 \]

(19.63)

where

\[\Delta h = (z_4 - z_3) \]

(19.64)

The third term in Equation (19.63) is zero if the pipe is horizontal. It is important to understand that \(z_1 - z_2 \) is a difference in vertical distance (height), not a distance along the pipe, and that the coordinate system points upward, so a high height minus a low height is a positive number.

Example 19.13

An orifice having a diameter of 1 in is used to measure the flowrate of an oil (SG = 0.9, \(\mu = 50 \) cP) in a horizontal, 2-in, schedule-40 pipe at 70°F. The pressure drop across the orifice is measured by a mercury (SG = 13.6) manometer, which reads 2.0 cm. Calculate the volumetric flowrate of the oil.

Solution

Two steps are involved. First, the pressure drop is calculated from the manometer information. Then, the flowrate is calculated.

To calculate the pressure drop, Equation (19.62) is used, but since the pipe is horizontal, the third term on the right-hand side is zero. The result is

\[
\frac{32.2 \text{ ft/lb/sec}^2}{32.2 \text{ ft lb/lb sec}^2} \left(\frac{2 \text{ cm}}{1 \text{ in}} \right) \left(\frac{13.6 - 0.9}{62.4 \text{ lb/ft}^3} \right) \left(\frac{\text{ft}}{12 \text{ in}} \right)^{1/2} = 0.361 \text{ psi}
\]

(E19.13a)
Next, the pressure drop is used in Equation (19.60) with the initial assumption that $C_o = 0.61$. So

$$u_2 = 0.61 \left[\frac{2(0.361 \text{ lb/in}^2)(12 \text{ in/ft})^2(32.2 \text{ ft lb/ft}^2/\text{sec}^2)}{0.9(62.4 \text{ lb/ft}^3)\left(1 - \left(\frac{1 \text{ in}}{2.067 \text{ in}}\right)\right)} \right] = 4.84 \text{ ft/sec} \quad \text{(E19.13b)}$$

Now, the bore Reynolds number must be checked.

$$\text{Re} = \frac{(1/12 \text{ ft})(4.84 \text{ ft/sec})(62.4 \text{ lb/ft}^3)}{50 \text{ cP}(6.72 \times 10^{-4} \text{ lb/ft/sec/cP})} = 749 \quad \text{(E19.13c)}$$

From Figure 19.13, with $\beta = 0.48$ and $\text{Re} = 749$, $C_o = 0.71$. Repeating the calculation in Equation (E19.11b) gives $u_2 = 5.63 \text{ ft/sec}$ and $\text{Re} = 872$. Within the error of reading Figure 19.12, $C_o = 0.71$, so the iteration is completed. The volumetric and mass flowrates can now be calculated:

$$\dot{v} = (5.63 \text{ ft/sec})(0.02330 \text{ ft}) = 0.131 \text{ ft}^3/\text{sec} \quad \text{(E19.13d)}$$

$$m = (0.131 \text{ ft}^3/\text{sec})(62.4 \text{ lb/ft}^3) = 8.19 \text{ lb/sec} \quad \text{(E19.13e)}$$

When fluid flows through an orifice, the pressure decreases because the velocity increases through the small cross-sectional area of the orifice. Physically, this is because pressure energy is converted to kinetic energy. This is similar to a nozzle, as illustrated in Example 19.3. Subsequently, when the velocity decreases as the cross-sectional area increases to the total pipe area, the pressure increases again. However, not all of the pressure is “recovered,” due to circulating fluid flow at the pipe-orifice diameter. The permanent pressure loss requires incremental pump power, and that is part of the cost of measuring the flowrate using an orifice or nozzle. The amount of recovered pressure has been correlated as a function of β for different flow measuring devices, and it is illustrated in Figure 19.16.

Example 19.14

For Example 19.13, how much additional power is needed for the permanent pressure loss through the orifice? The pump is 75% efficient.

Solution

For $\beta = 0.5$, from Figure 19.16, the permanent pressure loss is about 73%. From the mechanical energy balance,

$$\frac{0.73(P_1 - P_2)}{\rho} - \frac{\eta_p W_s}{m} = 0 \quad \text{(E19.14a)}$$

$$\frac{0.73(0.361 \text{ lb/in}^2)(12 \text{ in/ft})^2}{0.9(62.4 \text{ lb/ft}^3)} - \frac{0.75W_s}{8.19 \text{ lb/sec}} \quad \text{(E19.14b)}$$

so

$$W_s = 7.38 \text{ ft lb/ft/sec} = 0.0134 \text{ hp} \quad \text{(E19.14c)}$$

This result shows that, while there is a cost associated with an orifice, it is small.
Figure 19.16 Uncovered Frictional Loss in Different Flow Measuring Devices (Adapted by permission from Cheremisinoff, N. P., and P. N. Cheremisinoff, Instrumentation for Process Flow Engineering [Lancaster: Technomic, 1987] [15])
Chapter 19 Process Fluid Mechanics

19.5 PERFORMANCE OF FLUID FLOW EQUIPMENT

In addition to equipment design, the chemical engineer must deal with the performance of existing equipment. The differences between the design problem (also called a rating problem) (a) and the performance problem (b) are illustrated in Figure 19.17. The use of italics indicates the unknowns in the particular problem. In the design problem, the input and the desired output are specified, and the equipment is designed to satisfy those constraints. In the performance problem, the input and equipment are specified, and the output is determined. The performance problem is what is involved in dealing with day-to-day operations in a chemical plant.

Several different types of problems in frictional fluid flow using the mechanical energy balance were discussed in Section 19.3. Determining the pump power needed for a given situation is a design problem. Similarly, determining the required pipe diameter is a design problem. On the other hand, determining the flowrate when all equipment is specified is a performance problem, as is determining the pressure change for an existing system.

Suppose it is necessary to increase the capacity of a process without adding new equipment. Logically, all flowrates must increase. This is a performance problem, since the input and equipment are specified, and the output must be determined for each unit in the process. Somewhere in the process, the amount of scale-up needed will be limited due to equipment constraints, and this limiting unit is called a bottleneck. The process of finding a solution that removes the bottleneck is called debottlenecking, which is a performance problem. Similarly, if there is a problem with the output of a process (purity or temperature, for example), the cause of the problem must be determined, which is called troubleshooting.

Returning to the situation in which process capacity must be increased, for the fluid flow component, initially, it may appear that problems similar to those in Section 19.3 must be solved from scratch. However, for many situations, not just in fluid flow, very good approximations can be made with a much simpler analysis.

19.5.1 Base-Case Ratios

The ability to predict changes in a process design or in plant operations is improved by anchoring an analysis to a base case. This calculation tool combines use of fundamental relationships with plant operating data to form a basis for predicting changes in system behavior. As will be seen, it is applicable to problems involving all chemical process units when analytical expressions are available.

For design changes, it is desirable to identify a design proven in practice as the base case. For operating plants, actual data are available and are chosen as the base case. It is important to
put this base case into perspective. Assuming that there are no instrument malfunctions and these operating data are correct, then these data represent a real operating point at the time the data were taken. As the plant ages, the effectiveness of process units changes and operations are altered to account for these changes. As a consequence, recent data on plant operations should be used in setting up the base case.

The base-case ratio integrates the “best available” information from the operating plant with design relationships to predict the effect of process changes. It is an important and powerful technique with a wide range of applications. The base-case ratio, X, is defined as the ratio of a new-case system characteristic, x_2, to the base-case system characteristic, x_1:

$$X = \frac{x_2}{x_1}$$ \hspace{1cm} (19.65)

Using a base-case ratio often reduces the need for knowing actual values of physical properties (physical properties refer to thermodynamic and transport properties of fluids), equipment, and equipment characteristics. The values identified in the ratios fall into three major groups. They are defined below and applied in Examples 19.15 and 19.16.

1. **Ratios Related to Equipment Sizes** (equivalent length, L_{eq}; diameter, D; surface area, A): Assuming that the equipment is not modified, these values are constant, the ratios are unity, and these terms cancel out.

2. **Ratios Related to Physical Properties** (such as density, ρ; viscosity, μ): These values can be functions of material composition, temperature, and pressure. Only the functional relationships, not absolute values, are needed. For small changes in composition, temperature, or pressure, the properties often are unchanged, and the ratio is unity and cancels out. An exception to this is gas-phase density.

3. **Ratios Related to Stream Properties**: These ratios usually involve velocity, flowrate, concentration, temperature, and pressure.

Using the base-case ratio eliminates the need to know equipment characteristics and reduces the amount of physical property data needed to predict changes in operating systems.

The base-case ratio is a powerful and straightforward tool to analyze and predict process changes. This is illustrated in Example 19.15.

Example 19.15

It is necessary to scale up production in an existing chemical plant by 25%. Your job is to determine whether a particular pump has sufficient capacity to handle the scale-up. The pump’s function is to provide enough pressure to overcome frictional losses between the pump and a reactor.

Solution

The relationship for frictional pressure drop is obtained from the mechanical energy balance:

$$\frac{\Delta P}{\rho} = -\frac{2\mu u^2}{D}$$ \hspace{1cm} (E19.15a)

This relationship is now written as the ratio of two cases, where subscript 1 indicates the base case, and subscript 2 indicates the new case:

$$\frac{\Delta P_2}{\Delta P_1} = \frac{2\rho_2 f_{eq} L_{eq} u_2^2 D_2}{2\rho_1 f_{eq} L_{eq} u_1^2 D_1}$$ \hspace{1cm} (E19.15b)
Because the pipe has not been changed, the ratios of diameters \((D_2/D_1)\) and lengths \((L_{eq2}/L_{eq1})\) are unity. Because a pump is used only for liquids, and liquids are (practically) incompressible, the ratio of densities is unity. If the flow is assumed to be fully turbulent, which is usually true for process applications, the friction factor is not a function of Reynolds number. This fact should be checked for a particular application. Figure 19.6 illustrates how, for fully turbulent flow in pipes that are not hydraulically smooth, the friction factor approaches a constant value. Since the \(x\)-axis is a log scale, changes up to a factor of 2 to 5, which are well beyond the scale-up capability of most equipment, do not represent much of a difference on the graph. Therefore, the friction factor is constant, and the ratio of friction factors is unity. The ratio in Equation (E19.15b) reduces to

\[
\frac{\Delta P_2}{\Delta P_1} = \frac{\dot{m}_2^2/\rho_2}{\dot{m}_1^2/\rho_1} = \frac{m_2^2}{m_1^2}
\]

(E19.15c)

where the second equality is obtained by substituting for \(u_i\) in numerator and denominator using the mass balance \(\dot{m}_i = \rho_i A_i u_i\), canceling the ratio of densities for the same reason as above, and canceling the ratio of cross-sectional areas because the pipe has remained unchanged. Therefore, by assigning the base-case mass flow to have a value of 1, for a 25% scale-up, the new case has a mass flow of 1.25, and the ratio of pressure drops becomes

\[
\frac{\Delta P_2}{\Delta P_1} = \left(\frac{\dot{m}_2}{\dot{m}_1}\right)^{\frac{2}{3}} = \left(\frac{1.25}{1}\right)^{\frac{2}{3}} = 1.56
\]

(E19.15d)

Thus, the pump must be able to deliver enough head to overcome 56% additional frictional pressure drop while pumping 25% more material.

It is important to observe that Example 19.15 was solved without knowing any details of the system. The pipe diameter, length, and number of valves and fittings were not known. The liquid being pumped, its temperature, and its density were not known. Yet the use of base-case ratios along with simple assumptions permitted a solution to be obtained. This illustrates the power and simplicity of base-case ratios.

Example 19.16

It is proposed to improve performance through a section of pipe by adding an identical section in parallel.

a. If the total flowrate remains constant, what parameter changes and by how much, assuming the fluid flow is fully turbulent?

b. If the original pipe is 1.5-in, schedule-40, commercial steel, and the new section is 2-in, schedule-40, commercial steel, answer the same question as in Part (a).

Solution

a. By using the mechanical energy balance and Equation (19.14) for the friction term, with the subscript 1 representing the original case and subscript 2 representing the new case, each being the flow through the original section, the ratio of pressure drops is

\[
\frac{\Delta P_2}{\Delta P_1} = \frac{\epsilon_{f2}}{\epsilon_{f1}} = \frac{32\rho_1 f_1 L_{eq1} v_1^2}{32\rho_1 f_1 L_{eq1} v_1^2} = \pi^2 \frac{D_1^4}{D_2^4}
\]

(E19.16a)

The constants cancel. If the fluid is unchanged, the densities cancel. Since the new and old pipe lengths and diameters are identical, the lengths and diameters cancel. It is assumed that the minor losses due to the elbows and fitting needed to add the parallel pipe are unchanged,
so the equivalent lengths cancel. For fully turbulent flow, the friction factor has asymptotically approached a constant value (Figure 19.6), so the friction factors cancel. So, the result is

\[
\frac{\Delta P_2}{\Delta P_1} = \frac{\dot{v}_2^2}{\dot{v}_1^2}
\]

(E19.16b)

Since the two parallel sections are identical, the flowrate splits equally between the two sections, so the flowrate in the original section is half of the original flowrate:

\[
\frac{\Delta P_2}{\Delta P_1} = \frac{(0.5\dot{v}_1)^2}{\dot{v}_1^2} = 0.25
\]

(E19.16c)

Therefore, the pressure drop through that section of pipe decreases by 75%.

b. In this case, subscripts 1 and 2 represent the flow though the original and new sections, after the parallel section is installed. The analysis starts identically, but the diameters and friction factors do not cancel. The friction factors do not cancel because the asymptotic value for the friction factor in Figure 19.6 and in the Pavlov equation (Equation [19.16]) depends on the ratio of the roughness factor to the diameter, and that ratio is different for the two sections of pipe. The ratio expression becomes

\[
\frac{\Delta P_2}{\Delta P_1} = \frac{f_2 \dot{v}_2^2 D_2^5}{f_1 \dot{v}_1^2 D_1^5}
\]

(E19.16d)

From the Pavlov equation (Equation [19.16]), using the ratio of the friction factors at an asymptotically large Reynolds number and the schedule pipe diameters, Equation (E19.16d) becomes

\[
\frac{\Delta P_2}{\Delta P_1} = \left[\frac{\log_{10} \left(\frac{0.0018 \text{ in}}{3.7(1.610 \text{ in})} \right)}{\log_{10} \left(\frac{0.0018 \text{ in}}{3.7(2.067 \text{ in})} \right)} \right]^2 \left(\frac{1.610 \text{ in}}{2.067 \text{ in}} \right)^5 \frac{\dot{v}_2}{\dot{v}_1} = 0.270 \frac{\dot{v}_2}{\dot{v}_1}
\]

(E19.16e)

Since the pressure drops in each parallel section must be equal,

\[
\frac{\dot{v}_2}{\dot{v}_1} = \left(\frac{1}{0.270} \right)^{0.270} = 1.92
\]

(E19.16f)

If the flow is laminar, the analysis would be similar, but the results would differ due to the different expression for the friction factor in laminar flow. Examples of this are the subject of problems at the end of the chapter.

19.5.2 Net Positive Suction Head

There is a significant limitation on pump operation called net positive suction head (NPSH). This is the head that is needed on the pump feed (suction) side to ensure that liquid does not vaporize upon entering the pump. Its origin is as follows. Although the effect of a pump is to raise the pressure of a liquid, frictional losses at the entrance to the pump, between the suction pipe and the internal pump mechanism, cause the liquid pressure to drop upon entering the pump. This means that a minimum pressure exists somewhere within the pump. If the feed liquid is saturated or nearly saturated, the liquid can vaporize upon entering due to this internal pressure drop. This causes formation of vapor bubbles. These bubbles rapidly collapse when exposed to the forces created by the pump mechanism, called cavitation. This process usually results in noisy pump
operation and, if it occurs for a period of time, will damage the pump. As a consequence, regulating valves, which lower fluid pressure, are not normally placed in the suction line to a pump.

Pump manufacturers supply NPSH data with a pump, usually in head units. In this book, both head and pressure units are used. The required NPSH, denoted $NPSH_R$, is a function of the square of velocity because it is a frictional loss and because most applications involve turbulent flow. Figure 19.18(a) shows $NPSH_R$ and $NPSH_A$ curves, which define a region of acceptable pump operation. This is specific to a given liquid. Typical $NPSH_R$ values are in the range of 15 to 30 kPa (2-4 psi) for small pumps and can reach 150 kPa (22 psi) for larger pumps. Figure 19.18 also shows curves for $NPSH_A$, the available NPSH, along with the $NPSH_R$ curve.

The available $NPSH_A$ is defined as

$$NPSH_A = P_{inlet} - P^*$$ \hfill (19.66)
Equation (19.66) means that the available NPSH (NPSHₐ) is the difference between the inlet pressure, \(P_{\text{inlet}} \), and \(P^* \), which is the vapor pressure (bubble-point pressure for a mixture). It is required that NPSHₐ ≥ NPSHₗ to avoid cavitation. Cavitation is avoided if operation is to the left of the intersection of the two curves. It is physically possible to operate to the right of the intersection of the two curves, but doing so is not recommended because the pump will be damaged.

All that remains is to calculate or know the pump inlet conditions in order to determine whether sufficient NPSH (NPSHₐ) is available to equal or exceed the required NPSH (NPSHₗ). For example, consider the exit stream from a distillation column reboiler, which is saturated liquid. If it is necessary to pump this liquid, cavitation could be a problem. A common solution to this problem is to elevate the column above the pump so that the static pressure increase minus any frictional losses between the column and the pump provides the necessary NPSH to avoid cavitation. This can be done either by elevating the column above ground level using a metal skirt or by placing the pump in a pit below ground level, although pump pits are usually avoided due to safety concerns arising from accumulation of heavier-than-air gases in the pit.

In order to quantify NPSH, consider Figure 19.19, in which material in a storage tank is pumped downstream in a chemical process. This scenario is a very common application of the NPSH concept. For NPSH analysis, the only portion of Figure 19.19 under consideration is between the tank and pump inlet.

From the mechanical energy balance, the pressure at the pump inlet can be calculated to be

\[
P_{\text{inlet}} = P_{\text{tank}} + \rho g h - \frac{2 \rho f L u^2}{D}
\]

which means that the pump inlet pressure is the tank pressure plus the static pressure minus the frictional losses in the suction-side piping. Therefore, by substituting Equation (19.67) into Equation (19.66), the resulting expression for NPSHₐ is

\[
\text{NPSH}_a = P_{\text{tank}} + \rho g h - \frac{2 \rho f L u^2}{D} - P^*
\]
This is an equation of a concave downward parabola, of the form \(\text{NPSH}_A = a - bu^2 \), as illustrated in Figure 19.18(b), Curve a. The intercept is \(a = P_{\text{tank}} + \rho gh - P^* \) and \(b = 2\rho f L_{\text{eq}}/D \). This analysis does not include the kinetic energy term due to the acceleration of the fluid from the tank into the pipe. Rigorously, this term should also be included in the analysis.

If \(\text{NPSH}_A \) is insufficient for a particular situation, Equation (19.68) suggests methods to increase the \(\text{NPSH}_A \):

1. Decrease the temperature of the liquid at the pump inlet. This decreases the value of the vapor pressure, \(P^* \), thereby increasing \(\text{NPSH}_A \). This increases the intercept of the \(\text{NPSH}_A \) curve while maintaining constant curvature, as illustrated in Figure 19.18(b), Curve b.

2. Increase the static head. This is accomplished by increasing the value of \(h \) in Equation (19.64), thereby increasing \(\text{NPSH}_A \). As was said earlier, pumps are most often found at lower elevations than the source of the material they are pumping. This increases the intercept of the \(\text{NPSH}_A \) curve while maintaining constant curvature, as illustrated in Figure 19.18(b), Curve b.

3. Increase the tank pressure. This increases the intercept of the \(\text{NPSH}_A \) curve while maintaining constant curvature, as illustrated in Figure 19.18(b), Curve b.

4. Increase the diameter of the suction line (feed pipe to pump). This reduces the velocity and the frictional loss term, thereby increasing \(\text{NPSH}_A \). This decreases the curvature of the \(\text{NPSH}_A \) curve, as illustrated in Figure 19.18(b), Curve c. It is standard practice to have larger-diameter pipes on the suction side of a pump than on the discharge side.

Example 19.17 illustrates how to do NPSH calculations and one of the preceding methods for increasing \(\text{NPSH}_A \). The other methods are illustrated in problems at the end of the chapter.

Example 19.17

A pump is used to transport toluene at 10,000 kg/h from a feed tank (V-101) maintained at atmospheric pressure and 57°C. The pump is located 2 m below the liquid level in the tank, and there is 6 m of equivalent pipe length between the tank and the pump. It has been suggested that 1-in, schedule-40, commercial-steel pipe be used for the suction line. Determine whether this is a suitable choice. If not, suggest methods to avoid pump cavitation.

Solution

The following data can be found for toluene: \(\ln P^*(\text{bar}) = 10.97 - 4203.06/T(\text{K}) \), \(\mu = 4.1 \times 10^{-4} \text{ kg/m s} \), \(\rho = 870 \text{ kg/m}^3 \). For 1-in, schedule-40, commercial-steel pipe, the roughness factor is about 0.001 and the inside diameter is 0.02664 m. Therefore, the velocity of toluene in the pipe can be found to be 5.73 m/s. The Reynolds number is about 426,000, and the friction factor is \(f = 0.005 \). At 57°C, the vapor pressure is found to be 0.172 bar.

From Equation (19.68),

\[
\text{NPSH}_A = 1.01325 \text{ bar} + 870(9.81)(2)(10^{-3}) \text{ bar} - 2(870)(0.005)(6)(5.73)^2 (10^{-3}) / (0.02664) \text{ bar} - 0.172 \text{ bar} = 0.37 \text{ bar}
\]

This is shown as Point A on Figure 19.18(b). At the calculated velocity, Figure 19.18(b) shows that \(\text{NPSH}_A \) is 0.40 bar, Point B. Therefore, there is insufficient \(\text{NPSH}_A \). This means that a 1-in, schedule-40 pipe is unacceptable for this service.

The obvious solution to this problem is to use a larger-diameter pipe for the suction side of the pump. The calculated velocity of 5.73 m/s is far in excess of the typical maximum liquid velocity.
The frictional loss in the 6 m of suction piping is approximately 0.64 bar. If, say, a 2-in. schedule-40 pipe was used for the suction line, then the frictional loss would decrease to approximately 0.02 bar and \(NPSH_a\) would increase to about 0.99 bar, which is far in excess of \(NPSH_R\). Another method for increasing \(NPSH_a\) is to increase the height of liquid in the tank. If the height of liquid in the tank is 3 m, with the original 1-in. schedule-40 pipe at the original temperature, \(NPSH_a = 0.445\) bar. This is shown as Point C on Figure 19.18(b).

19.5.3 Pump and System Curves

Pumps also have characteristic performance curves, called pump curves. Figure 19.20 illustrates a pump curve for a centrifugal pump. Centrifugal pumps are often called constant head pumps because, over a wide range of volumetric flowrates, the head produced by the pump is approximately constant. Pump manufacturers provide the characteristic curve, usually in head units. For centrifugal pumps, the shape of the curve indicates that although the head remains constant over quite a wide range of flowrates, eventually, as the flowrate continues to increase, the head produced decreases. Pump curves also include power and efficiency curves, both of which change with flowrate and head; however, these are not shown here.

For a piping system, a system curve can also be defined. Consider the system as illustrated in Figure 19.21. Location 1 is called the source, and Location 2 is the destination. Location 2 may be distant from Location 1, perhaps at the opposite end of a chemical process and at a different elevation from Location 1. Typical processes have only one pump upstream to supply all pressure needed to overcome pressure losses throughout the process. Therefore, the pressure increase across the pump must be sufficient to overcome all of the losses associated with piping and fittings plus the indicated pressure loss across the control valve. The orifice plate is present to illustrate some type of flowrate measurement, and the flow indicator controller (FIC) illustrates that the measured flowrate is compared to a set point, and deviations from the set point are compensated by adjusting the valve, usually pneumatically. If the flowrate is too large, the valve is partially closed, restricting the flowrate. However, this also increases the frictional pressure loss across the valve, as discussed in Section 19.3.2.

The behavior of the system can be quantified by a system curve. The general equation for a chemical process, in terms of pressure, is given by the mechanical energy balance between Points 1 and 2 in Figure 19.21:

\[
\Delta P_{\text{pump}} = \Delta P_{z_1} + \rho g \Delta z_{12} + \left(-\Delta P_f\right) + \left(-\Delta P_o\right) = (P_2 - P_1) + \rho g (z_2 - z_1) + \left(-\Delta P_f\right) + \left(-\Delta P_o\right) \tag{19.69}
\]

where
Equation (19.70) is derived from the mechanical energy balance with only the pressure and friction terms. It is important to remember that Δ represents out-in; therefore, the frictional loss term and the pressure loss across the valve are negative numbers before the included negative sign.

The system curve is the right-hand side of Equation (19.69) without the term for the control valve:

$$\Delta P_{\text{sys}}=(P_2-P_1)+ \rho g (z_2-z_1)+(-\Delta P_f)=(P_2-P_1)+ \rho g (z_2-z_1)+\frac{32 \rho f L v^2}{g \pi^2 D^5}$$

Equation (19.71) is a parabola, concave upward, on a plot of pressure increase versus flowrate. It is of the form $\Delta P_{\text{sys}} = a + bv^2$, where $a = (P_2-P_1) + \rho g (z_2-z_1)$ and $b = 32 \rho f L v^2 / (g \pi^2 D^5)$. Since the manufacturer pump curve is usually provided in head units, Equation (19.69) can be rewritten in head units as

$$h_{\text{sys}}=\frac{\Delta P_{\text{sys}}}{\rho g} = \frac{(P_2-P_1)+ \rho g (z_2-z_1)+\frac{32 \rho f L v^2}{g \pi^2 D^5}}{\rho g}$$

Figure 19.22 illustrates the result if the pump curve and the system curve are plotted on the same graph. The indicated pressure changes demonstrate how the head provided by the pump must equal the desired head increase from source to destination, plus the frictional pressure loss, plus the pressure loss across the control valve, as quantified in Equation (19.69). The process of flowrate regulation is also illustrated in Figure 19.22. If the flowrate is to be reduced, the valve is closed, and the operating point moves to the left. At this lower flowrate, the frictional losses are lower, but the pressure loss across the valve is larger. The opposite is true for a higher flowrate. At the intersection of the two curves, the valve is wide open, and the maximum possible flowrate has been reached. This analysis assumes that the pump is operating at constant speed. For a variable speed pump, the pump curve moves up or down as the speed of rotation of the impeller changes. (Note that this simplified explanation omits the very small pressure drop across a wide-open control valve.) Operation to the right of this point is impossible. It is important not to confuse the meanings of the intersection points on the pump-system curve plot and the NPSH plot.

The pump and system curve plot also illustrates the cost of flowrate regulation. The pump must provide sufficient pressure to overcome the losses across the valve over a wide range of flowrates. Additional pump power is required for the possibility of operating at lower flowrates with a very large pressure drop across the valve. In general, this is a small cost for a pump, because the liquid density is high. Variable speed pumps are also available with different pump curves for different speeds. For these, the flowrate is regulated by the rotation speed of the impeller, not by a valve. It is not usually worth the extra cost for small pumps given the low cost of pumping liquids but may be worth considering for larger pumps and flowrates. Pumps with different impeller sizes have different pump curves for each impeller size. However, changing an impeller is not something that can be done while a process is operating.
Pumps (and compressors) are about the only pieces of equipment in a chemical plant with moving parts. Moving parts can fail. Therefore, since pumps are often inexpensive (on the order of $10,000), a backup pump is typically installed in parallel so the plant can continue operating while the primary pump is maintained. Since shutdown and start-up can take days, it makes sense not to shut down a process that generates profit at a rate of thousands of dollars per minute to avoid purchasing a relatively inexpensive backup pump.

The presence of a backup pump can also be exploited if necessary to scale-up a process. The piping system can be constructed such that the two pumps can operate simultaneously, either in series or in parallel. If the pumps are in series, the head increase doubles at the same flowrate. If the pumps are in parallel, the flowrate doubles at the same head increase. The pump curves for these situations are illustrated in Figure 19.23. The two system curves illustrate the maximum possible scale-up for two different system curves, indicated by the dots. In one case, the parallel configuration provides more scale-up potential, and in the other case, the series configuration provides more scale-up potential. This demonstrates that it is not possible to make any generalizations about which configuration can produce more scale-up. It all depends on the particular system.

Positive-displacement pumps perform differently from centrifugal pumps. They are usually used to produce higher pressure increases than are obtained with centrifugal pumps. The performance characteristics are represented on Figure 19.24(a), and these are sometimes referred to as constant-volume pumps. It can be observed that the flowrate through the pump is almost constant over a wide range of pressure increases, which makes flowrate control using the pressure increase impractical. One method to regulate the flow through a positive-displacement pump is illustrated in Figure 19.24(b). The strategy is to maintain constant flowrate through the pump. By regulating the flow of the recycle stream to maintain constant flowrate through the pump, the downstream flowrate can be regulated independently of the flow through the pump. Therefore, if a higher flow to the process is needed, then the bypass control valve is closed, and vice versa.

It is observed from Figure 19.21 and Figure 19.24 that, in both cases, flowrate regulation occurs by adjusting a valve. For regulation of temperature, a valve on a cooling or heating fluid is adjusted. For regulation of concentration, valves on mixing streams are adjusted. This emphasizes the concept that about the only way to regulate anything in a chemical process is to adjust a valve position.

Process conditions are usually regulated or modified by adjusting valve settings in the plant.
Example 19.18

Develop the system curve for flow of water at approximately 10 kg/s through 100 m of 2-in, schedule-40, commercial-steel pipe with the source and destination at the same height and both at atmospheric pressure.

Solution

The density of water will be taken as 1000 kg/m³, and the viscosity of water will be taken as 1 mPa s (0.001 kg/m s). The inside diameter of the pipe is 0.0525 m. The Reynolds number can be determined to be 2.42×10^5. For a roughness factor of 0.001, $f = 0.005$. Equation (19.71) reduces to...
\[\Delta P = -19u^2 \]
\[(E19.18a)\]

since \(\Delta P_{z_i} \) is zero, with \(\Delta P \) in kPa and \(u \) in m/s. This is the equation of a parabola, and it is plotted in Figure E19.18. Therefore, from either the equation or the graph, the frictional pressure drop is known for any velocity.

Example 19.19

Repeat Example 19.18 for the same length of pipe but with a 10 m vertical elevation change, with the flow from lower to higher elevation, but with the source and destination both still at atmospheric pressure.

Solution

Here, the potential energy term from the mechanical energy balance must be included. The magnitude of this term is 10 m of water, so \(\rho g \Delta z = 98 \) kPa. Equation (19.69) reduces to

\[\Delta P = -(98 + 19u^2) \]
\[(E19.19)\]

with \(\Delta P \) in kPa and \(u \) in m/s. This equation is also plotted in Figure E19.18. It is observed that the system curve has the same shape as that in Example 19.18. This means that the frictional component is unchanged. The difference is that the entire curve is shifted up by the constant, static pressure difference.

Example 19.20

The centrifugal pump shown in Figure E19.20 is used to supply water to a storage tank. The pump inlet is at atmospheric pressure, and water is pumped up to the storage tank, which is open to atmosphere, via large-diameter pipes. Because the pipe diameters are large, the frictional losses in the pipes and any change in fluid velocity can be safely ignored.
a. If the storage tank is located at an elevation of 35 m above the pump, predict the flow using each impeller.

b. If the storage tank is located at an elevation of 50 m above the pump, predict the flow using each impeller.

Solution

a. Figure E19.20 shows the pump curves for three different impeller sizes for the same pump. From Figure E19.20, at $\Delta h_p = 35$ m (see line a-a):
 - 6-in Impeller: Flow = 0.93 m3/min
 - 7-in Impeller: Flow = 1.38 m3/min
 - 8-in Impeller: Flow = 1.81 m3/min

 Therefore, each impeller can be used, and the larger impeller provides a larger flowrate.

b. From Figure E19.20, at $\Delta h_p = 50$ m (see line b-b):
 - 6-in Impeller: Flow = 0 m3/min
 - 7-in Impeller: Flow = 0.99 m3/min
 - 8-in Impeller: Flow = 1.58 m3/min
In this case, the 6-in impeller is not sufficient to provide the desired flowrate, so only the 7-in and 8-in impellers are appropriate choices.

\[
-\Delta h_y = 50 \text{ m} = (P_i - P_f) / \rho g = P_i / \rho g - 1.2 \times 10^5 \left[\frac{750(9.81)}{750} \right] = P_i / \rho g - 16.3 \text{ m}
\]

\[
P_i = (50 + 16.3) \rho g = 66.3(750)(9.81) = 4.88 \times 10^5 \text{ Pa} = 4.88 \text{ bar}
\]

19.5.4 Compressors

19.5.4.1 Compressor Curves

The performance of centrifugal compressors is somewhat analogous to that of centrifugal pumps. A characteristic performance curve, supplied by the manufacturer, defines how the outlet pressure varies with flowrate. However, compressor behavior is far more complex than that for pumps because the fluid is compressible.

Figure 19.25 shows the performance curves for a centrifugal compressor. It is immediately observed that the y-axis is the ratio of the outlet pressure to inlet pressure. This is in contrast to pump curves, which have the difference between these two values on the y-axis. Curves for two different rotation speeds are shown. As with pump curves, curves for power and efficiency are often included but are not shown here. Unlike most pumps, the speed is often varied continuously to control the flowrate because the higher power required in a compressor makes it economical to avoid throttling the outlet as in a centrifugal pump.

Centrifugal compressor curves are read just like pump curves. At a given flowrate and revolutions per minute, there is one pressure ratio. The pressure ratio decreases as flowrate increases. A unique feature of compressor behavior occurs at low flowrates. It is observed that the pressure ratio increases with decreasing flowrate, reaches a maximum, and then decreases with decreasing flowrate. The locus of maxima is called the surge line. For safety reasons, compressors are operated to the right of the surge line. The surge line is significant for the following

![Figure 19.25 Performance Curves for a Centrifugal Compressor](image-url)
reason. Imagine the compressor is operating at a high flowrate and the flowrate is lowered continuously, causing a higher outlet pressure. At some point, the surge line is crossed, lowering the pressure ratio. This means that downstream fluid is at a higher pressure than upstream fluid, causing a backflow. These flow irregularities can severely damage the compressor mechanism, even causing the compressor to vibrate or surge (hence the origin of the term). Severe surging has been known to cause compressors to become detached from the supports keeping them stationary and literally to fly apart, causing great damage. Therefore, the surge line is considered a limiting operating condition below which operation is prohibited. Surge control on compressors is usually achieved by opening a bypass valve on a line connecting the outlet to the inlet of the compressor. When the surge point is approached, the bypass valve is opened, and gas flows from the outlet to the inlet, thereby increasing the flow through the compressor and moving it away from the surge condition.

Positive-displacement compressors also exist and are used to compress low volumes to high pressures. Centrifugal compressors are used to compress higher volumes to moderate pressures and are often staged to obtain higher pressures. Figure 19.5 illustrates the inner workings of a compressor.

19.5.4.2 Compressor Staging
There are two limiting cases for compressor behavior: isothermal and isentropic. An actual compressor is neither isothermal nor isentropic; however, the behavior lies between these two limiting cases. From the general mechanical energy balance, compressor work is

\[\eta W_i = \int \frac{\frac{\rho_2}{\rho_1}}{\frac{P_2}{P_1}} \]

(19.73)

where subscripts 1 and 2 denote compressor inlet and outlet, respectively. For the isothermal case, assuming ideal gas behavior (which will fail as the pressure increases but is sufficient to illustrate the basic concepts),

\[\eta W_{isoth} = \int \frac{dP}{\rho} = \int \frac{RT}{M} \frac{dP}{\rho} = \frac{RT}{M} \ln \left(\frac{P_2}{P_1} \right) \]

(19.74)

For isentropic compression, the relationship from thermodynamics for adiabatic, reversible, compression is

\[PV^\gamma = \frac{P}{\rho^\gamma} = \text{constant} \]

(19.75)

where \(\gamma = C_p/C_v \) the ratio of the constant pressure and constant volume heat capacities. Using the compressor inlet as a reference point,

\[\frac{P_1}{P_1^\gamma} = \frac{P}{\rho^\gamma} \]

(19.76)

Solving Equation (19.76) for \(\rho \), using that value in Equation (19.73), and integrating yields a well-known expression from thermodynamics for adiabatic, reversible, compression of an ideal gas:

\[\eta W_{isent} = \frac{\gamma RT_1}{M(\gamma - 1)} \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \]

(19.77)
Taking the ratio of Equations (19.74) and (19.77), and realizing that $T = T_1$ in Equation (19.74), since the temperature is constant at the inlet value in the isothermal case, yields

\[
\frac{W_{s,\text{isoth}}}{W_{s,\text{isen}}} = \ln\left(\frac{P_2}{P_1}\right) \left[\frac{\gamma}{\gamma - 1}\left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right]
\]

Figure 19.26 is a plot of Equation (19.78), with the dependent variable as the compression ratio, P_2/P_1. Figure 19.26 demonstrates that the reversible, adiabatic work for isothermal compression is always less than that for isentropic compression. As the compression ratio exceeds 3 to 4, the isothermal work is significantly less than the isentropic work, making isothermal compression desirable. Of course, since compressing a gas always increases the gas temperature, isothermal compression cannot be accomplished. However, isothermal compression can be approached by staging compressors with intercooling, as illustrated in Figure 19.27 for a two-stage configuration.
Isothermal compression can be reached theoretically with an infinite number of compressors each with an infinitesimal temperature rise, hardly a practical situation. From thermodynamics, it can be shown that the minimum compressor work for staged adiabatic compressors, with interstage cooling to the feed temperature to the first compressor, is accomplished with an equal compression ratio in each compressor stage. This is not necessarily the economic optimum, which would require analysis of the capital cost of the compressor stages and heat exchangers, the operating cost of the compressor, and the utility cost of the cooling medium. However, the preceding analysis explains why compressors are usually staged when the compression ratio exceeds 3 to 4.

19.5.5 Performance of the Feed Section to a Process

A common feature of chemical processes is the mixing of reactant feeds before they enter a reactor. When two streams mix, they are at the same pressure. The consequences of this are illustrated by the following scenario.

Phthalic anhydride can be produced by reacting naphthalene and oxygen. The feed section to a phthalic anhydride process is shown in Figure 19.28. The mixed feed enters a fluidized bed reactor operating at five times the minimum fluidization velocity. A stream table is given in Table 19.4. It is assumed that all frictional pressure losses are associated with equipment and that frictional losses in the piping are negligible. It is temporarily necessary to scale down production by 50%. The engineer must determine how to scale down the process and to determine the new flows and pressures.

It is necessary to have pump and compressor curves in order to do the required calculations. In this example, equations for the pump curves are used. These equations can be obtained by fitting a polynomial to the curves provided by pump manufacturers. As discussed in Section 19.5.3, pump curves are usually expressed as pressure head versus volumetric flowrate so that they can be used for a liquid of any density. In this example, pressure head and volumetric flowrate have been

Figure 19.28 Feed Section to Phthalic Anhydride Process
19.5 Performance of Fluid Flow Equipment

converted to absolute pressure and mass flowrate using the density of the fluids involved. Pump P-201 operates at only one speed, and an equation for the pump curve is

$$\Delta P = 500 + 4.663 \dot{m} - 1.805 \dot{m}^2 \quad \text{m} \leq 16.00 \text{ Mg/h}$$

(19.79)

Compressor C-201 operates at only one speed, and the equation for the compressor curve is

$$\frac{P_{out}}{P_{in}} = 5.201 + 2.662 \times 10^{-3} \dot{m} - 1.358 \times 10^{-4} \dot{m}^2$$

$$+ 4.506 \times 10^{-8} \dot{m}^3 \quad \dot{m} \leq 200 \text{ Mg/h}$$

(19.80)

From Figure 19.27, it is seen that there is only one valve in the feed section, after the mixing point. Therefore, the only way to reduce the production of phthalic anhydride is to close the valve to the point at which the naphthalene feed is reduced by 50%. Example 19.21 illustrates the consequences of reducing the naphthalene feed rate by 50%.

Example 19.21

For a reduction in naphthalene feed by 50%, determine the pressures and flows of all streams after the scale-down.

Solution

Because it is known that the flowrate of naphthalene has been reduced by 50%, the new outlet pressure from P-201 can be calculated from Equation (19.79). The feed pressure remains at 80 kPa. At a naphthalene flow of 6.41 Mg/h, Equation (19.79) gives a pressure increase of 455.73 kPa, so \(P_s = 535.73 \) kPa. Because the flowrate has decreased by a factor of 2, the pressure drop in the fired heater decreases by a factor of 4, since \(\Delta P \propto \dot{m}^2 \). Therefore, \(P_s = 510.73 \) kPa. Consequently, the pressure of Stream 6 must be 510.73 kPa. The flowrate of air can now be calculated from the compressor curve equation.

The compressor curve equation has two unknowns: the compressor outlet pressure and the mass flowrate. Therefore, a second equation is needed. The second equation is obtained from a base-case ratio for the pressure drop across the heat exchanger. The two equations are

$$\frac{P_s}{101.33} = 5.201 + 2.662 \times 10^{-3} \dot{m}_{2,rev} - 1.358 \times 10^{-4} \dot{m}_{2,rev}^2 + 4.506 \times 10^{-8} \dot{m}_{2,rev}^3$$

(E19.21a)

$$P_s - 510.73 = 25 \left(\frac{\dot{m}_{2,rev}}{151.47} \right)^2$$

(E19.21b)
The solution is

\[P_a = 512.84 \text{ kPa} \]
\[\dot{m}_1 = 43.80 \text{ Mg/h} \]

The stream table for the scaled-down case is given in Table E19.21. Although it is not precisely true, for lack of additional information, it has been assumed that the pressure of Stream 8 remains constant.

It is observed that the flowrate of air is reduced by far more than 50% in the scaled-down case. This is because of the combination of the compressor curve and the new pressure of Streams 5 and 6 after the naphthalene flowrate is scaled down by 50%. The total flowrate of Stream 8 is now 50.21 Mg/h, which is 30.6% of the original flowrate to the reactor. Given that the reactor was operating at five times minimum fluidization, the reactor is now in danger of not being fluidized.

<table>
<thead>
<tr>
<th>Stream</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) (kPa)</td>
<td>80.0</td>
<td>101.33</td>
<td>535.73</td>
<td>512.84</td>
<td>510.73</td>
<td>510.73</td>
<td>510.73</td>
<td>200.00</td>
</tr>
<tr>
<td>Phase</td>
<td>L</td>
<td>V</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Naphthalene (Mg/h)</td>
<td>6.41</td>
<td>—</td>
<td>6.41</td>
<td>—</td>
<td>6.41</td>
<td>—</td>
<td>6.41</td>
<td>6.41</td>
</tr>
<tr>
<td>Air (Mg/h)</td>
<td>—</td>
<td>43.80</td>
<td>—</td>
<td>43.80</td>
<td>—</td>
<td>43.80</td>
<td>43.80</td>
<td>43.80</td>
</tr>
</tbody>
</table>

![Figure E19.21](image-url)
adequately. Because the phthalic anhydride reaction is very exothermic, a loss of fluidization could result in poor heat transfer, which might result in a runaway reaction. The conclusion is that it is not recommended to operate at these scaled-down conditions.

The question is how the air flowrate can be scaled down by 50% to maintain the same ratio of naphthalene to air as in the original case. The answer is in valve placement. Because of the requirement that the pressures at the mixing point be equal, with only one valve after the mixing point, there is only one possible flowrate of air corresponding to a 50% reduction in naphthalene flow-rate. Effectively, there is no control of the air flowrate. A chemical process would not be designed as in Figure 19.28. The most common design is illustrated in Figure E19.21. With valves in both feed streams, the flowrates of each stream can be controlled independently.

WHAT YOU SHOULD HAVE LEARNED

- How to write the mass balance for pipe flow
- How to apply the mechanical energy balance to pipe flow
- How to apply the force balance to flow around submerged objects
- The types of pipes and pipe sizing
- The types of pumps and compressors and their applicability
- The purpose of including valves in a piping system
- How to design and analyze performance of a system for frictional flow of fluid in pipes
- How to design a system for frictional flow of fluid with submerged objects such as packed and fluidized beds
- Methods for flow measurement
- How to analyze existing fluid flow equipment
- What net positive suction head is and the limitations it places on piping system design
- How to analyze pump and system curves to understand the limitations of pumps
- Why compressors are staged

REFERENCES

SHORT ANSWER QUESTIONS

1. Explain the physical meaning of each term in the mechanical energy balance.
2. Liquid flows from a larger-diameter pipe to a smaller-diameter pipe. How does the velocity change?
3. Explain the concept of pressure head.
4. Liquid flows downward in a vertical pipe of uniform diameter. How does the velocity change with position?
5. Liquid flows vertically downward through a pipe of uniform diameter at steady state. Explain how the mass flowrate, volumetric flowrate, and velocity change with vertical position.
6. Explain the meaning of the Reynolds number in terms of forces.
7. Sketch the approximate shape of a graph of frictional losses versus Reynolds number. Discuss two other situations in which the graph has similar shape.
8. There are three key parameters that affect frictional loss in pipe flow. State two of them and explain the effect (i.e., whether the parameter increases or decreases, how the frictional loss is affected).
9. For sections of pipes in series, what is the relationship between the mass flowrate in each section? What is the relationship between the pressure drops in each section?
10. For sections of pipes in parallel, what is the relationship between the mass flowrate in each section? What is the relationship between the pressure drops in each section?
11. How is the mechanical energy balance different for compressible flow compared to incompressible flow?
12. What is the difference between form drag and frictional drag?
14. Explain the difference between void volume, solid volume, and total volume.
15. Define sphericity.
16. When is mercury a better manometer fluid than water or oil? When is mercury not recom-
mended? Assume the specific gravity of mercury is 13.2, and the specific gravity of oil is 0.8.
17. Explain the physical meaning of the intersection of the NPSH_r and NPSH_a curves.
18. Explain the physical meaning of the intersection of the pump and system curves.
19. Why does a compressor cost more to operate than a pump?
20. Why are compressors often staged with intercooling?
21. For fully developed turbulent flow, assuming all variables not mentioned are held constant:
 a. What is the effect of doubling the flowrate on the pressure drop?
 b. What is the effect of increasing the pipe diameter by 25% on pressure drop?
 c. What is the effect of increasing the pipe diameter on flowrate?
 d. What is the effect of increasing pipe length on pressure drop?
 e. What is the effect of increasing pipe length on flowrate?
 f. What is the effect on pressure drop of replacing one long pipe segment with two equal-
sized pipe segments of half the length placed in parallel?
22. Repeat Problem 19.21 for laminar flow.

PROBLEMS

23. Consider the situation depicted in Figure P19.23. The fluid is an oil with a specific gravity of
 0.85. Fill in the missing data in Table P19.23.

<table>
<thead>
<tr>
<th>Stream</th>
<th>Pipe</th>
<th>(\dot{m}) (kg/s)</th>
<th>(n) (m<sup>3</sup>/s)</th>
<th>(u) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-in, schedule 40</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.5-in, schedule 40</td>
<td>0.0106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.5-in, schedule 40</td>
<td></td>
<td>4.032</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3-in, schedule 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24. For water flowing in the situation shown in Figure P19.24 and the data in Table P19.24, do the
 following:
 a. Calculate the mass flowrate of Stream 3.
 b. Calculate the velocity of Stream 4.
 c. What schedule-40 pipe size must be used in Stream 3?
25. Consider the situation depicted in Figure P19.25. The liquid level in the cylindrical tank is increasing at 0.02 ft/sec.
 a. What is the net rate of flow into the tank?
 b. What is the velocity in the 3-in pipe?

26. Water is pumped through a 750-ft length of 6-in, schedule-40 pipe. The discharge at the end of the pipe is 50 ft above the suction end. The pump is 80% efficient and is driven by a 20 hp motor. If the friction loss in the pipe is 50 ft lb/lb, what is the flowrate through the pipe?

27. A hydroelectric power plant takes 25 m3/s of water from a large reservoir through its turbine and discharges it to the atmosphere at 1 m/s. The turbine is 50 m below the reservoir surface. The frictional head loss in the system is 10 m. The turbine and electric generator as a whole are 80% efficient. Assuming turbulent flow, calculate the power extracted by the turbine.

28. Water is pumped at a constant rate of 10 m3/h from an open tank on the floor to an open tank with a level 10 m above the floor. Frictional losses in the 50-mm-diameter pipe between the tanks are 3.5 J/kg. At what height above the floor must the water level be kept if the pump can develop only 0.1 kW? The pump is 75% efficient.

29. Water in a dam on a 75-ft-deep river is passed through a turbine to produce energy. The outlet of the turbine is 15 ft above the river bed. The mass flowrate of water is 65,000 lb/s, and the inside diameter of the discharge pipe is 10 ft. Discharge is to the atmosphere, and frictional losses may be neglected. For a 55% efficient turbine, calculate the power produced.
30. Many potential drugs have low water solubility, hindering their transport in the body's aqueous material distribution medium (blood). One way to improve solubility is to decrease particle size below 1 μm diameter. One method to do this is by high-pressure homogenization, using a homogenizer, which is basically a nozzle. In this process, the drug is dispersed in a solvent and forced through a narrow orifice (nozzle) at high pressure. As the liquid enters the orifice, it experiences a pressure drop so great it partially vaporizes. As it exits the constriction, the vapor bubbles collapse violently and produce local disturbances, breaking up the surrounding solid particles.

A high-pressure homogenizer is being used to decrease the size of some drug particles. The particles are suspended in water at 25°C and sent through the homogenizer at 250 mL/min. The pressure before the orifice is 34.5 MPa, and the diameter of the pipe is 0.1 m. Determine the diameter orifice (nozzle) that results in an exit pressure at the vapor pressure of water. Neglect friction.

31. A pump operating at 80% efficiency delivers 30 gal/min of water from a reservoir to an open-air storage tank at a chemical plant 1 mi away. A 3-in, schedule-40 pipe is used, and the frictional losses are 200 ft lb/lb. The elevation of the liquid level in the tank is 873 ft above sea level, and the elevation of the liquid level in the reservoir is 928 ft above sea level.
 a. What is the minimum horsepower required for the pump?
 b. The elevation of the reservoir is fixed. What elevation of the liquid level of the tank would make the pump unnecessary?

32. A pressurized tank situated above ground level contains a liquid with specific gravity of 0.9. The liquid flows down to ground level through 4-in, schedule-40 pipe through a pump (75% efficiency) and into a tank at a level 25 m above the level of the source tank at a pressure of 550 kPa through 2-in, schedule-40 pipe. The pump power is 6.71 kW. A pressure gauge at the pump entrance reads 115.6 kPa, and a pressure gauge at the pump discharge reads 762.6 kPa. The frictional losses in the piping on the suction side of the pump and on the discharge side of the pump are 30 J/kg and 50 J/kg, respectively.
 a. What is the mass flowrate of liquid through the system?
 b. What is the velocity in the 2-in, schedule-40 pipe?
 c. What is the pressure of the liquid in the source tank?
 d. Determine whether the kinetic energy contribution to the mechanical energy balance is small.

33. Water is pumped from one storage tank to a higher tank at a steady rate of 10⁻³ m³/s. The difference in the elevations of the two water tanks is 50 m. The storage tank, which serves a source, is open to the atmosphere, while the tank receiving the water has a pressure of 170.3 kPa. Pressure gauges in the pipeline at the inlet and outlet of the pump read 34.5 kPa and 551.6 kPa, respectively. The power supplied by an electric motor to the pump shaft is 1000 W. All piping is 1-in, schedule-40 steel pipe. Find the pump efficiency and friction loss in the pipe per kg of water.

34. Oil (SG = 0.88) flows at 5 ft³/s from one tank, through a pump, to another tank. The pipe diameter between the source tank and the pump is 12 in, and the pipe diameter between the pump and the destination tank is 6 in. The liquid level in the source tank is 10 ft above the pump, which is at ground level. The liquid level in the destination tank is 12 ft. The source tank is at 25 psia, and the destination tank is open to the atmosphere. A manometer is connected to the upstream and downstream pipes, immediately adjacent to the pump, with a differential height of 36 in of mercury. The pump is 75% efficient. Frictional losses may be neglected.
35. A fluid with specific gravity of 0.8 is in a tank, at a pressure of 150 kPa, with a level maintained at 5 m above ground level. The fluid leaves the tank through 4-in, schedule-40 pipe (frictional loss of 30 J/kg) at a mass flowrate of 6.5 kg/s and enters a pump at ground level. The pump power is 1.5 kW and is 70% efficient. The fluid leaving the pump flows through 3.5-in, schedule-40 pipe (frictional loss of 50 J/kg) to a “final” point in the pipe above the original tank level, where the pressure is 200 kPa.

a. Find the velocity at the final point in the pipe.
b. Determine the pressure at the pump inlet.
c. Determine the height above the ground of the final point in the pipe.

36. Consider the problem of how long it takes for a tank to drain. Consider an open-top cylindrical tank with one horizontal exit pipe at the bottom of the tank that discharges to the atmosphere. The tank has a diameter, \(d \), and the height of liquid in the tank at any time is \(h \).

a. The mass balance is unsteady state. Explain why the mass balance is

\[
\frac{dm}{dt} = -m_{out}
\]

where \(m \) is the mass of liquid in the tank and \(m_{out} \) is the mass flowrate out of the tank.

b. The mass in the tank is the fluid density times the volume of liquid in the tank. The flowrate, \(m_{out} \), can be related to the velocity and the cross-sectional area of the exit pipe based on what we have already learned. The volume of liquid in the tank can be related to the height of liquid in the tank. Simplify the differential mass balance to obtain an expression for the height of liquid in the tank as a function of the velocity of the liquid through the exit pipe.

c. Now, write a mechanical energy balance on the fluid in the tank and pipe from the top level in the tank to the pipe outlet, neglecting friction. It is generally assumed the velocity of the tank level (i.e., the fluid level in the tank) is small because of the large diameter. Solve for the velocity, and rearrange the differential equation to look like

\[
\frac{dh}{dt} = af(h)
\]

where \(a \) is a group of constants and \(f(h) \) is a function of the height that you have derived.

d. Solve this differential equation for height as a function of time with the initial condition of a height of \(h_0 \) at time zero.

e. Rearrange the answer to Part (d) to get an expression for the time for complete drainage.

37. The following equations describe a fluid-flow system. Draw and label the system.

\[
\begin{align*}
im_1 + im_2 &= im_3 = im_4 \\
\frac{P_1 - P_3}{\rho} + \frac{v_1^2 - v_2^2}{2} - \eta W &= 0 \\
\frac{P_3 - P_4}{\rho} + \frac{v_4^2}{2} + g(z_4 - z_3) + \epsilon &= 0
\end{align*}
\]

38. The following equations describe a fluid flow system, with friction neglected. Draw and label the system, making sure that your diagram is visually accurate.
39. An aneurysm is a weakening of the walls of an artery causing a ballooning of the arterial wall. The result is a region of larger diameter than a normal artery. If the “balloon” ruptures in a high-blood-flow area, such as the aorta, death is almost instantaneous. Fortunately, there are often symptoms due to slow leakage that can precede rupture. What happens to the blood velocity as it passes through the aneurysm? Justify your answer using equations. In the human body, very small changes in pressure can be significant. Using the mechanical energy balance, neglecting only friction and potential energy effects, analyze the pressure change as blood enters the aneurysm a large distance from the heart, so that the pulse flow is not an issue. The blood is flowing in a region not in the vicinity of the heart. What is the effect of the observed pressure change?

40. A pipeline is replaced by new 2-in, schedule-40, commercial-steel pipe. What power would be required to pump water at a rate of 100 gpm through 6000 ft of this pipe?

41. Hot water at 43°C flows from a constant-level tank through 2-in, schedule-40, commercial-steel pipe, from which it emerges 12.2 m below the level in the tank. The equivalent length of the piping system is 45.1 m. Calculate the rate of flow in m3/s.

42. Crude oil ($\mu = 40$ cP, SG = 0.87) is to be pumped from a storage tank to a refinery through a series of pump stations via 10-in, schedule-20, commercial-steel pipeline at a flowrate of 2000 gpm. The pipeline is 50 mi long and contains 35 90° elbows and 10 open gate valves. The pipeline exit is 150 ft higher than the entrance, and the exit pressure is 25 psig. What horsepower is required to drive the pumps if they are 70% efficient?

43. A pipeline to carry 1 million bbl/day of crude oil (1 bbl = 42 gal, SG = 0.9, $\mu = 25$ cP) is constructed with 50-in-inside-diameter, commercial-steel pipe and is 700 mi long. The source and destination are at atmospheric pressure and the same elevation. There are 50 wide-open gate valves, 25 half-open globe valves, and 50 45° elbows. There will be 25 identical pumps along this pipeline, each with an efficiency of 70%. What is the power required for each pump?

44. A pump draws a solution of specific gravity 1.2 with the viscosity of water from a ground-level storage tank at 50 psia through 3.5-in, schedule-40, commercial-steel pipe at a rate of 12 lb/s. The pump produces 4.5 hp with an efficiency of 75%. The pump discharges through a 2.5-in, schedule-40 commercial steel pipe to an overhead tank at 100 psia, which is 50 ft above the level of solution in the feed tank. The suction line has an equivalent length of 20 ft, including the tank exit. The discharge line contains a half-open globe valve, two wide-open gate valves, and two 90° elbows. What is the maximum total length of discharge piping allowed for this pump to work?

45. Many chemical plants store fuel oil in a “tank farm” on the outskirts of the plant. To prevent an environmental disaster, there are specific rules regarding the design of such facilities. One
such rule is that there be an emergency dump tank with the capacity of the largest storage
tank. Should a leak or structural problem occur with a tank, the fuel oil can be pumped into
the emergency dump tank.

Consider the design of the pumping system from a 250 m3 tank storing #6 fuel oil into a
250 m3 dump tank. The viscosity of #6 fuel oil is 0.8 kg/m s, and its density is 999.5 kg/m3. The
piping system consists of 43 m of commercial-steel pipe, four 90° flanged regular elbows, a
sharp entrance, an exit, and a pump. The oil must be pumped to an elevation 3.35 m above the
exit point from the source tank.

a. If 20-in, schedule-40, commercial-steel pipe is used, and if it is necessary to accomplish
the transfer within 45 min, determine the power rating required of the pump. Assume the
pump is 80% efficient.
b. If the pump to be used has 10 kW at 80% efficiency, and the pipe is 20-in, schedule-40,
commercial-steel pipe, determine how long the transfer will take.
c. If the pump to be used has 20 kW at 80% efficiency, and the transfer is to be accomplished
in 45 min, determine the required schedule-40 pipe size.

46. Two parallel sections of pipe branch from the same split point. Both branches end at the same
pressure and the same elevation. Branch 1 is 3-in, schedule-40, commercial-steel pipe and has
an equivalent length of 12 m. Branch 2 is 2-in, schedule-80, commercial-steel pipe and has an
equivalent length of 9 m.

a. Assuming fully turbulent flow, what is the split ratio between the two branches?
b. Suppose that Branch 2 ends 5 m higher than Branch 1. What is the split ratio between the
branches in this case?

47. Consider a two-pipes-in-series system: that is, Pipe 1 is followed by Pipe 2. The liquid is water
at room temperature with a mass flowrate of 2 kg/s. The pipes are horizontal. Calculate the
pressure drop across these two pipes and the power necessary to overcome the frictional loss.
Ignore the minor losses due to the pipe fitting. The pipe data are

<table>
<thead>
<tr>
<th>Pipe</th>
<th>L (m)</th>
<th>Pipe Size</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1-in, schedule-40</td>
<td>Commercial steel</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>2-in, schedule-40</td>
<td>Cast iron</td>
</tr>
</tbody>
</table>

48. Assume that the same two pipes in Problem 19.47 are now in parallel with the same total pres-
sure drop. Compute the mass flowrate in each section of pipe. Neglect additional frictional
losses due to the parallel piping. Explain the reason for the observed split between the parallel
pipes.

49. A pipe system to pump #6 fuel oil ($\mu = 0.8$ kg/m s, $\rho = 999.5$ kg/m3) consists of 50 m of 8-in,
schedule-40, commercial-steel pipe. It has been observed that the pressure drop is $8.79 \times
10^4$ Pa.

a. Determine the volumetric flowrate of the fuel oil.
b. Extra capacity is needed. Therefore, it has been decided to add a parallel line of the same
length (neglect minor losses) using 5-in, schedule-40, commercial-steel pipe. By what factor
will the fuel oil volumetric flowrate increase?

50. There are three equal-length sections of identical 3-in, schedule-40, commercial-steel pipe in
series. An increased flowrate of 20% is needed. How is the pressure drop affected? It is decided
to replace the second section with two equal-length, identical sections of the original pipe in
parallel. How is the pressure drop in this system affected relative to the original case? Neglect
minor losses due to elbows and fittings and assume fully developed turbulent flow.
51. Consider two parallel arteries of the same length, both fed by a main artery. The flowrate in the main artery is 10^{-6} m3/s. One branch is stenotic (has plaque build-up due to too many Big Macs, Double Whoppers, etc.). The stenotic artery will be modeled as a rigid pipe with 60% the diameter of the healthy artery (diameter of 0.1 cm). For this problem, blood may be considered to be a Newtonian fluid with the properties of water. What fraction of the blood flows in each arterial branch? Be sure to validate any assumptions made.

52. One of the potential benefits of the production of shale gas is that certain seams of the gas contain significant amounts of ethane, which can be cracked into ethylene, a building block for many other common chemicals (polyethylene, ethylene oxide, which is made into ethylene glycol among many others, and tetrafluoroethylene, the monomer for Teflon). Assume that a cracker plant produces ethylene (C$_2$H$_4$) at 5 atm and 70°F. It is to be delivered by pipeline to a neighboring plant, which was built near the ethylene cracker facility, which is 10 miles away. The pressure at the neighboring plant entrance must be 2.5 atm. It has been suggested that 6-in, schedule-40, commercial-steel pipe be used. What delivery mass flowrate is possible with this pipe size? If you need to make an assumption, do so and prove its validity.

53. Natural gas (methane, $\mu = 10^{-5}$ kg/m s) must flow in a pipeline between compression stations. The compressor inlet pressure is 250 kPa, and its outlet pressure is 1000 kPa. Assume isothermal flow at 25°C. The pipe is 6-in, schedule-40, commercial steel. The mass flowrate is 2 kg/s. What is the required distance between pumping stations?

54. Your plant produces ethylene at 6 atm and 60°F. It is to be delivered to a neighboring plant 5 miles away via pipeline, and the pressure at the neighboring plant entrance must be 2 atm. The contracted delivery flowrate is 2 lb/sec. It has been suggested that 4-in, schedule-40, commercial-steel pipe be used. Evaluate this suggestion. Be sure to validate any assumptions made.

55. Calculate the terminal velocity of a 2 mm diameter lead sphere ($SG = 11.3$) dropped in air. The properties of air are $\rho = 1.22$ kg/m3 and $\mu = 1.81 \times 10^{-5}$ kg/m s.

56. A packed bed is composed of crushed rock with a density of 200 lb/ft3 with an assumed particle diameter of 0.15 in. The bed is 8 ft deep, has a porosity of 0.3, and is covered by a 3 ft layer of water that drains by gravity through the bed. Calculate the velocity of water through the bed, assuming the water enters and exits at 1 atm pressure.

57. A hollow steel sphere, 5 mm in diameter with a mass of 0.05 g, is released in a column of liquid and attains an upward terminal velocity of 0.005 m/s. The liquid density is 900 kg/m3, and the sphere is far enough from the container walls so that their effect may be neglected. Determine the viscosity of the liquid in kg/m s. Hint: Assume Stokes flow and confirm the assumption with your answer.

58. In a particular sedimentation vessel, small particles ($SG = 1.1$) are settling in water at 25°C. The particles have a diameter of 0.1 mm. What is the terminal velocity of the particles? Validate any assumptions made.

59. At West Virginia University, each Halloween, there is a pumpkin-drop contest. College, high-school, and middle-school students participate. The goal is to drop a pumpkin off the top of the main engineering building (assume about 100 ft) and have it land close to a target without being damaged. Packing and parachutes are commonly used. You have a theory that the terminal velocity at which a pumpkin packed in your newly invented, proprietary bubble wrap can hit the ground and remain intact is 50 m/s. You will use no parachute, and the shape will be approximately spherical. The pumpkin plus wrapping has a diameter of 40 cm. By calculating the actual terminal velocity, determine whether the pumpkin will exceed the desired terminal velocity. Assume that the wrapped pumpkin has the specific gravity of water, and assume the air is at 25°C and 1 atm.

60. Air enters and passes up through a packed bed of solids 1 m in height. Using the data provided, what are the pressure drop and the outlet pressure?
Data: \[v_p = 1\text{m/s} \quad p_{\text{at}} = 0.2\text{MPa} \]
\[T = 293\text{K} \quad \mu = 1.8 \times 10^{-5}\text{kg/m/s} \]
\[D_p = 1\text{mm} \quad \varepsilon = 0.4 \]
\[\rho_i = 9500\text{kg/m}^3 \]

61. In the regeneration of a packed bed of ion-exchange resin, hydrochloric acid (SG = 1.2, \(\mu = 0.002\text{ kg/m s} \)) flows upward through a bed of resin particles (particle density of 2500 kg/m\(^3\)). The bed is 40 cm in diameter, and the particles are spherical with a diameter of 2 mm and a bed void fraction of 0.4. The bed is 2 m deep, and the bottom of the bed is 2 m off the ground. The acid is pumped at a rate of \(2 \times 10^{-5}\text{ m}^3/\text{s} \) from an atmospheric pressure, ground-level storage tank through the packed bed and into another atmospheric pressure, ground-level storage tank, in which the filled height is 2 m. The complete piping system consists of 75 equivalent meters of 4-in, schedule-40, commercial-steel pipe.

 a. Determine the required power of a 75% efficient pump for this duty. Remember that a pump must be sized for the maximum duty needed.

 b. What do you learn from the numbers in Part (a) regarding the relative magnitudes of the maximum duty and the steady-state duty?

 c. What is the pressure rise needed for the pump?

62. A gravity filter is made from a bed of granular particles assumed to be spherical. The bed porosity is 0.40. The bed has a diameter of 0.3 m and is 1.75 m deep. The volumetric flowrate of water at 25°C through the bed is 0.006 m\(^3\)/s. What particle diameter is required to obtain this flowrate?

63. Calculate the flowrate of air at standard conditions required to fluidize a bed of sand (SG = 2.4) if the air exits the bed at 1 atm and 70°F. The sand grains have an equivalent diameter of 300 \(\mu \text{m} \), and the bed is 3 ft in diameter and 1.5 ft deep, with a porosity of 0.33.

64. Consider a catalyst, specific gravity 1.75, in a bed with air flowing upward through it at 650 K and an average pressure of 1.8 atm (\(\mu_{\text{air}} = 3 \times 10^{-5}\text{ kg/m s} \)). The catalyst is spherical with a diameter of 0.175 mm. The static void fraction is 0.55, and the void fraction at minimum fluidization is 0.56. The slumped bed height is 3.0 m, and the fluidized bed height is 3.1 m.

 a. Calculate the minimum fluidization velocity.

 b. Calculate the pressure drop at minimum fluidization.

 c. Estimate the pressure drop at one-half of the minimum fluidization velocity assuming incompressible flow.

65. A manometer containing oil with a specific gravity (SG) of 1.28 is connected across an orifice plate in a horizontal pipeline carrying seawater (SG = 1.1). If the manometer reading is 16.8 cm, what is the pressure drop across the orifice? What is it in inches of water?

66. Water is flowing downhill in a pipe that is inclined 35° to the horizontal. A mercury manometer is attached to pressure taps 3 in apart. The interface in the downstream manometer leg is 1.25 in higher than the interface in the upstream leg. What is the pressure drop between the two pressure taps?

67. An orifice having a diameter of 1 in is used to measure the flowrate of SAE 10 lube oil (SG = 0.928, \(\mu = 60\text{ cP} \)) in a 2.5-in, schedule-40, commercial-steel pipe at 70°F. The pressure drop across the orifice is measured by a mercury (SG = 13.6) manometer, which reads 3 cm.

 a. Calculate the volumetric flowrate of the oil.

 b. How much power is required to pump the oil through the orifice (not the pipe, just the orifice)?
68. You must install a centrifugal pump to transfer a volatile liquid from a remote tank to a point in the plant 1000 ft from the tank. To minimize the distance that the power line to the pump must be strung, it is desirable to locate the pump as close as possible to the plant. If the liquid has a vapor pressure of 30 psia, the pressure in the tank is 30 psia, the level in the tank is 40 ft above the pump inlet, and the required pump NPSH is 20 ft, what is the closest that the pump can be located to the plant without the possibility of cavitation? The line is 2-in, schedule-40, commercial steel, the flowrate is 75 gpm, and the fluid properties are $\rho = 45 \text{ lb/ft}^3$ and $\mu = 5 \text{ cP}$.

69. Refer to Figure P19.69. Answer the following questions. Explain each answer.

a. At what flowrate is $NPSHA = 3.2 \text{ m}$? Comment on the feasibility of operating at this flowrate.

![Figure P19.69 Volumetric Flowrate of Acrylic Acid (at 89°C), L/s](image-url)
b. At what flowrate does the pump produce 33.5 m of head? What is the system frictional loss at this flowrate? What is the pressure drop across the control valve at this flowrate?
c. At what flowrate does cavitation become a problem?
d. What is the maximum possible flowrate?
e. If the source and destination pressures are identical, what is the elevation difference between source and destination?
f. At a flowrate of 1 L/s, what is the system frictional head loss?
g. At a flowrate of 1 L/s, what head is developed by the pump?
h. At a flowrate of 1 L/s, what is the head loss across the control valve?

70. Benzene at atmospheric pressure and 41°C is in a tank with a fluid level of 15 ft above a pump. The pump provides a pressure increase of 50 psi to a destination 25 ft above the tank fluid level. The suction line to the pump has a length of 20 ft and is 2-in, schedule-40. The discharge line has a length of 40 ft to the destination and is 1.5-in, schedule-40. The flowrate of benzene is 9.9 lb/sec.

a. Derive an expression for the NPSH in head units (ft of liquid) vs. flowrate in ft³/s.
b. Derive an expression for the system curve in head units (ft of liquid) vs. flowrate in ft³/s.
c. Locate the operating point on both plots on Figure P19.70.
d. What is the maximum flowrate before cavitation becomes a problem?
e. What is the pressure drop across the valve at the operating point?
f. What is the maximum flowrate possible with one pump, two pumps in series, and two pumps in parallel?

Data:

\[\log_{10} P_{\text{NPSH}}(\text{mmHg}) = 6.90565 - \frac{1211.033}{T(°C) + 220.79} \]
\[\rho_{\text{benzene}} = 51.9 \text{ lb/ft}^3 \]
\[\mu_{\text{benzene}} = 0.85 \text{ cP} \]

71. Acrylic acid at 89°C and 0.16 kPa (ρ = 970 kg/m³, μ = 0.46 cP) leaves the bottom of a distillation column at a rate of 1.5 L/s. The bottom of a distillation column may be assumed to behave like a tank containing vapor and liquid in equilibrium at the temperature and pressure of the exit stream. The liquid must be pumped to a railroad heading supply tank 4.0 m above the liquid level in the distillation column, where the pressure must be 116 kPa. The liquid level at the bottom of the distillation column is 3.5 m above the pump suction line, and the frictional head loss for the suction line including the tank exit is 0.2 m of acrylic acid. There is a cooler after the pump with a pressure drop of 3.5 m of acrylic acid. The discharge line is 1.5-in, schedule-40, commercial-steel pipe, with an equivalent length of 200 m. The entire process may be assumed to be isothermal at 89°C. The problem at hand is whether this system can be scaled up by 20%. The plots required for this analysis are in Figure P19.71.

a. Based on a pump/system curve analysis, can this portion of the process be scaled up by 20%? If not, what is the maximum scale-up percentage?
b. Based on an NPSH analysis, is it good operating policy for this portion of the process to be scaled up by 20%? If not, what is the maximum recommended scale-up percentage?
Figure P19.70 Flow of Benzene (at 41°C), ft³/s
Figure P19.71 Volumetric Flowrate of Acrylic Acid (89°C), L/s
72. Consider the pump and system curves indicated by the data in Table P19.72. Answer the following questions.

a. If the source and destination are at the same height, what is the pressure change from source to destination?

b. The operating condition is 1.2 L/s. What is \(\Delta P_{\text{fric}} \) at this point?

c. At 1.2 L/s, what pressure change does the pump provide?

d. At 1.2 L/s, what is the pressure drop across the control valve following the pump?

e. What is the maximum flowrate possible with this (assumed single) pump?

f. What is the maximum flowrate possible with two identical pumps in series?

g. What is the maximum flowrate possible with two identical pumps in parallel?

<table>
<thead>
<tr>
<th>Pressure Developed (kPa)</th>
<th>Flowrate (L/s)</th>
<th>Pressure Change (kPa)</th>
<th>Flowrate (L/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.0</td>
<td>0.00</td>
<td>54.0</td>
<td>0.00</td>
</tr>
<tr>
<td>225.0</td>
<td>0.40</td>
<td>59.0</td>
<td>0.50</td>
</tr>
<tr>
<td>225.0</td>
<td>0.80</td>
<td>80.0</td>
<td>1.00</td>
</tr>
<tr>
<td>224.0</td>
<td>1.20</td>
<td>115.0</td>
<td>1.50</td>
</tr>
<tr>
<td>220.0</td>
<td>1.50</td>
<td>200.0</td>
<td>2.00</td>
</tr>
<tr>
<td>185.0</td>
<td>1.86</td>
<td>559.0</td>
<td>2.50</td>
</tr>
<tr>
<td>0.0</td>
<td>2.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Blocks
in generic block flow process diagram, 63
unsupported in dynamic simulation, 622
Bloom’s Taxonomy of educational objectives,
student self-assessment, 3–4
Blowdown losses
utility costs for cooling water tower, 221,
223–224
utility costs for steam production, 229
Blowers
heuristics for, 361
increasing pressure of gases, 707
material factors for, 1272
Bottlenecks
using in HAZOP method, 1146–1147
Boiling-liquid expanding-vapor explosion
Boiling heat transfer coefficients
Boilers
Boiler feed water (bfw) system
exchanging heat between process streams
and utilities, 676–678
regulation scheme for Cumene reactor, 684
utility costs for steam production, 229–234
Boil-up rate
debottlenecking strategies for reboiler, 939
handling reduction in feed, 935
increasing, 855–857
manipulating when high purity is needed,
411
Blowdown losses
utility costs for cooling water tower, 221,
223–224
utility costs for steam production, 229
Bloom's Taxonomy of educational objectives,
as problem-solving strategy, 1067–1068
optimization and, 465–467
ideas in chemical product design, 127–128
optimization and, 465–467
as problem-solving strategy, 1067–1068
using in HAZOP method, 1146–1147
Briefings, oral presentation via, 1211
Broyden's method
performance for tear stream convergence,
583
for steady-state simulation, 579–585, 587–
588
Bubble cap trays, for separation, 913
Bubble phase, bubbling fluidized bed reactors,
999
Bubbling fluidized beds
fluidized bed reactors, 999–1000
two-phase model, 1002
Business codes of conduct, 1126–1127
Butenes. See Heptenes production
BVDM (boundary value design method), for
Bottlenecks
CAE.
Clean Air Act (CAA)
Carbon dioxide (CO2)
converting CO to, 1352–1356
removal. See CO2 and H2S removal from coal-
derived syngas
Carbon monoxide (CO), converting to CO2,
1352–1356
Carbon steel, selecting materials of
construction, 194–197, 356
Carnot efficiency, for mechanical refrigeration
systems, 225–226
Cascade diagrams
heat-exchanger network (HEN) design, 523–
524
mass-exchange network (MEN) design, 543–
544, 546–547
using HENSAD program to design, 540
using MUMNE algorithm for HENs, 514–516
Cascade regulation, 668–669, 684
Case studies
distillation column performance, 934–942
regulation and control of chemical processes,
683–688
report-writing. See Report-writing
case study
toluene HDA process, 426–428
troubleshooting multiple units, 1076
Cash criterion, evaluating profitability,
287–288
Cash criterion, profitability and, 291–293
Cash flow diagrams (CFDs)
annuity calculation using, 260–261
calculations using, 259–260
capital depreciation using, 268–273
commonly used factors in, 262
cumulative. See Cumulative CFD (cash flow diagram)
cumulative cash flow diagram and, 258–259
discount factors and, 261–265
discrete. See Discrete CFD (cash flow diagram)
in engineering economic analysis, 255–256
profitability analysis of new project, 285–287
taxation, profit and, 274–277
Catalysts
adding to feed, 66
development of new, 60, 124
feed purity and, 66
filtration in batch processes, 94–96
matching volume with heat transfer in reactors, 997–999
pollution prevention and, 1165
reaction kinetics data for PFD design, 370–371
reactor design and, 372
recycle feed and, 73–76
Catalytic chemical reactions, 154, 962
Catalytic reactors
case study, 683–685
maleic anhydride production from benzene, 1305–1311
using dynamic simulation, 618–619
Categorizing grid (memory matrix), in
outcomes assessment, 4
Cause analysis, in troubleshooting strategy, 1066
Cavitation, pump, 739–740
CCR (Cumulative cash ratio), profitability
criteria, 287–291
CCPS (Center for Chemical Process Safety)
AIChE, 1143
CCR (Cumulative cash ratio), profitability
criteria, 287–291
Ceiling concentration, air contaminant limits,
928–930
Chemical components, for PFD synthesis, 401
Chemical engineering plant cost index (CEPCI)
index
CAPCOST program, 204–206
changes from inflation, 183–184
changing fuel costs from 2001–2016, 220
values from 1996 to 2011, 179–181
Chemical equilibrium, modeling electrolyte systems, 432
Chemical process diagrams
3-D plant model, 41–43
3-D representation of a process, 34–41
additional diagram types, 32–33
PFDs. See Block flow diagrams (BFDs)
linked with OTS systems, 46–48
operator training simulators (OTS), 43–45
overview of, 8–10
P&IDs. See Piping and instrumentation diagrams (P&IDs)
process concept diagrams, 60–61
process flow diagrams. See Process flow diagrams (P&IDs)
Chemical process industry (CPI), scope and products of, 9
Chemical process industry (CPI), scope and products of, 9
Chemical product design
batch processing, 131
economics of, 131–132
as future of chemical engineering, 124
generation of ideas for, 127–128
manufacturing process, 130–131
overview of, 123–124
product need and, 125–127
selection process, 128–130
strategies for, 124–125
Chemical reactions
case study of acetone production, 1339–1341
catalytic, 154, 962
chemicals required but not consumed, 62
CSTRs used for liquid-phase, 980–984
distillation of reaction products in batch processes, 92–94
endothermic. See Enthalpy
exothermic. See Exothermal
heat integration and. See Heat integration
heat integration heat transfer and, 76
inert materials in controlling, 77, 154
ionic reactions, 432, 435–440
process concept diagram in identifying, 60–61
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalescence equipment</td>
</tr>
<tr>
<td>L-L separation via, 1046–1047</td>
</tr>
<tr>
<td>layouts for L-L separators, 1047–1049</td>
</tr>
<tr>
<td>Coast Guard, regulating transport of hazardous cargo, 1141</td>
</tr>
<tr>
<td>Co-current flow</td>
</tr>
<tr>
<td>limiting temperature profiles for, 775</td>
</tr>
<tr>
<td>LMTD correction factor for, 791, 797</td>
</tr>
<tr>
<td>overview of, 773–775</td>
</tr>
<tr>
<td>Co-current separations, mass separating agents and, 903</td>
</tr>
<tr>
<td>Code of Federal Regulations (CFR)</td>
</tr>
<tr>
<td>health, safety and environment, 1134</td>
</tr>
<tr>
<td>legal liability of chemical engineers, 1126</td>
</tr>
<tr>
<td>Codes of ethics</td>
</tr>
<tr>
<td>American Institute of Chemical Engineers (AICChE), 1110–1112, 1119–1120</td>
</tr>
<tr>
<td>National Society of Professional Engineers (NSPE), 1113–1114</td>
</tr>
<tr>
<td>overview of, 1110</td>
</tr>
<tr>
<td>whistle-blowing requirements in, 1115</td>
</tr>
<tr>
<td>Cognitive domain, Bloom's Taxonomy as, 3–4</td>
</tr>
<tr>
<td>Cohen-Coon tuning rule, dynamic simulation, 641</td>
</tr>
<tr>
<td>Cohen-Coon tuning rules, process control in dynamic simulation, 641–643</td>
</tr>
<tr>
<td>Colburn equation, for continuous differential separations, 906–910</td>
</tr>
<tr>
<td>Colburn graph, troubleshooting packed-bed absorbers, 1072</td>
</tr>
<tr>
<td>Colors, oral presentations using, 1213, 1217</td>
</tr>
<tr>
<td>Columns</td>
</tr>
<tr>
<td>condensers, reboilers and designing, 923–926</td>
</tr>
<tr>
<td>flooding and diameter of, 914–920</td>
</tr>
<tr>
<td>labeling in tables for design reports, 1200</td>
</tr>
<tr>
<td>COM (cost of manufacturing). See</td>
</tr>
<tr>
<td>Manufacturing cost estimates</td>
</tr>
<tr>
<td>Combination feedback/feedback-forward system, 667</td>
</tr>
<tr>
<td>Combustion</td>
</tr>
<tr>
<td>defined, 1143</td>
</tr>
<tr>
<td>fires, explosions and, 1143–1145</td>
</tr>
<tr>
<td>reducing in green engineering, 1165</td>
</tr>
<tr>
<td>Committee, writing by, 1302</td>
</tr>
<tr>
<td>Commodity chemicals, 123</td>
</tr>
<tr>
<td>Common Denominator Method, profitability of equipment with different operating lives, 303–304</td>
</tr>
<tr>
<td>Communication</td>
</tr>
<tr>
<td>audience analysis and, 1196</td>
</tr>
<tr>
<td>of optimization results, 468</td>
</tr>
<tr>
<td>oral. See Oral communication</td>
</tr>
<tr>
<td>written. See Written communication</td>
</tr>
<tr>
<td>Competency, choosing group members for, 1182</td>
</tr>
<tr>
<td>Component database, simulator features, 398</td>
</tr>
<tr>
<td>Composite temperature-enthalpy diagrams</td>
</tr>
<tr>
<td>designing with HENSAD program, 540</td>
</tr>
<tr>
<td>estimating heat-exchanger surface area, 525–529</td>
</tr>
<tr>
<td>showing minimum temperature approach, 523–524</td>
</tr>
<tr>
<td>for systems without a pinch, 524–525</td>
</tr>
<tr>
<td>Composition interval diagrams (CIDs), mass-exchange networks (MENs),</td>
</tr>
<tr>
<td>541–543, 546</td>
</tr>
<tr>
<td>Composition, measurement of process variables, 662</td>
</tr>
<tr>
<td>Compound adjectives, written report guidelines, 1203</td>
</tr>
<tr>
<td>Compound interest calculating, 252–253</td>
</tr>
<tr>
<td>continuously compounded, 255 defined, 252</td>
</tr>
<tr>
<td>interest rates changing over time and, 253</td>
</tr>
<tr>
<td>time basis in calculating, 254–255</td>
</tr>
<tr>
<td>Comprehension level, Bloom's Taxonomy as, 3–4</td>
</tr>
<tr>
<td>Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)</td>
</tr>
<tr>
<td>EPA regulations impacting, 1141</td>
</tr>
<tr>
<td>retroactive liability in, 1168</td>
</tr>
<tr>
<td>summary of environmental laws, 1161</td>
</tr>
<tr>
<td>Compressible frictional flow</td>
</tr>
<tr>
<td>for choked flow, 721–723</td>
</tr>
<tr>
<td>for fluid in pipes, 719–720</td>
</tr>
<tr>
<td>Compression</td>
</tr>
<tr>
<td>in single-stage steam ejectors, 1052</td>
</tr>
<tr>
<td>steam ejector performance and, 1057–1058</td>
</tr>
<tr>
<td>utility costs for refrigeration, 225–228</td>
</tr>
<tr>
<td>Compressors</td>
</tr>
<tr>
<td>bare module cost for, 1270</td>
</tr>
<tr>
<td>bare module factors for, 1271</td>
</tr>
<tr>
<td>capacities of process units in common usage, 356</td>
</tr>
<tr>
<td>conditions of special concern for, 155–158</td>
</tr>
<tr>
<td>equipment cost data for, 1249</td>
</tr>
<tr>
<td>feed section performance and, 751–755</td>
</tr>
<tr>
<td>as fluid flow equipment, 707–708</td>
</tr>
<tr>
<td>fluid flow performance analysis of, 749–752</td>
</tr>
<tr>
<td>heuristics for, 361</td>
</tr>
<tr>
<td>increasing pressure of gases, 707</td>
</tr>
<tr>
<td>increasing pressure/regulating flowrate with, 674–676</td>
</tr>
<tr>
<td>input for process simulation, 406</td>
</tr>
<tr>
<td>material factors for, 1272</td>
</tr>
<tr>
<td>mechanical energy balance in piping systems and, 700–703</td>
</tr>
<tr>
<td>physical property data for PFD synthesis, 371</td>
</tr>
<tr>
<td>pressure factors for, 1265</td>
</tr>
<tr>
<td>purchase costs for, 1252</td>
</tr>
<tr>
<td>utility cost estimates for, 238–240</td>
</tr>
<tr>
<td>Computational blocks, steady-state simulations, 571–572</td>
</tr>
<tr>
<td>Computational cost, sequential modular approach, 574</td>
</tr>
<tr>
<td>Computer aided design (CAD) programs, for 3-D representation, 33</td>
</tr>
<tr>
<td>Concentration control with multiple reactors, 76</td>
</tr>
<tr>
<td>Concentration profiles, in nonisothermal plug flow reactors, 987–989</td>
</tr>
<tr>
<td>Concept scoring, in chemical product design, 129</td>
</tr>
<tr>
<td>Concept screening, in chemical product design, 129</td>
</tr>
<tr>
<td>Condensate-return header pressure, utility costs for steam, 229</td>
</tr>
<tr>
<td>Condensation</td>
</tr>
<tr>
<td>drums used in partial, 911–912</td>
</tr>
<tr>
<td>heat transfer and, 824–828</td>
</tr>
<tr>
<td>TP-xy diagrams showing partial, 883</td>
</tr>
<tr>
<td>Condensers</td>
</tr>
<tr>
<td>impact on performance of distillation columns, 934–942</td>
</tr>
<tr>
<td>in tray towers, 923–926</td>
</tr>
<tr>
<td>using partial, 896</td>
</tr>
<tr>
<td>utility costs for refrigeration, 225–228</td>
</tr>
<tr>
<td>Conditions of special concern (separation and reactor systems)</td>
</tr>
<tr>
<td>analyzing and justifying in PCM, 158–164</td>
</tr>
<tr>
<td>for operation of other equipment, 155–158</td>
</tr>
<tr>
<td>pressure, 150–151</td>
</tr>
<tr>
<td>reasons for operating at, 152–154</td>
</tr>
<tr>
<td>temperature, 150–152</td>
</tr>
<tr>
<td>Confined spaces, Process Safety Management for, 1140</td>
</tr>
<tr>
<td>Confined spaces, regulation for workers in, 1140</td>
</tr>
<tr>
<td>Conflict of interest, business codes of conduct, 1127</td>
</tr>
<tr>
<td>Conjunctive adverbs, written report guidelines, 1203</td>
</tr>
<tr>
<td>Connectors, pipe, 705</td>
</tr>
<tr>
<td>Constant molar (or molal) overflow, in binary distillation, 890, 893</td>
</tr>
<tr>
<td>Constant volume (positive displacement) pumps</td>
</tr>
<tr>
<td>increasing pressure/regulating flowrate in streams, 674–676</td>
</tr>
<tr>
<td>overview of, 706–707</td>
</tr>
<tr>
<td>performance analysis of fluid flow in, 745–746</td>
</tr>
<tr>
<td>Constraints</td>
</tr>
<tr>
<td>defined, 464</td>
</tr>
<tr>
<td>equality vs. inequality, 464</td>
</tr>
<tr>
<td>in mechanical design. See Pinch technology optimization and, 464, 466</td>
</tr>
<tr>
<td>VLE and, 602</td>
</tr>
<tr>
<td>Consumer price index, CEPCI index compared with, 183</td>
</tr>
<tr>
<td>Containment, process safety and, 994, 1153–1154</td>
</tr>
<tr>
<td>Contaminants, gas permeation for removal of dilute, 950</td>
</tr>
<tr>
<td>Contingency costs</td>
</tr>
<tr>
<td>estimating bare module costs, 201</td>
</tr>
<tr>
<td>estimating total capital cost of plant, 183</td>
</tr>
<tr>
<td>Continuous differential separations</td>
</tr>
<tr>
<td>calculating transfer units, 881</td>
</tr>
<tr>
<td>Colburn equation for dilution, 908–910</td>
</tr>
<tr>
<td>for dilute solutions, 905</td>
</tr>
<tr>
<td>model for, 878–879</td>
</tr>
<tr>
<td>operating line/equilibrium curves in, 905</td>
</tr>
<tr>
<td>separations in packed columns as, 901</td>
</tr>
<tr>
<td>Continuous phase, in L-L separation, 1044–1047</td>
</tr>
<tr>
<td>Continuous processes</td>
</tr>
<tr>
<td>deciding to use batch processes vs., 56–60, 79</td>
</tr>
<tr>
<td>defined, 56</td>
</tr>
<tr>
<td>hybrid/batch, 79–82–83</td>
</tr>
<tr>
<td>logic controllers in, 680</td>
</tr>
<tr>
<td>Continuous stirred tank reactors (CSTRs)</td>
</tr>
<tr>
<td>dynamic models for, 632</td>
</tr>
<tr>
<td>examples, 974–975</td>
</tr>
<tr>
<td>input for process simulation, 408</td>
</tr>
</tbody>
</table>
Continuous stirred tank reactors (CSTRs) (continued)
nonisothermal, 980–984
overview of, 972–973
performance problems, 1003–1006
Contractor's estimates, 172–174
Contracts
business codes of conduct and, 1126–1127
legal issues for chemical engineers, 1126
Control
in dynamic simulation, 639–646
oral presentation guidelines, 1214
of process operations. See Control and regulation of chemical processes
Control and regulation of chemical processes
advanced process control (APC), 682–683
cascade control system, 668–669
case studies, 683–686
characteristics of regulating valves, 657–659
combination feedback/feed-forward control strategy, 667–669
feedback control and regulation strategy, 665–667
feedback control and regulation strategy, 665–667
logic control, 680–682
measuring process variables, 662–663
operator training simulator (OTS), 683–688
overview of, 655–656
ratio control strategy, 669–671
regulating flows and pressures, 660–662
simple regulation problem, 656–657
split-range control strategy, 671–673
Control loops
in dynamic simulation, 641–643, 652
identifying/describing in PFDs, 14–15
P&IDs and, 29–30
PFD synthesis and, 390
Control systems
advanced process control (APC), 682–683
cascade control system, 668–669
combination feedback/feed-forward control, 667–669
dynamic simulation in, 619
dynamic simulation in designing, 619, 640–656
feed-forward control, 665–667
feedback control, 663–665
for hazardous materials, 1154
logic control, 680–682
ratio control system, 669–671
split-range control strategy, 671–673
Control volume, in fluid mechanics, 697–698
Controllability, continuous vs. batch processes and, 59
Controlled variable (CV)
SISO controllers in dynamic simulation, 640
in split-range control, 671–673
Convection, effects on pool boiling of forced, 817–822
Convective film heat transfer. See Film heat transfer coefficients
Convergence criteria, in process simulation, 411–412
Conversion profiles, adiabatic packed bed reactor, 996–997
Conveyors
bare module factors for, 1274
equipment cost data for, 1249
purchase costs for, 1260
Cooling
in acid-gas removal, 572–573, 587, 593–596
complex reactor performance problems and, 1004–1006
concentration/temperature profiles in reactors and, 987–989
configuring CSTRs, 980–984
dynamic simulation and, 625–627, 630
heat exchange between process streams and utilities, 676–678
justifying operations outside temperature range for, 151–152
in nonisothermal PFRs, 991
nonisothermal plug flow reactors and, 991
Cooling water tower, estimating utility costs, 221–223
Cooperative or collaborative learning, in teams, 1189
Coordination, of group effort, 1177–1178
Copper, thermal conductivity in heat exchangers, 800–801
Correction factors, estimating fate of chemicals in environment, 1160–1161
Corrosion
allowance in pressure vessel design, 1022
resistance in some materials of construction, 1016, 1019–1020
CPI (chemical process industry), scope and products, 9
Creeping flow, around submerged objects, 724–725
Criminal prosecution, of chemical engineers, 1126
Critical path method (CPM), group scheduling and, 1185
Cross-flow exchangers, LMTD correction factor for, 797
Crude oil, cost of, 220, 236–237
Cryogenic conditions, of special concern, 152
Crystallization
guidelines for choosing separation units, 374
heuristics for towers, 363
of product in batch processing, 96–97
solid-liquid equilibrium (SLE) and, 441
Crystallizers
bare module factors for, 1274
equipment cost data for, 1249
L-phenylalanine and L-aspartic acid production, 1328–1329
purchase costs for, 1260
CSTRs. See Continuous stirred tank reactors (CSTRs)
CSTRs (Nonisothermal continuous stirred tank reactors)
overview of, 980–984
performance problems, 1004–1006
Cumene
basic regulation scheme, 683–685
reactor case study, 683–685
troubleshooting entire process, 1081–1085
troubleshooting feed-section, 1074–1076
troubleshooting steam release, 1078–1081
Cumene production at new 100,000-metric-tons-per-year facility
assignment, 1430–1431
background, 1430
cost of manufacture, 1432
reaction kinetics, 1431
report format, 1432
simulation (CHEMCAD) hints, 1432
Cumene production facility problems
background, 1417
equipment summary table, 1425–1426
flow summary table, 1421
process calculations, 1425–1429
process description, 1417–1418
process flow diagram, 1418–1419
pump, system, and NPSH curves, 1423–1424
reaction kinetics, 1417
recent problems, 1418–1419
specifications of products and raw materials, 1419–1420
utility summary table, 1422
Cumulative cash position (CCP), profitability criteria, 287–291
Cumulative cash ratio (CCR), profitability criteria, 287–291
Cumulative CFD (cash flow diagram) defined, 256
discounted profitability cash criteria, 292–293
discounted profitability interest rate criteria, 295
evaluating profitability of new project, 285–287
nondiscounted profitability criteria, 289–290
overview of, 258–259
Decision-making
friction in groups from lack of concurrence, 1181
mobile truth and ethical, 1183–1184
role of leadership in groups, 1181–1182
Decision variables
communicating results, 468–469
estimating problem difficulty, 467–468
in flowsheet optimization, 484–487
identifying and prioritizing, 471–472
objective function and, 464
overview of, 464
in parametric optimization, 479
sensitivity studies and, 487
Define phase, in troubleshooting strategy, 1081
Decide phase, in troubleshooting strategy, 1068–1071
Definitive (project control) estimate, 172–173
DEMO (dominant eigenvalue method), for steady-state simulation, 578–579
Design
modeling, 433–434
modeling, 402
Design by-rule philosophy, pressure vessels, 1016
Design Institute for Emergency Relief Systems (DIERS), AIChE, 1143
Design Institute for Physical Property Research (DIPPR), 402
Design projects
allyl chloride production at new facility. See Allyl chloride production, design new 20,000-metric-tons-per-year facility cumene production at new facility, 1430–1432
cumene production facility problems. See Cumene production facility problems increasing allyl chloride production. See Allyl chloride (3-chloro-1-propene) production, design for increasing introduction to, 1379–1380
phthalic anhydride production at new facility, 1412–1416
phthalic anhydride production scale down. See Phthalic anhydride production, scaling down references, 1380
Design reports
figures and tables in, 1200
written communications as, 1197–1198
Desuperheaters, 937
depreciation of capital investment
definitions, 256
depreciation method, 270–273
depot reengineering. See also Troubleshooting
analysis of fluid flow equipment, 736
applying to problems, 1085–1091
overview of, 1066–1067
Decide phase, in troubleshooting strategy, 1084
Decide step, in troubleshooting, 1068–1071
deposition of immobilized enzymes, 924–925
diagram of chemical processes. See Chemical process diagrams
DIERS (Design Institute for Emergency Relief Systems), AIChE, 1143
Differential algebraic equations (DAEs) as dynamic simulation solution method, 633–635
method of lines generating, 632
Diffusion coefficients, in electrolyte systems modeling, 433–434
Diffusion, solids modeling and, 442
Dimensionality, equality constraints reduce, 464
Dimethyl ether (DME) production cascade regulation for, 668–669
chemical process for, 1278–1283
making it greener, 1171
material balance control for overhead product, 655–656
DIPPR (Design Institute for Physical Property Research), 402
direct manufacturing costs, estimating for chemical product, 213–215
Direct substitution accelerated successive substitution (relaxation) vs., 578
performance for tear stream convergence, 583
steady-state simulation, 578
steady-state simulation examples, 580–585
Discharge coefficient, measuring flowrate, 730–735
Discount factors, calculating annuities, 261–265
Discounted cash flow rate of return (DCF)ROR
CAPCOST program using, 325
comparing large projects, 295–298
interest rate criterion, 293–295
reliable results of, 327
sensitivity analysis for quantifying risk, 315
Discounted criteria, evaluating profitability, 295–298
Discounted cumulative cash position, 291
Discounted methods, for incremental analysis, 308–309
Discounted payback period (DPBP)
interest rate criterion, 294
time criterion, 291–293
Discrete CFD (cash flow diagram)
for annuity, 260–265
capital depreciation, 268
equations of, 255–256
overview of, 256–258
Discretionary money, 248–251
Discrete CFD (cash flow diagram)
for annuity, 260–265
capital depreciation, 268
equations of, 255–256
overview of, 256–258
Discrete CFD (cash flow diagram)
for annuity, 260–265
capital depreciation, 268
equations of, 255–256
overview of, 256–258
Discrepancy in life cycle analysis, 1169
Disengagement, friction in groups from, 1181
Dished (or torispherical) heads, pressure vessels, 1022–1024
Dispersed phase (droplets), in L-L separation, 1044–1047
Disposal, in life cycle analysis, 1169
Distillation
approach to recycling raw materials, 72
azeotropic, generally, 378–379
azeotropic, in binary systems, 379–382
azeotropic, in ternary systems, 382–388
batch, 409
design calculations for batch processes, 94–95, 97
designing for optimum energy usage, 1165
ergy as separating agent in, 876
exploiting boiling points between components, 876
heuristics for towers used in, 363
mass separating agents compared to, 903–904
McCabe-Thiele method for mass separating agents, 903–905
McCabe-Thiele method using packed columns, 901–902
McCabe-Thiele method using tray columns, 888–901
simple, 376–378
TP-xy diagrams showing, 883–888
Distillation columns. See also Tray towers
basic control system for binary, 685–687
building model of aqueous electrolyte systems, 435–440
case study on performance of, 934–942
design cumene production at new 100,000-metric tons-per-year facility, 1432
drums used in, 911–912
dynamic models and control of, 632–633
input for process simulation, 408–409
McCabe-Thiele method using tray columns, 888–901
modeling for electrolyte systems, 447–450
reasons for elevating, 39–40
sequencing for simple distillation, 376–379
single-variable optimization of, 480–481
sophisticated control system for binary, 687–688
Distillation columns setup, 632–633
dynamics specifications in, 624
equipment geometry and size setup, 622–624
flash separators and storage vessels setup, 630–632
heat exchangers setup, 625
method of lines setup, 632
need for dynamic simulation, 618–619
OTS required for executing, 689
process control, 639–646
process heat exchangers setup, 627–630
reactors setup, 632
series of CSTRs setup, 632
setting up, 619
solution methods, 634–639
terminology for, 617–618
topological changes from steady-state simulation, 619–622
utility heaters/coolers setup, 625–627
Dynamic specifications, in dynamic simulators, 624
dysfunctional group behavior, 1183
E
E-mail, rapid written communication via, 1199
EAOC. See Equivalent annual operating cost (EAOC)
EB production. See Ethylbenzene (EB)
production
ECC (equivalent capitalized cost), 301
Economics
analysis of engineering. See Engineering economics
capital analysis, 149
capital costs and. See Capital cost estimation
capital costs of chemical processes, 149
manufacturing costs. See Manufacturing cost estimates
of pollution prevention, 1165, 1167–1168
of product design, 131–132
profitability analysis in. See Profitability analysis
Economy of scale
deciding on continuous vs. batch processes, 57
equipment capacities and, 177–179
Effective annual interest rate, 254–255
effectiveness charts, heat exchangers, 861–864
effectiveness factor (f), applied to S-T heat exchangers, 539–534
Efficiency
defining tray, 920–922
ingroup synergy, 1176
of mist eliminators in V-L separation, 1040–1044
using continuous vs. batch processes, 58
EIS (Environmental impact statement), 1140
ET (Engineer-in-Training) certification, 1122–1125
Elbows, changing flow direction with, 705
Electricity
cost of, 220
cost of manufacturing benzene, 241–242
utility costs for plant with multiple process units, 222
utility costs for steam production, 228–234
utility costs from PFDs, 238–240
Electrolyte systems modeling
building model of aqueous electrolyte, 435–440
calculating excess Gibbs free energy for, 445–447
calculation of Gibbs free energy for, 430
chemical equilibrium in, 432
diffusion coefficient in, 433–434
fundamentals of, 429–431
heat capacity in, 431–432
modeling distillation column for, 447–519
molar volume in, 432
overview of, 428
surface tension in, 434–435
thermal conductivity in, 433
viscosity in, 432–433
Elevation, of equipment, 39–41
Elevation diagrams, 32–33
Engineer-in-Training (EIT) certification,
Energy balance
Energy
Endothermic reactions
Emergency release of emissions, EPA, 1141
Emergency Planning and Community Right to
Emergencies, simulation in training for, 48
Emergencies, simulation in training for, 48
Emergency Planning and Community Right to
Know Act (EPCRA), 1141, 1161
Emergency release of emissions, EPA, 1141
Emissions
emergency release of, 1141
fugitive, 1166
green engineering for reduction of, 1159
pollution prevention in process design and, 1165–1166
Employee relations, and business codes of
conduct, 1127
Endothermic reactions
hierarchy of reactor configurations for, 986
justifying reactors operating at temperature
conditions of special concern, 152–153
reactor design and, 373
reactor design for PFD synthesis, 373
reasons for multiple reactors, 76
Energy
affecting supply and demand curves, 313
green engineering minimizing use of, 1159
heat integration efficiency and, 37
heat integration
loss due to friction in piping systems, 700–703
recovery system, 83
Energy balance
in McCabe-Thiele method for distillation, 890, 892, 899
MERSHQ (material balance, energy balance, rate equations, hydraulic equations, and equilibrium equations) in, 436–440
nonisothermal CSTRs and, 980–984
performance problems for reactors, 1005
reactors and, 971–972
reboilers and, 924
relationships in separations, 877
Engineer-in-Training (EIT) certification, 1122–1125
Engineering economic analysis
annuity calculation, 260–265
calculations using cash flow diagrams, 259–265
cash flow diagrams in, 255–259
compound interest, 252–253
cumulative cash flow diagram, 258–259
depreciation of capital investment, 268–274
discrete cash flow diagram, 256–258
infation, 266–267
interest rates changing over time, 253
investments, and time value of money, 248–251
overview of, 247–248
simple interest, 252
taxation, cash flow, and profit, 274–277
time basis for compound interest
calculations, 254–255
types of interest, 253–255
Engineering ethics, 1104, 1118–1121
Engineers’ Creed,” code of ethics, 1112
Enthalpy
See also
Temperature-enthalpy (T-Q) diagrams
composite enthalpy curves for systems
without a pinch, 524–525
composite temperature-enthalpy diagram, 532–534
handling streams with phase changes, 539–540
of mechanical energy balance in piping
systems, 700–703
MESH (material balance, phase equilibrium, summation equations, and enthalpy balance), 435–440
solids modeling and, 442
thermodynamic model, 416
Entrainment
defined, 914
performance of steam ejectors, 1057–1058
Envelope method, tracing primary chemical
pathways, 139–140
Envirosfacts System, EPA, 1141
Environment
See also
Health, safety, and environment (HSE)
fate of chemicals in, 1160–1163
green engineering for, 1141
engineering life-cycle analysis (LCA) of product
consequences in, 1168–1169
PFD synthesis and, 389
work, 1177
Environmental control block, in block flow
diagram, 65
Environmental impact statement (EIS), 1140
Environmental Protection Agency (EPA)
definition of “worst-case release,” 1133
emergency release of emissions, 1141
focus of, 1131
fugitive emissions and, 1166
legal liability and, 1126
overview of, 1140
planned emissions, 1140–1141
Risk Management Plan (RMP), 1141–1142
Environmental regulations
green engineering and, 1159–1160
need for steady-state simulation, 562
Pollution Prevention Act of 1990,
1159–1160
summary of laws, 1161
EO. See Equation-oriented (EO) approach
EOS
estimation of physical property parameters, 602–604
solids modeling and, 443
EPA. See Environmental Protection Agency
(EPA)
EPCRA (Emergency Planning and Community
Right to Know Act), 1141, 1161
Equal percentage (or constant) valves, for
regulation, 658
Equality constraints, in optimization, 464
Equation-oriented (EO) approach
converging optimization problem using,
592–595
for linear/nonlinear equations in dynamic
simulation, 637–638
optimization of flowsheet convergence and,
590–591
SMoD as hybrid of SM and, 586–589
in steady-state simulation, 585–586
Equations, in written design reports, 1207–1208
Equations of state, phase equilibrium model,
417–418
Equilibrium
inert materials added to feed for controlling
reactions, 67–68
justifying conditions of special concern in
reactors/separators in PCM, 158–164
justifying reactors/separators operating at
temperature conditions of special
concern, 152–154
liquid-liquid. See Liquid-liquid equilibrium
(LLE)
MERSHQ (material balance, energy balance,
rate equations, hydraulic equations, and
equilibrium equations) in, 436–440
MESH (material balance, phase equilibrium, summation equations, and enthalpy balance) in, 435–440
modeling electrolyte systems with chemical,
432
reactor design, 372
reactors, 408
reasons for multiple reactors, 76
separation, 877–878
solid-liquid equilibrium (SLE), 441–443
solid-vapor equilibrium (SVE), 441–442
vapor-liquid. See Vapor-liquid equilibrium
(VLE)
Equipment
3-D representation of. See 3-D representation
of process (plant model)
analyzing important process conditions,
155–158
CAPCOSt costs for purchased, 1247–1248
capital costs estimates for, 176
costs of installation, 182–183
Equivalent annual operating cost (EAOC) data for optimization base case, 469–470
deckneting depreciation of, 269
with different operating lives, 300–305
disposal, 1169
drawings showing location of plant, 32
duplicating for increased production, 110–111
eliminating for optimization, 475
eliminating or replacing, 17–18
fluid flow, 703–708
fluid mechanics. See Fluid mechanics
fouling. See Fouling
government and size for dynamic simulation, 622–624
heat transfer. See Heat transfer
identifying in PFDs, 16–17
increasing allyl chloride production, 1384
intermediate storage for, 109
in multiproduct batch processes, 111–113
overview of, 695–696
parameter selection for simulation, 405–411
PE topology for, 14–18
plant cost estimates. See Plant costs
problem-solving, 1068
process design. See Major equipment
summary, in product design
reactors. See Reactors
rearranging for optimization, 475–477
retrofitting, 1091
with same operating lives, 299–300
summarizing in PFD, 21–23
troubleshooting. See Troubleshooting
Equipment, dynamic simulation setup
dynamic data/specification of, 624
dynamic models for, 632–633
flash separators and storage vessels, 630–632
heat exchangers, 625
method of lines, 632
process heat exchangers, 625–627
reactors, 632
series of CSTRs, 632
utility heaters/coolers, 625–627
Equipment, other
knockout drums. See Knockout drums (phase separators)
pressure vessels. See Pressure vessels
steam ejectors. See Steam ejectors
Equipment summary table
cumene production facility problems, 1409–1410
as final element of PFD, 21–22
PFD synthesis, 390–391
scale-down of phthalic anhydride production, 1409–1410
Equivalent annual operating cost (EAOC) for distillation using McCabe-Thiele method, 900–901
for equipment with different operating lives, 302–303
for heat-exchanger networks, 534–536
for incremental analysis, 309
for large processes using HENSAD, 540–541
objective functions in optimization, 470–471
Equivalent capitalized cost (ECC), 301
Equivalent length method, frictional loss, 710
Errors, common simulation, 412–413
Ethanol, purifying with pervaporation, 380–381
Ethical dilemmas, 1117–1118
Ethics and professionalism
affinity to group and mobile truth, 1183–1184
business codes of conduct, 1126–1127
codes of ethics, 1110–1114
duties and obligations, 1110
deriver-in-training certification, 1122–1124
ethical dilemmas, 1117–1118
ethical heuristics, 1118
Fundamentals of Engineering (FE) exam, 1122–1124
legal liability, 1125–1126
moral autonomy, 1105
moral values and, 1104
nonprofessional responsibilities, 1108–1110
Principles and Practice (PE) exam, 1124–1125
professional registration (certification), 1121–1125
reasons for ethical behavior, 1103–1104
reflection in action, 1106–1107
registered professional engineer, 1124–1125
rehearsal of new skills, 1105–1106
resource materials for, 1118–1121
whistle-blowing, 1115–1117
Ethics Resource Guide, NIEE, 1119
Ethics Test” video, NSPE code of ethics, 1121
Ethylene oxide production
Ethylbenzene (EB) production
major equipment summary, 1289–1291
making it greener, 1171
overview of, 1283–1284
process description, 1284
process flow diagram, 1286
reaction kinetics, 1284–1285
references, 1291
simulation (CHEMCAD) hints, 1291
stream table, 1287–1288
utility summary table, 1288
Ethylene oxide production
major equipment summary, 1315–1316
making it greener, 1171
overview of, 1311
process description, 1311–1313
process flow diagram, 1312
reaction kinetics, 1313, 1316
references, 1317
simulation (CHEMCAD) hints, 1316
split-range pressure control of, 673
stream table, 1314
utility summary table, 1315
Evaluator step, in troubleshooting, 1068–1071
Evaluation level, Bloom’s Taxonomy, 4
Evaporators
bare module cost for, 1270
bare module factors for, 1271
calculating utility costs for refrigeration, 225–228
equipment cost data for, 1249
material factors for, 1272
pressure factors for, 1265
purchase cost factors for, 1253
separation and, 876
Evolution, group, 1183
Exams, team, 1189
Excel, user-added models, 563
Exchanger networks. See Pinch technology
Exchangers. See Heat exchangers
Executive summary
report abstract vs., 1198–1199
written report guidelines, 1203–1204
Exhibits (figures and tables), written communications as, 1200
Exothermic reactions
fluidized bed reactors for extreme, 985, 986
hierarchy for nonisothermal plug flow reactors, 984–986
loss of coolant accidents (LOCA’s) in, 1145
reactor design and, 373
Expanders, input for process simulation, 406
Expansion valve or turbine, utility costs for refrigeration, 225–228
Experience-based principles, in process design
advantages/disadvantages of materials of construction, 357
heuristics and shortcut methods, 348–349
heuristics for compressors, fans, blowers, and vacuum pumps, 361
heuristics for drivers and power recovery equipment, 358
heuristics for drums (process vessels), 358
heuristics for heat exchangers, 362
heuristics for liquid-liquid extraction, 365
heuristics for packed towers (distillation and gas absorption), 364
heuristics for piping, 360
heuristics for pressure and storage vessels, 366
heuristics for pumps, 360
heuristics for reactors, 366
heuristics for refrigeration and utility specifications, 367
heuristics for thermal insulation, 362
heuristics for towers (distillation and gas absorption), 364
maximizing benefits of experience, 349–351
physical property heuristics, 355
process unit capacities, 356
references, 368
tables of heuristics and guidelines, 351–355
Expert systems, select model for system, 402
Explicit Euler method, dynamic simulation
integrator algorithms, 635
Explicit methods, dynamic simulation
integrator algorithms, 635
Explosions. See also Fire and explosions, 1144
Extended surfaces
fin efficiency for other fin geometries, 830–831
heat transfer coefficients for gases and, 828–829
Index

rectangular fin with constant thickness, 829–830
total heat transfer surface effectiveness, 831–837
Extraction equipment
tagulated columns, 943–944
centrifugal extractors, 943, 945
corporation of, 945–946
mixer–settlers, 943
overview of, 942
static and pulsed columns, 943
static columns, 943
Federal Register (FR), 1126, 1134
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 1161
Federal government regulations
feasible distillation processes, ternary
FE (Fundamentals of Engineering) exam, 1122–1124
FDI (Fault diagnosis and identification), dynamic
feedback control
calculating blocks in simulation as, 572
combination feedback and, 667
major process control loops and, 390
model of higher education as, 1–2
oral communication as type o, 669
ratio control as type of, 669
and regulation, 665–667
weakness of, 1
written communications as, 1209
Feed preheater, utility cost estimate for, 238–240
Feed pumps, cumene production facility and, 1419
Feedback control
advantages/disadvantages of, 663
basis of, 659
examples of, 663–665, 667
flowrate schemes for pumping liquids, 675
loops for binary distillation column, 685
oral presentations provide type of, 1209
outcomes assessment analogous to, 1
in process control, 640
Fees, in estimating bare module costs, 201
ferrous alloys, selecting materials of
Fiduciary responsibilities, business codes of conduct, 1127
FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) (FIFRA), 1161
Figures (graphs and pictures), in design reports, 1200, 1206–1207
film boiling, heat transfer coefficients for, 822–824
film heat transfer coefficients
boiling heat transfer. See Boiling heat transfer coefficients
condensing heat transfer, 824–828
correlations for, 803
flow inside tubes, 803–808
flow outside of tubes (shell-side flow), 808–813
Filters
bare module factors for, 1274
cost curves for purchased equipment, 1262
equipment cost data for, 1250
L-phenylalanine and L-aspartic acid production, 1328
for particles in compressors, 708
Finned tubes, air-cooled heat exchangers, 797
fins
effectiveness for rectangular fins, 864–866
efficiency of rectangular fins with constant thickness, 828–829
other fin geometries, 830–831
total heat transfer surface effectiveness and, 831–837
various types of, 829
Fire and explosions
Dow Fire & Explosion Index, 1150–1152
pressure-relief systems, 1145
terminology, 1143–1145
Fired heaters. See Furnaces
Firm estimates, 172–174
first person pronouns, avoiding in written design reports, 1202
fixed capital investment (FCI)
calculating total capital investment, 269
calculating utility costs, 221
complex flow diagrams for new project, 286
depreciation of, 269
estimating EAOC for HENs, 534–536
estimating manufacturing costs, 215, 217, 230–231
interest rate nondiscounted profitability criteria and, 287–291
Monte-Carlo analysis for quantifying risk, 321–322
sensitivity analysis for quantifying risk, 316–318
in single-variable optimization, 480
supply and demand curves affecting, 333
in two-variable optimization, 483
Fixed manufacturing costs, 214–218
Fixed-tubesheet design, S-T heat exchangers, 783–784, 788
Fixing problems, in troubleshooting, 1066
flanges
connecting pipes with, 705
minimizing pollution from leaking, 1166
Flares, in pressure-relief systems, 1145
flash point of, liquid, 1144
Flash separators, dynamic simulation and, 630–632
Flash units, equipment parameters in PFD
Flash units, equipment parameters in PFD
First person pronouns, avoiding in written design reports, 1202
Fire and explosions
Dow Fire & Explosion Index, 1150–1152
pressure-relief systems, 1145
terminology, 1143–1145
Fired heaters. See Furnaces
Firm estimates, 172–174
first person pronouns, avoiding in written design reports, 1202
Sensitivity analysis for quantifying risk, 321–322
Fixed capital investment (FCI)
calculating total capital investment, 269
calculating utility costs, 221
cash flow diagram for new project, 286
depreciation of, 269
estimating EAOC for HENs, 534–536
estimating manufacturing costs, 215, 217, 230–231
interest rate nondiscounted profitability criteria and, 287–291
Monte-Carlo analysis for quantifying risk, 321–322
sensitivity analysis for quantifying risk, 316–318
in single-variable optimization, 480
supply and demand curves affecting, 333
in two-variable optimization, 483
Fixed manufacturing costs, 214–218
Fixed-tubesheet design, S-T heat exchangers, 783–784, 788
Fixing problems, in troubleshooting, 1066
Flanges
connecting pipes with, 705
minimizing pollution from leaking, 1166
Flares, in pressure-relief systems, 1145
flash point of, liquid, 1144
Flash separators, dynamic simulation and, 630–632
Flash units, equipment parameters in PFD
synthesis, 408
Flexibility
optimization related to, 489–490
process flow diagram, 489–490
using continuous vs. batch processes, 57
Flooding
calculating diameter for packed tower, 930–931
calculating velocities, 915–916
in mist eliminators, 1038–1040
overview of, 914–915
Flow. See also Fluid mechanics
analysing pump and system curves, 743–749
base-case ratios, 736–739
compressor curves and staging, 749–752
frictional pipe. See Frictional pipe flow
Fluid mechanics, analyzing pump and system curves, 743–749
base-case ratios, 736–739
basic relationships in, 697–703
compressor curves and staging, 749–752
compressors, 707–708
flow past submerged objects, 723–728
flowrate measurement, 730–735
fluid flow equipment performance, 736
fluid flow equipment types, 703–708
fluidized beds, 728–730
force balance, 703
frictional pipe flow. See Frictional pipe flow
mass balance, 696–699
mechanical energy balance, 700–703
net positive suction head (NPSH) for pumps, 739–743
overview of, 697
performance of feed section to process, 751–755
pipes, 703–705
pumps, 706–707
valves, 705–706
Fluid flow equipment performance, 736
Fluidized bed reactors
bubbling fluidized bed, 999–1000
designing new facility for allyl chloride production, 1394
for extreme exothermic reactions, 985
fast fluidization, 1001
flow through, 728–730
increasing allyl chloride production, 1388–1393
overview of, 999
turbulent fluidization, 1000–1001
Fluidized catalytic cracking (FCC), solids
modeling, 440
Fluids
flow of. See Flow
S-T heat exchanger heuristics, 788–789
Fluids, improper use in oral presentations, 1217
forcing uncertainty in chemical processes, 310–311
supply and demand factors, 311–314
Foreign countries, business codes of conduct
Formal oral presentations, preparing for,
Formalin production
major equipment summary, 1321–1323
making it greener, 1171
process description, 1317–1319
process flow diagram, 1318
reaction kinetics, 1319
references, 1319
simulation (CHEMCAD) hints, 1319
stream table, 1320
utility summary table, 1321
Formation stage, in group evolution, 1184
Formats
written communication, 1197
written report guidelines, 1203–1206
Forming stage, in group evolution, 1184
FORTRAN programming language, user-added models, 363
Foiling
antifouling chemicals, 223
bubble caps prone to, 913
and choice of tube-side fluid, 788
condensing heat transfer and, 824
design algorithm for S-T heat exchangers, 839, 841
design away from pinch and, 520–521
equipment, 59
estimating individual heat transfer coefficients and, 803
and heat transfer coefficients, 800–801
optimization cycle time for cleaning heat exchangers prone to, 497
in separation equipment, 938–940
troubleshooting performance, 1070
water contaminants in steam production casing, 229
FR (Federal Register), 1134
Free convection boiling, 813
Friction (interpersonal), sources of group,
Frictional losses, calculating, 709–711
Frictional pipe flow
calculating frictional losses, 709–711
calculating frictional losses in choked flow, 720–723
calculating compressible flow, 719–720
incompressible flow, 712–719
Friendship, choosing group members, 1183
FTA (Fault-Tree Analysis), in Process Hazard Analysis, 1146
Fuel costs. See Utility costs
Fugitive emissions
minimizing pollution from, 1166
regulation of, 1140–1142
Fully developed turbulent flow friction factors in choked flow, 721–723
Fuel costs. See Utility costs
Furnaces
bare module cost for, 1270
bare module factors for, 1271
equipment cost data for, 1250
material factors for, 1273
pressure factors for, 1265
purchase costs for, 1255
Future liability
in economics of pollution prevention, 1168
estimating fate of chemicals in environment, 1163
Future value (F) of investment
calculating annuities, 261–265
Future value (F) of investments
calculating annuities, 261–265
Geometry of equipment, in dynamic simulation, 622–624

G

Gantt charts in batch processing, 97–98
group scheduling and, 1185
multiproduct sequence, 103
reference for developing and using, 1191
and scheduling, 97–98
scheduling batch processes, 103–105
for single-product and multiproduct campaigns, 104–105

Gas
absorption, 363
heat transfer coefficients in packed beds, 992–993
law. See Ideal gas law
permeation membrane separations, 947–950

Gas-liquid separations two-film model for, 879–880
using mass separating agents, 903

Gas-phase reactions estimating concentrations using ideal gas law, 963–964
exothermic vs. endothermic, 373
justifying reactors/separators operating at conditions of special concern, 152–154
operating reactors and separators outside pressure range of special concern, 163
reactor design for PFD synthesis, 373
reactors operating at conditions of special concern, 154
reasons for multiple reactors, 76
Gas-solid reactor configuration, fluidized beds, 999–1004
Gasifiers, modeling downward-flow/oxygen blown/entrained-flow
major equipment summary, 1375
overview of, 1371
process description, 1371–1373
reaction kinetics, 1373–1376
references, 1377
simulation (Aspen Plus) hints, 1375–1377
stream table, 1374–1375
Gate valves, controlling fluid flow, 705–706
Gauss-Legendre method, as multistep integrator, 636
Gear's method, as multi-step integrator, 636
General duty clause, OSHA Act, 1126, 1135
General expenses, cost of manufacturing, 214–218
Generate step, process troubleshooting, 1069–1071
Generic block flow diagrams (GBFDs) as intermediate step between process concept and PFD, 63–65
synthesizing PFD from. See Synthesis of PFD, from BFD
Generic model control, advanced process control, 683
Geometry of equipment, in dynamic simulation, 622–624
Gibbs free energy calculating for electrolyte systems, 430, 445–447
solids modeling and, 442
"Gilbane Gold" video, ethics, 1118, 1121
Glass, advantages/disadvantages of, 356
Global optimum defined, 464
finding, 468
Globalization of chemical industry, 123–124
steady-state simulation for competitive advantage, 562
Globe valves, for regulation, 658, 705–706

H

Hazard assessment, in Risk Management Plan, 1142
Hazard Communication Standard (HazCom), 1136–1138
Hazardous air pollutants (HAP), 1141
Hazardous Substances Data Bank (HSDB), 1135
Hazardous waste green chemistry minimizes, 1163–1164
Resource Conservation and Recovery Act (RCRA), 1161
source reduction minimizing, 1159–1160
Hazardous Waste and Emergency Operations (HAZ(WOP)) rule, OSHA, 1142
Hazards and operability study (HAZOP) identifying potential industry standards, 1133
process hazards analysis technique, 1146–1147
HCl absorber, process simulation, 402–403
Headers, utility streams supplied via, 655
Heads (end sections), pressure vessel design, 1022, 1023–1024
Health, safety, and environment (HSE) accident statistics, 1132–1133
chemical engineer's role in, 1134
Chemical Safety and Hazard Investigation Board, 1153
Dow Chemical Hazards index, 1153
Dow Fire & Explosion Index, 1147, 1150–1152
fires and explosions, 1143–1145
fugitive emissions, 1141
glossary of acronyms for, 1154–1156
Hazard and Operability Study (HAZOP), 1146–1149
Hazard Communication Standard (HazCom), 1136–1138
inherently safe design strategy, 1153–1154
overview of, 1131
planned emissions, EPA, 1140–1141
pressure-relief systems, 1145
Process Hazard Analysis (PHA), 1142, 1145–1146
Registration, Evaluation, Authorization and Restriction of Chemicals (REACH), 1137
risk assessment, 1131–1134
Risk Management Plan (RMP), 1141–1142
worse-case scenarios, 1133–1134
Health, safety, and environment (HSE), regulations and agencies
EPA, 1140–1142
Internet addresses for federal agencies, 1134
list of acronyms for, 1154–1156
ngovernmental organizations, 1143–1144
OSHA and NIOSH, 1135–1140
overview of, 1134–1135
Process Safety Management (PSM), 1138–1140
Heat exchangers.
bare module cost for, 1270 bare module factors for, 1271 capacities of process units in, 356 conditions of special concern for, 155–158 equipment cost data for, 1250 estimating utility costs from PFDs, 238–240 material factors for, 1273 pressure factors for, 1266 purchase costs for, 1255 Heating loops configurations for heat removal from CSTRs, 980–981 incremental analysis of design oversight in, 306–307 in maximum flow rate for Dowtherm A, 1085–1091 Height equivalent to theoretical plate (HETP), calculating height of packed tower, 929–930 Henry’s Daughters* video, ethics, 1118, 1121 Henry’s Law applying to model of distillation column for electrolyte system, 448 calculating tray efficiency, 921–922 estimating fate of chemicals in environment, 1163 hybrid thermodynamic systems and, 423 liquid-liquid separations, 878 modeling aqueous electrolyte system, 437 modeling electrolyte system, 430
Input variables (or inputs)
in dynamic simulation, 617
in steady-state simulation, 619–622
INPV (Incremental net present value), in
incremental analysis, 308–309
Instruction List (IL), logic control, 680
Instruments, constructing P&IDs, 27–30
Integrated Gasification Combined Cycle (IGCC)
coal-fed power plant, 44
Integrated Risk Information System (IRIS), for
chemical hazards, 1135
Integrator algorithms, dynamic simulation,
635–639
Intensification, of not using hazardous
materials, 1153
Intention, HAZOP use of, 1147
Interactions, group friction from
uncomfortable, 1181
Interest rate criterion
discounted profitability, 293–295
evaluating profitability, 288
nondiscounted profitability in project
evaluation, 288–291
Interest rates
affecting supply and demand curves, 313
calculations from cash flow diagrams, 259–260
changing over time, 253
determining for annuity, 261–265
in discrete cash flow diagram, 256–258
time basis for compound interest
determining for annuity, 261–265
calculations from cash flow diagrams, 259–260
affecting supply and demand curves, 313

J
Jacobian matrix
applying to thermodynamic properties, 563
Broyden's method and, 582
defined, 564
direct substitution and, 578
equation-oriented (EO) approach and, 585
Newton's method and, 589–592
Wegstein's method and, 579–580
Job shop plants, batch processing in, 103–106
Just-in-time (JIT) manufacturing, inherently safe

K
K-factor: See Phase equilibrium
Kern's method
estimating shell-side heat transfer, 809–811
Kern's method for shell-side heat transfer,
811–813
Kinetic reactors
CSTR and plug flow reactors as, 408
data in PFD synthesis, 370–371
designing, 372
justifying conditions of special concern in
reactors using PFD, 159–162
Kinetics
developing user kinetic models, 568–571
of mechanical energy balance in piping
systems, 700–703
reaction kinetics, 159–164, 370–371, 405
reactor design and, 962–964
resource materials for, 84
Knockout drums (phase separators)
compressors and, 708
conditions of special concern for, 164
L-L separation, 1044–1049
mist eliminators and other
intervals, 1036–1044
purpose of, 1015, 1024
as separation equipment, 911
V-L separation, 1025–1028
V-L separation design,
horizontal, 1032–1035
V-L separation design, vertical, 1029–1032
Knowledge level, Bloom's Taxonomy, 3
Kremser equation, for dilute solutions, 905–911
L
L-aspartic acid
Sr. L-phenylalanine and L-aspartic acid, batch production
L-H (Langmuir-Hinshelwood) kinetics
basic form of, 962–964
simulating reactions with kinetic reactors, 408
L-L. See Liquid-liquid (L-L) separation
L-phenylalanine and L-aspartic acid, batch production
overview of, 1323
process description, 1323
process flow diagram, 1324
reaction kinetics, 1325–1329
references, 1229
Labor costs
affecting supply and demand curves, 313
in cost of manufacturing, 214–217
in manufacturing cost estimates, 218–219
Labor needs, deciding on continuous vs. batch
processes, 58
Ladder Diagrams (LD), logic control, 680–682
Land, cannot be depreciated, 269
Lang Factor method, estimating plant cost, 184
Langmuir-Hinshelwood (L-H) kinetics
basic form of, 962–964
simulating reactions with kinetic reactors, 408
Large projects, incremental economic analysis for,
295–297
Large temperature driving force, in exchanger,
988–989
Latent heat, 892–893
Lattice search, vs. response surface
techniques, 489
Laws
legal liability of chemical engineers,
1125–1126
protecting whistle-blowers, 1115
LCA (Life cycle analysis), in green engineering,
1168–1169
LDs (Ladder Diagrams), logic control, 680–682
Le Chatelier's principle, for equilibrium
reaction, 965
Leaching, as solid-liquid separation, 876
Leadership, group, 1181–1182, 1184
Leading Self-Directed Work Teams
(Fisher), 1191
Leaking equipment
makeup water in steam production due to, 228
minimizing pollution from, 1166
Learning, in teams, 1182, 1189–1190
Legal liability, of chemical engineers, 1125–1126
Leidenfrost point, heat transfer for pool boiling
curve, 814
LEL (Lower explosive limit), 1144
Letter of transmittal, report format, 1203
Liabilities, pollution prevention economics and
future, 1168
Licensed professional chemical engineer
engineer-in-training (EIT), 1122–1124
Principles and Practice (PE) exam, 1124–1125
professional registration, 1121–1122
reasons to become, 1121–1122
Life cycle analysis (LCA), in green engineering,
1168–1169
Life of equipment, depreciation and, 269
Linear equation solvers, 637–639
Linear programming, 464
Linear quadratic control (LQC), 683
Linear valves, in flowrate control, 658
Linking ITS with OTS, 46–48
Liquid level, measuring process variables, 662
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>640</td>
<td>Lower-level controllers, as SISO controllers, 640</td>
</tr>
<tr>
<td>680–682</td>
<td>Logic control, in control system design, 680–682</td>
</tr>
<tr>
<td>773</td>
<td>LMTD (log-mean temperature difference)</td>
</tr>
<tr>
<td>821</td>
<td>Maleic anhydride production from benzene, 821</td>
</tr>
<tr>
<td>877</td>
<td>Mass balance, fluid flow in piping systems, 877</td>
</tr>
<tr>
<td>915</td>
<td>Loading, as precursor to flooding, 915</td>
</tr>
<tr>
<td>929</td>
<td>Material factors, estimating plant cost for MOCs, 929</td>
</tr>
<tr>
<td>980–984</td>
<td>Longitudinal pin fin constant thickness, 980–984</td>
</tr>
<tr>
<td>1023–1024</td>
<td>Mass, sizing pressure vessels, 1023–1024</td>
</tr>
<tr>
<td>1152</td>
<td>Explosion Index, 1152</td>
</tr>
<tr>
<td>1267–1271</td>
<td>Mechanical seals, 1267–1271</td>
</tr>
<tr>
<td>1308–1310</td>
<td>Matching volume/heat transfer area, 1308–1310</td>
</tr>
<tr>
<td>1449</td>
<td>Overview of, 1449</td>
</tr>
</tbody>
</table>

LMTD (log-mean temperature difference), 680
LSSQP approach, to steady-state simulations, 588–589
LTC (local truncation error), in dynamic simulation, 636–637
Lumped-parameter models, 625

\(M \)
MAC (model algorithmic control), 683
Mackay Level III model, 1166–1167
MACRS (modified accelerated cost recovery system) depreciation allowances, current federal tax law based on, 273–274
designing new cumene production facility, 1430, 1432
profitability criteria for project evaluation, 289
report-writing case study, 1222
Maintenance
selecting continuous vs. batch processes, 58
training operators/engineers in virtual plants, 48
Major equipment summary, in product design
Clais unit design converting H₂S, 1367–1368
CO₂ and H₂S removal from coal-derived syngas, 1361–1362
dimethyl ether (DME) production, 1281–1282
downward-flow, oxygen blown, entrained-flow gasifiers, 1375
drying oil (DO) production, 1304–1305
ethylene oxide production, 1315–1316
formaldehyde production, 1321–1323
heptenes production, 1347–1350
maleic anhydride production from benzene, 1309–1310
styrene production, 1297–1298
water-gas shift reactor design for conversion to CO₂, 1351
Maleic anhydride production from benzene case study: See Report-writing case study
major equipment summary, 1309–1310
making it greener, 1371
process description, 1305–1306
process flow diagram, 1307
reaction kinetics, 1306
simulation (CHEMCAD) hints, 1311
stream table, 1308
utility summary table, 1309
Manipulated variables (MVs)
defined, 617
in control process, 640
setting up dynamic simulation, 626
in split-range control system, 671–673
Manometers, measuring flowrate, 731–734
Manufacturing
in chemical product design, 124–125, 130–131
statistical process control in, 682
Manufacturing cost estimates
estimating utility costs from PFDs, 238–240
expressed in units of dollars per unit time, 213
factors affecting COM for chemical product, 213–218
operating labor costs, 218–219
overview of, 213
sensitivity analysis for quantifying risk, 316–318
in single-variable optimization, 480
taxation, cash flow, profit in, and, 273
treating liquid/solid waste streams, 240–241
utility costs for cooling water tower, 221, 223–225
utility costs for off-site plants with multiple units, 222–223
utility costs for refrigeration, 225–228
utility costs for steam production, 228–234
yearly costs and stream factors, 237–238
Margins, See Profit margins
Margules equation, in solids modeling, 441–442
Marketing department, data for PFD synthesis, 370
Markets
batch optimization and, 491
supply and demand in chemical, 311–314
Marshall and Swift Equipment Cost Index, inflationary trends, 179–181
Mass balance
analyzing PFD for pollution/environmental performance, 1166–1167
applying pinch technology to, 541–549
heat-exchanger networks (HENs) vs., 541–542
pinch or pinch point in, 509–510
Mass separating agents
defined, 876
in mass balances, 877
McCabe-Thiele method for, 903–905
Mass, sizing pressure vessels, 1023–1024
Mass transfer relations
continuous differential model for, 878–879
obtaining height of packed column, 929
reactors and, 965–969
transfer units in, 880–881
two-film model for, 878–879
Matching volume/heat transfer area
calculating in nonisothermal PFRs, 997–999
in nonisothermal plug flow reactors, 999–1004
Material balance
McCabe-Thiele method for distillation, 890–892
and two-film model in distillation column, 902
Material balance, energy balance, rate equations, hydraulic equations, and equilibrium (MESHQ) equations, 436–440
Material balance, phase equilibrium, summation equations, and enthalpy balance (MESH) equations, 435–440
Material balance, phase equilibrium, summation equations, and enthalpy balance (MESH) equations, 435–440
Material factors
Dow Fire & Explosion Index, 1132
estimating plant cost for MOCs, 197
for heat exchangers, process vessels and pumps, 1267–1271
for other equipment, 1272–1274
Material safety data sheets (MSDS), HazCom, 1136
Melting point, impacting environment fate of chemicals, 1163 Membrane separation in gas permeation, 947–950 rate expressions for, 882–883 recycling raw materials, 72 Memory matrix (or categorizing grid), in outcomes assessment, 4 Memos, for written communications, 1198 MENS. See Mass-exchange networks (MENs)
Model algorithmic control (MAC), 683 Model-based controls, advanced process control, 683 Model Predictive Control (MPC), 683 Modeling techniques, in steady-state simulation, 562 Models electrolyte systems. See Electrolyte systems modeling gas permeation membranes, 949–950 reactor, 972–980 of reactors, 1001–1002 Modified accelerated cost recovery system. See MACRS (modified accelerated cost recovery system) depreciation allowances Modular approach sequencing batch operations, 60 solution of DAE in dynamic simulation, 634 Modular method, solutions to DAE systems, 634 Module costing technique bare module equipment costs at base conditions, 186–189 bare equipment module costs at nonbase conditions, 189–194 calculating bare module costs, 199–201 grassroots and total module costs, 201–203 materials of construction (MOCs) and, 194–199 overview of, 185 Mold (constant molar) overflow, in binary distillation, 890, 893 Molar volume, modeling electrolyte systems, 432, 448 Money, investments and time value of, 248–251 Monte Carlo (M-C) method CAPCOST program applying, 325 evaluating risks of new technology, 324–325 factoring into economic analysis, 1168 for quantifying risk, 321–324 Moody diagram, friction factors, 709 Moody plot, defined, 709 Moral autonomy developing. See Ethics and professionalism in making ethical decisions, 1105 whistle-blowers and, 1113 Mother liquor, recycling raw materials in batch processing, 97 Motivation, friction in groups from low, 1180–1181 MPC (Model Predictive Control), 683 MSDS (material safety data sheets), HazCom, 1136 MSHA (Mine Safety and Health Administration), 1135 Multiproduct batch processes design of equipment for, 111–112 flowshop plants for, 101–103 intermediate storage, 108–110 jobshop plants, 103–106 parallel process units, 110–111 Multistage steam ejectors, 1054–1057
Net present value (NPV)

Net positive suction head (NPSH)

NCEES (National Council of Examiners for Natural resources, green engineering and, 1159

Natural gas

Nationally Recognized Testing Laboratory (NRTL)
calculating Gibbs free energy for electrolyte systems, 430
liquid-state activity-coefficient models, 419–422

Natural gas

cost of, 219–220
as fuel of choice for this text, 220–221
utility costs for, 234

Natural resources, green engineering and, 1159

NCEES (National Council of Examiners for Engineering and Surveying), 1122–1124

Needs analysis, in chemical product design, 124–127

Net positive suction head (NPSH)

heuristics for pumps, 360
pump performance and, 739–743
pump-system curves and, 744
reasons for elevating equipment, 41 safe pump performance and, 739–743
tray spacing, flooding and, 915
troubleshooting cumene process feed section, 1075
troubleshooting cumene production facility, 1423–1424

Net present value (NPV)

comparing large projects, 296–298
discounted profitability criteria for, 291–295
modeling objective functions for, 470, 488–489
new facility design for allyl chloride production, 1395
optimizing flowsheet using before-tax, 597–600
in parametric optimization, 480–484, 487
profitability of equipment for, 299–300, 304
quantifying risk, 314–318
quantifying risk for, 321–324
Net present worth (NPW), 291–293
New Source Performance Standards (NSPS), 1140
Newton's method
equation-oriented (EO) approach and, 585–586
modeling distillation column for electrolyte system, 450
performance for tear stream convergence, 583
steady-state simulation algorithms, 579–585
NGOs (nongovernmental organizations), 1134
Nickel and its alloys, materials of construction for single-stage steam ejectors, 1023
Nonisothermal continuous stirred tank reactors (CSTRs)
Nonisothermal CSTRs, 980–984
Nonisothermal continuous stirred tank reactors (CSTRs)
overview of, 980–984
performance problems, 1004–1006
Nonisothermal plug flow reactors (PFRs)
cooling medium, 991
examples, 993–997
hierarchies for exothermic/endothermic reactions, 984–986
matching volume and heat transfer area, 997–999
overall heat transfer coefficient, 992–993
performance problems, 1004–1006
pressure of process gas, 992
reactor concentration and temperature profiles, 987–989
role of heat transfer in reactor design, 990–991
Nonlinear equation solvers, in dynamic simulation, 637–639
Nonlinear-programming (NLP) in optimization, 464
in steady-state simulation, 590
Nonlinear Q versus T Curves, in heat exchanger relationships, 776–777
Nonoverlapping operations, in batch processing, 98–99
Nonprofessional responsibilities, ethical problem-solving, 1108–1110
Nonreacting chemicals, tracing, 145
Norming stage, in group evolution, 1185–1186
North American Free Trade Agreement (NAFTA) Ethics, 1119
Notation
S-T heat exchanger, 781
in tables, 1217
Notes, oral presentation guidelines, 1214
Nozzles
calculating discharge velocity, 702–703
measuring flowrate with, 731, 735
for pressure vessel design, 1023
for single-stage steam ejectors, 1057–1059
sizing pressure vessels and, 1023–1024
NPSH. See Net positive suction head (NPSH)
NPV. See Net present value (NPV)
NPW. See Net present worth (NPW)
NRTL (Non Random Two Liquid) calculating Gibbs free energy for electrolyte systems, 430
liquid-state activity-coefficient models, 419–422

Natural numbers

calculating heat transfer coefficients for laminar flow in tubes, 807–809
heat transfer coefficients for turbulent flow in tubes, 804–806

Numbers

for figures and tables in reports, 1206
guidelines for equations in reports, 1207–1208
identifying process equipment in PFDs, 12–17
Nusselt number
analysis of falling-film condensation, 824–825
falling-film condensation on cylinders, 825–828
heat transfer coefficients for laminar flow in tubes, 807–809
heat transfer coefficients for turbulent flow in tubes, 804–806

Index
Objective function

base cost analysis in optimization, 471

calculating base case using, 469–470

defined, 464

evaluating in easy vs. difficult optimization problems, 468

effect of topological change on parametric optimization, 475–476

identifying and prioritizing key decision variables, 471–472

optimization and, 470–471

optimizing flowsheet, 590–592

optimizing flowsheet using, 597–600

sensitivity to changes in decision variables, 487–489

in single-variable optimization, 480

Obligations, in ethical problem-solving, 1110

Occupational Safety and Health Administration (OSHA)

air contaminants standard, 1135–1136

HAZWOPER rule, 1135–1136

health and safety risk assessment, 1135

incidence rate statistics, 1132–1133

legal liability of chemical engineers, 1126

process safety management (PSM), 1138–1140, 1142

Octanol-water partition coefficient, 1162

ODEs (Ordinary differential equations), in dynamic simulation, 632, 634

Off-site recycle, Pollution Prevention Act of 1990, 1160

On-site recycle, Pollution Prevention Act of 1990, 1160

One-shot rising (OSR) internal device, Ladder Diagram (LD), 681

Open-cup method, measuring flash point of liquid, 1144

Open-loop (OL) response, dynamic simulation and, 639–640, 642–643

Operating conditions

decision variables in parametric optimization, 479

Operating costs

data for optimization base case, 470

discharged methods for incremental analysis, 309

evaluating equipment using EAC method, 302–305

evaluating equipment with different expected operating lives, 300–302

evaluating equipment with same expected operating lives, 299–300

evaluating profitability of new project, 286

in formula for COM, 214–217

in manufacturing cost estimation, 218–219

Operator training simulator (OTS) building, 43–45

linking with ITS systems, 46–48

regulating and controlling chemical processes, 683–688

training control room operators, 688–689

Operators

estimating labor cost of manufacturing, 218–219

operator training simulator (OTS), 43–48

P&I diagrams used for training, 31

Optimal control, in advanced process control, 683

Optimization

background information on, 463–464

dynamic simulation, 632, 634

base case approach to, 469–470

base cost analysis, 471

batch systems and, 490–494

batch systems and optimum cycle time, 495–497

communicating results of, 468–469

early identification of alternatives in, 477–480

equation-oriented (EO) approach, 475–476

flexibility and sensitivity of the optimum, 489–490

flowsheet optimization using decision variables, 484–489

identifying and prioritizing decision variables, 471–472

lattice search, response surface, and mathematical optimization techniques, 489

misconceptions in, 465–467

modeling objective function in terms of decision variables, 488–489

objective functions in, 470–471

parametric. See Parametric optimization

problem-solving 20,000-metric-tons-per-year facility for allyl chloride production, 1395

scheduling equipment for batch processes, 490–494

selecting objective function for, 464

sensitivity of objective function to changes in decision variables, 487

single-variable example, 480–481

steady-state simulation and, 589–592

steady-state simulation examples, 593–600

strategies for, 469–472

termology used in, 464

top-down and bottom-up strategies, 468

topological optimization, 473–479

two-variable example, 481–484

oral communication

audience analysis and, 1196

briefings, 1211

formal presentations, 1210–1211

software and author responsibility, 1213–1218

visual aids, 1211–1212

WVU and Auburn University guidelines, 1212–1214

Order-of-Magnitude, capital cost estimates, 172–174

Ordinary differential equations (ODEs), in dynamic simulation, 632, 634

Organizational behaviors, in groups, 1176, 1180–1184

Organizational structure, of group, 1182

Orifice, flowrate measurement, 731–735

OSHA. See Occupational Safety and Health Administration (OSHA)

OSR (One-shot rising) internal device, Ladder Diagram (LD), 681

OTS. See Operator training simulator (OTS)

Outcomes assessment

by faculty, 4–6

overview of, 1–2

results of, 1

student self-assessment, 2–4

summary, 6

Outline, oral presentation guidelines, 1212

Output devices (or coils), Ladder Diagram (LD), 680

Output display options, selecting for simulation, 411

Output variables (or outputs)
in dynamic simulation, 617

equipment geometry/size for dynamic simulation, 622–624

Outside battery limits (OBL), estimating plant costs, 206–208

Overall conversion

efficiency of use of raw materials, 70–71

of reactant, 965

Overall heat transfer coefficient (U)
equipment parameters in process simulation, 405

exchanging heat between streams and utilities, 678

in feed-forward control example, 667

in fluidized-bed reactor design, 1388

in heat transfer, 679

process control exercise using, 645–646

in reaction kinetics, 1306

reactor performance problems, 1005

for reactors, 992–997

resistances, 798–800

using dynamic simulators in design, 638

variance within heat-exchanger, 777–778

Overlapping operations, in batch processing, 100–103

Overreliance on team members, 1189
Planned emissions, EPA, 1140–1141
Plant costs
- bare module equipment costs at base conditions, 186–189
- bare module equipment costs at non-base conditions, 189–194
- calculating bare module costs, 185
- calculating grassroots vs. total module costs, 201–203
- CAPCOST for calculating bare module costs, 204–206
- CEPH and Marshall and Swift indices, 179–181
- CEPH applied for inflation, 183–184
- estimating based on capacity, 206–208
- estimating total, 182–184
- factors affecting, 182–183
- Lang Factor technique for, 184
- materials of construction (MOCs) and, 194–199
- module costing technique for, 185
- Plants
 - dynamic modeling for start-up/shutdown, 639
 - flowshop, 101–103
 - jobshop, 103–106
- Plastics, advantages/disadvantages of, 356
- Plate-and-frame heat exchangers, LMTD
- Plate baffles, S-T heat exchanger design, 785–786
- PLCs (programmable logic controllers), 680–682
- Plot plans
 - 3-D representation of, See 3-D representation of process (plant model)
 - locating all equipment in plant, 32–33
- Plug flow reactors (PFRs), See also Nonisothermal plug flow reactors (PFRs)
- dynamic simulation of, 632
- examples, 974–975
- input for process simulation, 408
- overview of, 973–974
- performance problems, 1003–1006
- replacing with series of CSTRs, 632
- Pneumatic conveying (transport) reactors, 1001
- Poisons, when to purge the feed, 66
- Pollution
 - analyzing PFD for, 1166–1167
 - design processes to minimize, See Green engineering
- Economics of preventing, 1167–1168
- preventing in process design, 1164–1166
- Pollution Prevention Act (PPA), 1159–1161
- Polyethylene, life cycle analysis of, 1168–1169
- Polymers
 - estimating plant cost for MOCs, 194
 - used for smaller pressure vessels, 1016
- Polymorphs, solids modeling and, 440–441
- Pool boiling
determining critical or maximum heat flux in, 815–816
- effects of forced convection on, 817–822
- heat transfer coefficients, 813–817
- Popp valves, in pressure-relief systems, 1145
- Portable devices, in chemical product design, 127, 128
- Positive displacement compressors, 709, 750
- Positive displacement pumps increasing pressure/flowrate in streams, 674–676
- overview of, 706
- performance analysis of fluid flow in, 745–746
- Postmortem analysis, oral presentation guidelines, 1214
- Postrectification, in justification behavior, 1108
- Potential energy, in piping systems, 700–703
- Power recovery equipment
 - bare module cost for, 1270
 - bare module factors for, 1271
 - heuristics for, 358
 - input for turbines in process simulation, 406
 - purchased costs for, 1273
- PPA (Pollution Prevention Act), 1159–1161
- PR (Peng-Robinson) fugacity model, 417–418
- Precedence ordering, in sequential modular layout
- Predict, PAR analysis for new heuristics, 358
- Predictive problems, performance, 696
- Predictor-Corrector methods, numerical integrator methods, 636–637
- Preliminary design of chemical processes
 - acetone, See Acetone production from isopropyl alcohol acrylic acid, See Acrylic acid production from propylene
 - CO2 and H2S removal, See CO2 and H2S removal
 - conversion of H2, See Conversion of H2
 - converting H2S, See Claus unit design, converting H2S to elemental sulfur
dimethyl ether (DME), 1278–1283
- downward-flow, oxygen blown, entrained-flow gasifiers, 1371–1377
- drying oil, See Drying oil
- Ethylene oxide, See Ethylene oxide production
- Formalin production
heptenes, See Heptenes production
- L-phenylalanine and L-aspartic acid, See L-phenylalanine and L-aspartic acid production
- maleic anhydride, See Maleic anhydride production from benzene
- maleic anhydride production from benzene material factors in equipment cost, 1272–1274
- scope estimate, 172–173
- styrene, See Styrene production
- CO2 reactor converting CO to CO2, 1352–1356
- Preliminary Design (Scope), in cost estimate, 172
- Present value ratio (PVR), in project evaluation, 291–293
- Presentation mechanics, guidelines for oral, 1213–1214
- Pressure
 - bare module costs at non-base conditions, 189–194
 - bare module factor and costs, 199
 - condenser and reboiler affecting, 925
 - control system for binary distillation column, 685–687
 - devices increasing gas, 707
 - estimating HEN costs, 536–539
 - estimating plant cost for MOCs, 197–199
 - estimating utility costs for cooling water tower, 224
 - evaluating reactor process conditions, 158–164
 - fluidized beds and, 728
 - friction factors in incompressible flow, 713–714
 - heat exchange between streams and utilities, 676–678
 - heat transfer coefficients for pool boiling curve, 833–815
 - increasing and regulating, 674–676
 - measuring process variables, 662
 - operating conditions of special concern for reactors/separators, 150–152
 - physical property variations and, 355
 - reactor design for PFD synthesis and, 372
 - reducing with valves, 705
 - regulating flowrates and, 660–662
 - in two-variable optimization, 481–484
 - utility costs for refrigeration and, 227–228
 - utility costs for steam production and, 228–234
- Pressure drop
 - calculating for packed tower, 931–933
 - calculating in nonisothermal PFRs, 992
 - for condensers and reboilers, 924–925
debottlenecking alky chloride reactor, 1087–1088
- estimating column, 935–936
- heat exchanger design considerations, 837–841
- increasing allyl chloride production, 1386
- matching volume with heat transfer in S-T reactors, 997–999
- measuring flowrate by creating, 730–735
- S-T heat exchanger design, 844–846
- in tray towers, 922–923
- troubleshooting acrylic acid product, 1076–1078
- troubleshooting steam release in, 1080–1081
- Pressure-flow networks, 619–622
- Pressure-relief systems, 1145
- Pressure-relief valves, 1095–1096, 1145
- Pressure-swing adsorption guidelines for choosing separation units, 374
- recycling raw materials, 72, 77
- when applicable, 382
- Pressure vessels
 - corrosion allowance, 1022
 - cylindrical shells, 1016–1021
 - designing, 1016
 - heads, 1022
 - heuristics for, 359
 - mass of vessels and heads, 1023–1024
 - material properties, 1016
 - nozzles, 1023
 - purpose of, 1015
Index

Pressure wave, in explosions, 1144
Price, supply/demand affecting market, 311–314
Primary chemicals, 136–142
Primary flow paths
justifying conditions of special concern for, 136
for toluene hydrodealkylation process, 137–140
Principal, or present value, of investment, 249
Principles and Practice (PE) exam, 1124–1125
Probabilistic approach to quantifying risk
Monte-Carlo method, 318, 321–324
overview of, 318–321
using new technology, 324–325
Probability distributions
Monte-Carlo analysis for quantifying risk, 321–324
Monte-Carlo method, 321–324
quantifying risk and, 318–321
Problem-Based Learning (Woods), 1190–1191
Problem-solving
debottlenecking, 503
Debottlenecking estimating problem difficulty, 467–468
strategies for, 1067–1069
in troubleshooting, 503
Process concept diagrams, 60–61
Process conditions
analysis of, 158–159
evaluation of exchangers, 164
evaluation of reactors, 159–164
for operating at conditions of special concern, 150–154
overview of, 149–150
of special concern for operation for other equipment, 155–158
of special concern for separation/reactor systems, 150–152
Process conditions matrix (PCM), conditions of special concern in, 158–164
Process design
See Experience-based principles, in process design
Process flow diagrams (PFDs)
See also Synthesis of PFD, from BFD
for 3-D representation of process, 34–35
batch processes vs. continuous process, 56–59
in case histories, 10
combining topology, stream data, and control strategy, 21–26
conditions of special concern and, 56
Process conditions in design reports, 1200
equipment information in, 21
estimating utility costs from, 238–240
formulating preliminary, 78–83
heat-exchanger network/process energy recovery, 85
hierarchy of process design, 55–56
information in, 14, 83–84
input/output structure for, 61–63
pollution/environmental performance, 1166–1167
process simulation flowsheets vs., 1217–1218
process topology in, 14–18
recycle structure, 503
Recycle structure
regulation problem using, 655
separation sequence structure in, 83
stream information, 18–20
tracing-chemicals, See Tracing chemical pathways, in PFDs
understanding, as central goal of this book, 11
updating changes on, 26
Process fluid mechanics
See Fluid mechanics
Process Hazard Analysis (PHIA), 1145–1146, 1149
Process heat exchangers, dynamic models for, 627–630
Process optimization
See Optimization
Process Safety Management (PSM) of Highly Hazardous Chemicals, OSHA
overview of, 1138–1140
Risk Management Plan (RMP), EPA, 1142
Process streams
See Streams
Process topology
categorizing information in PFDs, 14–18
changes from steady-state simulation, 619–622
combining to give PFD, 21–23
input flowsheet data for process simulation, 404
reaction kinetics data for PFD, 370–371
remaining fixed in parametric optimization, 483
Process vessels
See Vessels
Producer, investment, 249
Product chemicals
tracing primary chemicals, 136
troubleshooting off-specification product, 1076–1078
unwanted products impacting equilibrium or reactor operation, 77
Product design
See Chemical product design
Product manufacture, in life cycle analysis, 1169
Product quality, continuous vs. batch processes and, 57
Product specification, choosing separation units for PFD synthesis, 375
Product storage
intermediate storage, 108–110
for single-product campaigns, 106–108
Product use and reuse, in life cycle analysis, 1169
Professionalism.
Ethics and professionalism
Professional development hours (PDHs), 1125
Professional life, whistle-blowing
Profit margins
impact of tax rate on, 274–277
Profit, impact of tax rate on, 274–277
Profit margins
impact of tax rate on, 274–277
Profitability analysis
cash flow diagram for new project, 285–287
discounted criteria and, 291–295
equipment with different expected operating lives in, 300–305
equipment with same expected operating lives in, 299–300
evaluating risks of new technology, 309–310
forecasting uncertainty in chemical processes, 310–314
incremental analysis comparing large projects, 295–297
incremental analysis for retrofitting facilities, 305–309
Monte-Carlo analysis for quantifying risk, 321–324
nondiscounted criteria, 287–291
probabilistic approach to quantifying risk, 318–321
profit margins in, 325–326
rate of return on investments, 298–299
risk when using new technology, 324–325
scenario analysis for quantifying risk, 314–315
sensitivity analysis for quantifying risk, 315–318
Programmable logic controllers (PLCs), 680–682
Progress reports, written communications as, 1199
Propellers, vs impellers of centrifugal pumps, 706–707
Proportional-integral-derivative (PID) controllers, dynamic simulation, 640–643, 645
Proportional-integral (PI) controllers, dynamic simulation, 640
Proportional-only (P-only) controllers, dynamic simulation, 640
Proprietary knowledge, business codes of conduct, 1127
Propylene
See also Heptenes production design new facility for allyl chloride production
1394–1396
producing acrylic acid from, 503
Acrylic acid production from propylene production
allyl chloride from, 1383–1386
producing cumene from, 503
Cumene production facility problems producing heptenes from, 503
Heptenes production
PSM (Process Safety Management) of Highly Hazardous Chemicals, OSHA
overview of, 1138–1140
Risk Management Plan (RMP), EPA, 1142
Public speaking
See Oral communication
Pulsed columns, extraction equipment, 943
Pumps
bare module and material factors for, 1267–1271
calculating horsepower requirements, 713–715
capacities of process units in common usage, 356
equipment cost data for, 1251
Recognizing in chemical processes, 142–145
in sequential modular approach, 576–577
using tear streams to solve problems with, 400–401
Rehearsal of skills
effect of excess reactants on, 76
in batch processing, 97
efficiency of raw material usage, 70–71
formulating preliminary process flow diagram, 78–83
identification and definition of, 71–75
methods for unreacted raw materials, 76–77
number of reactors required, 76
overview of, 70
Pollution Prevention Act of 1990, 1160
purifying raw materials prior to recycling, 76
recycling unwanted product/inert, 76–77
purifying raw materials, 876–877
Equilibrium relationships, 877–878
Energy balances, 877
Mass balances, 876–877
Runaway reactions, 1145
Runge-Kutta family methods, 636
Rupture disks, in pressure relief systems, 1145
S
S (Salvage value), nondiscounted profitability criteria, 288–291
Safety. See also Health, safety, and environment (HSE)
considerations on when to purify the feed, 66–67
decision to use continuous vs. batch processes, 59
simulation in training for, 48
of work environment, 1131–1134
Safety data sheets (SDS), HazCom, 1136–1138
Safety (or relief) valves, in pressure-relief systems, 1145, 1166
Sales volume, in profitability analysis, 310
Salvage value (S), depreciation and, 288–289
SARA (Superfund Amendments and Reauthorization Act)
CERCLA amended by, 1161
overview of, 1141
Saturation
in condensing heat transfer, 824
heat transfer coefficients for pool boiling curve, 813–815
Savings, banks and, 248–251
Scale models, 3-D plant models, 33
Scatter plots
as graphs in design reports, 1200
guidelines for reports, 1206–1207
Scenario analysis, for quantifying risk, 314–315
Scheduling
batch processes, 97–98, 490–494
flowshop plants, 103–106
group tasks, 1185–1186
jobshop plants, 101–103
Scheduling charts, design reports, 1200
Scientists, interactions among, 370
Scope (Preliminary Design), in cost estimate, 172
Screens
bare module factors for, 1275
equipment cost data for, 1251
purchase costs for, 1263
Screw threads, pipe connections, 705
Scrubbers, in pressure-relief systems, 1145
SDS (safety data sheets), HazCom, 1136–1138
Seals, on compressors, 708
Secure disposal, Pollution Prevention Act of 1990, 1160
Selectivity
in chemical product design, 124–125, 128–130
justifying reactors operating at temperature conditions of special concern, 153
for parallel and series reactions, 977–980
Selexol unit design. See CO2 and H2S removal from coal-derived syngas
Self-assessment, group effectiveness, 1178–1180
Self-confidence, in oral communications, 1209–1210
Semibatch processes, logic control in, 680–682
Semicolons, written report guidelines, 1203

Sensitivity analysis
decision variables and, 471–472, 487
in optimization, 489–490
quantifying risk, 315–318
steady-state simulators used in, 589
Sensitivity coefficient, quantifying risk, 315–318
Separate and purify, recycling unreacted raw materials, 71–73

Separation
in allyl chloride production, 1386, 1396–1397
distillation in. See Distillation
electrolyte applications, 428
formulating PFD for, 83
guidelines for choosing separation units, 374–376
McCabe-Thiele method for, 903–905
mist eliminators in V-L separation, 876, 877
Separation block, in BFDs, 64–65
Separation basis, defined, 875–876
Separation equipment. See also Separators
condensers and reboilers, 923–926
distillation column performance, case study, 934–942
drums, 911–912
for extraction, 942–946
for gas permeation membrane separations, 947–950
overview of, 875–876
packed towers, 927–933
performance of packed and tray towers, 933–934
for phase separation. See Knockout drums (phase separators)
pump drop and, 922–923
towers. See Tray towers
Separations, basic relationships in energy balances, 877
equilibrium relationships, 877–878
mass balances, 876–877
mass transfer relationships, 878–881
rate expressions, 882–883
Separations, illustrative diagrams for Kremser and Colburn methods for dilute solutions, 905–911
McCabe-Thiele diagram for distillation, 888–901
McCabe-Thiele diagram for mass separating agents, 903–905
McCabe-Thiele diagram for packed columns, 901–902
TP-xy diagrams, 883–888
Separator block, in BFDs, 64–65
Separator feed preparation block, in BFDs, 64
Separators. See also Distillation
analyzing conditions of special concern for, 158–159, 164
decision variables in parametric optimization, 479
dynamic simulation of flash separators, 630–632
justifying conditions of special concern for, 150–154
optimization in batch systems and, 490–494
phase. See Knockout drums (phase separators)
Separators, synthesizing PFD from BFD
azeotropic distillation, 378–379
azeotropic distillation in binary systems, 379–382
azeotropic distillation in ternary systems, 382–388
feed preparation, 388–389
gathering physical property data, 371
guidelines for choosing separation operations, 374–376
overview of, 374
Sequencing, batch process design and, 91
Sequential Function Chart (SFC), 680
Sequential modular (SM) approach, to steady-state simulation
accelerated successive substitution (relaxation) methods, 578
Broyden’s method, 579–580
direct substitution algorithm, 578
dominant eigenvalue method (DEM), 578–579
equation-oriented (EO) approach vs., 585–586
examples, 580–585, 587–589
Newton’s method, 579
optimization of flowsheet convergence and, 590–591
overview of, 572–578
SM method, 579
SMod approach as hybrid of SM and EO, 586–589
solving optimization problem using, 592–595
Wegstein’s method, 579
Series reactions, reaction kinetics, 977–980
Servo control design
dynamic simulation in, 619
spline-range control system, 671–672
Set point (SP) feedback control system and, 663–665
process control in dynamic simulation, 640, 644
SF (stream factors), in calculation of yearly costs, 237–238
Shell-and-tube (S-T) heat exchangers. See also Heat exchangers
baffles, 784–787
concentration/temperature profiles in reactors, 987–989
design algorithm, 838–840
design algorithm examples, 840–846
design for pressure drop, 837–838
effectiveness factor (l) and number of, 529–534
estimating EAOc for network, 534–536
estimating heat-exchanger network costs, 537–539
fixed tubesheet and floating tubesheet (head), 783–784
heat transfer coefficient for, 992–993
heat transfer design in, 990–991
heuristics, 788–789
LMTD. See LMTD correction factors
LMTD effectiveness charts, 861–864
matching volume and heat transfer area, 997–999
notations for, 781
overview of, 779
shell-and-tube partitions, 784–785
shell configurations, 779–780
shell-side flow patterns, 785–788
standard designs for, 781–782
tubesheet and tube configurations, 780, 782–784
Shell type, heuristics for S-T heat exchangers, 788–789
Shells, pressure vessel design for cylindrical, 1016–1021
Shewart charts, in statistical process control, 682
Shock wave, in explosions, 1144
Short-term exposure limit (STEL), air contaminant hazards, 1135
Shortcut methods, experience-based principles in process design, 348–349
Shortcut module, in distillation column design, 409
Sieve trays
calculating flooding velocities, 915–916
prone to weeping, 913
for separation, 912
Signatures, for design meeting minutes, 1199
Simple distillation, PFD synthesis, 376–379
Simple interest, 250, 252
Simple phase separators. See Knockout drums (phase separators)
Simple savings, 248
Simplex-Nelder-Mead method, parametric optimization, 489
Simulated annealing method, parametric optimization, 489
Simulations
augmented reality (AR), 46–47
of chemical processes, 43–44
common errors in using, 412–413
convergence criteria and running, 411–412
dynamic. See Dynamic simulators
immersive training simulators (ITS), 45–46
operator training simulators (OTS), 43–46
output display options, 411
training for emergencies, safety, and maintenance, 48
Simulators
input data chemical components, 401
equipment parameters, 405–411
feed stream properties, 404–405
flowsheet topology, 404
physical property models, 401–404
Simulators
avoid using raw output in reports, 1217–1218
dynamic. See Dynamic simulators
expert systems in, 402
and friction in groups, 1181
function of, 397–398
physical property databanks, 402
progress reports, 1199
steady-state. See Steady-state simulators
Strippers
Stress and strain relationships
Streams
Stream factors (SF), in calculation of yearly
Strategies, for written communications,

Stokes law
flow around submerged objects, 724
in L-L separation, 1044–1045
Storage
intermediate, 108–110

minimizing pollution during loading/unloading tanks, 1165–1166
for single-product campaigns, 106–108
Storage vessels, heuristics for, 359
Storming stage, in group evolution, 1184–1185
Straight fin thickness examples, 829

Straight-Line (SL) depreciation method defined, 270
example, 271–273
MACRS depreciation allowances using, 273–274
taxation, cash flow, and profit using, 276
Strategies for Creative Problem Solving (Fogler and LeBLanc), 1191
Strategies, for written communications, 1201–1202
Stream factors (SF), in calculation of yearly costs, 237–238

Streams
base-case ratios applied to properties of, 737
bypass streams, 142–145
for cocurrent heat exchanger, 773–775
combining data to give PFD, 21–24
in countercurrent heat exchangers, 771–773
design reports, 1197–1198
exchanging heat between, 674–679
feed streams. See Feed chemicals/ feed streams
increasing pressure/ regulating flowrate in, 674–676
information in PFDs, 18–20
input/output structure and, 60–61

with phase changes, 775–776
with phase changes for HEN costs, 539–540
phase to be recycled, 77
recycle streams. See Recycle streams
recycling feed and product with/ without purge stream, 73–75
regulating processes by manipulation of, 655
tactics for tracing chemicals, 135–136
tear streams. See Tear streams
utility streams. See Utility streams
waste streams. See Waste streams
Stress and strain relationships
cylindrical shell design for pressure vessel, 1016–1021
in pressure vessel design, 1016
Stress intensity factor, pressure vessel design, 1022
Strippers
de-bottlenecking strategy for, 939–941
developing sour-water stripper (SWS), 435–440
in mass-exchange networks, 541–542
mass separating agents for, 903–904
obtaining height of packed column, 929
simulating, 411
in SM approach, 572
Stripping section, of distillation column, 890
Structural support diagrams, 32
Structure-mounted vertical arrangement, plant layout, 36
Structured packings, 928
Structured Text (ST), logic control, 680
Student self-assessment, 2–4
Successive Quadratic Programming (SQP), in
flowsheet optimization, 590–592

Chosen thermodynamic models, 424–426
choosing thermodynamic models, 415–424
common errors, 412–413
convergence criteria for simulation, 411–412
diffusion coefficient in modeling electrolyte systems, 433–434
electrolyte systems modeling, 428–435
enthalpy model, 416–423
equipment parameters, 405–411
feed stream properties, 404–405
equipment parameters, 405–411
feed stream properties, 404–405
flowsheet topology, 404
handling recycle streams, 413–415
heat capacity in modeling electrolyte systems, 431–432
information needed (input data), 401
modeling distillation column for electrolyte system, 447–519
molar volume in modeling electrolyte systems, 432
output display options, 411
overview of, 397–398
parameters for solids model, 447–519
physical properties in thermodynamics, 416
physical properties of solids modeling, 440–444
structure of process simulator, 398–401
surface tension in modeling electrolyte systems, 434–435

iSymptoms
process for troubleshooting, 1065–1066, 1069–1070
troubleshooting multiple units, 1076–1078
Synergy, group efficiency and, 1176–1178
Syngas, optimization study, 595–600
Synthesis of PFD, from BFD
azeotropic distillation, 378–379
azeotropic distillation in binary systems, 379–382
azeotropic distillation in ternary systems, 382–388
environmental control section, 389
equipment summary table, 390–391
flow summary table, 390
guidelines for choosing separation operations, 374–376

information needs and sources, 370–371
overview of, 369
process control loops, 390
reactor and separator feed preparation, 388–389
reactor section, 372–373
recycle section, 389
separator section, 373–376
simple distillation, 376–378
Synthesis of PFD, using simulators
applying thermodynamic models, 424–426
building model of aqueous electrolyte, 435–440
calculating Gibbs free energy for electrolyte system, 445–447
chemical components, 401
chemical equilibrium in modeling electrolyte systems, 432
choosing thermodynamic models, 415–424
cost estimation, 411

convergence criteria for simulation, 411–412
diffusion coefficient in modeling electrolyte systems, 433–434
electrolyte systems modeling, 428–435
enthalpy model, 416–423
equipment parameters, 405–411
feed stream properties, 404–405
flowsheet topology, 404
handling recycle streams, 413–415
heat capacity in modeling electrolyte systems, 431–432
information needed (input data), 401
modeling distillation column for electrolyte system, 447–519
molar volume in modeling electrolyte systems, 432
output display options, 411
overview of, 397–398
parameters for solids model, 447–519
physical properties in thermodynamics, 416
physical properties of solids modeling, 440–444
structure of process simulator, 398–401
surface tension in modeling electrolyte systems, 434–435

Index
Index

thermal conductivity in modeling electrolyte systems, 433
toluene HDA case study, 426–428
viscosity in modeling electrolyte systems, 432–433
Synthesis pathways, in green chemistry, 1164
Synthetic Organic Chemicals Manufacturers Association (SOCMA), 1143
System curves, analyzing pump and, 743–749

T
T-Q diagrams. See Temperature-enthalpy (T-Q) diagrams
Table of contents, written report guidelines, 1204
Tables
common mistakes in presenting, 1227–1228
in design reports, 1200
learning software used for, 1217
written report guidelines, 1206–1207
TAMU (Texas A&M University), engineering ethics at, 1118
Tanks. See also Vessels
equipment cost data for, 1251
pressure factors for, 1266
purchase costs for, 1258
Task differentiation, in groups, 1176–1177
Taxation
impact of tax rate on profit, 274–277
MACRS as current method of tax depreciation, 273–274
types of depreciation, 269–273
Teamwork. See also Groups
assessing group effectiveness, 1178–1180
boundary conditions of special concern in, 1175
group evolution, 1184–1186
groups and, 1175–1176
learning in teams, 1189–1190
misconceptions about, 1189
organizational behaviors and strategies, 1180–1184
resources on, 1190–1191
task differentiation in, 1176–1177
team building, 1186–1187
Teamwork (Sandman), 1191
Teamwork (Scholtes et al.), 1191
Teamwork from Start to Finish (Rees), 1190
Tear streams
convergence methods, 380–385, 387–389
convergence methods, comparing performance of, 583
in sequential modular (SM) approach, 572, 575–578
solving problems with odes, 400–401
Technology; new advancing steady-state simulation with, 562
evaluating risks of, 324–325
Tees, changing flow direction, 705
Temperature. See also Heat-exchanger networks (HENs)
composite temperature-enthalpy diagram, 523–529
in condensing heat transfer, 824–828
designing nonisothermal CSTRs, 980–984
effect of ambient conditions on dynamic models, 624
evaluating reactor process conditions, 158–164
impact on reaction rate, 162–163, 980
improving bare module equipment costs, 190–192
justifying conditions of special concern in reactors/separators in PFD, 158–164
measuring process variables, 662
in MUMNE problem, 512–521
operating conditions of special concern for reactors/separators, 150–154
physical property variations with, 355
pinch temperature, 514–515
reactor design for PFD synthesis and, 372–373
reasons for multiple reactors, 76
regulating between process streams and utilities, 676–679
troubleshooting cumene reactor, 684–685
troubleshooting packed-bed absorber, 1071–1074
Temperature-enthalpy (T-Q) diagrams
analyzing reboiler performance after scale-down, 936–937
for condensers and reboilers, 923–924
for heat exchangers, 772–774, 776–778, 794
for phase changes, 775–776, 797–798
Tempered-water system, split-range control system, 671–672
Tensile strength, impact of temperature on, 151
Terminal velocity
of falling water drops in oils with different viscosity, 1045–1046
flow around submerged objects, 723–728
for water drops in air and oil, 1044–1045
Terminology
dynamic simulation, 617
fires and explosions, 1143
optimization, 464
Ternary azeotropic distillation, 382–388
Thermodynamic model solver, simulator
features, 399
Thermodynamic models
calibrating using scarce data, 422–423
demonstrating physical property parameters, 601–604
example of using, 424–426
hybrid systems, 423
modeling distillation column for electrolyte system, 447–448
other models, 423
phase equilibrium model, 416–422
pure-component properties, 416
selecting, 415–416
user, 564–567
using, 424
validity of pressure-flow networks in dynamic simulation, 621–622
Thermodynamics
equilibrium in reactors and, 964–965
justifying conditions of special concern in reactors using PFD, 158–161
must have confidence in selected model for, 404
Thermosiphon reboilers, 40–41, 633, 779
Thesaurus, 1215
Threshold limit values (TLV), air contaminants standard, 1135
tie line, TP-x diagrams for V-L separations, 887
time criteria
discounted profitability criteria, 291–293
evaluating profitability, 287
non discounted profitability, 287
time value of money, investments and, 248–251, 259–261
time-weighted average (TWA), air contaminant exposure, 1135
Tips for Teams (Fisher et al.), 1191
Titanium and its alloys, selecting materials of construction, 194–197
Title page, written report format, 1203
Title slide, oral presentation guidelines, 1212
TLV (threshold limit values), air contaminants standard, 1135
toluene HDA process
analyzing conditions of special concern in, 158–164
BFD for, 11
case study of simulating, 426–428
cost of manufacturing benzene via, 241–242
determining profit margin, 68–69
distillation column performance, case study, 934–942
distillation of benzene from, 14–15
equipment summary for, 24–25
estimating utility costs from PEDs, 238–240
evaluating high-pressure phase separator in, 164
feed purity and trace components in, 66
input/output structure, 60–63
PFD for, 22
process flow diagram, 17, 20
recycle and bypass streams, 142–145
specifying equipment parameters for, 409–411
tracing primary chemical pathways, 137–142
written process description of, 146–147
Top-down strategies, in optimization, 468
Topological optimization
alternatives for separation and reactor configuration, 477–478
eliminating equipment, 475
eliminating unwanted by-products/waste streams, 473–475
introduction to, 473
rearranging equipment, 475–477
Trapezoidal method, dynamic simulation
Transport models
Transient response, using dynamic simulation
Transfer units separation, 880–881, 929
Towers

capacities of process units in common usage, 356
equipment cost data for, 1251
heuristics for, 363
pressure factors in costs of, 1266

McCabe-Thiele method for mass separating agents, 903–905
McCabe-Thiele method for packed columns, 901–902
performance of, 933–934
performance problems of, 933–934
pressure drop, 922–923
rate expressions, 882–883
tray efficiency, 920–922
tray sizing, 915–916
tray spacing, 914–919
tray types, 912–913
vs. packed towers, 933
weirs, 912–914

Trays
bare module cost for, 1270
bare module factors for, 1271
efficiency in distillation column, 920–922
equipment cost data for, 1251
material factors for, 1273
McCabe-Thiele method for distillation using, 903–905
pressure factors for, 1266
purchase costs for, 1257

Triangular fins, 831–832, 833–837
Triangular pitch
heat transfer coefficients for flow over tubes, 808
Kerr's method for shell-side heat transfer, 812–813
layout patterns for tubes, 784

Troubleshooting, See also Debottlenecking:
Performance
applying to problems, 1069–1071
case studies involving multiple units, 1076–1081
cumene process feed section, 1074–1076
for an entire process, 1081–1085
fluid flow. See Fluid flow equipment, performance
overview of, 1066–1067
packed-bed absorber, 1071–1074
performance. See Performance
problem-solving strategies, 1067–1069
simulation errors, 412–413
steps in, 1066

TSA (Toxic Substances Control Act), 1161

Turbulent flow
falling-film condensation on cylinders, 825–828
film heat transfer coefficient inside tubes, 804–806
friction factors in compressible flow, 719–720
friction factors in incompressible flow, 712
frictional losses for, 709–711
Turbulent fluidized bed reactors, 1000–1001

U
U-tubes, S-T heat exchanger design, 784, 789
UAMs. See User-added models (UAMs)
UEL (Upper explosive limit), 1144
Upper flammability limit (UL), 1144
Upper flammability limit (ULF), 1144

U.S. Coast Guard, and transport of hazardous materials, 1141

User-added models (UAMs)
examples, 565–570
overview of, 562–563
user kinetic models, 568–571
user thermodynamic and transport models, 564–567
User-added unit operation models (UAUOM), steady-state simulation, 563–564

Utilities
constructing P&IDs, 27–29
dynamic models for heaters and coolers, 625–627
heuristics for refrigeration and utility specifications, 367
sketching piping in 3-D plot plan, 41

Utility costs
background information on, 219–222
calculation of, 221–222
cooling water tower, 221–225
estimating from PFDs, 238–240
formula for cost of manufacturing, 214–217
for hot circulating heat transfer fluids, 234
for optimization base case, 469
problems with multiple utilities, 539
for refrigeration, 225–228
in single-variable optimization, 480–481
for steam production, 228–234
in toluene HDA process, 241–242
in two-variable optimization, 483

Utility flowsheets, 32

Utility streams
for cocurrent heat exchanger, 773–775
conventions for identifying in PFDs, 18–20
in countercurrent heat exchangers, 771–773

Cumene production facility problems, 1422
exchanging heat between process streams and, 676–678
Vapor-liquid (V-L) separation

Vapor fraction, and feed streams, 404–405

Vapor cloud explosions (VCEs), 1144–1145

Vapor

Vanes, of impeller for centrifugal pumps, 707

Vapor in condensing heat transfer, 824–828

Vapor flow around submerged objects and terminal, 723–728

Vapor pressure, impacting fate of chemicals in environment, 1162

Vaporization, 883–884

Vaporizers

bare module cost for, 1270

bare module factors for, 1271

equipment cost data for, 1251

material factors for, 1272–1273

pressure factors for, 1266

purchase costs for, 1253

Variables

in cascade regulation, 668–669

in combination feedback/forward control, 667

control strategies for, 663

in dynamic simulation, 619

Vapor pressure, as input for process simulation, 407

as final control in chemical process control loop, 29

input for process simulation, 407

minimizing pollution from leaking, 1166

regulating, 656

regulating with valves, 655–662

regulating flowrate with, 655–662, 674–676

regulating pressure with, 660–662, 674–676

regulating with valves, 655–662

Vapor pressure, as relief or safety, 1145

regulating, 660–662, 674–676

regulating flowrate with, 655–662

regulating pressure with, 660–662, 674–676

relief or safety, 1145

split-range control system, 671–673

types of, 705–706

Vanes, of impeller for centrifugal pumps, 707

Vapor in condensing heat transfer, 824–828

damaging pumps, 706

justifying separator operations at conditions of special concern, 153–154

Vapor cloud explosions (VCEs), 1144–1145

Vapor fraction, and feed streams, 404–405

Vapor-liquid equilibrium (VLE)

air leaks into vacuum systems and, 1090–1091

estimating physical property parameters, 601–604

hybrid systems and, 423

justifying separator operations at conditions of special concern, 153–154

liquid-state activity-coefficient models, 419–423

modeling electrolyte systems with, 429–431

thermodynamic model solver and, 399

Vapor-liquid (V-L) separation

designing horizontal V-L separators, 1032–1036

designing V-L separators, 1029–1032

equilibrium relationships and, 878

flooding in mist eliminators, 1038–1040

flooding in mist eliminators, examples, 1040–1044

mass balances and, 877

McCabe-Thiele method for distillation and, 888–901

mist eliminators/other internals in, 1036–1037

overview of, 1025–1028

in packed towers. See Packed towers.

TP-diagrams for 883–888

in tray towers. See Tray towers

Vapor pressure, impacting fate of chemicals in environment, 1162

Vaporization, 883–884

Vaporizers

bare module cost for, 1270

bare module factors for, 1271

equipment cost data for, 1251

material factors for, 1272–1273

pressure factors for, 1266

purchase costs for, 1253

Variables

in cascade regulation, 668–669

in combination feedback/forward control, 667

control strategies for, 663

in dynamic simulation, 619

in feed-forward control and regulation, 663–665

in feedback control and regulation, 663–665

measuring, 662–663

VB (Visual Basic), 563

Velocity

calculating flooding, 915–920

dynamic simulation and size of, 622–624

dynamic model of flash and, 632

capacities of process units, 356

estimating plant cost for MOCs, 197–198

equipment cost data for process, 1251

bare module factors for, 1271

material factors for, 1272–1273

pressure factors for, 1266

purchase costs for, 1253

Vapors, in distillation and, 877

volume of catalyst, and heat transfer in S-T reactors, 1036–1037

volume, and heat transfer in S-T reactors, 997–999

Volute, and centrifugal pumps, 707

Waste disposal, utility costs for plant with multiple process units, 223

Waste heat boilers, 234, 823–824

Waste management, Pollution Prevention Act of 1990, 1159–1160

Waste streams

activated sludge in biological, 390

cost of treating liquid/solid, 240–241

eliminating unwanted hazardous by-products, 477–478

phthalic anhydride production design for new facility, 1412

separator design for PFD synthesis, 373–374, 376

Waste treatment, Pollution Prevention Act of 1990, 1160

Wastewater treatment
cost of utilities for plant, 223

going green engineering, 1165

information in utility streams for, 18

maximum concentrations of discharges in, 1126

modeling electrolyte systems for, 428

for pollution prevention in styrene production, 1167

in process optimization, 471–476

recycling of inerts in, 76

utility costs for, 223

Water

environmental laws for, 1161

leaks in steam production requiring

makeup, 228

minimize pollution by recycling, 1165

properties at different temperatures, 812

temperature conditions of special concern for, 151–152

utility costs for cooling tower, 214–217

utility costs for plant with multiple process units, 222

utility costs for steam production, 228–234

Water-gas shift (WGS) reactor

converting CO to CO2, 1352–1356

ratio control, 669–671

Weeping, bubble cap/valve trays and, 913
Wegstein’s method
performance for tear stream convergence, 583
SM approach to steady-state simulation, 579–585
Weir height, estimating column pressure drop, 912, 922–924
Weirs, liquid level on tray maintained by, 912
Welded joints, cylindrical shell design for pressure vessel, 1016
Welds, connecting pipe with, 705
What-if technique, in Process Hazard Analysis, 1146
Work, and friction in groups, 1180
Worker Right to Know regulations, 1136–1138
Working capital, depreciation of, 269
Worst case scenario, risk assessment, 1133–1134
Writer’s block, causes of, 1201
Written communication
executive summaries and abstracts, 1198–1199
exhibits (figures and tables), 1200
minutes from design meetings, 1199
overview, 1195–1196
performance evaluations, 1199
purposes of, 1196–1197
references, 1200
software and author responsibility, 1215–1218
strategies for writing, 1201–1202
transmittal letters or memos, 1198
university guidelines for written design reports, 1202–1209
Written process descriptions, 146–147
WVU and Auburn University, oral communication guidelines, 1215–1218
WVU and Auburn University, written report guidelines
equations, 1207–1208
figures and tables, 1206–1207
format, 1203–1206
grammar, punctuation, and spelling, 1202–1203
group reports, 1203
how engineering reports are used, 1208–1209
overview of, 1202
written communication, 1202–1209
Yearly depreciation, 270
Yearly operating cost (YOC)
of equipment with different operating lives, 301, 303–304
estimating utility costs from PFDs, 239–240
stream factors in calculating, 237–238
Yearly savings, and pollution prevention, 1167–1168
Yield, of parallel and series reactions, 977–980
Zebra mussels
brainstorming ideas in chemical product design, 128
new chemical products needed to prevent, 126
product manufacturing, 130–131
Zero-wait (zw) batch process, 108
Ziegler-Nichols tuning rule, dynamic simulation, 641–643
Žukauskas equation, heat transfer coefficients, 808–809
CREDITS

Page 706, Figure 19-3: Republished with permission of Elsevier, from Chemical Process Equipment: Selection and Design, Couper, James R., 3rd edition 2012; permission conveyed through Copyright Clearance Center, Inc.

Page 707, Figure 19-4b: Republished with permission of Elsevier, from Chemical Process Equipment: Selection and Design, Couper, James R., 3rd edition 2012; permission conveyed through Copyright Clearance Center, Inc.

Page 708, Figure 19-5a, b: Republished with permission of Elsevier, from Chemical Process Equipment: Selection and Design, Couper, James R., 3rd edition 2012; permission conveyed through Copyright Clearance Center, Inc.

Page 889, Figure 21-10b: Republished with permission of Elsevier, from Chemical Process Equipment: Selection and Design, Couper, James R., 3rd edition 2012; permission conveyed through Copyright Clearance Center, Inc.

Page 912, Figure 21-32: Republished with permission of Elsevier, from Chemical Process Equipment: Selection and Design, Couper, James R., 3rd edition 2012; permission conveyed through Copyright Clearance Center, Inc.

Page 921, Figure 21-36: Republished with permission of Elsevier, from Chemical Process Equipment: Selection and Design, Couper, James R., 3rd edition 2012; permission conveyed through Copyright Clearance Center, Inc.

Page 927, Figure 21-39: Republished with permission of Wiley, from Distillation: Principles and Practice, Stichlmair, J. G., and J. R. Fair, 1998; permission conveyed through Copyright Clearance Center, Inc.