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Preface

Docker is a containerization technology at the center of a new wave for building, 
packaging, and deploying applications. It has the potential to impact every aspect 
of computing, from the application development process to how applications are 
deployed and scaled up and out across massive data centers.

Despite its great popularity, Docker is still a fairly new project, with many peo-
ple still not really knowing exactly what Docker is. If you are one of those people, 
this book can help you take that first step, while also opening your eyes to the huge 
potential that containerization promises for you down the road. My goals for leading 
you into the world of containerization with this book can be summed up in these 
ways:

 ■ Hands-on learning: I often say this in my books, but I believe that the 
best way to learn how technology works is to get it and use it. To that end, I 
let you choose from among several popular Linux systems, show you how to 
install Docker on the one you choose, and provide working examples of using 
Docker for everything from running a simple container to building and man-
aging your own container images. That learning then extends into tools and 
techniques for orchestrating and managing containers.

 ■ How Docker can benefit you: I explain the benefits of creating and run-
ning applications in containers, instead of installing software packages (in 
formats such as RPM or Deb) and running uncontained applications directly 
from your hard disk. Beyond running applications, I also describe how con-
tainerization can benefit software developers and system administrators.
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 ■ Essential qualities of Docker: I describe how Docker uses technolo-
gies such as Linux Containers (LXC) to keep containers separate from other 
applications running on a host computer or selectively tap into the host sys-
tem. These qualities include how Docker uses name spaces, metadata, and 
separate file systems to both manage and secure containerized applications.

To get started, you don’t need to know anything about Docker or containeriza-
tion; you can treat this book as your introduction to Docker. However, this book is 
also intended to offer an entry into more advanced Docker-related topics, such as 
orchestration and container development.

As you progress through the book, you see specific ways to run containers, 
investigate them, stop and start them, save them, and generally manage them. As 
you begin creating your own containers, I discuss techniques to help you make 
container images that build and run efficiently. I even step you through build files 
(which are called Dockerfiles) that others have created to make their own containers.

A knowledge of Linux Containers in general, or Docker containers specifically, 
is not needed to start using this book. That said, however, there are other technolo-
gies you will use both within your Docker containers and outside those containers 
to work with them. Understanding some of those technologies will make your expe-
rience with Docker that much more fruitful.

KNOWLEDGE TO HELP YOU WITH DOCKER

To get the most out of working with Docker containers, it helps to know something 
about the operating environment in which Docker will be running. Docker is built 
on Linux technology and is specifically integrated with advanced features, includ-
ing Linux Containers (LXC) for managing Linux name spaces and Cgroups for man-
aging container access to system resources (such as CPU and memory). 

Even your most basic interactions with Docker containers rely on underlying 
Linux technologies. You may have heard that you can run Docker on your Windows 
or Mac systems. But adding Docker to those systems always relies on your adding 
a Linux virtual machine. In other words, there are no Docker containers without 
Linux. Likewise, each container itself is typically built from a base image created 
from a specific Linux distribution.

So if you have no experience working with Linux systems, you might find it use-
ful to learn about some of the following aspects of Linux and related technologies:
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 ■ Command shell: There are graphical interfaces available for working with 
Docker. However, most of the examples of Docker in this book are done from 
a Linux command line shell. Knowing how to get around in a Linux shell 
makes it much more efficient to work with Docker.

 ■ Software packages: Docker is itself a mechanism for delivering software 
packaged and delivered together as a bundled application. To build the con-
tainer images themselves, however, most Docker base images are set up to 
allow you to install software packages from the specific Linux distribution on 
which they were based. 

 So, for example, for an Ubuntu base image, you should understand how to 
install Deb packages with tools such as apt-get. For Fedora, Red Hat Enter-
prise Linux, or CentOS Docker images, the yum, dnf, and rpm commands 
are useful. When you use these base images to build your own Docker con-
tainers, those images are usually enabled to automatically grab the packages 
you request from online software repositories. Understanding how to get and 
install packages in your chosen Linux distribution is important for your suc-
cess with Docker. 

 ■ File ownership and permissions: Every file in a Linux system, as well as 
within a container, is owned by a particular user and group and has certain 
permissions set to allow access to those files. At times, you want to grant 
access to files and directories (folders) from the host within the container. 
Some of those might be special files, such as devices or sockets, that the 
application needs to run. Processes also run as a particular user. Under-
standing how those permissions work can be critical to getting a container 
working properly. 

I mentioned only a few of the more obvious features you need to know about 
to work effectively with Docker containers. You will run into many other Linux-
related features as you continue to explore how to make the best use of the Docker 
containers you use and create yourself.

If you are not familiar with Linux, I strongly recommend you take a class or 
get a book that gives you at least the basics of Linux to help you get going with 
Docker containers. My humble suggestion would be to pick up the Linux Bible, 
Ninth Edition, written by this author (http://www.wiley.com/WileyCDA/WileyTitle/
productCd-1118999878.html). It will not only help you specifically with the tech-
nology you need to build Docker containers, but will also help you to generally work 
in a Linux environment as you develop Docker container images. 

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118999878.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118999878.html
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WHAT THIS BOOK COVERS

This book is meant to be used from beginning to end by someone just starting up 
with Docker containers. Later, it can serve as reference material to remind you of 
different options and features associated with Docker containers. The book is orga-
nized into five parts.

Part I: Getting Going with Containers
In Part I, you learn what you need to know to start working with Docker containers. 
Chapter 1, “Containerizing Applications with Docker,” describes what containers 
are and how they differ from applications that are not contained. In Chapter 2, 
“Setting Up a Container Run-Time Environment,” you learn how to install Docker 
on different general-purpose Linux systems, such as Fedora and Ubuntu, as well 
as how to install Docker on specialized container-oriented Linux systems, such as 
CoreOS and Project Atomic. In Chapter 3, “Setting Up a Private Docker Registry,” 
we complete a basic container setup by showing you how to configure a private 
Docker registry to hold your own Docker images.

Part II: Working with Individual Containers
Most of the coverage in this part relates to using the docker command to work 
directly with individual containers. In Chapter 4, “Running Container Images,” I 
show you how to run your first container images. To help you find and get container 
images, Chapter 5, “Finding, Pulling, Saving, and Loading Container Images,” 
describes how to search for container images from the Docker registry and then pull 
the image you want, save it to a file, and load it into another Docker system.

In Chapter 6, “Tagging Images,” you learn how to tag images, to better identify 
what the image contains and to use that information to push images to registries. 
In Chapter 7, “Investigating Containers,” I show you how to look inside a Docker 
container or container image to see the details of how that container or image works. 
In Chapter 8, “Starting, Stopping, and Restarting Containers,” you learn just that—
how to stop, start, and restart containers.

In Chapter 9, “Configuring Container Storage,” you learn how to configure stor-
age, primarily by mounting directories from the host inside your containers. To 
learn how to configure networking for containers, Chapter 10, “Configuring Con-
tainer Networking,” describes how to configure both the default networking used 
(or not used) by the Docker service in general, as well as ways someone running 
containers can set network interfaces for individual containers.
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Docker caches a lot of data, for possible reuse. In Chapter 11, “Cleaning Up 
Containers,” I show you how to clean out cached data left behind when you created 
or ran Docker images. In Chapter 12, “Building Docker Images,” you learn how to 
build your own Docker containers, including how to build containers that build and 
run efficiently.

Part III: Running Containers in Cloud Environments
In Chapter 13, “Using Super Privileged Containers,” I describe how to run what 
are referred to as super privileged containers (SPCs). To illustrate how SPCs work, 
I show you how you can get several images that can perform different administra-
tive tasks on an RHEL Atomic system. In Chapter 14, “Managing Containers in the 
Cloud with Cockpit,” I describe how to manage containers across multiple hosts in 
your cloud or local environment using the Cockpit web-based container manage-
ment tool.

Part IV: Managing Multiple Containers
In this part, I get into the area of orchestration. For Chapter 15, “Orchestrating 
Containers with Kubernetes,” I describe how to use Kubernetes master and node 
services all on one system to be able to try out Kubernetes. In Chapter 16, “Creating 
a Kubernetes Cluster,” I go beyond the all-in-one Kubernetes system to describe 
how to set up a Kubernetes cluster. With that cluster in place, you can deploy 
applications in container pods to be managed on different node computers from the 
master computer.

Part V: Developing Containers 
In the short time that Docker has been around, techniques have already been 
developed to make building containers more efficient. In Chapter 17, “Developing 
Docker Containers,” I describe some tips and a few tricks for developing Docker 
containers. Finally, in Chapter 18, “Exploring Sample Dockerfile Files,” I show 
you various Dockerfile files I have come across to illustrate what different people 
have done to overcome obstacles to building their own containers.

So if you are ready now, step right up and start reading Chapter 1. I hope you 
enjoy the book!
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Setting Up a Private Docker 
Registry

C H A P T E R  3

IN THIS CHAPTER:
 ■ Create a private Docker registry in Fedora or Ubuntu

 ■ Use the docker-registry package

 ■ Use the registry container image

 ■ Understand the Docker image namespace

One of the foundations of Docker is the ability to request to use an existing con-
tainer image and then, if it is not already on your system, grab it from somewhere 
and download it to your system. By default, “somewhere” is the Docker Hub Regis-
try     (https://hub.docker.com). However, there are ways to configure other locations 
from which you can pull docker images. These locations are referred to as registries.

By setting up your own private registry, you can keep your private images 
to yourself. You can also save time by pushing and pulling your images locally, 
instead of having them go out over the Internet.

Setting up a private registry is simple. It requires getting the service (by install-
ing a package or using the registry Docker container image), starting the service, 
and making sure the proper port is open so the service is accessible. Using reg-
istries requires a bit more explanation than setting up one, especially when you 
consider that features are added to Docker every day that are changing how Docker 
uses and searches registries for images.

In particular, the way that Docker uses the image namespace is changing to be 
more adaptable. If your location is disconnected from the Internet, with the Docker 
hub inaccessible, features are being developed to allow you to use a different 

https://hub.docker.com
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default registry. Likewise, new features let you add registries to your search order, 
much the same way you can have an Internet browser look at different DNS servers.

This chapter describes how to set up a private Docker registry on several differ-
ent Linux systems. The first examples are simply to help you get a Docker registry 
up and running quickly to begin testing or learning how to use registries. After that, 
I describe some techniques for making a Docker registry more production ready.

Later in the chapter, I tell you     how to adapt the way your local Docker service 
uses Docker registries, including how to replace Docker.io as the default registry 
and add other registries to the search path.

N O T E
Having a local registry in place is not required to use Docker. However, as 
you build, save, and reuse images throughout this     book, you may find it 
handy to have a way to store your images (especially private ones) without 
pushing them out to the public Docker Hub Registry. That said, you can 
skip this chapter for now if you want to learn more about using containers 
before you jump into setting up a Docker registry.

GETTING AND STARTING A PRIVATE DOCKER REGISTRY

You     can run a Docker registry on your Linux system in a number of different ways 
to store your own Docker images. For Linux distributions that include a docker-
registry package (such as Fedora and Red Hat Enterprise Linux), you can install 
that package and start up the service. For other distributions, you can run the offi-
cial registry container image from Docker.io to provide the service.

See the section later in the chapter that corresponds to the Linux system you are 
using for instructions on installing and running a Docker registry on that system. 
For Fedora, I illustrate how to use the docker-registry package, while for Ubuntu I 
show how to use the registry container.

Here are a few general things you should know about setting up a Docker 
registry:

 ■ Install anywhere: Like most servers, the Docker registry does not need 
to be installed on client systems (that is, where you run your docker com-
mands). You can install it on any Linux system that your clients can reach 
over a network. That way, multiple Docker clients can access your Docker 
registry.
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 ■ Open port: If your Docker registry is not on the client, you must be sure 
that TCP port 5000 is not being blocked by the firewall where the Docker 
registry is running.

 ■ Provide space: If you push a lot of images to your registry, space can fill up 
quickly. For the docker-registry package, stored images are contained in the 
/var/lib/docker-registry directory. Make sure you configure enough space 
in that directory to meet your needs, or you can configure a different direc-
tory, if you want    .

Setting Up a Docker Registry in Fedora
Follow     these instructions to install and start up a Docker registry on a Fedora sys-
tem. At the moment, this procedure creates a version 1 Docker registry from the 
docker-registry RPM package. Although this procedure was tested on Fedora, the 
same basic procedures should work for the following Linux distributions:

 ■ Fedora 22 or later

 ■ Red Hat Enterprise Linux 7.1 or later

 ■ CentOS 7.1 or later

The docker-registry package is not included in the Atomic project Fedora, 
RHEL, and CentOS distributions. So you must use the registry container, 
described later for setting up a Docker registry in Ubuntu, to get that feature on an 
Atomic Linux system.

N O T E
During the following procedure, you are going to use image tags to identify 
the registry where you intend an image to be stored. For a more in-depth 
look at tags, refer     to Chapter 6, “Tagging Images.” To get docker-registry 
to work, you may need to edit the usr/lib/system/docker-registry.
service and remove --debug.

 1. Install docker-registry: When you install the docker-registry package in 
Fedora, it pulls in more than a dozen dependent packages as well. To install 
those packages, type the following:
# yum install docker-registry
...
Transaction Summary
============================================
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Install  1 Package (+15 Dependent packages)
Total download size: 6.8 M
Installed size: 39 M
Is this ok [y/d/N]: y

 2. List docker-registry contents: Use the rpm command to list the contents of 
the docker-registry file in Fedora. There are nearly 200 files (mostly python 
code in the package). This command shows you only documentation and con-
figuration files (I describe how to configure them later):
# rpm -ql docker-registry | grep -E "(/etc)|(/usr/share)|(systemd)"
/etc/docker-registry.yml
/etc/sysconfig/docker-registry
/usr/lib/systemd/system/docker-registry.service
/usr/share/doc/docker-registry
/usr/share/doc/docker-registry/AUTHORS
/usr/share/doc/docker-registry/CHANGELOG.md
/usr/share/doc/docker-registry/LICENSE
/usr/share/doc/docker-registry/README.md

 3. Open firewall: If your Fedora system is running a firewall that blocks 
incoming connections, you may need to open TCP port 5000 to allow access 
to the Docker registry service. Assuming you are using the firewall service 
in Fedora, run these commands     to open the port on the firewall (immediately 
and permanently) and see that the port has been opened:
# firewall-cmd --zone=public --add-port=5000/tcp
# firewall-cmd --zone=public --add-port=5000/tcp --permanent
# firewall-cmd --zone=public --list-ports
5000/tcp

 4. Start the docker-registry service: If you want to do any special configu-
ration for your Docker registry, refer to the next sections before starting the 
service. For a simple docker-registry installation, however, you can sim-
ply start the service and begin   using it, as follows (as the status shows, the 
docker-registry service is active and enabled):
# systemctl start docker-registry
# systemctl enable docker-registry
Created symlink from 
  /etc/systemd/system/multi-user.target.wants/docker-registry.
service 
  to /usr/lib/systemd/system/docker-registry.service.
# systemctl status docker-registry
docker-registry.service - Registry server for Docker
 Loaded: loaded (/usr/lib/systemd/system/docker-registry.
service;enabled)
 Active: active (running) since Mon 2015-05-25 12:02:14 EDT; 42s ago
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Main PID: 5728 (gunicorn)
   CGroup: /system.slice/docker-registry.service
       ├─5728 /usr/bin/python /usr/bin/gunicorn --access-logfile
            - --max-requests 100 --graceful-timeout 3600-t 36...
...

 5. Get an image: A common     image used to test Docker is the hello-world 
image available from the Docker Hub Registry. Run that image as follows 
(which pulls that image to the local system and runs it):
# docker run --name myhello hello-world
Unable to find image ‘hello-world:latest' locally
latest: Pulling from docker.io/hello-world
91c95931e552: Download complete
a8219747be10: Download complete
Hello from Docker.
docker.io/hello-world:latest: The image you are pulling has been 
verified.
...

 6. Allow access to registry: The docker clients in Fedora and Red Hat Enter-
prise Linux require that you either obtain a certificate from the registry or 
you identify the registry as insecure. For this example, you can identify the 
registry as insecure by editing the /etc/sysconfig/docker file and creating 
the following lines in that file:
ADD_REGISTRY='--add-registry localhost:5000'
INSECURE_REGISTRY='--insecure-registry localhost:5000'

After that, restart the local Docker service:
# systemctl restart docker

 7. Tag the image: Use docker tag to give the image a name that you can use 
to push it to the Docker registry on the local system:
# docker tag hello-world localhost:5000/hello-me:latest

 8. Push the image: To push the hello-world to the local Docker registry, type 
the following    :
# docker push localhost:5000/hello-me:latest
The push refers to a repository [localhost:5000/hello-me] (1 tags)
...
Pushing tag for rev [91c95931e552] on
     {http://localhost:5000/v1/repositories/hello-me/tags/latest}

 9. Pull the image: To make sure you can retrieve the image from the regis-
try, in the second Terminal, remove the image from your system, then try to 
retrieve it from your local registry:
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# docker rm myhello
# docker rmi hello-world localhost:5000/hello-me:latest
# docker pull localhost:5000/hello-me:latest
Pulling repository localhost:5000/hello-me
91c95931e552: Download complete
a8219747be10: Download complete
# docker images
REPOSITORY              TAG    IMAGE ID     CREATED     VIRTUAL SIZE
localhost:5000/hello-me latest 91c95931e552 5 weeks ago 910 B

In the example just shown, the image was successfully pushed to and pulled 
from the local repository. At this point, you have these choices:

 ■ If you want to learn more about how the Docker registry works and possibly 
modify its behavior, skip to the “Configuring a Private Docker Registry” sec-
tion later in this chapter.

 ■ If you are ready to start using Docker containers, skip ahead to Chapter 4, 
“Running Container Images.”

The next section describes how to set     up a Docker registry in Ubuntu.

Setting Up a Docker Registry in Ubuntu
Instead     of installing a Docker registry from a software package, you can download 
the registry container from the Docker Hub Registry and use that to provide the 
Docker registry service. This is a quick and easy way to try out a Docker registry, 
although the default registry doesn’t scale well for a production environment and is 
more difficult to configure.

N O T E
Several versions of the registry are available. For this example, I use 
registry:latest, which results in an image of a version 1 Docker registry. 
By the time you try this, there may be a stable version     2 available. I recom-
mend you refer here for information on running the version 2 Docker regis-
try: https://docs.docker.com/registry/.

Although this procedure was tested on Ubuntu 14.04, the same basic procedure 
should work on any Linux system running the Docker service.

To get started here, install Docker as described in Chapter 2, “Setting Up a 
Container Run-Time Environment,” and start up the Docker service. I suggest you 

https://docs.docker.com/registry/
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open two Terminal windows (shells) to do this procedure. Open one where you plan 
to run the registry service, so you can watch it in progress as you start up and test it. 
Open another Terminal, from which you can push and pull images.

 1. Get the registry image: Run the docker pull command as follows to pull 
the registry image from     the Docker Hub Registry (see Chapter 5, “Finding, 
Pulling, Saving, and Loading Container Images,” for a description of docker 
pull):
$ sudo docker pull registry:latest
Pulling repository registry
204704ce3137: Download complete
e9e06b06e14c: Download complete
...

 2. Run the registry image: To try out the Docker registry, run the image in 
the foreground so you can watch messages produced as the container image 
is running (see Chapter 4 for a description of docker run). This command 
starts the latest registry image, exposes TCP port 5000 on the system so 
clients outside the container can use it, and runs it as a foreground process 
in the first terminal:
$ sudo docker run -p 5000:5000 registry:latest
[2015-05-25 21:33:35 +0000][1][INFO] Starting gunicorn 19.1.1
[2015-05-25 21:33:35 +0000][1][INFO] Listening at: 
http://0.0.0.0:5000 (1)
[2015-05-25 21:33:35 +0000][1][INFO] Using worker: gevent
...

 3. Get an image: To test that you can push and pull images, open a second 
Terminal window. A common image used to test Docker is the hello-world 
image available from the     Docker Hub Registry. Run that image as follows 
(which pulls that image to the local system and runs it):
$ sudo docker run --name myhello hello-world
Pulling repository hello-world
91c95931e552: Download complete 
a8219747be10: Download complete
Hello from Docker.
This message shows that your installation appears to be working 
correctly.
...

 4. Tag the image: Use docker tag to give the image a name that you can use 
to push it to the Docker registry on the local system:
$ sudo docker tag hello-world localhost:5000/hello-me:latest
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 5. Push the image: To push the hello-world to the local Docker registry, type 
the following:
$ sudo docker push localhost:5000/hello-me:latest
The push refers to a repository [localhost:5000/hello-me] (len: 1)
...
Pushing tag for rev [91c95931e552] on
     {http://localhost:5000/v1/repositories/hello-me/tags/latest}

 6. Check the Docker registry log messages: If the image was pushed to the 
registry successfully, in the first Terminal you should see messages showing 
PUT commands succeeding. For example:
172.17.42.1 - - [25/May/2015:22:12:37 +0000] "PUT
/v1/repositories/hello-me/images HTTP/1.1" 204 - "-" "docker/1.0.1 
go/go1.2.1 git-commit/990021a kernel/3.13.0-24-generic os/linux 
arch/amd64"

 7. Pull the image: To make sure you can retrieve the image from the registry, 
in the second Terminal remove the image from your system, and then try to 
retrieve it from your local registry:
$ sudo docker rm myhello
$ sudo docker rmi hello-world localhost:5000/hello-me:latest
$ sudo docker pull localhost:5000/hello-me:latest
Pulling repository localhost:5000/hello-me
91c95931e552: Download complete 
a8219747be10: Download complete 
# docker images
REPOSITORY              TAG    IMAGE ID     CREATED     VIRTUAL SIZE
localhost:5000/hello-me latest 91c95931e552 5 weeks ago 910 B

 8. Run the docker registry again: Instead of running the registry image 
in the foreground, holding the     Terminal open, you can have it run more per-
manently in the background (-d). To do that, close the running registry con-
tainer and start a new image as follows:
$ sudo docker run -d -p 5000:5000 registry:latest

The Docker registry is running in the background now, ready to use. At this 
point, you have these choices:

 ■ If you want to learn more about how the Docker registry works and possibly 
modify its behavior, skip to the “Configuring a Private Docker Registry” sec-
tion later in this chapter.

 ■ If you are ready to start using Docker containers, skip ahead to Chapter 4.

The next section describes how to set up a Docker registry in other Linux 
distributions    .

http://localhost:5000/v1/repositories/hello-me/tags/latest
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CONFIGURING A PRIVATE DOCKER REGISTRY

The     default registries that come in the docker-registry package or the registry 
container are fine if you just want to try out a Docker registry. If you want to use a 
registry in a production environment, however, you need a deeper understanding of 
how to configure your Docker registry to better suit your needs.

The following sections describe how to modify the Docker registry software for 
both the docker-registry package     and using the registry container.

Configuring the docker-registry Package
To       better understand how the docker-registry package software works, start with 
how the registry is set to run by default. When the docker-registry service starts up 
in Fedora or Red Hat Enterprise Linux, it runs the gunicorn process. There is one 
main gunicorn process   and four additional gunicorn workers running, by default, 
to provide the service.

From a full ps output the gunicorn processes; you can see the options set for 
them:

# ps -ef | grep gunicorn
00:00:00 /usr/bin/python /usr/bin/gunicorn --access-logfile - 
 --max-requests 100 --graceful-timeout 3600 -t 3600 -k gevent -b 
0.0.0.0:5000 -w 4 docker_registry.wsgi:application

Here’s what you can learn from this command line:

 ■ --access-logfile: Access to the docker-registry service is logged to any file 
you set. In this case, however, the log file is set to a single hyphen (-), so 
access messages are simply sent to standard output (where they are picked 
up by the systemd journal and can be viewed by the journalctl command).

 ■ --max-requests 100: Sets the maximum number of requests that a 
gunicorn daemon can accept to 100. After that, the worker is restarted.

 ■ --graceful-timeout 3600: Gives the gunicorn worker 3600 seconds (6 
minutes) to finish handling a request once it has been sent a restart signal. 
If it has not completed what it is doing by that time, it is killed.

 ■ -t 3600: If the gunicorn worker is silent for more than 3600 seconds 
(6 minutes), it is killed and restarted.

 ■ -k gevent: Sets the type   of gunicorn worker to gevent (an asynchronous type 
of worker based on Greenlets).



44 Docker Containers

 ■ -b 0.0.0.0:5000: Sets the worker to bind on all IP addresses on the system 
(0.0.0.0) on port 5000. This allows docker clients to connect to the Docker 
registry through any external network interface on the system via TCP port 
5000.

 ■ -w 4: Sets the number of worker processes to 4 (above the original gunicorn 
process).

 ■ docker_registry.wsgi:application: Runs the process with the Docker reg-
istry wsgi application.

To change the behavior of the   docker-registry service, you can edit the /etc/
sysconfig/docker-registry file. Here is how that file is set by default in Fedora      :

# The Docker registry configuration file
DOCKER_REGISTRY_CONFIG=/etc/docker-registry.yml

# The configuration to use from DOCKER_REGISTRY_CONFIG file
SETTINGS_FLAVOR=local

# Address to bind the registry to
REGISTRY_ADDRESS=0.0.0.0

# Port to bind the registry to
REGISTRY_PORT=5000

# Number of workers to handle the connections
GUNICORN_WORKERS=4

In the docker-registry file, you can do such things as have the Docker registry 
listen only on a particular IP address (by default, REGISTRY_ADDRESS=0.0.0.0 
listens on all addresses). You can change the port of the service to something other 
than TCP port 5000 or set the number of gunicorn workers to something other 
than 4.

The /etc/docker-registry.yml file is set as the Docker registry config file. 
SETTINGS_FLAVOR=local tells the config file to include common variables 
and then set the directory /var/lib/docker-registry for local storage use. In the 
/etc/sysconfig/docker-registry file, the       common variables you can set include 
the following:

 ■ LOGLEVEL : By default, the log level is set to info. This can also be set to 
debug, notice, warning, warn, err, error, crit, alert, emerg, or panic.

 ■ DEBUG : Set to either true or false to have debugging turned on or off.

 ■ STANDALONE : If set to true (the default), the registry acts as a standalone 
registry and doesn’t query the Docker index.
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 ■ INDEX_ENDPOINT : If the local registry is not set to run in standalone, 
the default, the index endpoint is set to https://index.docker.io.

 ■ STORAGE_REDIRECT : By default, this is disabled.

 ■ DISABLE_TOKEN_AUTH : If the service is not in standalone, this vari-
able is enabled to allow token authentication.

 ■ PRIVILEGED_KEY : By default, no privileged key is set.

 ■ SEARCH_BACKEND : By default, there is no search backend.

 ■ SQLALCHEMY_INDEX_DATABASE : By default, the SQLite search 
backend database is set to: sqlite:////tmp/docker-registry.db.

If you want to use a setting flavor other than local, look in the /etc/docker-
registry.yml file. Different setting flavors can be used for Ceph Object Gateway 
configuration, Google Cloud Storage configuration, OpenStack Swift Storage, and 
others.

Other variables you can set that can be picked       up by the gunicorn process, 
include the following. Notice that some of these   values show up on the gunicorn 
command line:

 ■ GUNICORN_GRACEFUL_TIMEOUT: Sets the timeout for gracefully 
restarting workers (in seconds).

 ■ GUNICORN_SILENT_TIMEOUT: Sets the timeout for restarting workers 
that have gone silent (in seconds).

 ■ GUNICORN_USER: Runs the gunicorn process as the user set here, 
instead of running it with root user privileges.

 ■ GUNICORN_GROUP: Runs the gunicorn process as the group set here, 
instead of running it with root group privileges.

 ■ GUNICORN_ACCESS_LOG_FILE: Sets the name of the log file to direct 
messages to those that are related to clients trying to access the service. By 
default, messages are sent to the systemd journal through standard output.

 ■ GUNICORN_ERROR_LOG_FILE: Sets the name of the log file to direct 
messages to those that are related to error conditions. By default, messages 
are sent to the systemd journal through standard output.

 ■ GUNICORN_OPTS: Identifies any extra options you want to pass to the 
gunicorn process.

After you set or   change /etc/sysconfig/docker-registry file variables, restart 
the docker-registry service for these features       to take effect.

https://index.docker.io


46 Docker Containers

Configuring the registry Container
Instead        of trying to configure the registry container image by modifying the con-
tents of the running container, the creators of that container image suggest you 
rebuild the registry container image yourself. In particular, you probably want to 
add security measures to your registry and more flexible storage features.

So far, this book has not yet introduced you to the concepts you need to build 
your own containers. However, after you have become familiar with the process, if 
you decide you want to build a custom version 1 registry container, I recommend 
you refer to the docker-registry GitHub page:

    https://github.com/docker/docker-registry

From the docker-registry GitHub page, you can find information on how 
to build a version 1 registry image and links to the Dockerfile used to build it 
(https://github.com/docker/docker-registry/blob/master/Dockerfile). 

By the time you read this, Docker registry version 2 may be ready to use. Refer 
to the Docker registry 2.0 page (https://docs.docker.com/registry) for details        on 
how to deploy and configure this newer version of the Docker registry.

UNDERSTANDING THE DOCKER IMAGE NAMESPACE

Similar    to the way that the Internet uses the Domain Name System (DNS)    to have 
a unique set of names refer to all the host computers in the world, Docker set out 
to make a namespace to allow a unique way to name every container image in the 
world. In that vision, a docker run someimage would result in the exact same 
someimage being pulled to the local system and run, no matter where your location 
or what type of Linux system you run it on.

For some potential Docker users, this presents problems. Some Docker instal-
lations are disconnected from the Internet. Security requirements of others allow 
them to search and pull images only from registries that they own themselves. 
These issues would prevent a pure Docker system from being installed in their 
environments.

There has been pressure to change some aspects of how the Docker image 
namespace works, so you can expect that story to evolve over time. As things stand 
today, however, you should know that a system running Docker purely from the 
upstream Docker Project  code has the following attributes:

 ■ Search : An unpatched Docker system today only searches the Docker Hub 
Registry when you run a docker search command.

https://github.com/docker/docker-registry
https://github.com/docker/docker-registry/blob/master/Dockerfile
https://docs.docker.com/registry
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 ■ Blocking registries : Docker does not have a feature to block the Docker 
Hub Registry. So pulling an image without identifying a specific registry 
causes Docker to search for that image on the Docker Hub Registry (if it’s 
not already on the local system).

 ■ Changing the default registry: Docker doesn’t have a feature for changing 
your default registry to anything other than the Docker Hub Registry.

 ■ Push confirmation : Docker does not ask you to confirm a push request 
before it begins pushing an image.

Changes to some of these features are being discussed in  the Docker commu-
nity. Patches to change how some of these features work are included in Red Hat 
Enterprise Linux, Fedora, Atomic    project, and related Linux distributions. For 
example, the current version of the docker package in RHEL Atomic (docker-1.8) 
includes some of those features just mentioned.

For example, here are some settings from the /etc/sysconfig/docker file on an 
RHEL Atomic system that represent features that have not yet been added to the 
upstream Docker Project:

ADD_REGISTRY='--add-registry registry.access.redhat.com'
# BLOCK_REGISTRY='--block-registry'
# INSECURE_REGISTRY='--insecure-registry'

The ADD_REGISTRY variable   lets you add a registry to use for docker search 
and docker pull commands. For users of Red Hat distributions, this puts Red Hat’s 
own registry (registry.access.redhat.com) before the Docker Hub Registry, so the 
user can know he is searching and pulling from that registry first. A user could also 
replace that registry with his own registries or simply add his own registry in front 
of Red Hat’s registry.

Using the ADD_REGISTRY variable to this file puts any registry you add at 
the front of the list searched. However, if a requested image is not found in any of 
the registries you add, the Docker Hub Registry still is searched next. To change 
that behavior, you need to use the BLOCK_REGISTRY variable.

By setting the BLOCK_REGISTRY variable, you can block access to any regis-
try you choose. Of course, at the moment only the Docker Hub Registry is searched 
by default. So, to block the Docker Hub Registry from search and pull requests, you 
could use the following line:

 BLOCK_REGISTRY='--block-registry docker.io'

With that set, any requests for images that could not be found in registries set 
with ADD_REGISTRY  variable s would fail to be found, even if they existed at the 
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Docker Hub Registry. In this way, only registries    that you specifically included are 
searched for images by the users of this particular docker installation.

The INSECURE_REGISTRY=‘--insecure-registry’ variable does not explicitly 
allow or disallow a registry. This is a specific case where someone wants to use 
the local Docker client to pull an image from a registry that provides HTTPS com-
munication, but the client doesn’t have a certificate from that registry to verify its 
authenticity. Uncommenting the variable and adding the name of the insecure reg-
istry to that line allows the docker command to pull from that registry without full 
authorization. For example:

INSECURE_REGISTRY='--insecure-registry myreg.example.com'

Again, this and other features just described are not part of the upstream 
Docker Project. But if you need these features for your installation, you can change 
how access to registries works by default in Docker using these features that are 
currently in Fedora, RHEL, CentOS, and    related Atomic project systems.

SUMMARY

Setting up a private Docker registry gives you the ability to push and pull images 
without using the public Docker Hub Registry. This chapter described two different 
ways of setting up a Docker registry for yourself.

For Linux distributions that have a docker-registry package available (such as 
Fedora and Red Hat Enterprise Linux), you can install that package and start up 
the docker-registry service using the systemctl command. As an alternative, any 
system running the Docker service can pull and run the registry image, available 
from the Docker Hub Registry, to offer a private Docker registry.

Besides describing how to set up your own Docker registry, the chapter included 
a description of how the Docker image namespace works, with the Docker Hub 
Registry as its centerpiece. Proposed modifications to that model have been imple-
mented in Fedora and other Red Hat sponsored operating systems and are being 
discussed in the Docker community. These modifications give users the ability to 
change which registries are set up to be used with search and pull requests from the 
Docker service.
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