
1' '\ Content Update
\.ti. Program

FREE ... See OeQils lnsid�

.\ECllS Ll\'E Ll.\ll.X SEIIIES

Docker Containers
Build arul lkploy with Kulwrnrlt's.
Flannrl. Col'kpit, and Atomil'

Christopher Negus

FREE SAMPLE CHAPTER

f � � � w
SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134136561
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134136561
https://plusone.google.com/share?url=http://www.informit.com/title/9780134136561
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134136561
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134136561/Free-Sample-Chapter

N E G U S L I V E L I N U X S E R I E SN E G U S L I V E L I N U X S E R I E S

This book is part of Prentice Hall and InformIT’s exciting new Content Update Program,
which provides automatic content updates for major technology improvements!

• As significant updates are made to the Docker technology, sections of this book will be
updated or new sections will be added to match the updates to the technology.

• The updates will be delivered to you via a free Web Edition of this book, which can
be accessed with any Internet connection.

• This means your purchase is protected from immediately outdated information!

For more information on InformIT’s Content Update program, see the inside back
cover or go to informit.com/CUP.

If you have additional questions, please email our Customer Service department
at informit@custhelp.com.

Instructions to access your free copy of Docker Containers Web Edition
as part of the Content Update Program:

If you purchased your book from informit.com, your free Web Edition can be found
under the Digital Purchases tab on your account page.

If you have purchased your book at a retailer other than InformIT and/or have not
registered your copy, follow these steps:

1.	 Go to informit.com/register.

2.	 Sign in or create a new account.

3.	 Enter ISBN: 9780134136561.

4.	 Answer the questions as proof of purchase.

5.	� Click on the Digital Purchases tab on your Account page to access your free
Web Edition.

More About the Content Update Program…
InformIT will be updating the Docker Containers Web Edition periodically, as the Docker
technology evolves.

Registered users will receive an email alerting them of the changes each time the
Docker Containers Web Edition has been updated. The email alerts will be sent to the
email address used for your informit.com account.

When a new edition of this book is published, no further updates will be added to this
book’s Web Edition. However, you will continue to have access to your current Web
Edition with its existing updates.

The Web Edition can be used on tablets that use modern mobile browsers. Simply log into
your informit.com account and access the Web Edition from the Digital Purchases tab.

For more information about the Content Update Program, visit informit.com/CUP or
email our Customer Service department at informit@custhelp.com.

Docker Containers

N E G U S L I V E L I N U X S E R I E S

Docker Containers

Docker
Containers

This page intentionally left blank

Docker
Containers

Christopher Negus
with William Henry

Build and Deploy with Kubernetes,
Flannel, Cockpit, and Atomic

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at corpsales@pear-
soned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2015948006

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New
Jersey 07675, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-134-13656-1
ISBN-10: 0-134-13656-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing: December 2015

As always, I dedicate this book to my wife, Sheree.
—Christopher Negus

This page intentionally left blank

vii

Preface . xv

Acknowledgments. xxi

About the Author . xxiii

Part I Getting Going with Containers. 1

Chapter 1 Containerizing Applications with Docker. 3
Understanding Pros and Cons of Containerizing Applications 4

...An Application Running Directly on a Host Computer 4

...An Application Running Directly within a Virtual Machine 5

Understanding the Upside of Containers . 5

Understanding Challenges of Containerizing Applications 7

Understanding What Makes Up Docker . 8

The Docker Project . 8

The Docker Hub Registry. 9

Docker Images and Containers . 10

The docker Command. 11

Approaching Containers . 13

Summary . 14

Chapter 2 Setting Up a Container Run-Time Environment. 17
Configuring a Standard Linux System for Docker 18

Configuring Ubuntu for Docker. 18

Configuring Fedora for Docker . 21

Contents

vii i Docker Containers

Configuring Red Hat Enterprise Linux for Docker 25

Configuring Other Operating Systems for Docker 27

Configuring a Container-Style Linux System for Docker 29

Configuring an Atomic Host for Docker . 29

Configuring CoreOS for Docker . 32

Summary . 34

Chapter 3 Setting Up a Private Docker Registry 35
Getting and Starting a Private Docker Registry 36

Setting Up a Docker Registry in Fedora . 37

Setting Up a Docker Registry in Ubuntu . 40

Configuring a Private Docker Registry . 43

Configuring the docker-registry Package . 43

Configuring the registry Container . 46

Understanding the Docker Image Namespace 46

Summary . 48

Part II Working with Individual Containers 49

Chapter 4 Running Container Images . 51
Running Container Images Interactively . 54

Starting an Interactive Bash Shell . 54

Playing Some Character-Based Games . 56

Running Administrative Commands Inside a Container 57

Running Containerized Services. 59

Running a Containerized Web Server . 59

Limiting Resources When Running Services in Containers. 62

Running Privileged Containers. 63

Summary . 64

Chapter 5 Finding, Pulling, Saving, and Loading Container
Images . 65
Searching for Images . 66

Searching for Images with the docker Command 66

Searching for Images on Docker Hub . 69

Searching Other Repositories for Images. 70

ixContents

Pulling Images from Registries. 73

Saving and Loading Images . 76

Summary . 77

Chapter 6 Tagging Images. 79
Assigning Names to Images. 80

Assigning Tags to Images . 81

Assigning Repository Names to Images. 83

Attaching a User Name to an Image . 83

Attaching a Repository Name to an Image 85

Summary . 86

Chapter 7 Investigating Containers . 87
Inspecting Images and Containers. 88

Inspecting an Image. 88

Inspecting Base Images with docker inspect 89

Inspecting Application Images with docker inspect. 90

Looking at the History of an Image . 92

Inspecting Running Containers . 92

Start a Container to Inspect . 93

Inspect an Entire Container Configuration 94

Inspect Individual Container Attributes. 99

Finding More Ways to Look into Containers. 103

Using docker top to See Container Processes 103

Using docker attach to Interact with a Service Inside
a Container. 104

Using docker exec to Start a New Process in a
Running Container . 105

Using docker logs to See Container Process Output 106

Using docker diff to See How a Container Has Changed 106

Using docker cp to Copy Files from a Container 107

Summary . 107

Chapter 8 Starting, Stopping, and Restarting Containers 109
Stopping and Starting a Container . 109

Stopping and Starting a Detached Container 110

Starting and Stopping an Interactive Container 112

x Docker Containers

Restarting a Container . 113

Sending Signals to a Container . 114

Pausing and Unpausing Containers. 115

Waiting for a Container’s Exit Code . 116

Renaming a Container. 117

Creating a Container . 117

Summary . 118

Chapter 9 Configuring Container Storage . 121
Managing Storage for a Container . 122

Using Volumes from the Host . 122

Data Volume Container . 123

Write-Protecting a Bind Mount . 124

Mounting Devices . 125

Mounting Sockets . 125

Storage Strategies for the Docker Host . 127

Attaching External Storage to a Docker Host 128

Summary . 130

Chapter 10 Configuring Container Networking 133
Expose Ports to Other Containers . 134

Map Ports Outside the Host . 136

Map a Port from Linked Containers . 136

Connect Containers on Different Hosts . 138

Alternatives to the docker0 Bridge. 139

Changing Network Mode for a Container 140

Examining Network Options . 140

Changing the Docker Network Bridge. 142

Summary . 143

Chapter 11 Cleaning Up Containers . 145
Making Space for Images and Containers . 146

Removing Images . 146

Removing Individual Images . 147

Removing Multiple Images . 148

Removing Containers . 150

Removing Individual Containers . 150

Removing Multiple Containers . 152

xiContents

Cleaning Up and Saving Containers . 153

Cleaning Up and Saving an Ubuntu Container 153

Cleaning Up and Saving a Fedora Container 154

Summary . 154

Chapter 12 Building Docker Images . 157
Doing a Simple docker build. 158

Setting a Command to Execute from a Dockerfile. 161

Using the CMD Instruction . 161

Using the ENTRYPOINT Instruction . 162

Using the RUN Instruction . 163

Adding Files to an Image from a Dockerfile. 164

Exposing Ports from an Image within a Dockerfile 165

Assigning Environment Variables in a Dockerfile. 166

Assigning Labels in a Dockerfile . 167

Using Other docker build Command Options 168

Tips for Building Containers . 169

Clean Up the Image. 169

Keep Build Directory Small . 169

Keep Containers Simple . 170

Manage How Caching Is Done . 170

Summary . 171

Part III Running Containers in Cloud Environments 173

Chapter 13 Using Super Privileged Containers. 175
Using Super Privileged Containers in Atomic Host 176

Understanding Super Privileged Containers 176

Opening Privileges to the Host . 177

Accessing the Host Process Table . 177

Accessing Host Network Interfaces . 178

Accessing Host Inter-Process Communications. 179

Accessing Host File Systems . 179

Preparing to Use Super Privileged Containers 180

Using the atomic Command . 180

Installing an SPC Image with atomic . 182

Getting Information about an SPC Image with atomic 182

Running an SPC Image with atomic. 183

xii Docker Containers

Stopping and Restarting an SPC with atomic 184

Updating an SPC Image . 184

Uninstalling an SPC Image . 185

Trying Some SPCs . 185

Running the RHEL Tools SPC . 186

Running the Logging (rsyslog) SPC . 187

Running the System Monitor (sadc) SPC 189

Summary . 191

Chapter 14 Managing Containers in the Cloud with Cockpit 193
Understanding Cockpit . 194

Starting with Cockpit. 198

Adding Servers into Cockpit . 199

Working with Containers from Cockpit. 201

Adding Container Images to Cockpit . 201

Running Images from Cockpit. 201

Working with Network Interfaces from Cockpit 204

Configuring Storage from Cockpit. 207

Doing Other Administrative Tasks in Cockpit 208

Managing Administrator Accounts in Cockpit 208

Open a Terminal in Cockpit . 209

Summary . 210

Part IV Managing Multiple Containers. 211

Chapter 15 Orchestrating Containers with Kubernetes 213
Understanding Kubernetes . 214

Starting with Kubernetes . 216

Setting Up an All-in-One Kubernetes Configuration 218

Installing and Starting Up Kubernetes . 218

Starting Up a Pod in Kubernetes . 220

Working with Kubernetes . 223

Summary . 224

Chapter 16 Creating a Kubernetes Cluster. 225
Understanding Advanced Kubernetes Features 226

Setting Up a Kubernetes Cluster . 226

Step 1: Install Linux . 227

Step 2: Set Up Kubernetes Master . 227

xii iContents

Step 3: Set Up Kubernetes Nodes . 230

Step 4: Set Up Networking with Flannel . 231

Starting Up Pods in a Kubernetes Cluster . 233

Deleting Replication Controllers, Services, and Pods 237

Summary . 238

Part V Developing Containers . 239

Chapter 17 Developing Docker Containers . 241
Setting Up for Container Development . 241

Choosing a Container Development Environment for
Red Hat Systems. 242

Container Development Environments from Docker 246

Using Good Development Practices . 247

Gathering or Excluding Files for a Build. 248

Taking Advantage of Layers. 249

Managing Software Packages in a Build . 250

Learning More about Building Containers. 251

Summary . 252

Chapter 18 Exploring Sample Dockerfile Files 253
Examining Dockerfiles for Official Docker Images. 254

Viewing a CentOS Dockerfile. 254

Viewing a Busybox Dockerfile . 257

Examining Dockerfiles from Open Source Projects 258

Viewing a WordPress Dockerfile . 258

Viewing the MySQL Dockerfile . 260

Examining Dockerfiles for Desktop and Personal Use 263

Viewing a Chrome Dockerfile . 263

Viewing a Firefox Dockerfile. 267

Summary . 270

 Index. 273

This page intentionally left blank

xv

Preface

Docker is a containerization technology at the center of a new wave for building,
packaging, and deploying applications. It has the potential to impact every aspect
of computing, from the application development process to how applications are
deployed and scaled up and out across massive data centers.

Despite its great popularity, Docker is still a fairly new project, with many peo-
ple still not really knowing exactly what Docker is. If you are one of those people,
this book can help you take that first step, while also opening your eyes to the huge
potential that containerization promises for you down the road. My goals for leading
you into the world of containerization with this book can be summed up in these
ways:

 ■ Hands-on learning: I often say this in my books, but I believe that the
best way to learn how technology works is to get it and use it. To that end, I
let you choose from among several popular Linux systems, show you how to
install Docker on the one you choose, and provide working examples of using
Docker for everything from running a simple container to building and man-
aging your own container images. That learning then extends into tools and
techniques for orchestrating and managing containers.

 ■ How Docker can benefit you: I explain the benefits of creating and run-
ning applications in containers, instead of installing software packages (in
formats such as RPM or Deb) and running uncontained applications directly
from your hard disk. Beyond running applications, I also describe how con-
tainerization can benefit software developers and system administrators.

xvi Docker Containers

 ■ Essential qualities of Docker: I describe how Docker uses technolo-
gies such as Linux Containers (LXC) to keep containers separate from other
applications running on a host computer or selectively tap into the host sys-
tem. These qualities include how Docker uses name spaces, metadata, and
separate file systems to both manage and secure containerized applications.

To get started, you don’t need to know anything about Docker or containeriza-
tion; you can treat this book as your introduction to Docker. However, this book is
also intended to offer an entry into more advanced Docker-related topics, such as
orchestration and container development.

As you progress through the book, you see specific ways to run containers,
investigate them, stop and start them, save them, and generally manage them. As
you begin creating your own containers, I discuss techniques to help you make
container images that build and run efficiently. I even step you through build files
(which are called Dockerfiles) that others have created to make their own containers.

A knowledge of Linux Containers in general, or Docker containers specifically,
is not needed to start using this book. That said, however, there are other technolo-
gies you will use both within your Docker containers and outside those containers
to work with them. Understanding some of those technologies will make your expe-
rience with Docker that much more fruitful.

KNOWLEDGE TO HELP YOU WITH DOCKER

To get the most out of working with Docker containers, it helps to know something
about the operating environment in which Docker will be running. Docker is built
on Linux technology and is specifically integrated with advanced features, includ-
ing Linux Containers (LXC) for managing Linux name spaces and Cgroups for man-
aging container access to system resources (such as CPU and memory).

Even your most basic interactions with Docker containers rely on underlying
Linux technologies. You may have heard that you can run Docker on your Windows
or Mac systems. But adding Docker to those systems always relies on your adding
a Linux virtual machine. In other words, there are no Docker containers without
Linux. Likewise, each container itself is typically built from a base image created
from a specific Linux distribution.

So if you have no experience working with Linux systems, you might find it use-
ful to learn about some of the following aspects of Linux and related technologies:

xviiPreface

 ■ Command shell: There are graphical interfaces available for working with
Docker. However, most of the examples of Docker in this book are done from
a Linux command line shell. Knowing how to get around in a Linux shell
makes it much more efficient to work with Docker.

 ■ Software packages: Docker is itself a mechanism for delivering software
packaged and delivered together as a bundled application. To build the con-
tainer images themselves, however, most Docker base images are set up to
allow you to install software packages from the specific Linux distribution on
which they were based.

 So, for example, for an Ubuntu base image, you should understand how to
install Deb packages with tools such as apt-get. For Fedora, Red Hat Enter-
prise Linux, or CentOS Docker images, the yum, dnf, and rpm commands
are useful. When you use these base images to build your own Docker con-
tainers, those images are usually enabled to automatically grab the packages
you request from online software repositories. Understanding how to get and
install packages in your chosen Linux distribution is important for your suc-
cess with Docker.

 ■ File ownership and permissions: Every file in a Linux system, as well as
within a container, is owned by a particular user and group and has certain
permissions set to allow access to those files. At times, you want to grant
access to files and directories (folders) from the host within the container.
Some of those might be special files, such as devices or sockets, that the
application needs to run. Processes also run as a particular user. Under-
standing how those permissions work can be critical to getting a container
working properly.

I mentioned only a few of the more obvious features you need to know about
to work effectively with Docker containers. You will run into many other Linux-
related features as you continue to explore how to make the best use of the Docker
containers you use and create yourself.

If you are not familiar with Linux, I strongly recommend you take a class or
get a book that gives you at least the basics of Linux to help you get going with
Docker containers. My humble suggestion would be to pick up the Linux Bible,
Ninth Edition, written by this author (http://www.wiley.com/WileyCDA/WileyTitle/
productCd-1118999878.html). It will not only help you specifically with the tech-
nology you need to build Docker containers, but will also help you to generally work
in a Linux environment as you develop Docker container images.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118999878.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118999878.html

xvii i Docker Containers

WHAT THIS BOOK COVERS

This book is meant to be used from beginning to end by someone just starting up
with Docker containers. Later, it can serve as reference material to remind you of
different options and features associated with Docker containers. The book is orga-
nized into five parts.

Part I: Getting Going with Containers
In Part I, you learn what you need to know to start working with Docker containers.
Chapter 1, “Containerizing Applications with Docker,” describes what containers
are and how they differ from applications that are not contained. In Chapter 2,
“Setting Up a Container Run-Time Environment,” you learn how to install Docker
on different general-purpose Linux systems, such as Fedora and Ubuntu, as well
as how to install Docker on specialized container-oriented Linux systems, such as
CoreOS and Project Atomic. In Chapter 3, “Setting Up a Private Docker Registry,”
we complete a basic container setup by showing you how to configure a private
Docker registry to hold your own Docker images.

Part II: Working with Individual Containers
Most of the coverage in this part relates to using the docker command to work
directly with individual containers. In Chapter 4, “Running Container Images,” I
show you how to run your first container images. To help you find and get container
images, Chapter 5, “Finding, Pulling, Saving, and Loading Container Images,”
describes how to search for container images from the Docker registry and then pull
the image you want, save it to a file, and load it into another Docker system.

In Chapter 6, “Tagging Images,” you learn how to tag images, to better identify
what the image contains and to use that information to push images to registries.
In Chapter 7, “Investigating Containers,” I show you how to look inside a Docker
container or container image to see the details of how that container or image works.
In Chapter 8, “Starting, Stopping, and Restarting Containers,” you learn just that—
how to stop, start, and restart containers.

In Chapter 9, “Configuring Container Storage,” you learn how to configure stor-
age, primarily by mounting directories from the host inside your containers. To
learn how to configure networking for containers, Chapter 10, “Configuring Con-
tainer Networking,” describes how to configure both the default networking used
(or not used) by the Docker service in general, as well as ways someone running
containers can set network interfaces for individual containers.

xixPreface

Docker caches a lot of data, for possible reuse. In Chapter 11, “Cleaning Up
Containers,” I show you how to clean out cached data left behind when you created
or ran Docker images. In Chapter 12, “Building Docker Images,” you learn how to
build your own Docker containers, including how to build containers that build and
run efficiently.

Part III: Running Containers in Cloud Environments
In Chapter 13, “Using Super Privileged Containers,” I describe how to run what
are referred to as super privileged containers (SPCs). To illustrate how SPCs work,
I show you how you can get several images that can perform different administra-
tive tasks on an RHEL Atomic system. In Chapter 14, “Managing Containers in the
Cloud with Cockpit,” I describe how to manage containers across multiple hosts in
your cloud or local environment using the Cockpit web-based container manage-
ment tool.

Part IV: Managing Multiple Containers
In this part, I get into the area of orchestration. For Chapter 15, “Orchestrating
Containers with Kubernetes,” I describe how to use Kubernetes master and node
services all on one system to be able to try out Kubernetes. In Chapter 16, “Creating
a Kubernetes Cluster,” I go beyond the all-in-one Kubernetes system to describe
how to set up a Kubernetes cluster. With that cluster in place, you can deploy
applications in container pods to be managed on different node computers from the
master computer.

Part V: Developing Containers
In the short time that Docker has been around, techniques have already been
developed to make building containers more efficient. In Chapter 17, “Developing
Docker Containers,” I describe some tips and a few tricks for developing Docker
containers. Finally, in Chapter 18, “Exploring Sample Dockerfile Files,” I show
you various Dockerfile files I have come across to illustrate what different people
have done to overcome obstacles to building their own containers.

So if you are ready now, step right up and start reading Chapter 1. I hope you
enjoy the book!

This page intentionally left blank

xxi

Acknowledgments

The help I have had producing this book has been extraordinary. In my day job,
I have the pleasure of working directly with people at Red Hat who take the fine
work being done on projects like Docker, Kubernetes, and Atomic and extend and
integrate those projects together into operating systems that are ready for the most
stringent enterprise environments. So, in general, I want to thank developers, tes-
ters, and other writers on the Red Hat Enterprise Linux Atomic, OpenShift, and
Linux container teams for helping me learn on a daily basis what it takes to make
Linux Containers ready for the enterprise.

As for having a direct impact on the book, there are a few people from Red Hat
I want to call out individually. First, William Henry wrote two chapters in this book
on storage and networking. I was fortunate that he was available to write those criti-
cal chapters. Beyond his work here, William has made significant contributions to
Docker-related projects. In fact, William wrote dozens of docker command man
pages that are delivered with the Docker software itself. Having William around to
participate in helping develop the content of the book was priceless as well.

Another important contributor to this book from Red Hat is Scott Collier. Scott’s
public contributions to the general knowledge about Docker have included blogs on
setting up Docker and Kubernetes, as well as sharing many sample Dockerfiles
through the Fedora Cloud initiative. For this book, Scott was generous with his
time, helping me sort through technology and examples illustrated throughout the
book.

Because I wrote this book outside of work hours (which is why it took me longer
than I had hoped), I often relied on interactions with my publisher (Pearson) dur-
ing evenings and weekends. So, thanks to editors Chris Zahn and Elaine Wiley for
reviewing my content, occasionally responding on Sunday nights, and compressing

xxii Docker Containers

their schedules to help me meet mine. Also from Pearson, my dear friend Debra
Williams Cauley, who developed this project with me, has shown extraordinary
patience as I sought to balance a tight schedule with my desire to take the time to
write the exact book I wanted to write.

Finally, I’d like to thank my family. When someone writes a book he must
almost, by necessity, neglect his family for some amount of time. I’m so proud of
you all. Despite my drifting off to write, my son Seth managed to do a great imitation
of Zac Efron in High School Musical by having the lead in his school play while
also playing on his high school soccer team. My son Caleb found his niche, settling
in on his little organic farm in Maine. And my wife, Sheree, continues to amaze
younger generations with her fitness and Spartan runs. Your love and support are
what keeps me going.

xxii i

About the Author

Christopher Negus is a bestselling author of Linux books, a certified Linux
instructor and examiner, Red Hat Certified Architect, and principal technical
writer for Red Hat. At the moment, projects Chris is working on include Red Hat
OpenStack Platform High Availability, Red Hat Enterprise Linux Atomic Enter-
prise, Kubernetes, and Linux Containers in Docker format.

As an author, Chris has written dozens of books about Linux and open source
software. His Linux Bible, Ninth Edition, released in 2015, is consistently among
the top-selling Linux books today. During the dotcom days, Chris’s Red Hat Linux
Bible sold more than 250,000 copies in eight editions and was twice voted best
Linux book of the year. Other books authored or coauthored by Chris include the
Linux Toolbox series, Linux Toys series, Fedora and Red Hat Enterprise
Linux Bible series, and Linux Troubleshooting Bible with Wiley Publishing.

With Prentice Hall, Chris helped produce the Negus Software Solution Series.
For that series, Chris wrote Live Linux CDs and coauthored The Official Damn
Small Linux Book. That series also includes books on web development, Google
Apps, and virtualization.

Chris joined Red Hat in 2008 as an RHCE instructor. For that role, he became
a Red Hat Certified Instructor (RHCI) and Red Hat Certified Examiner (RHCX). In
2014, Chris became a Red Hat Certified Architect (RHCA), with certifications in
Virtualization Administration, Deployment and Systems Management, Cluster and
Storage Management, and Server Hardening. In 2011, Chris shifted from his Linux
instructor role back to being a full-time writer for Red Hat, which he continues to
do today.

xxiv Docker Containers

Early in his career, Chris worked at UNIX System Laboratories and AT&T Bell
Labs with the organizations that produced the UNIX operating system. During that
time, Chris wrote the first official UNIX System V Desktop system manual and
cowrote the Guide to the UNIX Desktop. For eight years, Chris worked closely
with developers of the UNIX system, from UNIX System V Release 2.0 through
Release 4.2.

35

Setting Up a Private Docker
Registry

C H A P T E R 3

IN THIS CHAPTER:
 ■ Create a private Docker registry in Fedora or Ubuntu

 ■ Use the docker-registry package

 ■ Use the registry container image

 ■ Understand the Docker image namespace

One of the foundations of Docker is the ability to request to use an existing con-
tainer image and then, if it is not already on your system, grab it from somewhere
and download it to your system. By default, “somewhere” is the Docker Hub Regis-
try (https://hub.docker.com). However, there are ways to configure other locations
from which you can pull docker images. These locations are referred to as registries.

By setting up your own private registry, you can keep your private images
to yourself. You can also save time by pushing and pulling your images locally,
instead of having them go out over the Internet.

Setting up a private registry is simple. It requires getting the service (by install-
ing a package or using the registry Docker container image), starting the service,
and making sure the proper port is open so the service is accessible. Using reg-
istries requires a bit more explanation than setting up one, especially when you
consider that features are added to Docker every day that are changing how Docker
uses and searches registries for images.

In particular, the way that Docker uses the image namespace is changing to be
more adaptable. If your location is disconnected from the Internet, with the Docker
hub inaccessible, features are being developed to allow you to use a different

https://hub.docker.com

36 Docker Containers

default registry. Likewise, new features let you add registries to your search order,
much the same way you can have an Internet browser look at different DNS servers.

This chapter describes how to set up a private Docker registry on several differ-
ent Linux systems. The first examples are simply to help you get a Docker registry
up and running quickly to begin testing or learning how to use registries. After that,
I describe some techniques for making a Docker registry more production ready.

Later in the chapter, I tell you how to adapt the way your local Docker service
uses Docker registries, including how to replace Docker.io as the default registry
and add other registries to the search path.

N O T E
Having a local registry in place is not required to use Docker. However, as
you build, save, and reuse images throughout this book, you may find it
handy to have a way to store your images (especially private ones) without
pushing them out to the public Docker Hub Registry. That said, you can
skip this chapter for now if you want to learn more about using containers
before you jump into setting up a Docker registry.

GETTING AND STARTING A PRIVATE DOCKER REGISTRY

You can run a Docker registry on your Linux system in a number of different ways
to store your own Docker images. For Linux distributions that include a docker-
registry package (such as Fedora and Red Hat Enterprise Linux), you can install
that package and start up the service. For other distributions, you can run the offi-
cial registry container image from Docker.io to provide the service.

See the section later in the chapter that corresponds to the Linux system you are
using for instructions on installing and running a Docker registry on that system.
For Fedora, I illustrate how to use the docker-registry package, while for Ubuntu I
show how to use the registry container.

Here are a few general things you should know about setting up a Docker
registry:

 ■ Install anywhere: Like most servers, the Docker registry does not need
to be installed on client systems (that is, where you run your docker com-
mands). You can install it on any Linux system that your clients can reach
over a network. That way, multiple Docker clients can access your Docker
registry.

37CHAPTER 3 Setting Up a Private Docker Registry

 ■ Open port: If your Docker registry is not on the client, you must be sure
that TCP port 5000 is not being blocked by the firewall where the Docker
registry is running.

 ■ Provide space: If you push a lot of images to your registry, space can fill up
quickly. For the docker-registry package, stored images are contained in the
/var/lib/docker-registry directory. Make sure you configure enough space
in that directory to meet your needs, or you can configure a different direc-
tory, if you want .

Setting Up a Docker Registry in Fedora
Follow these instructions to install and start up a Docker registry on a Fedora sys-
tem. At the moment, this procedure creates a version 1 Docker registry from the
docker-registry RPM package. Although this procedure was tested on Fedora, the
same basic procedures should work for the following Linux distributions:

 ■ Fedora 22 or later

 ■ Red Hat Enterprise Linux 7.1 or later

 ■ CentOS 7.1 or later

The docker-registry package is not included in the Atomic project Fedora,
RHEL, and CentOS distributions. So you must use the registry container,
described later for setting up a Docker registry in Ubuntu, to get that feature on an
Atomic Linux system.

N O T E
During the following procedure, you are going to use image tags to identify
the registry where you intend an image to be stored. For a more in-depth
look at tags, refer to Chapter 6, “Tagging Images.” To get docker-registry
to work, you may need to edit the usr/lib/system/docker-registry.
service and remove --debug.

 1. Install docker-registry: When you install the docker-registry package in
Fedora, it pulls in more than a dozen dependent packages as well. To install
those packages, type the following:
yum install docker-registry
...
Transaction Summary
==

38 Docker Containers

Install 1 Package (+15 Dependent packages)
Total download size: 6.8 M
Installed size: 39 M
Is this ok [y/d/N]: y

 2. List docker-registry contents: Use the rpm command to list the contents of
the docker-registry file in Fedora. There are nearly 200 files (mostly python
code in the package). This command shows you only documentation and con-
figuration files (I describe how to configure them later):
rpm -ql docker-registry | grep -E "(/etc)|(/usr/share)|(systemd)"
/etc/docker-registry.yml
/etc/sysconfig/docker-registry
/usr/lib/systemd/system/docker-registry.service
/usr/share/doc/docker-registry
/usr/share/doc/docker-registry/AUTHORS
/usr/share/doc/docker-registry/CHANGELOG.md
/usr/share/doc/docker-registry/LICENSE
/usr/share/doc/docker-registry/README.md

 3. Open firewall: If your Fedora system is running a firewall that blocks
incoming connections, you may need to open TCP port 5000 to allow access
to the Docker registry service. Assuming you are using the firewall service
in Fedora, run these commands to open the port on the firewall (immediately
and permanently) and see that the port has been opened:
firewall-cmd --zone=public --add-port=5000/tcp
firewall-cmd --zone=public --add-port=5000/tcp --permanent
firewall-cmd --zone=public --list-ports
5000/tcp

 4. Start the docker-registry service: If you want to do any special configu-
ration for your Docker registry, refer to the next sections before starting the
service. For a simple docker-registry installation, however, you can sim-
ply start the service and begin using it, as follows (as the status shows, the
docker-registry service is active and enabled):
systemctl start docker-registry
systemctl enable docker-registry
Created symlink from
 /etc/systemd/system/multi-user.target.wants/docker-registry.
service
 to /usr/lib/systemd/system/docker-registry.service.
systemctl status docker-registry
docker-registry.service - Registry server for Docker
 Loaded: loaded (/usr/lib/systemd/system/docker-registry.
service;enabled)
 Active: active (running) since Mon 2015-05-25 12:02:14 EDT; 42s ago

39CHAPTER 3 Setting Up a Private Docker Registry

Main PID: 5728 (gunicorn)
 CGroup: /system.slice/docker-registry.service
 ├─5728 /usr/bin/python /usr/bin/gunicorn --access-logfile
 - --max-requests 100 --graceful-timeout 3600-t 36...
...

 5. Get an image: A common image used to test Docker is the hello-world
image available from the Docker Hub Registry. Run that image as follows
(which pulls that image to the local system and runs it):
docker run --name myhello hello-world
Unable to find image ‘hello-world:latest' locally
latest: Pulling from docker.io/hello-world
91c95931e552: Download complete
a8219747be10: Download complete
Hello from Docker.
docker.io/hello-world:latest: The image you are pulling has been
verified.
...

 6. Allow access to registry: The docker clients in Fedora and Red Hat Enter-
prise Linux require that you either obtain a certificate from the registry or
you identify the registry as insecure. For this example, you can identify the
registry as insecure by editing the /etc/sysconfig/docker file and creating
the following lines in that file:
ADD_REGISTRY='--add-registry localhost:5000'
INSECURE_REGISTRY='--insecure-registry localhost:5000'

After that, restart the local Docker service:
systemctl restart docker

 7. Tag the image: Use docker tag to give the image a name that you can use
to push it to the Docker registry on the local system:
docker tag hello-world localhost:5000/hello-me:latest

 8. Push the image: To push the hello-world to the local Docker registry, type
the following :
docker push localhost:5000/hello-me:latest
The push refers to a repository [localhost:5000/hello-me] (1 tags)
...
Pushing tag for rev [91c95931e552] on
 {http://localhost:5000/v1/repositories/hello-me/tags/latest}

 9. Pull the image: To make sure you can retrieve the image from the regis-
try, in the second Terminal, remove the image from your system, then try to
retrieve it from your local registry:

40 Docker Containers

docker rm myhello
docker rmi hello-world localhost:5000/hello-me:latest
docker pull localhost:5000/hello-me:latest
Pulling repository localhost:5000/hello-me
91c95931e552: Download complete
a8219747be10: Download complete
docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/hello-me latest 91c95931e552 5 weeks ago 910 B

In the example just shown, the image was successfully pushed to and pulled
from the local repository. At this point, you have these choices:

 ■ If you want to learn more about how the Docker registry works and possibly
modify its behavior, skip to the “Configuring a Private Docker Registry” sec-
tion later in this chapter.

 ■ If you are ready to start using Docker containers, skip ahead to Chapter 4,
“Running Container Images.”

The next section describes how to set up a Docker registry in Ubuntu.

Setting Up a Docker Registry in Ubuntu
Instead of installing a Docker registry from a software package, you can download
the registry container from the Docker Hub Registry and use that to provide the
Docker registry service. This is a quick and easy way to try out a Docker registry,
although the default registry doesn’t scale well for a production environment and is
more difficult to configure.

N O T E
Several versions of the registry are available. For this example, I use
registry:latest, which results in an image of a version 1 Docker registry.
By the time you try this, there may be a stable version 2 available. I recom-
mend you refer here for information on running the version 2 Docker regis-
try: https://docs.docker.com/registry/.

Although this procedure was tested on Ubuntu 14.04, the same basic procedure
should work on any Linux system running the Docker service.

To get started here, install Docker as described in Chapter 2, “Setting Up a
Container Run-Time Environment,” and start up the Docker service. I suggest you

https://docs.docker.com/registry/

41CHAPTER 3 Setting Up a Private Docker Registry

open two Terminal windows (shells) to do this procedure. Open one where you plan
to run the registry service, so you can watch it in progress as you start up and test it.
Open another Terminal, from which you can push and pull images.

 1. Get the registry image: Run the docker pull command as follows to pull
the registry image from the Docker Hub Registry (see Chapter 5, “Finding,
Pulling, Saving, and Loading Container Images,” for a description of docker
pull):
$ sudo docker pull registry:latest
Pulling repository registry
204704ce3137: Download complete
e9e06b06e14c: Download complete
...

 2. Run the registry image: To try out the Docker registry, run the image in
the foreground so you can watch messages produced as the container image
is running (see Chapter 4 for a description of docker run). This command
starts the latest registry image, exposes TCP port 5000 on the system so
clients outside the container can use it, and runs it as a foreground process
in the first terminal:
$ sudo docker run -p 5000:5000 registry:latest
[2015-05-25 21:33:35 +0000][1][INFO] Starting gunicorn 19.1.1
[2015-05-25 21:33:35 +0000][1][INFO] Listening at:
http://0.0.0.0:5000 (1)
[2015-05-25 21:33:35 +0000][1][INFO] Using worker: gevent
...

 3. Get an image: To test that you can push and pull images, open a second
Terminal window. A common image used to test Docker is the hello-world
image available from the Docker Hub Registry. Run that image as follows
(which pulls that image to the local system and runs it):
$ sudo docker run --name myhello hello-world
Pulling repository hello-world
91c95931e552: Download complete
a8219747be10: Download complete
Hello from Docker.
This message shows that your installation appears to be working
correctly.
...

 4. Tag the image: Use docker tag to give the image a name that you can use
to push it to the Docker registry on the local system:
$ sudo docker tag hello-world localhost:5000/hello-me:latest

42 Docker Containers

 5. Push the image: To push the hello-world to the local Docker registry, type
the following:
$ sudo docker push localhost:5000/hello-me:latest
The push refers to a repository [localhost:5000/hello-me] (len: 1)
...
Pushing tag for rev [91c95931e552] on
 {http://localhost:5000/v1/repositories/hello-me/tags/latest}

 6. Check the Docker registry log messages: If the image was pushed to the
registry successfully, in the first Terminal you should see messages showing
PUT commands succeeding. For example:
172.17.42.1 - - [25/May/2015:22:12:37 +0000] "PUT
/v1/repositories/hello-me/images HTTP/1.1" 204 - "-" "docker/1.0.1
go/go1.2.1 git-commit/990021a kernel/3.13.0-24-generic os/linux
arch/amd64"

 7. Pull the image: To make sure you can retrieve the image from the registry,
in the second Terminal remove the image from your system, and then try to
retrieve it from your local registry:
$ sudo docker rm myhello
$ sudo docker rmi hello-world localhost:5000/hello-me:latest
$ sudo docker pull localhost:5000/hello-me:latest
Pulling repository localhost:5000/hello-me
91c95931e552: Download complete
a8219747be10: Download complete
docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/hello-me latest 91c95931e552 5 weeks ago 910 B

 8. Run the docker registry again: Instead of running the registry image
in the foreground, holding the Terminal open, you can have it run more per-
manently in the background (-d). To do that, close the running registry con-
tainer and start a new image as follows:
$ sudo docker run -d -p 5000:5000 registry:latest

The Docker registry is running in the background now, ready to use. At this
point, you have these choices:

 ■ If you want to learn more about how the Docker registry works and possibly
modify its behavior, skip to the “Configuring a Private Docker Registry” sec-
tion later in this chapter.

 ■ If you are ready to start using Docker containers, skip ahead to Chapter 4.

The next section describes how to set up a Docker registry in other Linux
distributions .

http://localhost:5000/v1/repositories/hello-me/tags/latest

43CHAPTER 3 Setting Up a Private Docker Registry

CONFIGURING A PRIVATE DOCKER REGISTRY

The default registries that come in the docker-registry package or the registry
container are fine if you just want to try out a Docker registry. If you want to use a
registry in a production environment, however, you need a deeper understanding of
how to configure your Docker registry to better suit your needs.

The following sections describe how to modify the Docker registry software for
both the docker-registry package and using the registry container.

Configuring the docker-registry Package
To better understand how the docker-registry package software works, start with
how the registry is set to run by default. When the docker-registry service starts up
in Fedora or Red Hat Enterprise Linux, it runs the gunicorn process. There is one
main gunicorn process and four additional gunicorn workers running, by default,
to provide the service.

From a full ps output the gunicorn processes; you can see the options set for
them:

ps -ef | grep gunicorn
00:00:00 /usr/bin/python /usr/bin/gunicorn --access-logfile -
 --max-requests 100 --graceful-timeout 3600 -t 3600 -k gevent -b
0.0.0.0:5000 -w 4 docker_registry.wsgi:application

Here’s what you can learn from this command line:

 ■ --access-logfile: Access to the docker-registry service is logged to any file
you set. In this case, however, the log file is set to a single hyphen (-), so
access messages are simply sent to standard output (where they are picked
up by the systemd journal and can be viewed by the journalctl command).

 ■ --max-requests 100: Sets the maximum number of requests that a
gunicorn daemon can accept to 100. After that, the worker is restarted.

 ■ --graceful-timeout 3600: Gives the gunicorn worker 3600 seconds (6
minutes) to finish handling a request once it has been sent a restart signal.
If it has not completed what it is doing by that time, it is killed.

 ■ -t 3600: If the gunicorn worker is silent for more than 3600 seconds
(6 minutes), it is killed and restarted.

 ■ -k gevent: Sets the type of gunicorn worker to gevent (an asynchronous type
of worker based on Greenlets).

44 Docker Containers

 ■ -b 0.0.0.0:5000: Sets the worker to bind on all IP addresses on the system
(0.0.0.0) on port 5000. This allows docker clients to connect to the Docker
registry through any external network interface on the system via TCP port
5000.

 ■ -w 4: Sets the number of worker processes to 4 (above the original gunicorn
process).

 ■ docker_registry.wsgi:application: Runs the process with the Docker reg-
istry wsgi application.

To change the behavior of the docker-registry service, you can edit the /etc/
sysconfig/docker-registry file. Here is how that file is set by default in Fedora :

The Docker registry configuration file
DOCKER_REGISTRY_CONFIG=/etc/docker-registry.yml

The configuration to use from DOCKER_REGISTRY_CONFIG file
SETTINGS_FLAVOR=local

Address to bind the registry to
REGISTRY_ADDRESS=0.0.0.0

Port to bind the registry to
REGISTRY_PORT=5000

Number of workers to handle the connections
GUNICORN_WORKERS=4

In the docker-registry file, you can do such things as have the Docker registry
listen only on a particular IP address (by default, REGISTRY_ADDRESS=0.0.0.0
listens on all addresses). You can change the port of the service to something other
than TCP port 5000 or set the number of gunicorn workers to something other
than 4.

The /etc/docker-registry.yml file is set as the Docker registry config file.
SETTINGS_FLAVOR=local tells the config file to include common variables
and then set the directory /var/lib/docker-registry for local storage use. In the
/etc/sysconfig/docker-registry file, the common variables you can set include
the following:

 ■ LOGLEVEL : By default, the log level is set to info. This can also be set to
debug, notice, warning, warn, err, error, crit, alert, emerg, or panic.

 ■ DEBUG : Set to either true or false to have debugging turned on or off.

 ■ STANDALONE : If set to true (the default), the registry acts as a standalone
registry and doesn’t query the Docker index.

45CHAPTER 3 Setting Up a Private Docker Registry

 ■ INDEX_ENDPOINT : If the local registry is not set to run in standalone,
the default, the index endpoint is set to https://index.docker.io.

 ■ STORAGE_REDIRECT : By default, this is disabled.

 ■ DISABLE_TOKEN_AUTH : If the service is not in standalone, this vari-
able is enabled to allow token authentication.

 ■ PRIVILEGED_KEY : By default, no privileged key is set.

 ■ SEARCH_BACKEND : By default, there is no search backend.

 ■ SQLALCHEMY_INDEX_DATABASE : By default, the SQLite search
backend database is set to: sqlite:////tmp/docker-registry.db.

If you want to use a setting flavor other than local, look in the /etc/docker-
registry.yml file. Different setting flavors can be used for Ceph Object Gateway
configuration, Google Cloud Storage configuration, OpenStack Swift Storage, and
others.

Other variables you can set that can be picked up by the gunicorn process,
include the following. Notice that some of these values show up on the gunicorn
command line:

 ■ GUNICORN_GRACEFUL_TIMEOUT: Sets the timeout for gracefully
restarting workers (in seconds).

 ■ GUNICORN_SILENT_TIMEOUT: Sets the timeout for restarting workers
that have gone silent (in seconds).

 ■ GUNICORN_USER: Runs the gunicorn process as the user set here,
instead of running it with root user privileges.

 ■ GUNICORN_GROUP: Runs the gunicorn process as the group set here,
instead of running it with root group privileges.

 ■ GUNICORN_ACCESS_LOG_FILE: Sets the name of the log file to direct
messages to those that are related to clients trying to access the service. By
default, messages are sent to the systemd journal through standard output.

 ■ GUNICORN_ERROR_LOG_FILE: Sets the name of the log file to direct
messages to those that are related to error conditions. By default, messages
are sent to the systemd journal through standard output.

 ■ GUNICORN_OPTS: Identifies any extra options you want to pass to the
gunicorn process.

After you set or change /etc/sysconfig/docker-registry file variables, restart
the docker-registry service for these features to take effect.

https://index.docker.io

46 Docker Containers

Configuring the registry Container
Instead of trying to configure the registry container image by modifying the con-
tents of the running container, the creators of that container image suggest you
rebuild the registry container image yourself. In particular, you probably want to
add security measures to your registry and more flexible storage features.

So far, this book has not yet introduced you to the concepts you need to build
your own containers. However, after you have become familiar with the process, if
you decide you want to build a custom version 1 registry container, I recommend
you refer to the docker-registry GitHub page:

 https://github.com/docker/docker-registry

From the docker-registry GitHub page, you can find information on how
to build a version 1 registry image and links to the Dockerfile used to build it
(https://github.com/docker/docker-registry/blob/master/Dockerfile).

By the time you read this, Docker registry version 2 may be ready to use. Refer
to the Docker registry 2.0 page (https://docs.docker.com/registry) for details on
how to deploy and configure this newer version of the Docker registry.

UNDERSTANDING THE DOCKER IMAGE NAMESPACE

Similar to the way that the Internet uses the Domain Name System (DNS) to have
a unique set of names refer to all the host computers in the world, Docker set out
to make a namespace to allow a unique way to name every container image in the
world. In that vision, a docker run someimage would result in the exact same
someimage being pulled to the local system and run, no matter where your location
or what type of Linux system you run it on.

For some potential Docker users, this presents problems. Some Docker instal-
lations are disconnected from the Internet. Security requirements of others allow
them to search and pull images only from registries that they own themselves.
These issues would prevent a pure Docker system from being installed in their
environments.

There has been pressure to change some aspects of how the Docker image
namespace works, so you can expect that story to evolve over time. As things stand
today, however, you should know that a system running Docker purely from the
upstream Docker Project code has the following attributes:

 ■ Search : An unpatched Docker system today only searches the Docker Hub
Registry when you run a docker search command.

https://github.com/docker/docker-registry
https://github.com/docker/docker-registry/blob/master/Dockerfile
https://docs.docker.com/registry

47CHAPTER 3 Setting Up a Private Docker Registry

 ■ Blocking registries : Docker does not have a feature to block the Docker
Hub Registry. So pulling an image without identifying a specific registry
causes Docker to search for that image on the Docker Hub Registry (if it’s
not already on the local system).

 ■ Changing the default registry: Docker doesn’t have a feature for changing
your default registry to anything other than the Docker Hub Registry.

 ■ Push confirmation : Docker does not ask you to confirm a push request
before it begins pushing an image.

Changes to some of these features are being discussed in the Docker commu-
nity. Patches to change how some of these features work are included in Red Hat
Enterprise Linux, Fedora, Atomic project, and related Linux distributions. For
example, the current version of the docker package in RHEL Atomic (docker-1.8)
includes some of those features just mentioned.

For example, here are some settings from the /etc/sysconfig/docker file on an
RHEL Atomic system that represent features that have not yet been added to the
upstream Docker Project:

ADD_REGISTRY='--add-registry registry.access.redhat.com'
BLOCK_REGISTRY='--block-registry'
INSECURE_REGISTRY='--insecure-registry'

The ADD_REGISTRY variable lets you add a registry to use for docker search
and docker pull commands. For users of Red Hat distributions, this puts Red Hat’s
own registry (registry.access.redhat.com) before the Docker Hub Registry, so the
user can know he is searching and pulling from that registry first. A user could also
replace that registry with his own registries or simply add his own registry in front
of Red Hat’s registry.

Using the ADD_REGISTRY variable to this file puts any registry you add at
the front of the list searched. However, if a requested image is not found in any of
the registries you add, the Docker Hub Registry still is searched next. To change
that behavior, you need to use the BLOCK_REGISTRY variable.

By setting the BLOCK_REGISTRY variable, you can block access to any regis-
try you choose. Of course, at the moment only the Docker Hub Registry is searched
by default. So, to block the Docker Hub Registry from search and pull requests, you
could use the following line:

 BLOCK_REGISTRY='--block-registry docker.io'

With that set, any requests for images that could not be found in registries set
with ADD_REGISTRY variable s would fail to be found, even if they existed at the

48 Docker Containers

Docker Hub Registry. In this way, only registries that you specifically included are
searched for images by the users of this particular docker installation.

The INSECURE_REGISTRY=‘--insecure-registry’ variable does not explicitly
allow or disallow a registry. This is a specific case where someone wants to use
the local Docker client to pull an image from a registry that provides HTTPS com-
munication, but the client doesn’t have a certificate from that registry to verify its
authenticity. Uncommenting the variable and adding the name of the insecure reg-
istry to that line allows the docker command to pull from that registry without full
authorization. For example:

INSECURE_REGISTRY='--insecure-registry myreg.example.com'

Again, this and other features just described are not part of the upstream
Docker Project. But if you need these features for your installation, you can change
how access to registries works by default in Docker using these features that are
currently in Fedora, RHEL, CentOS, and related Atomic project systems.

SUMMARY

Setting up a private Docker registry gives you the ability to push and pull images
without using the public Docker Hub Registry. This chapter described two different
ways of setting up a Docker registry for yourself.

For Linux distributions that have a docker-registry package available (such as
Fedora and Red Hat Enterprise Linux), you can install that package and start up
the docker-registry service using the systemctl command. As an alternative, any
system running the Docker service can pull and run the registry image, available
from the Docker Hub Registry, to offer a private Docker registry.

Besides describing how to set up your own Docker registry, the chapter included
a description of how the Docker image namespace works, with the Docker Hub
Registry as its centerpiece. Proposed modifications to that model have been imple-
mented in Fedora and other Red Hat sponsored operating systems and are being
discussed in the Docker community. These modifications give users the ability to
change which registries are set up to be used with search and pull requests from the
Docker service.

This page intentionally left blank

273

Index

Symbols
--net options, 140-142

A
ADD instructions, Dockerfile, 164-165

ADD_REGISTRY variable, 47

administrative commands, running
inside containers, 57-58

administrator accounts, managing,
Cockpit, 208-209

all-in-one Kubernetes, 217
configuring, 218-224

Amazon Web Services, opening
OpenShift, 243

Ansible, opening OpenShift, 243

application images, inspecting, 90-92

applications, containerizing
benefits, 4-7
challenging, 7
detriments, 4-5
goal, 10

arguments, atomic command, 181

atomic command, 180-185
arguments, 181

Atomic Host
configuring, 29-30

Fedora, 30-32
SPCs (super privileged containers),

176-180
host file system access, 179-180
host network interface access,

178-179
host process table access,

177-178
IPC access, 179
opening privileges to, 177

atomic run command, 183-184

attributes, containers, inspecting,
99-100

B
base images, 127

inspecting, 89-90

bash shell, starting interactive, 54-56

bind mounts, write-protecting, 124-125

274 Index

changes, containers, inspecting, 106

character-based games, 56-57

Chrome Dockerfiles, viewing, 263-266

CI (continuous integration) Docker, 125

cleaning up
containers, 153

Fedora, 154
Ubuntu, 153-154

images, 169

cloud management, containers,
193-194, 198-204

adding servers into Cockpit,
199-200

Cloud Native Computing Foundation
(CNCF), 214

clusters, Kubernetes, 217, 225
configuring, 226-233
starting up pods in, 233-237

CMD instructions, Dockerfile, 161-162

CNCF (Cloud Native Computing
Foundation), 214

Cockpit, 194-195, 210
adding container images, 201
adding servers into, 199-200
configuring storage, 207-208
Containers tab, 196
Journal tab, 196
managing administrator accounts,

208-209
managing containers in cloud,

193-194, 198-204
Networking tab, 196
network interfaces, 204-206
opening terminal in, 209
running images from, 201-204

blocking registries attribute, 47

bridges
changing, 142-143
docker0, alternatives to, 139-142

building containers, 169
cache management, 170-171
choosing environment for Red Hat,

242-243
cleaning up images, 169
excluding files, 248-249
gathering files, 248-249
keeping directory small, 169-170
layers, 249-250
managing software packages,

250-251
resources, 251
running OpenShift, 243-246
setting up, 241-247
simplicity, 170

building images, 80, 157-158, 168-169
docker build command, 158-161
Dockerfile, 161-165

Busybox Dockerfiles, viewing, 257-258

C
caching, managing, 170-171

CDK (Container Development Kit),
242-243

CentOS Dockerfiles
adding systemd service, 256-257
base, 255-256
configuring, 28

Atomic, 30
viewing, 254-257

certificates, RHEL docker package, 27

275Index

docker pull, 12, 65, 73-77, 127
docker pull -a ubuntu, 66
docker pull rhel, 71
docker pull ubuntu, 66
docker push, 12
docker rename, 12, 117
docker restart, 12, 113-114, 119
docker rm, 12, 51, 150-152
docker rmi, 12, 51, 146-149, 155
docker run, 10, 51-56, 59,

63-65, 73, 117-118, 122, 131,
136, 150, 159

docker save, 12, 65, 76-77
docker search, 65-69, 72-73, 77, 88
docker search rhel, 71
docker start, 10-12, 53,

109-112, 151
docker start container, 53
docker stop, 10-12, 109-112, 118
docker stop container, 53
docker tag, 12, 79-80
docker top, 12, 103-104, 107
docker unpause, 10-12, 115
docker version, 11
docker wait, 116, 119
ifconfig, 141
journalctl, 72, 125
kill, 114
kubectl, 216, 222, 237
kubectl create, 220
kubectl delete, 237
kubectl get, 238
logger, 125
mysqld_saf, 222
ps, 54, 102
python, 88, 94, 102
rpm -ql, 23

Services tab, 196
Storage tab, 197
System tab, 194
Tools tab, 197
versions, 194

code, exit, waiting for, 116

commands
atomic, 180-185

arguments, 181
atomic run, 183-184
curl, 110-111, 222
docker, 8, 11-12, 15, 20-21
docker attach, 11, 100, 104-105
docker build, 12, 79, 127, 153,

158-161, 168-171, 251
docker commit, 79
docker cp, 107
docker create, 12, 117-119
docker diff, 106
docker events, 12
docker exec, 11, 105-107
docker help, 11
docker history, 11, 127
docker images, 12, 53, 147,

154-155
docker import, 12, 154-155
docker info, 11
docker inspect, 11, 87-103, 107
docker kill, 12, 114-115, 118
docker load, 12, 65, 77
docker login, 12
docker logs, 12, 106-107
docker pause, 10, 115-118
docker port, 11
docker ps, 53, 110, 116-117,

150, 155
docker ps -a, 53

276 Index

assigning
names to, 80-81
repository names to, 83-86

attaching user name to, 83-85
base, 127
building, 80, 157-158, 168-169

docker build command,
158-161

Dockerfile, 161-165
cleaning up, 169
container

adding to Cockpit, 201
administrative commands,

57-58
disk space consumption, 51
running containerized

services, 59
running containerized web

server, 59-61
running interactively, 54-57

correctable, 157
creating, 12
disk space consumption, 51
Docker image namespace, 46-48
exporting, 81
exposing ports from within

Dockerfile, 165-166
golang, 68
importing, 81
inspecting, 88-89

application, 90-92
base, 89-90
history, 92

layers, 127
listing, 12
loading, 77
making space for, 146
modifying, 12

running administrative inside
containers, 57-58

systemctl, 38
yum filter, 251

committing containers, 80

configuration
Atomic Host, 29-30

Fedora, 30-32
CentOS, 28
containers, inspecting, 94-99
container-specific Linux, 29-34
CoreOS, 32-34
Debian, 28
Docker registries

Fedora, 37-40
Ubuntu, 40-42

Kubernetes
all-in-one, 218-224
clusters, 226-233

Linux, 18
Fedora, 21-24
Red Hat Enterprise Linux,

25-27
Ubuntu, 18-21

Mac OS X, 28
Microsoft Windows, 28
private registries, 35-37, 43

docker-registry package, 43-45
registry container, 46

storage, Cockpit, 207-208
SUSE, 28

Container Development Kit (CDK),
242-243

images, 10, 52, 216. See also containers
and pods

adding files to, 164-165
adding to Cockpit, 201

277Index

detriments, 4-5
goal, 10

containerized images, running, 59

containerized web servers, running,
59-61

containers, 10, 13-14, 53, 59, 109,
121, 216

adding servers into Cockpit,
199-200

building, 169
cache management, 170-171
cleaning up images, 169
keeping directory small,

169-170
simplicity, 170

changing network mode, 140
changing state, 12
cleaning up, 153

Fedora, 154
Ubuntu, 153-154

committing, 80
connecting on different hosts,

138-139
copying files from, 107
creating, 12, 117-118
data volume, 123-124
developing

choosing environment for Red
Hat, 242-243

excluding files, 248-249
gathering files, 248-249
layers, 249-250
managing software packages,

250-251
resources, 251
running OpenShift, 243-246
setting up, 241-247

names, adding tags to, 79-80
portable, 157
pulling from registries, 73-76
rails, 68
registry name and port, 80
removing, 12, 146-147

individual, 147-148
multiple, 148-149

reproducible, 157
running

containerized service, 59
containerized web server, 59-61
from Cockpit, 201-204

saving, 76-77
searching for, 66, 70-73

Docker Hub, 69-70
docker search command, 66-69

SPCs (super privileged containers)
installing with atomic

command, 182
obtaining information with

atomic command, 182-183
running, 183-184
starting and stopping, 184
uninstalling, 185
updating, 184

tagging, 81-82
tools for managing, 7
updatable, 158
user names, 80
verifiable, 158
version names, 79
version numbers, 79
wordpress, 90-91

containerization, 3
benefits, 4-7
challenges, 7

278 Index

starting, 220-223
starting up in cluster, 233-237
working with, 223-224

privileged, 63
running, 63-64

processes, 6
registry, configuring, 46
removing, 12, 150

individual, 150-152
multiple, 152

renaming, 117
restarting, 113-114
running, 11
running administrative commands

in, 57-58
sadc, 189-191
sample images, 14
saving, 153

Fedora, 154
Ubuntu, 153-154

sending signals to, 114-115
service interaction, 104-105
SPCs, 175-177, 185-186, 191

Atomic Host, 176-180
preparing to use, 180-185
running logging (rsyslog),

187-188
running rhel-tools, 186-187
running system monitor (sadc),

189-191
starting, 93-94, 109

detached, 110-111
interactive, 112
new processes in, 105

stopping, 109
detached, 110-111
interactive, 112

exposing ports to, 134-135
file systems, 6
inspecting, 88, 103, 107

attributes, 99-100
changes, 106
configuration, 94-99
CPU limits, 101-102
memory, 101-102
processes, 103-104
process output, 106
running, 92-103
SELinux contexts, 102-103
terminal sessions, 100

kernels, 6
limiting resources when running

services, 62-63
linked, 165

mapping ports from, 136-137
LXC (Linux Containers), 133
making space for, 146
managing in cloud, 193-194,

198-204
mapping ports outside hosts,

136-139
mounting devices, 125
mounting sockets, 125-126
pausing and unpausing, 115-116
pods, 216-218

deleting, 237-238
deploying across multiple

nodes, 216
master, 216
nodes, 216
replication controller, 216
resource files, 217
services, 216

279Index

images, 146-147
individual, 147-148
multiple, 148-149

Kubernetes pods, 237-238

detached containers, starting and
stopping, 110-111

developing containers
choosing environment for Red Hat,

242-243
excluding files, 248-249
gathering files, 248-249
layers, 249-250
managing software packages,

250-251
resources, 251
running OpenShift, 243-246
setting up, 241-247

devices, 6
mounting, 125

Devops model, Kubernetes, 215

directories, small, 169-170

DISABLE_TOKEN_AUTH variable
(docker-registry file), 45

disk space consumption, container
images, 51

DNS (Domain Name System), 46

Docker, 3-4, 13

docker0 bridge
alternatives to, 139-142

docker attach command, 11, 100
interacting with container services,

104-105

docker build command, 12, 79, 127,
153, 158-161, 168-171, 251

storage
hosts, 121
managing, 121-126
strategies for hosts, 127-130

super privileged, 63
volumes

hosts, 122-123
managing, 121

waiting for exit code, 116
write-protecting bind mounts,

124-125

container-specific Linux, 18
configuring, 29-34

Containers tab (Cockpit), 196

continuous integration (CI) Docker, 125

copying files from containers, 107

CoreOS, configuring, 32-34

correctable images, 157

CPU limits, containers, inspecting,
101-102

Creating a Kubernetes Cluster
page, 217

curl command, 110-111, 222

D
data volume containers, 123-124

Debian, configuring, 28

DEBUG variable (docker-registry
file), 44

deleting
containers, 150

individual, 150-152
multiple, 152

280 Index

viewing
Busybox, 257-258
CentOS, 254-257
Chrome, 263-266
Firefox, 267-269
MySQL, 260-263
WordPress, 258-260

docker help command, 11

docker history command, 11, 127

Docker Hub
image searches, 69-70
searching images, 88

Docker Hub Registry, 7-12, 15
configuring in Fedora, 37-40
configuring in Ubuntu, 40-42
configuring private registry,

35-37, 43
docker-registry package, 43-45
registry container, 46

image searches, 66
docker search command, 66-69

Docker image namespace, 46-48

docker images command, 12, 53, 147,
154-155

docker import command, 12, 154-155

docker info command, 11

docker inspect command, 11-12,
87, 107

inspecting containers, 88, 103
running, 92-103

inspecting images, 88-89
application, 90-92
base, 89-90
history, 92

docker command, 8, 11-12, 15, 20-21
subcommands, 11-12
Tab completion, 11

docker commit command, 12, 79

Docker Compose, 247

docker cp command, copying files from
containers, 107

docker create command, 12, 117-119

docker diff command, inspecting
container changes, 106

docker events command, 12

docker exec command, 11, 107
starting new processes in

containers, 105

Dockerfile Reference, 251

Dockerfiles, 171, 254, 270-271
ADD instructions, 164-165
assigning environment

variables, 166
assigning labels, 167-168
best practice documentation, 251
building images, 157-158

docker build command,
158-161

setting command to execute,
161-165

categories, 253
CMD instructions, 161-162
ENTRYPOINT instructions,

161-163
ENV instructions, 166
EXPOSING instructions, 165-166
LABEL instructions, 167-168
RUN instructions, 163-164

281Index

docker run command, 10-12, 51-56,
59, 63-65, 73, 117-118, 122, 131,
136, 150, 159

docker save command, 12, 65, 76-77

docker search command, 65-69, 72-73,
77, 88

docker search rhel command, 71

docker start command, 10-12, 53,
109, 151

detached containers, 110-111
interactive containers, 112

docker start container command, 53

docker stop command, 10-12, 109, 118
detached containers, 110-111
interactive containers, 112

docker stop container command, 53

Docker Swarm, 247

docker tag command, 12, 79-80

Docker Toolbox, 247

docker top command, 107
inspecting containers processes,

103-104

docker top subcommand, 12

docker unpause command, 10-12, 115

docker version command, 11

docker wait command, 116, 119

Domain Name System (DNS), 46

downloading, 22
Red Hat Enterprise Linux, 25
Ubuntu, 19

docker kill command, 12, 114-115, 118

Docker Kitematic, 247

docker load command, 12, 65, 77

docker login command, 12

docker logout command, 12

docker logs command, 12, 107
inspecting container process

output, 106

Docker Machine, 247

Docker Official Images Project, 251

docker pause command, 10, 115-118

docker port command, 11

Docker Project, 8, 15
code attributes, 46-47

docker ps -a command, 53

docker ps command, 53, 110, 116-117,
150, 155

docker pull -a ubuntu command, 66

docker pull command, 12, 65,
73-77, 127

docker pull rhel command, 71

docker pull Ubuntu command, 66

docker push command, 12

Docker Registry, 13

docker-registry package, configuring,
43-45

docker rename command, 12, 117

docker restart command, 12,
113-114, 119

docker rm command, 12, 51, 150-152

docker rmi command, 12, 51,
146-149, 155

282 Index

Flannel, setting up networking for
Kubernetes, 231-233

Frazelle, Jessie, 263

G
GitHub, 253

golang image, 68

Google Chrome Dockerfiles, viewing,
263-266

gunicorn processes, 43-45

H
history, images, inspecting, 92

host process table, accessing, 177-178

hosts
attaching external storage, 128-129
containers

connecting on different,
138-139

Atomic Host SPCs (super
privileged containers),
176-180

file systems, accessing, 179-180
mapping ports outside, 136-139
network interfaces, accessing,

178-179
privileges, 13

containers, 63
storage strategies, 127-130
volumes, 122-123

Hykes, Solomon, 8

E
ENTRYPOINT instructions, Dockerfile,

161-163

ENV instructions, Dockerfile, 166

environment variables, assigning in
Dockerfile, 166

exit code, containers, waiting for, 116

exporting images, 81

EXPOSE instructions, Dockerfile,
165-166

EXPOSE keyword, 134

exposing ports, 134
from image within Dockerfile,

165-166

external storage, attaching to hosts,
128-129

F
Fedora

Atomic Host
configuring, 21-24

Atomic, 30
Atomic Host, 30-32

containers, cleaning up and
saving, 154

downloading, 22
installing, 22
setting up Docker registry, 37-40

files
adding images to, 164-165
copying from containers, 107

file systems, containers, 6

Firefox Dockerfiles, viewing, 267-269

283Index

inspecting, 88-89
application, 90-92
base, 89-90
history, 92

layers, 127
listing, 12
loading, 77
making space for, 146
modifying, 12
names, adding tags to, 79-80
portable, 157
pulling from registries, 73-76
rails, 68
registry name and port, 80
removing, 12, 146-147

individual, 147-148
multiple, 148-149

reproducible, 157
running

containerized service, 59
containerized web server, 59-61
from Cockpit, 201-204

saving, 76-77
searching for, 66, 70-73

Docker Hub, 69-70
docker search command, 66-69

SPCs (super privileged containers)
installing with atomic

command, 182
obtaining information with

atomic command, 182-183
running, 183-184
starting and stopping, 184
uninstalling, 185
updating, 184

tagging, 81-82

I
ifconfig command, 141

images, 10, 52, 216. See also containers
and pods

adding files to, 164-165
adding to Cockpit, 201
assigning

names to, 80-81
repository names to, 83-86

attaching user name to, 83-85
base, 127
building, 80, 157-158, 168-169

docker build command,
158-161

Dockerfile, 161-165
cleaning up, 169
container

adding to Cockpit, 201
administrative commands,

57-58
disk space consumption, 51
running containerized

services, 59
running containerized web

server, 59-61
running interactively, 54-57

correctable, 157
creating, 12
disk space consumption, 51
Docker image namespace, 46-48
exporting, 81
exposing ports from within

Dockerfile, 165-166
golang, 68
importing, 81

284 Index

Red Hat Enterprise Linux, 25
Ubuntu, 19

interacting with services inside
containers, 104-105

interactive containers, starting and
stopping, 112

interfaces, network, Cockpit, 204-206

IPC (inter-process communications), 6
accessing, 179

J-K
journalctl command, 72, 125

Journal tab (Cockpit), 196

kernels, containers, 6

kill command, 114

Kitematic, 247

kubectl command, 216, 222, 237

kubectl create command, 220

kubectl delete command, 237

kubectl get command, 238

Kubernetes, 8, 213-216, 224
advanced features, 226
all-in-one, 217

configuring, 218-224
clusters, 217, 225

configuring, 226-233
starting up pods in, 233-237

creating sets of services, 215
data center stabilization, 215
Devops model, 215
generic host computers, 215
installing, 218-219
master, setting up, 227-229
networking, setting up, 231-233

tools for managing, 7
updatable, 158
user names, 80
verifiable, 158
version names, 79
version numbers, 79
wordpress, 90-91

importing images, 81

INDEX_ENDPOINT variable
(docker-registry file), 45

individual
containers, removing, 150-152
images, removing, 147-148

info argument (atomic command), 181

inspecting
containers, 88, 103, 107

attributes, 99-100
changes, 106
configuration, 94-99
CPU limits, 101-102
memory, 101-102
processes, 103-104
process output, 106
running, 92-103
SELinux contexts, 102-103
starting, 93-94
terminal sessions, 100

images, 88-89
application, 90-92
base, 89-90
history, 92

install argument (atomic command), 181

installation
Fedora, 22
Kubernetes, 218-219
Linux, 227

285Index

installing, 227
major distributions, 10

LinuxDockeriles, 253

listing images, 12

loading images, 77

logger command, 125

logging, rsyslog container, 187-188

LOGLEVEL variable (docker-registry
file), 44

LVM (logical volume manager),
expanding storage with, 129-130

LXC (Linux Containers), 133

M
Mac OS X, 17

configuring, 28

managing container storage, 122-126
strategies for hosts, 127-130

mapping ports, 134
outside hosts, 136-139

master, Kubernetes, setting up, 227-229

memory, containers, inspecting,
101-102

Microsoft Windows, 17
configuring, 28

mounting
devices, 125
sockets, 125-126

multiple
containers, removing, 152
images, removing, 148-149

MySQL Dockerfiles, viewing, 260-263

mysqld_saf command, 222

nodes, 226
setting up, 230-231

pods, 216-218
deleting, 237-238
deploying across multiple

nodes, 216
master, 216
nodes, 216
replication controller, 216
resource files, 217
services, 216
starting, 220-223
starting up in cluster, 233-237
working with, 223-224

replication controllers, deleting,
237-238

services, deleting, 237-238
starting, 220

L
LABEL instructions, Dockerfile,

167-168

labels, assigning in Dockerfile, 167-168

layers
developing containers, 249-250
images, 127

linked containers, 165
mapping ports from, 136-137

Linux, 17
choosing version, 250
configuring, 18

Fedora, 21-24
RHEL, 25-27
Ubuntu, 18-21

container-specific, 18
configuring, 29-34

286 Index

Linux, 17
configuring, 18-21
container-specific, 18, 29-34

Mac OS X, 17
configuring, 28

Microsoft Windows, 17
configuring, 28

RHEL (Red Hat Enterprise
Linux), 175

Atomic, 30, 128
configuring, 25-27
container development

environments, 242-243
SUSE, configuring, 28
configuring, 25-27
downloading, 25
installing, 25

OS X, 17
configuring, 28

output, container processes,
inspecting, 106

P
pausing containers, 115-116

pods, Kubernetes, 216-218
deleting, 237-238
deploying across multiple

nodes, 216
master, 216
nodes, 216
replication controller, 216
resource files, 217
services, 216
starting, 220-223

N
names

assigning
repository to images, 83-86
user names to, 83-85

images, adding tags to, 79-80

namespace, Docker image, 46-48

naming images, 80-81

networking, 13
setting up with Flannel for

Kubernetes, 231-233

Networking tab (Cockpit), 196

network interfaces, 6
Cockpit, 204-206

network mode, containers,
changing, 140

nodes, Kubernetes, 226
setting up, 230-231

O
Official Repositories (Docker Hub), 69

OpenShift, 241-242
running, 243-246

open source Dockerfiles, viewing
MySQL, 260-263
WordPress, 258-260

open source projects, Dockerfiles, 253

operating systems
CentOS, configuring, 28
CoreOS, configuring, 32-34
Debian, configuring, 28
Fedora, configuring, 21-24

287Index

Q-R
rails image, 68

Red Hat Enterprise Linux. See RHEL
(Red Hat Enterprise Linux)

registries, 65
ADD_Registry variable, 47
configuring

Fedora, 37-40
Ubuntu, 40-42

Docker Hub Registry, 7-13, 15
configuring in Fedora, 37-40
configuring in Ubuntu, 40-42
configuring private registry,

35-37, 43-46
image searches, 66-69

docker-registry package, 43-45
private, configuring, 35-37, 43-46
pulling images from, 73-76
registry container, configuring, 46

registry container, configuring, 46

removing
containers, 150

individual, 150-152
multiple, 152

images, 146-147
individual, 147-148
multiple, 148-149

Kubernetes replication controllers,
237-238

renaming containers, 117

replication controllers, Kubernetes,
deleting, 237-238

repositories, 65
images, assigning names to, 83-86

starting up in cluster, 233-237
working with, 223-224

portable images, 157

ports
exposing, 134

from image within Dockerfile,
165-166

to other containers, 134-135
mapping, 134-135

outside host, 136-139

private registry, configuring, 35-37, 43
docker-registry package, 43-45
registry container, 46

privileged containers, 63
running, 63-64

PRIVILEGED_KEY variable
(docker-registry file), 45

privileges, SPCs, opening to host, 177

processes, 6
containers

inspecting, 103-104
inspecting output, 106
starting new, 105

gunicorn, 43-45

process tables, 6

ps command, 54, 102

pulling images from registries, 73-76

push confirmation attribute, 47

python command, 88, 94, 102

288 Index

S
sadc container, 189-191

saving
containers, 153

Fedora, 154
Ubuntu, 153-154

images, 76-77

search attribute, 46

SEARCH_BACKEND variable
(docker-registry file), 45

searching for images, 66, 70-73
Docker Hub, 69-70
docker search command, 66-69

Search Registry Box (Docker Hub), 69

secrets, RHEL docker package, 27

Security Enhanced Linux (SELinux),
122-123

SELinux contexts, containers,
inspecting, 102-103

SELinux (Security Enhanced Linux),
122-123

servers, adding into Cockpit, 199-200

services
containers, interacting with,

104-105
Kubernetes, deleting, 237-238

Services tab (Cockpit), 196

shells, bash, starting interactively,
54-56

SIGHUP signal, 115

SIGINT signal, 115

SIGKILL signal, 114-115

signals, sending to containers, 114-115

reproducible images, 157

resources, limiting when running
services in containers, 62-63

restarting containers, 113-114

RHEL (Red Hat Enterprise Linux), 175
Atomic

configuring, 30
Host, 128

configuring, 25-27
downloading, 25
installing, 25

rhel-tools container, SPCs, 186-187

rpm -ql command, 23

rsyslog container, 187-188

run argument (atomic command), 181

RUN instructions, Dockerfile, 163-164

running
administrative commands in

containers, 57-58
container images interactively,

54-56
administrative commands,

57-58
character-based games, 56-57

containerized services, 59
containerized web servers, 59-61
containers, 11

inspecting, 92-103
privilege, 63-64

289Index

storage, 13, 130-131
attaching external to hosts, 128-129
configuring, Cockpit, 207-208
containers, 121

managing, 122-126
strategies for hosts, 127-130

LVM (logical volume manager),
129-130

STORAGE_REDIRECT variable
(docker-registry file), 45

Storage tab (Cockpit), 197

super privileged containers (SPCs). See
SPCs (super privileged containers)

SUSE, configuring, 28

systemctl command, 38

systemd service, adding to CentOS
Dockerfile, 256-257

System tab (Cockpit), 194

T
Tab completion, 11

tagging images, 81-82

terminal sessions, containers,
inspecting, 100

terminals, opening, Cockpit, 209

Tools tab (Cockpit), 197

U
Ubuntu

configuring for Docker, 18-21
containers, cleaning up and saving,

153-154
docker.io package, 20-21
downloading, 19

SIGTERM signal, 115

sockets, mounting, 125-126

SPCs (super privileged containers),
175-177, 185-186, 191

Atomic Host, 176
host file system access, 179-180
host network interface access,

178-179
host process table access,

177-178
IPC access, 179
opening privileges, 177

preparing to use, 180
atomic command, 180-185

running logging (rsyslog), 187-188
running rhel-tools, 186-187
running system monitor (sadc),

189-191

SQLALCHEMY_INDEX_DATABASE
variable (docker-registry file), 45

STANDALONE variable
(docker-registry file), 44

starting
Kubernetes, 220
containers, 93-94, 109

detached, 110-111
interactive, 112
SPCs (super privileged

containers), 184

stopping
SPCs (super privileged

containers), 184
containers, 109

detached, 110-111
interactive, 112
processes, 105

290 Index

Chrome Dockerfiles, 263-266
Firefox Dockerfiles, 267-269
MySQL Dockerfiles, 260-263
WordPress Dockerfiles, 258-260

vimfiles, 27

VMs (virtual machines), 5

volumes
data volume containers, 123-124
hosts, 122-123

W-Z
waiting for exit code, containers, 116

web servers, containerized, running,
59-61

Windows, 17
configuring, 28

WordPress Dockerfiles, viewing,
258-260

wordpress image, 90-91

write-protecting bind mounts, 124-125

yum filter command, 251

installing, 19
setting up Docker registry, 40-42

uninstall argument (atomic
command), 181

uninstalling SPC images, 185

union file systems, 249

unpausing containers, 115-116

updatable images, 158

update argument (atomic
command), 181

updating SPC images, 184

user names, attaching to images, 83-85

V
variables

ADD_REGISTRY, 47
assigning in Dockerfile, 166

verifiable images, 158

version names, images, 79

version numbers, images, 79

viewing
Busybox Dockerfiles, 257-258
CentOS Dockerfiles, 254-257

This page intentionally left blank

N E G U S L I V E L I N U X S E R I E SN E G U S L I V E L I N U X S E R I E S

This book is part of Prentice Hall and InformIT’s exciting new Content Update Program,
which provides automatic content updates for major technology improvements!

•	 As significant updates are made to the Docker technology, sections of this book will be
updated or new sections will be added to match the updates to the technology.

•	 The updates will be delivered to you via a free Web Edition of this book, which can
be accessed with any Internet connection.

•	 This means your purchase is protected from immediately outdated information!

For more information on InformIT’s Content Update program, see the inside back
cover or go to informit.com/CUP.

If you have additional questions, please email our Customer Service department
at informit@custhelp.com.

Instructions to access your free copy of Docker Containers Web Edition
as part of the Content Update Program:

If you purchased your book from informit.com, your free Web Edition can be found
under the Digital Purchases tab on your account page.

If you have purchased your book at a retailer other than InformIT and/or have not
registered your copy, follow these steps:

1. Go to informit.com/register.

2. Sign in or create a new account.

3. Enter ISBN: 9780134136561.

4. Answer the questions as proof of purchase.

5. 	�Click on the Digital Purchases tab on your Account page to access your free
Web Edition.

More About the Content Update Program…
InformIT will be updating the Docker Containers Web Edition periodically, as the Docker
technology evolves.

Registered users will receive an email alerting them of the changes each time the
Docker Containers Web Edition has been updated. The email alerts will be sent to the
email address used for your informit.com account.

When a new edition of this book is published, no further updates will be added to this
book’s Web Edition. However, you will continue to have access to your current Web
Edition with its existing updates.

The Web Edition can be used on tablets that use modern mobile browsers. Simply log into
your informit.com account and access the Web Edition from the Digital Purchases tab.

For more information about the Content Update Program, visit informit.com/CUP or
email our Customer Service department at informit@custhelp.com.

Docker Containers

N E G U S L I V E L I N U X S E R I E S

Docker Containers

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 3 Setting Up a Private Docker Registry
	Getting and Starting a Private Docker Registry
	Configuring a Private Docker Registry
	Understanding the Docker Image Namespace
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

