
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134177304
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134177304
https://plusone.google.com/share?url=http://www.informit.com/title/9780134177304
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134177304
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134177304/Free-Sample-Chapter

Core Java®

Volume I—Fundamentals

Tenth Edition

This page intentionally left blank

Core Java®

Volume I—Fundamentals
Tenth Edition

Cay S. Horstmann

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The author and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or

omissions. No liability is assumed for incidental or consequential damages in connection

with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities

(which may include electronic versions; custom cover designs; and content particular to

your business, training goals, marketing focus, or branding interests), please contact our

corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact

international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Names: Horstmann, Cay S., 1959- author.

Title: Core Java / Cay S. Horstmann.

Description: Tenth edition. | New York : Prentice Hall, [2016] | Includes

 index.

Identifiers: LCCN 2015038763| ISBN 9780134177304 (volume 1 : pbk. : alk.

 paper) | ISBN 0134177304 (volume 1 : pbk. : alk. paper)

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 H6753 2016 | DDC 005.13/3—dc23

LC record available at http://lccn.loc.gov/2015038763

Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

500 Oracle Parkway, Redwood Shores, CA 94065

Portions © Cay S. Horstmann

All rights reserved. Printed in the United States of America. This publication is protected

by copyright, and permission must be obtained from the publisher prior to any prohibited

reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or likewise. For information regarding

permissions, request forms and the appropriate contacts within the Pearson Education

Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Oracle America Inc. does not make any representations or warranties as to the accuracy,

adequacy or completeness of any information contained in this work, and is not responsible

for any errors or omissions.

ISBN-13: 978-0-13-417730-4

ISBN-10: 0-13-417730-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,

Indiana.

First printing, December 2015

http://lccn.loc.gov/2015038763
http://www.pearsoned.com/permissions/

Contents

xixPreface ..

xxvAcknowledgments ...

1Chapter 1: An Introduction to Java ...

1Java as a Programming Platform ...1.1

2The Java “White Paper” Buzzwords ..1.2

3Simple ...1.2.1

4Object-Oriented ...1.2.2

4Distributed ...1.2.3

4Robust ...1.2.4

4Secure ..1.2.5

5Architecture-Neutral ...1.2.6

6Portable ...1.2.7

7Interpreted ..1.2.8

7High-Performance ...1.2.9

7Multithreaded ..1.2.10

8Dynamic ..1.2.11

8Java Applets and the Internet ...1.3

10A Short History of Java ...1.4

13Common Misconceptions about Java ...1.5

17Chapter 2: The Java Programming Environment

18Installing the Java Development Kit ...2.1

18Downloading the JDK ...2.1.1

20Setting up the JDK ...2.1.2

22Installing Source Files and Documentation2.1.3

23Using the Command-Line Tools ..2.2

26Using an Integrated Development Environment2.3

30Running a Graphical Application ...2.4

33Building and Running Applets ..2.5

v

41Chapter 3: Fundamental Programming Structures in Java

42A Simple Java Program ...3.1

46Comments ...3.2

47Data Types ...3.3

47Integer Types ..3.3.1

48Floating-Point Types ...3.3.2

50The char Type ..3.3.3

51Unicode and the char Type ..3.3.4

52The boolean Type ..3.3.5

53Variables ..3.4

54Initializing Variables ...3.4.1

55Constants ..3.4.2

56Operators ..3.5

57Mathematical Functions and Constants3.5.1

59Conversions between Numeric Types3.5.2

60Casts ..3.5.3

61Combining Assignment with Operators3.5.4

61Increment and Decrement Operators3.5.5

62Relational and boolean Operators ..3.5.6

63Bitwise Operators ..3.5.7

64Parentheses and Operator Hierarchy3.5.8

65Enumerated Types ..3.5.9

65Strings ..3.6

66Substrings ...3.6.1

66Concatenation ..3.6.2

67Strings Are Immutable ..3.6.3

68Testing Strings for Equality ..3.6.4

69Empty and Null Strings ..3.6.5

70Code Points and Code Units ..3.6.6

71The StringAPI ..3.6.7

74Reading the Online API Documentation3.6.8

77Building Strings ...3.6.9

78Input and Output ...3.7

79Reading Input ..3.7.1

82Formatting Output ..3.7.2

Contentsvi

87File Input and Output ...3.7.3

89Control Flow ...3.8

89Block Scope ...3.8.1

90Conditional Statements ..3.8.2

94Loops ...3.8.3

99Determinate Loops ..3.8.4

103Multiple Selections—The switch Statement3.8.5

106Statements That Break Control Flow3.8.6

108Big Numbers ...3.9

111Arrays ..3.10

113The “for each” Loop ..3.10.1

114Array Initializers and Anonymous Arrays3.10.2

114Array Copying ...3.10.3

116Command-Line Parameters ...3.10.4

117Array Sorting ...3.10.5

120Multidimensional Arrays ...3.10.6

124Ragged Arrays ...3.10.7

129Chapter 4: Objects and Classes ..

130Introduction to Object-Oriented Programming4.1

131Classes ...4.1.1

132Objects ...4.1.2

133Identifying Classes ..4.1.3

133Relationships between Classes ..4.1.4

135Using Predefined Classes ...4.2

136Objects and Object Variables ..4.2.1

139The LocalDate Class of the Java Library4.2.2

141Mutator and Accessor Methods ..4.2.3

145Defining Your Own Classes ...4.3

145An Employee Class ...4.3.1

149Use of Multiple Source Files ..4.3.2

149Dissecting the Employee Class ..4.3.3

150First Steps with Constructors ..4.3.4

152Implicit and Explicit Parameters ...4.3.5

153Benefits of Encapsulation ...4.3.6

156Class-Based Access Privileges ..4.3.7

viiContents

156Private Methods ...4.3.8

157Final Instance Fields ..4.3.9

158Static Fields and Methods ...4.4

158Static Fields ...4.4.1

159Static Constants ..4.4.2

160Static Methods ..4.4.3

161Factory Methods ..4.4.4

161The main Method ...4.4.5

164Method Parameters ..4.5

171Object Construction ...4.6

172Overloading ..4.6.1

172Default Field Initialization ...4.6.2

173The Constructor with No Arguments4.6.3

174Explicit Field Initialization ...4.6.4

175Parameter Names ..4.6.5

176Calling Another Constructor ...4.6.6

177Initialization Blocks ...4.6.7

181Object Destruction and the finalize Method4.6.8

182Packages ..4.7

183Class Importation ..4.7.1

185Static Imports ...4.7.2

185Addition of a Class into a Package ...4.7.3

189Package Scope ..4.7.4

190The Class Path ...4.8

193Setting the Class Path ..4.8.1

194Documentation Comments ..4.9

194Comment Insertion ...4.9.1

195Class Comments ..4.9.2

195Method Comments ...4.9.3

196Field Comments ..4.9.4

196General Comments ...4.9.5

198Package and Overview Comments ...4.9.6

198Comment Extraction ...4.9.7

200Class Design Hints ..4.10

Contentsviii

203Chapter 5: Inheritance ..

204Classes, Superclasses, and Subclasses ..5.1

204Defining Subclasses ...5.1.1

206Overriding Methods ...5.1.2

207Subclass Constructors ...5.1.3

212Inheritance Hierarchies ..5.1.4

213Polymorphism ..5.1.5

214Understanding Method Calls ..5.1.6

217Preventing Inheritance: Final Classes and Methods5.1.7

219Casting ..5.1.8

221Abstract Classes ...5.1.9

227Protected Access ..5.1.10

228Object: The Cosmic Superclass ...5.2

229The equals Method ..5.2.1

231Equality Testing and Inheritance ...5.2.2

235The hashCode Method ..5.2.3

238The toString Method ..5.2.4

244Generic Array Lists ..5.3

247Accessing Array List Elements ..5.3.1

251Compatibility between Typed and Raw Array Lists5.3.2

252Object Wrappers and Autoboxing ...5.4

256Methods with a Variable Number of Parameters5.5

258Enumeration Classes ...5.6

260Reflection ..5.7

261The Class Class ..5.7.1

263A Primer on Catching Exceptions ...5.7.2

265Using Reflection to Analyze the Capabilities of Classes5.7.3

271Using Reflection to Analyze Objects at Runtime5.7.4

276Using Reflection to Write Generic Array Code5.7.5

279Invoking Arbitrary Methods ...5.7.6

283Design Hints for Inheritance ..5.8

287Chapter 6: Interfaces, Lambda Expressions, and Inner Classes

288Interfaces ...6.1

288The Interface Concept ...6.1.1

ixContents

295Properties of Interfaces ...6.1.2

297Interfaces and Abstract Classes ...6.1.3

298Static Methods ..6.1.4

298Default Methods ..6.1.5

300Resolving Default Method Conflicts6.1.6

302Examples of Interfaces ..6.2

302Interfaces and Callbacks ...6.2.1

305The Comparator Interface ..6.2.2

306Object Cloning ...6.2.3

314Lambda Expressions ...6.3

314Why Lambdas? ..6.3.1

315The Syntax of Lambda Expressions ..6.3.2

318Functional Interfaces ...6.3.3

319Method References ..6.3.4

321Constructor References ...6.3.5

322Variable Scope ..6.3.6

324Processing Lambda Expressions ...6.3.7

328More about Comparators ...6.3.8

329Inner Classes ...6.4

331Use of an Inner Class to Access Object State6.4.1

334Special Syntax Rules for Inner Classes6.4.2

335Are Inner Classes Useful? Actually Necessary? Secure?6.4.3

339Local Inner Classes ..6.4.4

339Accessing Variables from Outer Methods6.4.5

342Anonymous Inner Classes ...6.4.6

346Static Inner Classes ..6.4.7

350Proxies ...6.5

350When to Use Proxies ...6.5.1

350Creating Proxy Objects ...6.5.2

355Properties of Proxy Classes ..6.5.3

357Chapter 7: Exceptions, Assertions, and Logging

358Dealing with Errors ...7.1

359The Classification of Exceptions ..7.1.1

361Declaring Checked Exceptions ..7.1.2

364How to Throw an Exception ..7.1.3

Contentsx

365Creating Exception Classes ..7.1.4

367Catching Exceptions ..7.2

367Catching an Exception ..7.2.1

369Catching Multiple Exceptions ...7.2.2

370Rethrowing and Chaining Exceptions7.2.3

372The finally Clause ...7.2.4

376The Try-with-Resources Statement ...7.2.5

377Analyzing Stack Trace Elements ..7.2.6

381Tips for Using Exceptions ...7.3

384Using Assertions ..7.4

384The Assertion Concept ..7.4.1

385Assertion Enabling and Disabling ..7.4.2

386Using Assertions for Parameter Checking7.4.3

387Using Assertions for Documenting Assumptions7.4.4

389Logging ...7.5

389Basic Logging ...7.5.1

390Advanced Logging ..7.5.2

392Changing the Log Manager Configuration7.5.3

393Localization ..7.5.4

394Handlers ...7.5.5

398Filters ...7.5.6

399Formatters ..7.5.7

399A Logging Recipe ..7.5.8

409Debugging Tips ..7.6

415Chapter 8: Generic Programming ..

416Why Generic Programming? ..8.1

416The Advantage of Type Parameters ...8.1.1

417Who Wants to Be a Generic Programmer?8.1.2

418Defining a Simple Generic Class ...8.2

421Generic Methods ..8.3

422Bounds for Type Variables ..8.4

425Generic Code and the Virtual Machine ..8.5

425Type Erasure ..8.5.1

426Translating Generic Expressions ...8.5.2

427Translating Generic Methods ..8.5.3

xiContents

429Calling Legacy Code ...8.5.4

430Restrictions and Limitations ..8.6

430

Type Parameters Cannot Be Instantiated with Primitive

Types ...

8.6.1

431Runtime Type Inquiry Only Works with Raw Types8.6.2

431You Cannot Create Arrays of Parameterized Types 8.6.3

432Varargs Warnings ..8.6.4

433You Cannot Instantiate Type Variables8.6.5

434You Cannot Construct a Generic Array8.6.6

436

Type Variables Are Not Valid in Static Contexts of Generic

Classes ...

8.6.7

436You Cannot Throw or Catch Instances of a Generic Class ...8.6.8

437You Can Defeat Checked Exception Checking8.6.9

439Beware of Clashes after Erasure ..8.6.10

440Inheritance Rules for Generic Types ...8.7

442Wildcard Types ..8.8

442The Wildcard Concept ..8.8.1

444Supertype Bounds for Wildcards ..8.8.2

447Unbounded Wildcards ...8.8.3

448Wildcard Capture ..8.8.4

450Reflection and Generics ..8.9

450The Generic Class Class ..8.9.1

452Using Class<T> Parameters for Type Matching8.9.2

452Generic Type Information in the Virtual Machine8.9.3

459Chapter 9: Collections ..

460The Java Collections Framework ...9.1

460Separating Collection Interfaces and Implementation9.1.1

463The Collection Interface ..9.1.2

463Iterators ...9.1.3

466Generic Utility Methods ...9.1.4

469Interfaces in the Collections Framework9.1.5

472Concrete Collections ..9.2

474Linked Lists ..9.2.1

484Array Lists ..9.2.2

485Hash Sets ..9.2.3

Contentsxii

489Tree Sets ..9.2.4

494Queues and Deques ..9.2.5

495Priority Queues ..9.2.6

497Maps ..9.3

497Basic Map Operations ...9.3.1

500Updating Map Entries ..9.3.2

502Map Views ..9.3.3

504Weak Hash Maps ...9.3.4

504Linked Hash Sets and Maps ..9.3.5

506Enumeration Sets and Maps ..9.3.6

507Identity Hash Maps ..9.3.7

509Views and Wrappers ...9.4

509Lightweight Collection Wrappers ...9.4.1

510Subranges ...9.4.2

511Unmodifiable Views ...9.4.3

512Synchronized Views ..9.4.4

513Checked Views ..9.4.5

514A Note on Optional Operations ..9.4.6

517Algorithms ..9.5

518Sorting and Shuffling ..9.5.1

521Binary Search ...9.5.2

522Simple Algorithms ..9.5.3

524Bulk Operations ...9.5.4

525Converting between Collections and Arrays9.5.5

526Writing Your Own Algorithms ..9.5.6

528Legacy Collections ...9.6

528The Hashtable Class ...9.6.1

528Enumerations ...9.6.2

530Property Maps ...9.6.3

531Stacks ...9.6.4

532Bit Sets ...9.6.5

537Chapter 10: Graphics Programming ..

538Introducing Swing ...10.1

543Creating a Frame ..10.2

546Positioning a Frame ...10.3

xiiiContents

549Frame Properties ...10.3.1

549Determining a Good Frame Size ...10.3.2

554Displaying Information in a Component ...10.4

560Working with 2D Shapes ..10.5

569Using Color ...10.6

573Using Special Fonts for Text ...10.7

582Displaying Images ...10.8

587Chapter 11: Event Handling ..

587Basics of Event Handling ..11.1

591Example: Handling a Button Click ...11.1.1

595Specifying Listeners Concisely ..11.1.2

598Example: Changing the Look-and-Feel11.1.3

603Adapter Classes ...11.1.4

607Actions ...11.2

616Mouse Events ...11.3

624The AWT Event Hierarchy ...11.4

626Semantic and Low-Level Events ...11.4.1

629Chapter 12: User Interface Components with Swing

630Swing and the Model-View-Controller Design Pattern12.1

630Design Patterns ..12.1.1

632The Model-View-Controller Pattern12.1.2

636A Model-View-Controller Analysis of Swing Buttons12.1.3

638Introduction to Layout Management ..12.2

641Border Layout ..12.2.1

644Grid Layout ..12.2.2

648Text Input ..12.3

649Text Fields ...12.3.1

651Labels and Labeling Components ..12.3.2

652Password Fields ...12.3.3

653Text Areas ...12.3.4

654Scroll Panes ...12.3.5

657Choice Components ..12.4

657Checkboxes ...12.4.1

660Radio Buttons ...12.4.2

Contentsxiv

664Borders ..12.4.3

668Combo Boxes ..12.4.4

672Sliders ..12.4.5

678Menus ..12.5

679Menu Building ...12.5.1

682Icons in Menu Items ..12.5.2

683Checkbox and Radio Button Menu Items12.5.3

684Pop-Up Menus ...12.5.4

686Keyboard Mnemonics and Accelerators12.5.5

689Enabling and Disabling Menu Items12.5.6

694Toolbars ...12.5.7

696Tooltips ..12.5.8

699Sophisticated Layout Management ...12.6

701The Grid Bag Layout ...12.6.1

703The gridx, gridy, gridwidth, and gridheight Parameters ...12.6.1.1

703Weight Fields ..12.6.1.2

704The fill and anchor Parameters12.6.1.3

704Padding ...12.6.1.4

705

Alternative Method to Specify the gridx, gridy,

gridwidth, and gridheight Parameters

12.6.1.5

706

A Helper Class to Tame the Grid Bag

Constraints ..

12.6.1.6

713Group Layout ...12.6.2

723Using No Layout Manager ..12.6.3

724Custom Layout Managers ..12.6.4

729Traversal Order ..12.6.5

730Dialog Boxes ...12.7

731Option Dialogs ...12.7.1

741Creating Dialogs ..12.7.2

746Data Exchange ..12.7.3

752File Dialogs ...12.7.4

764Color Choosers ..12.7.5

770Troubleshooting GUI Programs ...12.8

770Debugging Tips ...12.8.1

774Letting the AWT Robot Do the Work12.8.2

xvContents

779Chapter 13: Deploying Java Applications ...

780JAR Files ..13.1

780Creating JAR files ..13.1.1

781The Manifest ...13.1.2

782Executable JAR Files ...13.1.3

783Resources ..13.1.4

787Sealing ...13.1.5

788Storage of Application Preferences ...13.2

788Property Maps ...13.2.1

794The Preferences API ..13.2.2

800Service Loaders ..13.3

802Applets ..13.4

803A Simple Applet ..13.4.1

808The applet HTML Tag and Its Attributes13.4.2

810Use of Parameters to Pass Information to Applets13.4.3

816Accessing Image and Audio Files ...13.4.4

818The Applet Context ...13.4.5

818Inter-Applet Communication ..13.4.6

819Displaying Items in the Browser ...13.4.7

820The Sandbox ...13.4.8

822Signed Code ...13.4.9

824Java Web Start ...13.5

824Delivering a Java Web Start Application13.5.1

829The JNLP API ...13.5.2

839Chapter 14: Concurrency ...

840What Are Threads? ..14.1

846Using Threads to Give Other Tasks a Chance14.1.1

851Interrupting Threads ...14.2

855Thread States ...14.3

855New Threads ..14.3.1

855Runnable Threads ..14.3.2

856Blocked and Waiting Threads ..14.3.3

857Terminated Threads ..14.3.4

858Thread Properties ...14.4

858Thread Priorities ..14.4.1

Contentsxvi

859Daemon Threads ..14.4.2

860Handlers for Uncaught Exceptions ..14.4.3

862Synchronization ...14.5

862An Example of a Race Condition ..14.5.1

866The Race Condition Explained ..14.5.2

868Lock Objects ...14.5.3

872Condition Objects ..14.5.4

878The synchronized Keyword ..14.5.5

882Synchronized Blocks ...14.5.6

884The Monitor Concept ..14.5.7

885Volatile Fields ...14.5.8

886Final Variables ..14.5.9

886Atomics ...14.5.10

889Deadlocks ...14.5.11

892Thread-Local Variables ...14.5.12

893Lock Testing and Timeouts ..14.5.13

895Read/Write Locks ...14.5.14

896Why the stop and suspend Methods Are Deprecated14.5.15

898Blocking Queues ..14.6

905Thread-Safe Collections ..14.7

905Efficient Maps, Sets, and Queues ..14.7.1

907Atomic Update of Map Entries ..14.7.2

909Bulk Operations on Concurrent Hash Maps14.7.3

912Concurrent Set Views ...14.7.4

912Copy on Write Arrays ...14.7.5

912Parallel Array Algorithms ..14.7.6

914Older Thread-Safe Collections ...14.7.7

915Callables and Futures ..14.8

920Executors ...14.9

921Thread Pools ...14.9.1

926Scheduled Execution ...14.9.2

927Controlling Groups of Tasks ..14.9.3

928The Fork-Join Framework ..14.9.4

931Completable Futures ...14.9.5

934Synchronizers ...14.10

xviiContents

935Semaphores ..14.10.1

936Countdown Latches ..14.10.2

936Barriers ..14.10.3

937Exchangers ...14.10.4

937Synchronous Queues ..14.10.5

937Threads and Swing ..14.11

939Running Time-Consuming Tasks ..14.11.1

943Using the Swing Worker ..14.11.2

951The Single-Thread Rule ..14.11.3

953Appendix ..

957Index ...

Contentsxviii

Preface

To the Reader
In late 1995, the Java programming language burst onto the Internet scene and

gained instant celebrity status. The promise of Java technology was that it would

become the universal glue that connects users with information wherever it comes

from—web servers, databases, information providers, or any other imaginable

source. Indeed, Java is in a unique position to fulfill this promise. It is an extremely

solidly engineered language that has gained wide acceptance. Its built-in security

and safety features are reassuring both to programmers and to the users of Java

programs. Java has built-in support for advanced programming tasks, such as

network programming, database connectivity, and concurrency.

Since 1995, nine major revisions of the Java Development Kit have been released.

Over the course of the last 20 years, the Application Programming Interface (API)

has grown from about 200 to over 4,000 classes. The API now spans such diverse

areas as user interface construction, database management, internationalization,

security, and XML processing.

The book you have in your hands is the first volume of the tenth edition of Core

Java

®
. Each edition closely followed a release of the Java Development Kit, and

each time, we rewrote the book to take advantage of the newest Java features.

This edition has been updated to reflect the features of Java Standard Edition

(SE) 8.

As with the previous editions of this book, we still target serious programmers who

want to put Java to work on real projects. We think of you, our reader, as a program-

mer with a solid background in a programming language other than Java, and

we assume that you don’t like books filled with toy examples (such as toasters,

zoo animals, or “nervous text”). You won’t find any of these in our book. Our

goal is to enable you to fully understand the Java language and library, not to

give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every language

and library feature that we discuss. We keep the sample programs purposefully

simple to focus on the major points, but, for the most part, they aren’t fake and

they don’t cut corners. They should make good starting points for your own code.

xix

We assume you are willing, even eager, to learn about all the advanced features

that Java puts at your disposal. For example, we give you a detailed treatment of

• Object-oriented programming

• Reflection and proxies

• Interfaces and inner classes

• Exception handling

• Generic programming

• The collections framework

• The event listener model

• Graphical user interface design with the Swing UI toolkit

• Concurrency

With the explosive growth of the Java class library, a one-volume treatment of

all the features of Java that serious programmers need to know is no longer pos-

sible. Hence, we decided to break up the book into two volumes. The first volume,

which you hold in your hands, concentrates on the fundamental concepts of the

Java language, along with the basics of user-interface programming. The second

volume, Core Java

®

, Volume II—Advanced Features, goes further into the enterprise

features and advanced user-interface programming. It includes detailed discus-

sions of

• The Stream API

• File processing and regular expressions

• Databases

• XML processing

• Annotations

• Internationalization

• Network programming

• Advanced GUI components

• Advanced graphics

• Native methods

When writing a book, errors and inaccuracies are inevitable. We’d very much

like to know about them. But, of course, we’d prefer to learn about each of them

only once. We have put up a list of frequently asked questions, bug fixes, and

workarounds on a web page at http://horstmann.com/corejava. Strategically placed at

the end of the errata page (to encourage you to read through it first) is a form you

can use to report bugs and suggest improvements. Please don’t be disappointed

if we don’t answer every query or don’t get back to you immediately. We do read

Prefacexx

http://horstmann.com/corejava

all e-mail and appreciate your input to make future editions of this book clearer

and more informative.

A Tour of This Book
Chapter 1 gives an overview of the capabilities of Java that set it apart from other

programming languages. We explain what the designers of the language set out

to do and to what extent they succeeded. Then, we give a short history of how

Java came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the program

examples for this book. Then we guide you through compiling and running three

typical Java programs—a console application, a graphical application, and an

applet—using the plain JDK, a Java-enabled text editor, and a Java IDE.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the

basics: variables, loops, and simple functions. If you are a C or C++ programmer,

this is smooth sailing because the syntax for these language features is essentially

the same as in C. If you come from a non-C background such as Visual Basic, you

will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming

practice, and Java is an object-oriented programming language. Chapter 4 intro-

duces encapsulation, the first of two fundamental building blocks of object orien-

tation, and the Java language mechanism to implement it—that is, classes and

methods. In addition to the rules of the Java language, we also give advice on

sound OOP design. Finally, we cover the marvelous javadoc tool that formats your

code comments as a set of hyperlinked web pages. If you are familiar with C++,

you can browse through this chapter quickly. Programmers coming from a non-

object-oriented background should expect to spend some time mastering the OOP

concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 in-

troduces the other—namely, inheritance. Inheritance lets you take an existing class

and modify it according to your needs. This is a fundamental technique for pro-

gramming in Java. The inheritance mechanism in Java is quite similar to that in

C++. Once again, C++ programmers can focus on the differences between the

languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you

go beyond the simple inheritance model of Chapter 5. Mastering interfaces allows

you to have full access to the power of Java’s completely object-oriented approach

to programming. After we cover interfaces, we move on to lambda expressions, a

xxiPreface

concise way for expressing a block of code that can be executed at a later point

in time. We then cover a useful technical feature of Java called inner classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal with the

fact that bad things can happen to good programs. Exceptions give you an efficient

way of separating the normal processing code from the error handling. Of course,

even after hardening your program by handling all exceptional conditions, it still

might fail to work as expected. In the final part of this chapter, we give you a

number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming

makes your programs easier to read and safer. We show you how to use strong

typing and remove unsightly and unsafe casts, and how to deal with the complex-

ities that arise from the need to stay compatible with older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform. When-

ever you want to collect multiple objects and retrieve them later, you should use

a collection that is best suited for your circumstances, instead of just tossing the

elements into an array. This chapter shows you how to take advantage of

the standard collections that are prebuilt for your use.

Chapter 10 starts the coverage of GUI programming. We show how you can make

windows, how to paint on them, how to draw with geometric shapes, how to

format text in multiple fonts, and how to display images.

Chapter 11 is a detailed discussion of the event model of the AWT, the abstract

window toolkit. You’ll see how to write code that responds to events, such as mouse

clicks or key presses. Along the way you’ll see how to handle basic GUI elements

such as buttons and panels.

Chapter 12 discusses the Swing GUI toolkit in great detail. The Swing toolkit al-

lows you to build cross-platform graphical user interfaces. You’ll learn all about

the various kinds of buttons, text components, borders, sliders, list boxes, menus,

and dialog boxes. However, some of the more advanced components are discussed

in Volume II.

Chapter 13 shows you how to deploy your programs, either as applications or

applets. We describe how to package programs in JAR files, and how to deliver

applications over the Internet with the Java Web Start and applet mechanisms.

We also explain how Java programs can store and retrieve configuration

information once they have been deployed.

Chapter 14 finishes the book with a discussion of concurrency, which enables

you to program tasks to be done in parallel. This is an important and exciting

Prefacexxii

application of Java technology in an era where most processors have multiple

cores that you want to keep busy.

The Appendix lists the reserved words of the Java language.

Conventions
As is common in many computer books, we use monospace type to represent

computer code.

NOTE: Notes are tagged with “note” icons that look like this.

TIP: Tips are tagged with “tip” icons that look like this.

CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are many C++ notes that explain the differences between
Java and C++.You can skip over them if you don’t have a background in C++
or if you consider your experience with that language a bad dream of which
you’d rather not be reminded.

Java comes with a large programming library, or Application Programming In-

terface (API). When using an API call for the first time, we add a short summary

description at the end of the section. These descriptions are a bit more informal

but, we hope, also a little more informative than those in the official online API

documentation. The names of interfaces are in italics, just like in the official doc-

umentation. The number after a class, interface, or method name is the JDK version

in which the feature was introduced, as shown in the following example:

Application Programming Interface 1.2

xxiiiPreface

Programs whose source code is on the book’s companion web site are presented

as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code
The web site for this book at http://horstmann.com/corejava contains all sample code

from the book, in compressed form. You can expand the file either with one of

the familiar unzipping programs or simply with the jar utility that is part of the

Java Development Kit. See Chapter 2 for more information on installing

the Java Development Kit and the sample code.

Prefacexxiv

http://horstmann.com/corejava

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem to

be much easier, especially with the continuous change in Java technology. Making

a book a reality takes many dedicated people, and it is my great pleasure to

acknowledge the contributions of the entire Core Java team.

A large number of individuals at Prentice Hall provided valuable assistance but

managed to stay behind the scenes. I’d like them all to know how much I appre-

ciate their efforts. As always, my warm thanks go to my editor, Greg Doench, for

steering the book through the writing and production process, and for allowing

me to be blissfully unaware of the existence of all those folks behind the scenes.

I am very grateful to Julie Nahil for production support, and to Dmitry Kirsanov

and Alina Kirsanova for copyediting and typesetting the manuscript. My thanks

also to my coauthor of earlier editions, Gary Cornell, who has since moved on to

other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors

and made lots of thoughtful suggestions for improvement. I am particularly

grateful to the excellent reviewing team who went over the manuscript with an

amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley Univer-

sity), Lance Andersen (Oracle), Paul Anderson (Anderson Software Group), Alec

Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua Bloch, David Brown,

Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution),

Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), David

Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle), Angela Gordon,

Dan Gordon (Electric Cloud), Rob Gordon, John Gray (University of Hartford),

Cameron Gregory (olabs.com), Marty Hall (coreservlets.com, Inc.), Vincent Hardy

(Adobe Systems), Dan Harkey (San Jose State University), William Higgins (IBM),

Vladimir Ivanovic (PointBase), Jerry Jackson (CA Technologies), Tim Kimmet

(Walmart), Chris Laffra, Charlie Lai (Apple), Angelika Langer, Doug Langston,

Hang Lau (McGill University), Mark Lawrence, Doug Lea (SUNY Oswego),

Gregory Longshore, Bob Lynch (Lynch Associates), Philip Milne (consultant),

Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida

Atlantic University), Hao Pham, Paul Philion, Blake Ragsdell, Stuart Reges

(University of Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders

(ESSI University, Nice, France), Dr. Paul Sanghera (San Jose State University and

xxv

Brooks College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems),

Yoshiki Shibata, Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor,

Luke Taylor (Valtech), George Thiruvathukal, Kim Topley (StreamingEdge), Janet

Traub, Paul Tyma (consultant), Peter van der Linden, Christian Ullenboom, Burt

Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Cay Horstmann

Biel/Bienne, Switzerland

November 2015

Acknowledgmentsxxvi

6CHAPTER

Interfaces, Lambda
Expressions, and Inner Classes

In this chapter

• 6.1 Interfaces, page 288

• 6.2 Examples of Interfaces, page 302

• 6.3 Lambda Expressions, page 314

• 6.4 Inner Classes, page 329

• 6.5 Proxies, page 350

You have now seen all the basic tools for object-oriented programming in Java.

This chapter shows you several advanced techniques that are commonly used.

Despite their less obvious nature, you will need to master them to complete your

Java tool chest.

The first technique, called interfaces, is a way of describing what classes should

do, without specifying how they should do it. A class can implement one or more

interfaces. You can then use objects of these implementing classes whenever

conformance to the interface is required. After we cover interfaces, we move on

to lambda expressions, a concise way for expressing a block of code that can be

287

executed at a later point in time. Using lambda expressions, you can express code

that uses callbacks or variable behavior in an elegant and concise fashion.

We then discuss the mechanism of inner classes. Inner classes are technically

somewhat complex—they are defined inside other classes, and their methods can

access the fields of the surrounding class. Inner classes are useful when you design

collections of cooperating classes.

This chapter concludes with a discussion of proxies, objects that implement arbi-

trary interfaces. A proxy is a very specialized construct that is useful for building

system-level tools. You can safely skip that section on first reading.

6.1 Interfaces
In the following sections, you will learn what Java interfaces are and how to use

them. You will also find out how interfaces have been made more powerful in

Java SE 8.

6.1.1 The Interface Concept
In the Java programming language, an interface is not a class but a set of

requirements for the classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a partic-

ular interface, then I’ll perform the service.” Let’s look at a concrete example. The

sort method of the Arrays class promises to sort an array of objects, but under

one condition: The objects must belong to classes that implement the Comparable
interface.

Here is what the Comparable interface looks like:

public interface Comparable
{
 int compareTo(Object other);
}

This means that any class that implements the Comparable interface is required to

have a compareTo method, and the method must take an Object parameter and return

an integer.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes288

NOTE: As of Java SE 5.0, the Comparable interface has been enhanced to be a
generic type.

public interface Comparable<T>
{
 int compareTo(T other); // parameter has type T
}

For example, a class that implements Comparable<Employee> must supply a method

int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter. Then the
compareTo method has a parameter of type Object, and you have to manually cast
that parameter of the compareTo method to the desired type. We will do just that
for a little while so that you don’t have to worry about two new concepts at the
same time.

All methods of an interface are automatically public. For that reason, it is not

necessary to supply the keyword public when declaring a method in an interface.

Of course, there is an additional requirement that the interface cannot spell out:

When calling x.compareTo(y), the compareTo method must actually be able to compare

the two objects and return an indication whether x or y is larger. The method is

supposed to return a negative number if x is smaller than y, zero if they are equal,

and a positive number otherwise.

This particular interface has a single method. Some interfaces have multiple

methods. As you will see later, interfaces can also define constants. What is more

important, however, is what interfaces cannot supply. Interfaces never have in-

stance fields. Before Java SE 8, methods were never implemented in interfaces.

(As you will see in Section 6.1.4, “Static Methods,” on p. 298 and Section 6.1.5,

“Default Methods,” on p. 298, it is now possible to supply simple methods in in-

terfaces. Of course, those methods cannot refer to instance fields—interfaces don’t

have any.)

Supplying instance fields and methods that operate on them is the job of the

classes that implement the interface. You can think of an interface as being similar

to an abstract class with no instance fields. However, there are some differences

between these two concepts—we look at them later in some detail.

2896.1 Interfaces

Now suppose we want to use the sort method of the Arrays class to sort an array

of Employee objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you carry out two steps:

1. You declare that your class intends to implement the given interface.

2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implements keyword:

class Employee implements Comparable

Of course, now the Employee class needs to supply the compareTo method. Let’s suppose

that we want to compare employees by their salary. Here is an implementation

of the compareTo method:

public int compareTo(Object otherObject)
{
 Employee other = (Employee) otherObject;
 return Double.compare(salary, other.salary);
}

Here, we use the static Double.compare method that returns a negative if the first ar-

gument is less than the second argument, 0 if they are equal, and a positive value

otherwise.

CAUTION: In the interface declaration, the compareTo method was not declared
public because all methods in an interface are automatically public. However,
when implementing the interface, you must declare the method as public. Other-
wise, the compiler assumes that the method has package visibility—the default
for a class. The compiler then complains that you’re trying to supply a more
restrictive access privilege.

We can do a little better by supplying a type parameter for the generic Comparable
interface:

class Employee implements Comparable<Employee>
{
 public int compareTo(Employee other)
 {
 return Double.compare(salary, other.salary);
 }
 . . .
}

Note that the unsightly cast of the Object parameter has gone away.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes290

TIP: The compareTo method of the Comparable interface returns an integer. If the
objects are not equal, it does not matter what negative or positive value you re-
turn. This flexibility can be useful when you are comparing integer fields. For
example, suppose each employee has a unique integer id and you want to sort
by the employee ID number.Then you can simply return id - other.id. That value
will be some negative value if the first ID number is less than the other, 0 if they
are the same ID, and some positive value otherwise. However, there is one
caveat: The range of the integers must be small enough so that the subtraction
does not overflow. If you know that the IDs are not negative or that their absolute
value is at most (Integer.MAX_VALUE - 1) / 2, you are safe. Otherwise, call the static
Integer.compare method.

Of course, the subtraction trick doesn’t work for floating-point numbers. The
difference salary - other.salary can round to 0 if the salaries are close together
but not identical. The call Double.compare(x, y) simply returns -1 if x < y or 1 if x > y.

NOTE: The documentation of the Comparable interface suggests that the compareTo
method should be compatible with the equals method.That is, x.compareTo(y) should
be zero exactly when x.equals(y). Most classes in the Java API that implement
Comparable follow this advice. A notable exception is BigDecimal. Consider x = new
BigDecimal("1.0") and y = new BigDecimal("1.00"). Then x.equals(y) is false because
the numbers differ in precision. But x.compareTo(y) is zero. Ideally, it shouldn’t be,
but there was no obvious way of deciding which one should come first.

Now you saw what a class must do to avail itself of the sorting service—it must

implement a compareTo method. That’s eminently reasonable. There needs to be

some way for the sort method to compare objects. But why can’t the Employee class

simply provide a compareTo method without implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly typed.

When making a method call, the compiler needs to be able to check that the

method actually exists. Somewhere in the sort method will be statements like this:

if (a[i].compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

The compiler must know that a[i] actually has a compareTo method. If a is an array

of Comparable objects, then the existence of the method is assured because every class

that implements the Comparable interface must supply the method.

2916.1 Interfaces

NOTE: You would expect that the sort method in the Arrays class is defined to
accept a Comparable[] array so that the compiler can complain if anyone ever calls
sort with an array whose element type doesn’t implement the Comparable interface.
Sadly, that is not the case. Instead, the sort method accepts an Object[] array
and uses a clumsy cast:

// Approach used in the standard library--not recommended
if (((Comparable) a[i]).compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

If a[i] does not belong to a class that implements the Comparable interface, the
virtual machine throws an exception.

Listing 6.1 presents the full code for sorting an array of instances of the class

Employee (Listing 6.2) for sorting an employee array.

Listing 6.1 interfaces/EmployeeSortTest.java

 1 package interfaces;
 2

 3 import java.util.*;
 4

 5 /**
 6 * This program demonstrates the use of the Comparable interface.
 7 * @version 1.30 2004-02-27
 8 * @author Cay Horstmann
 9 */
10 public class EmployeeSortTest
11 {
12 public static void main(String[] args)
13 {
14 Employee[] staff = new Employee[3];
15

16 staff[0] = new Employee("Harry Hacker", 35000);
17 staff[1] = new Employee("Carl Cracker", 75000);
18 staff[2] = new Employee("Tony Tester", 38000);
19

20 Arrays.sort(staff);
21

22 // print out information about all Employee objects
23 for (Employee e : staff)
24 System.out.println("name=" + e.getName() + ",salary=" + e.getSalary());
25 }
26 }

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes292

Listing 6.2 interfaces/Employee.java

 1 package interfaces;
 2

 3 public class Employee implements Comparable<Employee>
 4 {
 5 private String name;
 6 private double salary;
 7

 8 public Employee(String name, double salary)
 9 {
10 this.name = name;
11 this.salary = salary;
12 }
13

14 public String getName()
15 {
16 return name;
17 }
18

19 public double getSalary()
20 {
21 return salary;
22 }
23

24 public void raiseSalary(double byPercent)
25 {
26 double raise = salary * byPercent / 100;
27 salary += raise;
28 }
29

30 /**
31 * Compares employees by salary
32 * @param other another Employee object
33 * @return a negative value if this employee has a lower salary than
34 * otherObject, 0 if the salaries are the same, a positive value otherwise
35 */
36 public int compareTo(Employee other)
37 {
38 return Double.compare(salary, other.salary);
39 }
40 }

java.lang.Comparable<T> 1.0

• int compareTo(T other)

compares this object with other and returns a negative integer if this object is less

than other, zero if they are equal, and a positive integer otherwise.

2936.1 Interfaces

java.util.Arrays 1.2

• static void sort(Object[] a)

sorts the elements in the array a. All elements in the array must belong to classes

that implement the Comparable interface, and they must all be comparable to each

other.

java.lang.Integer 1.0

• static int compare(int x, int y) 7

returns a negative integer if x < y, zero if x and y are equal, and a positive integer

otherwise.

java.lang.Double 1.0

• static int compare(double x, double y) 1.4

returns a negative integer if x < y, zero if x and y are equal, and a positive integer

otherwise.

NOTE: According to the language standard: “The implementor must ensure
sgn(x.compareTo(y)) = -sgn(y.compareTo(x)) for all x and y. (This implies that
x.compareTo(y) must throw an exception if y.compareTo(x) throws an exception.)”
Here, sgn is the sign of a number: sgn(n) is –1 if n is negative, 0 if n equals 0,
and 1 if n is positive. In plain English, if you flip the parameters of compareTo, the
sign (but not necessarily the actual value) of the result must also flip.

As with the equals method, problems can arise when inheritance comes into play.

Since Manager extends Employee, it implements Comparable<Employee> and not
Comparable<Manager>. If Manager chooses to override compareTo, it must be prepared to
compare managers to employees. It can’t simply cast an employee to a manager:

class Manager extends Employee
{
 public int compareTo(Employee other)
 {
 Manager otherManager = (Manager) other; // NO
 . . .
 }
 . . .
}

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes294

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager, then
the call x.compareTo(y) doesn’t throw an exception—it simply compares x and y
as employees. But the reverse, y.compareTo(x), throws a ClassCastException.

This is the same situation as with the equals method that we discussed in
Chapter 5, and the remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw
comparison of objects that belong to different classes. Each compareTo method
should start out with the test

if (getClass() != other.getClass()) throw new ClassCastException();

If there is a common algorithm for comparing subclass objects, simply provide
a single compareTo method in the superclass and declare it as final.

For example, suppose you want managers to be better than regular employees,
regardless of salary.What about other subclasses such as Executive and Secretary?
If you need to establish a pecking order, supply a method such as rank in the
Employee class. Have each subclass override rank, and implement a single compareTo
method that takes the rank values into account.

6.1.2 Properties of Interfaces
Interfaces are not classes. In particular, you can never use the new operator to

instantiate an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare

interface variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the

interface:

x = new Employee(. . .); // OK provided Employee implements Comparable

Next, just as you use instanceof to check whether an object is of a specific class, you

can use instanceof to check whether an object implements an interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This allows

for multiple chains of interfaces that go from a greater degree of generality to a

greater degree of specialization. For example, suppose you had an interface called

Moveable.

2956.1 Interfaces

public interface Moveable
{
 void move(double x, double y);
}

Then, you could imagine an interface called Powered that extends it:

public interface Powered extends Moveable
{
 double milesPerGallon();
}

Although you cannot put instance fields or static methods in an interface, you

can supply constants in them. For example:

public interface Powered extends Moveable
{
 double milesPerGallon();
 double SPEED_LIMIT = 95; // a public static final constant
}

Just as methods in an interface are automatically public, fields are always public
static final.

NOTE: It is legal to tag interface methods as public, and fields as public static
final. Some programmers do that, either out of habit or for greater clarity. How-
ever, the Java Language Specification recommends that the redundant keywords
not be supplied, and we follow that recommendation.

Some interfaces define just constants and no methods. For example, the standard

library contains an interface SwingConstants that defines constants NORTH, SOUTH, HORIZONTAL,

and so on. Any class that chooses to implement the SwingConstants interface automat-

ically inherits these constants. Its methods can simply refer to NORTH rather than

the more cumbersome SwingConstants.NORTH. However, this use of interfaces seems

rather degenerate, and we do not recommend it.

While each class can have only one superclass, classes can implement multiple

interfaces. This gives you the maximum amount of flexibility in defining a class’s

behavior. For example, the Java programming language has an important interface

built into it, called Cloneable. (We will discuss this interface in detail in Section 6.2.3,

“Object Cloning,” on p. 306.) If your class implements Cloneable, the clone method

in the Object class will make an exact copy of your class’s objects. If you want both

cloneability and comparability, simply implement both interfaces. Use commas

to separate the interfaces that you want to implement:

class Employee implements Cloneable, Comparable

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes296

6.1.3 Interfaces and Abstract Classes
If you read the section about abstract classes in Chapter 5, you may wonder why

the designers of the Java programming language bothered with introducing the

concept of interfaces. Why can’t Comparable simply be an abstract class:

abstract class Comparable // why not?
{
 public abstract int compareTo(Object other);
}

The Employee class would then simply extend this abstract class and supply the

compareTo method:

class Employee extends Comparable // why not?
{
 public int compareTo(Object other) { . . . }
}

There is, unfortunately, a major problem with using an abstract base class to ex-

press a generic property. A class can only extend a single class. Suppose the

Employee class already extends a different class, say, Person. Then it can’t extend a

second class.

class Employee extends Person, Comparable // Error

But each class can implement as many interfaces as it likes:

class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more

than one superclass. This feature is called multiple inheritance. The designers of

Java chose not to support multiple inheritance, because it makes the language

either very complex (as in C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while

avoiding the complexities and inefficiencies.

C++ NOTE: C++ has multiple inheritance and all the complications that come
with it, such as virtual base classes, dominance rules, and transverse pointer
casts. Few C++ programmers use multiple inheritance, and some say it should
never be used. Other programmers recommend using multiple inheritance only
for the “mix-in” style of inheritance. In the mix-in style, a primary base class de-
scribes the parent object, and additional base classes (the so-called mix-ins)
may supply auxiliary characteristics. That style is similar to a Java class with a
single superclass and additional interfaces.

2976.1 Interfaces

6.1.4 Static Methods
As of Java SE 8, you are allowed to add static methods to interfaces. There was

never a technical reason why this should be outlawed. It simply seemed to be

against the spirit of interfaces as abstract specifications.

Up to now, it has been common to place static methods in companion classes. In

the standard library, you find pairs of interfaces and utility classes such as

Collection/Collections or Path/Paths.

Have a look at the Paths class. It only has a couple of factory methods. You can

construct a path to a file or directory from a sequence of strings, such as

Paths.get("jdk1.8.0", "jre", "bin"). In Java SE 8, one could have added this method to

the Path interface:

public interface Path
{
 public static Path get(String first, String... more) {
 return FileSystems.getDefault().getPath(first, more);
 }
 . . .
}

Then the Paths class is no longer necessary.

It is unlikely that the Java library will be refactored in this way, but when you

implement your own interfaces, there is no longer a reason to provide a separate

companion class for utility methods.

6.1.5 Default Methods
You can supply a default implementation for any interface method. You must tag

such a method with the default modifier.

public interface Comparable<T>
{

default int compareTo(T other) { return 0; }
 // By default, all elements are the same
}

Of course, that is not very useful since every realistic implementation of Comparable
would override this method. But there are other situations where default methods

can be useful. For example, as you will see in Chapter 11, if you want to be notified

when a mouse click happens, you are supposed to implement an interface that

has five methods:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes298

public interface MouseListener
{
 void mouseClicked(MouseEvent event);
 void mousePressed(MouseEvent event);
 void mouseReleased(MouseEvent event);
 void mouseEntered(MouseEvent event);
 void mouseExited(MouseEvent event);
}

Most of the time, you only care about one or two of these event types. As of Java

SE 8, you can declare all of the methods as default methods that do nothing.

public interface MouseListener
{
 default void mouseClicked(MouseEvent event) {}
 default void mousePressed(MouseEvent event) {}
 default void mouseReleased(MouseEvent event) {}
 default void mouseEntered(MouseEvent event) {}
 default void mouseExited(MouseEvent event) {}
}

Then programmers who implement this interface only need to override the

listeners for the events they actually care about.

A default method can call other methods. For example, a Collection interface can

define a convenience method

public interface Collection
{
 int size(); // An abstract method
 default boolean isEmpty()
 {
 return size() == 0;
 }
 . . .
}

Then a programmer implementing Collection doesn’t have to worry about

implementing an isEmpty method.

NOTE: In the Java API, you will find a number of interfaces with companion
classes that implement some or all of its methods, such as Collection/
AbstractCollection or MouseListener/MouseAdapter. With Java SE 8, this technique is
obsolete. Just implement the methods in the interface.

An important use for default methods is interface evolution. Consider for example

the Collection interface that has been a part of Java for many years. Suppose that a

long time ago, you provided a class

2996.1 Interfaces

public class Bag implements Collection

Later, in Java SE 8, a stream method was added to the interface.

Suppose the stream method was not a default method. Then the Bag class no longer

compiles since it doesn’t implement the new method. Adding a nondefault method

to an interface is not source compatible.

But suppose you don’t recompile the class and simply use an old JAR file contain-

ing it. The class will still load, even with the missing method. Programs can still

construct Bag instances, and nothing bad will happen. (Adding a method to an

interface is binary compatible.) However, if a program calls the stream method on a

Bag instance, an AbstractMethodError occurs.

Making the method a default method solves both problems. The Bag class will again

compile. And if the class is loaded without being recompiled and the stream method

is invoked on a Bag instance, the Collection.stream method is called.

6.1.6 Resolving Default Method Conflicts
What happens if the exact same method is defined as a default method in one

interface and then again as a method of a superclass or another interface? Lan-

guages such as Scala and C++ have complex rules for resolving such ambiguities.

Fortunately, the rules in Java are much simpler. Here they are:

1. Superclasses win. If a superclass provides a concrete method, default methods

with the same name and parameter types are simply ignored.

2. Interfaces clash. If a superinterface provides a default method, and another

interface supplies a method with the same name and parameter types (default

or not), then you must resolve the conflict by overriding that method.

Let’s look at the second rule. Consider another interface with a getName method:

interface Named
{
 default String getName() { return getClass().getName() + "_" + hashCode(); }
}

What happens if you form a class that implements both of them?

class Student implements Person, Named
{
 . . .
}

The class inherits two inconsistent getName methods provided by the Person and Named
interfaces. Instead of choosing one over the other, the Java compiler reports an

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes300

error and leaves it up to the programmer to resolve the ambiguity. Simply provide

a getName method in the Student class. In that method, you can choose one of the two

conflicting methods, like this:

class Student implements Person, Named
{
 public String getName() { return Person.super.getName(); }
 . . .
}

Now assume that the Named interface does not provide a default implementation

for getName:

interface Named
{
 String getName();
}

Can the Student class inherit the default method from the Person interface? This

might be reasonable, but the Java designers decided in favor of uniformity. It

doesn’t matter how two interfaces conflict. If at least one interface provides an

implementation, the compiler reports an error, and the programmer must resolve

the ambiguity.

NOTE: Of course, if neither interface provides a default for a shared method,
then we are in the situation before Java SE 8, and there is no conflict. An imple-
menting class has two choices: implement the method, or leave it unimplemented.
In the latter case, the class is itself abstract.

We just discussed name clashes between two interfaces. Now consider a class

that extends a superclass and implements an interface, inheriting the same method

from both. For example, suppose that Person is a class and Student is defined as

class Student extends Person implements Named { . . . }

In that case, only the superclass method matters, and any default method from

the interface is simply ignored. In our example, Student inherits the getName method

from Person, and it doesn’t make any difference whether the Named interface provides

a default for getName or not. This is the “class wins” rule.

The “class wins” rule ensures compatibility with Java SE 7. If you add default

methods to an interface, it has no effect on code that worked before there were

default methods.

3016.1 Interfaces

CAUTION: You can never make a default method that redefines one of the
methods in the Object class. For example, you can’t define a default method for
toString or equals, even though that might be attractive for interfaces such as List.
As a consequence of the “classes win” rule, such a method could never win
against Object.toString or Objects.equals.

6.2 Examples of Interfaces
In the next three sections, we give additional examples of interfaces so you can

see how they are used in practice.

6.2.1 Interfaces and Callbacks
A common pattern in programming is the callback pattern. In this pattern, you

specify the action that should occur whenever a particular event happens. For

example, you may want a particular action to occur when a button is clicked or

a menu item is selected. However, as you have not yet seen how to implement

user interfaces, we will consider a similar but simpler situation.

The javax.swing package contains a Timer class that is useful if you want to be notified

whenever a time interval has elapsed. For example, if a part of your program

contains a clock, you can ask to be notified every second so that you can update

the clock face.

When you construct a timer, you set the time interval and you tell it what it should

do whenever the time interval has elapsed.

How do you tell the timer what it should do? In many programming languages,

you supply the name of a function that the timer should call periodically. How-

ever, the classes in the Java standard library take an object-oriented approach.

You pass an object of some class. The timer then calls one of the methods on that

object. Passing an object is more flexible than passing a function because the object

can carry additional information.

Of course, the timer needs to know what method to call. The timer requires that

you specify an object of a class that implements the ActionListener interface of the

java.awt.event package. Here is that interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has expired.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes302

Suppose you want to print a message “At the tone, the time is . . .”, followed by

a beep, once every 10 seconds. You would define a class that implements the

ActionListener interface. You would then place whatever statements you want to

have executed inside the actionPerformed method.

class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is " + new Date());
 Toolkit.getDefaultToolkit().beep();
 }
}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives

information about the event, such as the source object that generated it—see

Chapter 11 for more information. However, detailed information about the event

is not important in this program, and you can safely ignore the parameter.

Next, you construct an object of this class and pass it to the Timer constructor.

ActionListener listener = new TimePrinter();
Timer t = new Timer(10000, listener);

The first parameter of the Timer constructor is the time interval that must elapse

between notifications, measured in milliseconds. We want to be notified every

10 seconds. The second parameter is the listener object.

Finally, you start the timer.

t.start();

Every 10 seconds, a message like

At the tone, the time is Wed Apr 13 23:29:08 PDT 2016

is displayed, followed by a beep.

Listing 6.3 puts the timer and its action listener to work. After the timer is started,

the program puts up a message dialog and waits for the user to click the OK

button to stop. While the program waits for the user, the current time is displayed

at 10-second intervals.

Be patient when running the program. The “Quit program?” dialog box appears

right away, but the first timer message is displayed after 10 seconds.

Note that the program imports the javax.swing.Timer class by name, in addition to

importing javax.swing.* and java.util.*. This breaks the ambiguity between

javax.swing.Timer and java.util.Timer, an unrelated class for scheduling background

tasks.

3036.2 Examples of Interfaces

Listing 6.3 timer/TimerTest.java

 1 package timer;
 2

 3 /**
 4 @version 1.01 2015-05-12
 5 @author Cay Horstmann
 6 */
 7

 8 import java.awt.*;
 9 import java.awt.event.*;
10 import java.util.*;
11 import javax.swing.*;
12 import javax.swing.Timer;
13 // to resolve conflict with java.util.Timer
14

15 public class TimerTest
16 {
17 public static void main(String[] args)
18 {
19 ActionListener listener = new TimePrinter();
20

21 // construct a timer that calls the listener
22 // once every 10 seconds
23 Timer t = new Timer(10000, listener);
24 t.start();
25

26 JOptionPane.showMessageDialog(null, "Quit program?");
27 System.exit(0);
28 }
29 }
30

31 class TimePrinter implements ActionListener
32 {
33 public void actionPerformed(ActionEvent event)
34 {
35 System.out.println("At the tone, the time is " + new Date());
36 Toolkit.getDefaultToolkit().beep();
37 }
38 }

javax.swing.JOptionPane 1.2

• static void showMessageDialog(Component parent, Object message)

displays a dialog box with a message prompt and an OK button. The dialog is

centered over the parent component. If parent is null, the dialog is centered on the

screen.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes304

javax.swing.Timer 1.2

• Timer(int interval, ActionListener listener)

constructs a timer that notifies listener whenever interval milliseconds have elapsed.

• void start()

starts the timer. Once started, the timer calls actionPerformed on its listeners.

• void stop()

stops the timer. Once stopped, the timer no longer calls actionPerformed on its listeners.

java.awt.Toolkit 1.0

• static Toolkit getDefaultToolkit()

gets the default toolkit. A toolkit contains information about the GUI environment.

• void beep()

emits a beep sound.

6.2.2 The Comparator Interface
In Section 6.1.1, “The Interface Concept,” on p. 288, you have seen how you can

sort an array of objects, provided they are instances of classes that implement the

Comparable interface. For example, you can sort an array of strings since the String
class implements Comparable<String>, and the String.compareTo method compares strings

in dictionary order.

Now suppose we want to sort strings by increasing length, not in dictionary order.

We can’t have the String class implement the compareTo method in two ways—and

at any rate, the String class isn’t ours to modify.

To deal with this situation, there is a second version of the Arrays.sort method

whose parameters are an array and a comparator—an instance of a class that

implements the Comparator interface.

public interface Comparator<T>
{
 int compare(T first, T second);
}

To compare strings by length, define a class that implements Comparator<String>:

3056.2 Examples of Interfaces

class LengthComparator implements Comparator<String>
{
 public int compare(String first, String second) {
 return first.length() - second.length();
 }
}

To actually do the comparison, you need to make an instance:

Comparator<String> comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) . . .

Contrast this call with words[i].compareTo(words[j]). The compare method is called on

the comparator object, not the string itself.

NOTE: Even though the LengthComparator object has no state, you still need to
make an instance of it.You need the instance to call the compare method—it is
not a static method.

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul", "Peter"].

You will see in Section 6.3, “Lambda Expressions,” on p. 314 how to use a Comparator
much more easily with a lambda expression.

6.2.3 Object Cloning
In this section, we discuss the Cloneable interface that indicates that a class has

provided a safe clone method. Since cloning is not all that common, and the details

are quite technical, you may just want to glance at this material until you need it.

To understand what cloning means, recall what happens when you make a copy

of a variable holding an object reference. The original and the copy are references

to the same object (see Figure 6.1). This means a change to either variable also

affects the other.

Employee original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

If you would like copy to be a new object that begins its life being identical to original
but whose state can diverge over time, use the clone method.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes306

Figure 6.1 Copying and cloning

Employee copy = original.clone();
copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which

means that your code cannot simply call it. Only the Employee class can clone Employee
objects. There is a reason for this restriction. Think about the way in which the

Object class can implement clone. It knows nothing about the object at all, so it can

make only a field-by-field copy. If all data fields in the object are numbers or

other basic types, copying the fields is just fine. But if the object contains references

to subobjects, then copying the field gives you another reference to the same

subobject, so the original and the cloned objects still share some information.

3076.2 Examples of Interfaces

To visualize that, consider the Employee class that was introduced in Chapter 4.

Figure 6.2 shows what happens when you use the clone method of the Object class

to clone such an Employee object. As you can see, the default cloning operation is

“shallow”—it doesn’t clone objects that are referenced inside other objects. (The

figure shows a shared Date object. For reasons that will become clear shortly, this

example uses a version of the Employee class in which the hire day is represented

as a Date.)

Figure 6.2 A shallow copy

Does it matter if the copy is shallow? It depends. If the subobject shared between

the original and the shallow clone is immutable, then the sharing is safe. This cer-

tainly happens if the subobject belongs to an immutable class, such as String. Al-

ternatively, the subobject may simply remain constant throughout the lifetime of

the object, with no mutators touching it and no methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine the

clone method to make a deep copy that clones the subobjects as well. In our example,

the hireDay field is a Date, which is mutable, so it too must be cloned. (For that reason,

this example uses a field of type Date, not LocalDate, to demonstrate the cloning

process. Had hireDay been an instance of the immutable LocalDate class, no further

action would have been required.)

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes308

For every class, you need to decide whether

1. The default clone method is good enough;

2. The default clone method can be patched up by calling clone on the mutable

subobjects; and

3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second

option, a class must

1. Implement the Cloneable interface; and

2. Redefine the clone method with the public access modifier.

NOTE: The clone method is declared protected in the Object class, so that your
code can’t simply call anObject.clone(). But aren’t protected methods accessible
from any subclass, and isn’t every class a subclass of Object? Fortunately, the
rules for protected access are more subtle (see Chapter 5). A subclass can call
a protected clone method only to clone its own objects.You must redefine clone
to be public to allow objects to be cloned by any method.

In this case, the appearance of the Cloneable interface has nothing to do with the

normal use of interfaces. In particular, it does not specify the clone method—that

method is inherited from the Object class. The interface merely serves as a tag, in-

dicating that the class designer understands the cloning process. Objects are so

paranoid about cloning that they generate a checked exception if an object requests

cloning but does not implement that interface.

NOTE: The Cloneable interface is one of a handful of tagging interfaces that Java
provides. (Some programmers call them marker interfaces.) Recall that the
usual purpose of an interface such as Comparable is to ensure that a class imple-
ments a particular method or set of methods.A tagging interface has no methods;
its only purpose is to allow the use of instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

We recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you

still need to implement the Cloneable interface, redefine clone to be public, and call

super.clone(). Here is an example:

3096.2 Examples of Interfaces

class Employee implements Cloneable
{
 // raise visibility level to public, change return type

public Employee clone() throws CloneNotSupportedException
 {
 return (Employee) super.clone();
 }
 . . .
}

NOTE: Up to Java SE 1.4, the clone method always had return type Object.
Nowadays, you can specify the correct return type for your clone methods. This
is an example of covariant return types (see Chapter 5).

The clone method that you just saw adds no functionality to the shallow copy

provided by Object.clone. It merely makes the method public. To make a deep

copy, you have to work harder and clone the mutable instance fields.

Here is an example of a clone method that creates a deep copy:

class Employee implements Cloneable
{
 . . .
 public Employee clone() throws CloneNotSupportedException
 {
 // call Object.clone()
 Employee cloned = (Employee) super.clone();

 // clone mutable fields
 cloned.hireDay = (Date) hireDay.clone();

 return cloned;
 }
}

The clone method of the Object class threatens to throw a CloneNotSupportedException—it

does that whenever clone is invoked on an object whose class does not implement

the Cloneable interface. Of course, the Employee and Date classes implement the Cloneable
interface, so the exception won’t be thrown. However, the compiler does not

know that. Therefore, we declared the exception:

public Employee clone() throws CloneNotSupportedException

Would it be better to catch the exception instead?

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes310

public Employee clone()
{
 try
 {
 Employee cloned = (Employee) super.clone();
 . . .
 }
 catch (CloneNotSupportedException e) { return null; }
 // this won't happen, since we are Cloneable
}

This is appropriate for final classes. Otherwise, it is a good idea to leave the

throws specifier in place. That gives subclasses the option of throwing a

CloneNotSupportedException if they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you have

defined the clone method for the Employee class, anyone can use it to clone Manager
objects. Can the Employee clone method do the job? It depends on the fields of the

Manager class. In our case, there is no problem because the bonus field has primitive

type. But Manager might have acquired fields that require a deep copy or are not

cloneable. There is no guarantee that the implementor of the subclass has fixed

clone to do the right thing. For that reason, the clone method is declared as protected
in the Object class. But you don’t have that luxury if you want users of your classes

to invoke clone.

Should you implement clone in your own classes? If your clients need to make

deep copies, then you probably should. Some authors feel that you should avoid

clone altogether and instead implement another method for the same purpose.

We agree that clone is rather awkward, but you’ll run into the same issues if you

shift the responsibility to another method. At any rate, cloning is less common

than you may think. Less than 5 percent of the classes in the standard library

implement clone.

The program in Listing 6.4 clones an instance of the class Employee (Listing 6.5),

then invokes two mutators. The raiseSalary method changes the value of the salary
field, whereas the setHireDay method changes the state of the hireDay field. Neither

mutation affects the original object because clone has been defined to make a

deep copy.

NOTE: All array types have a clone method that is public, not protected.You can
use it to make a new array that contains copies of all elements. For example:

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
int[] cloned = luckyNumbers.clone();
cloned[5] = 12; // doesn't change luckyNumbers[5]

3116.2 Examples of Interfaces

NOTE: Chapter 2 of Volume II shows an alternate mechanism for cloning objects,
using the object serialization feature of Java. That mechanism is easy to
implement and safe, but not very efficient.

Listing 6.4 clone/CloneTest.java

 1 package clone;
 2

 3 /**
 4 * This program demonstrates cloning.
 5 * @version 1.10 2002-07-01
 6 * @author Cay Horstmann
 7 */
 8 public class CloneTest
 9 {
10 public static void main(String[] args)
11 {
12 try
13 {
14 Employee original = new Employee("John Q. Public", 50000);
15 original.setHireDay(2000, 1, 1);
16 Employee copy = original.clone();
17 copy.raiseSalary(10);
18 copy.setHireDay(2002, 12, 31);
19 System.out.println("original=" + original);
20 System.out.println("copy=" + copy);
21 }
22 catch (CloneNotSupportedException e)
23 {
24 e.printStackTrace();
25 }
26 }
27 }

Listing 6.5 clone/Employee.java

 1 package clone;
 2

 3 import java.util.Date;
 4 import java.util.GregorianCalendar;
 5

 6 public class Employee implements Cloneable
 7 {

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes312

 8 private String name;
 9 private double salary;
10 private Date hireDay;
11

12 public Employee(String name, double salary)
13 {
14 this.name = name;
15 this.salary = salary;
16 hireDay = new Date();
17 }
18

19 public Employee clone() throws CloneNotSupportedException
20 {
21 // call Object.clone()
22 Employee cloned = (Employee) super.clone();
23

24 // clone mutable fields
25 cloned.hireDay = (Date) hireDay.clone();
26

27 return cloned;
28 }
29

30 /**
31 * Set the hire day to a given date.
32 * @param year the year of the hire day
33 * @param month the month of the hire day
34 * @param day the day of the hire day
35 */
36 public void setHireDay(int year, int month, int day)
37 {
38 Date newHireDay = new GregorianCalendar(year, month - 1, day).getTime();
39

40 // Example of instance field mutation
41 hireDay.setTime(newHireDay.getTime());
42 }
43

44 public void raiseSalary(double byPercent)
45 {
46 double raise = salary * byPercent / 100;
47 salary += raise;
48 }
49

50 public String toString()
51 {
52 return "Employee[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay + "]";
53 }
54 }

3136.2 Examples of Interfaces

6.3 Lambda Expressions
Now you are ready to learn about lambda expressions, the most exciting change

to the Java language in many years. You will see how to use lambda expressions

for defining blocks of code with a concise syntax, and how to write code that

consumes lambda expressions.

6.3.1 Why Lambdas?
A lambda expression is a block of code that you can pass around so it can be exe-

cuted later, once or multiple times. Before getting into the syntax (or even the

curious name), let’s step back and observe where we have used such code blocks

in Java.

In Section 6.2.1, “Interfaces and Callbacks,” on p. 302, you saw how to do work

in timed intervals. Put the work into the actionPerformed method of an ActionListener:

class Worker implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 // do some work
 }
}

Then, when you want to repeatedly execute this code, you construct an instance

of the Worker class. You then submit the instance to a Timer object.

The key point is that the actionPerformed method contains code that you want to

execute later.

Or consider sorting with a custom comparator. If you want to sort strings by

length instead of the default dictionary order, you can pass a Comparator object to

the sort method:

class LengthComparator implements Comparator<String>
{
 public int compare(String first, String second)
 {
 return first.length() - second.length();
 }
}
. . .
Arrays.sort(strings, new LengthComparator());

The compare method isn’t called right away. Instead, the sort method keeps calling the

compare method, rearranging the elements if they are out of order, until the array

is sorted. You give the sort method a snippet of code needed to compare elements,

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes314

and that code is integrated into the rest of the sorting logic, which you’d probably

not care to reimplement.

Both examples have something in common. A block of code was passed to

someone—a timer, or a sort method. That code block was called at some later time.

Up to now, giving someone a block of code hasn’t been easy in Java. You couldn’t

just pass code blocks around. Java is an object-oriented language, so you had to

construct an object belonging to a class that has a method with the desired code.

In other languages, it is possible to work with blocks of code directly. The Java

designers have resisted adding this feature for a long time. After all, a great

strength of Java is its simplicity and consistency. A language can become an un-

maintainable mess if it includes every feature that yields marginally more concise

code. However, in those other languages it isn’t just easier to spawn a thread or

to register a button click handler; large swaths of their APIs are simpler, more

consistent, and more powerful. In Java, one could have written similar APIs that

take objects of classes implementing a particular function, but such APIs would

be unpleasant to use.

For some time now, the question was not whether to augment Java for functional

programming, but how to do it. It took several years of experimentation before

a design emerged that is a good fit for Java. In the next section, you will see how

you can work with blocks of code in Java SE 8.

6.3.2 The Syntax of Lambda Expressions
Consider again the sorting example from the preceding section. We pass code

that checks whether one string is shorter than another. We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed language,

and we must specify that as well:

(String first, String second)
 -> first.length() - second.length()

You have just seen your first lambda expression. Such an expression is simply a

block of code, together with the specification of any variables that must be passed

to the code.

Why the name? Many years ago, before there were any computers, the logician

Alonzo Church wanted to formalize what it means for a mathematical function

to be effectively computable. (Curiously, there are functions that are known to

exist, but nobody knows how to compute their values.) He used the Greek letter

3156.3 Lambda Expressions

lambda (λ) to mark parameters. Had he known about the Java API, he would

have written

λfirst.λsecond.first.length() - second.length()

NOTE: Why the letter λ? Did Church run out of other letters of the alphabet?
Actually, the venerable Principia Mathematica used the ^ accent to denote free
variables, which inspired Church to use an uppercase lambda Λ for parameters.
But in the end, he switched to the lowercase version. Ever since, an expression
with parameter variables has been called a lambda expression.

You have just seen one form of lambda expressions in Java: parameters, the ->
arrow, and an expression. If the code carries out a computation that doesn’t fit

in a single expression, write it exactly like you would have written a method:

enclosed in {} and with explicit return statements. For example,

(String first, String second) ->
 {
 if (first.length() < second.length()) return -1;
 else if (first.length() > second.length()) return 1;
 else return 0;
 }

If a lambda expression has no parameters, you still supply empty parentheses,

just as with a parameterless method:

() -> { for (int i = 100; i >= 0; i--) System.out.println(i); }

If the parameter types of a lambda expression can be inferred, you can omit them.

For example,

Comparator<String> comp
 = (first, second) // Same as (String first, String second)
 -> first.length() - second.length();

Here, the compiler can deduce that first and second must be strings because the

lambda expression is assigned to a string comparator. (We will have a closer look

at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the

parentheses:

ActionListener listener = event ->
 System.out.println("The time is " + new Date()");
 // Instead of (event) -> . . . or (ActionEvent event) -> . . .

You never specify the result type of a lambda expression. It is always inferred

from context. For example, the expression

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes316

(String first, String second) -> first.length() - second.length()

can be used in a context where a result of type int is expected.

NOTE: It is illegal for a lambda expression to return a value in some branches
but not in others. For example, (int x) -> { if (x >= 0) return 1; } is invalid.

The program in Listing 6.6 shows how to use lambda expressions for a comparator

and an action listener.

Listing 6.6 lambda/LambdaTest.java

 1 package lambda;
 2

 3 import java.util.*;
 4

 5 import javax.swing.*;
 6 import javax.swing.Timer;
 7

 8 /**
 9 * This program demonstrates the use of lambda expressions.
10 * @version 1.0 2015-05-12
11 * @author Cay Horstmann
12 */
13 public class LambdaTest
14 {
15 public static void main(String[] args)
16 {
17 String[] planets = new String[] { "Mercury", "Venus", "Earth", "Mars",
18 "Jupiter", "Saturn", "Uranus", "Neptune" };
19 System.out.println(Arrays.toString(planets));
20 System.out.println("Sorted in dictionary order:");
21 Arrays.sort(planets);
22 System.out.println(Arrays.toString(planets));
23 System.out.println("Sorted by length:");
24 Arrays.sort(planets, (first, second) -> first.length() - second.length());
25 System.out.println(Arrays.toString(planets));
26

27 Timer t = new Timer(1000, event ->
28 System.out.println("The time is " + new Date()));
29 t.start();
30

31 // keep program running until user selects "Ok"
32 JOptionPane.showMessageDialog(null, "Quit program?");
33 System.exit(0);
34 }
35 }

3176.3 Lambda Expressions

6.3.3 Functional Interfaces
As we discussed, there are many existing interfaces in Java that encapsulate blocks

of code, such as ActionListener or Comparator. Lambdas are compatible with these

interfaces.

You can supply a lambda expression whenever an object of an interface with a

single abstract method is expected. Such an interface is called a functional interface.

NOTE: You may wonder why a functional interface must have a single abstract
method. Aren’t all methods in an interface abstract? Actually, it has always been
possible for an interface to redeclare methods from the Object class such as
toString or clone, and these declarations do not make the methods abstract.
(Some interfaces in the Java API redeclare Object methods in order to attach
javadoc comments. Check out the ComparatorAPI for an example.) More impor-
tantly, as you saw in Section 6.1.5, “Default Methods,” on p. 298, in Java SE 8,
interfaces can declare nonabstract methods.

To demonstrate the conversion to a functional interface, consider the Arrays.sort
method. Its second parameter requires an instance of Comparator, an interface with

a single method. Simply supply a lambda:

Arrays.sort(words,
 (first, second) -> first.length() - second.length());

Behind the scenes, the Arrays.sort method receives an object of some class that im-

plements Comparator<String>. Invoking the compare method on that object executes the

body of the lambda expression. The management of these objects and classes is

completely implementation dependent, and it can be much more efficient than

using traditional inner classes. It is best to think of a lambda expression as a

function, not an object, and to accept that it can be passed to a functional interface.

This conversion to interfaces is what makes lambda expressions so compelling.

The syntax is short and simple. Here is another example:

Timer t = new Timer(1000, event ->
 {
 System.out.println("At the tone, the time is " + new Date());
 Toolkit.getDefaultToolkit().beep();
 });

That’s a lot easier to read than the alternative with a class that implements the

ActionListener interface.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes318

In fact, conversion to a functional interface is the only thing that you can do with

a lambda expression in Java. In other programming languages that support

function literals, you can declare function types such as (String, String) -> int, declare

variables of those types, and use the variables to save function expressions.

However, the Java designers decided to stick with the familiar concept of interfaces

instead of adding function types to the language.

NOTE: You can’t even assign a lambda expression to a variable of type
Object—Object is not a functional interface.

The Java API defines a number of very generic functional interfaces in the

java.util.function package. One of the interfaces, BiFunction<T, U, R>, describes functions

with parameter types T and U and return type R. You can save our string

comparison lambda in a variable of that type:

BiFunction<String, String, Integer> comp
 = (first, second) -> first.length() - second.length();

However, that does not help you with sorting. There is no Arrays.sort method that

wants a BiFunction. If you have used a functional programming language before,

you may find this curious. But for Java programmers, it’s pretty natural. An inter-

face such as Comparator has a specific purpose, not just a method with given param-

eter and return types. Java SE 8 retains this flavor. When you want to do something

with lambda expressions, you still want to keep the purpose of the expression in

mind, and have a specific functional interface for it.

A particularly useful interface in the java.util.function package is Predicate:

public interface Predicate<T>
{
 boolean test(T t);
 // Additional default and static methods
}

The ArrayList class has a removeIf method whose parameter is a Predicate. It is specifi-

cally designed to pass a lambda expression. For example, the following statement

removes all null values from an array list:

list.removeIf(e -> e == null);

6.3.4 Method References
Sometimes, there is already a method that carries out exactly the action that you’d

like to pass on to some other code. For example, suppose you simply want to

print the event object whenever a timer event occurs. Of course, you could call

3196.3 Lambda Expressions

Timer t = new Timer(1000, event -> System.out.println(event));

It would be nicer if you could just pass the println method to the Timer constructor.

Here is how you do that:

Timer t = new Timer(1000, System.out::println);

The expression System.out::println is a method reference that is equivalent to the

lambda expression x -> System.out.println(x).

As another example, suppose you want to sort strings regardless of letter case.

You can pass this method expression:

Arrays.sort(strings, String::compareToIgnoreCase)

As you can see from these examples, the :: operator separates the method name

from the name of an object or class. There are three principal cases:

• object::instanceMethod

• Class::staticMethod

• Class::instanceMethod

In the first two cases, the method reference is equivalent to a lambda expression

that supplies the parameters of the method. As already mentioned, System.out::println
is equivalent to x -> System.out.println(x). Similarly, Math::pow is equivalent to (x, y) ->
Math.pow(x, y).

In the third case, the first parameter becomes the target of the method. For

example, String::compareToIgnoreCase is the same as (x, y) -> x.compareToIgnoreCase(y).

NOTE: When there are multiple overloaded methods with the same name, the
compiler will try to find from the context which one you mean. For example, there
are two versions of the Math.max method, one for integers and one for double values.
Which one gets picked depends on the method parameters of the functional in-
terface to which Math::max is converted. Just like lambda expressions, method
references don’t live in isolation. They are always turned into instances of
functional interfaces.

You can capture the this parameter in a method reference. For example, this::equals
is the same as x -> this.equals(x). It is also valid to use super. The method expression

super::instanceMethod

uses this as the target and invokes the superclass version of the given method.

Here is an artificial example that shows the mechanics:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes320

class Greeter
{
 public void greet()
 {
 System.out.println("Hello, world!");
 }
}

class TimedGreeter extends Greeter
{
 public void greet()
 {
 Timer t = new Timer(1000, super::greet);
 t.start();
 }
}

When the TimedGreeter.greet method starts, a Timer is constructed that executes the

super::greet method on every timer tick. That method calls the greet method of

the superclass.

6.3.5 Constructor References
Constructor references are just like method references, except that the name of

the method is new. For example, Person::new is a reference to a Person constructor.

Which constructor? It depends on the context. Suppose you have a list of strings.

Then you can turn it into an array of Person objects, by calling the constructor on

each of the strings, with the following invocation:

ArrayList<String> names = . . .;
Stream<Person> stream = names.stream().map(Person::new);
List<Person> people = stream.collect(Collectors.toList());

We will discuss the details of the stream, map, and collect methods in Chapter 1 of

Volume II. For now, what’s important is that the map method calls the Person(String)
constructor for each list element. If there are multiple Person constructors, the

compiler picks the one with a String parameter because it infers from the context

that the constructor is called with a string.

You can form constructor references with array types. For example, int[]::new
is a constructor reference with one parameter: the length of the array. It is

equivalent to the lambda expression x -> new int[x].

Array constructor references are useful to overcome a limitation of Java. It is not

possible to construct an array of a generic type T. The expression new T[n] is an error

since it would be erased to new Object[n]. That is a problem for library authors. For

example, suppose we want to have an array of Person objects. The Stream interface

has a toArray method that returns an Object array:

3216.3 Lambda Expressions

Object[] people = stream.toArray();

But that is unsatisfactory. The user wants an array of references to Person, not ref-

erences to Object. The stream library solves that problem with constructor

references. Pass Person[]::new to the toArray method:

Person[] people = stream.toArray(Person[]::new);

The toArray method invokes this constructor to obtain an array of the correct

type. Then it fills and returns the array.

6.3.6 Variable Scope
Often, you want to be able to access variables from an enclosing method or class

in a lambda expression. Consider this example:

public static void repeatMessage(String text, int delay)
{
 ActionListener listener = event ->
 {
 System.out.println(text);
 Toolkit.getDefaultToolkit().beep();
 };
 new Timer(delay, listener).start();
}

Consider a call

repeatMessage("Hello", 1000); // Prints Hello every 1,000 milliseconds

Now look at the variable text inside the lambda expression. Note that this variable

is not defined in the lambda expression. Instead, it is a parameter variable of the

repeatMessage method.

If you think about it, something nonobvious is going on here. The code of the

lambda expression may run long after the call to repeatMessage has returned and

the parameter variables are gone. How does the text variable stay around?

To understand what is happening, we need to refine our understanding of a

lambda expression. A lambda expression has three ingredients:

1. A block of code

2. Parameters

3. Values for the free variables, that is, the variables that are not parameters and

not defined inside the code

In our example, the lambda expression has one free variable, text. The data

structure representing the lambda expression must store the values for the free

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes322

variables, in our case, the string "Hello". We say that such values have been captured

by the lambda expression. (It’s an implementation detail how that is done. For

example, one can translate a lambda expression into an object with a single

method, so that the values of the free variables are copied into instance variables

of that object.)

NOTE: The technical term for a block of code together with the values of the
free variables is a closure. If someone gloats that their language has closures,
rest assured that Java has them as well. In Java, lambda expressions are
closures.

As you have seen, a lambda expression can capture the value of a variable

in the enclosing scope. In Java, to ensure that the captured value is well-defined,

there is an important restriction. In a lambda expression, you can only reference

variables whose value doesn’t change. For example, the following is illegal:

public static void countDown(int start, int delay)
{
 ActionListener listener = event ->
 {
 start--; // Error: Can't mutate captured variable
 System.out.println(start);
 };
 new Timer(delay, listener).start();
}

There is a reason for this restriction. Mutating variables in a lambda expression

is not safe when multiple actions are executed concurrently. This won’t happen

for the kinds of actions that we have seen so far, but in general, it is a serious

problem. See Chapter 14 for more information on this important issue.

It is also illegal to refer to variable in a lambda expression that is mutated outside.

For example, the following is illegal:

public static void repeat(String text, int count)
{
 for (int i = 1; i <= count; i++)
 {
 ActionListener listener = event ->
 {
 System.out.println(i + ": " + text);
 // Error: Cannot refer to changing i
 };
 new Timer(1000, listener).start();
 }
}

3236.3 Lambda Expressions

The rule is that any captured variable in a lambda expression must be effectively

final. An effectively final variable is a variable that is never assigned a new value

after it has been initialized. In our case, text always refers to the same String object,

and it is OK to capture it. However, the value of i is mutated, and therefore i
cannot be captured.

The body of a lambda expression has the same scope as a nested block. The same

rules for name conflicts and shadowing apply. It is illegal to declare a parameter

or a local variable in the lambda that has the same name as a local variable.

Path first = Paths.get("/usr/bin");
Comparator<String> comp =
 (first, second) -> first.length() - second.length();
 // Error: Variable first already defined

Inside a method, you can’t have two local variables with the same name, and

therefore, you can’t introduce such variables in a lambda expression either.

When you use the this keyword in a lambda expression, you refer to the this
parameter of the method that creates the lambda. For example, consider

public class Application()
{
 public void init()
 {
 ActionListener listener = event ->
 {
 System.out.println(this.toString());
 . . .
 }
 . . .
 }
}

The expression this.toString() calls the toString method of the Application object, not

the ActionListener instance. There is nothing special about the use of this in a lambda

expression. The scope of the lambda expression is nested inside the init method,

and this has the same meaning anywhere in that method.

6.3.7 Processing Lambda Expressions
Up to now, you have seen how to produce lambda expressions and pass them to

a method that expects a functional interface. Now let us see how to write methods

that can consume lambda expressions.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes324

The point of using lambdas is deferred execution. After all, if you wanted to execute

some code right now, you’d do that, without wrapping it inside a lambda. There

are many reasons for executing code later, such as:

• Running the code in a separate thread

• Running the code multiple times

• Running the code at the right point in an algorithm (for example, the

comparison operation in sorting)

• Running the code when something happens (a button was clicked, data has

arrived, and so on)

• Running the code only when necessary

Let’s look at a simple example. Suppose you want to repeat an action n times.

The action and the count are passed to a repeat method:

repeat(10, () -> System.out.println("Hello, World!"));

To accept the lambda, we need to pick (or, in rare cases, provide) a functional

interface. Table 6.1 lists the most important functional interfaces that are provided

in the Java API. In this case, we can use the Runnable interface:

public static void repeat(int n, Runnable action)
{
 for (int i = 0; i < n; i++) action.run();
}

Note that the body of the lambda expression is executed when action.run() is called.

Now let’s make this example a bit more sophisticated. We want to tell the action

in which iteration it occurs. For that, we need to pick a functional interface that

has a method with an int parameter and a void return. The standard interface for

processing int values is

public interface IntConsumer
{
 void accept(int value);
}

Here is the improved version of the repeat method:

public static void repeat(int n, IntConsumer action)
{
 for (int i = 0; i < n; i++) action.accept(i);
}

3256.3 Lambda Expressions

And here is how you call it:

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

Table 6.1 Common Functional Interfaces

Other
Methods

DescriptionAbstract
Method
Name

Return
Type

Parameter
Types

Functional Interface

Runs an action

without

arguments or

return value

runvoidnoneRunnable

Supplies a value of

type T
getTnoneSupplier<T>

andThenConsumes a value

of type T
acceptvoidTConsumer<T>

andThenConsumes values

of types T and U
acceptvoidT, UBiConsumer<T, U>

compose,

andThen,

identity

A function with

argument of type T
applyRTFunction<T, R>

andThenA function with

arguments of

types T and U

applyRT, UBiFunction<T, U, R>

compose,

andThen,

identity

A unary operator

on the type T
applyTTUnaryOperator<T>

andThen,

maxBy,

minBy

A binary operator

on the type T
applyTT, TBinaryOperator<T>

and, or,

negate,

isEqual

A boolean-valued

function

testbooleanTPredicate<T>

and, or,

negate
A boolean-valued

function with two

arguments

testbooleanT, UBiPredicate<T, U>

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes326

Table 6.2 lists the 34 available specializations for primitive types int, long, and

double. It is a good idea to use these specializations to reduce autoboxing. For

that reason, I used an IntConsumer instead of a Consumer<Integer> in the example of the

preceding section.

Table 6.2 Functional Interfaces for Primitive Types
p, q is int, long, double; P, Q is Int, Long, Double

Abstract Method NameReturn TypeParameter TypesFunctional Interface

getAsBooleanbooleannoneBooleanSupplier

getAsPpnonePSupplier

acceptvoidpPConsumer

acceptvoidT, pObjPConsumer<T>

applyTpPFunction<T>

applyAsQqpPToQFunction

applyAsPpTToPFunction<T>

applyAsPpT, UToPBiFunction<T, U>

applyAsPppPUnaryOperator

applyAsPpp, pPBinaryOperator

testbooleanpPPredicate

TIP: It is a good idea to use an interface from Tables 6.1 or 6.2 whenever you
can. For example, suppose you write a method to process files that match a
certain criterion. There is a legacy interface java.io.FileFilter, but it is better to
use the standard Predicate<File>. The only reason not to do so would be if you
already have many useful methods producing FileFilter instances.

NOTE: Most of the standard functional interfaces have nonabstract methods for
producing or combining functions. For example, Predicate.isEqual(a) is the same
as a::equals, but it also works if a is null.There are default methods and, or, negate
for combining predicates. For example, Predicate.isEqual(a).or(Predicate.isEqual(b))
is the same as x -> a.equals(x) || b.equals(x).

3276.3 Lambda Expressions

NOTE: If you design your own interface with a single abstract method, you can
tag it with the @FunctionalInterface annotation. This has two advantages. The
compiler gives an error message if you accidentally add another nonabstract
method. And the javadoc page includes a statement that your interface is a
functional interface.

It is not required to use the annotation. Any interface with a single
abstract method is, by definition, a functional interface. But using the
@FunctionalInterface annotation is a good idea.

6.3.8 More about Comparators
The Comparator interface has a number of convenient static methods for creating

comparators. These methods are intended to be used with lambda expressions

or method references.

The static comparing method takes a “key extractor” function that maps a type T to

a comparable type (such as String). The function is applied to the objects to be

compared, and the comparison is then made on the returned keys. For example,

suppose you have an array of Person objects. Here is how you can sort them

by name:

Arrays.sort(people, Comparator.comparing(Person::getName));

This is certainly much easier than implementing a Comparator by hand. Moreover,

the code is clearer since it is obvious that we want to compare people by name.

You can chain comparators with the thenComparing method for breaking ties. For

example,

Arrays.sort(people,
 Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName));

If two people have the same last name, then the second comparator is used.

There are a few variations of these methods. You can specify a comparator to

be used for the keys that the comparing and thenComparing methods extract. For example,

here we sort people by the length of their names:

Arrays.sort(people, Comparator.comparing(Person::getName,
 (s, t) -> Integer.compare(s.length(), t.length())));

Moreover, both the comparing and thenComparing methods have variants that avoid

boxing of int, long, or double values. An easier way of producing the preceding

operation would be

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes328

If your key function can return null, you will like the nullsFirst and nullsLast
adapters. These static methods take an existing comparator and modify it so that

it doesn’t throw an exception when encountering null values but ranks them as

smaller or larger than regular values. For example, suppose getMiddleName returns a

null when a person has no middle name. Then you can use Comparator.comparing(
Person::getMiddleName(), Comparator.nullsFirst(...)).

The nullsFirst method needs a comparator—in this case, one that compares two

strings. The naturalOrder method makes a comparator for any class implementing

Comparable. A Comparator.<String>naturalOrder() is what we need. Here is the complete

call for sorting by potentially null middle names. I use a static import of

java.util.Comparator.*, to make the expression more legible. Note that the type for

naturalOrder is inferred.

Arrays.sort(people, comparing(Person::getMiddleName, nullsFirst(naturalOrder())));

The static reverseOrder method gives the reverse of the natural order. To reverse any

comparator, use the reversed instance method. For example, naturalOrder().reversed()
is the same as reverseOrder().

6.4 Inner Classes
An inner class is a class that is defined inside another class. Why would you want

to do that? There are three reasons:

• Inner class methods can access the data from the scope in which they are

defined—including the data that would otherwise be private.

• Inner classes can be hidden from other classes in the same package.

• Anonymous inner classes are handy when you want to define callbacks without

writing a lot of code.

We will break up this rather complex topic into several steps.

1. Starting on page 331, you will see a simple inner class that accesses an instance

field of its outer class.

2. On page 334, we cover the special syntax rules for inner classes.

3. Starting on page 335, we peek inside inner classes to see how they are trans-

lated into regular classes. Squeamish readers may want to skip that section.

4. Starting on page 339, we discuss local inner classes that can access local

variables of the enclosing scope.

5. Starting on page 342, we introduce anonymous inner classes and show how

they were commonly used to implement callbacks before Java had lambda

expressions.

3296.4 Inner Classes

6. Finally, starting on page 346, you will see how static inner classes can be used

for nested helper classes.

C++ NOTE: C++ has nested classes. A nested class is contained inside the
scope of the enclosing class. Here is a typical example:A linked list class defines
a class to hold the links, and a class to define an iterator position.

class LinkedList
{
public:
 class Iterator // a nested class
 {
 public:
 void insert(int x);
 int erase();
 . . .
 };
 . . .
private:
 class Link // a nested class
 {
 public:
 Link* next;
 int data;
 };
 . . .
};

The nesting is a relationship between classes, not objects. A LinkedList object
does not have subobjects of type Iterator or Link.

There are two benefits: name control and access control. The name Iterator is
nested inside the LinkedList class, so it is known externally as LinkedList::Iterator
and cannot conflict with another class called Iterator. In Java, this benefit is not
as important because Java packages give the same kind of name control. Note
that the Link class is in the private part of the LinkedList class. It is completely
hidden from all other code. For that reason, it is safe to make its data fields
public. They can be accessed by the methods of the LinkedList class (which has
a legitimate need to access them) but they are not visible elsewhere. In Java,
this kind of control was not possible until inner classes were introduced.

However, the Java inner classes have an additional feature that makes them
richer and more useful than nested classes in C++. An object that comes from
an inner class has an implicit reference to the outer class object that instantiated
it. Through this pointer, it gains access to the total state of the outer object.You
will see the details of the Java mechanism later in this chapter.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes330

In Java, static inner classes do not have this added pointer. They are the Java
analog to nested classes in C++.

6.4.1 Use of an Inner Class to Access Object State
The syntax for inner classes is rather complex. For that reason, we present a simple

but somewhat artificial example to demonstrate the use of inner classes. We

refactor the TimerTest example and extract a TalkingClock class. A talking clock is

constructed with two parameters: the interval between announcements and a

flag to turn beeps on or off.

public class TalkingClock
{
 private int interval;
 private boolean beep;

 public TalkingClock(int interval, boolean beep) { . . . }
 public void start() { . . . }

 public class TimePrinter implements ActionListener
 // an inner class
 {
 . . .
 }
}

Note that the TimePrinter class is now located inside the TalkingClock class. This does

not mean that every TalkingClock has a TimePrinter instance field. As you will see, the

TimePrinter objects are constructed by methods of the TalkingClock class.

Here is the TimePrinter class in greater detail. Note that the actionPerformed method

checks the beep flag before emitting a beep.

public class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is " + new Date());
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
}

Something surprising is going on. The TimePrinter class has no instance field or

variable named beep. Instead, beep refers to the field of the TalkingClock object that

created this TimePrinter. This is quite innovative. Traditionally, a method could refer

to the data fields of the object invoking the method. An inner class method

gets to access both its own data fields and those of the outer object creating it.

3316.4 Inner Classes

For this to work, an object of an inner class always gets an implicit reference to

the object that created it (see Figure 6.3).

Figure 6.3 An inner class object has a reference to an outer class object

This reference is invisible in the definition of the inner class. However, to illumi-

nate the concept, let us call the reference to the outer object outer. Then the

actionPerformed method is equivalent to the following:

public void actionPerformed(ActionEvent event)
{
 System.out.println("At the tone, the time is " + new Date());
 if (outer.beep) Toolkit.getDefaultToolkit().beep();
}

The outer class reference is set in the constructor. The compiler modifies all inner

class constructors, adding a parameter for the outer class reference. The TimePrinter
class defines no constructors; therefore, the compiler synthesizes a no-argument

constructor, generating code like this:

public TimePrinter(TalkingClock clock) // automatically generated code
{

outer = clock;
}

Again, please note that outer is not a Java keyword. We just use it to illustrate the

mechanism involved in an inner class.

When a TimePrinter object is constructed in the start method, the compiler passes

the this reference to the current talking clock into the constructor:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes332

ActionListener listener = new TimePrinter(this); // parameter automatically added

Listing 6.7 shows the complete program that tests the inner class. Have another

look at the access control. Had the TimePrinter class been a regular class, it would

have needed to access the beep flag through a public method of the TalkingClock class.

Using an inner class is an improvement. There is no need to provide accessors

that are of interest only to one other class.

NOTE: We could have declared the TimePrinter class as private. Then only
TalkingClock methods would be able to construct TimePrinter objects. Only inner
classes can be private. Regular classes always have either package or public
visibility.

Listing 6.7 innerClass/InnerClassTest.java

 1 package innerClass;
 2

 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.util.*;
 6 import javax.swing.*;
 7 import javax.swing.Timer;
 8

 9 /**
10 * This program demonstrates the use of inner classes.
11 * @version 1.11 2015-05-12
12 * @author Cay Horstmann
13 */
14 public class InnerClassTest
15 {
16 public static void main(String[] args)
17 {
18 TalkingClock clock = new TalkingClock(1000, true);
19 clock.start();
20

21 // keep program running until user selects "Ok"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26

27 /**
28 * A clock that prints the time in regular intervals.
29 */

(Continues)

3336.4 Inner Classes

Listing 6.7 (Continued)

30 class TalkingClock
31 {
32 private int interval;
33 private boolean beep;
34

35 /**
36 * Constructs a talking clock
37 * @param interval the interval between messages (in milliseconds)
38 * @param beep true if the clock should beep
39 */
40 public TalkingClock(int interval, boolean beep)
41 {
42 this.interval = interval;
43 this.beep = beep;
44 }
45

46 /**
47 * Starts the clock.
48 */
49 public void start()
50 {
51 ActionListener listener = new TimePrinter();
52 Timer t = new Timer(interval, listener);
53 t.start();
54 }
55

56 public class TimePrinter implements ActionListener
57 {
58 public void actionPerformed(ActionEvent event)
59 {
60 System.out.println("At the tone, the time is " + new Date());
61 if (beep) Toolkit.getDefaultToolkit().beep();
62 }
63 }
64 }

6.4.2 Special Syntax Rules for Inner Classes
In the preceding section, we explained the outer class reference of an inner class

by calling it outer. Actually, the proper syntax for the outer reference is a bit more

complex. The expression

OuterClass.this

denotes the outer class reference. For example, you can write the actionPerformed
method of the TimePrinter inner class as

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes334

public void actionPerformed(ActionEvent event)
{
 . . .
 if (TalkingClock.this.beep) Toolkit.getDefaultToolkit().beep();
}

Conversely, you can write the inner object constructor more explicitly, using the

syntax

outerObject.new InnerClass(construction parameters)

For example:

ActionListener listener = this.new TimePrinter();

Here, the outer class reference of the newly constructed TimePrinter object is set to

the this reference of the method that creates the inner class object. This is the most

common case. As always, the this. qualifier is redundant. However, it is also

possible to set the outer class reference to another object by explicitly naming it.

For example, since TimePrinter is a public inner class, you can construct a TimePrinter
for any talking clock:

TalkingClock jabberer = new TalkingClock(1000, true);
TalkingClock.TimePrinter listener = jabberer.new TimePrinter();

Note that you refer to an inner class as

OuterClass.InnerClass

when it occurs outside the scope of the outer class.

NOTE: Any static fields declared in an inner class must be final. There is a
simple reason. One expects a unique instance of a static field, but there is
a separate instance of the inner class for each outer object. If the field was not
final, it might not be unique.

An inner class cannot have static methods. The Java Language Specification
gives no reason for this limitation. It would have been possible to allow static
methods that only access static fields and methods from the enclosing class.
Apparently, the language designers decided that the complexities outweighed
the benefits.

6.4.3 Are Inner Classes Useful? Actually Necessary? Secure?
When inner classes were added to the Java language in Java 1.1, many program-

mers considered them a major new feature that was out of character with the Java

philosophy of being simpler than C++. The inner class syntax is undeniably

3356.4 Inner Classes

complex. (It gets more complex as we study anonymous inner classes later in this

chapter.) It is not obvious how inner classes interact with other features of the

language, such as access control and security.

By adding a feature that was elegant and interesting rather than needed, has Java

started down the road to ruin which has afflicted so many other languages?

While we won’t try to answer this question completely, it is worth noting that

inner classes are a phenomenon of the compiler, not the virtual machine. Inner

classes are translated into regular class files with $ (dollar signs) delimiting outer

and inner class names, and the virtual machine does not have any special

knowledge about them.

For example, the TimePrinter class inside the TalkingClock class is translated to a class

file TalkingClock$TimePrinter.class. To see this at work, try the following experiment:

run the ReflectionTest program of Chapter 5, and give it the class TalkingClock$TimePrinter
to reflect upon. Alternatively, simply use the javap utility:

javap -private ClassName

NOTE: If you use UNIX, remember to escape the $ character when you supply
the class name on the command line. That is, run the ReflectionTest or javap
program as

java reflection.ReflectionTest innerClass.TalkingClock\$TimePrinter

or

javap -private innerClass.TalkingClock\$TimePrinter

You will get the following printout:

public class TalkingClock$TimePrinter
{
 public TalkingClock$TimePrinter(TalkingClock);

 public void actionPerformed(java.awt.event.ActionEvent);

 final TalkingClock this$0;
}

You can plainly see that the compiler has generated an additional instance field,

this$0, for the reference to the outer class. (The name this$0 is synthesized by the

compiler—you cannot refer to it in your code.) You can also see the TalkingClock
parameter for the constructor.

If the compiler can automatically do this transformation, couldn’t you simply

program the same mechanism by hand? Let’s try it. We would make TimePrinter a

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes336

regular class, outside the TalkingClock class. When constructing a TimePrinter object,

we pass it the this reference of the object that is creating it.

class TalkingClock
{
 . . .
 public void start()
 {
 ActionListener listener = new TimePrinter(this);
 Timer t = new Timer(interval, listener);
 t.start();
 }
}

class TimePrinter implements ActionListener
{
 private TalkingClock outer;
 . . .
 public TimePrinter(TalkingClock clock)
 {
 outer = clock;
 }
}

Now let us look at the actionPerformed method. It needs to access outer.beep.

if (outer.beep) . . . // Error

Here we run into a problem. The inner class can access the private data of the

outer class, but our external TimePrinter class cannot.

Thus, inner classes are genuinely more powerful than regular classes because

they have more access privileges.

You may well wonder how inner classes manage to acquire those added access

privileges, if they are translated to regular classes with funny names—the virtual

machine knows nothing at all about them. To solve this mystery, let’s again use

the ReflectionTest program to spy on the TalkingClock class:

class TalkingClock
{
 private int interval;
 private boolean beep;

 public TalkingClock(int, boolean);

 static boolean access$0(TalkingClock);
 public void start();
}

3376.4 Inner Classes

Notice the static access$0 method that the compiler added to the outer class. It re-

turns the beep field of the object that is passed as a parameter. (The method name

might be slightly different, such as access$000, depending on your compiler.)

The inner class methods call that method. The statement

if (beep)

in the actionPerformed method of the TimePrinter class effectively makes the

following call:

if (TalkingClock.access$0(outer))

Is this a security risk? You bet it is. It is an easy matter for someone else to invoke

the access$0 method to read the private beep field. Of course, access$0 is not a legal

name for a Java method. However, hackers who are familiar with the structure

of class files can easily produce a class file with virtual machine instructions to

call that method, for example, by using a hex editor. Since the secret access

methods have package visibility, the attack code would need to be placed inside

the same package as the class under attack.

To summarize, if an inner class accesses a private data field, then it is possible to

access that data field through other classes added to the package of the outer

class, but to do so requires skill and determination. A programmer cannot acci-

dentally obtain access but must intentionally build or modify a class file for that

purpose.

NOTE: The synthesized constructors and methods can get quite convoluted.
(Skip this note if you are squeamish.) Suppose we turn TimePrinter into a private
inner class. There are no private classes in the virtual machine, so the compiler
produces the next best thing: a package-visible class with a private constructor

private TalkingClock$TimePrinter(TalkingClock);

Of course, nobody can call that constructor, so there is a second package-visible
constructor

TalkingClock$TimePrinter(TalkingClock, TalkingClock$1);

that calls the first one.The TalkingClock$1 class is synthesized solely to distinguish
this constructor from others.

The compiler translates the constructor call in the start method of the TalkingClock
class to

new TalkingClock$TimePrinter(this, null)

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes338

6.4.4 Local Inner Classes
If you look carefully at the code of the TalkingClock example, you will find that you

need the name of the type TimePrinter only once: when you create an object of that

type in the start method.

In a situation like this, you can define the class locally in a single method.

public void start()
{

class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is " + new Date());
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }

 ActionListener listener = new TimePrinter();
 Timer t = new Timer(interval, listener);
 t.start();
}

Local classes are never declared with an access specifier (that is, public or private).

Their scope is always restricted to the block in which they are declared.

Local classes have one great advantage: They are completely hidden from the

outside world—not even other code in the TalkingClock class can access them. No

method except start has any knowledge of the TimePrinter class.

6.4.5 Accessing Variables from Outer Methods
Local classes have another advantage over other inner classes. Not only can they

access the fields of their outer classes; they can even access local variables! How-

ever, those local variables must be effectively final. That means, they may never

change once they have been assigned.

Here is a typical example. Let’s move the interval and beep parameters from the

TalkingClock constructor to the start method.

public void start(int interval, boolean beep)
{
 class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {

3396.4 Inner Classes

System.out.println("At the tone, the time is " + new Date());
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }

 ActionListener listener = new TimePrinter();
 Timer t = new Timer(interval, listener);
 t.start();
}

Note that the TalkingClock class no longer needs to store a beep instance field. It simply

refers to the beep parameter variable of the start method.

Maybe this should not be so surprising. The line

if (beep) . . .

is, after all, ultimately inside the start method, so why shouldn’t it have access to

the value of the beep variable?

To see why there is a subtle issue here, let’s consider the flow of control more

closely.

1. The start method is called.

2. The object variable listener is initialized by a call to the constructor of the inner

class TimePrinter.

3. The listener reference is passed to the Timer constructor, the timer is started,

and the start method exits. At this point, the beep parameter variable of the

start method no longer exists.

4. A second later, the actionPerformed method executes if (beep) . . .

For the code in the actionPerformed method to work, the TimePrinter class must have

copied the beep field as a local variable of the start method, before the beep param-

eter value went away. That is indeed exactly what happens. In our example, the

compiler synthesizes the name TalkingClock$1TimePrinter for the local inner class.

If you use the ReflectionTest program again to spy on the TalkingClock$1TimePrinter
class, you will get the following output:

class TalkingClock$1TimePrinter
{
 TalkingClock$1TimePrinter(TalkingClock, boolean);

 public void actionPerformed(java.awt.event.ActionEvent);

 final boolean val$beep;
 final TalkingClock this$0;
}

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes340

Note the boolean parameter to the constructor and the val$beep instance variable.

When an object is created, the value beep is passed into the constructor and stored

in the val$beep field. The compiler detects access of local variables, makes matching

instance fields for each one, and copies the local variables into the constructor so

that the instance fields can be initialized.

From the programmer’s point of view, local variable access is quite pleasant. It

makes your inner classes simpler by reducing the instance fields that you need

to program explicitly.

As we already mentioned, the methods of a local class can refer only to local

variables that are declared final. For that reason, the beep parameter was declared

final in our example. A local variable that is declared final cannot be modified after

it has been initialized. Thus, it is guaranteed that the local variable and the copy

made inside the local class will always have the same value.

NOTE: Before Java SE 8, it was necessary to declare any local variables that
are accessed from local classes as final. For example, this is how the start
method would have been declared so that the inner class can access the beep
parameter:

public void start(int interval, final boolean beep)

The “effectively final” restriction is sometimes inconvenient. Suppose, for example,

that you want to update a counter in the enclosing scope. Here, we want to count

how often the compareTo method is called during sorting:

int counter = 0;
Date[] dates = new Date[100];
for (int i = 0; i < dates.length; i++)
 dates[i] = new Date()
 {
 public int compareTo(Date other)
 {
 counter++; // Error
 return super.compareTo(other);
 }
 };
Arrays.sort(dates);
System.out.println(counter + " comparisons.");

You can’t declare counter as final because you clearly need to update it. You can’t

replace it with an Integer because Integer objects are immutable. A remedy is to use

an array of length 1:

3416.4 Inner Classes

int[] counter = new int[1];
for (int i = 0; i < dates.length; i++)
 dates[i] = new Date()
 {
 public int compareTo(Date other)
 {

counter[0]++;
 return super.compareTo(other);
 }
 };

When inner classes were first invented, a prototype version of the compiler auto-

matically made this transformation for all local variables that were modified in

the inner class. However, this was later abandoned. After all, there is a danger.

When the code in the inner class is executed at the same time in multiple threads,

the concurrent updates can lead to race conditions—see Chapter 14.

6.4.6 Anonymous Inner Classes
When using local inner classes, you can often go a step further. If you want to

make only a single object of this class, you don’t even need to give the class a

name. Such a class is called an anonymous inner class.

public void start(int interval, boolean beep)
{
 ActionListener listener = new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is " + new Date());
 if (beep) Toolkit.getDefaultToolkit().beep();
 }

};
 Timer t = new Timer(interval, listener);
 t.start();
}

This syntax is very cryptic indeed. What it means is this: Create a new object of

a class that implements the ActionListener interface, where the required method

actionPerformed is the one defined inside the braces { }.

In general, the syntax is

new SuperType(construction parameters)
 {

inner class methods and data

 }

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes342

Here, SuperType can be an interface, such as ActionListener; then, the inner class im-

plements that interface. SuperType can also be a class; then, the inner class extends

that class.

An anonymous inner class cannot have constructors because the name of a con-

structor must be the same as the name of a class, and the class has no name.

Instead, the construction parameters are given to the superclass constructor. In

particular, whenever an inner class implements an interface, it cannot have any

construction parameters. Nevertheless, you must supply a set of parentheses as in

new InterfaceType()
 {

methods and data

 }

You have to look carefully to see the difference between the construction of a new

object of a class and the construction of an object of an anonymous inner class

extending that class.

Person queen = new Person("Mary");
 // a Person object
Person count = new Person("Dracula") { . . . };
 // an object of an inner class extending Person

If the closing parenthesis of the construction parameter list is followed by an

opening brace, then an anonymous inner class is being defined.

Listing 6.8 contains the complete source code for the talking clock program with

an anonymous inner class. If you compare this program with Listing 6.7, you will

see that in this case, the solution with the anonymous inner class is quite a bit

shorter and, hopefully, with some practice, as easy to comprehend.

For many years, Java programmers routinely used anonymous inner classes for

event listeners and other callbacks. Nowadays, you are better off using a lambda

expression. For example, the start method from the beginning of this section can

be written much more concisely with a lambda expression like this:

public void start(int interval, boolean beep)
{
 Timer t = new Timer(interval, event ->
 {
 System.out.println("At the tone, the time is " + new Date());
 if (beep) Toolkit.getDefaultToolkit().beep();
 });
 t.start();
}

3436.4 Inner Classes

NOTE: The following trick, called double brace initialization, takes advantage
of the inner class syntax. Suppose you want to construct an array list and pass
it to a method:

ArrayList<String> friends = new ArrayList<>();
friends.add("Harry");
friends.add("Tony");
invite(friends);

If you don’t need the array list again, it would be nice to make it anonymous. But
then how can you add the elements? Here is how:

invite(new ArrayList<String>() {{ add("Harry"); add("Tony"); }});

Note the double braces. The outer braces make an anonymous subclass of
ArrayList. The inner braces are an object construction block (see Chapter 4).

CAUTION: It is often convenient to make an anonymous subclass that is almost,
but not quite, like its superclass. But you need to be careful with the equals
method. In Chapter 5, we recommended that your equals methods use a test

if (getClass() != other.getClass()) return false;

An anonymous subclass will fail this test.

TIP: When you produce logging or debugging messages, you often want to
include the name of the current class, such as

System.err.println("Something awful happened in " + getClass());

But that fails in a static method. After all, the call to getClass calls this.getClass(),
and a static method has no this. Use the following expression instead:

new Object(){}.getClass().getEnclosingClass() // gets class of static method

Here, new Object(){} makes an anonymous object of an anonymous subclass of
Object, and getEnclosingClass gets its enclosing class—that is, the class containing
the static method.

Listing 6.8 anonymousInnerClass/AnonymousInnerClassTest.java

 1 package anonymousInnerClass;
 2

 3 import java.awt.*;
 4 import java.awt.event.*;

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes344

 5 import java.util.*;
 6 import javax.swing.*;
 7 import javax.swing.Timer;
 8

 9 /**
10 * This program demonstrates anonymous inner classes.
11 * @version 1.11 2015-05-12
12 * @author Cay Horstmann
13 */
14 public class AnonymousInnerClassTest
15 {
16 public static void main(String[] args)
17 {
18 TalkingClock clock = new TalkingClock();
19 clock.start(1000, true);
20

21 // keep program running until user selects "Ok"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26

27 /**
28 * A clock that prints the time in regular intervals.
29 */
30 class TalkingClock
31 {
32 /**
33 * Starts the clock.
34 * @param interval the interval between messages (in milliseconds)
35 * @param beep true if the clock should beep
36 */
37 public void start(int interval, boolean beep)
38 {
39 ActionListener listener = new ActionListener()
40 {
41 public void actionPerformed(ActionEvent event)
42 {
43 System.out.println("At the tone, the time is " + new Date());
44 if (beep) Toolkit.getDefaultToolkit().beep();
45 }
46 };
47 Timer t = new Timer(interval, listener);
48 t.start();
49 }
50 }

3456.4 Inner Classes

6.4.7 Static Inner Classes
Occasionally, you may want to use an inner class simply to hide one class inside

another—but you don’t need the inner class to have a reference to the outer class

object. You can suppress the generation of that reference by declaring the inner

class static.

Here is a typical example of where you would want to do this. Consider the task

of computing the minimum and maximum value in an array. Of course, you write

one method to compute the minimum and another method to compute the max-

imum. When you call both methods, the array is traversed twice. It would be

more efficient to traverse the array only once, computing both the minimum and

the maximum simultaneously.

double min = Double.POSITIVE_INFINITY;
double max = Double.NEGATIVE_INFINITY;
for (double v : values)
{
 if (min > v) min = v;
 if (max < v) max = v;
}

However, the method must return two numbers. We can achieve that by defining

a class Pair that holds two values:

class Pair
{
 private double first;
 private double second;

 public Pair(double f, double s)
 {
 first = f;
 second = s;
 }
 public double getFirst() { return first; }
 public double getSecond() { return second; }
}

The minmax method can then return an object of type Pair.

class ArrayAlg
{
 public static Pair minmax(double[] values)
 {
 . . .
 return new Pair(min, max);
 }
}

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes346

The caller of the method uses the getFirst and getSecond methods to retrieve the

answers:

Pair p = ArrayAlg.minmax(d);
System.out.println("min = " + p.getFirst());
System.out.println("max = " + p.getSecond());

Of course, the name Pair is an exceedingly common name, and in a large project,

it is quite possible that some other programmer had the same bright idea—but

made a Pair class that contains a pair of strings. We can solve this potential name

clash by making Pair a public inner class inside ArrayAlg. Then the class will be

known to the public as ArrayAlg.Pair:

ArrayAlg.Pair p = ArrayAlg.minmax(d);

However, unlike the inner classes that we used in previous examples, we do not

want to have a reference to any other object inside a Pair object. That reference

can be suppressed by declaring the inner class static:

class ArrayAlg
{
 public static class Pair
 {
 . . .
 }
 . . .
}

Of course, only inner classes can be declared static. A static inner class is exactly

like any other inner class, except that an object of a static inner class does not have

a reference to the outer class object that generated it. In our example, we must

use a static inner class because the inner class object is constructed inside a static

method:

public static Pair minmax(double[] d)
{
 . . .
 return new Pair(min, max);
}

Had the Pair class not been declared as static, the compiler would have complained

that there was no implicit object of type ArrayAlg available to initialize the inner

class object.

NOTE: Use a static inner class whenever the inner class does not need to access
an outer class object. Some programmers use the term nested class to describe
static inner classes.

3476.4 Inner Classes

NOTE: Unlike regular inner classes, static inner classes can have static fields
and methods.

NOTE: Inner classes that are declared inside an interface are automatically
static and public.

Listing 6.9 contains the complete source code of the ArrayAlg class and the nested

Pair class.

Listing 6.9 staticInnerClass/StaticInnerClassTest.java

 1 package staticInnerClass;
 2

 3 /**
 4 * This program demonstrates the use of static inner classes.
 5 * @version 1.02 2015-05-12
 6 * @author Cay Horstmann
 7 */
 8 public class StaticInnerClassTest
 9 {
10 public static void main(String[] args)
11 {
12 double[] d = new double[20];
13 for (int i = 0; i < d.length; i++)
14 d[i] = 100 * Math.random();
15 ArrayAlg.Pair p = ArrayAlg.minmax(d);
16 System.out.println("min = " + p.getFirst());
17 System.out.println("max = " + p.getSecond());
18 }
19 }
20

21 class ArrayAlg
22 {
23 /**
24 * A pair of floating-point numbers
25 */
26 public static class Pair
27 {
28 private double first;
29 private double second;
30

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes348

31 /**
32 * Constructs a pair from two floating-point numbers
33 * @param f the first number
34 * @param s the second number
35 */
36 public Pair(double f, double s)
37 {
38 first = f;
39 second = s;
40 }
41

42 /**
43 * Returns the first number of the pair
44 * @return the first number
45 */
46 public double getFirst()
47 {
48 return first;
49 }
50

51 /**
52 * Returns the second number of the pair
53 * @return the second number
54 */
55 public double getSecond()
56 {
57 return second;
58 }
59 }
60

61 /**
62 * Computes both the minimum and the maximum of an array
63 * @param values an array of floating-point numbers
64 * @return a pair whose first element is the minimum and whose second element
65 * is the maximum
66 */
67 public static Pair minmax(double[] values)
68 {
69 double min = Double.POSITIVE_INFINITY;
70 double max = Double.NEGATIVE_INFINITY;
71 for (double v : values)
72 {
73 if (min > v) min = v;
74 if (max < v) max = v;
75 }
76 return new Pair(min, max);
77 }
78 }

3496.4 Inner Classes

6.5 Proxies
In the final section of this chapter, we discuss proxies. You can use a proxy to

create, at runtime, new classes that implement a given set of interfaces. Proxies

are only necessary when you don’t yet know at compile time which interfaces

you need to implement. This is not a common situation for application program-

mers, and you should feel free to skip this section if you are not interested in ad-

vanced wizardry. However, for certain systems programming applications, the

flexibility that proxies offer can be very important.

6.5.1 When to Use Proxies
Suppose you want to construct an object of a class that implements one or more

interfaces whose exact nature you may not know at compile time. This is a difficult

problem. To construct an actual class, you can simply use the newInstance method

or use reflection to find a constructor. But you can’t instantiate an interface. You

need to define a new class in a running program.

To overcome this problem, some programs generate code, place it into a file, invoke

the compiler, and then load the resulting class file. Naturally, this is slow, and it

also requires deployment of the compiler together with the program. The proxy

mechanism is a better solution. The proxy class can create brand-new classes

at runtime. Such a proxy class implements the interfaces that you specify. In

particular, the proxy class has the following methods:

• All methods required by the specified interfaces; and

• All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead,

you must supply an invocation handler. An invocation handler is an object of

any class that implements the InvocationHandler interface. That interface has a single

method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the invoca-

tion handler gets called, with the Method object and parameters of the original call.

The invocation handler must then figure out how to handle the call.

6.5.2 Creating Proxy Objects
To create a proxy object, use the newProxyInstance method of the Proxy class. The method

has three parameters:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes350

• A class loader. As part of the Java security model, different class loaders can

be used for system classes, classes that are downloaded from the Internet,

and so on. We will discuss class loaders in Chapter 9 of Volume II. For now,

we specify null to use the default class loader.

• An array of Class objects, one for each interface to be implemented.

• An invocation handler.

There are two remaining questions. How do we define the handler? And what

can we do with the resulting proxy object? The answers depend, of course, on

the problem that we want to solve with the proxy mechanism. Proxies can be

used for many purposes, such as

• Routing method calls to remote servers

• Associating user interface events with actions in a running program

• Tracing method calls for debugging purposes

In our example program, we use proxies and invocation handlers to trace method

calls. We define a TraceHandler wrapper class that stores a wrapped object. Its invoke
method simply prints the name and parameters of the method to be called and

then calls the method with the wrapped object as the implicit parameter.

class TraceHandler implements InvocationHandler
{
 private Object target;

 public TraceHandler(Object t)
 {
 target = t;
 }

 public Object invoke(Object proxy, Method m, Object[] args)
 throws Throwable
 {
 // print method name and parameters
 . . .
 // invoke actual method
 return m.invoke(target, args);
 }
}

Here is how you construct a proxy object that causes the tracing behavior

whenever one of its methods is called:

Object value = . . .;
// construct wrapper
InvocationHandler handler = new TraceHandler(value);
// construct proxy for one or more interfaces

3516.5 Proxies

Class[] interfaces = new Class[] { Comparable.class};
Object proxy = Proxy.newProxyInstance(null, interfaces, handler);

Now, whenever a method from one of the interfaces is called on proxy, the method

name and parameters are printed out and the method is then invoked on value.

In the program shown in Listing 6.10, we use proxy objects to trace a binary

search. We fill an array with proxies to the integers 1 . . . 1000. Then we invoke

the binarySearch method of the Arrays class to search for a random integer in the array.

Finally, we print the matching element.

Object[] elements = new Object[1000];
// fill elements with proxies for the integers 1 . . . 1000
for (int i = 0; i < elements.length; i++)
{
 Integer value = i + 1;
 elements[i] = Proxy.newProxyInstance(. . .); // proxy for value;
}

// construct a random integer
Integer key = new Random().nextInt(elements.length) + 1;

// search for the key
int result = Arrays.binarySearch(elements, key);

// print match if found
if (result >= 0) System.out.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects belong to a

class that is defined at runtime. (It has a name such as $Proxy0.) That class also

implements the Comparable interface. However, its compareTo method calls the invoke
method of the proxy object’s handler.

NOTE: As you saw earlier in this chapter, the Integer class actually implements
Comparable<Integer>. However, at runtime, all generic types are erased and the
proxy is constructed with the class object for the raw Comparable class.

The binarySearch method makes calls like this:

if (elements[i].compareTo(key) < 0) . . .

Since we filled the array with proxy objects, the compareTo calls call the invoke method

of the TraceHandler class. That method prints the method name and parameters and

then invokes compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call

System.out.println(elements[result]);

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes352

The println method calls toString on the proxy object, and that call is also redirected

to the invocation handler.

Here is the complete trace of a program run:

500.compareTo(288)
250.compareTo(288)
375.compareTo(288)
312.compareTo(288)
281.compareTo(288)
296.compareTo(288)
288.compareTo(288)
288.toString()

You can see how the binary search algorithm homes in on the key by cutting the

search interval in half in every step. Note that the toString method is proxied even

though it does not belong to the Comparable interface—as you will see in the next

section, certain Object methods are always proxied.

Listing 6.10 proxy/ProxyTest.java

 1 package proxy;
 2

 3 import java.lang.reflect.*;
 4 import java.util.*;
 5

 6 /**
 7 * This program demonstrates the use of proxies.
 8 * @version 1.00 2000-04-13
 9 * @author Cay Horstmann
10 */
11 public class ProxyTest
12 {
13 public static void main(String[] args)
14 {
15 Object[] elements = new Object[1000];
16

17 // fill elements with proxies for the integers 1 ... 1000
18 for (int i = 0; i < elements.length; i++)
19 {
20 Integer value = i + 1;
21 InvocationHandler handler = new TraceHandler(value);
22 Object proxy = Proxy.newProxyInstance(null, new Class[] { Comparable.class } , handler);
23 elements[i] = proxy;
24 }
25

26 // construct a random integer
27 Integer key = new Random().nextInt(elements.length) + 1;

(Continues)

3536.5 Proxies

Listing 6.10 (Continued)

28

29 // search for the key
30 int result = Arrays.binarySearch(elements, key);
31

32 // print match if found
33 if (result >= 0) System.out.println(elements[result]);
34 }
35 }
36

37 /**
38 * An invocation handler that prints out the method name and parameters, then
39 * invokes the original method
40 */
41 class TraceHandler implements InvocationHandler
42 {
43 private Object target;
44

45 /**
46 * Constructs a TraceHandler
47 * @param t the implicit parameter of the method call
48 */
49 public TraceHandler(Object t)
50 {
51 target = t;
52 }
53

54 public Object invoke(Object proxy, Method m, Object[] args) throws Throwable
55 {
56 // print implicit argument
57 System.out.print(target);
58 // print method name
59 System.out.print("." + m.getName() + "(");
60 // print explicit arguments
61 if (args != null)
62 {
63 for (int i = 0; i < args.length; i++)
64 {
65 System.out.print(args[i]);
66 if (i < args.length - 1) System.out.print(", ");
67 }
68 }
69 System.out.println(")");
70

71 // invoke actual method
72 return m.invoke(target, args);
73 }
74 }

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes354

6.5.3 Properties of Proxy Classes
Now that you have seen proxy classes in action, let’s go over some of their

properties. Remember that proxy classes are created on the fly in a running pro-

gram. However, once they are created, they are regular classes, just like any other

classes in the virtual machine.

All proxy classes extend the class Proxy. A proxy class has only one instance

field—the invocation handler, which is defined in the Proxy superclass. Any addi-

tional data required to carry out the proxy objects’ tasks must be stored in the

invocation handler. For example, when we proxied Comparable objects in the program

shown in Listing 6.10, the TraceHandler wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object class.

Like all proxy methods, these methods simply call invoke on the invocation handler.

The other methods of the Object class (such as clone and getClass) are not redefined.

The names of proxy classes are not defined. The Proxy class in Oracle’s virtual

machine generates class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of inter-

faces. That is, if you call the newProxyInstance method twice with the same class

loader and interface array, you get two objects of the same class. You can also

obtain that class with the getProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy class imple-

ments are public, the proxy class does not belong to any particular package.

Otherwise, all non-public interfaces must belong to the same package, and the

proxy class will also belong to that package.

You can test whether a particular Class object represents a proxy class by calling

the isProxyClass method of the Proxy class.

java.lang.reflect.InvocationHandler 1.3

• Object invoke(Object proxy, Method method, Object[] args)

define this method to contain the action that you want carried out whenever a

method was invoked on the proxy object.

3556.5 Proxies

java.lang.reflect.Proxy 1.3

• static Class<?> getProxyClass(ClassLoader loader, Class<?>... interfaces)

returns the proxy class that implements the given interfaces.

• static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces, InvocationHandler
handler)

constructs a new instance of the proxy class that implements the given interfaces.

All methods call the invoke method of the given handler object.

• static boolean isProxyClass(Class<?> cl)

returns true if cl is a proxy class.

This ends our final chapter on the fundamentals of the Java programming lan-

guage. Interfaces, lambda expressions, and inner classes are concepts that you

will encounter frequently. However, as we already mentioned, cloning and

proxies are advanced techniques that are of interest mainly to library designers

and tool builders, not application programmers. You are now ready to learn how

to deal with exceptional situations in your programs in Chapter 7.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes356

This page intentionally left blank

Numbers
- (minus sign)

arithmetic operator, 56, 64

printf flag, 84

-- operator, 61, 64

_ (underscore)

delimiter, in number literals, 48

in instance field names (C++), 176

, (comma)

operator (C++), 65

printf flag, 83–84

; (semicolon)

for statements, 45, 53

in class path (Windows), 191

: (colon)

in assertions, 385

in class path (UNIX), 191

inheritance token (C++), 204

:: operator (C++), 153, 161, 207, 320

! operator, 62, 64

!= operator, 62, 64, 101

?: operator, 62, 64

/ (slash)

arithmetic operator, 56, 64

in file names, 785

// comments, 46

/* . . . */ comments, 46

/** . . . */ comments, 46, 194

. (period)

in class path, 191–192

in directory names (UNIX), 788

... (ellipsis), in varargs, 257

 ̂ operator, 63–64, 316

~ operator, 63–64

', " (single, double quote), escape

sequences for, 50

". . ." (double quotes), for strings, 45

((left parenthesis), printf flag, 83–84

() (empty parentheses), in method calls, 46

(. . .) (parentheses)

for casts, 60, 64, 219

for operator hierarchy, 64–65

[] (empty square brackets), in generics, 421

[. . .] (square brackets), for arrays, 111,

115

{. . .} (curly braces)

for blocks, 44–45, 89

for enumerated type, 65

in lambda expressions, 316

{{. . .}} (double curly braces), in inner

classes, 344

@ (at), in javadoc comments, 194, 196

$ (dollar sign)

delimiter, for inner classes, 336

in variable names, 53

printf flag, 84

* (asterisk)

arithmetic operator, 56, 64

echo character, 652

in class path, 191

in imports, 183

\ (backslash)

escape sequence for, 50

in file names, 87, 785

& (ampersand)

bitwise operator, 63–64

in bounding types, 423

in reference parameters (C++), 169

&& operator, 62, 64

(number sign)

in javadoc hyperlinks, 197

in property files, 599

printf flag, 84

% (percent sign)

arithmetic operator, 56, 64

formatting output for, 83

printf flag, 84

+ (plus sign)

arithmetic operator, 56, 60, 64

for objects and strings, 66–67, 239

printf flag, 84

++ operator, 61, 64

957

Index

< (left angle bracket)

in shell syntax, 88

printf flag, 84–85

relational operator, 62, 64

<? (in wildcard types), 443

<<, >>, >>> operators, 63–64

<= operator, 62, 64

<. . .> (angle brackets), for type

parameters, 245, 419

> (right angle bracket)

in shell syntax, 88, 411

relational operator, 62, 64

-> (in lambda expressions), 315–317

>& (in shell syntax), 411

>= operator, 62, 64

= operator, 54, 61

== operator, 62, 64

for class objects, 262

for enumerated types, 258

for floating-point numbers, 101

for identity hash maps, 507

for strings, 69

for wrappers, 254

| operator, 63–64

|| operator, 62, 64

0, 0b, 0x prefixes (in integers), 48

0, printf flag, 84

2> (in shell syntax), 411

2D shapes, 560–569

A
Absolute positioning (Swing), 723

Abstract classes, 221–227

extending, 223

interfaces and, 297

object variables of, 223

abstract keyword, 221–227

Abstract methods, 222

in functional interfaces, 318

AbstractAction class, 609, 612, 680, 683

AbstractButton class, 627, 681–684

is/setSelected methods, 684

setAction method, 681

setActionCommand method, 663

setDisplayedMnemonicIndex method, 686, 688

setHorizontalTextPosition method, 682–683

setMnemonic method, 688

abstractClasses/Employee.java, 226

abstractClasses/Person.java, 226

abstractClasses/PersonTest.java, 225

abstractClasses/Student.java, 227

AbstractCollection class, 467, 479

AbstractQueue class, 463

Accelerators (in menus), 687–688

accept method (FileFilter), 755, 764

acceptEither method (CompletableFuture), 934

Access modifiers

checking, 265

final, 55, 157, 217–218, 295, 339–342, 886

private, 150, 189–190, 333

protected, 227–228, 283, 311

public, 42–43, 56, 147–150, 189–190,

289–290

public static final, 296

static, 44–45, 158–164

static final, 55

void, 44–45

Access order, 505

AccessibleObject class

isAccessible method, 275

setAccessible method, 272, 275

Accessor methods, 141–145, 153–154, 444

Accessory components, 757

accumulate method (LongAccumulator), 888

accumulateAndGet method (AtomicType), 887

Action interface, 607–615, 680

actionPerformed method, 608

add/removePropertyChangeListener methods,

608–609

get/putValue methods, 608, 615

is/setEnabled methods, 608, 615

predefined action table names, 609

Action listeners, 607–615

action/ActionFrame.java, 613

ActionEvent class, 588, 626–627

getActionCommand method, 598, 627

getModifiers method, 627

ActionListener interface, 626

actionPerformed method, 302–303, 314,

331–332, 337, 342, 589–593, 597, 601,

607, 609, 627, 897

overriding, 680

implementing, 318, 589, 597

ActionMap class, 612

Actions, 607–615

associating with keystrokes, 610

asynchronous, 931

names of, 612

Index958

predefined, 609

ActiveX, 5, 15

Adapter classes, 603–607

add method

of ArrayList, 245–251

of BigDecimal, BigInteger, 110–111

of BlockingQueue, 898–899

of ButtonGroup, 663

of Collection, 463, 467–469

of Container, 591, 595, 641

of GregorianCalendar, 142

of HashSet, 487

of JFrame, 555, 559

of JMenu, 679, 681

of JToolBar, 695–699

of List, 470, 482

of ListIterator, 470, 476–478, 483

of LongAdder, 888

of Queue, 494

of Set, 471

addAll method

of ArrayList, 417

of Collection, 467–468

of Collections, 523

of List, 482

addChoosableFileFilter method (JFileChooser), 763

addComponent, addGroup methods (GroupLayout), 723

addFirst/Last methods

of Deque, 494

of LinkedList, 484

addHandler method (Logger), 406

addItem method (JComboBox), 669–671

Addition operator, 56, 64

for different numeric types, 60

for objects and strings, 66–67, 239

addLayoutComponent method (LayoutManager), 728

addPropertyChangeListener method (Action),

608–609

addSeparator method

of JMenu, 679, 681

of JToolBar, 695–699

addShutdownHook method (Runtime), 182

addSuppressed method (Throwable), 377, 380

AdjustmentEvent class, 626

methods of, 627

AdjustmentListener interface, 626

adjustmentValueChanged method, 627

Adobe Flash, 9

Aggregation, 133–135

Algorithms, 130

for binary search, 521–522

for shuffling, 520

for sorting, 518–521

QuickSort, 117, 519

simple, in the standard library, 522–524

writing, 526–528

Algorithms + Data Structures = Programs

(Wirth), 130

Algorithms in C++ (Sedgewick), 519

Alice in Wonderland (Carroll), 487, 490

allOf method (EnumSet), 508, 934

Alt+F4, in Windows, 688

and, andNot methods (BitSet), 533

Andreessen, Mark, 10

Annotations, 430

Anonymous arrays, 114

Anonymous inner classes, 329, 342–345

anonymousInnerClass/AnonymousInnerClassTest.java, 344

Antisymmetry rule, 295

anyOf method (CompletableFuture), 934

append method

of JTextArea, 656, 951

of StringBuilder, 77–78

appendCodePoint method (StringBuilder), 78

Applet class, 803

destroy method, 808

getAppletContext method, 818–820

getAppletInfo method, 816

getCodeBase, getDocumentBase methods, 816–817

getImage, getAudioClip methods, 817

getParameter method, 810–811, 816

getParameterInfo method, 816

init method, 807, 811

play method, 817

resize method, 808

showStatus method, 819–820

start, stop methods, 808

applet element (HTML), 34, 805, 808–810

align attribute, 808

alt attribute, 809

archive attribute, 809

code attribute, 809

codebase attribute, 809

height, width attributes, 807–808

hspace, vspace attributes, 808

name attribute, 810

object attribute (obsolete), 809

applet/NotHelloWorld.java, 805

959Index

AppletContext interface, 818

getApplet, getApplets methods, 818, 820

showDocument method, 819–820

Applets, 8–9, 14, 802–824

accessing from JavaScript, 810

aligning, 808

changing warning string in, 190

communicating to each other, 810, 818

context of, 818

debugging, 807

digitally signed, 822–824

executing, 805

image and audio files in, 816–817

multiple copies of, 813

no title bars for, 807

passing information to, 816

printing in, 832

resizing, 808–810

running in a browser, 8, 33–39, 802–803,

818–820

serialized objects of, 809

testing, 805–806

trusted local, 35, 806

appletviewer program, 33, 805–806

Application Programming Interfaces (APIs),

online documentation, 71, 74–77

Applications

cache of, 827

closing by user, 545

codebase of, 831

compiling/running from the command

line, 30–33

debugging, 25–26, 358–366

deploying, 779–838

extensible, 217

launching, 43

localization of, 136, 393–394, 785

monitoring and managing in JVM, 412

platform-independent, 724

preferences of, 788–800

terminating, 45

testing, 384–388

applyToEither method (CompletableFuture), 934

Arguments. See Parameters

Arithmetic operators, 56–65

accuracy of, 56

autoboxing with, 253

combining with assignment, 61

precedence of, 64

Array class, 276–279

get, getXxx, set, setXxx methods, 279

getLength method, 277, 279

newInstance method, 276, 279

Array lists, 112, 484

anonymous, 344

capacity of, 246

elements of:

accessing, 247–251

adding, 245–249

removing, 249

traversing, 249

generic, 244–252

raw vs. typed, 251–252

Array variables, 111

ArrayBlockingQueue class, 899, 903

ArrayDeque class, 462, 494–495

as a concrete collection type, 472

ArrayIndexOutOfBoundsException, 112, 361–363, 938

ArrayList class, 113, 244–252, 416–418, 474

add method, 245–251

addAll method, 417

as a concrete collection type, 472

ensureCapacity method, 246–247

get, set methods, 247, 251

remove method, 249, 251

removeIf method, 319

size method, 246–247

synchronized, 914

toArray method, 435

trimToSize method, 246–247

arrayList/ArrayListTest.java, 250

Arrays, 111–127

anonymous, 114

circular, 462–463

cloning, 311

converting to collections, 525–526

copying, 114–115

on write, 912

creating, 111

elements of:

computing in parallel, 913

numbering, 112

remembering types of, 214

removing from the middle, 474

traversing, 112–113, 122

equality testing for, 234

generic methods for, 276–279

hash codes of, 238

Index960

in command-line parameters, 116

initializing, 112, 114

multidimensional, 120–125, 240

not of generic types, 321, 431–432, 441

of integers, 240

of subclass/superclass references, 214

of wildcard types, 432

out-of-bounds access in, 360

parallel operations on, 912

printing, 122, 240

ragged, 124–127

size of, 112, 246, 277

equal to 0, 114, 526

equal to 1, 341

increasing, 115

setting at runtime, 244

sorting, 117–120, 292, 912

type erasure and, 434–436

Arrays class

asList method, 509, 516, 526

binarySearch method, 120, 352

copyOf method, 115, 119, 276

copyOfRange method, 119

deepToString method, 122, 240

equals method, 120, 234

fill method, 120

hashCode method, 238

sort method, 117–119, 290, 292, 294, 314,

318

toString method, 114, 119

arrays/CopyOfTest.java, 278

ArrayStoreException, 431, 433, 441

Ascender, ascent (in typesetting), 576

ASCII standard, 51, 575

asList method (Arrays), 509, 516, 526

assert keyword, 384–388

Assertions, 384–388

checking parameters with, 386–387

defined, 384

documenting assumptions with, 387–388

enabling/disabling, 385–386

Assignment operator, 54, 61

Asynchronous methods, 915

atan, atan2 methods (Math), 58

Atomic operations, 886–889

client-side locking for, 883

in concurrent hash maps, 907–909

performance of, 888

AtomicType classes, 887

Audio files, accessing from applets, 816–817

@author comment (javadoc), 196, 199

Autoboxing, 252–256

AutoCloseable interface, 376

close method, 376–377

await method (Condition), 856, 873–877,

893–895

awaitUninterruptibly method (Condition), 893–895

AWT (Abstract Window Toolkit), 538

events in:

debugging, 774–778

hierarchy of, 624–628

tracing, 771

preferred field sizes in, 649

AWTEvent class, 624

B
\b (backspace escape sequence), 50

Background

default color for, 570–571

erasing, 842

painting, 558

Backspace, escape sequence for, 50

BadCastException, 451

Barriers, 936–937

Base classes. See Superclasses

Baseline (in typesetting), 576, 718

Basic multilingual planes, 51

BasicButtonUI class, 637

BasicService interface, 831

getCodeBase method, 831, 836

isWebBrowserSupported method, 836

showDocument method, 836

Batch files, 193

Beans, 780

beep method (Toolkit), 305

BiConsumer interface, 326

BiFunction interface, 319, 326

BIG-5 standard, 51

BigDecimal, BigInteger classes, 108–111

add, compareTo, subtract, multiply, divide, mod
methods, 110–111

valueOf method, 108, 110–111

BigIntegerTest/BigIntegerTest.java, 109

Binary search, 521–522

BinaryOperator interface, 326

binarySearch method

of Arrays, 120, 352

of Collections, 521–522

961Index

BiPredicate interface, 326

Bit masks, 63, 616

Bit sets, 532–536

and the sieve of Eratosthenes benchmark,

533–536

Bitecode files, 43

BitSet interface, 460, 532–536

methods of, 533

Bitwise operators, 63–64

Blank lines, printing, 46

Blocking queues, 898–905

BlockingDeque interface

offerFirst/Last, pollFirst/Last methods, 905

putFirst/Last, takeFirst/Last methods, 904

BlockingQueue interface

add, element, peek, remove methods, 898–899

offer, poll, put, take methods, 898–899,

904

blockingQueue/BlockingQueueTest.java, 900

Blocks, 44–45, 89–90

nested, 89

Boolean class

converting from boolean, 252

hashCode method, 237

boolean operators, 62, 64

boolean type, 52

default initialization of, 172

formatting output for, 83

no casting to numeric types for, 61

BooleanHolder class, 255

Border layout manager, 641–644

border/BorderFrame.java, 665

BorderFactory class, 664–668

createTypeBorder methods, 664–667

BorderLayout class, 641–644

constants of, 642

Borders, 664–668

compound, 664

rounded corners of, 665

styles of, 664

with a title, 664

bounce/Ball.java, 844

bounce/BallComponent.java, 845

bounce/Bounce.java, 842

bounceThread/BounceThread.java, 849

Bounded collections, 463

Bounding rectangle, 563–565

Bounds checking, 115

Box layout, 700

break statement, 104–108

labeled/unlabeled, 106

missing, 412

Bridge methods, 428–429, 440

brighter method (Color), 571

BrokenBarrierException, 937

Browsers

default, 831

display area of, 819–820

installing Java Plug-in in, 803

Java-enabled, 809

MIME types in, 825

running applets in, 8, 33–39, 802–803,

818–820

status bar of, 819–820

Buckets (of hash tables), 485

Bulk operations, 524–525

button/ButtonFrame.java, 594

ButtonGroup class, 660

add method, 663

getSelection method, 661, 663

ButtonModel interface, 636–638

getActionCommand method, 661, 663

getSelectedObjects method, 661

properties of, 637

Buttons

appearance of, 632

associating actions with, 610

clicking, 592

creating, 591

event handling for, 591–595

listening to, 592

model-view-controller analysis of,

636–638

rearranging automatically, 639

ButtonUIListener class, 637

Byte class

converting from byte, 252

hashCode method, 237

byte type, 47

ByteArrayOutputStream class, 830

C
C programming language

assert macro in, 385

event-driven programming in,

588

function pointers in, 279

integer types in, 6

Index962

C# programming language, 8

delegates in, 280

polymorphism in, 218

useful features of, 11

C++ programming language

, (comma) operator in, 65

:: operator in, 153, 207

>> operator in, 64

access privileges in, 156

algorithms in, 518

arrays in, 115, 126

bitset template in, 532

boolean values in, 52

classes in, 45

nested, 330

code units and code points in, 70

control flow in, 89

copy constructors in, 139

dynamic binding in, 209

dynamic casts in, 221

exceptions in, 361, 364–365, 369

fields in:

instance, 175–176

static, 161

for loop in, 100

function pointers in, 279

#include in, 184

inheritance in, 204, 213, 297

integer types in, 6, 47

methods in:

accessor, 142

default, 300

destructor, 181

static, 161

namespace, using directives in, 184

new operator in, 151

NULL, object pointers in, 139

operator overloading in, 109

passing parameters in, 167, 169

performance of, compared to Java, 534

polymorphism in, 218

protected modifier in, 228

pure virtual functions (= 0) in, 224

references in, 139

Standard Template Library in, 460, 465

static member functions in, 45

strings in, 68–69

superclasses in, 208

syntax of, 3

templates in, 11, 420, 423, 426

this pointer in, 176

type parameters in, 422

using iterators as parameters in, 530

variables in, 55

redefining in nested blocks, 90

vector template in, 247

virtual constructors in, 263

void* pointer in, 229

Cache, 827

calculator/CalculatorPanel.java, 645

Calendar class, 140

get/setTime methods, 218

Calendars

displaying, 142–144

vs. time measurement, 140

CalendarTest/CalendarTest.java, 144

Call by reference, 164

Call by value, 164–171

Callable interface, 927

call method, 915, 919

wrapper for, 916

Callables, 915–920

Callbacks, 302–305

Camel case (CamelCase), 43

cancel method (Future), 915, 920–921, 945

CancellationException, 945

Canned functionality, 934

canRead/Write methods (FileContents), 837

Carriage return, escape sequence for,

50

case statement, 104

cast method (Class), 451

Casts, 60–61, 219–221

bad, 360

checking before attempting, 220

catch statement, 367–381

ceiling method (NavigableSet), 493

ChangeListener interface, 672

stateChanged method, 672–673

char type, 50–51

Character class

converting from char, 252

hashCode method, 237

isJavaIdentifierXxx methods, 53

Characters, formatting output for, 83

charAt method (String), 70, 72

chart/Chart.java, 813

checkBox/CheckBoxFrame.java, 658

963Index

Checkboxes, 657–659

in menus, 683–684

Checked exceptions, 261–264

applicability of, 383

declaring, 361–364

suppressing with generics, 437–439

Checked views, 513

checkedCollection methods (Collections), 515

Child classes. See Subclasses

Choice components, 657–678

borders, 664–668

checkboxes, 657–659

combo boxes, 668–671

radio buttons, 660–663

sliders, 672–678

ChronoLocalDate interface, 446

Church, Alonzo, 315

circleLayout/CircleLayout.java, 725

circleLayout/CircleLayoutFrame.java, 728

Circular arrays, 462–463

Clark, Jim, 10

Clarke, Arthur C., 717

Class class, 261–263

cast method, 451

forName method, 261, 265

generic, 434, 450–453

getClass method, 261

getComponentType method, 277

getConstructor, getDeclaredConstructor methods,

451

getConstructors, getDeclaredConstructors methods,

266, 270

getDeclaredMethods method, 266, 270, 280

getEnumConstants method, 451

getField, getDeclaredField methods, 275

getFields, getDeclaredFields methods, 266, 270,

272, 275

getGenericXxx methods, 457

getImage, getAudioClip methods, 784

getMethod method, 280

getMethods method, 266, 270

getName method, 244, 261–262

getResource, getResourceAsStream methods, 784,

787

getSuperclass method, 244, 451

getTypeParameters method, 457

newInstance method, 263, 265, 451

Class constants, 55

Class diagrams, 134–135

.class file extension, 43

Class files, 185, 190

locating, 192

names of, 43, 147

class keyword, 42

Class loaders, 351, 385

Class path, 190–193

checking directories on, 412

setting, 193

Class wins rule, 301

Class<T> parameters, 452

ClassCastException, 220, 276, 295, 435, 441, 513

Classes, 131–132, 204–228

abstract, 221–227, 297

access privileges for, 156

adapter, 603–607

adding to packages, 185–188

analyzing:

capabilities of, 265–271

objects of, at runtime, 271–276

companion, 298–299

constructors for, 149

defining, 145–157

at runtime, 350

deprecated, 197

designing, 133, 200–202

documentation comments for, 194–198

encapsulation of, 131–132, 153–156

extending, 132

final, 217–218

generic, 245, 418–420, 441, 669

helper, 706–712

immutable, 157

implementing multiple interfaces, 296–297

importing, 183–184

inner, 329–349

anonymous, 606

instances of, 131, 136

loading, 262, 411

multiple source files for, 149

names of, 25, 43, 182, 201

full package, 183

number of basic types in, 200

package scope of, 189

parameters in, 152–153

predefined, 135–145

private methods in, 156–157

protected, 227–228

public, 194

Index964

accessing, 183

relationships between, 133–135

serializable, 412

sharing, among programs, 191

unit testing, 162

wrapper, 252–256

ClassLoader class, 388

CLASSPATH environment variable, 26, 193

clear method

of BitSet, 533

of Collection, 467, 469

clearAssertionStatus method (ClassLoader), 388

Client-side locking, 882–883

clone method

of array types, 311

of Object, 156, 306–313, 318

clone/CloneTest.java, 312

clone/Employee.java, 312

Cloneable interface, 306–313

CloneNotSupportedException, 310

close method

of AutoCloseable, 376–377

of Closeable, 376

of Handler, 406

Closeable interface, 376

Closures, 323

Code errors, 359

Code planes, 52

Code points, code units, 52, 70

Codebase (in JNLP files), 831

codePointAt, codePoints methods (String), 72

codePointCount method (String), 70, 73

Collection interface, 463, 469, 479

add method, 463, 467–469

addAll method, 467–468

clear method, 467, 469

contains, containsAll methods, 467–468, 479

equals method, 467

generic, 466–469

isEmpty method, 299, 467–468

iterator method, 463, 468

remove, removeAll methods, 467–468

removeIf method, 468, 524

retain method, 467

retainAll method, 469

size method, 467–468

toArray method, 249, 467, 469

Collections, 459–536

algorithms for, 517–528

bounded, 463

bulk operations in, 524–525

concrete, 472–496

concurrent modifications of, 479

converting to arrays, 525–526

debugging, 479

elements of:

inserting, 469

maximum, 517

removing, 465

traversing, 464

interfaces for, 460–471

legacy, 528–536

lightweight wrappers for, 509–510

ordered, 470, 476

performance of, 471, 486

searching in, 521–522

sorted, 489

thread-safe, 512–513, 905–915

type parameters for, 418

using for method parameters, 527

Collections class, 520

addAll method, 523

binarySearch method, 521–522

checkedCollection, emptyCollection methods, 515

copy method, 523

disjoint method, 524

fill method, 523

frequency method, 524

indexOfSubList, lastIndexOfSubList methods, 524

min, max methods, 523

nCopies method, 510, 515

replaceAll method, 523

reverse method, 524

rotate method, 524

shuffle method, 520–521

singleton, singletonCollection methods, 510,

515

sort method, 518–521

swap method, 524

synchronizedCollection methods, 512–513, 515,

915

unmodifiableCollection methods, 511–512, 514

Collections framework. See Java collections

framework (JCF)

Color choosers, 764–770

Color class, 569–573

brighter, darker methods, 571

predefined constants, 570

965Index

colorChooser/ColorChooserPanel.java, 767

Colors

background, 558, 570–571

changing, 609

custom, 570

foreground, 570

predefined, 570–572

system, 571

Columns (of a text field), 649

com.sun.java package, 599

Combo boxes, 668–671

adding items to, 669

current selection in, 669

comboBox/ComboBoxFrame.java, 670

Command line

compiling/launching Java from, 24

parameters in, 116

Comments, 46–47

blocks of, 46

for automatic documentation, 46, 194–199

in property files, 599

not nesting, 47

to the end of line, 46

Companion classes, 298–299

Comparable interface, 288, 352, 422–423, 446,

519

compareTo method, 289–293

comparator method (SortedMap), 493, 500

Comparator interface, 305–306, 314, 328–329,

519

chaining comparators in, 328

comparing method, 328–329

lambdas and, 318

naturalOrder method, 329

nullFirst/Last methods, 329

reversed, reverseOrder methods, 329, 519, 521

thenComparing method, 328–329

compare method (integer types), 294, 318

compareAndSet method (AtomicType), 887

compareTo method

in subclasses, 295

of BigDecimal, BigInteger, 110–111

of Comparable, 289–293, 422, 446

of Enum, 260

of String, 72

Compilation errors, 29

Compiler

autoboxing in, 254

bridge methods in, 428

command-line options of, 412

creating bytecode files in, 43

deducting method types in, 421

enforcing throws specifiers in, 368

error messages in, 29, 363

just-in-time, 6–7, 14, 153, 218, 413, 534

launching, 25

optimizing method calls in, 7, 218

overloading resolution in, 215

shared strings in, 67, 69

translating inner classes in, 336

translating typed array lists in, 252

type parameters in, 417

warnings in, 105, 252

whitespace in, 44

Completable futures, 931–934

combining, 933

composing, 932

exception handling in, 933

CompletableFuture class

acceptEither, applyToEither methods, 934

allOf, anyOf methods, 934

handle method, 933

runAfterXxx methods, 934

thenAccept, thenApply, thenApplyAsync, thenRun
methods, 933

thenAcceptBoth, thenCombine methods, 934

thenCompose method, 932–933

whenComplete method, 933

CompletionStage interface, 934

Component class, 627

getBackground/Foreground methods, 573

getFont method, 651

getPreferredSize method, 557, 559

getSize method, 552

inheritance hierarchies of, 640

isVisible method, 552

repaint method, 556, 559

setBackground/Foreground methods, 570, 573

setBounds method, 546, 548, 552, 724

setCursor method, 624

setLocation method, 546, 548, 552

setSize method, 552

setVisible method, 546, 552, 951

validate method, 651, 951

Components, 639

displaying information in, 553

labeling, 651–652

realized, 951

Index966

Composite design pattern, 631

CompoundInterest/CompoundInterest.java, 122

Computations

performance of, 56, 59

truncated, 56

compute, computeIfPresent/Absent methods (Map),

501

Concrete collections, 472–496

Concrete methods, 222

Concurrent hash maps

atomic updates in, 907–909

buckets as trees in, 906

bulk operations on, 909–911

efficiency of, 906

size of, 906

Concurrent modification detection, 479

Concurrent programming, 7, 839–952

synchronization in, 862–897

Concurrent sets, 912

ConcurrentHashMap class, 905–907

atomic updates in, 907–909

compute, computeIfXxx methods, 908–909

forEach method, 910–911

get method, 908

keySet, newKeySet methods, 912

mappingCount method, 906

merge method, 909

organizing buckets as trees in, 906

put, putIfAbsent methods, 908

reduce, reduceXxx methods, 910–911

replace method, 908

search, searchXxx methods, 910–911

vs. synchronization wrappers, 914

ConcurrentLinkedQueue class, 905, 907

ConcurrentModificationException, 478–479, 906,

914

ConcurrentSkipListMap class, 905–907

ConcurrentSkipListSet class, 905, 907

Condition interface, 878

await method, 856, 893–895

awaitUninterruptibly method, 893–895

signal, signalAll methods, 890

vs. synchronization methods, 880

Condition objects, 872–877

Condition variables, 872

Conditional statements, 90–94

config method (Logger), 390, 404

Configuration files, 794–800

Confirmation dialogs, 733

Console

debugging applets in, 807

printing messages to, 42–46

Console class

reading passwords with, 80

readLine/Password methods, 81

console method (System), 81

ConsoleHandler class, 394–399, 407

ConsoleWindow class, 770

const keyword, 56

Constants, 55–56

documentation comments for, 196

names of, 55

public, 56, 159

static, 159

Constructor class, 265

getDeclaringClass method, 270

getModifiers method, 265, 270

getName method, 265, 270

getXxxTypes methods, 270

newInstance method, 265, 452

Constructor references, 321–322

Constructors, 149–151, 171–182

calling another constructor in, 176

defined, 136

documentation comments for, 194

field initialization in:

default, 172–173

explicit, 174

final, 265

initialization blocks in, 177–181

names of, 136, 150

no-argument, 173, 208, 801

overloading, 172

parameter names in, 175

private, 265

protected, 194

public, 194, 265

with super keyword, 207

ConstructorTest/ConstructorTest.java, 179

Consumer interface, 326

Consumer threads, 898

Container class, 639

add method, 591, 595, 641

setLayout method, 641

Containers, 639

contains method

of Collection, 467–468, 479

of HashSet, 487

967Index

containsAll method (Collection), 467–468, 479

containsKey/Value methods (Map), 499

Content pane, 554

continue statement, 108

Control flow, 89–108

block scope, 89–90

breaking, 106–108

conditional statements, 90–94

loops, 94–99

determinate, 99–103

“for each,” 113–114

multiple selections, 103–105

Controllers, 633

Conversion characters, 82–83

Cooperative scheduling, 856

Coordinated Universal Time (UTC), 139

copy method (Collections), 523

copyArea method (Graphics), 583, 586

copyOf method (Arrays), 115, 119, 276

copyOfRange method (Arrays), 119

CopyOnWriteArrayList class, 912, 914

CopyOnWriteArraySet class, 912

Core Java program examples, 23

Cornell, Gary, 1

Corruption of data, 862–868

cos method (Math), 58

Count of Monte Cristo, The (Dumas), 490,

944–946

Countdown latches, 936

CountDownLatch class, 935–936

Covariant return types, 429

create method

of EventHandler, 598

of PersistenceService, 831, 837

createCustomCursor method (Toolkit), 618, 623

createDialog method (JColorChooser), 770

createFont method (Font), 575

createScreenCapture method (Robot), 778

createTypeBorder methods (BorderFactory),

664–667

createXxxGroup methods (GroupLayout), 722

Ctrl+\, for thread dump, 889

Ctrl+C, for program termination, 863, 875

Ctrl+O, Ctrl+S accelerators, 687

Ctrl+Shift+F1, in Swing, 770

Ctrl+Tab, in text fields, 729

current method (ThreadLocalRandom), 893

Current user, 794

currentThread method (Thread), 851–854

Cursor class, getPredefinedCursor method, 617

Cursor shapes, 618

Custom layout managers, 724–728

Customizations. See Preferences

CyclicBarrier class, 935–937

D
D suffix (double numbers), 49

Daemon threads, 859

darker method (Color), 571

Data exchange, 746–752

Data fields

initializing, 176–181

public, 150

Data types, 47–53

boolean type, 52

casting between, 60–61

char type, 50–51

conversions between, 59–60, 219–221

floating-point, 48–49

integer, 47–48

Databases, closing connections to, 372

dataExchange/DataExchangeFrame.java, 748

dataExchange/PasswordChooser.java, 749

Date and time

formatting output for, 83–84

no built-in types for, 136

Date class, 140

getDay/Month/Year methods (deprecated), 141

toString method, 137

DateInterval class, 428

Deadlocks, 874, 889–892, 896

breaking up, 893

in GUI, 897

Debugging, 8, 409–414

applets, 807

AWT events, 771, 774–778

collections, 479

debuggers for, 409

generic types, 513

GUI programs, 367, 770–778

including class names in, 344

intermittent bugs, 69, 545, 952

messages for, 366

reflection for, 272

trapping program errors in a file for, 411

when running applications in terminal

window, 25–26

DebugGraphics class, 771

Index968

Decorator design pattern, 631

Decrement operators, 61–62

Deep copies, 308

deepToString method (Arrays), 122, 240

Default methods, 298–300

resolving conflicts in, 300–302

Default packages, 185

default statement, 104, 298–300

DefaultButtonModel class, 636

DefaultComboBoxModel class, 669

Deferred execution, 325

delay method (Robot), 778

Delayed interface, 900

getDelay method, 900, 903

DelayQueue class, 900, 903

Delegates, 280

delete method

of PersistenceService, 838

of StringBuilder, 78

Dependence, 133–135

Deprecated classes, 197

Deprecated methods, 141, 197, 412

Deprecated variables, 197

@deprecated comment (javadoc), 197

Deque interface, 494–495

addFirst/Last methods, 494

getFirst/Last methods, 495

offerFirst/Last methods, 494

peekFirst/Last methods, 495

pollFirst/Last methods, 495

removeFirst/Last methods, 495

Deques, 494–495

Derived classes. See Subclasses

deriveFont method (Font), 575, 581

Descender, descent (in typesetting), 576

descendingIterator method (NavigableSet), 493

Design patterns, 630–632

Design Patterns—Elements of Reusable

Object-Oriented Software (Gamma et al.),

632

destroy method (Applet), 808

Determinate loops, 99–103

Development environments

choosing, 23–26

in terminal window, 25

integrated, 26–30

Device errors, 359

dialog/AboutDialog.java, 744

dialog/DialogFrame.java, 743

Dialogs, 730–770

accepting/canceling, 746

centering, 304

closing, 603–607, 688, 743, 746

color choosers, 764–770

confirmation, 733

creating, 741–745

data exchange in, 746–752

default button in, 748

displaying, 743

document- and toolkit-modal, 742

file, 752–764

input, 733

maximized, 603

modal, 730–741

modeless, 730, 742–743

data exchange with, 747

option, 731–741

pop-up, 821

root pane of, 748

traversal order of, 729–730

Diamond syntax, 245

Dijkstra, Edsger, 935

disjoint method (Collections), 524

divide method (BigDecimal, BigInteger), 110–111

Division operator, 56

do/while loop, 96, 99

Doclets, 199

Documentation comments, 46, 194–199

extracting, 198–199

for fields, 196

for methods, 195–196

for packages, 198

general, 196

HTML markup in, 194

hyperlinks in, 198

inserting, 194–195

links to other files in, 195

overview, 198

Document-modal dialogs, 742

doInBackground method (SwingWorker), 944–945,

950

Do-nothing methods, 604

Double brace initialization, 344

Double buffering, 771

Double class

compare method, 294

converting from double, 252

hashCode method, 237

969Index

Double class (continued)

POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN
constants, 49

double type, 48

arithmetic computations with, 56

converting to other numeric types,

59–60

DoubleAccumulator, DoubleAdder classes, 889

Double-precision numbers, 48–49

Doubly linked lists, 474

draw method (Graphics2D), 561

draw/DrawTest.java, 566

drawImage method (Graphics), 582, 585

Drawing with mouse, 616–624

drawString method (Graphics/Graphics2D), 581

Drop-down lists, 668

Dynamic binding, 209, 214–217

Dynamic languages, 8

E
e (exponent), in numbers, 49

E
as type variable, 419

constant (Math), 58

Echo character, 652–653

Eclipse, 24, 26–30, 409

configuring projects in, 28

editing source files in, 29

error messages in, 29–30

imports in, 183

SWT toolkit, 543

ECMA-262 (JavaScript subset), 15

Eiffel programming language, multiple

inheritance in, 297

element method

of BlockingQueue, 898–899

of Queue, 494

elements method (Hashtable, Vector), 530

Ellington, Duke, 539

Ellipse2D class, 560, 564–565

setFrameFromCenter method, 565

setFrameFromDiagonal method, 564

Ellipse2D.Double class, 569

Ellipses, 560, 564–565

bounding rectangles of, 563–565

constructing, 565

filling with color, 569

else statement, 92–93

else if statement, 93–94

EmployeeTest/EmployeeTest.java, 147

emptyCollection methods (Collections), 515

EmptyStackException, 381, 383

Encapsulation, 131–132

benefits of, 153–156

protected instance fields and, 284

endsWith method (String), 72

ensureCapacity method (ArrayList), 246–247

entering method (Logger), 405

Enterprise Edition (Java EE), 11, 18

entrySet method (Map), 502–503

Enum class, 258–260

compareTo, ordinal methods, 260

toString, valueOf methods, 258, 260

enum keyword, 65

Enumerated types, 65

equality testing for, 258

in switch statement, 105

Enumeration interface, 460, 528–530

nextElement, hasMoreElements methods, 465, 528,

530

Enumeration maps/sets, 506

Enumerations, 258–260, 818

legacy, 528–530

EnumMap class, 506, 508

as a concrete collection type, 472

enums/EnumTest.java, 259

EnumSet class, 506

allOf, noneOf, of, range methods, 508

as a concrete collection type, 472

EOFException, 364

Epoch, 139

equals method, 302

for wrappers, 254

hashCode method and, 236–237

implementing, 233

inheritance and, 231–235

of Arrays, 120, 234

of Collection, 467

of Object, 229–235, 244, 512

of proxy classes, 355

of Set, 471

of String, 68, 72

redefining, 236–237

equals/Employee.java, 241

equals/EqualsTest.java, 240

equals/Manager.java, 243

equalsIgnoreCase method (String), 68, 72

Error class, 360

Index970

Errors

checking, in mutator methods, 154

code, 359

compilation, 29

device, 359

internal, 360, 363, 386

messages for, 369

NoClassDefFoundError, 26

physical limitations, 359

ThreadDeath, 857, 862, 896

user input, 359

Escape sequences, 50

Event delegation model, 588

Event dispatch thread, 545, 846, 897

time-consuming tasks and, 939

Event handling, 587–628

defined, 587

for asynchronous actions, 931

semantic vs. low-level events, 626

summary of, 626–628

Event listeners, 588–589

with a single method call, 597

with lambda expressions, 595

Event objects, 588

Event procedures, 587

Event sources, 588–589

EventHandler class

create method, 598

creating listeners automatically with, 597

EventObject class, 588, 624

getActionCommand method, 624

getSource method, 598, 624

EventQueue class

invokeAndWait method, 940, 943

invokeLater method, 940, 943, 952

isDispatchThread method, 943

eventTracer/EventTracer.java, 772

ExampleFileView class, 757

Exception class, 360, 380

Exception handlers, 263, 359

Exception specification, 362

Exceptions

ArrayIndexOutOfBoundsException, 112, 361–363, 938

ArrayStoreException, 431, 433, 441

BadCastException, 451

BrokenBarrierException, 937

CancellationException, 945

catching, 263–265, 363, 367–381

multiple, 369–370

changing type of, 370

checked, 261–264, 361–364, 383

ClassCastException, 220, 276, 295, 435, 441,

513

classification of, 359–361

CloneNotSupportedException, 310

ConcurrentModificationException, 478–479, 906,

914

creating classes for, 365–366

documentation comments for, 196

EmptyStackException, 381, 383

EOFException, 364

FileNotFoundException, 362–364, 438

finally clause in, 372–376

generics in, 437–439

hierarchy of, 359, 383

IllegalAccessException, 272

IllegalStateException, 465, 469, 483, 494, 899

InterruptedException, 841, 847, 851–854,

893–895, 915

IOException, 88, 361, 364, 368, 375

logging, 392, 400

micromanaging, 381

NoSuchElementException, 464, 469, 483, 494–495

NullPointerException, 361, 383

NumberFormatException, 383

propagating, 368, 384

rethrowing and chaining, 370, 410

RuntimeException, 360, 383

ServletException, 370

squelching, 383

stack trace for, 377–381

“throw early, catch late,” 384

throwing, 263–265, 364–365

TimeoutException, 915

tips for using, 381–384

UnavailableServiceException, 830

uncaught, 411, 857, 860–862

unchecked, 264, 361–363, 383

unexpected, 392, 400

UnsupportedOperationException, 503, 510, 512, 514

using type variables in, 437

variables for, implicitly final, 370

vs. simple tests, 381

wrapping, 371

Exchanger class, 935, 937

Exchangers, 937

.exe file extension, 783

Executable JAR files, 782–783

971Index

Executable path, 20

execute method (SwingWorker), 945, 950

Execution flow, tracing, 391

ExecutionException, 933

ExecutorCompletionService class, 927

poll, submit, take methods, 928

Executors, 920–934

groups of tasks, controlling, 927–928

scheduled, 926

Executors class

newCachedThreadPool method, 921, 925

newFixedThreadPool method, 921, 925

newScheduledThreadPool method, 921, 926

newSingleThreadExecutor method, 921, 925

newSingleThreadScheduledExecutor method, 921,

926

ExecutorService interface, 921–922

invokeAny/All methods, 927–928

shutdown method, 922, 925

shutdownNow method, 922, 927

submit method, 921, 925

Exit codes, 45

exit method (System), 45

exiting method (Logger), 391, 405

exp method (Math), 58

Explicit parameters, 152–153

exportXxx methods (Preferences), 795, 800

ExtendedService class, 830

extends keyword, 204–228, 422–423

External padding, 704

F
F suffix (float numbers), 49

Factorial functions, 378

Factory methods, 161

Fair locks, 872

Fallthrough behavior, 105, 412

fdlibm (Freely Distributable Math Library),

59

Field class, 265

get method, 276

getDeclaringClass method, 270

getModifiers method, 265, 270

getName method, 265, 270

getType method, 265

set method, 276

Field width, of numbers, 82

Fields

adding, in subclasses, 207

default initialization of, 172–173

documentation comments for, 194,

196

final, 159, 218

instance, 131, 150–153, 157, 174, 200

private, 200, 206

protected, 194, 228, 283

public, 194, 196

public static final, 296

static, 158–159, 178, 185, 436

volatile, 885–886

File access warning, 831

File dialogs, 752–764

adding accessory components to, 757

fileChooser/FileIconView.java, 762

fileChooser/ImagePreviewer.java, 761

fileChooser/ImageViewerFrame.java, 759

FileContents class

canRead/Write methods, 837

getName method, 837

getXxxStream methods, 830, 837

FileFilter class (Swing)

accept method, 755, 764

getDescription method, 755, 764

FileFilter interface (java.io package), 755

FileHandler class, 394–399, 407

configuration parameters of, 396

FileNameExtensionFilter interface, 764

FileNotFoundException, 362–364, 438

FileOpenService class

openFileDialog method, 830, 837

openMultiFileDialog method, 837

Files

extensions of, 757

filters for, 755–757

MIME types of, 825

names of, 25, 87

opening/saving in GUI, 752–764

reading, 87

all words from, 376

in a separate thread, 944

writing, 87

FileSaveService class

saveAsFileDialog method, 837

saveFileDialog method, 830, 837

FileView class, 756

getIcon, getName, getDescription, getTypeDescription
methods, 756, 764

isTraversable method, 756, 764

Index972

fill method

of Arrays, 120

of Collections, 523

of Graphics2D, 569–570, 573

Filter interface, 398

isLoggable method, 398, 408

final access modifier, 55, 217–218

checking, 265

for fields in interfaces, 296

for instance fields, 157

for methods in superclass, 295

for shared fields, 886

inner classes and, 339–342

finalize method, 181–182

finally clause, 372–376

not completed normally, 412

return statements in, 374

unlock operation in, 869

without catch, 373

Financial calculations, 49

fine, finer, finest methods (Logger), 390, 404

Firefox, 34

first method (SortedSet), 493

First Person, Inc., 10

firstKey method (SortedMap), 500

FirstSample/FirstSample.java, 46

Float class

converting from float, 252

hashCode method, 237

POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN
constants, 49

float type, 48

converting to other numeric types, 59–60

Floating-point numbers, 48–49

arithmetic computations with, 56

equality of, 101

formatting output for, 82–83

rounding, 49, 60

Floating-point overflow, 57

floor method (NavigableSet), 493

floorMod method (Math), 57

Flow layout manager, 638

FlowLayout class, 641

flush method (Handler), 406

FocusAdapter class, 626

FocusEvent class, 626

isTemporary method, 627

FocusListener interface, 626

focusGained/Lost methods, 627

Font class, 574–581

createFont method, 575

deriveFont method, 575, 581

getFamily, getFontName, getName methods, 580

getLineMetrics method, 577, 580

getStringBounds method, 576–577, 580

font/FontTest.java, 578

fontconfig.properties file, 575

FontMetrics class, getFontRenderContext method,

582

Fonts, 573–582

checking availability of, 573

face/family names of, 573

logical names of, 574

size of, 574–575

styles of, 575

typesetting properties of, 576

“for each” loop, 112–114

for array lists, 249

for collections, 464, 914

for multidimensional arrays, 122

for loop, 99–103

comma-separated lists of expressions in,

65

defining variables inside, 101

for collections, 464

forEach method

of ConcurrentHashMap, 910–911

of Map, 499

Foreground color, specifying, 570

Fork-join framework, 928

forkJoin/ForkJoinTest.java, 930

Format specifiers (printf), 82

format, formatTo methods (String), 83

Formattable interface, 83

Formatter class, methods of, 399, 408

forName method (Class), 261, 265

Frame class, 543

get/setExtendedState method, 553

getIconImage method, 553

getTitle method, 553

is/setUndecorated methods, 553

isResizable method, 553

setIconImage method, 546, 553

setResizable method, 546, 553

setTitle method, 546, 553

Frames

closing by user, 545

creating, 543–546

973Index

Frames (continued)

decorating, 546

displaying:

information in, 554–560

text in, 557

positioning, 546–554

properties of, 549

size of, 549–554

frequency method (Collections), 524

Full-screen mode, 550

Function interface, 326

Functional interfaces, 318–319

abstract methods in, 318

annotating, 328

conversion to, 318

generic, 319

using supertype bounds in, 447

@FunctionalInterface annotation, 328

Functions. See Methods

Future interface, 927

cancel method, 915, 920–921, 945

get method, 915, 919, 921, 945

isCancelled, isDone methods, 915, 920–921

future/FutureTest.java, 917

Futures, 915–920

combining multiple, 934

completable, 931–934

FutureTask class, 915–920

G
Garbage collection, 68, 139

hash maps and, 504

GB18030 standard, 51

General Public License (GPL), 14

Generic programming, 415–458

classes in, 245, 418–420, 669

extending/implementing other generic

classes, 441

no throwing or catching instances of,

436–437

collection interfaces in, 525

converting to raw types, 412, 441

debugging, 513

expressions in, 426

in JVM, 425, 452–458

inheritance rules for, 440–442

legacy code and, 429

methods in, 421–422, 427–429, 466–469

not for arrays, 434–436

reflection and, 450–458

required skill levels for, 417

static fields or methods and, 436

type erasure in, 425–430, 434

clashes after, 439–440

type matching in, 452

vs. arrays, 321

vs. inheritance, 416–418

wildcard types in, 442–450

GenericArrayType interface, 453

getGenericComponentType method, 458

genericReflection/GenericReflectionTest.java, 454

get method

of Array, 279

of ArrayList, 247, 251

of BitSet, 533

of ConcurrentHashMap, 908

of Field, 276

of Future, 915, 919, 921, 945

of LinkedList, 480

of List, 470, 483

of LongAccumulator, 888

of Map, 469, 497, 499

of PersistenceService, 838

of Preferences, 795, 800

of ThreadLocal, 893

of Vector, 883

getActionCommand method

of ActionEvent, 598, 627

of ButtonModel, 661, 663

of EventObject, 624

getActionMap method (JComponent), 615

getActualTypeArguments method (ParameterizedType),

458

getAdjustable, getAdjustmentType methods

(AdjustmentEvent), 627

getAncestorOfClass method (SwingUtilities), 747,

752

getAndType methods (AtomicType), 887

getApplet, getApplets methods (AppletContext), 818,

820

getAppletContext method (Applet), 818–820

getAppletInfo method (Applet), 816

getAscent method (LineMetrics), 581

getAudioClip method (Class), 784, 817

getAutoCreateXxx methods (GroupLayout), 722

getAvailableFontFamilyNames method

(GraphicsEnvironment), 573

getBackground method (Component), 573

Index974

getBoolean method (Array), 279

getBounds method (TypeVariable), 457

getByte method (Array), 279

getCause method (Throwable), 379

getCenterX/Y methods (RectangularShape), 563, 568

getChar method (Array), 279

getClass method

always returning raw types, 431

of Class, 261

of Object, 244

getClassName method

of LookAndFeelInfo, 603

of StackTraceElement, 380

getClickCount method (MouseEvent), 616, 623, 627

getCodeBase method

of Applet, 816–817

of BasicService, 831, 836

getColor method

of Graphics, 572

of JColorChooser, 770

getColumns method (JTextField), 650

getComponentPopupMenu method (JComponent), 686

getComponentType method (Class), 277

getConstructor method (Class), 451

getConstructors method (Class), 266, 270

getContentPane method (JFrame), 559

getDataType methods (Preferences), 795, 800

getDay method (Date, deprecated), 141

getDayXxx methods (LocalDate), 141, 145

getDeclaredConstructor method (Class), 451

getDeclaredConstructors method (Class), 266, 270

getDeclaredField method (Class), 275

getDeclaredFields method (Class), 266, 270, 272,

275

getDeclaredMethods method (Class), 266, 270, 280

getDeclaringClass method (java.lang.reflect), 270

getDefaultScreenDevice method (GraphicsEnvironment),

774, 778

getDefaultToolkit method (Toolkit), 305, 549, 553

getDefaultUncaughtExceptionHandler method (Thread),

861

getDelay method (Delayed), 900, 903

getDescent method (LineMetrics), 581

getDescription method

of FileFilter, 755, 764

of FileView, 756, 764

getDocumentBase method (Applet), 816–817

getDouble method (Array), 279

getEnumConstants method (Class), 451

getExceptionTypes method (Constructor), 270

getExtendedState method (Frame), 553

getFamily method (Font), 580

getField method (Class), 275

getFields method (Class), 266, 270, 275

getFileName method (StackTraceElement), 380

getFilter method (Handler, Logger), 406

getFirst/Last methods

of Deque, 495

of LinkedList, 484

getFloat method (Array), 279

getFont method

of Component, 651

of Graphics, 581

getFontMetrics method (JComponent), 577, 582

getFontName method (Font), 580

getFontRenderContext method

of FontMetrics, 582

of Graphics2D, 576, 582

getForeground method (Component), 573

getFormatter method (Handler), 406

getGenericComponentType method (GenericArrayType),

458

getGenericParameterTypes, getGenericReturnType
methods (Method), 457

getGenericXxx methods (Class), 457

getGlobal method (Logger), 389, 410

getHandlers method (Logger), 406

getHead method (Formatter), 399, 408

getHeight method

of LineMetrics, 581

of RectangularShape, 563, 568

getHonorsVisibility, getHorizontalGroup methods

(GroupLayout), 722

getIcon method

of FileView, 756, 764

of JLabel, 652

getIconImage method (Frame), 553

getImage method

of Applet, 817

of Class, 784

of ImageIcon, 554, 582

getInheritsPopupMenu method (JComponent), 686

getInputMap method (JComponent), 612, 615

getInputStream method (FileContents), 830, 837

getInstalledLookAndFeels method (UIManager), 602

getInt method (Array), 279

getItem, getItemSelectable methods (ItemEvent),

627

975Index

getItemAt method (JComboBox), 669

getKey method (Map.Entry), 503

getKeyStroke method (KeyStroke), 610, 615

getKeyXxx methods (KeyEvent), 627

getLargestPoolSize method (ThreadPoolExecutor), 926

getLeading method (LineMetrics), 581

getLength method (Array), 277, 279

getLevel method

of Handler, 406

of Logger, 405

of LogRecord, 407

getLineMetrics method (Font), 577, 580

getLineNumber method (StackTraceElement), 380

getLocalGraphicsEnvironment method

(GraphicsEnvironment), 774,

778

getLogger method (Logger), 390, 404

getLoggerName method (LogRecord), 407

getLong method (Array), 279

getLowerBounds method (WildcardType), 458

getMaxX/Y methods (RectangularShape), 568

getMessage method

of LogRecord, 407

of Throwable, 366

getMethod method (Class), 280

getMethodName method (StackTraceElement), 380

getMethods method (Class), 266, 270

getMillis method (LogRecord), 408

getMinX/Y methods (RectangularShape), 568

getModifiers method

of ActionEvent, 627

of java.lang.reflect, 265, 270

getModifiersEx method (InputEvent), 617, 623

getModifiersExText method (InputEvent), 623

getMonth method (Date, deprecated), 141

getMonthXxx methods (LocalDate), 141, 145

getName method

of Class, 244, 261–262

of FileContents, 837

of FileView, 756, 764

of Font, 580

of java.lang.reflect, 265, 270

of LookAndFeelInfo, 603

of TypeVariable, 457

getNames method (PersistenceService), 838

getNewState, getOldState methods (WindowEvent),

607, 628

getOppositeWindow method (WindowEvent), 628

getOrDefault method (Map), 499

getOutputStream method (FileContents), 830, 837

getOwnerType method (ParameterizedType), 458

getPaint method (Graphics2D), 573

getParameter method (Applet), 810–811, 816

getParameterInfo method (Applet), 816

getParameters method (LogRecord), 407

getParameterTypes method (Method), 270

getParent method (Logger), 406

getPassword method (JPasswordField), 653

getPoint method (MouseEvent), 623, 627

getPredefinedCursor method (Cursor), 617

getPreferredSize method (Component), 557, 559

getProperties method (System), 789, 793

getProperty method

of Properties, 531, 789, 792

of System, 793

getProxyClass method (Proxy), 355–356

getRawType method (ParameterizedType), 458

getResource, getResourceAsStream methods (Class),

784, 787

getResourceBundle, getResourceBundleName methods

(LogRecord), 407

getReturnType method (Method), 270

getRootPane method (JComponent), 748, 752

getScreenSize method (Toolkit), 549, 553

getScrollAmount method (MouseWheelEvent), 628

getSelectedFile/Files methods (JFileChooser), 754,

763

getSelectedItem method (JComboBox), 669–671

getSelectedObjects method (ItemSelectable), 661

getSelection method (ButtonGroup), 661, 663

getSequenceNumber method (LogRecord), 408

getServiceNames method (ServiceManager), 836

getShort method (Array), 279

getSize method (Component), 552

getSource method (EventObject), 598, 624

getSourceXxxName methods (LogRecord), 408

getStackTrace method (Throwable), 377, 379

getState method

of SwingWorker, 950

of Thread, 858

getStateChange method (ItemEvent), 627

getStringBounds method (Font), 576–577, 580

getSuperclass method (Class), 244, 451

getSuppressed method (Throwable), 377, 380

getTail method (Formatter), 399, 408

Getter/setter pairs. See Properties

getText method

of JLabel, 652

Index976

of JTextComponent, 650

getThreadID method (LogRecord), 408

getThrown method (LogRecord), 408

getTime method (Calendar), 218

getTitle method (Frame), 553

getType method (Field), 265

getTypeDescription method (FileView), 756, 764

getTypeParameters method (Class, Method), 457

getUncaughtExceptionHandler method (Thread), 861

getUpperBounds method (WildcardType), 458

getUseParentHandlers method (Logger), 406

getValue method

of Action, 608, 615

of AdjustmentEvent, 627

of Map.Entry, 503

getWheelRotation method (MouseWheelEvent), 628

getWidth method

of Rectangle2D, 563

of RectangularShape, 563, 568

getWindow method (WindowEvent), 628

getX/Y methods

of MouseEvent, 616, 623, 627

of RectangularShape, 568

getYear method

of Date (deprecated), 141

of LocalDate, 141, 145

GMT (Greenwich Mean Time), 139

Goetz, Brian, 840, 885

Gosling, James, 10–11

goto statement, 89, 106

Graphical User Interface (GUI), 537–586

automatic testing, 774–778

components of, 629–778

choice components, 657–678

dialog boxes, 730–770

text input, 648–656

toolbars, 694–696

tooltips, 696–699

traversal order of, 729–730

deadlocks in, 897

debugging, 367, 770–778

events in, 587

keyboard focus in, 611

layout of, 638–648, 699–730

multithreading for, 846–851

Graphics class, 560, 582–586

copyArea method, 583, 586

drawImage method, 582, 585

drawString method, 581

get/setFont methods, 581

getColor method, 572

setColor method, 570, 572

Graphics editor applications, 616–624

Graphics2D class, 560–569

draw method, 561

drawString method, 582

fill method, 569–570, 573

getFontRenderContext method, 576, 582

getPaint method, 573

setPaint method, 569, 573

GraphicsDevice class, 550, 774

GraphicsEnvironment class, 550

getAvailableFontFamilyNames method, 573

getDefaultScreenDevice method, 774, 778

getLocalGraphicsEnvironment method, 774, 778

Green project, 10

GregorianCalendar class, 142

add method, 142

constructors for, 140, 172

Grid bag layout, 700–712

padding in, 704

Grid layout, 644–648

gridbag/FontFrame.java, 707

gridbag/GBC.java, 709

GridBagConstraints class, 703

fill, anchor parameters, 704, 712

gridx/y, gridwidth/height parameters, 703–706,

712

helper class for, 706–712

insets field, 704, 712

ipadx/y parameters, 712

weightx/y fields, 703, 712

GridLayout class, 641, 644–648

Group layout, 701, 713–723

GroupLayout class, 713–723

methods of, 722

groupLayout/FontFrame.java, 719

GroupLayout.Group class, 723

GroupLayout.ParallelGroup class, 723

GroupLayout.SequentialGroup class, 723

GTK look-and-feel, 539–540

GUI. See Graphical User Interface

H
handle method (CompletableFuture), 933

Handler class, 397

close method, 406

flush method, 406

977Index

Handler class (continued)

get/setFilter methods, 406

get/setLevel methods, 406

getFormatter method, 406

publish method, 398, 406

setFormatter method, 399, 406

Handlers, 394–398

Hansen, Per Brinch, 884

“Has–a” relationship, 133–135

hash method (Objects), 237

Hash codes, 235–238, 485

default, 235

formatting output for, 83

Hash collisions, 486

Hash maps, 497

concurrent, 905–907

identity, 507–509

linked, 504–506

setting, 497

vs. tree maps, 497

weak, 504

Hash sets, 485–489

adding elements to, 490

linked, 504–506

Hash tables, 485

legacy, 528

load factor of, 486

rehashing, 486

hashCode method, 235–238

equals method and, 236–237

null-safe, 236

of Arrays, 238

of Boolean, Byte, Character, Double, Float, Integer,

Long, Short, 237

of Object, 237, 489

of Objects, 236–237

of proxy classes, 355

of Set, 471

of String, 485

HashMap class, 497, 500

as a concrete collection type, 472

HashSet class, 464, 487–488

add method, 487

as a concrete collection type, 472

contains method, 487

Hashtable interface, 460, 528, 914–915

as a concrete collection type, 472

elements, keys methods, 530

synchronized methods, 528

hasMoreElements method (Enumeration), 465, 528,

530

hasNext method

of Iterator, 463, 465, 469

of Scanner, 81

hasNextType methods (Scanner), 81

hasPrevious method (ListIterator), 476, 483

headMap method

of NavigableMap, 517

of SortedMap, 511, 516

headSet method (NavigableSet, SortedSet), 511,

516

Heap, 495

dumping, 413

Height (in typesetting), 576

Helper classes, 706–712

Helper methods, 156, 448

Hexadecimal numbers

formatting output for, 82–83

prefix for, 48

higher method (NavigableSet), 493

Hoare, Tony, 884

Hold count, 870

Holder types, 255

HotJava browser, 11, 802

Hotspot just-in-time compiler, 534

HTML (HyperText Markup Language),

12–13

applet element, 34, 805, 808–810

param element, 810–816

tables, 701

target attribute, 820

title element, 807

HTML editors, 633

I
Icons

associating with file extensions, 757

in menu items, 682–683

in sliders, 674

Identity hash maps, 507–509

identityHashCode method (System), 507, 509

IdentityHashMap class, 507–509

as a concrete collection type, 472

IEEE 754 specification, 49, 59

if statement, 90–94

IFC (Internet Foundation Classes), 538

IllegalAccessException, 272

IllegalStateException, 465, 469, 483, 494, 899

Index978

image/ImageTest.java, 583

ImageIcon class, 550

getImage method, 554, 582

Images

accessing from applets, 816–817

displaying, 582–586

ImageViewer/ImageViewer.java, 31

Immutable classes, 157

Implementations, 460

implements keyword, 290

Implicit parameters, 152–153

none, in static methods, 160

state of, 409

import statement, 183–184

static, 185

importPreferences method (Preferences), 795,

800

Inconsistent state, 896

increment method (LongAdder), 888

Increment operators, 61–62

Incremental linking, 7

incrementAndGet method (AtomicType), 887

Index (in arrays), 111

indexOf method

of List, 483

of String, 73

indexOfSubList method (Collections), 524

info method (Logger), 389–390, 404

Information hiding. See Encapsulation

Inheritance, 133–135, 203–286

design hints for, 283–286

equality testing and, 231–235

hierarchies of, 212–213

multiple, 213, 297

preventing, 217–218

vs. type parameters, 416, 440–442

inheritance/Employee.java, 210

inheritance/Manager.java, 211

inheritance/ManagerTest.java, 210

init method (Applet), 807, 811

initCause method (Throwable), 379

Initialization blocks, 177–181

static, 178

initialize method (ThreadLocal), 893

Inlining, 7, 218

Inner classes, 329–349

accessing object state with, 331–334

anonymous, 329, 342–345, 606

applicability of, 335–338

defined, 329

local, 339

private, 333

static, 331, 346–349

syntax of, 334–335

vs. lambdas, 318

innerClass/InnerClassTest.java, 333

Input dialogs, 733

Input maps, 611–613

Input, reading, 79–81

InputEvent class

getModifiersEx method, 617, 623

getModifiersExText method, 623

InputTest/InputTest.java, 80

insert method

of JMenu, 681

of JTextArea, 951

of StringBuilder, 78

insertItemAt method (JComboBox), 669, 671

insertSeparator method (JMenu), 681

Instance fields, 131

final, 157

initializing, 200

explicit, 174

not present in interfaces, 289, 296

private, 150, 200

protected, 283

public, 150

shadowing, 151, 175–176

values of, 153–154

volatile, 885–886

vs. local variables, 151–152, 173

instanceof operator, 64, 220–221, 295

Instances, 131

creating on the fly, 263

int type, 47

converting to other numeric types,

59–60

fixed size for, 6

platform-independence of, 48

random number generator for, 181

Integer class

compare method, 294, 318

converting from int, 252

hashCode method, 237

intValue method, 255

parseInt method, 254, 256, 811

toString method, 256

valueOf method, 256

979Index

Integer types, 47–48

arithmetic computations with, 56

arrays of, 240

formatting output for, 82

no unsigned types in Java, 48

Integrated Development Environment (IDE),

20, 26–30

Inter-applet communication, 810, 818

interface keyword, 288

Interface types, 462

Interface variables, 295

Interfaces, 288–305

abstract classes and, 297

callbacks and, 302–305

constants in, 296

defined, 288

documentation comments for, 194

evolution of, 299

extending, 295

for custom algorithms, 526–528

functional, 318–319

listener, 588

marker, 309

methods in, 298

clashes between, 300–302

do-nothing, 604

nonabstract, 318

no instance fields in, 289, 296

properties of, 295–296

public, 194

tagging, 309, 426, 471

vs. implementations, 460–463

interfaces/Employee.java, 293

interfaces/EmployeeSortTest.java, 292

Intermittent bugs, 69, 545, 952

Internal errors, 360, 363, 386

Internal padding, 704

Internationalization. See Localization

Internet Explorer

applets in, 810

Java in, 9

limited Java support in, 803

security of, 15

Interpreted languages, 14

Interpreter, 7

interrupt method (Thread), 851–854

interrupted method (Thread), 853–854

InterruptedException, 841, 847, 851–854, 893–895,

915

IntHolder class, 255

Intrinsic locks, 878, 884

Introduction to Algorithms (Cormen et al.),

489

intValue method (Integer), 255

Invocation handlers, 350

InvocationHandler interface, 350, 355

invoke method

of InvocationHandler, 350, 355

of Method, 279–283

invokeAndWait method (EventQueue), 940, 943

invokeAny/All methods (ExecutorService),

927–928

invokeLater method (EventQueue), 940, 943, 952

IOException, 88, 361, 364, 368, 375

“Is–a” relationship, 133–135, 213, 284

isAbstract method (Modifier), 271

isAccessible method (AccessibleObject), 275

isActionKey method (KeyEvent), 627

isCancelled, isDone methods (Future), 915,

920–921

isDefaultButton method (JButton), 752

isDispatchThread method (EventQueue), 943

isEditable method

of JComboBox, 671

of JTextComponent, 648

isEmpty method (Collection), 299, 467–468

isEnabled method (Action), 608, 615

isFinal method (Modifier), 265, 271

isInterface method (Modifier), 271

isInterrupted method (Thread), 851–854

isJavaIdentifierXxx methods (Character), 53

isLocationByPlatform method (Window), 552

isLoggable method (Filter), 398, 408

isNaN method (Double), 49

isNative method (Modifier), 271

isNativeMethod method (StackTraceElement), 381

ISO 8859–1 standard, 51

isPopupTrigger method

of JPopupMenu, 685

of MouseEvent, 686

isPrivate method (Modifier), 265, 271

isProtected method (Modifier), 271

isProxyClass method (Proxy), 355–356

isPublic method (Modifier), 265, 271

isResizable method (Frame), 553

isSelected method

of AbstractButton, 684

of JCheckBox, 658–659

Index980

isStatic, isStrict, isSynchronized methods

(Modifier), 271

isTemporary method (FocusEvent), 627

isTraversable method (FileView), 756, 764

isUndecorated method (Frame), 553

isVisible method (Component), 552

isVolatile method (Modifier), 271

isWebBrowserSupported method (BasicService), 836

ItemEvent class, 626

getItem, getItemSelectable, getStateChange
methods, 627

ItemListener interface, 626

itemStateChanged method, 627

ItemSelectable interface, getSelectedObjects
method, 661

Iterable interface, 113

iterator method

of Collection, 463, 468

of ServiceLoader, 802

Iterator interface, 463–466

“for each” loop, 464

generic, 466

hasNext, next, remove methods, 463, 465,

469

Iterators, 463–466

being between elements, 465

weakly consistent, 906

IzPack utility, 783

J
J# programming language, 8

J++ programming language, 8

delegates in, 280

JApplet class, 803–808

Jar Bundler utility, 783

JAR files, 190, 780–787

creating, 780

digitally signed, 822–824

dropping in jre/lib/ext directory, 193

executable, 782–783

manifest of, 781–782

resources and, 783–787

sealing, 787

jar program, 780

command-line options of, 781–782

Java programming language

architecture-neutral object file format of,

5

as a programming platform, 1–2

available under GPL, 14

basic syntax of, 42–46, 145

calling by value in, 165

case-sensitiveness of, 26, 42, 53–56, 528

communicating with JavaScript, 809

compiling/launching from the command

line, 24

design of, 2–8

documentation for, 23

dynamic, 8

dynamic binding in, 209, 214–217

garbage collection in, 68, 139

history of, 10–12

interpreter in, 7

libraries in, 12–13

installing, 22–23

misconceptions about, 13–15

multithreading in, 7, 839–952

networking capabilities of, 4

no multiple inheritance in, 297

no operator overloading in, 109

no unsigned types in, 48

performance of, 7, 14, 534

portability of, 6, 13, 56

reliability of, 4

reserved words in, 43, 53, 56

security of, 4–5, 14, 820–822

simplicity of, 3, 315

strongly typed, 47, 291

versions of, 11–12, 538, 700

vs. C++, 3

Java 2 (J2), 18

Java 2D library, 560–569

floating-point coordinates in, 561

Java bug parade, 44, 393

Java collections framework (JCF), 459–536

algorithms in, 517–528

converting between collections and arrays

in, 525–526

interfaces in, 469–471

legacy classes in, 528–536

operations in:

bulk, 524–525

optional, 514

separating interfaces from

implementations in, 460–463

views and wrappers in, 509–517

vs. traditional collections libraries, 465

Java Concurrency in Practice (Goetz), 840

981Index

Java Development Kit (JDK), 5, 17–39

applet viewer, 805–806

documentation in, 74–77, 612

downloading, 18–20

fonts shipped with, 574

installation of, 18–23

default, 780

setting up, 20–22

.java file extension, 43

Java Language Specification, 43

Java look-and-feel, 611

Java Memory Model and Thread

Specification, 885

Java Network Launch Protocol (JNLP),

824–838

Java Plug-in, 802–824

control panel of, 827

enabling, 34

installing, 803

Java console in, 807

restrictiveness of, 9, 822

running local applets in, 806

signed code in, 822–824

java program, 25

command-line options of, 385–386

Java Runtime Environment (JRE), 18

Java SE 8, 12, 18

adding static methods to interfaces in,

298–299, 523

completable futures in, 931

concurrent hash maps in, 906–911

constructor expressions in, 433

hash tables in, 486

Java Plug-in for, 34

lambda expressions in, 314–329, 464, 887

LongAdder, LongAccumulator classes in, 888

parallelized operations on arrays in, 912

Java virtual machine (JVM), 6

generics in, 425, 452–458

launching, 25

monitoring and managing applications

in, 412

optimizing execution in, 391

precomputing method tables in, 216

security vulnerabilities in, 803

thread priority levels in, 859

truncating arithmetic computations in,

56

watching class loading in, 411

Java Virtual Machine Specification, 44

Java Web Start, 824–838

launching, 826

printing in, 832

security of, 829

java.applet.Applet API, 807–808, 816–817, 820

java.applet.AppletContext API, 820

java.awt.BorderLayout API, 644

java.awt.Color API, 572

java.awt.Component API, 552, 559, 573, 624, 651,

724

java.awt.Container API, 595, 641

java.awt.event.ActionEvent API, 598

java.awt.event.InputEvent API, 623

java.awt.event.MouseEvent API, 623, 686

java.awt.event.WindowEvent API, 607

java.awt.event.WindowListener API, 606

java.awt.event.WindowStateListener API, 607

java.awt.EventQueue API, 943

java.awt.FlowLayout API, 641

java.awt.Font API, 580–581

java.awt.font.LineMetrics API, 581

java.awt.FontMetrics API, 582

java.awt.Frame API, 553

java.awt.geom.Ellipse2D.Double API, 569

java.awt.geom.Line2D.Double API, 569

java.awt.geom.Point2D.Double API, 569

java.awt.geom.Rectangle2D.Double API, 568

java.awt.geom.Rectangle2D.Float API, 569

java.awt.geom.RectangularShape API, 568

java.awt.Graphics API, 572, 581, 585–586

java.awt.Graphics2D API, 573, 582

java.awt.GraphicsEnvironment API, 778

java.awt.GridLayout API, 648

java.awt.LayoutManager API, 728

java.awt.Robot API, 778

java.awt.Toolkit API, 305, 553, 623

java.awt.Window API, 552, 560

java.beans.EventHandler API, 598

java.io.Console API, 81

java.io.PrintWriter API, 89

java.lang.Boolean API, 237

java.lang.Byte API, 237

java.lang.Character API, 237

java.lang.Class API, 244, 265, 270, 275, 451,

457, 787

java.lang.ClassLoader API, 388

java.lang.Comparable API, 293

java.lang.Double API, 237, 294

Index982

java.lang.Enum API, 260

java.lang.Exception API, 380

java.lang.Float API, 237

java.lang.Integer API, 237, 255–256, 294

java.lang.Long API, 237

java.lang.Object API, 132, 237, 244, 489,

881–882

java.lang.Objects API, 237

java.lang.reflect package, 265, 276

java.lang.reflect.AccessibleObject API, 275

java.lang.reflect.Array API, 279

java.lang.reflect.Constructor API, 265, 270, 452

java.lang.reflect.Field API, 270, 276

java.lang.reflect.GenericArrayType API, 458

java.lang.reflect.InvocationHandler API, 355

java.lang.reflect.Method API, 270, 283, 457

java.lang.reflect.Modifier API, 271

java.lang.reflect.ParameterizedType API, 458

java.lang.reflect.Proxy API, 356

java.lang.reflect.TypeVariable API, 457

java.lang.reflect.WildcardType API, 458

java.lang.Runnable API, 851

java.lang.RuntimeException API, 380

java.lang.Short API, 237

java.lang.StackTraceElement API, 380–381

java.lang.String API, 72–73

java.lang.StringBuilder API, 78

java.lang.System API, 81, 509, 793

java.lang.Thread API, 846, 851, 854, 858–861

java.lang.Thread.UncaughtExceptionHandler API, 861

java.lang.ThreadGroup API, 862

java.lang.ThreadLocal API, 893

java.lang.Throwable API, 265, 366, 379–380

java.math.BigDecimal API, 111

java.math.BigInteger API, 110

java.nio.file.Paths API, 89

java.text.NumberFormat API, 256

java.time.LocalDate API, 145

java.util.ArrayDeque API, 495

java.util.ArrayList API, 247, 251

java.util.Arrays API, 119–120, 234, 238, 294,

516

java.util.BitSet API, 533

java.util.Collection API, 468–469, 524

java.util.Collections API, 514–515, 520–524,

915

java.util.Comparator API, 521

java.util.concurrent package, 868

canned functionality classes in, 934–937

efficient collections in, 905–907

java.util.concurrent.ArrayBlockingQueue API, 903

java.util.concurrent.atomic package, 886

java.util.concurrent.BlockingDeque API, 904–905

java.util.concurrent.BlockingQueue API, 904

java.util.concurrent.Callable API, 919

java.util.concurrent.ConcurrentHashMap API, 907

java.util.concurrent.ConcurrentLinkedQueue API, 907

java.util.concurrent.ConcurrentSkipListMap API, 907

java.util.concurrent.ConcurrentSkipListSet API, 907

java.util.concurrent.Delayed API, 903

java.util.concurrent.DelayQueue API, 903

java.util.concurrent.ExecutorCompletionService API,

928

java.util.concurrent.Executors API, 925–926

java.util.concurrent.ExecutorService API, 925, 928

java.util.concurrent.Future API, 919–920

java.util.concurrent.FutureTask API, 920

java.util.concurrent.LinkedBlockingQueue API, 903

java.util.concurrent.locks.Condition API, 877, 895

java.util.concurrent.locks.Lock API, 871, 877, 894

java.util.concurrent.locks.ReentrantLock API, 872

java.util.concurrent.locks.ReentrantReadWriteLock API,

896

java.util.concurrent.PriorityBlockingQueue API, 904

java.util.concurrent.ScheduledExecutorService API,

926

java.util.concurrent.ThreadLocalRandom API, 893

java.util.concurrent.ThreadPoolExecutor API, 926

java.util.concurrent.TransferQueue API, 905

java.util.Deque API, 494–495

java.util.Enumeration API, 530

java.util.EnumMap API, 508

java.util.EnumSet API, 508

java.util.EventObject API, 598

java.util.function API, 319

java.util.HashMap API, 500

java.util.HashSet API, 488

java.util.Hashtable API, 530

java.util.IdentityHashMap API, 509

java.util.Iterator API, 469

java.util.LinkedHashMap API, 508

java.util.LinkedHashSet API, 507

java.util.LinkedList API, 484

java.util.List API, 482–483, 516, 521, 524

java.util.ListIterator API, 483

java.util.logging.ConsoleHandler API, 407

java.util.logging.FileHandler API, 407

java.util.logging.Filter API, 408

983Index

java.util.logging.Formatter API, 408

java.util.logging.Handler API, 406

java.util.logging.Logger API, 404–406

java.util.logging.LogRecord API, 407–408

java.util.Map API, 499, 501–503

java.util.Map.Entry API, 503

java.util.NavigableMap API, 517

java.util.NavigableSet API, 493, 516

java.util.Objects API, 235

java.util.prefs.Preferences API, 799–800

java.util.PriorityQueue API, 496

java.util.Properties API, 531, 792–793

java.util.Queue API, 494

java.util.Random API, 181

java.util.Scanner API, 81, 89

java.util.ServiceLoader API, 802

java.util.SortedMap API, 500, 516

java.util.SortedSet API, 493, 516

java.util.Stack API, 532

java.util.TreeMap API, 500

java.util.TreeSet API, 493

java.util.Vector API, 530

java.util.WeakHashMap API, 507

JavaBeans, 260, 758, 813

javac program, 25

current directory in, 192

javadoc program, 194–199

command-line options of, 199

comments in:

class, 194–198

extracting, 198–199

field, 194, 196

general, 196

method, 194–195, 198

overview, 198

package, 194, 198

redeclaring Object methods for, 318

HTML markup in, 194

hyperlinks in, 198

links to other files in, 195

online documentation of, 199

JavaFX, 543

javap program, 336

JavaScript, 15

accessing applets from, 810

communicating with Java, 809

javaws program, 828

javaws.jar file, 830

javax.jnlp.BasicService API, 836

javax.jnlp.FileContents API, 837

javax.jnlp.FileOpenService API, 837

javax.jnlp.FileSaveService API, 837

javax.jnlp.PersistenceService API, 837–838

javax.jnlp.ServiceManager API, 836

javax.swing package, 545

javax.swing.AbstractAction API, 683

javax.swing.AbstractButton API, 663, 681–684, 688

javax.swing.Action API, 615

javax.swing.border.LineBorder API, 668

javax.swing.border.SoftBevelBorder API, 667

javax.swing.BorderFactory API, 666–667

javax.swing.ButtonGroup API, 663

javax.swing.ButtonModel API, 663

javax.swing.event package, 627

javax.swing.event.MenuListener API, 690

javax.swing.filechooser.FileFilter API, 764

javax.swing.filechooser.FileNameExtensionFilter API,

764

javax.swing.filechooser.FileView API, 764

javax.swing.GroupLayout API, 722

javax.swing.GroupLayout.Group API, 723

javax.swing.GroupLayout.ParallelGroup API, 723

javax.swing.GroupLayout.SequentialGroup API, 723

javax.swing.ImageIcon API, 554

javax.swing.JButton API, 595, 752

javax.swing.JCheckBox API, 659

javax.swing.JCheckBoxMenuItem API, 684

javax.swing.JColorChooser API, 770

javax.swing.JComboBox API, 671

javax.swing.JComponent API, 560, 582, 615, 650,

668, 686, 699, 752

javax.swing.JDialog API, 745

javax.swing.JFileChooser API, 762–763

javax.swing.JFrame API, 559, 682

javax.swing.JLabel API, 652

javax.swing.JMenu API, 681

javax.swing.JMenuItem API, 681–682, 688, 690

javax.swing.JOptionPane API, 304, 739–741

javax.swing.JPasswordField API, 653

javax.swing.JPopupMenu API, 685

javax.swing.JRadioButton API, 663

javax.swing.JRadioButtonMenuItem API, 684

javax.swing.JRootPane API, 752

javax.swing.JScrollPane API, 656

javax.swing.JSlider API, 678

javax.swing.JTextArea API, 656

javax.swing.JTextField API, 650

javax.swing.JToolBar API, 699

Index984

javax.swing.KeyStroke API, 615

javax.swing.SwingUtilities API, 752

javax.swing.SwingWorker API, 950

javax.swing.text.JTextComponent API, 648

javax.swing.Timer API, 305

javax.swing.UIManager API, 602

javax.swing.UIManager.LookAndFeelInfo API, 603

JButton class, 591, 595, 610, 636–638

isDefaultButton method, 752

JCheckBox class, 657–659

isSelected method, 658–659

setSelected method, 657, 659

JCheckBoxMenuItem class, 683–684

JColorChooser class, 764–770

methods of, 770

JComboBox class, 627, 668–671

addItem method, 669–671

getItemAt method, 669

getSelectedItem method, 669–671

insertItemAt method, 669, 671

isEditable method, 671

removeXxx methods, 669, 671

setEditable method, 669, 671

setModel method, 669

JComponent class, 554

action maps, 612

get/setComponentPopupMenu methods, 685–686

get/setInheritsPopupMenu methods, 685–686

getActionMap method, 615

getFontMetrics method, 577, 582

getInputMap method, 612, 615

getRootPane method, 748, 752

input maps, 611–613

paintComponent method, 554–556, 560, 577,

583

repaint method, 951

revalidate method, 649–650, 951

setBorder method, 664, 668

setDebugGraphicsOptions method, 771

setFont method, 650

setSelectionStart/End methods, 952

setToolTipText method, 699

jconsole program, 393, 412, 771, 889

jcontrol program, 807

JDialog class, 741–745

setDefaultCloseOperation method, 743, 807

setVisible method, 743, 746, 807

JDK. See Java Development Kit

JEditorPane class, 654

JFC (Java Foundation Classes), 539

JFileChooser class, 752–764

addChoosableFileFilter method, 763

getSelectedFile/Files methods, 754, 763

resetChoosableFilters method, 756, 763

setAcceptAllFileFilterUsed method, 756, 763

setAccessory method, 763

setCurrentDirectory method, 754, 762

setFileFilter method, 755, 763

setFileSelectionMode method, 754, 763

setFileView method, 756–757, 763

setMultiSelectionEnabled method, 754, 763

setSelectedFile/Files methods, 754, 763

showDialog, showXxxDialog methods, 747, 752,

754, 763

JFrame class, 543–547, 640

add method, 555, 559

getContentPane method, 559

internal structure of, 554–555

setJMenuBar method, 679, 682

JLabel class, 651–652, 757

getIcon, getText methods, 652

setIcon, setText methods, 651–652

JList class, 670

jmap program, 413

JMenu class

add, addSeparator methods, 679, 681

insert, insertSeparator methods, 681

remove method, 681

JMenuBar class, 679–682

JMenuItem class, 681–682

setAccelerator method, 687–688

setEnabled method, 689–690

setIcon method, 682

Jmol applet, 9

JNLP API, 829–838

compiling programs with, 830

join method (Thread), 73, 856–858

JOptionPane class, 730–741

message types, 731

showConfirmDialog method, 731–732, 739

showInputDialog method, 731–732, 740

showInternalConfirmDialog method, 739

showInternalInputDialog method, 741

showInternalMessageDialog method, 739

showInternalOptionDialog method, 740

showMessageDialog method, 304, 731–732, 739

showOptionDialog method, 731–732, 739–740

JPanel class, 558, 638, 842

985Index

JPasswordField class, 652–653

getPassword, setEchoChar methods, 653

JPopupMenu class, 684–686

isPopupTrigger, show methods, 685

JRadioButton class, 660–663

JRadioButtonMenuItem class, 684

JRootPane class, setDefaultButton method, 748,

752

JScrollbar class, 627

JScrollPane class, 656

JSlider class, 672–678

setInverted method, 674, 678

setLabelTable method, 429, 673, 678

setPaintLabels method, 673, 678

setPaintTicks method, 673, 678

setPaintTrack method, 674, 678

setSnapToTicks method, 673, 678

setXxxTickSpacing methods, 678

JTextArea class, 653–654

append method, 656, 951

insert method, 951

replaceRange method, 951

setColumns, setRows methods, 654, 656

setLineWrap method, 654, 656

setTabSize method, 656

setWrapStyleWord method, 656

JTextComponent class

getText method, 650

is/setEditable methods, 648

setText method, 648, 650, 951

JTextField class, 627, 649–651

getColumns method, 650

setColumns method, 649–650

JToolBar class, 695–696

add, addSeparator methods, 695–699

JUnit framework, 410

Just-in-time compiler, 6–7, 14, 153, 218, 413,

534

JVM. See Java virtual machine

K
K type variable, 419

Key/value pairs. See Properties

KeyAdapter class, 626

Keyboard

associating with actions, 610

focus of, 611

mnemonics for, 686–688

Keyboard focus, 729

KeyEvent class, 626

getKeyXxx, isActionKey methods, 627

KeyListener interface, 626

keyXxx methods, 627

keyPress/Release methods (Robot), 778

keys method

of Hashtable, 530

of Preferences, 795, 799

keySet method

of ConcurrentHashMap, 912

of Map, 502–503

KeyStroke class, getKeyStroke method, 610, 615

Knuth, Donald, 106

KOI-8 standard, 51

L
L suffix (long integers), 48

Labeled break statement, 106

Labels

for components, 651–652

for slider ticks, 673

Lambda expressions, 314–329

accessing variables in, 322–324

atomic updates with, 887

capturing values by, 323

for event listeners, 595

functional interfaces and, 318

method references and, 320

no assigning to a variable of type Object,
319

parameter types of, 316

processing, 324–328

result type of, 316

scope of, 324

syntax of, 315–317

this keyword in, 324

vs. inner classes, 318

lambda/LambdaTest.java, 317

Langer, Angelika, 458

last method (SortedSet), 493

lastIndexOf method

of List, 483

of String, 73

lastIndexOfSubList method (Collections), 524

lastKey method (SortedMap), 500

Launch4J utility, 783

Layout management, 638–648

absolute positioning, 723

border, 641–644

Index986

box, 700

custom, 724–728

flow, 638

grid, 644–648

grid bag, 700–712

group, 701, 713–723

sophisticated, 699–730

spring, 700

LayoutManager interface

designing custom, 724–728

methods of, 728

LayoutManager2 interface, 725

Leading (in typesetting), 576

Legacy code and generics, 429–430

Legacy collections, 528–536

bit sets, 532–536

enumerations, 528–530

hash tables, 528

property maps, 530–531

stacks, 531

length method

of arrays, 112

of BitSet, 533

of String, 69–70, 73

of StringBuilder, 78

Lightweight collection wrappers,

509–510

Line2D class, 560, 565

Line2D.Double class, 569

LineBorder class, 665, 668

Linefeed, escape sequence for, 50

LineMetrics class, 577

getXxx methods, 581

Lines, 560

constructing, 565

@link comment (javadoc), 198

Linked hash maps/sets, 504–506

Linked lists, 474–484

concurrent modifications of, 479

doubly linked, 474

printing, 481

random access in, 479, 517

removing elements from, 475

LinkedBlockingDeque class, 903

LinkedBlockingQueue class, 899

LinkedHashMap class, 504–508

access vs. insertion order, 505

as a concrete collection type, 472

removeEldestEntry method, 506, 508

LinkedHashSet class, 504–507

as a concrete collection type, 472

LinkedList class, 462, 476, 479, 494

addFirst/Last, getFirst/Last methods, 484

as a concrete collection type, 472

get method, 480

listIterator method, 476

next/previousIndex methods, 480

removeAll method, 480

removeFirst/Last methods, 484

linkedList/LinkedListTest.java, 481

linkSize method (GroupLayout), 722

Linux

debugging applets in, 807

Eclipse versions for, 27

JDK versions for, 18

no thread priorities in Oracle JVM for,

859

pop-up trigger in, 685

running applets in, 34–35

setting paths in, 20, 191–193

setting up JDK in, 20

troubleshooting Java programs in, 26

List interface, 470, 509

add method, 470, 482

addAll method, 482

get, set methods, 470, 483

indexOf, lastIndexOf methods, 483

listIterator method, 482

remove method, 470, 483

replaceAll method, 524

sort method, 521

subList method, 510, 516

Listener interfaces, 588

Listener objects, 588

Listeners. See Action listeners, Event

listeners, Window listeners

ListIterator interface, 479

add method, 470, 476–478, 483

hasPrevious method, 476, 483

next/previousIndex methods, 483

previous method, 476, 483

remove method, 478

set method, 478, 483

listIterator method

of LinkedList, 476

of List, 482

Lists, 470

modifiable/resizable, 520

987Index

load method

of Properties, 531, 788, 793

of ServiceLoader, 802

Local inner classes, 339

accessing final variables from outer

methods in, 339–342

Local variables

annotating, 430

vs. instance fields, 151–152, 173

LocalDate class, 139–141

extending, 285

getXxx methods, 141, 145

minusDays method, 145

now, of methods, 140, 145

plusDays method, 141, 145

processing arrays of, 446

Locales, 393

Localization, 136, 393–394, 784–785

Lock interface, 878

await method, 873–877

lock method, 871, 893–895

lockInterruptibly method, 893–895

newCondition method, 873, 877

signal method, 875–877

signalAll method, 874–877

tryLock method, 856, 893–895

unlock method, 869, 871

vs. synchronization methods,

880

Lock objects, 868–872

client-side, 883

deadlocks, 874, 889–893, 896

fair, 872

hold count for, 870

inconsistent state and, 896

intrinsic, 878, 884

not with try-with-resources statement,

869

read/write, 895–896

reentrant, 870

testing and timeouts, 893–895

Locks

condition objects for, 872–877

in synchronized blocks, 882–883

log, log10 methods (Math), 58

Logarithms, 58

Logger class

add/removeHandler methods, 406

entering, exiting methods, 391, 405

get/setFilter methods, 398, 406

get/setParent methods, 406

get/setUseParentHandlers methods, 406

getGlobal method, 389, 410

getHandlers method, 406

getLevel method, 405

getLogger method, 390, 404

info method, 389

log method, 390, 392, 405

logp method, 391, 405

logrb method, 405

setLevel method, 389, 405

severe, warning, info, config, fine, finer, finest
methods, 390, 404

throwing method, 392, 405

Loggers

configuring, 392–393

default, 389, 391

hierarchical names of, 390

writing your own, 390–392

Logging, 389–408

advanced, 390–392

basic, 389

file pattern variables for, 396

file rotation for, 397

filters for, 398

formatters for, 399

handlers for, 394–398

configuring, 396

including class names in, 344

levels of, 390–391

changing, 392–393

localization of, 393–394

messages for, 240

recipe for, 399–408

resource bundles and, 393–394

Logging proxy, 410

logging/LoggingImageViewer.java, 400

logging.properties file, 392–393

Logical conditions, 52

Logical “and,” “or,” 62

LogManager class, 393

readConfiguration method, 392

LogRecord class

getLevel method, 407

getLoggerName method, 407

getMessage method, 407

getMillis method, 408

getParameters method, 407

Index988

getResourceBundle, getResourceBundleName methods,

407

getSequenceNumber method, 408

getSourceXxxName methods, 408

getThreadID method, 408

getThrown method, 408

Long class

converting from long, 252

hashCode method, 237

long type, 47

platform-independence of, 48

LongAccumulator class, methods of, 888

LongAdder class, 888, 908

add, increment, sum methods, 888

Look-and-feel, 539, 700

appearance of buttons in, 632

changing, 598–603

pluggable, 756

LookAndFeelInfo class, methods of, 603

lookup method (ServiceManager), 836

Loops

break statements in, 106–108

continue statements in, 108

determinate (for), 99–103

“for each,” 113–114

while, 94–99

LotteryArray/LotteryArray.java, 126

LotteryDrawing/LotteryDrawing.java, 118

LotteryOdds/LotteryOdds.java, 102

lower method (NavigableSet), 493

Low-level events, 626

Lu, Francis, 810

M
Mac OS X

Eclipse versions for, 27

executing JARs in, 783

JDK versions for, 18

running applets in, 34–35

setting paths in, 20

setting up JDK in, 20

main method, 161–164

body of, 44

declared public, 43

declared static void, 44–45

eliminating, for applets, 807

loading classes from, 262

not defined, 145, 179

separate for each class, 409

String[] args parameter of, 116

tagged with throws, 88

make program (UNIX), 149

MANIFEST.MF (manifest file), 781–782

editing, 782

newline characters in, 782

permissions in, 823

Map interface, 469

compute, computeIfPresent/Absent methods, 501

containsKey/Value methods, 499

entrySet, keySet methods, 502–503

forEach method, 499

get, put methods, 469, 497, 499

merge method, 501

putAll method, 499

remove method, 498

replaceAll method, 502

values method, 502–503

map/MapTest.java, 498

Map.Entry interface, 502

getKey, get/setValue methods, 503

mappingCount method (ConcurrentHashMap), 906

Maps, 497–509

adding/retrieving objects to/from, 497

concurrent, 905–907

garbage collecting, 504

hash vs. tree, 497

implementations for, 497

keys for, 498

enumerating, 502

subranges of, 511

Marker interfaces, 309

Math class, 57–59

E, PI static constants, 58, 159

floorMod method, 57

logarithms, 58

pow method, 57, 160

round method, 60

sqrt method, 57

trigonometric functions, 58

Matisse, 701, 713–723

max method (Collections), 523

Maximum value, computing, 419

menu/MenuFrame.java, 690

MenuListener interface, 689

menuXxx methods, 689–690

Menus, 678–699

accelerators for, 687–688

checkboxes and radio buttons in, 683–684

989Index

Menus (continued)

icons in, 682–683

keyboard mnemonics for, 686–688

menu bar in, 679

menu items in, 679–684

enabling/disabling, 689–693

pop-up, 684–686

submenus in, 679

merge method

of ConcurrentHashMap, 909

of Map, 501

Merge sort algorithm, 519

META-INF directory, 781

Metal look-and-feel, 541, 598

Method class, 265

getDeclaringClass method, 270

getExceptionTypes method, 270

getGenericXxx methods, 457

getModifiers method, 265, 270

getName method, 265, 270

getParameterTypes, getReturnType methods, 270

getTypeParameters method, 457

invoke method, 279–283

toString method, 266

Method parameters. See Parameters

Method pointers, 279–281

Method references, 319–321

this, super parameters in, 320

Method tables, 216

Methods, 131

abstract, 222

in functional interfaces, 318

accessor, 141–145, 153–154, 444

adding, in subclasses, 207

applying to objects, 137

asynchronous, 915

body of, 44–45

bridge, 428–429, 440

calling by reference vs. by value, 164–171

casting, 219–221

concrete, 222

consistent, 231

default, 298–300

deprecated, 141, 197, 412

destructor, 181–182

documentation comments for, 194–198

do-nothing, 604

dynamic binding for, 209, 214–217

exception specification in, 362

factory, 161

final, 215, 217–218, 265, 295

generic, 421–422, 427–429, 466–469

helper, 156, 448

inlining, 7, 218

invoking, 45

arbitrary, 279–283

mutator, 141–145, 154, 444

names of, 201

overloading, 172

overriding, 206–207, 234, 285

exceptions and, 364

return type and, 427

package scope of, 189

parameters of, 45–46

passing objects to, 136

private, 156–157, 215, 265

protected, 194, 228, 311

public, 194, 265, 290

reflexive, 231

resolving conflicts in, 300–302

return type of, 172, 215

signature of, 172, 215

static, 160–161, 185, 215, 436

adding to interfaces, 298

symmetric, 231

tracing, 351

transitive, 231

varargs, 256–257

passing generic types to, 432–433

visibility of, in subclasses, 217

methods/MethodTableTest.java, 282

Micro Edition (Java ME), 3, 11, 18

Microsoft

.NET platform, 6

ActiveX, 5, 15

C#, 8, 11, 218, 280

Internet Explorer, 9, 15, 803, 810

J#, J++, 8, 280

Visual Basic, 3, 136, 587, 638

Visual Studio, 23

MIME types, 825

min method (Collections), 523

Minimum value, computing, 419

minimumLayoutSize method (LayoutManager),

728

minusDays method (LocalDate), 145

mod method (BigDecimal, BigInteger), 110–111

Modality, 730, 742

Index990

Model-view-controller design pattern,

632–636

classes in, 632

multiple views in, 634

Modifier class

isAbstract, isInterface, isNative, isProtected,

isStatic, isStrict, isSynchronized, isVolatile
methods, 271

isFinal, isPrivate, isPublic, toString methods,

265, 271

Modulus, 56

Monitor concept, 884

Mosaic, 10

Mouse events, 616–624

with keyboard modifiers, 616

mouse/MouseComponent.java, 620

mouse/MouseFrame.java, 619

MouseAdapter class, 619, 626

MouseEvent class, 626

getClickCount method, 616, 623, 627

getPoint method, 623, 627

getX/Y methods, 616, 623, 627

isPopupTrigger method, 686

translatePoint method, 627

MouseHandler class, 619

MouseListener interface, 617, 626

mouseClicked method, 616–617, 619, 627

mouseDragged method, 619

mouseEntered/Exited methods, 619, 627

mousePressed method, 616–617, 627

mouseReleased method, 616, 627

MouseMotionHandler class, 619

MouseMotionListener interface, 617, 619, 626

mouseDragged method, 628

mouseMoved method, 618–619, 628

MouseWheelEvent class, 626

getScrollAmount, getWheelRotation methods, 628

MouseWheelListener interface, mouseWheelMoved
method, 628

mouseXxx methods (Robot), 778

Mozilla Firefox, 34

Multidimensional arrays, 120–125

printing, 240

ragged, 124–127

Multiple inheritance, 297

not supported in Java, 213

Multiple selections, 103–105

Multiplication operator, 56

multiply method (BigDecimal, BigInteger), 110–111

Multitasking, 839

Multithreading, 7, 839–952

deadlocks in, 874, 889–892

deferred execution in, 325

performance and, 872, 888, 899, 920

preemptive vs. cooperative scheduling

for, 855

synchronization in, 862–897

using pools for, 920–926

Mutator methods, 444

error checking in, 154

N
\n escape sequence, 50

NaN (not a number), 49

Napkin look-and-feel, 542

naturalOrder method (Comparator), 329

Naughton, Patrick, 10–11

NavigableMap interface, 471

subMap, headMap, tailMap methods, 517

NavigableSet interface, 471, 490, 511

ceiling, floor methods, 493

descendingIterator method, 493

higher, lower methods, 493

pollFirst/Last methods, 493

subSet, headSet, tailSet methods, 511, 516

nCopies method (Collections), 510, 515

Negation operator, 62

Negative infinity, 49

.NET platform, 6

NetBeans, 20, 24, 409

Matisse, 701, 713–723

specifying grid bag constraints in, 706

Netscape, 10

IFC library, 538

LiveScript/JavaScript, 15

Navigator browser, 9, 803, 810

Networking, 4

new operator, 64, 71, 136, 150

return value of, 138

with arrays, 111

with generic classes, 245

with threads, 855

new keyword, in constructor references, 321

newCachedThreadPool method (Executors), 921, 925

newCondition method (Lock), 873, 877

newFixedThreadPool method (Executors), 921, 925

newInstance method

of Array, 276, 279

991Index

newInstance method (continued)

of Class, 263, 265, 451

of Constructor, 265, 452

newKeySet method (ConcurrentHashMap), 912

newProxyInstance method (Proxy), 350, 355–356

newScheduledThreadPool method (Executors), 921,

926

newSingleThreadExecutor method (Executors), 921,

925

newSingleThreadScheduledExecutor method (Executors),

921, 926

next method

of Iterator, 463, 465, 469

of Scanner, 81

nextDouble method (Scanner), 79, 81

nextElement method (Enumeration), 465, 528, 530

nextIndex method

of LinkedList, 480

of ListIterator, 483

nextInt method

of Random, 181

of Scanner, 79, 81

nextLine method (Scanner), 79, 81

Nimbus look-and-feel, 541

No-argument constructors, 173, 208, 801

NoClassDefFoundError, 26

node method (Preferences), 794, 799

noneOf method (EnumSet), 508

NoSuchElementException, 464, 469, 483, 494–495

Notepad text editor, 26

notHelloWorld/NotHelloWorld.java, 558

notify, notifyAll methods (Objects), 878,

881–882

now method (LocalDate), 140, 145

null value, 138

equality testing to, 231

nullFirst/Last methods (Comparator), 329

NullPointerException, 361, 383

Number class, 253

NumberFormat class

factory methods, 161

parse method, 256

NumberFormatException, 383

Numeric types

casting, 60–61

comparing, 62, 328

converting:

to other numeric types, 59–60

to strings, 254

default initialization of, 172

fixed sizes for, 6

precision of, 108

printing, 82

O
Oak programming language, 10

Object class, 132, 228–244

clone method, 156, 306–313, 318

equals method, 229–235, 244, 302, 512

getClass method, 244

hashCode method, 235, 237, 489

no redefining for methods of, 302

notify, notifyAll methods, 878, 881–882

toString method, 238–244, 302, 318

wait method, 856, 878, 882

Object references

as method parameters, 165

converting, 219

default initialization of, 172

modifying, 166

Object traversal algorithms, 507

Object variables, 223

in predefined classes, 136–139

initializing, 137

setting to null, 138

vs. C++ object pointers, 139

vs. objects, 137

objectAnalyzer/ObjectAnalyzer.java, 273

objectAnalyzer/ObjectAnalyzerTest.java, 273

Object-oriented programming (OOP), 4,

130–135, 203

design principles of, 632

passing objects in, 302

separating time measurement from

calendars in, 140

vs. procedural, 130–135

Objects, 130–133

analyzing at runtime, 271–276

applying methods to, 137

behavior of, 132

cloning, 306–313

comparing, 295

concatenating with strings, 239

constructing, 131, 171–182

damaged, 896

default hash codes of, 235

destruction of, 181–182

equality testing for, 229–235, 262

Index992

finalize method of, 181–182

identity of, 132

implementing an interface, checks of, 295

in predefined classes, 136–139

initializing, 136

intrinsic locks of, 878

passing to methods, 136

references to, 138

runtime type identification of, 261

serializing, 507

sorting, 290

state of, 131–132, 331–334

vs. object variables, 137

Objects class

hash method, 237

hashCode method, 236–237

Ocean look-and-feel, 541

Octal numbers

formatting output for, 82

prefix for, 48

of method

of EnumSet, 508

of LocalDate, 140, 145

offer method

of BlockingQueue, 898–899, 904

of Queue, 494

offerFirst/Last methods

of BlockingDeque, 905

of Deque, 494

offsetByCodePoints method (String), 70, 72

Online documentation, 71, 74–77, 194, 199

openFileDialog method (FileOpenService), 830, 837

openMultiFileDialog method (FileOpenService), 837

OpenType format, 575

Operators

arithmetic, 56–65

bitwise, 63

boolean, 62

hierarchy of, 64–65

increment/decrement, 61–62

no overloading for, 109

relational, 62

Option dialogs, 731–741

Optional operations, 514

optionDialog/ButtonPanel.java, 738

optionDialog/OptionDialogFrame.java, 734

or method (BitSet), 533

Oracle, 12, 18, 20

Java Plug-in, 803

JavaFX, 543

Ordered collections, 470, 476

ordinal method (Enum), 260

org.omg.CORBA package, 255

Originating host, 821

OSGi platform, 800

Output statements, 66

Output, formatting, 82–87

Overloading resolution, 172, 215

@Override annotation, 234

overview.html, 198

Owner frame, 742

P
p (exponent), in hexadecimal numbers, 49

pack method (Window), 550, 557, 560

pack200 compression, 780

package statement, 183, 185

package.html, 198

package-info.java, 198

Packages, 182–190

adding classes into, 185–188

default, 185

documentation comments for, 194, 198

importing, 183

names of, 182, 261

online documentation for, 71

scope of, 189–190

sealing, 787

PackageTest/com/horstmann/corejava/Employee.java, 188

PackageTest/PackageTest.java, 187

paintComponent method (JComponent), 554–556, 560,

577, 583, 897

overriding, 624

pair1/PairTest1.java, 420

pair2/PairTest2.java, 423

pair3/PairTest3.java, 449

ParallelGroup class, 714, 723

Parallelism threshold, 910

param element (HTML), 810–816

Parameterized types. See Type parameters

ParameterizedType interface, 453

getXxx methods, 458

Parameters, 45–46, 164–171

checking, with assertions, 386–387

documentation comments for, 196

explicit, 152–153

implicit, 152–153, 160, 409

modifying, 165–167, 169

993Index

Parameters (continued)

names of, 175

string, 45

using collection interfaces in, 527

variable number of, 256–257

passing generic types to, 432–433

ParamTest/ParamTest.java, 170

Parent classes. See Superclasses

parse method (NumberFormat), 256

parseInt method (Integer), 254, 256, 811

Pascal, 10

architecture-neutral object file format of,

5

passing parameters in, 167

Password fields, 652–653

PasswordChooser class, 746

Passwords

dialog box for, 746

reading from console, 80

PATH environment variable, 20

Path interface, 298

Paths class, 89, 298

Payne, Jonathan, 11

peek method

of BlockingQueue, 898–899

of Queue, 494

of Stack, 532

peekFirst/Last methods (Deque), 495

Performance, 7

collections and, 471, 486, 906

computations and, 56, 59

JAR files and, 190

measuring with the sieve of Eratosthenes,

533–536

multithreading and, 872, 888, 899, 920

of Java vs. C++, 14, 534

of tests vs. catching exceptions, 381

Permits, 935

PersistenceService class, 831

create method, 831, 837

delete method, 838

get, getNames methods, 838

Persistent storage, 272

Phaser class, 937

Physical limitations, 359

PI constant (Math), 58, 159

plaf/PlafFrame.java, 601

play method (Applet), 817

Plug-ins, 800–802

plusDays method (LocalDate), 141, 145

Point class, 564

Point size (in typesetting), 574–575

Point2D class, 563–564

Point2D.Double class, 563, 569

Point2D.Float class, 563

poll method

of BlockingQueue, 898–899, 904

of ExecutorCompletionService, 928

of Queue, 494

pollFirst/Last methods

of Deque, 495, 905

of NavigableSet, 493

Polymorphism, 209, 213–214, 285

pop method (Stack), 532

Pop-up menus, 684–686

triggers for, 685

Pop-up windows, 821

Positive infinity, 49

PostScript Type 1 format, 575

pow method (Math), 57, 160

Precision, of numbers, 82

Preconditions, 387

Predefined action table names, 609

Predefined classes, 135–145

mutator and accessor methods in,

141–145

objects and object variables in, 136–139

Predicate interface, 319, 326

Preemptive scheduling, 855

Preferences, 788–800

accessing, 794

enumerating keys in, 795

importing/exporting, 795

Preferences class, 794–800

exportXxx methods, 795, 800

get, getDataType methods, 795, 800

importPreferences method, 795, 800

keys method, 795, 799

node method, 794, 799

platform-independency of, 794

put, putDataType methods, 795, 800

system/userNodeForPackage methods, 794, 799

system/userRoot methods, 794, 799

preferences/PreferencesTest.java, 796

preferredLayoutSize method (LayoutManager), 728

previous method (ListIterator), 476, 483

previousIndex method

of LinkedList, 480

Index994

of ListIterator, 483

Prime numbers, 533

Primitive types, 47–53

as method parameters, 165

comparing, 328

converting to objects, 252

final fields of, 157

not for type parameters, 430–431

transforming hash map values to, 911

values of, not object, 229

Princeton University, 5

print method (System.out), 46, 82

printf method (System.out), 82–86

conversion characters for, 82

flags for, 83–84

for date and time, 84–85

parameters of, 256

println method (System.out), 45–46, 79, 319,

389

printStackTrace method (Throwable), 264–265, 377,

410

PrintStream class, 830

PrintWriter class, 87, 89

Priority queues, 495

PriorityBlockingQueue class, 899, 904

PriorityQueue class, 496

as a concrete collection type, 472

priorityQueue/PriorityQueueTest.java, 496

private access modifier, 150, 189–190, 333

checking, 265

for fields, in superclasses, 206

for methods, 156–157

Procedures, 130

process method (SwingWorker), 944–946, 950

Processes, vs. threads, 840

Producer threads, 898

Profilers, 413

Programs. See Applications

Properties, 549, 788–793

Properties class, 528–531, 788–793

getProperty method, 531, 789, 792

load, store methods, 531, 788, 793

setProperty method, 792

properties/PropertiesTest.java, 790

Property maps, 530–531, 788–793

comments in, 599

names of, 788

reading/writing, 788

PropertyChangeListener interface, 758

protected access modifier, 227–228, 311

for fields, 283

Proxies, 350–356

properties of, 355–356

purposes of, 351

Proxy class, 355–356

get/isProxyClass methods, 355–356

newProxyInstance method, 350, 355–356

proxy/ProxyTest.java, 353

public access modifier, 42, 56, 147–150,

189–190, 290

checking, 265

for fields in interfaces, 296

for main method, 43

for only one class in source file, 147

not specified for interfaces, 289

publish method

of Handler, 398, 406

of SwingWorker, 944–945, 950

Pure virtual functions (C++), 224

push method (Stack), 532

put method, 908

of BlockingQueue, 898–899, 904

of Map, 469, 497, 499

of Preferences, 795, 800

putAll method (Map), 499

putDataType methods (Preferences), 795,

800

putFirst/Last methods (BlockingDeque), 904

putIfAbsent method (ConcurrentHashMap), 908

putValue method (Action), 608, 615

Q
Queue interface, 460, 462, 494–495

methods of, 494

Queues, 460–463, 494–495

blocking, 898–905

concurrent, 905–907

double-ended. See Deques

QuickSort algorithm, 117, 519

R
\r escape sequence, 50

Race conditions, 862–868

and atomic operations, 887

Radio buttons, 660–663

in menus, 683–684

radioButton/RadioButtonFrame.java, 662

Ragged arrays, 124–127

995Index

Random class, 181

nextInt method, 181

thread-safe, 892

Random number generation, 181, 892

RandomAccess interface, 471, 520, 522

range method (EnumSet), 508

Raw types, 425–426

converting type parameters to, 441

type inquiring at runtime, 431

Read/write locks, 895–896

readConfiguration method (LogManager), 392

readLine/Password methods (Console), 81

Rectangle class, 490, 564

Rectangle2D class, 560, 562–565

getWidth, setRect methods, 563

Rectangle2D.Double class, 562–563, 568

Rectangle2D.Float class, 562–563, 569

Rectangles, 560

comparing, 490

constructing, 564

drawing, 561

filling with color, 569

RectangularShape class, 563

getHeight/Width, getCenterX/Y methods, 563, 568

getX/Y, getMinX/Y, getMaxX/Y methods, 568

Recursive computations, 929

RecursiveAction class, 929

RecursiveTask class, 929

Red-black trees, 489

reduce, reduceXxx methods (ConcurrentHashMap),

910–911

Redundant keywords, 296

Reentrant locks, 870

ReentrantLock class, 868–872

ReentrantReadWriteLock class, 895–896

Reflection, 204, 260–283

analyzing:

classes, 265–271

objects, at runtime, 271–276

generics and, 276–279, 450–458

overusing, 286

reflection/ReflectionTest.java, 267

Relational operators, 62, 64

Relative resource names, 784

remove method

of ArrayList, 249, 251

of BlockingQueue, 898–899

of Collection, 467–468

of Iterator, 463, 465, 469

of JMenu, 681

of List, 470, 483

of ListIterator, 478

of Map, 498

of Queue, 494

of ThreadLocal, 893

removeAll method

of Collection, 467–468

of LinkedList, 480

removeEldestEntry method (LinkedHashMap), 506, 508

removeFirst/Last methods

of Deque, 495

of LinkedList, 484

removeHandler method (Logger), 406

removeIf method

of ArrayList, 319

of Collection, 468, 524

removeLayoutComponent method (LayoutManager), 728

removePropertyChangeListener method (Action),

608–609

removeXxx methods (JComboBox), 669, 671

repaint method

of Component, 556

of JComponent, 559, 841, 951

replace method

of ConcurrentHashMap, 908

of String, 73

replaceAll method

of Collections, 523

of List, 524

of Map, 502

replaceRange method (JTextArea), 951

Reserved words, 43

forbidden for variable names, 53

not used, 56

resetChoosableFilters method (JFileChooser), 756,

763

resize method (Applet), 808

Resource bundles, 393–394

resource/ResourceTest.java, 786

ResourceBundle class, 394

Resources, 783–787

closing, 373

exhaustion of, 360

localization of, 784

names of, 784–785

Restricted views, 514

resume method (Thread), 858

retain method (Collection), 467

Index996

retainAll method (Collection), 469

Retirement/Retirement.java, 97

Retirement2/Retirement2.java, 98

return statement

in finally blocks, 374

in lambda expressions, 316

Return types, 215

covariant, 429

documentation comments for, 196

for overridden methods, 427

Return values, 138

@return comment (javadoc), 196

revalidate method (JComponent), 649–650, 951

reverse method (Collections), 524

reversed, reverseOrder methods (Comparator), 329,

519, 521

RoadApplet/RoadApplet.html, 36

RoadApplet/RoadApplet.java, 38

Robot class, 774–778

methods of, 778

robot/RobotTest.java, 775

rotate method (Collections), 524

round method (Math), 60

Rounding mode, 111

RoundingMode class, 111

rt.jar file, 780

run method (Thread), 849, 851

runAfterXxx methods (CompletableFuture), 934

runFinalizersOnExit method (System), 182

Runnable interface, 326, 847

lambdas and, 318

run method, 325, 851

Runtime

adding shutdown hooks at, 182

analyzing objects at, 271–276

creating classes at, 350

setting the size of an array at, 244

type identification at, 220, 261, 431

RuntimeException, 360, 380, 383

S
@SafeVarargs annotation, 432

Sandbox, 820–822

saveAsFileDialog method (FileSaveService), 837

saveFileDialog method (FileSaveService), 830, 837

Scala programming language, default

methods in, 300

Scanner class, 79–81, 87, 89

next, hasNext, hasNextType methods, 81

nextXxx methods, 79, 81

Scheduled execution, 926

ScheduledExecutorService class, methods of, 926

Scroll panes, 654–656

Scrollbars, 654–656

Sealing, 787

search, searchXxx methods (ConcurrentHashMap),

910–911

Secure certificates, 822

Security, 4–5, 14, 820–822

@see comment (javadoc), 197–198

Semantic events, 626

Semaphore class, 935

Semaphores, 935

SequentialGroup class, 714, 723

Serialization, 507

of applet objects, 809

Service loaders, 800–802

ServiceLoader class, 801

iterator, load methods, 802

ServiceManager interface, 830

getServiceNames, lookup methods, 836

ServletException, 370

Servlets, 370

Set interface, methods of, 471

set method

of Array, 279

of ArrayList, 247, 251

of BitSet, 533

of Field, 276

of List, 483

of ListIterator, 478, 483

of ThreadLocal, 893

of Vector, 883

set/SetTest.java, 487

setAccelerator method (JMenuItem), 687–688

setAcceptAllFileFilterUsed method (JFileChooser),

756, 763

setAccessible method (AccessibleObject), 272, 275

setAccessory method (JFileChooser), 763

setAction method (AbstractButton), 681

setActionCommand method (AbstractButton), 663

setAutoCreateXxx methods (GroupLayout), 722

setBackground method (Component), 570, 573

setBoolean, setByte, setChar methods (Array), 279

setBorder method (JComponent), 664, 668

setBounds method (Component), 546, 552, 724

coordinates in, 548

setCharAt method (StringBuilder), 78

997Index

setClassAssertionStatus method (ClassLoader), 388

setColor method

of Graphics, 570, 572

of JColorChooser, 770

setColumns method

of JTextArea, 654, 656

of JTextField, 649–650

setComponentPopupMenu method (JComponent), 685–686

setCurrentDirectory method (JFileChooser), 754,

762

setCursor method (Component), 624

setDaemon method (Thread), 859–860

setDebugGraphicsOptions method (JComponent), 771

setDefaultAssertionStatus method (ClassLoader), 388

setDefaultButton method (JRootPane), 748, 752

setDefaultCloseOperation method (JDialog), 743,

807

setDefaultUncaughtExceptionHandler method (Thread),

411, 860–861

setDisplayedMnemonicIndex method (AbstractButton),

686, 688

setDouble method (Array), 279

setEchoChar method (JPasswordField), 653

setEditable method

of JComboBox, 669, 671

of JTextComponent, 648

setEnabled method

of Action, 608, 615

of JMenuItem, 689–690

setExtendedState method (Frame), 553

setFileFilter method (JFileChooser), 755, 763

setFileSelectionMode method (JFileChooser), 754,

763

setFileView method (JFileChooser), 756–757, 763

setFilter method

of Handler, 406

of Logger, 398, 406

setFloat method (Array), 279

setFont method

of Graphics, 581

of JComponent, 650

setForeground method (Component), 570, 573

setFormatter method (Handler), 399, 406

setFrameFromCenter method (Ellipse2D), 565

setFrameFromDiagonal method (Ellipse2D), 564

setHonorsVisibility, setHorizontalGroup methods

(GroupLayout), 722

setHorizontalTextPosition method (AbstractButton),

682–683

setIcon method

of JLabel, 651–652

of JMenuItem, 682

setIconImage method (Frame), 546, 553

setInheritsPopupMenu method (JComponent), 685–686

setInt method (Array), 279

setInverted method (JSlider), 674, 678

setJMenuBar method (JFrame), 679, 682

setLabelTable method (JSlider), 429, 673, 678

setLayout method (Container), 641

setLevel method

of Handler, 406

of Logger, 389, 405

setLineWrap method (JTextArea), 654, 656

setLocation method (Component), 546, 552

coordinates in, 548

setLocationByPlatform method (Window), 552

setLong method (Array), 279

setLookAndFeel method (UIManager), 599, 602

setMnemonic method (AbstractButton), 687–688

setModel method (JComboBox), 669

setMultiSelectionEnabled method (JFileChooser),

754, 763

setOut method (System), 159

setPackageAssertionStatus method (ClassLoader), 388

setPaint method (Graphics2D), 569, 573

setPaintLabels method (JSlider), 673, 678

setPaintTicks method (JSlider), 673–674, 678

setPaintTrack method (JSlider), 678

setParent method (Logger), 406

setPriority method (Thread), 859

setProperty method

of Properties, 792

of System, 392

setRect method (Rectangle2D), 563

setResizable method (Frame), 546, 553

setRows method (JTextArea), 654, 656

Sets, 487

concurrent, 905–907

intersecting, 525

mutating elements of, 487

subranges of, 511

thread-safe, 912

setSelected method

of AbstractButton, 684

of JCheckBox, 657, 659

setSelectedFile/Files methods (JFileChooser), 754,

763

setSelectionStart/End methods (JComponent), 952

Index998

setShort method (Array), 279

setSize method (Component), 552

setSnapToTicks method (JSlider), 673, 678

setTabSize method (JTextArea), 656

setText method

of JLabel, 651–652

of JTextComponent, 648, 650, 951

setTime method (Calendar), 218

setTitle method (JFrame), 546, 553

setToolTipText method (JComponent), 699

setUncaughtExceptionHandler method (Thread), 861

setUndecorated method (Frame), 546, 553

setUseParentHandlers method (Logger), 406

setValue method (Map.Entry), 503

setVerticalGroup method (GroupLayout), 722

setVisible method

of Component, 546, 552, 951

of JDialog, 743, 746, 807

setWrapStyleWord method (JTextArea), 656

setXxxTickSpacing methods (JSlider), 678

severe method (Logger), 390, 404

Shallow copies, 308–310

Shape interface, 560–561

Shell

redirection syntax of, 88

scripts in, 193

Shift operators, 63

short type, 47

Short class

converting from short, 252

hashCode method, 237

show method (JPopupMenu), 685

showConfirmDialog method (JOptionPane), 731–732,

739

showDialog method

of JColorChooser, 770

of JFileChooser, 747, 752, 754, 763

showDocument method

of AppletContext, 819–820

of BasicService, 836

showInputDialog method (JOptionPane), 731–732,

740

showInternalConfirmDialog, showInternalMessageDialog
methods (JOptionPane), 739

showInternalInputDialog method (JOptionPane), 741

showInternalOptionDialog method (JOptionPane),

740

showMessageDialog method (JOptionPane), 304,

731–732, 739

showOptionDialog method (JOptionPane), 731–732,

739–740

showStatus method (Applet), 819–820

showXxxDialog methods (JFileChooser), 747, 752,

754, 763

shuffle method (Collections), 520–521

shuffle/ShuffleTest.java, 520

Shuffling, 520

Shutdown hooks, 182

shutdown method (ExecutorService), 922, 925

shutdownNow method (ExecutorService), 922, 927

Sieve of Eratosthenes benchmark,

533–536

sieve/sieve.cpp, 535

sieve/Sieve.java, 534

signal method (Condition), 875–877, 890

signalAll method (Condition), 874–877, 890

Signatures (of methods), 172, 215

simpleframe/SimpleFrameTest.java, 544

sin method (Math), 58

Single-thread rule (Swing), 939, 951–952

singleton, singletonCollection methods

(Collections), 510, 515

size method

of ArrayList, 246–247

of Collection, 467–468

of concurrent collections, 905

sizedFrame/SizedFrameTest.java, 551

sleep method (Thread), 841, 846–847, 852

slider/SliderFrame.java, 674

Sliders, 672–678

ticks on, 673–674

vertical, 672

SoftBevelBorder class, 665, 667

Software Development Kit (SDK), 18

Solaris

Eclipse versions for, 27

executing JARs in, 783

JDK versions for, 18

sort method

of Arrays, 117–119, 290, 292, 294, 314, 318

of Collections, 518–521

of List, 521

SortedMap interface, 471

comparator, first/lastKey methods, 500

subMap, headMap, tailMap methods, 511, 516

SortedSet interface, 471, 511

comparator, first, last methods, 493

subSet, headSet, tailSet methods, 511, 516

999Index

Sorting

algorithms for, 117, 518–521

arrays, 117–120, 292

assertions for, 387

in reverse order, 519

people, by name, 328–329

strings by length, 305–306, 314, 316

Source files, 192

editing in Eclipse, 29

installing, 22–23

Special characters, 50

Splash screen, 262

Spring layout, 700

sqrt method (Math), 57

src.zip file, 22

Stack interface, 460, 528, 531

peek, pop, push methods, 532

Stack trace, 377–381, 889

Stacks, 531

stackTrace/StackTraceTest.java, 378

StackTraceElement class

getLineNumber method, 380

getXxxName methods, 380

isNativeMethod method, 381

toString method, 378, 381

Standard Edition (Java SE), 11, 18

Standard Java library

companion classes in, 298

online API documentation for, 71, 74–77,

194, 199

packages in, 182

Standard Template Library (STL), 460, 465

start method

of Applet, 808

of Thread, 849, 851, 855

of Timer, 305

startsWith method (String), 72

stateChanged method (ChangeListener), 672–673

Statements, 45

compound. See Blocks

static access modifier, 158–164

for fields in interfaces, 296

for main method, 44–45

Static binding, 215

Static constants, 159

documentation comments for, 196

Static fields, 158–159

accessing, in static methods, 160

importing, 185

initializing, 178

no type variables in, 436

static final access modifier, 55

Static imports, 185

Static inner classes, 331, 346–349

Static methods, 160–161

accessing static fields in, 160

adding to interfaces, 298

importing, 185

no type variables in, 436

Static variables, 159

staticInnerClass/StaticInnerClassTest.java, 348

StaticTest/StaticTest.java, 163

stop method

of Applet, 808

of Thread (deprecated), 851, 858,

896–897

of Timer, 305

store method (Properties), 531, 788, 793

Strategy design pattern, 631

Stream interface, toArray method, 321

StreamHandler class, 397

strictfp keyword, 57

StrictMath class, 57, 59

String class, 65–78

charAt method, 70, 72

codePointAt, codePoints methods, 72

codePointCount method, 70, 73

compareTo method, 72

endsWith method, 72

equals, equalsIgnoreCase methods, 68, 72

format, formatTo methods, 83

hashCode method, 235, 485

immutability of, 67, 157, 218

indexOf method, 73, 172

join method, 73

lastIndexOf method, 73

length method, 69–70, 73

offsetByCodePoints method, 70, 72

replace method, 73

startsWith method, 72

substring method, 66, 73, 510

toLowerCase, toUpperCase methods, 73

trim method, 73, 650

StringBuilder class, 77–78

append method, 77–78

appendCodePoint method, 78

delete method, 78

insert method, 78

Index1000

length method, 78

setCharAt method, 78

toString method, 77–78

Strings, 65–78

building, 77–78

code points/code units of, 70

comparing, 305–306

concatenating, 66–67

with objects, 239

converting to numbers, 254

empty, 69

equality of, 68

formatting output for, 82–87

immutability of, 67

length of, 66, 69

null, 69

shared, in compiler, 67, 69

sorting by length, 305–306, 314, 316

substrings of, 66

using ". . ." for, 45

Strongly typed languages, 47, 291

Subclasses, 204–228

adding fields/methods to, 207

anonymous, 344

cloning, 311

comparing objects from, 295

constructors for, 207

defining, 204

method visibility in, 217

no access to private fields of superclass,

227

overriding superclass methods in, 207

subList method (List), 510, 516

subMap method

of NavigableMap, 517

of SortedMap, 511, 516

Submenus, 679

submit method

of ExecutorCompletionService, 925, 928

of ExecutorService, 921

Subranges, 510–511

subSet method (NavigableSet, SortedSet), 511,

516

Substitution principle, 213

substring method (String), 66, 73, 510

subtract method (BigDecimal, BigInteger),

110–111

Subtraction operator, 56

sum method (LongAdder), 888

Sun Microsystems, 2, 5–12, 14, 539

HotJava browser, 11, 802

Java Plug-in, 803

super keyword, 207, 444

capturing in method references, 320

vs. this, 207–208

Superclass wins rule, 300

Superclasses, 204–228

accessing private fields of, 206

common fields and methods in, 223, 283

overriding methods of, 234

throws specifiers in, 364, 369

Supertype bounds, 444–447

Supplementary characters, 52

Supplier interface, 326

@SuppressWarnings annotation, 105, 252, 430, 432,

437–439

Surrogates area (Unicode), 52

suspend method (Thread, deprecated), 858,

896–897

swap method (Collections), 524

Swing, 537–586, 629–778

advantages of, 539

debugging, 770–778

double buffering in, 771

implementing applets with, 803–808

in full-screen, 550

model-view-controller analysis of,

636–638

starting, 545

threads and, 937–943

single-thread rule, 939, 951–952

Swing graphics debugger, 771

swing/SwingThreadTest.java, 940

swing.properties file, 598

SwingConstants interface, 296, 651

SwingUtilities class

getAncestorOfClass method, 747, 752

updateComponentTreeUI method, 599

SwingWorker class, 943–950

doInBackground method, 944–945, 950

execute method, 945, 950

getState method, 950

process method, 944–946, 950

publish method, 944–945, 950

swingWorker/SwingWorkerTest.java, 947

switch statement, 103–105

enumerated constants in, 105

missing break statements in, 412

1001Index

SWT toolkit, 543

synch/Bank.java, 875

synch2/Bank.java, 880

Synchronization, 862–897

condition objects, 872–877

final variables, 886

in Vector, 484

lock objects, 868–872

lock testing and timeouts, 893–895

monitor concept, 884

race conditions, 862–868, 887

read/write locks, 895

volatile fields, 885–886

Synchronization primitives, 935

Synchronization wrappers, 914–915

Synchronized blocks, 882–883

synchronized keyword, 868, 878–882, 884

Synchronized views, 512–513

synchronizedCollection methods (Collections),

512–513, 515, 915

Synchronizers, 934–937

barriers, 936–937

countdown latches, 936

exchangers, 937

semaphores, 935

synchronous queues, 937

SynchronousQueue class, 935–937

Synth look-and-feel, 542

System class

console method, 81

exit method, 45

getProperties method, 789, 793

getProperty method, 793

identityHashCode method, 507, 509

runFinalizersOnExit method, 182

setOut method, 159

setProperty method, 392

System of Patterns, A (Buschmann et al.),

632

System.err class, 411

System.in class, 79

System.out class, 45–46, 159, 411

print method, 82

printf method, 82–86, 256

println method, 79, 389

SystemColor class, 571–572

systemNodeForPackage method (Preferences), 794,

799

systemRoot method (Preferences), 794, 799

T
T type variable, 419

\t escape sequence, 50

Tab key

escape sequence for, 50

navigating GUI controls with, 729

Tagging interfaces, 309, 426, 471

tailMap method

of NavigableMap, 517

of SortedMap, 511, 516

tailSet method (NavigableSet, SortedSet), 511,

516

take method

of BlockingQueue, 898–899, 904

of ExecutorCompletionService, 928

takeFirst/Last methods (BlockingDeque), 904

tan method (Math), 58

tar command, 780

target attribute (HTML), 820

Tasks

controlling groups of, 927–928

decoupling from mechanism of running,

848

interrupting, 842

multiple, 839

running asynchronously, 915

scheduled, 926

time-consuming, 939–943

work stealing for, 930

Template code bloat, 426

Terminal window, 25

Text

centering, 576

displaying, 557

fonts for, 573–582

typesetting properties of, 576

Text areas, 653–654

formatted text in, 654

preferred size of, 654

scrollbars in, 654–656

Text fields, 649–651

columns in, 649

creating blank, 650

preferred size of, 649

Text input, 648–656

labels for, 651–652

password fields, 652–653

scroll panes, 654

text/TextComponentFrame.java, 655

Index1002

thenAccept, thenApply, thenApplyAsync, thenRun
methods (CompletableFuture), 933

thenAcceptBoth, thenCombine methods

(CompletableFuture), 934

thenComparing method (Comparator), 328–329

thenCompose method (CompletableFuture),

932–933

this keyword, 152, 176

capturing in method references, 320

in first statement of constructor, 176

in inner classes, 335

in lambda expressions, 324

vs. super, 207–208

Thread class

currentThread method, 851–854

extending, 848

get/setUncaughtExceptionHandler methods, 861

getDefaultUncaughtExceptionHandler method,

861

getState method, 858

interrupt, isInterrupted methods, 851–854

interrupted method, 853–854

join method, 856–858

methods with timeout, 856

resumes method, 858

run method, 849, 851

setDaemon method, 859–860

setDefaultUncaughtExceptionHandler method, 411,

860–861

setPriority method, 859

sleep method, 841, 846–847, 852

start method, 849, 851, 855

stop method (deprecated), 851, 858,

896–897

suspend method (deprecated), 858,

896–897

yield method, 859

Thread dump, 889

Thread groups, 860

Thread pools, 920–926

of fixed size, 921

Thread.UncaughtExceptionHandler interface,

860–862

ThreadDeath error, 857, 862, 896

ThreadGroup class, 861

uncaughtException method, 861–862

ThreadLocal class, methods of, 893

ThreadLocalRandom class, current method,

893

threadPool/ThreadPoolTest.java, 922

ThreadPoolExecutor class, 921–922

getLargestPoolSize method, 926

Threads

accessing collections from, 512–513,

905–915

blocked, 852, 856–857

condition objects for, 872–877

daemon, 859

defined, 840–851

executing code in, 325

handlers for uncaught exceptions in,

860–862

idle, 928

interrupting, 851–854

listing all, 889

locking, 882–883

new, 855

preemptive vs. cooperative scheduling

for, 855

priorities of, 858

producer/customer, 898

purposes of, 846–851

runnable, 855–856

simple procedure for, 846–851

states of, 855–858

Swing and, 937–943, 951–952

synchronizing, 862–897, 934–937

terminated, 847, 851, 857

thread-local variables in, 892–893

timed waiting, 856–857

unblocking, 875

vs. processes, 840

waiting, 856–857, 873

work stealing for, 930

Thread-safe collections, 905–915

callables and futures, 915–920

concurrent, 905–907

copy on write arrays, 912

synchronization wrappers, 914–915

throw keyword, 364–365

Throwable class, 360, 383

add/getSuppressed methods, 377, 380

get/initCause methods, 379

getMessage method, 366

getStackTrace method, 377, 379

printStackTrace method, 264–265, 377,

410

toString method, 366

1003Index

throwing method (Logger), 392, 405

throws keyword, 361–364

for main method, 88

@throws comment (javadoc), 196

Ticks, 673

icons for, 674

labeling, 673

snapping to, 673

Time measurement vs. calendars, 140

Timed waiting threads, 856–857

Timeless Way of Building, The (Alexander),

630

TimeoutException, 915

Timer class, 302, 314, 627

start, stop methods, 305

timer/TimerTest.java, 304

title element (HTML), 807

toArray method

of ArrayList, 435

of Collection, 249, 467, 469

of Stream, 321

toBack/Front methods (Window), 552

toLowerCase method (String), 73

Tomcat, 824–838

toolBar/ToolBarFrame.java, 697

Toolbars, 694–696

detaching, 695

dragging, 694

title of, 696

vertical, 696

Toolkit class

beep method, 305

createCustomCursor method, 618, 623

getDefaultToolkit method, 305, 549, 553

getScreenSize method, 549, 553

Toolkit-modal dialogs, 742

Tooltips, 696–699

toString method

adding to all classes, 240

Formattable and, 83

of Arrays, 114, 119

of Date, 137

of Enum, 258, 260

of Integer, 256

of Modifier, 266, 271

of Object, 238–244, 302

of proxy classes, 355

of StackTraceElement, 378, 381

of StringBuilder, 77–78

of Throwable, 366

redeclaring, 318

working with any class, 272

Total ordering, 490

toUpperCase method (String), 73

TraceHandler class, 351

Tracing execution flow, 391

TransferQueue interface, 900

transfer, tryTransfer methods, 905

translatePoint method (MouseEvent), 627

Traversal order, 729–730

Tree maps, 497

Tree sets, 489–493

adding elements to, 490

red-black, 489

total ordering of, 490

vs. priority queues, 495

TreeMap class, 471, 497, 500

as a concrete collection type, 472

vs. HashMap, 497

TreeSet class, 471, 489–493

as a concrete collection type, 472

treeSet/Item.java, 491

treeSet/TreeSetTest.java, 490

Trigonometric functions, 58

trim method (String), 73, 650

trimToSize method (ArrayList), 246–247

Troubleshooting. See Debugging

TrueType format, 575

Truncated computations, 56

try/catch statement, 264, 367–372

decoupling, 374

generics and, 436–437

wrapping entire task in try block, 382

try/finally statement, 372–376

decoupling, 374

tryLock method (Lock), 856, 893–895

Try-with-resources statement, 376–377

no locks with, 869

Two-dimensional arrays, 120–125

Type interface, 453

Type erasure, 425–430

clashes after, 439–440

Type parameters, 245

converting to raw types, 441

not for arrays, 431–432, 441

not instantiated with primitive types,

430–431

vs. inheritance, 416

Index1004

Type variables

bounds for, 422–424

in exceptions, 437

in static fields or methods, 436

matching in generic methods, 452

names of, 419

no instantiating for, 433–434

replacing with bound types, 425–426

Typesetting terms, 576

TypeVariable interface, 453

getBounds, getName methods, 457

U
UCSD Pascal system, 5

UIManager class

getInstalledLookAndFeels, setLookAndFeel methods,

602

setLookAndFeel method, 599

UML (Unified Modeling Language)

notation, 134–135

UnaryOperator interface, 326

UnavailableServiceException, 830

uncaughtException method (ThreadGroup), 861–862

UncaughtExceptionHandler interface, 860–862

uncaughtException method, 861

Unchecked exceptions, 264, 361–363

applicability of, 383

Unequality operator, 62

Unicode standard, 6, 51–52, 65

in char type, 50

Unit testing, 162

University of Illinois, 10

UNIX

Eclipse versions for, 27

JNLP configuration in, 828

running applets in, 34

setting paths in, 20, 191–193

setting up JDK in, 20

system directories, 788

troubleshooting Java programs in,

26

unlock method (Lock), 869, 871

Unmodifiable views, 511–512

unmodifiableCollection methods (Collections),

511–512, 514

UnsupportedOperationException, 503, 510, 512,

514

unsynch/Bank.java, 865

unsynch/UnsynchBankTest.java, 864

updateAndGet method (AtomicType), 887

updateComponentTreeUI method (SwingUtilities),

599

User input, 650

errors of, 359

User Interface. See Graphical User Interface

userNodeForPackage method (Preferences), 794,

799

userRoot method (Preferences), 794, 799

“Uses–a” relationship, 133–135

UTC (Coordinated Universal Time), 139

UTF-8 standard, 87

Utility classes, 298–299

V
V type variable, 419

validate method (Component), 651, 951

valueOf method

of BigDecimal, BigInteger, 108, 110–111

of Enum, 258, 260

of Integer, 256

values method (Map), 502–503

Values, captured by lambda expressions,

323

Varargs, 256–257

passing generic types to, 432–433

Variables, 53–56

accessing in lambdas, 322–324

copying, 306

declarations of, 53

deprecated, 197

effectively final, 324

final, accessing from outer methods,

339–342

initializing, 54, 200

local, 138, 430

annotating, 430

mutating in lambda expressions, 323

names of, 53–56

package scope of, 189

printing/logging values of, 409

static, 159

thread-local, 892–893

Vector class, 460, 528, 883, 914–915

elements method, 530

for dynamic arrays, 245

get, set methods, 883

synchronization in, 484

@version comment (javadoc), 197, 199

1005Index

Views, 509, 633

bulk operations for, 525

checked, 513

restricted, 514

subranges of, 510–511

synchronized, 512–513

unmodifiable, 511–512

Visual Basic programming language

built-in date type in, 136

event handling in, 587

forms in, 638

syntax of, 3

Visual Studio, 23

void keyword, 44–45

Volatile fields, 885–886

volatile keyword, 885–886

von der Ahé, Peter, 422

W
wait method (Object), 856, 878, 882

Wait sets, 873

warning method (Logger), 390, 404

Warnings

fallthrough behavior, 105

generic types, 252, 430, 432,

437–439

suppressing, 432, 437–439

Weak hash maps, 504

Weak references, 504

WeakHashMap class, 504, 507

as a concrete collection type, 472

Weakly consistent iterators, 906

WeakReference object, 504

Web pages

dynamic, 9

reading from URL, 932

showing applets on, 802–824

title of, 807

webstart/CalculatorFrame.java, 832

Welcome/Welcome.java, 25

whenComplete method (CompletableFuture), 933

while loop, 94–99

Whitespace, irrelevant to Java compiler,

44

Wildcard types, 417, 442–450

arrays of, 432

capturing, 448–450

supertype bounds for, 444–447

unbounded, 447

WildcardType interface, 453

getLowerBounds, getUpperBounds methods, 458

Window class, 628

is/setLocationByPlatform methods, 552

pack method, 550, 557, 560

toBack/Front methods, 552

Window listeners, 603–607

Window place, 630–631

WindowAdapter class, 626

WindowClosing event, 688

WindowEvent class, 588, 603, 626

getNewState, getOldState methods, 607,

628

getWindow, getOppositeWindow, getScrollAmount
methods, 628

WindowFocusListener interface, 626

windowGainedFocus, windowLostFocus methods,

628

WindowListener interface, 626

windowActivated/Deactivated methods, 603, 607,

628

windowClosing/Closed methods, 603–607, 628

windowIconified/Deiconified methods, 603, 607,

628

windowOpened method, 603, 606, 628

Windows. See Dialogs

Windows look-and-feel, 539–540

Windows operating system

Alt+F4 in, 688

debugging applets in, 807

default location in, 395

device context in, 556

Eclipse versions for, 27

executing JARs in, 783

file separators in, 785

fonts shipped with, 574

JDK versions for, 18

pop-up trigger in, 685

registry in, 794–795

resources in, 783

running applets in, 34–35

setting paths in, 20, 191, 193

setting up JDK in, 20

thread priority levels in, 859

WindowStateListener interface, 603, 626

windowStateChanged method, 607,

628

Wirth, Niklaus, 5, 10, 130

withInitial method (ThreadLocal), 893

Index1006

Work stealing, 930

Wrappers, 252–256

equality testing for, 254

immutability of, 253

lightweight collection, 509–510

X
X11 programming, 556

XML (Extensible Markup Language), 12–13

xor method (BitSet), 533

Y
yield method (Thread), 859

Z
ZIP format, 191, 780

1007Index

	Cover
	Contents
	Preface
	Acknowledgments
	Chapter 6: Interfaces, Lambda Expressions, and Inner Classes
	6.1 Interfaces
	6.1.1 The Interface Concept
	6.1.2 Properties of Interfaces
	6.1.3 Interfaces and Abstract Classes
	6.1.4 Static Methods
	6.1.5 Default Methods
	6.1.6 Resolving Default Method Conflicts

	6.2 Examples of Interfaces
	6.2.1 Interfaces and Callbacks
	6.2.2 The Comparator Interface
	6.2.3 Object Cloning

	6.3 Lambda Expressions
	6.3.1 Why Lambdas?
	6.3.2 The Syntax of Lambda Expressions
	6.3.3 Functional Interfaces
	6.3.4 Method References
	6.3.5 Constructor References
	6.3.6 Variable Scope
	6.3.7 Processing Lambda Expressions
	6.3.8 More about Comparators

	6.4 Inner Classes
	6.4.1 Use of an Inner Class to Access Object State
	6.4.2 Special Syntax Rules for Inner Classes
	6.4.3 Are Inner Classes Useful? Actually Necessary? Secure?
	6.4.4 Local Inner Classes
	6.4.5 Accessing Variables from Outer Methods
	6.4.6 Anonymous Inner Classes
	6.4.7 Static Inner Classes

	6.5 Proxies
	6.5.1 When to Use Proxies
	6.5.2 Creating Proxy Objects
	6.5.3 Properties of Proxy Classes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

