Big Nerd
Ranch

Android Programming

Bill Phillips, Chris Stewart, Brian Hardy
& Kristin Marsicano

Android Programming: The Big Nerd Ranch Guide

by Bill Phillips, Chris Stewart, Brian Hardy and Kristin Marsicano

Copyright © 2015 Big Nerd Ranch, LLC.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC.

200 Arizona Ave NE

Atlanta, GA 30307

(770) 817-6373
http://www.bignerdranch.com/
book-comments @bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134171497
ISBN-13 978-0134171494

Second edition, first printing, August 2015
Release D.2.1.1

http://www.bignerdranch.com/
http://www.informit.com

Dedication

To God, or to whatever it is that you personally have faith in. Reader,
I hope that you find the many explanations in this book useful. Please
don't ask me how they got here, though. I once thought that I was
responsible. Fortunately for you, [was wrong.

—B.P.

To my dad, David, for teaching me the value of hard work. To my mom,
Lisa, for pushing me to always do the right thing.

—C.S.

For Donovan. May he live a life filled with activities and know when to
use fragments.

—B.H.

To my dad, Dave Vadas, for inspiring and encouraging me to pursue a
career in computing. And to my mom, Joan Vadas, for cheering me on

through all the ups and downs (and for reminding me that watching an
episode of The Golden Girls always makes things better).

— KM.

This page intentionally left blank

Acknowledgments

We feel a bit sheepish having our names on the cover of this book. The truth is that without an army of
collaborators, this book could never have happened. We owe them all a debt of gratitude.

Our co-instructors and members of our Android development team, Andrew Lunsford, Bolot
Kerimbaev, Brian Gardner, David Greenhalgh, Jason Atwood, Josh Skeen, Kurt Nelson, Matt
Compton, Paul Turner, and Sean Farrell. We thank them for their patience in teaching work-
in-progress material, as well as their suggestions and corrections. If we could give ourselves
additional brains to do with as we pleased, we would not. We would just put the new brains in a
big pile, and share them with our colleagues. We trust them at least as much as we trust our own
selves.

Special thanks to Sean Farrell for graciously updating many screen shots as Android Studio
evolved, and to Matt Compton for publishing all of our sample apps to the Google Play Store.

Kar Loong Wong and Zack Simon, members of Big Nerd Ranch's amazing design team. Kar
made BeatBox look intimidating and polished, and provided advice and imagery for the material
design chapter. Zack took time out of his schedule to design MockWalker for us. Kar and Zack's
design abilities seem like unknowable superpowers to us. We thank them, and bid them fond
returns to their home planet.

Our technical reviewers, Frank Robles and Roy Kravitz, who helped us find and fix flaws.

Thanks to Aaron Hillegass. Aaron’s faith in people is one of the great and terrifying forces of
nature. Without it, we would never have had the opportunity to write this book, nor would we ever
have completed it. (He also gave us money, which was very friendly of him.)

Our editor, Elizabeth Holaday, who many times saved us from going down rabbit holes. She kept
our writing focused on what our readers actually care about and spared you all from confusing,
boring, and irrelevant detours. Thank you, Liz, for being organized and patient, and for being a
constant supportive presence, even though you live many miles away.

Ellie Volckhausen, who designed our cover.
Simone Payment, our copy-editor, who found and smoothed rough spots.

Chris Loper at IntelligentEnglish.com, who designed and produced the print book and the EPUB
and Kindle versions. His DocBook toolchain made life much easier, too.

Finally, thanks to our students. We wish that we had room to thank every single student who gave us a
correction or opinion on the book as it was shaping up. It is your curiosity we have worked to satisfy,
your confusions we have worked to clarify. Thank you.

This page intentionally left blank

Table of Contents

Learning ANATOIdc.iuininiie et e xvii
PIEr@QUISIEESeninineit ittt et ettt aaas XVvii
What's New in the Second Edition?c.ooiiiiiiiiiiiinii e, XVvii
How to Use This BOOKc..oouuiiiiiiiiii e Xviii
How This BOOK 1S OTZanizZedocuuiuiiiiiiiiiiiiieiiiieiee et ea e e XViii

CRALIENZES .. e.eninein ittt et et et Xix
ATE YOU MOTE CUTIOUS? ..euinitinit ittt ettt ettt et et et et et et et e e et e e e e e e ens Xix
(0104 [N 7 (S PPN Xix
Typographical CONVENTIONScuiiuiiutiniiitieit ettt et et e e eneeneenes XX
ANAIOId VEISIONS ..ceutiiiiiiiii ittt et ettt e e e e e e e e e XX

The NECeSSATY TOOIS ...euiniiiiie e e et et et e e e aeenes XXi
Downloading and Installing Android Studiocccoiiiiiiiiiiiiiii e, Xxi
Downloading Earlier SDK VETrSIONSc..iuuiiniiniiiiiiiiiie e Xxi
An Alternative EMULAtOTo..iuniiiiii e xxii
A Hardware DEVICEc...cuuiiiuiiiiiiiiiite et XXxil

1. Your First Android APPICAIONocuiuiiniiniiiieit et 1
APD BaSICS ettt eaas 2
Creating an Android PrOJECTcuiiuiiniiiiiiii et 2
Navigating in Android StUAIOoeuiiniinii e 8
Laying Out the User INerfacecoouuiiniiniiiiiiiii e 9

The view hIerarchyccooiiiiiiiii e 13
WIAGEL AUTTDULES ..evtevititee ittt ettt e et ebe e e eaenas 14
Creating SrING TESOUTCES ...e.uevueuneenetnetn it etaetetetaeta et et et eanetaetneanetneanetnerneanaanas 15
Previewing the 1ayOutc.oouiniiiiii e 15
From Layout XML t0 VIEW ODBJECLScuiuiniiniiiiiiiiiiieie ettt 16
Resources and 1esource IDSc..ooiiiiiiiiiiiiiiiiii e 18
WIING UP WIAZELS .neniniiii ittt et et et e e enes 20
Getting references t0 WIAZELSoeuiiuiiniiiiiii it 21
SENG TISLEIETS .. vnevnetneit ettt et e ettt et et et et et e et e e et eaneanaes 22
IMAKING TOASES e.eninin ittt ettt ettt et et et e e et et e e e et e ea e e en e 23
USINg cOde COMPLELION ...evuinnitniiiiiieiei et ettt e e et e et e e e e eaneans 25
Running on the EmUIator ..o e 26
For the More Curious: Android Build Processccoeuiiiiiiiiiiiiiiiniiiieccceen 29
Android build tOOLSoiuniiiniiiii e 31

2. Android and Model-View-Controllerc.ooiiiiiiiiiiiiiii e 33

Creating @ NEW CLaSSiuiiniiiiiii e e e e ans 34
Generating GEtters AN SELLETS ...v.ueuniunirnienirneeetet ettt et et et et et et et et et enenennenns 34
Model-View-Controller and Androidcceeuiiniiiiiii e 37
Benefits of MVC ..o e 38
Updating the VIEW LaYercouiiniiiiiiii e 39
Updating the Controller Layercooviuiiiiniiiiie e 41
RUNNING ON @ DBVICE .ueviiiiiiiiiii ettt e e e 46
CONNECHING YOUT AEVICE ..uvnineineinein ettt et et et et et e et et et et e et e et eaneanaes 46
Configuring your device for developmentc.ccoveviiiiiiiiiiiiiiiiiie e 47
AddIng an TCOMN ..oueiuiii e 48

vii

Android Programming

Adding reSources t0 @ PIOJECeeeuueruneirineiiietii et et et e eeieerieeeteeeaaeenas 49
Referencing resources in XIMLoouiiiiiiiiiiiii e 52
CRALIENZES ... eeneeene et 53
Challenge: Add a Listener to the TEeXtVIEWccuiiiiiiiiiiiiii e 53
Challenge: Add a Previous BUttonccoiiiuiiiiiiiiiiiiii e 54
Challenge: From Button to ImageButtonooooiiiiiiiiiiiiiii e, 55
3. The ActiVity LIfECYCIE ..cuniiiiiii e e 57
Logging the Activity LifecyClecouiiiiiiiiiii e 58
MakKing 10Z MESSAZES ..evuitneiieii ettt ettt et e e 58
USING LOZCAL ..etneiieiie et ettt et ettt e e e e e 60
Rotation and the Activity Lifecycleco.oiiiiiiiiiiiiiiii e 63
Device configurations and alternative reSOUITESc.ueeuueeuneruneeniineiineeineeieenennnens 64
Saving Data Across ROtAtioncoiiiiiiiiiiiiii e 68
Overriding onSavelnstanceState(Bundle)ccoiiiiiiiiiiiiiiiiiiice, 69

The Activity Lifecycle, ReVISItedc.oiiuiiiiiiiiiiiie e 70
For the More Curious: Testing onSavelnstanceState(Bundle)cooooiiiiiiiiiiiinin.., 72
For the More Curious: Logging Levels and Methodsccooeeiiiiiiiiiiiiiiiiien 73
4. Debug@ing ANAIoid ADPPSueeuiiiii it 75
Exceptions and Stack TTACESoiuuiiiniiieiiieii ettt e e e 76
Diagnosing misbBEhaVIOrScuuiiuiiiniiieiie e 77
Log@INg StACK TrACES ...uevuneetiii ittt et 78
Setting DrEaKPOINES «....ceeuniiineiiieiii ettt et ettt e e et e e e eaane 79
Using exception breakpointsceeeiuiuiiieii e 82
Android-Specific DebUZZINGc.uiiniiiiiie e 84
Using Android LNtoouiiuiini e 84
Issues with the R Classc..iiiiiiiiiiiiiiiiii e 85

5. YOUE SECONA ACHVILY ..etniitiiiii ittt ettt ettt et et et et e e et e e e e eeanas 87
Setting Up @ SECONA ACLIVIEY ...evuniiniineiie ittt et e e e e e eans 88
Creating @ NEW ACHIVILY «...cveuuiiiniiiieiii ittt e e et et et et e e e e et e eaaeeeaaneas 89

A New activity SUDCIASScovuiiiiiiiiiiii e 92
Declaring activities in the manifestccooiiiiiiiiiiiiiin e 92
Adding a Cheat! button to QUIZACHVILYoeevuniiinniiiiiiiiieiineii e e 93
StArting an ACHVILY ...eeuueinneiii ettt ettt et et et ea e 95
Communicating With INENSocooiiiiiiiiiiiiii e 96
Passing Data BetWeen ACHVILIESc..uviiuuieiiiiiiieiiieeii ettt e 97
USING INEENE EXEIAS +.vueevineiiieiiieeii et e et ettt et et e e et e et e tai e e et e e et e et eeaaeraianan 98
Getting a result back from a child activitycooooiiiiiiiiiiiiiiii e 101

How Android Sees YOUr ACHVITIES ..c..uievuneiiuniiiineiiiieeiiieiiineiii e e e 106
CRAIIBINZE . ..eeiiin ettt ettt ettt et et e e 109
6. Android SDK Versions and Compatibilityoceiiuiiiiiiiiiiiiiiie e 111
ANdroid SDK VETSIONS ...cc.uuiiiiniiiiiiiiiiieii et ettt et ea e 111
Compatibility and Android Programmingccceeiiiiiiiiiiiiiiniini e 112
A SANE MENIMUITL «.euiiiniiiieiit ettt et et e e et e et e eaeeaaaeees 112
Minimum SDK VEISIONccouuiiiiiiiiiiiiiiiiiii e 114
Target SDK VEISION ...c..iuniiiiie ittt 114
Compile SDK VEISION ...vuuiiiiiiiii ittt e e e 114
Adding code from later APIS safelyccooiiiiiiiiiiiiiii e 114
Using the Android Developer Documentationoeeueeuneiineiiieiniiieeieeeieeieenn. 117

viii

Android Programming

Challenge: Reporting the Build Versionccoceoiiiiiiiiiiiiiiiniiiinn e, 119
7. UI Fragments and the Fragment Managercooeuuiiuiiiiniiiiiieineie e 121
The Need for UL FIEXIbIlityoiuniiuniiieiieiiei et e 122
Introducing Fragmentsc.ooouiiiiiinii e 123
Starting CriminallNtentcouiiiiiiiiii e 124
Creating @ NEW PIOJECT ...eeuniunite ittt ettt et et e e e e e et et et e e e e eaeenns 126
Fragments and the support ibrarycoocooiiiiiiiiiiiiiii e, 128
Adding dependencies in Android Studiocooviiiiiiiiiiiiii 129
Creating the Crime Classc..iiuuiiiiiie et 132
Hosting a UL Fragmentc.oouiiiiiiiiii e 133
The fragment HEECYCIeoouuiiiniii e 133

Two approaches t0 NOSHNGoouuiiiiiiieiie e 134
Defining @ CONTAINET VIBWiuuiuniiteit ettt et e e et e e e e e e e ees 135
Creating a UL Fragmentc..oouiiiiiiiii ittt 136
Defining CrimeFragment’s 1ayoutccooiiiiiiiiiiiiiiiniini e 136
Creating the CrimeFragment classc.oiiiiiiiiiiiiiiiiii e 138
Adding a UI Fragment to the FragmentManagerc.oviuiiiiiiiniiineiiieieiecieeieean, 142
Fragment transSactionsc..oeuuiuneuneite it et 143

The FragmentManager and the fragment lifecyclecooocoiiiiiiiiiiiinin, 145
Application Architecture with Fragmentsc..ccoiiiiiiiiiiiiiiiii e 146
The reason all our activities will use fragmentscoocoviiiiiiiiiiiiiiiineineieen, 147

For the More Curious: Why Support Fragments are Superiorc..ccooeeveiuieiiiiieinennnn. 148
For the More Curious: Using Built-In Fragmentscoooiiiiiiiiiiniinii 148
8. Creating User Interfaces with Layouts and Widgetscccooeiiiiiiiiiiiiiiiiiiiiniineciece, 149
UPZrading CIIMCuuiivuniiiieiii ettt ettt et e et et e eaa e 149
Updating the Layoutooiiiii et 150
WILING WIAZELS ...t 153
More on XML Layout AIDULEScc.uieuniiiiiiii e 154
Styles, themes, and theme attributesoocooiiiiiiiiiiiiiiiiii e, 154
Screen pixel densities and dp and SPc.eiiiiiiiiiii 155
Android’s design gUIdEliNesc.ocouiiiiiiiiiiiiii e 156
Layout PATQMELETS .. .c.ueeuien ittt ettt et et e e et e e et e e e e e eaaaas 157
Margins Vs. PAAAINGc.ueeuniiniiiii e 157
Using the Graphical Layout TOOLcc.oiiiiiiiiiiiiiie e 158
Creating a 1andscape 1ayOuLtc..viuiiiiiiiii e 160
Adding a NEW WIAZELeuniiiiii e 161
Editing attributes in Properties VIEWoeuveuueeueiueiieiieei e eie e eaieeanaens 161
Reorganizing widgets in the COMPONENt treec.oeeuiiniiiniiiiiiiiiieiiieieeeeenean. 162
Updating child 1ayout parametersc.oeeueeuiiniiiniiieiine e 163

How android:layout_weight WOrkscooiiiiiiiiiiiii e, 164

The graphical layout tool and YOUc..oouiiiiiiiiiiiiiii e 165
Widget IDs and multiple 1ayoutscccooviiiiiiiiiii e 166
Challenge: Formatting the Dateoooiiiiiiiiiiii e 166
9. Displaying Lists with ReCYCIErVIEWcc..oiiiiiiiiiiiiiiiiiiiiii e 167
Updating Criminallntent’s Model Layerccocoieiiiiiiiiiiiiiiieiiee e 168
Singletons and centralized data STOTAZEccuviuuiiuniiiiiiiiiiii e 168

An Abstract Activity for Hosting a Fragmentc..ccoiiiiiiiiiiiiiiiiiiiiieceec e, 171
A generic fragment-hosting 1ayoutcoociiiiiiiiiiiiii e 171

Android Programming

An abstract ACtIVILY ClaSS ...c.uiiuniiiiiii i 172
RecyclerView, Adapter, and VieWHOIdercoooiiiiiiiiiiiiiii e 176
ViewHolders and AdapLersoeuueiuniiineiie et 177
USIng @ ReCYCIEIVIEWcouiiiiiiii e 180
Implementing an Adapter and ViewHoldercoociiiiiiiiiiiiiiiie 182
Customizing List TEeMSc..iiuiiiii e 185
Creating the List item layOULtcouiiiiiiii e 185
USING @ CUSTOM TEBIN VIEW ..euueitniiiiit ittt et et et e et e et e e e e e eaeeens 188
ReSpONding t0 PreSSESuuiiiiniiiiiiiiiiii e 190
For the More Curious: ListView and GridVIewc.c.ccciiviiiiiiiiniiiiniiininceeeann, 191
For the More Curious: SINZIETONSccuuuiiuuiiiieiiieiii ettt ettt e e eeaaes 192
10. Using Fragment ATZUMENEScc.uuiiiuneiiineiiieiiietii ettt eei e et e et ereieeeteeetaneraieeaanenes 193
Starting an Activity from a Fragmentc.c.oooiiiiiiiiiiiiiiiiiiiii e 193
PULtING QN EXETA «.uteiviniiiiieiii e 194
REtrEVING QN XLIA «oeuuiiiiiiiieiii ettt et et e e een 195
Updating CrimeFragment’s view with Crime datac...cccoeiiiiiiiiiniiinn, 196

The downside to direct retrievalc.ooeiiiiiiiiiiiiiiniiiii e 197
Fragment ATGUMENTSooouiiiiiiiiiiiii e 197
Attaching arguments t0 @ fTagMeNtceeuuiiiiniiiiineiiineiinei e 198
REtrieVING arZUIMEIIEScevuuiiiniiii et ettt et ettt ettt e e e e et eeaieeeaaae e 199
Reloading the LSteuniuniiiii et 200
Getting Results with Fragmentsc.ooooiiiiiiiiiiiiiii e 202
Challenge: Efficient RecyclerView Reloadingcoocoviiiiiiiiiiiiiiniiniinieee, 203
For the More Curious: Why Use Fragment Arguments?ccoveeuieiniiiiiiieiineiineennenn. 204
L1, USING VIBWPAZET ...euniitiiiii ettt et et e e e e 205
Creating CrimePagerACHVILYcuuiiuniiieiie it 206
ViewPager and PagerAdapterooo.viiuiiiiiiie e 207
Integrating CrimePagerACtiVILycc.viiuiiiniiiiiie e 208
FragmentStatePagerAdapter vs. FragmentPagerAdapterccoooviuiiiiieiiniiniiiiinnennnen. 211
For the More Curious: How ViewPager Really Workscoviiiiiiiiiiiiiiniiniiinn, 212
For the More Curious: Laying Out Views in Codec.ccoieiiiiiiiiiiiiiiiiieneeene 213
L2, DHALOZS ettt ettt et et aaas 215
The AppCompat LiDIarycooiiuiiiiiiiie e 216
Creating a DialogFragmentocoviiiiiiiiii e 217
Showing a DialogFragmentc..oiuuiiiniiiiiiei it 220
Setting a dialog’s CONEILSeuuieuniit ittt et et e e e e e eens 221
Passing Data Between Two Fragmentscooiiiiiiiiiiiiiiiiii e 224
Passing data to DatePickerFragmentc..oooiiiiiiiiiiiiiii 225
Returning data to CrimeFragmentcoooiiiiiiiiiiiiiiii e 226
Challenge: More DIalogscuuiiniiiiiiie e 233
Challenge: A Responsive DialogFragmentcoooooiiiiiiiiiiiiiiiii e 233
13, The TOOIDATuiiiiiiiieiii e et ettt e et e e e eaes 235
APPCOIMIPAL ...ttt ettt e e e e 235
Using the AppCompat lIDraryooouiiiiiiiiiiiiiie e 236
IMIETIUS ..ot 238
Defining a menu in XML ..ottt 239
Creating the MENUc..eiuiiiiii e 244
Responding to menu SEleCtionsSccuiiiuiiiiiiiiiiii e 246

Android Programming

Enabling Hierarchical NavVIgationcouiiuniiiiiiniiiiiiiii e 248
How hierarchical navigation WOTKSc.ccociuiiiiiiniiiiiiiiiiiiincin e, 249

An Alternative Action Ttemc.oooiiiiiiiiiiiiiiii e 249
Toggling the action Item titleco.iiiuiiiiiiii e 251

“Just 0ne MOre thiNg...”ii. i e 252

For the More Curious: Toolbar vs Action Barccoooiiiiiiiiiiiiniii e, 254
Challenge: Deleting CIIIMES ... c.ueuueiuneiteii ettt e e et et e e et e e e e e eaeenns 255
Challenge: Plural String ReSOUICESc..oiuiiiiiiiiiiiii e 255
Challenge: An Empty View for the RecyclerViewcoooooiiiiiiiiiiiiiniiniiiee, 255
14, SQLItE DAtaDASESouirinitiiit e e eaas 257
Defining @ SCHeMAc..uiiniiii e 257
Building Your Initial Databasecoiiiuiiiiiiiiii e 258
Debugging database ISSUESceuueiuueiuneiteii ettt e e e e e e eie e 261
Gutting CrimeLab ... e 262
Writing to the Databasecouiiiiiiiiiiii e 263
USIng ContentVAlUSc.uiuniii ittt 263
Inserting and UPAAting FOWSueeuniiuiin i 264
Reading from the Databasec..oiiuiiiiiiiiiiiii e 266
USING @ CUISOTWIAPPET .. e.neeneiieii ettt et ettt et et e et et e e e ees 267
Converting to model ODJECESccouuiiiiiiiiiiiiiiiiiii e 269

For the More Curious: More Databasesc..coeeuuiiiiiiiiiiniiiiniiiiiiecie e 271
For the More Curious: The Application CONtEXtueeuiiuiiiniiieiieiiiei i 272
Challenge: Deleting CIIIMES ... c.ueuueiuneiteii ettt e e et e et e et e e e eieeaeenns 272
15, ITMPLCIE INTENES ..etniteie et et ettt et et e et e e e e et eeanas 273
AdAINg BULIONS ...eetiiiiie e ettt et 274
Adding a Suspect to the Model Layerc.ooouviiiiiiiiiiiiiii e 276
Using @ FOrmat SNooeuiiiniiiie ettt eaas 278
Using IMplicit INTENEScvvuniiiiiiiiiii et 279
Parts of an iMpPLCIt INEENEiiuiiiii e 280
SeNding @ CrIME TEPOTEeunitein ettt e e ettt et e e e e e e e e eieeaaes 281
Asking Android fOr @ CONACEiuuiiiniiieie e 283
Checking for responding aCtiVItI®Sccuueiuneiniiiiiieii e eie e 287
Challenge: Shar€COmMPALcc.uuiiiiiiiiiiiiie ittt e e e eaia e 289
Challenge: Another Implicit INtentoooiiiiiiiiiiii e 289
16. Taking Pictures with INENLSc..iiiiiiiiiiii e 291
A Place for Your Photoccoouiiiiiiiiiii e 291
Including 1ayout filesco.oviiiiiiiiiiiiii e 292
EXEErNal STOTAZE ...eevvniiiieiii ettt ettt ettt e 294
Designating a picture 10Cationcceuuiiiiiniiiiiiiiiniiineiii e 296
Using a Camera INENtc...iiiiiiiiiiiiiii e 297
External Storage pPermiSSIONc...veeuureerunierineeiiieriinetiinetiieerieeeireeaieeaneeens 298
Firing the INteNtoiiiiiiiiiiiii e 299
Scaling and Displaying Bitmapscc.eeuiiiiiiniiiiie e 301
Declaring FEAtUIESccuuiiniiiii et et et 304
For the More Curious: Using INCIUAESc..couiiiiiiiiiiiiiiii e 304
Challenge: Detail DISPIAYc.uiuniiiniiieiiei e 305
Challenge: Efficient Thumbnail Loadcooiiiiiiiiiiii e 305
17. Two-Pane Master-Detail INterfacescooeeeiiiiiiiiiiiiiiiiiiiii e 307

Xi

Android Programming

Adding Layout FIEXibilitycouiiiuiiiiiiiii e 308
Modifying SingleFragmentACtiVILYccouuviiiiiiiiiniiiiiiiiiieiin e, 309

Creating a layout with two fragment CONtainerscccceeevureiiiieiiieiineeinnennnn.. 309

USING AN @l18S TESOUICEevuitneiteiieii ettt et e et et e et et e e e e e e eaneeanas 311

Creating tablet alterNatiVEScouueiueitiiiiii e et e e 312

Activity: Fragment BOSSc.ocouiiiiiiiiiii e 314
Fragment callback interfacesc.oeeuiiiuiiiiiiiiiiiiie e 314

For the More Curious: More on Determining Device Sizecc.ccoveiiiiiiiiiiiiiiiiininnenn. 323

I8, AASSEES ettt ettt ettt et ettt et et ettt et et e et e eaa e eaane 325
Why AsSets, NOt RESOUICESc.uiuniitiiiiie e e 326
Creating BeatBOXciuiiiii e 326
IMPOTEING ASSELS «e.uneieiieiiie ittt ettt ettt e e et et et et e e e e eaane 329
GELLINZ AL ASSEES ..etnetttin ettt ettt et et et et et et eta e e e et et e et e ea e e e e et e ea e et e eheenns 331
Wiring Up ASSES Or USE ...cuuiiiniiiiiiiiii et 333
ACCESSINZ ASSEES ..euientine ettt ettt et e ettt e ettt et et et e e e e aaaas 336

For the More Curious: NON-ASSEIS?ccuuuiiiiniiiiieiiieii et ettt e et e e e eaans 337

19. Audio Playback with SoundPoolcccooiiiiiiiiiiiii 339
Creating a SoundPoOOlco.iiiiiiiiiiiii e 339
Loading SOUNASc.uniiiiie e e ettt 340
Playing SOUNAS ... c.uiiiiieie et 341
Unloading SOUNMScuuiiniiiei e ettt e e e e e 343
Rotation and Object CONINUILYeeuueitnieniin ittt e e e e e eaneens 344
Retaining a fragmentcooiiiuiiiiiiiiii e 345

Rotation and retained fragmentsoooiiiuiiiniiiiiiiii e 346

For the More Curious: Whether to Retainccoooviiiiiiiiiiiiiiiii e 348

For the More Curious: More on Rotation Handlingc...ccooeiiiiiiiiiiiiiiiiininne 349

20. Styles and THEMEScuuiiniin it et ettt et e e e e eanae 353
COlOT RESOUITES ..evuieiiiieiiii ettt et et ettt e e e e e 353
Y S ettt et et et e e eaaas 354
Style INNETITANCEc.uieteit it e 355

TREIMES ..eviniiii ettt e 357
Modifying the theme ..o 357

Adding Theme CoIOTSc..uviiiiiiiiiiiie et e e 359
Overriding Theme ALIIDULESiuniiiii it e e 360
Theme SPelUNKINGc..eiuniiiiiii e 361

Modifying Button AIDULESieuiiniiieii e 365

For the More Curious: More on Style Inheritancec..cooviiiiiiiiiiiiiniiiiiiee e, 367

For the More Curious: Accessing Theme Attributescoviuiiiiiiiiiiiiniiiiiiieeean. 368
Challenge: An Appropriate Base Themecocooiiiiiiiiiiiiiiiii e, 368

21, XML DrawabIescoouuiiiiiiiiiiiie et 369
Making Uniform BUtOnSooouuiiiiiiiiiiii e 369
Shape Drawablescouueiuiiiii e 371

State List DIrawablesc...viiuniiiiiiiiiii e 372
Layer List DIrawablesccuiiuiiiiiii e 374

For the More Curious: Why Bother with XML Drawables?cccooiiiiiiiiiininiiann. 376

For the More Curious: 9-Patch Imagescccoveiiiiiiiiiiiiiiiiii e 376

For the More Curious: Mipmap IMagesccooeiiiiiiiiiiiiiiii e 381

22. More About Intents and Taskscc.oviiiiiiiiiiiiiiii e 383

Xii

Android Programming

Setting Up NerdLaunCheroouiiiiiiiii et 384
Resolving an Implicit INENtco.oiiiiiiiii e 386
Creating Explicit Intents at RUNtMEccoooooiiiiiiiiiiiiii e 391
Tasks and the Back Stackccoiiiiiiiiiiiiiiiiiii e 393
Switching Between tasksoviiuiiiiiiiiiiiiiiiic e 393
Starting @ NEW tASKeiiuniiiiiiii e 395
Using NerdLauncher as @ HOme SCreenc.oooiiiiiiiiiiiiiiniiiiiiiic e 397
Challenge: ICOMSuiiiiiiiiieiiit ettt 398
For the More Curious: Processes vS. Tasksccooviiiiiiiiiiiiiiiinii e 398
For the More Curious: Concurrent DOCUMENtSocivuiiiiiiiiiiiiiineiiineiie e, 401
23. HTTP & Background Taskscoueiuiiniiiiiie e 405
Creating PhotoGalleryo.ooouiiiiii e 406
NEtWOrKing BasiCsccuuuiiiiniiiiiiiiie et 409
Asking permission t0 NEtWOIKooooiiiiiiiiiiiiii e 411
Using AsyncTask to Run on a Background Threadc..cooiiiiiiiiiiiiiniinninn, 411
You and Your Main Threadcooiiiiiiiiiiiiiiii e 413
Beyond the main threadooooiiiiiiii 414
Fetching JSON from FICKIooouiiiii e 415
Parsing JSON LEXE ...ueivuniiiiiiiee ettt et ettt e ea e eaiaee 419
From AsyncTask Back to the Main Threadccooiiiiiiiiiiinii e 422
Cleaning Up ASYNCTASKS ... c.uiuniiieiiii e 425
For the More Curious: More on ASYNCTaskc.oeiuiiiiiiiiiiiiiie e 426
For the More Curious: Alternatives to ASyNcTaskccooeeuviiiiiiiiiiniiiiiii e 427
CRAllenN@e: GSOMeuniieii ettt et ettt et e e e e e e eas 428
Challenge: Pagingcouiiiuiiiiiie e e 428
Challenge: Dynamically Adjusting the Number of Columnsccoeeiviiiiiniiieinnannn.. 428
24. Loopers, Handlers, and HandlerThreadooooiiiiiiiiiiiii e 429
Preparing RecyclerView to Display Imagescccoeeeviiiiiiiiiiiiiiiniiiic e, 429
Downloading Lots of Small Thingsccviuuiiiiiiiiiii e 432
Communicating with the Main Threadc..cooiiiiiii e 432
Assembling a Background Threadcooooiiiiiiiiiiiiiii e 433
Messages and Message Handlerscoeiuiiiiiiiiiiiiii e 435
MESSAZE ANALOIILY ...eeeeeeetn et ete et et e e e e e e et e et et e e et et e et e eaeeen e aneeaneeanens 435
Handler anatomyc..ooueiueiiei e 436
USING handIBrScuuieiiiiie e 437
Passing handIersoooiiiiiiiiii e 441

For the More Curious: AsyncTask vs. Threadsccoooiiiiiiiiiiiiiiie, 447
Challenge: Preloading and Cachingc..oooiiiiiiiiiiiiiiii e 447
For the More Curious: Solving the Image Downloading Problemcc.ccoioiiini. 448
25, SCAICH et 449
Searching FLICKToiiiiiiiiii e 449
USING SEATCHVIEW ...ttt et ettt e e 455
Responding to SearchView User interaCtionsceeueeeuneeuneinieiniiieeineeieennen. 458
Simple Persistence with Shared Preferencescoooooiiiiiiiiiiiiiiiiiii e 460
POLISHING YOUT ADPD +nitiiiiiiie ittt e e 464
Challenge: Polishing Your App S0me MOTEccuiiiuiiiiiiieiiiiieie et 465
26. BaCKZIroUNA SEIVICESuiuniiieiteii ettt et et ettt et e e e e e e e e e 467
Creating an INEENESEIVICEc.uiiuniiiii ittt e e 467

Android Programming

What Services are FOTc...oiiiiiiiiiiiiiiiiii e 469
Safe background NEtWOIKINGcouiiiuiiiiiiiiiie e 470
Looking for New ReSUILSc..iouiiiiiiiii e 471
Delayed Execution with AlarmManagercc.eeueiieiteiiiii et eie e 473
Being a good citizen: using alarms the right waycoocooiiiiiiiiniiinin, 475
PendingIntentoouiiiii e 4717
Managing alarms with PendingIntentcooooiiiiiiiiiiiiiiii e, 4717
Controlling YOUTr ALQITI ...c..uiuuiiniie ettt et e eans 478
INOEHTICALIONS ..ttt ettt ettt et et ettt et et e et e et eeaieeanaeae 481
Challenge: Notifications on Android Wearcooeeiiiiiiiiiiiiiiiii e 483
For the More Curious: Service Detailsccoviiiiiiiiiiiiiiiiiiiiii e 483
What a service does (and does Not) dOooiiuiiiiniiiiii 483

A SEIVICE™S TIFECYCIE ..vniiniie e 484
INON-SEICKY SEIVICES ..vuiiniine ittt ettt e e e e 484
STCKY SEIVICES ..etueitneiteii ettt ettt ettt et e e e e eaaeees 484
BOUNA SEIVICES ..uiiiineiiiiiiieeiie ettt et e e e 485

For the More Curious: JobScheduler and JODSEIvicesceceuviiiiiiiiniiiniiiiineinneennn. 486
For the More Curious: SYNc Adapterscouieiuieiiiiiiiii e 488
Challenge: Using JobService on LOIIPOP ...c...uvivuiiiiiniiiiiniiiiiiiieiiineeie e 490
27. Broadcast INENESoeuuiiiiniiie i e 491
Regular Intents vs. Broadcast INtENtSc..ooeiviiiiiiiiiiiiiiiiiniii e 491
Receiving a System Broadcast: Waking Up on Bootccoiiiiiiiiiiiiiiiiin 492
Creating and registering a standalone reCeIVeTcccoveriuniiiiiiiiniiiineiiieeiineen. 492
USING TECRIVETS «evuueiiiieiiie it ettt et et ettt ettt e et ettt e e ea e e et e eaieeeaaeeens 495
Filtering Foreground NOtH{ICAIONScccuuviiiniiiiiiiiiiiiiieiiieeiieei e 496
Sending broadcast INLENLSeeeuuriiiiiiiiiiiii et e e 497
Creating and registering a dynamicC IECEIVETcc.ueeruneiirueiiieiiieiiieeeiieeinnnen. 497
Limiting broadcasts to your app using private permissSionsc..ccoeeeueeeneeeneennnen. 500
Passing and receiving data with ordered broadcastsc..ccoveeiiiiiiiiiiiiiiiiniinan.. 502
Receivers and Long-Running Tasksoooiiiiiiiiiiiiiiii e 507
For the More Curious: Local EVENtScoouviiiiiiiiiiiiiiiiiiiiiiccin e 507
UsSing EVentBUSc..iiiiiiii e 507
USING RXJAVA L. 508

For the More Curious: Detecting the Visibility of Your Fragmentccc..coeeii. 509
28. Browsing the Web and WebVIewooiiiiiiiiiiiiii e 511
One Last Bit of FLickr Datacoiiiiiiiiiiiiiii e 511
The Easy Way: Implicit INTENtSccoiiuiiiiiiiii e 514
The Harder Way: WEDVIEWoiuuiiiiiiiiiie et 516
Using WebChromeClient to Spruce things Upc.ceeuuiiiiiiniiniiiiiiieeeeneennes 520
Proper Rotation with WebVIEWccouiiiiiiiiiiiiiiii e 522
Dangers of handling configuration changescooeeoieiiiiiiiiiiiiiiiiieieeeeen, 523

For the More Curious: Injecting JavaScript ObJectsc.oceuieiuieiiiiiiiiiiiiieieeeeeenee, 523
For the More Curious: KitKat’s WebView Overhaulccooiiiiiiiini, 524
Challenge: Using the Back Button for Browser HiStOryccoooiiiiiiiiiiiiiiiiiiieneennes 524
Challenge: Supporting Non-HTTP Linkscoviiiiiiiiiiiiii e 525
29. Custom Views and Touch EVENLScooiiiiiiiiiiiiiiiiiii e 527
Setting Up the DragAndDraw Projectc.ooeuiiiiiiiiiiiiiiii e 527
Setting up DragAndDrawACHVILYvuuiiniiieiieiieie e 528

Xiv

Android Programming

Setting up DragAndDrawFragmentco.oiiuiiiiiiiiiiiiiii e 528
Creating @ CUSTOM VIBWuituiitiiiii ettt et et et e e e een e 530
Creating BoXDrawingVIEWco.uiiuiiiiiiiiiiiii e 530
Handling Touch EVENtScouuiiuiiiiiii e 532
Tracking across MOtION EVENLSccuuiuuiuniin it eiieii et et e e e e eeneeaneees 534
Rendering Inside onDIaw(...) «...oeueiiiiiiiii e 536
Challenge: SAVING STALEeiuniitiitii ettt ettt e et e e e e e e eeaaas 538
Challenge: Rotating BOXESuiuuiiiniiiiiiiei et 538
30. Property ANIMALIONciuuueiiuniiii ettt et e e e et et et e e e e e et e et et e e eeaaeeraaneeaans 539
Building the SCEINEccouuiiiiiiiiiii e 539
Simple Property ANIMAtioNooeuiiiniiiniiie et e e 542
View transformation PrOPEItISc..eeuueeuneiteunein it etiee e e et e eeiaeeneans 544
Using different interpolatorsc.oeiueiuiiiiiiii e 546
COlOr VAIUALION ...ceuutiiiiiiiiiiiii et 546
Playing Animators TOZEtherc..iiiiiiiiiii e 548
For the More Curious: Other Animation APISccoiiiiiiiiiiiniiiiii e 550
Legacy animation tOO0LSccuuiiuiitiiiii e 550
TIANSILIONS ..evtieiiieiii ettt ettt et et et et e et et et 550
CRALIEN@ES ... eeneeeii e ettt 550
31. Locations and Play SEIVICESeiuueiueiiitiiiii ittt ean e 551
Locations and LiDIari€scouuveiiuuiiiiiiiiiniiieii et 551
GOO0ZLE Play SEIVICESc.uieniiiiieii et e 552
Creating LOCALEiuniiiii et 552
Play Services and Location Testing on Emulatorsc..coviiiiiiiiiiiiiniiniinieeen, 553
Mock 10CatION dALAcvvuiiiiiiiiie i 554
Building 0ut LOCALTcuuiiieiie it 556
Setting Up Google Play SEIVICEScc.uveiiuniiiiniiiiiiiiiiiin et 559
LOCAtion PEIMISSIONS ...euueentin ettt et et ettt e et et et et et e et e et e et e e e et eaaaeannas 560
Using Go0ogle Play SErVICESc..eeuuiiuiii it 561
FLCKT GEOSCAICH «...ueiiiiiiiiieiii e 563
Getting a Location FiXooiiiiii e 564
Find and Display an IMagec..oiuuiiiiiiiiii e 566
Challenge: PrOZIESS ...ueevuniiiieiii ettt ettt et et e e et e eaaeees 569
B VAP ettt et e et 571
Importing Play Services IMAPScuuiuuiiniie it 571
Mapping on ANAroido.iiuiiinii e 571
MaAPS APL SEIUD ...t 572
Getting a Maps APL KeYcouiiiiiiiiii e 572
Setting Up YOUT MAD ..oniiiiiii et 574
Getting More Location Datacouiiiiiiiiiiiiiii e 576
Working wWith YOUTr Map ..c...oiiiiiiiiiiiiiiiii et 579
Drawing on the mMapcuiiiiiiiiii e 582

For the More Curious: Teams and APT Keyscoviiiiiiiiiiiiiiiiiiiii e 584
33, Material DESIZIueeniii ittt 587
Material SUITACESccuuniiiiniiiiiiii ettt ettt 587
Elevation and Z ValU@Sccouuiiiiiiiiiiiiiiieiie e 589

State liSt ANIMALOTSeevuniiiniitie ittt ettt e e ettt e e e e e e e e eaane 590
ANIMAtion TOOLSuiiiiniiiiiii e 591

XV

Android Programming

CArcular TEVEALiuiiii e 591

Shared element tranSIitioNSceuvieniuneeunei et e e e e 593

VIEW COMPONEIIES ...eevineiiiieeiiieiti ettt ettt ettt e et e et e et et e et et e e et e eaaneeanns 597
CaLAS et 597

Floating action DULLONSc...viiuuiiiiiiiieiii ettt ettt eaa e 598

SNACKDALS ...ttt e e 600

More on Material DeSiZNeeuniiniiiniii e 601

B4, ATIEIWOTA ...t e ettt et et 603
The Final Challengec.uiiiniiiiiii et 603
Shameless PIUZSoouiiiiiie e 603
Thank YOUoeei e e 604
DX et e 605

XVi

Learning Android

As a beginning Android programmer, you face a steep learning curve. Learning Android is like moving
to a foreign city. Even if you speak the language, it will not feel like home at first. Everyone around
you seems to understand things that you are missing. Things you already knew turn out to be dead
wrong in this new context.

Android has a culture. That culture speaks Java, but knowing Java is not enough. Getting your head
around Android requires learning many new ideas and techniques. It helps to have a guide through
unfamiliar territory.

That’s where we come in. At Big Nerd Ranch, we believe that to be an Android programmer, you
must:

* write Android applications
* understand what you are writing

This guide will help you do both. We have trained hundreds of professional Android programmers
using it. We lead you through writing several Android applications, introducing concepts and
techniques as needed. When there are rough spots, when some things are tricky or obscure, you will
face them head on, and we will do our best to explain why things are the way they are.

This approach allows you to put what you have learned into practice in a working app right away rather
than learning a lot of theory and then having to figure out how to apply it all later. You will come away
with the experience and understanding you need to get going as an Android developer.

Prerequisites

To use this book, you need to be familiar with Java, including classes and objects, interfaces, listeners,
packages, inner classes, anonymous inner classes, and generic classes.

If these ideas do not ring a bell, you will be in the weeds by page 2. Start instead with an introductory
Java book and return to this book afterward. There are many excellent introductory books available, so
you can choose one based on your programming experience and learning style.

If you are comfortable with object-oriented programming concepts, but your Java is a little rusty, you
will probably be OK. We will provide some brief reminders about Java specifics (like interfaces and
anonymous inner classes). Keep a Java reference handy in case you need more support as you go
through the book.

What's New in the Second Edition?

This second edition shows how to use the Android Studio integrated development environment to write
practical applications for Android 5.1 (Lollipop) that are backwards-compatible through Android 4.1
(Jelly Bean). It includes updated coverage of the fundamentals of Android programming as well as new
Lollipop tools like the toolbar and material design. It also covers new tools from the support libraries,
like RecyclerView and Google Play Services, plus some key standard library tools, like SoundPool,
animations, and assets.

XVii

Learning Android

How to Use This Book

This book is not a reference book. Its goal is to get you over the initial hump to where you can get

the most out of the reference and recipe books available. It is based on our five-day class at Big Nerd
Ranch. As such, it is meant to be worked through from the beginning. Chapters build on each other and
skipping around is unproductive.

In our classes, students work through these materials, but they also benefit from the right environment
— a dedicated classroom, good food and comfortable board, a group of motivated peers, and an
instructor to answer questions.

As a reader, you want your environment to be similar. That means getting a good night’s rest and
finding a quiet place to work. These things can help, too:

e Start a reading group with your friends or coworkers.
» Arrange to have blocks of focused time to work on chapters.
* Participate in the forum for this book at http://forums.bignerdranch.com.

* Find someone who knows Android to help you out.

How This Book is Organized

As you work through this book, you will write eight Android apps. A couple are very simple and take
only a chapter to create. Others are more complex. The longest app spans 11 chapters. All are designed
to teach you important concepts and techniques and give you direct experience using them.

GeoQuiz In your first app, you will explore the fundamentals of Android projects,
activities, layouts, and explicit intents.

Criminallntent The largest app in the book, Criminallntent lets you keep a record of your
colleagues’ lapses around the office. You will learn to use fragments, master-
detail interfaces, list-backed interfaces, menus, the camera, implicit intents,
and more.

BeatBox Intimidate your foes with this app while you learn more about fragments,
media playback, themes, and drawables.

NerdLauncher Building this custom launcher will give you insight into the intent system and
tasks.
PhotoGallery A Flickr client that downloads and displays photos from Flickr’s public

feed, this app will take you through services, multithreading, accessing web
services, and more.

XViii

http://forums.bignerdranch.com

Challenges

DragAndDraw In this simple drawing app, you will learn about handling touch events and
creating custom views.

Sunset In this toy app, you will create a beautiful representation of a sunset over open
water while learning about animations.

Locatr This app lets you query Flickr for pictures around your current location and
display them on a map. In it, you will learn how to use location services and
maps.

Challenges

Most chapters have a section at the end with exercises for you to work through. This is your
opportunity to use what you have learned, explore the documentation, and do some problem solving on
your own.

We strongly recommend that you do the challenges. Going off the beaten path and finding your way
will solidify your learning and give you confidence with your own projects.

If you get lost, you can always visit http://forums.bignerdranch.com for some assistance.

Are you more curious?

There are also sections at the ends of chapters labeled “For the More Curious.” These sections offer
deeper explanations or additional information about topics presented in the chapter. The information in
these sections is not absolutely essential, but we hope you will find it interesting and useful.

Code Style

There are two areas where our choices differ from what you might see elsewhere in the Android
community:

We use anonymous inner classes for listeners.

This is mostly a matter of opinion. We find it makes for cleaner code in the applications in this
book because it puts the listener’s method implementations right where you want to see them. In
high-performance contexts or large applications, anonymous inner classes may cause problems,
but for most circumstances they work fine.

After we introduce fragments in Chapter 7, we use them for all user interfaces.

Fragments are not an absolutely necessary tool but we find that, when used correctly, they are a
valuable tool in any Android developer’s toolkit. Once you get comfortable with fragments, they
are not that difficult to work with. Fragments have clear advantages over activities that make
them worth the effort, including flexibility in building and presenting your user interfaces.

XiX

http://forums.bignerdranch.com

Learning Android

Typographical Conventions

To make this book easier to read, certain items appear in certain fonts. Variables, constants, and types
appear in a fixed-width font. Class names, interface names, and method names appear in a bold, fixed-
width font.

All code and XML listings are in a fixed-width font. Code or XML that you need to type in is always
bold. Code or XML that should be deleted is struck through. For example, in the following method
implementation, you are deleting the call to makeText (..) and adding the call to checkAnswer (true).

@Override
public void onClick(View v) {

checkAnswer(true);

Android Versions

This book teaches Android development for all widely used versions of Android. As of this writing,
that is Android 4.1 (Jelly Bean) - Android 5.1 (Lollipop). While there is a small amount of market-
share on older versions of Android, we find that for most developers the amount of effort required to
support those versions is not worth the reward. For more info on the support of versions of Android
earlier than 4.1 (in particular, Android 2.2 and Android 2.3), see the first edition of this book.

As Android releases new versions, the techniques you learn in this book will continue to work thanks
to Android’s backwards compatibility support (see Chapter 6 for details). We will keep track of
changes at http://forums.bignerdranch. com and offer notes on using this book with the latest
version.

XX

http://forums.bignerdranch.com

The Necessary Tools

To get started with this book, you will need Android Studio. Android Studio is an integrated
development environment used for Android development that is based off of the popular IntelliJ IDEA.

An install of Android Studio includes:

Android SDK

the latest version of the Android SDK

Android SDK tools and platform-tools

tools for debugging and testing your apps

A system image for the Android emulator

lets you create and test your apps on different virtual devices

As of this writing, Android Studio is under active development and is frequently updated. Be aware
that you may find differences between your version of Android Studio and what you see in this book.
Visit http://forums.bignerdranch.com for help with these differences.

Downloading and Installing Android Studio

Android Studio is available from Android’s developer site at https://developer.android.com/sdk/.

If you do not already have it installed, you will need to install the Java Development Kit (JDK7), which
you can download from http://www.oracle.com.

If you are still having problems, return to https://developer.android.com/sdk/ for more
information.

Downloading Earlier SDK Versions

Android Studio provides the SDK and the emulator system image from the latest platform. However,
you may want to test your apps on earlier versions of Android.

You can get components for each platform using the Android SDK Manager. In Android Studio, select
Tools = Android = SDK Manager. (You will only see the Tools menu if you have a project open. If
you have not created a project yet, you can instead access the SDK Manager from the Android Setup
Wizard screen. Under the Quick Start section, select Configure = SDK Manager, as shown in Figure 1.)

XXi

http://forums.bignerdranch.com
https://developer.android.com/sdk/
http://www.oracle.com
https://developer.android.com/sdk/

The Necessary Tools

Figure 1 Android SDK Manager

L= | Default Preferences

[, :' Appearance & Behavior » System Settings » Android SDK

¥ Appearance & Behavi ger for the Android SDK and Tools used by Android Studio

Appearance Android SDK Location: | fAndroidDeveloper/sdk

Menus and Toolbars m—
SDK Platform:

™ SDK Tools | SDK Update Sites |

¥ System Settings
Each Android SDK Platfrom package includes the Android platform and sources pertainint to

Easswonh an API level by default. Once installed, Android Studio will automatically check for updates.
HTTP Proxy Check "show package details" to display individual SDK components.
Updates Name APl Level Revision Status
s Sueictatislics) Android MNC Prelview MNC 1 Ins[él\ed.
Android 5.1 (Lollipop) 22 2 Partially installed
[2] Android 5.0 (Lollipop) 21 2 Installed
Notifications [2] Android L Preview L 4 Partially installed
Quick Lists ™ Android 4.4 (Kitkat Wear) 20 2 Installed
e Android 4.4 (KitKat) 19 4 Partially installed
Android 4.3 {Jelly Bean) 18 3 Partially installed
¥ Editor Android 4.2 (Jelly Bean) 17 3 Partially installed
Plugins Android 4.1 (Jelly Bean) 16 5 Partially installed
» Build, Execution, Deployment Android 4.0.3 (IlceCreamSandwich) 15 5 Partially installed
> Toals Android 4.0 (IceCreamSandwich) 14 4 Partially installed
Android 2.3.3 (Gingerbread) 10 2 Not installed
@] Android 2.2 (Froyo) 8 3 Partially installed
[_] Show Package Details
Launch Standalone SDK Manager
(?‘) | Cancel | Apply

Select and install each version of Android that you want to test with. Note that downloading these
components may take a while.

The Android SDK Manager is also how to get Android’s latest releases, like a new platform or an
update of the tools.

An Alternative Emulator

The speed of the Android emulator has improved significantly over time and it is a reasonable way to
run the code that you write in this book.

As an alternative, Genymotion is a popular, third-party Android emulator. You will occasionally see
references to the Genymotion emulator in this book. For more information on Genymotion, visit
http://genymotion.com/.

A Hardware Device

The emulator and Genymotion are useful for testing apps. However, they are no substitute for an actual
Android device when measuring performance. If you have a hardware device, we recommend using
that device at times when working through this book.

XXii

http://genymotion.com/

The Activity Lifecycle

Every instance of Activity has a lifecycle. During this lifecycle, an activity transitions between three
states: running, paused, and stopped. For each transition, there is an Activity method that notifies the
activity of the change in its state. Figure 3.1 shows the activity lifecycle, states, and methods.

Figure 3.1 Activity state diagram

Running
(visible & in foreground)

[} |

onResume() Leaves
| foreground
|
Enters onPause()
foreground

1 L
Paused
(visible)

$ [

onStart() No longer visible
| I

Visible onStop()
to user l
|
Stopped
(not visible)
4 Finished or
onGreIate[---]' destroyed
|
Launch onDestroy()

| v

[Non-existent]

Subclasses of Activity can take advantage of the methods named in Figure 3.1 to get work done at
critical transitions in the activity’s lifecycle.

57

Chapter 3 The Activity Lifecycle

You are already acquainted with one of these methods — onCreate (Bundle). The OS calls this method
after the activity instance is created but before it is put on screen.

Typically, an activity overrides onCreate(..) to prepare the specifics of its user interface:
* inflating widgets and putting them on screen (in the call to (setContentView(int))
 getting references to inflated widgets
e setting listeners on widgets to handle user interaction
* connecting to external model data

It is important to understand that you never call onCreate(..) or any of the other Activity lifecycle
methods yourself. You override them in your activity subclasses, and Android calls them at the
appropriate time.

Logging the Activity Lifecycle

In this section, you are going to override lifecycle methods to eavesdrop on QuizActivity’s lifecycle.
Each implementation will simply log a message informing you that the method has been called.

Making log messages

In Android, the android.util.Log class sends log messages to a shared system-level log. Log has
several methods for logging messages. Here is the one that you will use most often in this book:

public static int d(String tag, String msg)

The d stands for “debug” and refers to the level of the log message. (There is more about the Log levels
in the final section of this chapter.) The first parameter identifies the source of the message, and the
second is the contents of the message.

The first string is typically a TAG constant with the class name as its value. This makes it easy to
determine the source of a particular message.

In QuizActivity.java, add a TAG constant to QuizActivity:

Listing 3.1 Adding TAG constant (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

private static final String TAG = "QuizActivity";

Next, in onCreate(..), call Log.d(..) to log a message.

58

Making log messages

Listing 3.2 Adding log statement to onCreate(..) (QuizActivity. java)

public class QuizActivity extends AppCompatActivity {

@Ooverride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
Log.d(TAG, "onCreate(Bundle) called");
setContentView(R. layout.activity_quiz);

Now override five more methods in QuizActivity by adding the following after onCreate (Bundle)
and before onCreateOptionsMenu(Menu):

Listing 3.3 Overriding more lifecycle methods (QuizActivity.java)

@Override
public void onStart() {
super.onStart();
Log.d(TAG, "onStart() called");
}

@Override
public void onPause() {
super.onPause();
Log.d(TAG, "onPause() called");
}

@Override
public void onResume() {
super.onResume();
Log.d(TAG, "onResume() called");
}

@Override
public void onStop() {
super.onStop();
Log.d(TAG, "onStop() called");
}

@Override

public void onDestroy() {
super.onDestroy();
Log.d(TAG, "onDestroy() called");

Notice that you call the superclass implementations before you log your messages. These superclass
calls are required. Calling the superclass implementation before you do anything else is critical in
onCreate(..); the order is less important in the other methods.

59

Chapter 3 The Activity Lifecycle

You may have been wondering about the @0verride annotation. This asks the compiler to ensure that
the class actually has the method that you are attempting to override. For example, the compiler would
be able to alert you to the following misspelled method name:

public class QuizActivity extends AppCompatActivity {

@Ove

rride

public void onCreat(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_quiz);

The Activity class does not have an onCreat(Bundle) method, so the compiler will complain. Then

you can fix the typo rather than accidentally implementing QuizActivity.onCreat(Bundle).

Using

LogCat

To access the log while the application is running, you can use LogCat, a log viewer included in the
Android SDK tools.

When you run GeoQuiz, you should see LogCat appear at the bottom of Android Studio, as shown in
Figure 3.2. If LogCat is not visible, select the Android tool window near the bottom of the screen and
ensure that the Devices | logcat tab is selected.

Figure 3

L XX]

.2 Android Studio with LogCat

GeoQuiz - [~/Documents/workspace/android-book-solutions/tfActivityLifecycle/GeoQuiz] - Android Studic 1.1 Beta 3

o L app W O (=
GeoQuiz app src main java com bignerdranch android geoguiz - © QuizActivity
5 Android ~ D f | % =3
2 =
g v Ciapp o
&
& » [CImanifests 2
* v [java %
v com.bignerdranch.android.geoquiz 3
§ < Question
a ¥ [21com.bignerdranch.android.geoquiz C 3 g
& 9 geoq No files are open H
b Cares =
¥ (& Gradle Scripts « Search Everywhere with Double & =
= Open a file by name with %0 il
« Open Recent Files with 3E
5 g a o
= Open Navigation Bar with 31 g
« Drag and Drop file(s) here from Finder 4
Android DDMS
" Devices | logcat ADB logs -+* Log level: Verbose 3 app: com.bignerdranch.android.geogquiz &
& Devices, 4| i logeat <0
= Motorola Nexus 6 . = 082-84 14:10:37.657 21948-21948/com.bignerdranch.android.geoquiz I/art: Late-enabling -Xcheck:)jni
a = 02-04 14:10:37.719 21948-21948/com. bignerdranch.android.geoquiz D/QuizActivity - onCreate(Bundle) called
com.bignerdranch.android.geoquiz 02-04 14:10:37.782 21948-21948/com.bignerdranch.android.geoquiz D/QuizActivity: onStart{) called
82-84 14:10:37.782 21948-21948/com.bignerdranch.android.geoquiz D/QuizActivity: onResume() called
9 02-4 14:10:37.789 21948-21968/com.bignerdranch.android.geoquiz D/OpenGLRenderer - Render dirty regions requeste:
£ 82-84 14:10:37.792 21948-21948/com.bignerdranch.android.geoquiz D/Atlas: Validating map...
S 82-84 14:10:37.816 21948-21968/com.bignerdranch.android.geoquiz I/Adreno: EGLInit: QTI Build: 18/14/14, 48a273b
£ i 82-84 14:10:37.824 21948-21968/com.bignerdranch.android.geoquiz I/OpenGLRenderer : Initialized EGL, version 1.4
=l @82-84 14:10:37.834 21948-21968/com.bignerdranch.android.geoquiz D/OpenGLRenderer : Enabling debug mode @
4:Run =5 TODO 6: Android Terminal [O: Messages Memory Monitor Eventlog [=] Gradle Console
10:1 | nfa | nja 330 of 740M

[[] Gradle build finished in 1 sec (moments ago)

60

Using LogCat

Run GeoQuiz and messages will start materializing in LogCat. By default, log statements that are
generated with your app’s package name are shown. You will see your own messages along with some
system output.

To make your messages easier to find, you can filter the output using the TAG constant. In LogCat, click
the filter drop-down box in the top right of the LogCat pane. Notice the existing filter, which is set up
to show messages from only your app. Selecting No Filters will show log messages generated from all
over the system.

In the filter dropdown, select Edit Filter Configuration. Use the + button to create a brand-new filter.
Name the filter QuizActivity and enter QuizActivity in the by Log Tag: field (Figure 3.3).

Figure 3.3 Creating a filter in LogCat

[EoN | Create New Logcat Filter

+ - Name: .QuizActivitv

app: com.bignerdranch.and Filter logcat messages by different parameters.
Empty fields will match all messages.

by Log Tag (regex): QuizActivity
by Log Message (regex): .

by Package Name:

by PID:

by Log Level: | Verbose ™

| Cancel | 0K

Click OK, and only messages tagged QuizActivity will be visible (Figure 3.4).

Three lifecycle methods were called after GeoQuiz was launched and the initial instance of
QuizActivity was created.

Figure 3.4 Launching GeoQuiz creates, starts, and resumes an activity

il logeat

B8-84 17:51:82.316 16366-16366/com.bignerdranch.android.geoquiz D/QuizActivity - onCreate() called
8-804 17:51:82.347 16366-16366/com.bignerdranch.android.geoquiz D/QuizActivity - onStart() called
B8-84 17:51:02.347 16366-16366/com.bignerdranch.android.geoquiz D/QuizActivity : onResume() called

(If you are not seeing the filtered list, select the QuizActivity filter from LogCat’s filter dropdown.)

Now let’s have some fun. Press the Back button on the device and then check LogCat. Your activity
received calls to onPause(), onStop(), and onDestroy() (Figure 3.5).

61

Chapter 3 The Activity Lifecycle

Figure 3.5 Pressing the Back button destroys the activity

ili logeat

@8-84 17:51:02.316
08-84 17:51:02.347
@8-84 17:51:02.347
28-84 17:54:35.463
@8-e4 17:54:35.811
@8-84 17:54:35.811

16366-16366/com. bignerdranch.android.geoquiz
16366-16366/com. bignerdranch.android.geoquiz
16366-16366/com. bignerdranch.android. geogquiz
16366-16366,/com. bignerdranch.android. geoquiz
16366-16366/com. bignerdranch.android.geoquiz
16366-16366/com. bignerdranch.android.geoquiz

D/QuizActivity -
D/QuizActivity :
D/QuizActivity -
D/QuizActivity -
D/QuizActivity :
D/QuizActivity -

onCreate() called
onStart() called
onResume{) called
onPause() called
onStopl) called
onDestroy() called

When you pressed the Back button, you told Android, “I’m done with this activity, and I won’t need
it anymore.” Android then destroyed your activity. This is Android’s way of being frugal with your
device’s limited resources.

Relaunch GeoQuiz. Press the Home button and then check LogCat. Your activity received calls to
onPause() and onStop(), but not onDestroy () (Figure 3.6).

Figure 3.6 Pressing the Home button stops the activity

s logcat
#8-94 17:56:085.477 18475-18475/com.bignerdranch.android.geoquiz D/QuizActivity: onCreate() called
@8-84 17:56:85.533 18475-18475/com.bignerdranch.android.geoquiz D/QuizActivity: onStart() called
#8-p4 17:56:085.533 18475-18475/com.bignerdranch.android.geoquiz D/QuizActivity: onResume() called
@8-84 17:56:18.851 18475-18475/com.bignerdranch.android.geoquiz D/QuizActivity: onPause() called
88-p4 17:56:11.191 1B8475-18475/com.bignerdranch.android.geoquiz D/QuizActivity : onStop() called

On the device, pull up the task manager: On newer devices, press the Recents button next to the Home
button (Figure 3.7). On devices without a Recents button, long-press the Home button.

62

Rotation and the Activity Lifecycle

Figure 3.7 Home, Back, and Recents buttons

Home button

Back button
Recents button

In the task manager, press GeoQuiz and then check LogCat. The activity was started and resumed, but
it did not need to be created.

Pressing the Home button tells Android, “I’m going to go look at something else, but I might come
back.” Android pauses and stops your activity but tries not to destroy it in case you come back.

However, a stopped activity’s survival is not guaranteed. When the system needs to reclaim memory, it
will destroy stopped activities.

Another situation that pauses an activity is when it is obscured from the user, such as by a pop-up
window. Even if the window only partially covers the activity, the activity is paused and cannot be
interacted with. The activity resumes when the pop-up window is dismissed.

As you continue through the book, you will override the different activity lifecycle methods to do real
things for your application. When you do, you will learn more about the uses of each method.

Rotation and the Activity Lifecycle

Let’s get back to the bug you found at the end of Chapter 2. Run GeoQuiz, press the Next button to
reveal the second question, and then rotate the device. (On the emulator, press Fn+Control+F12/Ctrl
+F12 to rotate.)

After rotating, GeoQuiz will display the first question again. Check LogCat to see what has happened.
Your output should look like Figure 3.8.

63

Chapter 3 The Activity Lifecycle

Figure 3.8 QuizActivity is dead. Long live QuizActivity!

il logeat
WU U LU UL e SE U U U U S G U U O U OO E L) U LEMG LAY Ly ¢ O CUe | S ieu

88-84 18:81:32.555 20786-2@87086/com.bignerdranch.android.geoquiz D/QuizActivity - onStart{) called
88-84 18:81:32.555 2@8786-2@87086/com.bignerdranch.android.geoquiz D/QuizActivity - onResume{) called
88-84 18:88:53.557 20786-2@8786/com.bignerdranch.android.geoquiz D/QuizActivity - onPause() called
88-84 18:88:53.558 207086-2087086/com.bignerdranch.android.geoquiz D/QuizActivity - onStop() called
88-84 18:88:53.558 2@8786-2@7086/com.bignerdranch.android.geoquiz D/QuizActivity - onDestroy() called
88-84 18:88:53.585 207086-2@87086/com.bignerdranch.android.geoquiz D/QuizActivity - onCreate{) called
88-84 18:88:53.685 20786-2@87086/com.bignerdranch.android.geoquiz D/QuizActivity - onStart{) called
88-84 18:88:53.685 20786-2@7086/com.bignerdranch.android.geoquiz D/QuizActivity - onResume{) called

When you rotated the device, the instance of QuizActivity that you were looking at was destroyed,
and a new one was created. Rotate the device again to witness another round of destruction and rebirth.

This is the source of your bug. Each time a new QuizActivity is created, mCurrentIndex is initialized
to 0, and the user starts over at the first question. You will fix this bug in a moment. First, let’s take a
closer look at why this happens.

Device configurations and alternative resources

Rotating the device changes the device configuration. The device configuration is a set of
characteristics that describe the current state of an individual device. The characteristics that make up
the configuration include screen orientation, screen density, screen size, keyboard type, dock mode,
language, and more.

Typically, applications provide alternative resources to match different device configurations. You saw
an example of this when you added multiple arrow icons to your project for different screen densities.

Screen density is a fixed component of the device configuration; it cannot change at runtime. On the
other hand, some components, like screen orientation, can change at runtime.

When a runtime configuration change occurs, there may be resources that are a better match for the
new configuration. To see this in action, let’s create an alternative resource for Android to find and use
when the device’s screen orientation changes to landscape.

Creating a landscape layout

In the Project tool window, right-click the res directory and select New — Android resource directory.
You should see a window similar to Figure 3.9 that lists the resource types and qualifiers for those
types. Select layout in the Resource type drop-down box. Leave the Source set option set to main.
Next, you will choose how the layout resources will be qualified. Select Orientation in the Available
qualifiers list and click the >> button to move Orientation to the Chosen qualifiers section.

64

Device configurations and alternative resources

Figure 3.9 Creating a new resource directory

[NoN New Resource Directory

Directory name: |Iavoul

Resource type: [layout 3
Source set: | main s
Available gualifiers: Chosen qualifiers:

; Locale

[Layout Direction
1+ Smallest Screen Width
| Screen Width

| Screen Height

| size

[Ratio
o Ul Mode <<
@ Night Mode
[Density
[Touch Screen
= Keyboard
= Text Input
P Navigation State
i Navigation Method
[pimension

Nothing to show

v
v

Cance |

Finally, ensure that Landscape is selected in the Screen Orientation dropdown, as shown in

Figure 3.10. Verify that the Directory name now indicates that your directory is called layout-1land.

While this window looks fancy, its purpose is just to set the name of your directory. Click OK and
Android Studio will create the res/layout-1land/ folder.

Figure 3.10 Creating res/layout-1land

®@® MNew Resource Directory

T
Directory name: |layout-land

Resource type: [layout ¢|
Source set: | main ¢
Available qualifi... Chosen qualifiers: gcreen orientation:

Loc_ale | Landscape 3

1= Layout Direct
| Smallest Scre
| Screen Width
| Screen Heigh
| Size
[E] Ratio
@) Night Mode
} Density
,7 Touch Screen
= Keyboard
&= Text Input
%! Navigation St
& Navigation Mi
[pimension
151 Version

A
R

<<

| Cancel | [0K]

65

Chapter 3 The Activity Lifecycle

The -land suffix is another example of a configuration qualifier. Configuration qualifiers on res
subdirectories are how Android identifies which resources best match the current device configuration.
You can find the list of configuration qualifiers that Android recognizes and the pieces of the device
configuration that they refer to at http://developer.android.com/guide/topics/resources/
providing-resources.html.

When the device is in landscape orientation, Android will find and use resources in the res/
layout-land directory. Otherwise, it will stick with the default in res/layout/. However, at the
moment there are no resources in the res/layout-land directory. Let’s fix that.

Copy the activity_quiz.xml file from res/layout/ to res/layout-land/. You now have a landscape
layout and a default layout. Keep the filename the same. The two layout files must have the same
filename so that they can be referenced with the same resource ID.

Now make some changes to the landscape layout so that it is different from the default. Figure 3.11
shows the changes that you are going to make.

Figure 3.11 An alternative landscape layout

FrameLayout
xmins:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"”

android:layout_height="match_parent"

/ T Buton

TextView LinearLayout android:id="@+id/next_button"
android:id="@+id/question_text_view" android:layout_width="wrap_content" android:layout_width="wrap_content"
android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_height="wrap_content"
android:layout_height="wrap_content" android:layout_gravity= . android:layout_gravity="bottom | right"
android:layout_gravity="center_horizontal" “center_vertical | center_horizontal" android:text="@string/next_button"
android:padding="24dp" android:orientation="harizontal" android:drawableRight="@drawable/arrow_right"

/ \ android:drawablePadding="4dp"
| Button l I Button |

The FrameLayout will replace the LinearLayout. FrameLayout is the simplest ViewGroup and does not
arrange its children in any particular manner. In this layout, child views will be arranged according to
their android: layout_gravity attributes.

The TextView, LinearLayout, and Button children of the FrameLayout need
android: layout_gravity attributes. The Button children of the LinearLayout will stay exactly the
same.

Open layout-land/activity_quiz.xml and make the necessary changes using Figure 3.11. You can
use Listing 3.4 to check your work.

66

http://developer.android.com/guide/topics/resources/

Device configurations and alternative resources

Listing 3.4 Tweaking the landscape layout (layout-land/activity_quiz.xml)

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:id="@+id/question_text_view"
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:padding="24dp" />

<LinearLayout
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:layout_gravity="center_vertical|center_horizontal"
android:orientation="horizontal" >

</LinearLayout>

<Button
android:id="@+id/next_button"
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:layout_gravity="bottom|right"
android:text="@string/next_button"
android:drawableRight="@drawable/arrow_right"
android:drawablePadding="4dp"
/>

</FrameLayout>

Run GeoQuiz again. Rotate the device to landscape to see the new layout (Figure 3.12). Of course, this

is not just a new layout — it is a new QuizActivity as well.

67

Chapter 3 The Activity Lifecycle

Figure 3.12 QuizActivity in landscape orientation

GeoQuiz

The Pacific Ocean is larger than the Atlantic Ocean

TRUE FALSE

NEXT)

Rotate back to portrait to see the default layout and yet another new QuizActivity.

Android does the work of determining the best resource for you, but it has to create a

new activity from scratch to do it. For a QuizActivity to display a different layout,
setContentView(R.layout.activity_quiz) must be called again. And this will not happen unless
QuizActivity.onCreate(..) is called again. Thus, Android destroys the current QuizActivity on
rotation and starts fresh to ensure that it has the resources that best match the new configuration.

Note that Android destroys the current activity and creates a new one whenever any runtime
configuration change occurs. A change in keyboard availability or language could also occur at
runtime, but a change in screen orientation is the runtime change that occurs most frequently.

Saving Data Across Rotation

Android does a great job of providing alternative resources at the right time. However, destroying and
re-creating activities on rotation can cause headaches, too, like GeoQuiz’s bug of reverting back to the
first question when the device is rotated.

To fix this bug, the post-rotation QuizActivity needs to know the old value of mCurrentIndex. You
need a way to save this data across a runtime configuration change, like rotation. One way to do this is
to override the Activity method:

protected void onSaveInstanceState(Bundle outState)
This method is normally called by the system before onPause(), onStop(), and onDestroy().

The default implementation of onSaveInstanceState(..) directs all of the activity’s views to save their
state as data in the Bundle object. A Bundle is a structure that maps string keys to values of certain
limited types.

68

Overriding onSavelnstanceState(Bundle)

You have seen this Bundle before. It is passed into onCreate(Bundle):

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

When you override onCreate(..), you call onCreate(..) on the activity’s superclass and pass in the
bundle you just received. In the superclass implementation, the saved state of the views is retrieved and
used to re-create the activity’s view hierarchy.

Overriding onSavelnstanceState(Bundle)

You can override onSaveInstanceState(..) to save additional data to the bundle and then read that
data back in onCreate(..). This is how you are going to save the value of mCurrentIndex across
rotation.

First, in QuizActivity.java, add a constant that will be the key for the key-value pair that will be
stored in the bundle.

Listing 3.5 Adding a key for the value (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

private static final String TAG = "QuizActivity";
private static final String KEY_INDEX = "index";

private Button mTrueButton;

Next, override onSaveInstanceState(..) to write the value of mCurrentIndex to the bundle with the
constant as its key.

Listing 3.6 Overriding onSaveInstanceState(..) (QuizActivity.java)

mNextButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
updateQuestion();
}
1)

updateQuestion();

@Override

public void onSavelInstanceState(Bundle savedInstanceState) {
super.onSavelnstanceState(savedInstanceState);
Log.i(TAG, "onSaveInstanceState");
savedInstanceState.putInt(KEY_INDEX, mCurrentIndex);

69

Chapter 3 The Activity Lifecycle

Finally, in onCreate(..), check for this value. If it exists, assign it to mCurrentIndex.

Listing 3.7 Checking bundle in onCreate(..) (QuizActivity. java)

if (savedInstanceState != null) {
mCurrentIndex = savedInstanceState.getInt(KEY_INDEX, 0);
}

updateQuestion();

Run GeoQuiz and press Next. No matter how many device rotations you perform, the newly minted
QuizActivity will “remember” what question you were on.

Note that the types that you can save to and restore from a Bundle are primitive types and classes that
implement the Serializable or Parcelable interfaces. It is usually a bad practice to put objects of
custom types into a Bundle, however, because the data might be stale when you get it back out. It is

a better choice to use some other kind of storage for the data and put a primitive identifier into the
Bundle instead.

Testing the implementation of onSaveInstanceState(..) is a good idea — especially if you are saving
and restoring objects. Rotation is easy to test; testing low-memory situations is harder. There is
information at the end of this chapter about how to simulate your activity being destroyed by Android
to reclaim memory.

The Activity Lifecycle, Revisited

Overriding onSaveInstanceState(Bundle) is not just for handling rotation. An activity can also be
destroyed if the user navigates away for a while and Android needs to reclaim memory.

Android will never destroy a running activity to reclaim memory — the activity must be in the paused
or stopped state to be destroyed. If an activity is paused or stopped, then its onSaveInstanceState(..)
method has been called.

When onSaveInstanceState(..) is called, the data is saved to the Bundle object. That Bundle object is
then stuffed into your activity’s activity record by the OS.

To understand the activity record, let’s add a stashed state to the activity lifecycle (Figure 3.13).

70

The Activity Lifecycle, Revisited

Figure 3.13 The complete activity lifecycle

Stashed [Non-existent]
(activity instance
dead; instance I [
state saved) Launch Finished or

| destroyed by Android

L—P onCreate(...) !

User returns to activity, onDestroy()
process spins up again l |
Stopped
(not visible)

I
onRestart() T
-

onStart() onStop()

Visible No longer visible
to user |

¥

(visible)

! t

Enters Leaves
foreground foreground
1 1

onResume() onPause()

! |

Running
(visible & in foreground)

Paused]

When your activity is stashed, an Activity object does not exist, but the activity record object lives on
in the OS. The OS can reanimate the activity using the activity record when it needs to.

Note that your activity can pass into the stashed state without onDestroy () being called. However,
you can always rely on onPause() and onSaveInstanceState(..) to be called. Typically, you override
onSavelInstanceState(..) to stash small, transient states that belong to the current activity in your
Bundle and onPause() for anything else that needs to be done.

Under some situations, Android will not only kill your activity but also completely shut down your
application’s process. This will only happen if the user is not currently looking at your application, but
it can (and does) happen. Even in this case, the activity record will live on and enable a quick restart of
your activity if the user returns.

So when does the activity record get snuffed? When the user presses the Back button, your activity
really gets destroyed, once and for all. At that point, your activity record is discarded. Activity records
are also typically discarded on reboot and may also be discarded if they are not used for a long time.

71

Chapter 3 The Activity Lifecycle

For the More Curious: Testing
onSavelnstanceState(Bundle)

If you are overriding onSaveInstanceState(Bundle), you should test that your state is being saved
and restored as expected. This is easy to do on the emulator.

Start up a virtual device. Within the list of applications on the device, find the Settings app
(Figure 3.14). This app is included with most system images used on the emulator.

Figure 3.14 Finding the Settings app

V4Nl 200

Launch Settings and select Developer options. Here you will see many possible settings. Turn on the
setting labeled Don’t keep activities, as shown in Figure 3.15.

72

For the More Curious: Logging Levels and Methods

Figure 3.15 Don’t keep activities selected

< Developer options

On

Profile GPU rendering

Off
Enable OpenGL traces

Apps

Don't keep activities

ry activity as soon as the user .

Background process limit

Standard limit

Now run your app and press the Home button. Pressing Home causes the activity to be paused and
stopped. Then the stopped activity will be destroyed just as if the Android OS had reclaimed it for its
memory. Then you can restore the app to see if your state was saved as you expected. Be sure fo turn
this setting off when you are done testing, as it will cause a performance decrease and some apps will

perform poorly.

Pressing the Back button instead of the Home button will always destroy the activity, regardless of
whether you have this development setting on. Pressing the Back button tells the OS that the user is
done with the activity.

To run the same test on a hardware device, you must install Dev Tools on the device. For more
information, visit http://developer.android.com/tools/debugging/debugging-devtools.html.

For the More Curious: Logging Levels and Methods

When you use the android.util.Log class to send log messages, you control not only the content of a
message, but also a level that specifies how important the message is. Android supports five log levels,
shown in Figure 3.16. Each level has a corresponding method in the Log class. Sending output to the
log is as simple as calling the corresponding Log method.

73

http://developer.android.com/tools/debugging/debugging-devtools.html

Chapter 3 The Activity Lifecycle

Figure 3.16 Log levels and methods

Log Level Method Notes
ERROR Log.e(...) Errors
WARNING Log.w(...) Warnings
INFO Log.i(...) Informational messages
DEBUG Log.d(...) Debug output; may be filtered out
VERBOSE Log.v(...) For development only

In addition, each of the logging methods has two signatures: one which takes a fag string and a
message string and a second that takes those two arguments plus an instance of Throwable, which
makes it easy to log information about a particular exception that your application might throw. Listing
3.8 shows some sample log method signatures. Use regular Java string concatenation to assemble your
message string, or String. format if you have fancier needs.

Listing 3.8 Different ways of logging in Android

// Log a message at "debug" log level
Log.d(TAG, "Current question index: " + mCurrentIndex);

Question question;

try {
question = mQuestionBank[mCurrentIndex];

} catch (ArrayIndexOutOfBoundsException ex) {
// Log a message at "error" log level, along with an exception stack trace
Log.e(TAG, "Index was out of bounds", ex);

74

Index
Symbols

9-patch images, 376
@+1id, 20, 187
@override, 60

A
aapt (Android Asset Packing tool), 30
action bar, tool bar vs., 254
action view, 455
ACTION_CAPTURE_IMAGE, 299
activities
(see also Activity, fragments)
about, 2
abstract fragment-hosting activity, 172
adding to project, 87-109
as controller, 37
back stack of, 107, 108, 393
base, 393
child, 88, 101
creating new, 89
fragment transactions and, 314
handling configuration changes in, 522
hosting fragments, 125, 133-136
label (display name), 388
launcher, 106
lifecycle and fragments, 146
lifecycle diagram, 70
lifecycle of, 57, 63, 64, 70, 71
managing fragments, 314-323
overriding methods, 58
passing data between, 97-106
record, 70
rotation and, 63-68
starting from fragment, 193
starting in current task, 393
starting in new task, 396
states of, 57, 70
tasks and, 393
UI flexibility and, 123
Activity
as Context subclass, 24
FragmentActivity, 128
getIntent(), 100, 196
lifecycle methods, 57-63

onActivityResult(..), 103
onCreate(..), 17,57, 59
onDestroy(), 57
onOptionsItemSelected(Menultem), 17
onPause(), 57
onResume(), 57, 200
onSavelnstanceState(..), 68-70, 349, 351
onStart(), 57
onStop(), 57
setContentView(..), 17
setResult(..), 103
SingleFragmentActivity, 172, 173, 175, 309
startActivity(..), 95
startActivityForResult(..), 101
activity record, 70
ActivityInfo, 391
ActivityManager
back stack, 107, 108
starting activities, 95, 97, 103
ActivityNotFoundException, 97
Adapter, 179
adapters
defined, 179
implementing, 182
adb (Android Debug Bridge), 46
add(..) (FragmentTransaction), 143
addFlags(..) (Intent), 396
AlarmManager, 473, 477
AlertDialog, 215, 217, 219, 221
AlertDialog.Builder, 219
constructor, 219
create(), 219
setPositiveButton(..), 219
setTitle(..), 219
setView(..), 221
alias resources, 311-313
ancestral navigation, 248
Android Asset Packing tool, 30
Android Asset Studio, 241
Android Debug Bridge (adb), 46
Android developer documentation, 117, 118
Android firmware versions, 111
Android Lint
as static analyzer, 84
compatibility and, 115-117
running, 84
Android SDK Manager, xxi
Android Studio

605

Index

(see also debugging, projects)
adding dependencies in, 129-132
AppCompat theme, 358
build process, 29
code completion, 25
code style preferences, 34
creating new classes, 34
creating new projects, 2-7
debugger, 81

(see also debugging)
editor, 8
Emulator Control, 554
extracting a method with, 230

generating getter and setter methods, 34-36

graphical layout tool, 158
installing, xxi
preferences, 34

project tool window, 8
project window, 8
res/values directory, 15
src directory, 16

Tool Windows, 8

views

Devices view, 47
Lint Warnings view, 84
Variables view, 81
Android versions (see SDK versions)
Android Virtual Device Manager, 26
Android Wear, 483
Android XML namespace, 13

android.
android.

android

android
android
android
android

android

android

android

606

text.format.DateFormat, 166
util.Log (see Log)

.view.animation, 550
android:
android:

background, 354
configChanges, 522

:contentDescription, 56
:documentLaunchMode, 403
:drawablePadding, 52
:drawableRight, 52
android:
android:
:layout_height, 14
android:
android:
:minSdkVersion, 114
android:
android:

icon, 241
layout_gravity, 66

layout_weight, 164
layout_width, 14

orientation, 14
padding, 157

:protectionLevel, 502

android:targetSdkVersion, 113, 114
AndroidManifest.xml (see manifest)
animated state list drawables, 590
animation (see property animation)
animation tools, 591-597
AnimatorListener, 549
AnimatorSet, 549
anonymous inner classes, xix, 22, 23
API keys

maps, 572

when working with teams, 584
API levels (see SDK versions)
.apk file, 29, 381
app icon, 249
app:showAsAction, 239
AppCompat library, 216

themes in, 358

toolbars with, 235-238
AppCompatActivity, 17

appendQueryParameter(..) (Uri.Builder), 417

application context, 272
AppTheme, 357
arguments bundle, 197-199
Arraylist, 170
AssetManager, 332, 337
assets, 325-337
accessing, 336
importing, 329-331
managing, 331-333
presenting to user, 333-335
vs. resources, 326
AsyncTask
cancel(..), 426
doInBackground(..), 411

for running on background thread, 411

vs. HandlerThread, 447
onPostExecute(..), 425
onProgressUpdate(..), 427
publishProgress(..), 427
AsyncTaskLoader, 427
AttributeSet, 530
auto-complete, 25
AVDs (Android Virtual Devices)
creating, 26
for tablets, 307

Index

Back button, 61, 393, 524
back stack, 107
background threads
dedicated, 432
updating UI from, 425
using AsyncTask for, 411, 415
beginTransaction() (FragmentTransaction),
143
Bitmap, 301
BitmapFactory, 301
bitmaps, scaling and displaying, 301-304
breakpoints
(see also debugging)
exception, 82, 83
setting, 79-82
broadcast intents
defined, 491
ordered, 502-507
permissions and, 500, 501
registered in code, 498, 499
regular intents vs., 491
sending, 497
broadcast receivers
defined, 491
dynamic, 498, 499
implementing, 492-494
intent filters and, 492
long-running tasks and, 507
permissions and, 500-502
standalone, 492
uses for, 495, 496
build errors, 85
(see also debugging)
build process, 29
build target, 114
Build.VERSION.SDK_INT, 116
Bundle, 344
for fragment arguments, 197-199
in onCreate(..), 69
in onSaveInstanceState(..), 68
putCharSequence(..) ;, 198
putInt(..);, 198
putSerializable(..), 198

Button
adding ID, 20
example, 10

vs. ImageButton, 55
inheritance, 55
buttons, 55
9-patch images for, 376
adding icons to, 52
drawables for, 369
floating action, 598, 600
modifying attributes, 365-367
buttonStyle, 365

C

caching, 447
Calendar, 226
Callbacks interface, 314-323
camera, 291-305
firing intent, 299
layouts for, 292-294
taking pictures with intents, 297-300
CameraUpdate, 580
cancel(..) (AlarmManager), 477
cancel(..) (AsyncTask), 426
Canvas, 536
cards (view component), 597
CheckBox, 151
choosers, creating, 282
circular reveal animation, 591-593
close(), 269
code completion, 25
codenames, version, 111
color
for animation, 546
themes and, 359
colorAccent, 360
colorBackground, 363
colorPrimary, 359
commands (IntentService), 468
compatibility
Android Lint and, 115-117
fragments and, 128-132
importance of, xix, 111, 112
issues, 112
minimum SDK version and, 114
with support library, 128-132
using conditional code for, 116
wrapping code for, 114-117
compile SDK version, 114
ComponentName, 392

607

Index

components, 96
concurrent documents, 401-403
configuration changes, 64, 68, 346
configuration qualifiers

defined, 66

for screen density, 49

for screen orientation, 66

for screen size, 313, 323
ConnectivityManager, 470
contacts

getting data from, 285

permissions for, 287
container views, 135, 143
ContentProvider, 285
ContentResolver, 285
ContentValues, 263
Context, 272

AssetManager from, 332

basic file and directory methods in, 294

explicit intents and, 96

external file and directory methods in, 295

for opening database file, 258

getSharedPreferences(..), 461

resource IDs and, 24
Context.getExternalFilesDir(String), 298
Context.MODE_WORLD_READABLE, 295
controller objects, 37
conventions

class naming, 7

extra naming, 99

package naming, 4

variable naming, 21, 34
create() (AlertDialog.Builder), 219
createChooser(..) (Intent), 282
Creative Commons, 331
Cursor, 267, 269
CursorWrapper, 267

D

/data/data directory, 257
database schema, 258
databases, SQLite, 257-272
Date, 226
DatePicker, 221
debugging
(see also Android Lint)
build errors, 85

608

crash, 76

crash on unconnected device, 77

database issues, 261

misbehaviors, 77

online help for, 86

R, 85

running app with debugger, 80

stopping debugger, 81

when working with teams, 584
DEFAULT (Intent), 397
delayed execution, 473
density-independent pixel, 156
dependencies, adding, 129-132
dependency injector, 192

detach(..) (FragmentTransaction), 211

Dev Tools, 73
developer documentation, 117, 118
devices
configuration changes and, 64
hardware, 26
virtual, 26, 307
Devices view, 47
Dialog, 215
DialogFragment, 217
onCreateDialog(..), 219
show(..), 220
dialogs, 215-224
diamond notation, 170
dip (density-independent pixel), 156
documentation, 117, 118
doInBackground(..) (AsyncTask), 411
dp (density-independent pixel), 156
draw() (View), 536
draw9patch tool, 379
drawables, 369
9-patch images, 376
for uniform buttons, 369
layer list, 374
referencing, 52
shape, 371
state list, 372
drawing
Canvas, 536
in onDraw(..), 536
Paint, 536

Index

EditText, 136
elevation, 589
emulator
(see also virtual devices)
for location testing, 553-556
rotating, 52
running on, 26
search queries on, 460
for tablets, 307
Emulator Control (Android Studio), 554
Environment.getExternalStorageDirectory(..),
295
errors
(see also debugging)
escape sequence (in string), 41
EventBus, 507
exception breakpoints, 82, 83
exceptions, 76, 78
explicit intents
creating, 96
creating at runtime, 392
purpose, 97
external storage
for photos, 294-297
permissions for, 298
extras
defined, 98
fragments retrieving from activity, 195
as key-value pairs, 98
naming, 99
putting, 98, 100
retrieving, 100
structure of, 98

':
File
getCacheDir(..), 295
getDir(..), 295
getExternalCacheDir(..), 296
getExternalFilesDir(..), 296
getFilesDir(..), 295
FileDescriptor, 336
FileInputStream, 295
fileList(..) (String), 295
FileOutputStream, 295
File[]

getExternalCacheDirs(..), 296
getExternalFilesDirs(..), 296
getExternalMediaDirs(..), 296
fill_parent, 14
Flickr API, 415
Flickr Geosearch, 563
Flickr, searching in, 449-454
floating action buttons, 598, 600
FloatingActionButton, 598, 600
fluent interface, 143
format string, 278
Fragment
for asset management, 327
getActivity(), 194, 195
getArguments(..), 199
getTargetFragment(), 227
getTargetRequestCode(), 227
from native libraries, 148
newInstance(..), 198
onActivityResult(..), 224
onCreate(Bundle), 139
onCreateOptionsMenu(..), 244
onCreateView(..), 139
onOptionsItemSelected(..), 247
onSavelnstanceState(..), 139, 349
setArguments(..), 198
setHasOptionsMenu(..), 244
setRetainInstance(..), 345
setTargetFragment(..), 226
SingleFragmentActivity, 328
startActivityForResult(..), 203
from support library, 128, 148
fragment arguments, 195, 197-199, 204
fragment transactions, 314, 316
(see also FragmentTransaction)
FragmentActivity (from support library), 128
FragmentManager
adding fragments to, 142-145
fragment lifecycle and, 145, 146
onResume(), 200
responsibilities, 142
role in rotation, 344, 346
FragmentPagerAdapter, 211
fragments
(see also fragment transactions,
FragmentManager)
about, 123
accessing extra in activity’s intent, 195

609

Index

vs. activities, 123
activity lifecycle and, 146
adding in code, 134
adding to FragmentManager, 142-146
application architecture with, 146
arguments of, 197-199
as composable units, 123, 314
Callbacks interface, 314-323
compatibility and, 128-132
container views for, 135, 309
creating, 136
creating from support library, 138
delegating functionality to activity, 314
hosting, 125, 133-136
implementing lifecycle methods, 139
inflating layouts for, 139
layout, 134
lifecycle diagram, 146
lifecycle methods, 146
lifecycle of, 133, 145, 146
maintaining independence of, 197, 314
passing data between (same activity), 224
passing data with fragment arguments, 225
reasons for, 122-124, 147
retaining, 345-351
rotation and, 346-348
setting listeners in, 140
starting activities from, 193
support library and, 128-132, 148
without support library, 148
UI flexibility and, 123
widgets and, 140
FragmentStatePagerAdapter, 207
getCount (), 207, 208
getItem(..), 207, 208
setOffscreenPageLimit(..), 210
FragmentTransaction
add(..), 143
beginTransaction(), 143
detach(..), 211
remove(..), 211
FrameLayout
as container view for fragments, 135, 309
described, 66
FusedLocationProviderApi, 564

610

G

Gallery, 213
gen directory, 18
Genymotion, xxii, 554
getAction() (MotionEvent), 532
getActiveNetworkInfo()
(ConnectivityManager), 470
getActivity() (Fragment), 194, 195
getArguments(..) (Fragment), 199
getBackgroundDataSetting()
(ConnectivityManager), 470
getBooleanExtra(..) (Intent), 100
getCacheDir(..) (File), 295
getCount() (FragmentStatePagerAdapter), 207,
208
getDefaultSharedPreferences(..)
(PreferenceManager), 461
getDir(String name, int mode), 295
getExternalCacheDir(..) (File), 296
getExternalCacheDirs(..) (File[]), 296
getExternalFilesDir(String), 296, 297
getExternalFilesDirs(..) (File[]), 296
getExternalMediaDirs(..) (File[]), 296
getExternalStorageDirectory(..)
(Environment), 295
getFilesDir(..) (File), 295
getInputStream() (HttpURLConnection), 410
getIntent() (Activity), 100, 196
getItem(..) (FragmentStatePagerAdapter), 207,
208
getMapAsync(..) (SupportMapFragment), 579
getOutputStream() (HttpURLConnection), 410
getScaledBitmap(..), 301
getSharedPreferences(..) (Context), 461
getTargetFragment() (Fragment), 227
getTargetRequestCode() (Fragment), 227
getter and setter methods, generating, 34-36
getTop(), 542
Google Drive, 402
Google Play Services

about, 552

Maps API from, 571

setting up, 559

using, 561-563
GoogleMap, 579
graphical layout tool, 158-165
GridLayoutManager, 408

Index

Gridview, 191

H

Handler, 436, 444
handlers, 436-446
HandlerThread
vs. AsyncTask, 447
handling downloads, 433
hardware devices, 26
-hdp1i suffix, 49
hero transitions
(see also shared element transitions)
hierarchical navigation, 248
HOME (Intent), 397
Home button, 62, 63
home screen, 397, 398
Honeycomb, 112
HTTP networking, 406, 409-411, 414
HttpURLConnection
class, 410
getInputStream(), 410
getOutputStream(), 410

icons, 241-243

ImageButton, 55

implicit intents
action, 280, 386
ACTION_CALL category, 289
ACTION_DIAL category, 289
ACTION_PICK category, 283
ACTION_SEND category, 281
benefits of using, 273
categories, 280, 386
CATEGORY_DEFAULT, 387
data, 280
vs. explicit intent, 279
for browsing web content, 514
parts of, 280
sending with AlarmManager, 473
taking pictures with, 297-300
type, 280

include, 293

includes, 292, 304

inflating layouts, 17, 139

inheritance, 355, 367

InputStream

for delivering bytes, 410
read(), 410
inSampleSize, 302
insert(..), 264
Intent
addFlags(..), 396
constructors, 96
createChooser(..), 282
getBooleanExtra(..), 100
putExtra(..), 98, 195
setClassName(..), 392
setComponent(..), 392
intent filters
BOOT_COMPLETED, 493
explained, 280
MAIN, 106
SHOW_NOTIFICATION, 498
intent services
processing commands, 468
purpose, 467
Intent.FLAG_ACTIVITY_NEW_DOCUMENT, 403
intents
(see also broadcast intents, explicit intents,
extras, implicit intents, Intent)
communicating with, 96, 97
implicit vs. explicit, 97, 273
regular vs. broadcast, 491
taking pictures with, 297-300
IntentService, 467
interpolators, 546
invalidate() (View), 535
is prefix for variable names, 34

J

JavaScript Object Notation (see JSON)
JavaScript, enabling, 518

Javascript, injecting objects, 523
JobScheduler, 486

JobService, 486

JSON (JavaScript Object Notation), 415
JSONObject, 419

L

-land qualifier, 66
LatLngBounds, 580
launcher activities, 106
LAUNCHER category, 106, 387

611

Index

layer-list drawables, 374
layout attributes

android:
android:
:drawablePadding, 52
:drawableRight, 52

android:
:layout_gravity, 66
android:
android:
android:
android:
android:

android
android

android

background, 354
contentDescription, 56

icon, 241

layout_height, 14
layout_weight, 164
layout_width, 14
orientation, 14
padding, 157

layout parameters (layout_), 157
LayoutInflater, 30, 140
LayoutManager, 327

layouts

(see also graphical layout tool, layout
attributes, widgets)

about, 2

alternative, 64-67
for asset management, 326
for cameras, 292-294
defining in XML, 12-14
design documentation, 156
inflating, 17, 139
landscape, 64-67
managing multiple, 166
naming, 7
previewing, 15, 91
for property animation, 540
root element, 13
view hierarchy and, 13
layout_weight attribute, 164
-1dpi suffix, 49
LinearLayout, 10, 13
lint (see Android Lint)
Lint Warnings view, 84

List, 170
list items

customizing display of, 185
list(String), 332
list-detail interfaces, 121, 205, 307-317

listeners

defined, 22

as interfaces, 22

setting in fragments, 140
setting up, 22-25

612

lists
displaying, 167
getting item data, 179
ListView, 191
load(Sound), 340
Loader, 427
LoaderManager, 427
loadLabel(..) (ResolveInfo), 388
local files, 257
local layout rect, 542
LocalBroadcastManager, 507, 509
location, 551-568
adding GPS permissions for, 560
finding and displaying images related to, 566
with Flickr Geosearch, 563
testing, 553-556
Location API, 552
LocationListener, 565
LocationRequest, 564
Log, 58
Log.d(..), 78
LogCat
(see also logging)
logging
of exceptions, 78
levels, 73
Log.d(..), 78
messages, 58
methods, 73
of stack traces, 78
TAG constant, 58
Looper, 433, 436
LRU (least recently used) caching strategy, 447
LRUCache, 447

M

m prefix for variable names, 21

MAIN category, 106, 387

main thread, 413

makeText(..) (Toast), 24

manifest
(see also manifest attributes)
about, 92
adding network permissions to, 411
adding service to, 468
adding uses-permission INTERNET, 411
Android versions in, 113

Index

build process and, 29
declaring Activity in, 92
uses—sdk, 113
manifest attributes
android:configChanges, 522
android:protectionLevel, 502
MapFragment, 574
maps, 571-584
adding markers to, 582
API setup for, 572-574
getting lat-lon data for, 576-579
working with, 579-581
Maps API, 572-574
Maps API key, 572
MapView, 574
master-detail interfaces, 121, 205, 307-317
match_parent, 14
material design, 587-601
animation tools, 591-597
material surfaces, 587-591
view components, 597-601
mContext, 272
-mdpi suffix, 49
MediaStore, 298, 299
MediaStore.ACTION_IMAGE_CAPTURE, 298
MediaStore.EXTRA_OUTPUT, 299
MenuItem, 247
menus
(see also toolbar)
about, 238
app:showAsAction, 239
creating, 244
creating XML file for, 239
defining in XML, 239
determining selected item, 247
populating with items, 244
as resources, 239
responding to selections, 246
Message, 436
message handlers, 436-446
message loop, 432
message queue, 432
messages, 435-446
minimum required SDK, 113
minSdkVersion, 114
mipmap images, 381
model layer, 37
model objects, 37

model objects, from databases, 269-271
motion events, handling, 532-535
MotionEvent

actions, 532

class, 532

getAction(), 532
mSoundId, 340
mSoundPool.load(..), 341
MVC (Model-View-Controller), 37, 38

namespace, Android XML, 13
navigation, 248

network, checking availability of, 470
networking (HTTP), 406, 409, 410, 414
networking permissions, 411
NetworkOnMainThreadException, 413
newInstance(..) (Fragment), 198
9-patch images, 376

Notification, 481
NotificationManager, 481
notifications, 481-483

notify(..) (NotificationManager), 481
NullPointerException, 77

(o)

ObjectAnimator, 543
onActivityResult(..) (Activity), 103
onActivityResult(..) (Fragment), 224
onBindViewHolder, 183
onCheckedChangeListener interface, 154
onClick(View) (onClickListener), 23
OnClickListener interface, 22
onCreate(Bundle) (Activity), 17,57
onCreate(..) (Fragment), 139
onCreateDialog(..) (DialogFragment), 219
onCreateOptionsMenu(..) (Action), 244
onCreateOptionsMenu(..) (Fragment), 244
onCreateView(..) (Fragment), 139
onCreateViewHolder(..), 183, 430
onDestroy() (Activity), 57

onDraw(..) (View), 536
onOptionsItemSelected(Menultem), 17
onOptionsItemSelected(..) (Fragment), 247
onPause() (Activity), 57
onPostExecute(..) (AsyncTask), 425
onProgressChanged(..) (WebChromeClient), 521

613

Index

onProgressUpdate(..) (AsyncTask), 427
OnQueryTextListener(..) (SearchView), 458
onReceivedTitle(..) (WebChromeClient), 521
onRestoreStateInstance(..) (View), 538
onResume() (Activity), 57, 200

onResume () (FragmentManager), 200
onSavelInstanceState(..) (Activity, 68-73
onSavelInstanceState(..) (Activity), 349, 351
onSavelInstanceState(..) (Fragment), 139, 349
onSaveStateInstance() (View), 538
onStart() (Activity), 57

onStop() (Activity), 57

onTextChanged(..) (TextWatcher), 141
onTouchEvent(..) (View), 532
OnTouchListener (View), 532
openConnection() (URL), 410
openFileInput(..) (FileInputStream), 295
openFileOutput(..) (FileInputStream), 295
openNonAssetFd(..), 337

options objects, 582

overflow menu, 239

@override, 60

overview screen, 393

P

PackageManager, 299
class, 287
resolveActivity(..), 287

packages, naming, 4

padding, 157

Paint, 536

Parcelable, 344, 538

parent, 356, 367

PendingIntent, 477

permissions, 411

permissions (defined), 298

persistent data, 460-464

photos
designating file location for, 296
external storage, 294-297
scaling and displaying bitmaps, 301-304
taking with intents, 297-300

PhotoView, 302

Play Services (see Google Play Services)

play(Sound), 341

PointF, 533

post(..) (Handler), 444

614

preferences (Android Studio), 34
preloading, 447
presses, responding to, 190
processes, 398, 401
progress indicator

hiding, 521

updating from background thread, 427
projects

adding resources, 49

configure, 5

creating, 2-7

gen directory, 18

layout, 7

res/layout directory, 18

res/menu directory, 239

res/values directory, 18

setting package name, 3

setting project name, 3

src directory, 16
property animation, 539-550

building scene for, 539

running multiple animators, 548

simple, 542-548
protection level values, 502
publishProgress(..) (AsyncTask), 427
putCharSequence(..) ; (Bundle), 198
putExtra(..) (Intent), 195
putInt(.); (Bundle), 198
putSerializable(..) (Bundle), 198

Q

query(..), 266

R

R, 18

randomUUID(), 132

read() (InputStream), 410

Recents button, 62

RecyclerView, 176-184, 326
efficient reloading of, 203
for display grid, 408
setOnItemClickListener(..), 514

Relativelayout, 186, 187

release key, 29

remove(..) (FragmentTransaction), 211

request code (Activity), 101

res/layout directory, 18

Index

res/menu directory, 239
res/values directory, 15, 18, 353
resolveActivity(..) (PackageManager), 287,
304
ResolvelInfo, 388
resource IDs, 18-20
+ prefix in, 20, 187
multiple layouts and, 166
syntax, 187
resources
(see also configuration qualifiers, drawables,
layouts, menus, string resources)
about, 18
adding, 49
alias, 311-313
vs. assets, 326
location of, 18
referencing in XML, 52
string, 14, 15
result code (Activity), 102
retained fragments, 345-351
retainInstance property (Fragment), 345, 346
rotation
activity lifecycle and, 63-68
onSavelnstanceState(..) and, 349, 351
saving data across, 68-70
with DatePicker, 223
rows, inserting and updating, 264
running on device, 46-48
RxJava, 508

S

s prefix for variable names, 34
sandbox, 257
savedInstanceState, 345
scale-independent pixel, 156
schema, database, 258
screen orientation, 66
screen pixel density, 49, 155
screen size, determining, 323
SD card, 296
SDK versions
(see also compatibility)
build target, 114
codenames, 111
installing, xxi
listed, 111

minimum required, 113

target, 113

updating, xxii
search, 449-465

in Flickr, 449-454

integrating into app, 449

user-initiated, 455-460
SearchView, 455-460

bug, 460

OnQueryTextListener(..), 458

post Honeycomb, 456

responding to user interactions, 458
Serializable, 344
services

adding to manifest, 468

bound, 485

lifecycle of, 484

locally bound, 485

non-sticky, 484

notifying user, 481

purpose of, 467

remotely bound, 486

sticky, 484
setArguments(..) (Fragment), 198
setClassName(..) (Intent), 392
setComponent(..) (Intent), 392
setContentView(..) (Activity), 17
setHasOptionsMenu(..) (Fragment), 244
setInexactRepeating(..) (AlarmManager), 476
setJavaScriptEnabled(..) (WebSettings), 519
setOffscreenPageLimit(..)
(FragmentStatePagerAdapter), 210
setOnClickListener(..), 22
setOnItemClickListener(..) (RecyclerView),
514
setOnTouchListener(..) (View), 532
setPositiveButton(..) (AlertDialog.Builder),
219
setRepeating(..) (AlarmManager), 476
setResult(..) (Activity), 102, 103, 203
setRetainInstance(..) (Fragment), 345
setTargetFragment(..) (Fragment), 226
setter methods, generating, 34-36
setText(..) (TextView), 101
setTitle(..) (AlertDialog.Builder), 219
setView(..) (AlertDialog.Builder), 221
shape drawables, 371
ShapeDrawable, 371

615

Index

shared element transitions, 593-597
SharedPreferences, 461
shouldOverrideUrlLoading(..)
(WebViewClient), 519
show() (Toast), 24
show(..) (DialogFragment), 220
signing key, 572
simulator (see emulator)
SingleFragmentActivity, 172, 173, 175, 309,
328, 384
singletons, 168, 192
snackbars, 600, 601
solutions file, 48
Sound, 340
SoundPool, 339-345
audio playback, 341-344
creating, 339
load(Sound), 340
loading sounds into, 340
mSoundPool.load(..), 341
play(Sound), 341
rotation and object continuity with, 344
SoundPool.play(..), 342
SoundPool.release(), 343
unloading sounds, 343
SoundPool.play(..), 342
SoundPool.release(), 343
sp (scale-independent pixel), 156
SQLite databases, 257-272
building, 258-262
debugging, 261
defining schema for, 258
inserting and updating rows, 264
model objects from, 269-271
reading from, 266-271
writing to, 263-266
SQLiteDatabase.query(..), 266
src directory, 16
stack traces
in LogCat, 76
logging of, 78
startActivity(..) (Activity), 95
startActivityForResult(..) (Activity), 101
startActivityForResult(..) (Fragment), 203
stashable objects, 344
state list animators, 590
state list drawables, 372
STREAM_MUSIC, 340

616

string resources
creating, 15
defined, 14
referencing, 52
String.replace(..), 334
String.split(..), 334
strings file, 14, 15
strings.xml, 15
Stringl[], 295
styles, 354-356
defined, 154
inheritance, 355, 367
modifying button attributes, 365-367
themes and, 154
support library, 128-132, 148
SupportMapFragment, 574
SupportMapFragment.getMapAsync(..), 579
-sw600dp suffix, 313
sync adapters, 488
system icons, 241-243

T

tables, creating, 261
tablets
creating virtual devices for, 307
user interfaces for, 307-317
TAG constant, 58
target fragment, 226
target SDK version, 113
targetSdkVersion, 113, 114
task manager, 62
tasks
and Back button, 393
defined, 393
vs. processes, 398, 401
starting new, 395-397
switching between, 393
temporal navigation, 248
TextView
and tools:text, 91
example, 10
inheritance, 55
setText(..), 101
TextWatcher interface, 141
theme, 357
Theme.AppCompat, 361
themes, 154, 357-364

Index

accessing attributes, 368
adding colors to, 359
modifying, 357
overriding attributes, 360-364
threads
background (see background threads)
main, 413
message queue, 432
processes and, 399
as sequence of execution, 413
Ul 413
TimeInterpolator, 546
tinting, 360
Toast, 24
toasts, 23-25
toolbar
action bar vs., 254
action view in, 455
app:showAsAction, 239
features, 235
menu, 238
overflow menu, 239
Toolbar
onCreateOptionsMenu(..), 244
touch events, handling, 532-535
transformation properties, 544
transitions, animation, 550
TypeEvaluator, 548

U

UI fragments (see fragments)
Ul thread, 414
Up button, 248, 249
update(..), 265
uri, 299
Uri.Builder, 417
URL
for making URL from string, 410
openConnection(), 410
URLConnection, 410
user interfaces
defined by layout, 2
for tablets, 307-317
laying out, 9-16
uses—sdk, 113
UUID.randomUUID(), 132

\'

variable names
conventions for, 34
prefixes for, 34
Variables view, 81
versions (Android SDK) (see SDK versions)
versions (firmware), 111
View
(see also views, widgets)
draw(), 536
invalidate(), 535
OnClickListener interface, 22
onDraw(..), 536
onRestoreStateInstance(..), 538
onSaveStateInstance(), 538
onTouchEvent(..), 532
setOnTouchListener(..), 532
subclasses, 9, 55
view components, 597-601
view layer, 37
view objects, 37
ViewGroup, 13, 66
ViewHolder, 177, 182, 388
ViewPager, 205-213
in support library, 207
internals of, 212
views
creating, 530
creation by RecyclerView, 177
custom, 530-532
laying out in code, 213
persisting, 538
simple vs. composite, 530
touch events and, 532-535
using fully qualified name in layout, 531
ViewTreeObserver, 305
virtual devices
(see also emulator)
for tablets, 307
testing low-memory handling, 72

w

web content
browsing via implicit intent, 514
displaying within an activity, 516
enabling JavaScript, 518

web rendering events, responding to, 519

617

Index

WebChromeClient
for enhancing appearance of WebView, 520
interface, 520
onProgressChanged(..), 521
onReceivedTitle(..), 521
WebSettings, 519
WebView
for presenting web content, 516
handling rotation, 522
WebViewClient, 519
widgets
about, 9
attributes of, 12, 157
Button, 10, 55
CheckBox, 151
DatePicker, 221
defining in XML, 12-14
EditText, 136
FrameLayout, 66
ImageButton, 55
LinearlLayout, 10, 13
padding, 157
references, 21
styles and, 354
TextView, 10, 91
in view hierarchy, 13
as view layer, 37
wiring in fragments, 140
wiring up, 21
wrap_content, 14

X

-xhdpi suffix, 49
XML
Android namespace, 13
referencing resources in, 52
XML drawables (see drawables)
-xxhdpi suffix, 49

y 4

Z values, 589

618

	Table of Contents
	Introduction
	Chapter 3: The Activity Lifecycle
	Index

