
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134086224
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134086224
https://plusone.google.com/share?url=http://www.informit.com/title/9780134086224
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134086224
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134086224/Free-Sample-Chapter

 The Gourmet
iOS Developer’s

Cookbook

This page intentionally left blank

 New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

 The Gourmet
iOS Developer’s

Cookbook
Even More Recipes for Better

iOS App Development

 Erica Sadun

 Editor-in-Chief

Mark Taub

 Senior Acquisitions
Editor

Trina MacDonald

 Senior Development
Editor

Chris Zahn

 Managing Editor

Kristy Hart

 Senior Project Editor

Betsy Gratner

 Copy Editor

Kitty Wilson

 Indexer

Tim Wright

 Proofreader

Sarah Kearns

 Technical Reviewers

Mark Granoff
 Mike Greiner
 Rich Wardwell

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

 The Gourmet iOS Developer’s Cookbook: Even More Recipes for Better iOS App
Development is an independent publication and has not been authorized, sponsored,
or otherwise approved by Apple Inc.

 Apple, the Apple logo, Apple TV, Apple Watch, Cocoa, Cocoa Touch, eMac, FaceTime,
Finder, iBook, iBooks, iCal, Instruments, iPad, iPad Air, iPad mini, iPhone, iPhoto,
iTunes, the iTunes logo, iWork, Keychain, Launchpad, Lightning, LocalTalk, Mac, the
Mac logo, MacApp, MacBook, MacBook Air, MacBook Pro, MacDNS, Macintosh, Mac
OS, Mac Pro, MacTCP, the Made for iPad logo, the Made for iPhone logo, the Made for
iPod logo, Metal, the Metal logo, the Monaco computer font, Multi-Touch, the New York
computer font, Objective-C, OpenCL, OS X, Passbook, Pixlet, PowerBook, Power Mac,
Quartz, QuickDraw, QuickTime, the QuickTime logo, Retina, Safari, the Sand computer
font, Shake, Siri, the Skia computer font, Swift, the Swift Logo, the Textile computer
font, Touch ID, TrueType, WebObjects, WebScript, and Xcode are trademarks of Apple,
Inc., registered in the United States and other countries. OpenGL and the logo are
registered trademarks of Silicon Graphics, Inc. The YouTube logo is a trademark of
Google, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in the United
States and other countries.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.
com .

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2015935369

 Copyright © 2015 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan,
New Jersey 07675, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-13-408622-4
 ISBN-10: 0-13-408622-8

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: May 2015

❖

 Dedicated with great affection to Chris Zahn:
editor, enabler, and wonderful person.

❖

vi Contentsvi Contents

 Contents

 Preface xiii

 1 Media 1

Speech 1

Other Options 3

Delegate Callbacks 3

Dictation 5

Creating Barcodes 5

Filter Parameters 5

Building Codes 6

Reading Barcodes 8

Listening for Metadata Objects 10

Responding to Metadata 11

Extracting Bounds 13

Enhancing Recognition 14

Detecting Faces 14

Building AVFoundation Movies 14

Creating a Pixel Buffer 16

Drawing into the Pixel Buffer 17

Expressive Drawing 18

Building Movies from Frames 19

Adding Images to Movies 23

Wrap-up 24

 2 Dynamic Typography 25

Type Size and User Needs 25

How Dynamic Type Works 25

Listening for Type Updates 28

Handling Dynamic Type with Attributes 31

Scanning for Text Style Ranges 32

Applying Text Style Ranges 34

Attribute-Ready Dynamic Elements 35

Custom Fonts Faces 36

Dynamic Text Views 37

Custom Sizing 38

viiContents viiContents

Font Descriptors 39

Descriptor Challenges 40

Fonts with Multiple Variations 41

Using String Attributes to Modify Fonts 42

Dynamic Type Gotchas 43

Wrap-up 43

 3 Text Kit 45

Creating Complex Text Layouts 45

Glyphs 46

Text Storage 55

Layout Managers 56

Text Containers 56

Adaptive Flow 58

Insets 60

Exclusion Paths 60

Bounding Rectangles 62

Using Text Kit to Add Touch to Labels 63

Establishing Text Kit 63

Synchronizing 64

Translating Coordinates 65

Glyphs and Characters 66

Checking for Links 67

Adding Visual Feedback 67

Draggable Exclusion Zones 69

Building PDFs with Text Kit 71

Printing Text View Data 73

Printing PDF Data 74

Wrap-up 74

 4 Attributed Strings and Document Containers 75

Class Enhancements 75

String Attachments 77

Building Attributed Strings from HTML 78

Document Type Dictionaries 79

Converting HTML Source to Attributed Strings 80

viii Contentsviii Contents

Converting Attributed Strings to Document
Representations 81

Generating HTML from Attributed Strings 82

Markup Initialization 83

RTF and RTFD 83

The RTFD Container 84

Initializing Attributed Strings from a File 84

Converting RTFD Text to Data 85

Writing RTFD Containers from Data 86

Inspecting Attributes 87

Establishing Document Attributes 89

Enhancing Attributed Strings 91

Returning Copies with New Attributes 92

Adjusting Attributes 93

Extending Mutable Attributed Strings 94

Text Ranges 95

Calculating Positions 95

Position Geometry 95

Updating Selection Points 97

Hardware Key Support 97

Wrap-up 99

 5 Animation 101

Keyframe Animation 101

Building Physics with Keyframes 103

Blocking Animators 105

UIKit Spring-Based Animations 106

Practical Uses for Spring Animations 108

System Animations 109

Motion Effects 109

Building Planes 110

Shadow Effects 111

Custom Transition Animations 113

Delegation 114

Building Transitioning Objects 114

ixContents ixContents

Implicit Animations 116

Building an Animation-Ready Layer 116

Building a View Around a Layer 118

Timing 118

Coordinating Animations 119

Building Implicit Completion Blocks 120

Animating Custom Properties 121

Intercepting Updates 122

Drawing Properties 123

Wrap-up 124

 6 Dynamic Animators 125

Physics-Based Behaviors 125

Building Dynamics 126

Detecting Pauses 127

Creating a Frame-Watching Dynamic Behavior 131

Implementing Snap Zones 133

Leveraging Real-World Physics 135

Connecting a Gravity Behavior to Device
Acceleration 137

Creating Boundaries 138

Enhancing View Dynamics 138

Custom Behaviors 139

Creating Custom Dynamic Items 139

Subverting Dynamic Behaviors 141

Better Custom Dynamic Behaviors 142

Custom Secondary Behaviors 144

Collection Views and Dynamic Animators 147

Custom Flow Layouts 147

Returning Layout Attributes 148

Updating Behaviors 149

Building a Dynamic Alert View 150

Connecting Up the Jelly 150

Drawing the View 152

Deploying Jelly 154

Wrap-up 154

x Contentsx Contents

 7 Presentations 155

Alerts 155

Class Deprecations 155

Building Alerts 156

Enabling and Disabling Alert Buttons 161

Adding Text Fields 162

Mask Views 164

Shape Layer Masking 164

Building Mask Views 166

Building Effect Views 169

Building a Blur Effect 170

Adding Vibrancy Effects 171

Animating Effect Views 172

Building Popovers 175

Supporting Bubbles 176

Presenting Popovers 177

Wrap-up 177

 8 Shape Magic 179

How to Shape a View 179

Expanding Beyond Circles 180

Resizing Bezier Paths 180

Building a Bezier-Based Shape Image View 184

Working with Unclosed Shapes 185

Adding Borders to Shaped Views 187

Building Shaped Buttons 190

Adding Attention-Grabbing Animations to Shaped
Views 193

Wrap-up 199

 9 Adaptive Deployment 201

Traits 201

Trait Properties 202

Defining Traits 202

Combining Trait Collections 203

Designing for Traits 204

xiContents xiContents

UIScreen Properties 205

Coordinate Spaces 205

Application Frame 206

Screen Bounds 206

Scale 207

Rotation 207

Size Classes and Assets 208

Basic Deployment 208

UIKit and Image Views 210

The UIImageAsset Class 210

Building Images from PDFs 211

Overriding Trait Collections 214

Building Side-by-Side iPhone Split Views 215

A Bit More About iOS 8 Split View Controllers 218

Wrap-up 219

 10 Development Helpers 221

All the Lorems 221

Placeholder Text 221

Image Ipsums 223

Generating Random User Data 225

Bulk Names 225

Generating Random Feeds 227

Random Everything 228

Directives 229

Converting Comments to Warnings 229

Warnings 231

Testing for the Simulator 232

Errors 232

Testing for Inclusion 233

Messages 234

Wrapping Pragmas 234

Overriding Diagnostics 235

Unused Variable Warnings 235

Marking Non-null and Nullable Items 236

xii Contentsxii Contents

Developer Tweaks 236

Saving Files from the Simulator 237

Tighter Logging 238

Wrap-up 238

 11 A Taste of Swift 239

Swift Versus Objective-C 239

Building iOS Apps in Swift 240

Optionals 243

Inferred Types 244

The Optional Enumeration 245

Unwrapping Optionals 246

Assigning Values to Non-optionals 248

Cocoa Touch Patterns 248

Hybrid Language Development 251

Calling Objective-C from Swift 252

Accessing Classes 252

Calling Swift from Objective-C 253

Preparing Swift for Objective-C 254

Class Descent 255

Building the Basics 256

Watching Progress 257

Learning Swift 259

Wrap-up 260

 Index 261

 Preface

 Developers can never have too many useful ideas to draw from, and this latest entry in the
bestselling Cookbook series is filled with delicious possibilities. The Gourmet iOS Developer’s
Cookbook offers a curated selection of programming recipes to inspire your everyday iOS
programming efforts. This volume serves up a new banquet of turnkey solutions for projects big
and small. It offers a fresh collection of versatile solutions that promise to add spice to
your code.

 The goal here is simple. Each chapter should enable you to walk away with fresh ideas and
master techniques off the beaten track. Whether you’re reading about new takes on old tech-
nologies or completely fresh APIs, here’s hoping you’ll say, “Hey, I didn’t know you could do
that!” or “That’s really cool.”

 The Gourmet iOS Developer’s Cookbook offers a deep dive into the nonobvious. Its chapters cover
techniques and technologies that skew away from the common and enable you to explore new
development cuisines. It’s not a book for those just learning how to cook apps. It offers tasty
recipes for the iOS enthusiast who wants to builds fragrant, delicious, and exotic routines.

 How This Book Is Organized

 This book offers practical iOS development recipes. Here’s a rundown of what you’ll find in this
book’s chapters:

 ■ Chapter 1 , “Media” —This chapter explores advances that have made their way into
AVFoundation over the past few years and shows how you can integrate these features
into your own applications. In this chapter, you’ll read about speech generation, barcode
recognition (which enables you to leverage the device camera to recognize a wide range
of barcode styles), and application of modern language features to AVFoundation movie
creation.

 ■ Chapter 2 , “Dynamic Typography” —iOS’s overhauled interface has shifted emphasis
away from buttons and bars to a sparser and more text-centered experience, where text
components have become even more critical parts of UI design. This chapter introduces
ways your text can update itself automatically to match user preferences and expectations
and discusses some critical lessons to be learned along the way.

 ■ Chapter 3 , “Text Kit” —Flexible text presentation is one of the most exciting and
developing areas of iOS. With every new iOS release, these APIs have grown, matured,
and expanded. Most UIKit interface classes now support rich text features. In the most
modern iOS releases, that support has expanded to a suite of layout classes that continue
to add mature type and frame settings to create flexible presentations.

 ■ Chapter 4 , “Attributed Strings and Document Containers” —Over the past few years,
attributed strings have grown enormously in power and potential, and they now provide
support for HTML and RTF rich text documents. Attributed strings provide seamless
polymorphism between text presentation and representation. Text design now better
migrates to the iOS screen and from iOS to other destinations. This chapter explores
those expanded possibilities.

xiv Preface

 ■ Chapter 5 , “Animation” —Of the technologies updated in the past couple years, iOS
animation is one of the ones that has been most enhanced by new APIs. New dynamic
styles enable your interfaces to integrate real-world physics for better and more exciting
presentations and interactions. This chapter begins the discussion of animation features,
introducing some of the profound updates that you’ll use in your apps.

 ■ Chapter 6 , “Dynamic Animators” —Dynamic animators are some of the most exciting
elements of iOS. Their physics-based view behaviors create lively and curious interfaces.
At the same time, they can be difficult to work with. In this chapter, you’ll learn how to
incorporate these classes into your iOS apps for the best possible results and the fewest
headaches.

 ■ Chapter 7 , “Presentations” —In the latest versions of iOS, user alerts are fully
re-imagined and popovers are now universally available. Special effects highlight
presentations to provide the greatest visual impact when you overlay content for modal
interaction. This chapter gets you up to speed on these modern techniques.

 ■ Chapter 8 , “Shape Magic” —Non-rectangular views enable your apps to expand
possibilities with fun and clever effects. For example, you might draw attention to a view
by animating a halo behind it. Or you might use shapes to better stack buttons together
for visual seamlessness. This chapter covers many advanced shape techniques you can
use to add pizzazz to your user interfaces.

 ■ Chapter 9 , “Adaptive Deployment” —As the iOS family continues to grow, apps
should automatically support all new displays, orientations, and screens. Although iOS
targets are not nearly as splintered as Android’s multitude, interfaces face numerous
configurations for universal deployment. A truly adaptive app gracefully responds with a
well-designed and engaging interface, ready for the user at any size. This chapter explores
the basics of these new technologies and the APIs you need to learn for moving your
apps forward.

 ■ Chapter 10 , “Development Helpers” —At times, it helps to have methods, functions,
and techniques to help you through the development process. Together, the solutions
in this chapter support you when building apps. They enable you to speed through your
development day to better arrive at the app you’re working on.

 ■ Chapter 11 , “A Taste of Swift” —Apple introduced the Swift programming language
at the June 2014 WWDC Keynote. Swift offers a performance-tuned type-safe modern
programming language. Today, many development fundamentals have coalesced,
although the language and toolset have continued to evolve. This chapter surveys the
base essentials of Swift development, providing a taste of this new technology. You won’t
learn the language in this chapter. Instead, you’ll explore concepts and development
issues that affect you as an iOS developer to get a sense of where this important
technology is going.

 About the Sample Code

 This book follows the trend I started in my iOS Developer’s Cookbook series. This book’s sample
code always starts off from a single main.m file, where you’ll find the heart of the application

xvPreface

powering the example. This is not how people normally develop iOS or Cocoa applications—
nor how they should be developing them. It’s hard to tell a story when readers must search
through many files and try to find out what is relevant and what is not. Offering a single
launching point concentrates the story, allowing access to an idea from a coherent starting
point.

 Getting the Sample Code

 You’ll find the source code for this book at https://github.com/erica/iOS-Gourmet-Cookbook
on the open-source GitHub hosting site. There, you’ll find a chapter-by-chapter collection of
source code that provides examples of the material covered in this book.

 Retrieve sample code either by using git tools to clone the repository or by clicking GitHub’s
Download button, which was at the right center of the page when I wrote this book. It enables
you to retrieve the entire repository as a ZIP archive or tarball.

 Contribute!

 Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the
Cocoa Touch libraries. Get involved. Pitch in by suggesting bug fixes and corrections and by
expanding the code that’s on offer. GitHub allows you to fork repositories and grow them with
your own tweaks and features and then share them back to the main repository. If you come
up with a new idea or approach, let me know.

 Getting GitHub

 GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public repos-
itories. It provides both free hosting for public projects and paid options for private projects.
With a custom web interface that includes wiki hosting, issue tracking, and an emphasis on
social networking among project developers, it’s a great place to find new code or collaborate
on existing libraries. Sign up for a free account at the GitHub website, where you can then copy
and modify this repository or create your own open-source iOS projects to share with others.

 Contacting the Author

 If you have any comments or questions about this book, please drop me an e-mail message at
 erica@ericasadun.com or stop by the GitHub repository and contact me there.

https://github.com/erica/iOS-Gourmet-Cookbook
http://github.com

 Acknowledgments

 My sincere thanks go out to Trina MacDonald, Chris Zahn, and Olivia Basegio, along with the
entire Addison-Wesley/Pearson production team—specifically Kristy Hart, Betsy Gratner, Kitty
Wilson, Nonie Ratcliff, and Chuti Prasertsith—and my technical editors Rich Wardwell, Mark
Granoff, and Mike Greiner.

 My gratitude extends to everyone who helped read through early drafts and provide feedback.
Specific thanks go out to Oliver Drobnik, Hamish Allan, Sebastian Celis, Maurice Sharp, Wess
Cope, Jeremy Tregunna, Ken Lindsay, Cameron Banga, John Grosvenor, Matthias Neeracher,
Chris Woodard, David Green, Alexander Kempgen, Chris Flesner, Remy “psy” Demarest, Ken
Ferry, Mike Ash, Kevin Ballard, Phil Holland, August Joki, and everyone else who contributed to
this effort. If I have omitted your name here, please accept my apologies.

 Special thanks also go to my husband and kids. You are wonderful.

 About the Author

 Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and web design, including the widely popular
 The Core iOS 6 Developer’s Cookbook , fourth edition. She has blogged at TUAW.com, O’Reilly’s
Mac Devcenter, Lifehacker, and Ars Technica. In addition to being the author of dozens of
iOS-native applications, Erica holds a Ph.D. in computer science from Georgia Tech’s Graphics,
Visualization and Usability Center. A geek, a programmer, and an author, she’s never met a
gadget she didn’t love. When not writing, she and her geek husband parent three geeks-in-
training, who regard their parents with restrained bemusement when they’re not busy rewiring
the house or plotting global domination.

 Editor’s Note: We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone or e-mail address. I will carefully review your comments and share them with the author
and editors who worked on the book.

 E-mail: trina.macdonald@pearson.com

 Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

 6
 Dynamic Animators

 Dynamic animators are some of the most exciting elements of iOS, even if they are among
the least practical. Their physics-based view behaviors create lively and curious interfaces. At
the same time, they can be fussy to work with. They don’t happily coexist with Auto Layout
because they directly update frame values and can rotate views. That said, dynamic animators
are tremendously fun. They help make your UIs pop and are well worth exploring to discover
what features they can provide your users.

 Physics-Based Behaviors

 The UIDynamicAnimator class emulates interface “physics.” It coalesces this functionality into
distinct behaviors like snapping, pushing, attachment, and collision. Here’s a quick overview of
the primitive UIKit dynamic behaviors:

 ■ Attachments — UIAttachmentBehavior instances tie a view either to a position or to
another view. It’s basically a virtual string with a set length, although you can make it
act more like a spring by updating damping and frequency properties.

 ■ Collisions — UICollisionBehavior instances allow views to collide with each other
or with path-based boundaries. In a collision, energy can be passed from one item to
another, and a view’s trajectory can be changed.

 ■ Gravity — UIGravityBehavior instances apply acceleration to views. You set where
“down” is and allow the gravity vector to act on velocities over time.

 ■ Pushes — UIPushBehavior instances add an impulse force to views, adding new energy to
the system.

 ■ Snaps — UISnapBehavior instances act as magnets, drawing views to attachment points.

 ■ Dynamic items — UIDynamicItemBehavior is the odd man out in this list. Instead of
acting as a force, dynamic items are objects affected by forces. These behaviors enable
your views to participate in the other behaviors listed here. You can attach, collide, push,

126 Chapter 6 Dynamic Animators

snap, and weigh down views by treating them as having physical properties.
The dynamic item behavior defines density, elasticity, friction, and resistance and
manages linear and angular item velocities.

 You can best explore how these items work by running Apple’s UIKit Dynamic Catalog sample
code (https://developer.apple.com/library/ios/samplecode/DynamicsCatalog). This sample code
illustrates available dynamic behaviors, presenting a wide range of effects you can create in
your own apps. Most importantly, it lets you see, interact with, and explore each behavior on
its own.

 Building Dynamics

 Once you’ve finished exploring Apple’s dynamics catalog, start building your own examples. To
begin, you need to create a dynamic animator, like this:

 self.animator = [[UIDynamicAnimator alloc]
 initWithReferenceView:self.view];

 This top-level class acts as an intermediary between your views and any dynamic behaviors
you add to the system. The animator provides context for the animations, establishing either a
reference view to create a coordinate system or a reference layout when working with collection
views.

 Typically, you use a view controller’s primary view as a reference, although you are not limited
to this. Use any view backdrop that’s large enough to contain the actors in your drama. And, as
you’ll see, you can extend animated views beyond the parent view, if needed.

 Dynamics Delegation

 Delegation enables you to know when an animator pauses, an important tool for
tracking the end of an animation sequence. An animator delegate declares the
 UIDynamicAnimatorDelegate protocol and conforms to that protocol by implementing the
optional dynamicAnimatorDidPause: and dynamicAnimatorWillResume: methods. Assign
a delegate like this:

 self.animator.delegate = self;

 When you implement a delegate, you know when animation sequences coalesce, which enables
you to clean up your simulation after the physics have come to a static resting point. Be aware
that some animations may never “stop,” especially those that do not employ energy-lowering
strategies like friction and resistance.

 Creating and Adding Behaviors

 Each dynamic animator can coordinate many behaviors at once. For example, you might want
to create a dynamic system where views “fall” in the direction of gravity but bounce off each

https://developer.apple.com/library/ios/samplecode/DynamicsCatalog

127Detecting Pauses

other and remain within the boundaries of the view controller’s view. Or you might create a
snapping behavior that involves collision detection, bumping some views out of the way.

 Add each behavior to the animator with the addBehavior: method. This method applies the
behavior to the current state. If the animator is active, the behavior will immediately start. The
following snippet creates a new snapping behavior and adds it to an animator:

 UISnapBehavior *snapBehavior = [[UISnapBehavior alloc]
 initWithItem:testView snapToPoint:point];
 [self.animator addBehavior:snapBehavior];

 The standard behavior-creation pattern is to allocate an instance and initialize it with one or
more items. This example uses a single item (testView) and sets a single parameter, a snap-to
point. When this is added to the animator, the view moves until its center co-aligns with the
snap point.

 Each dynamic behavior is distinct in terms of the details associated with the class’s API. Gravity
behavior initializers accept an array of child items, although you can add and remove items
at later times. Attachment behaviors include a suite of initializers that supply anchor points,
dynamic items, and offsets away from the anchors. Each behavior class is a new adventure,
and it’s well worth your time to read through their APIs as they are all quite different from
each other.

 Detecting Pauses

 Behavior lifetimes vary. After adding a behavior to an animator, you leave it in place for
varying degrees of time: until some application state has changed, until the animation has
come to a stopping point (or has reasonably coalesced to the point where the user perceives it
as having stopped), or until the application ends. The lifetime you select depends on the kind
of behavior you define. For example, a collision behavior that keeps views inside a parent view
controller may persist indefinitely. You might remove a snap behavior as soon as the view has
moved to the newly requested position or a push behavior as soon as the impulse has finished.

 The problem is, however, that the built-in dynamic animator can take a long time to detect
that the views it manages have stopped moving. Consider the following list of times and
frames for a snapped view:

 [0.03] NSRect: {{121.55639, 217.55638}, {66.88723, 66.88723}}
 [0.07] NSRect: {{91.418655, 206.41866}, {81.162689, 81.162689}}
 [0.10] NSRect: {{60.333874, 201.33388}, {83.332253, 83.332253}}
 [0.13] NSRect: {{44.293236, 204.29323}, {79.413528, 79.413528}}
 [0.17] NSRect: {{42.394054, 213.39406}, {68.211891, 68.211891}}
 [0.20] NSRect: {{44.46402, 221.46402}, {60.071957, 60.071957}}
 [0.23] NSRect: {{44.94722, 222.94722}, {61.105556, 61.105556}}
 [0.27] NSRect: {{47.207447, 223.70744}, {60.58511, 60.58511}}
 [0.30] NSRect: {{49.458027, 223.45802}, {60.083942, 60.083942}}
 [0.33] NSRect: {{50.481998, 222.48199}, {60.035999, 60.035999}}

128 Chapter 6 Dynamic Animators

 [0.37] NSRect: {{50.987999, 221.98801}, {60.023998, 60.023998}}
 [0.40] NSRect: {{51, 221.5}, {60, 60}}
 [0.43] NSRect: {{50.5, 221.5}, {60, 60}}
 [0.47] NSRect: {{50, 221.5}, {60, 60}}
 [0.50] NSRect: {{50, 222}, {60, 60}}
 [0.53] NSRect: {{50, 222}, {60, 60}}
 [0.57] NSRect: {{50, 222}, {60, 60}}
 ...[snipped 0.60 to 1.10]...
 [1.13] NSRect: {{50, 222}, {60, 60}}
 [1.17] NSRect: {{50, 222}, {60, 60}}
 Elapsed time: 1.167326

 This view reaches its final position after half a second has passed. The dynamic animator does
not pause until 1.17 seconds—more than double the required time. In user experience terms,
those extra 0.67 seconds can feel like forever.

 The reason for the delay becomes clear when you sneak down into the animator and look up
the view’s linear and angular velocity:

 [0.60] NSRect: {{50, 222}, {60, 60}}
 Linear Velocity: NSPoint: {1.8314272, 1.0867469}
 Angular Velocity: 0.000001

 Those values do not drop to 0 until that extra time has passed:

 [1.17] NSRect: {{50, 222}, {60, 60}}
 Linear Velocity: NSPoint: {0, 0}
 Angular Velocity: 0.000000

 In a practical sense, the velocities are meaningless once the view frame stops changing. When
you know in advance that no outside forces will impel a view to start moving again after it’s
reached a resting point, leverage this information. Trim down your waiting time by tracking a
view’s frame.

 Listing 6-1 defines a watcher class that monitors views until they stop changing. After a view
has remained fixed for a certain period of time (here for at least 0.1 seconds), this class contacts
a delegate and lets it know that the view has stopped moving. That callback enables you to
update your dynamic animator and remove the behavior so the animator can more quickly
come to a pause.

 When run with the same snap animation as the previous example, the new watcher detects the
final frame at 0.50. By 0.60, the delegate knows to stop the animation, and the entire sequence
stops nearly 0.55 seconds earlier:

 [0.47] NSRect: {{50, 221.5}, {60, 60}}
 [0.50] NSRect: {{50, 222}, {60, 60}}
 [0.53] NSRect: {{50, 222}, {60, 60}}
 [0.57] NSRect: {{50, 222}, {60, 60}}
 [0.60] NSRect: {{50, 222}, {60, 60}}
 Elapsed time: 0.617352

129Detecting Pauses

 Use this kind of short-cutting approach to re-enable GUI items that might otherwise be inac-
cessible to users once you know that the animation has come to a usable end point. While
this example implements a pixel-level test, you might vary this approach to detect low angular
velocities and other “close enough” tests to help end the animation effects within a reasonable
amount of time.

 Listing 6-1 Watching Views

 // Info stores the most recent frame, count, delegate
 @interface WatchedViewInfo : NSObject
 @property (nonatomic) CGRect frame;
 @property (nonatomic) NSUInteger count;
 @property (nonatomic) CGFloat pointLaxity;
 @property (nonatomic) id <ViewWatcherDelegate> delegate;
 @end

 @implementation WatchedViewInfo
 @end

 // Watcher class
 @implementation ViewWatcher
 {
 NSMutableDictionary *dict;
 }

 - (instancetype) init
 {
 if (!(self = [super init])) return self;
 dict = [NSMutableDictionary dictionary];
 _pointLaxity = 10;
 return self;
 }

 // Determine whether two frames are "close enough"
 BOOL CompareFrames(CGRect frame1, CGRect frame2, CGFloat laxity)
 {
 if (CGRectEqualToRect(frame1, frame2)) return YES;
 CGRect intersection = CGRectIntersection(frame1, frame2);
 CGFloat testArea =
 intersection.size.width * intersection.size.height;
 CGFloat area1 = frame1.size.width * frame1.size.height;
 CGFloat area2 = frame2.size.width * frame2.size.height;
 return ((fabs(testArea - area1) < laxity) &&
 (fabs(testArea - area2) < laxity));
 }

130 Chapter 6 Dynamic Animators

 // See whether the view has stopped moving
 - (void) checkInOnView: (NSTimer *) timer
 {
 int kThreshold = 3; // must remain for 0.3 secs

 // Fetch the view and the info
 UIView *view = (UIView *) timer.userInfo;
 NSNumber *key = @((int)view);
 WatchedViewInfo *watchedViewInfo = dict[key];

 // Matching frame? If so update count
 BOOL steadyFrame = CompareFrames(watchedViewInfo.frame,
 view.frame, _pointLaxity);
 if (steadyFrame) watchedViewInfo.count++;

 // Threshold met
 if (steadyFrame && (watchedViewInfo.count > kThreshold))
 {
 [timer invalidate];
 [dict removeObjectForKey:key];
 [watchedViewInfo.delegate viewDidPause:view];
 return;
 }

 if (steadyFrame) return;

 // Replace frame with new frame
 watchedViewInfo.frame = view.frame;
 watchedViewInfo.count = 0;
 }

 - (void) startWatchingView: (UIView *) view
 withDelegate: (id <ViewWatcherDelegate>) delegate
 {
 NSNumber *key = @((int)view);
 WatchedViewInfo *watchedViewInfo = [[WatchedViewInfo alloc] init];
 watchedViewInfo.frame = view.frame;
 watchedViewInfo.count = 1;
 watchedViewInfo.delegate = delegate;
 dict[key] = watchedViewInfo;

 [NSTimer scheduledTimerWithTimeInterval:0.03 target:self
 selector:@selector(checkInOnView:) userInfo:view repeats:YES];
 }
 @end

131Detecting Pauses

 Creating a Frame-Watching Dynamic Behavior

 While the solution in Listing 6-1 provides general view oversight, you can implement the frame
checker in a much more intriguing form: as the custom dynamic behavior you see in Listing
 6-2 . This approach that adapts Listing 6-1 to a new form requires just a couple adjustments to
work as a behavior:

 ■ The behavior from the checkInOnView: method is now implemented in the behavior’s
 action property. This block is called directly by the animator, using its own timing
system, so the threshold is slightly higher in this implementation than in Listing 6-1 .

 ■ Instead of calling back to a delegate, this approach unloads both the watcher and the
client behavior directly in the action block. This may be problematic if the behavior
controls additional items, but for snap behaviors and their single items, it is a pretty safe
approach.

 To enable the watcher, you must add it to the animator as a separate behavior. Here’s how you
allocate it and initialize it with a client view and an affected behavior:

 UISnapBehavior *snapBehavior = [[UISnapBehavior alloc]
 initWithItem:testView snapToPoint:p];
 [self.animator addBehavior:snapBehavior];
 WatcherBehavior *watcher = [[WatcherBehavior alloc]
 initWithView:testView behavior:snapBehavior];
 [self.animator addBehavior:watcher];

 Once it is added, it works just like Listing 6-1 , iteratively checking the view’s frame to wait for a
steady state.

 Listing 6-2 Watching Views with a Dynamic Behavior

 // Create custom frame watcher
 @interface WatcherBehavior : UIDynamicBehavior
 - (instancetype) initWithView: (UIView *) view
 behavior: (UIDynamicBehavior *) behavior;
 @property (nonatomic) CGFloat pointLaxity; // defaults to 10
 @end

 // Store the view, its most recent frame, and a count
 @interface WatcherBehavior ()
 @property (nonatomic) UIView *view;
 @property (nonatomic) CGRect mostRecentFrame;
 @property (nonatomic) NSInteger count;
 @property (nonatomic) UIDynamicBehavior *customBehavior;
 @end

132 Chapter 6 Dynamic Animators

 @implementation WatcherBehavior
 - (instancetype) initWithView: (UIView *) view
 behavior: (UIDynamicBehavior *) behavior
 {
 if (!(self = [super init])) return self;

 // Initialize instance
 _view = view;
 _mostRecentFrame = _view.frame;
 _count = 0;
 _pointLaxity = 10;
 _customBehavior = behavior;

 // Create custom action for the behavior
 __weak typeof(self) weakSelf = self;
 self.action = ^{
 __strong typeof(self) strongSelf = weakSelf;
 UIView *view = strongSelf.view;

 CGRect currentFrame = view.frame;
 CGRect recentFrame = strongSelf.mostRecentFrame;
 BOOL steadyFrame = CompareFrames(currentFrame,
 recentFrame, strongSelf.pointLaxity);
 if (steadyFrame) strongSelf.count++;

 NSInteger kThreshold = 5;
 if (steadyFrame && (strongSelf.count > kThreshold))
 {
 [strongSelf.dynamicAnimator
 removeBehavior:strongSelf.customBehavior];
 [strongSelf.dynamicAnimator removeBehavior:strongSelf];
 return;
 }

 if (!steadyFrame)
 {
 strongSelf.mostRecentFrame = currentFrame;
 strongSelf.count = 0;
 }
 };

 return self;
 }
 @end

133Implementing Snap Zones

 Implementing Snap Zones

 One of my favorite dynamic animator tricks involves creating snap zones—areas of your inter-
face that pull in dragged items once they overlap a particular region. This approach allows you
to collect items into well-managed zones and offer a pleasing “snap-into-place” animation. In
the general form shown in Listing 6-3 , there’s no further test beyond whether a dragged view
has strayed into a zone. However, you might want to expand the approach to limit blue items
to blue zones or red items to red zones, and so forth.

 Listing 6-3 assumes that users will have access to multiple zones and even that a view might
move from one zone directly to another. It uses a tagging scheme to keep track of this potential
reparenting. A free view has no current parent and can move freely about. When a free view
overlaps a snap zone, however, it suspends dragging by disabling the view’s gesture recognizer
and adds a snap-to-parent behavior. The view slides into place into its new parent. Once it
arrives, as the dynamic animator pauses, the recognizer is re-enabled.

 Allowing a view to escape from its new parent’s bounds is the tricky bit—and the motivating
reason for the view tagging. You do not want a view to recapture its child unless the drag-
ging gesture has ended, which is why this method keeps track of the gesture state. With new
parents, however, the snap behavior is added (and the gesture is suspended) as soon as a view
strays over the line. Balancing the escapes and the captures ensures that the user experience is
snappy and responsive and does not thwart the user’s desires to remove a view from a parent.

 Listing 6-3 Handling Multiple Snap Zones

 - (void) draggableViewDidMove: (NSNotification *) note
 {
 // Check for view participation
 UIView *draggedView = note.object;
 UIView *nca = [draggedView nearestCommonAncestorWithView:
 _animator.referenceView];
 if (!nca) return;

 // Retrieve state
 UIGestureRecognizer *recognizer = (UIGestureRecognizer *)
 draggedView.gestureRecognizers.lastObject;
 UIGestureRecognizerState state = [recognizer state];

 // View frame and current attachment
 CGRect draggedFrame = draggedView.frame;
 BOOL free = draggedView.tag == 0;

 for (UIView *dropZone in _dropZones)
 {
 // Make sure all drop zones are views

134 Chapter 6 Dynamic Animators

 if (![dropZone isKindOfClass:[UIView class]])
 continue;

 // Overlap?
 CGRect dropFrame = dropZone.frame;
 BOOL overlap = CGRectIntersectsRect(draggedFrame, dropFrame);

 // Free moving
 if (!overlap && free)
 {
 continue;
 }

 // Newly captured
 if (overlap && free)
 {
 if (suspendedRecognizer)
 {
 NSLog(@"Error: attempting to suspend second recognizer");
 break;
 }

 // New parent.
 // CAPTURED is an integer offset for tagging
 suspendedRecognizer = recognizer;
 suspendedRecognizer.enabled = NO; // stop!
 draggedView.tag = CAPTURED + dropZone.tag; // mark as captured
 UISnapBehavior *behavior = [[UISnapBehavior alloc]
 initWithItem:draggedView
 snapToPoint:RectGetCenter(dropFrame)];
 [_animator addBehavior:behavior];
 break;
 }

 // Is this the current parent drop zone?
 BOOL isParent = (dropZone.tag + CAPTURED == draggedView.tag);

 // Current parent
 if (overlap && isParent)
 {
 switch (state)
 {
 case UIGestureRecognizerStateEnded:
 {
 // Recapture
 UISnapBehavior *behavior = [[UISnapBehavior alloc]
 initWithItem:draggedView

135Leveraging Real-World Physics

 snapToPoint:RectGetCenter(dropFrame)];
 [_animator addBehavior:behavior];
 break;
 }
 default:
 {
 // Still captured but no op
 break;
 }
 }
 break;
 }

 // New parent
 if (overlap)
 {
 suspendedRecognizer = recognizer;
 suspendedRecognizer.enabled = NO; // stop!
 draggedView.tag = CAPTURED + dropZone.tag;
 UISnapBehavior *behavior = [[UISnapBehavior alloc]
 initWithItem:draggedView
 snapToPoint:RectGetCenter(dropFrame)];
 [_animator addBehavior:behavior];
 break;
 }
 }
 }

 Leveraging Real-World Physics

 The built-in gravity dynamic animator consists of a downward force. You can adjust the force’s
vector to point gravity in other directions, but it’s a static system. You can, however, integrate
the gravity behavior with Core Motion to produce a much more satisfying effect. Apple’s Core
Motion framework enables your apps to receive motion-based data from device hardware,
including the onboard accelerometer and gyroscope. The framework converts motion data into
a form of input that your device can use to coordinate application changes with the way your
user’s device is held and moved over time.

 Listing 6-4 builds a motion manager singleton. It uses Core Motion to listen for accelerom-
eter updates, and when it receives them, it calculates a working vector and posts notifications
with that information. You may be curious about that extra 0.5 added to the y component; it
produces a more natural vector for holding a device in your hand.

136 Chapter 6 Dynamic Animators

 Listing 6-4 Broadcasting Motion Updates

 #define VALUE(struct) ({ __typeof__(struct) __struct = struct; \
 [NSValue valueWithBytes:&__struct \
 objCType:@encode(__typeof__(__struct))]; })

 NSString *const MotionManagerUpdate = @"MotionManagerUpdate";
 NSString *const MotionVectorKey = @"MotionVectorKey";

 static MotionManager *sharedInstance = nil;

 @interface MotionManager ()
 @property (nonatomic, strong) CMMotionManager *motionManager;
 @end

 @implementation MotionManager
 + (instancetype) sharedInstance
 {
 if (!sharedInstance)
 sharedInstance = [[self alloc] init];

 return sharedInstance;
 }

 - (void) shutDownMotionManager
 {
 NSLog(@"Shutting down motion manager");
 [_motionManager stopAccelerometerUpdates];
 _motionManager = nil;
 }

 - (void) establishMotionManager
 {
 if (_motionManager)
 [self shutDownMotionManager];

 // Establish the motion manager
 NSLog(@"Establishing motion manager");
 _motionManager = [[CMMotionManager alloc] init];
 }

 - (void) startMotionUpdates
 {
 if (!_motionManager)
 [self establishMotionManager];

137Leveraging Real-World Physics

 if (_motionManager.accelerometerAvailable)
 [_motionManager
 startAccelerometerUpdatesToQueue:[[NSOperationQueue alloc] init]
 withHandler:^(CMAccelerometerData *data, NSError *error)
 {
 CGVector vector = CGVectorMake(data.acceleration.x, -
 (data.acceleration.y + 0.5));
 NSDictionary *dict = @{MotionVectorKey:VALUE(vector)};
 [[NSNotificationCenter defaultCenter]
 postNotificationName:MotionManagerUpdate
 object:self userInfo:dict];
 }];

 }
 @end

 Connecting a Gravity Behavior to Device Acceleration

 On the other end of things, create an observer for motion updates. The following snippet
builds a gravity behavior and updates its gravityDirection property whenever the physical
device moves:

 // Build device gravity behavior
 _deviceGravityBehavior = [[UIGravityBehavior alloc] initWithItems:@[]];

 // Add observer
 __weak typeof(self) weakSelf = self;
 id observer = [[NSNotificationCenter defaultCenter]
 addObserverForName:MotionManagerUpdate object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 __strong typeof(self) strongSelf = weakSelf;

 // Retrieve vector
 NSDictionary *dict = note.userInfo;
 NSValue *value = dict[MotionVectorKey];
 CGVector vector;
 [value getValue:&vector];

 // Set gravity direction to that vector
 strongSelf.deviceGravityBehavior.gravityDirection = vector;
 }];
 [_observers addObject:observer];

 As the gravityDirection property updates, any child items (none are yet added in this code)
respond to the new force, moving in the appropriate direction.

138 Chapter 6 Dynamic Animators

 Creating Boundaries

 One of the biggest annoyances about gravity is that it never stops. When you apply a gravity
behavior to a view, it will accelerate off the screen and keep going on essentially forever.
Bye-bye, view. To avoid this, add a boundary. The UICollisionBehavior has a built-in solu-
tion for enclosures. Enable its translatesReferenceBoundsIntoBoundary property, and it
sets the animator’s reference view as a default boundary for its items:

 _boundaryBehavior = [[UICollisionBehavior alloc] initWithItems:@[]];
 _boundaryBehavior.translatesReferenceBoundsIntoBoundary = YES;

 When building behaviors like this, it’s important to spot-check your key steps. Remember that
animators own behaviors, and behaviors own items, which are typically views. Don’t forget
to add items to each behavior that affects them. For this example of device-based gravity, add
views to both the gravity behavior and the boundary behavior. Also, make sure to add the
behaviors to the animator. Always make sure your views fall fully within the collision boundar-
ies before adding a behavior to the animator. Views that cross the boundary or lie outside the
boundary will not respond properly to the “keep items within the reference bounds” rule.

 Collision behaviors also enable views to bounce off each other. By default, any view added to a
collision behavior will participate not only in view-to-boundary collisions but also in view-to-
view collisions. If for any reason you don’t want this to happen, you can update the behavior’s
 collisionMode property to exclude item-to-item collisions:

 _boundaryBehavior = [[UICollisionBehavior alloc] initWithItems:@[]];
 _boundaryBehavior.translatesReferenceBoundsIntoBoundary = YES;
 _boundaryBehavior.collisionMode = UICollisionBehaviorModeBoundaries;

 Enhancing View Dynamics

 Dynamic item behaviors customize view traits—making them springier or duller, heavier or
lighter, smoother or stickier, and so forth. Unlike the other built-in behaviors, dynamic item
behaviors focus less on external forces and more on individual view properties. For example,
say you have views that you want to add bounce to. Create a dynamic item behavior and adjust
its elasticity property:

 _elasticityBehavior = [[UIDynamicItemBehavior alloc] initWithItems:items];
 _elasticityBehavior.elasticity = 0.8; // Higher values are more elastic
 [_animator addBehavior:_elasticityBehavior];

 Dynamic item properties include the following:

 ■ Rotation (allowsRotation) —This property allows or disallows view rotation as the view
participates in the dynamic system. When it is enabled (the default), views may rotate as
they collide with other items.

 ■ Angular resistance (angularResistance) —Angular resistance creates a damping effect
on rotation. As the value of this property rises from 0 to 1, views stop tumbling more
quickly.

139Custom Behaviors

 ■ Resistance (resistance) —Also ranging from 0 to 1, the linear resistance property is
analogous to angular resistance. Instead of damping rotation, it limits linear velocity. You
can think of this as a natural viscosity in the view’s “atmosphere,” where 0 is close to
operating in a vacuum, and 1 is like moving through thick syrup.

 ■ Density (density) —An item’s density property controls its virtual mass. Any dynamic
behavior that uses mass as a factor (such as collisions and friction) responds to the
current value of this property, which defaults to 1. Because items have density, a view
that’s twice the size of another along each dimension will contribute four times the
effective mass when set to the same density or equal mass when set to a quarter of the
density.

 ■ Elasticity (elasticity) —Ranging from 0 to 1, this property establishes how elastic a
view’s collisions will be. At 0, collisions are lifeless, with no bounce at all. A setting of 1
creates completely elastic collisions with wildly bouncy items.

 ■ Friction (friction) —The friction property creates linear resistance, producing a kind
of “stickiness” for when items slide across each other. As the friction setting rises from
0 (friction-free) to 1 (the strongest possible friction), views tend to disperse energy on
contact and connect more strongly to each other and to boundaries.

 Custom Behaviors

 Apple provides a library of default behaviors that includes forces (attachments, collisions,
gravity, pushes, and snaps) and “dynamic items” that describe how a physics body reacts to
forces. You can also create your own behaviors that operate with dynamic animators. This
section discusses how you might do this in your own projects.

 You choose from two approaches when creating custom dynamic behaviors. First, you can
hook your changes onto an existing behavior and transform its updates to some new style.
That’s the approach Apple uses in the Dynamic Catalog example that converts an attachment
point animator to a boundary animation. It transforms an elastic attachment to view morph-
ing. Second, you can create a new behavior and establish your own rules for coalescing its
results over time. This approach enables you create any kind of behavior you can imagine,
as long as you express it with regard to the animator’s timeline. Both have advantages and
drawbacks.

 Creating Custom Dynamic Items

 Before jumping into custom behaviors, you need to understand dynamic items more fully.
Dynamic items are the focal point of the dynamic animation process. Until this point, I have
used views as dynamic items—after all, they provide the bounds , center , and transform prop-
erties required to act in this role—but dynamic items are not necessarily views. They are merely
objects that conform to the UIDynamicItem protocol. This protocol ensures that these proper-
ties are available from conforming objects. Because of this abstraction, you can dynamically
animate custom objects as easily as you animate views.

140 Chapter 6 Dynamic Animators

 Consider the following class. It consists of nothing more than three properties, ensuring that it
conforms to the UIDynamicItem protocol:

 @interface CustomDynamicItem : NSObject <UIDynamicItem>
 @property (nonatomic) CGRect bounds;
 @property (nonatomic) CGPoint center;
 @property (nonatomic) CGAffineTransform transform;
 @end
 @implementation CustomDynamicItem
 @end

 After adding this class to your project, you can instantiate and set properties however you like.
For example, you might use the following lines of code to create a new custom item:

 item = [[CustomDynamicItem alloc] init];
 item.bounds = CGRectMake(0, 0, 100, 100);
 item.center = CGPointMake(50, 50);
 item.transform = CGAffineTransformIdentity;

 Once you have established a dynamic item, you may pass it to a behavior and add that behav-
ior to an animator, just as you would with a view:

 animator = [[UIDynamicAnimator alloc] init];
 UIPushBehavior *push = [[UIPushBehavior alloc]
 initWithItems:@[item] mode:UIPushBehaviorModeContinuous];
 push.angle = M_PI_4;
 push.magnitude = 1.0;
 [animator addBehavior:push];
 push.active = YES;

 What happens next, however, may surprise you. If you monitor the item, you’ll find that its
center property updates, but its bounds and transform remain untouched:

 2014-12-01 13:33:08.177 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (86 86), Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}
 2014-12-01 13:33:09.176 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (188 188) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}
 2014-12-01 13:33:10.175 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (351 351) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}
 2014-12-01 13:33:11.176 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (568 568) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}

 This curious state of affair happens because the dynamic animator remains completely agnostic
as to the kind of underlying object it serves. This abstract CustomDynamicItem class provides
no links between its center property and its bounds property the way a view would. If you

141Custom Behaviors

want these items to update synchronously, you must add corresponding methods. For example,
you might implement a solution like this:

 - (void) setCenter:(CGPoint)center
 {
 _center = center;
 _bounds = RectAroundCenter(_center, _bounds.size);
 }

 - (void) setBounds:(CGRect)bounds
 {
 _bounds = bounds;
 _center = RectGetCenter(bounds);
 }

 I’m not going to present a full implementation that allows the item to respond to transform
changes—for two reasons. First, in real life, you almost never want to create custom items in
this fashion. Second, when you actually do need this, you’ll be far better off using an actual
view as an underlying model. Allowing a UIView instance to do the math for you will save you
a lot of grief, especially since you’re trying to emulate a view in the first place.

 Note

 I am unaware of any workaround that will allow you to create non-rectangular dynamic items at
this time.

 Subverting Dynamic Behaviors

 As mentioned earlier, Apple created a Dynamic Catalog example that redirects the results of an
attachment behavior to create a bounds animation. It accomplishes this by building an abstract
dynamic item class. This class redirects all changes applied to the item’s center to a client view’s
width and height. This means that while the physics engine thinks it’s bouncing around a view
in space, the actual expressions of those dynamics are producing bounds shifts. The following
code performs this mapping:

 // Map bounds to center
 - (CGPoint)center
 {
 return CGPointMake(_item.bounds.size.width, _item.bounds.size.height);
 }

 // Map center to bounds
 - (void)setCenter:(CGPoint)center
 {
 _item.bounds = CGRectMake(0, 0, center.x, center.y);
 }

142 Chapter 6 Dynamic Animators

 I dislike this approach for the following reasons:

 ■ The animator isn’t animating the view’s center at the point you think it is. You must
establish an anchor point within the view’s own coordinate system so the center values
make any sense to use.

 ■ All you’re getting back from this exercise is a damped sinusoid, as in Listing 5-2 . Just use
a damped sinusoid to begin with, and you’ll avoid any unintentional side effects.

 ■ How often are you just sitting around in your development job, thinking, “Hey, I’ll
just take the output of a physics emulation system and map its results into another
dimension so I can create an overly complex sample application that has no general
reuse value?” Right, me either.

 Better Custom Dynamic Behaviors

 As you read this section, remember that better is a relative term. The biggest problem when it
comes to custom dynamic behaviors is that Apple has not released a public API that keeps a
completely custom item animating until it reaches a coalesced state. This means that while
 Listing 6-5 offers a more satisfying solution than Apple’s solution, it’s still a hack.

 The main reason for this is that while built-in dynamic behaviors can tell the animator “Hey,
I’m done now” by using private APIs that allow the animator to stop, you and I cannot tickle
the animator to make sure it keeps on ticking. Enter this class’s “clock mandate.” It’s a gravity
behavior added to the ResizableDynamicBehavior as a child.

 The gravity behavior works on an invisible view, which is itself added to the animated view so
that it belongs to the right hierarchy. (This is an important step so you don’t generate excep-
tions.) Once it is added, the gravity behavior works forever. When you’re ready for the dynamic
behavior to end, simply remove it from its parent. Without this extra trick, the animation ends
on its own about a half second after you start it.

 I developed the damped equation used in the action block after playing with graphing. As
 Figure 6-1 shows, I was looking for a curve that ended after about one and a half cycles. You
cannot depend on the animator’s elapsed time, which doesn’t reset between behaviors. To
power my curve, I made sure to create a clock for each behavior and use that in the action
block.

 Figure 6-1 A fast-decaying sin curve provides a nice match to the view animation.

143Custom Behaviors

 A few final notes on this one:

 ■ You need to attach some sort of built-in animator like gravity, or your action property
will not be called. Gravity offers the simple advantage of never ending.

 ■ You must establish the bounds as is done here, or your view immediately collapses to a
0 size.

 ■ The identity transform in the last step isn’t strictly necessary, but I wanted to ensure
that I cleaned up after myself as carefully as possible.

 ■ To slow down the effect, reduce the number of degrees traveled per second. In this case,
it goes 2 * pi every second.

 ■ To increase or decrease the animation magnitude, adjust the multiplier. Here it is 1 + 0.5
* the scale. The 1 is the identity scale, and you should keep it as is. Tweak the 0.5 value
up to expand the scaling or down to diminish it.

 ■ You can bring the animation to coalescence faster or slower by adjusting the final
multiplier in the exponentiation. Here it is set to 2.0, which produces fairly rapid
damping. Higher values produce stronger damping; lower values allow the animation to
continue longer.

 Listing 6-5 Extending a Custom Behavior’s Lifetime

 @interface ResizableDynamicBehavior ()
 @property (nonatomic, strong) UIView *view;
 @property (nonatomic) NSDate *startingTime;
 @property (nonatomic) CGRect frame;
 @property (nonatomic) UIGravityBehavior *clockMandate;
 @property (nonatomic) UIView *fakeView;
 @end

 @implementation ResizableDynamicBehavior
 - (instancetype) initWithView: (UIView *) view
 {
 if (!view) return nil;
 if (!(self = [super init])) return self;
 _view = view;
 _frame = view.frame;

 // Establish a falling view to keep the timer going
 _fakeView = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 10, 10)];
 [view addSubview:_fakeView];
 _clockMandate = [[UIGravityBehavior alloc] initWithItems:@[_fakeView]];
 [self addChildBehavior:_clockMandate];

 // The action block is called at every animation cycle
 __weak typeof(self) weakSelf = self;

144 Chapter 6 Dynamic Animators

 self.action = ^{
 __strong typeof(self) strongSelf = weakSelf;

 // Start or update the clock
 if (!strongSelf.startingTime)
 strongSelf.startingTime = [NSDate date];
 CGFloat time = [[NSDate date]
 timeIntervalSinceDate:strongSelf.startingTime];

 // Calculate the current change
 CGFloat scale = 1 + 0.5 * sin(time * M_PI * 2) *
 exp(-1.0 * time * 2.0);

 // Apply the bounds and transform
 CGAffineTransform transform =
 CGAffineTransformMakeScale(scale, scale);
 strongSelf.view.bounds = (CGRect){.size = strongSelf.frame.size};
 strongSelf.view.transform = transform;
 [strongSelf.dynamicAnimator
 updateItemUsingCurrentState:strongSelf.view];

 // Stop after 3 * Pi
 if (time > 1.5)
 {
 [strongSelf removeChildBehavior:strongSelf.clockMandate];
 [strongSelf.fakeView removeFromSuperview];
 strongSelf.view.transform = CGAffineTransformIdentity;
 }
 };

 return self;
 }
 @end

 Custom Secondary Behaviors

 You do far less work when your custom behavior acts side-by-side with a known system-
supplied one. You don’t have to establish an overall animation end point, the way Listing 6-5
does. Consider Listing 6-6 , which creates a behavior that modifies a view transformation over
time. This class is duration agnostic. Its only customizable feature is an acceleration property,
which establishes how fast the changes accelerate to an end point.

 With custom behaviors, it’s really important that you not tie yourself to a set timeline. While
a system-supplied snap behavior might end after 80 updates or so, you should never rely on
knowing that information in advance. In contrast, with keyframes, you are free to interpolate
a function over time. With dynamics, you establish a system that coalesces , reaching a natural
stopping point on its own.

145Custom Behaviors

 For example, Listing 6-6 uses velocity and acceleration to drive its changes from 0% to 100%,
applying an easing function to that transit to produce a smooth animated result. At no point
does the behavior reference elapsed time. Instead, all updates are driven by the dynamic anima-
tion’s heartbeat and applied whenever the action method is called.

 Figure 6-2 shows the animation in action, with the two behaviors acting in parallel. As the
views draw near to their snap points, they apply the requested transforms to finish with a coor-
dinated pile of views.

 Figure 6-2 In this animation, a snap behavior draws the views together, and a transformation
behavior angles each item to form a tight nest.

 Listing 6-6 Building a Transform-Updating Behavior

 - (instancetype) initWithItem: (id <UIDynamicItem>) item
 transform: (CGAffineTransform) transform;
 {
 if (!(self = [super init])) return self;

 // Store the passed information
 _item = item;
 _originalTransform = item.transform;
 _targetTransform = transform;

 // Initialize velocity and acceleration
 _velocity = 0;
 _acceleration = 0.0025;

 // The weak and strong workarounds used here avoid retain cycles
 // when using blocks.
 ESTABLISH_WEAK_SELF;
 self.action = ^(){
 ESTABLISH_STRONG_SELF;

146 Chapter 6 Dynamic Animators

 // Pull out the original and destination transforms
 CGAffineTransform t1 = strongSelf.originalTransform;
 CGAffineTransform t2 = strongSelf.targetTransform;

 // Original
 CGFloat xScale1 = sqrt(t1.a * t1.a + t1.c * t1.c);
 CGFloat yScale1 = sqrt(t1.b * t1.b + t1.d * t1.d);
 CGFloat rotation1 = atan2f(t1.b, t1.a);

 // Target
 CGFloat xScale2 = sqrt(t2.a * t2.a + t2.c * t2.c);
 CGFloat yScale2 = sqrt(t2.b * t2.b + t2.d * t2.d);
 CGFloat rotation2 = atan2f(t2.b, t2.a);

 // Calculate the animation acceleration progress
 strongSelf.velocity = velocity + strongSelf.acceleration;
 strongSelf.percent = strongSelf.percent + strongSelf.velocity;
 CGFloat percent = MIN(1.0, MAX(strongSelf.percent, 0.0));
 percent = EaseOut(percent, 3);

 // Calculated items
 CGFloat targetTx = Tween(t1.tx, t2.tx, percent);
 CGFloat targetTy = Tween(t1.ty, t2.ty, percent);
 CGFloat targetXScale = Tween(xScale1, xScale2, percent);
 CGFloat targetYScale = Tween(yScale1, yScale2, percent);
 CGFloat targetRotation = Tween(rotation1, rotation2, percent);

 // Create transforms
 CGAffineTransform scaleTransform =
 CGAffineTransformMakeScale(targetXScale, targetYScale);
 CGAffineTransform rotateTransform =
 CGAffineTransformMakeRotation(targetRotation);
 CGAffineTransform translateTransform =
 CGAffineTransformMakeTranslation(targetTx, targetTy);

 // Combine and apply transforms
 CGAffineTransform t = CGAffineTransformIdentity;
 t = CGAffineTransformConcat(t, rotateTransform);
 t = CGAffineTransformConcat(t, scaleTransform);
 t = CGAffineTransformConcat(t, translateTransform);
 strongSelf.item.transform = t;
 };

 return self;
 }

147Collection Views and Dynamic Animators

 Collection Views and Dynamic Animators

 Leveraging the power of dynamic animators in collection views is possible courtesy of a few
UIKit extensions. Dynamic animators add liveliness to your presentations during scrolling and
when views enter and leave the system. The dynamic behavior set is identical to that used for
normal view animation, but the collection view approach requires a bit more overhead and
bookkeeping as views may keep appearing and disappearing during scrolls.

 The core of the dynamic animator system is the UIDynamicItem protocol. The
 UICollectionViewLayoutAttributes class, which represents items in the collection
view, conforms to this protocol. Each instance provides the required bounds , center , and
 transform properties you need to work with dynamic animators. So although you don’t
work directly with views, you’re still well set to introduce dynamics.

 Custom Flow Layouts

 The key to using dynamic animation classes with collection views is to build your own custom
 UICollectionViewFlowLayout subclass. Flow layouts create organized presentations in your
application. Their properties and instance methods specify how the flow sets itself up to place
items onscreen. In the most basic form, the layout properties provide you with a geometric
vocabulary, where you talk about row spacing, indentation, and item-to-item margins. With
custom subclasses, you can extend the class to produce eye-catching and nuanced results.

 To support dynamic animation, your custom class must coordinate with an animator instance.
You typically set it up in your flow layout initializer by using the UIDynamicAnimator collec-
tion view-specific initializer. This prepares the animator for use with your collection view and
enables it to take control of reporting item attributes on your behalf. As you’ll see, the dynamic
animator takes charge of many methods you normally would have to implement by hand.

 The following init method allocates an animator and adds a custom “spinner” behavior. The
 UIDynamicItemBehavior class enables you to add angular velocity to views, creating a spin-
ning effect, which you see in action in Figure 6-3 :

 - (instancetype) initWithItemSize: (CGSize) size
 {
 if (!(self = [super init])) return self;
 _animator = [[UIDynamicAnimator alloc]
 initWithCollectionViewLayout:self];
 _spinner = [[UIDynamicItemBehavior alloc] init];
 _spinner.allowsRotation = YES;
 [_animator addBehavior:_spinner];
 self.scrollDirection = UICollectionViewScrollDirectionHorizontal;
 self.itemSize = size;
 return self;
 }

148 Chapter 6 Dynamic Animators

 Figure 6-3 Allowing dynamic items to rotate enables you to add angular velocities, causing views
to tilt and spin.

 Returning Layout Attributes

 As mentioned earlier, a dynamic animator can take charge of reporting layout attributes. The
following methods do all the work, redirecting the normal geometry through the animator:

 - (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect
 {
 return [_animator itemsInRect:rect];
 }

 - (UICollectionViewLayoutAttributes *)layoutAttributesForItemAtIndexPath:
 (NSIndexPath *)indexPath
 {
 UICollectionViewLayoutAttributes *dynamicLayoutAttributes =
 [_animator layoutAttributesForCellAtIndexPath:indexPath];

 // Check whether the attributes were properly generated
 return dynamicLayoutAttributes ?
 [_animator layoutAttributesForCellAtIndexPath:indexPath] :
 [super layoutAttributesForItemAtIndexPath:indexPath];
 }

 - (BOOL)shouldInvalidateLayoutForBoundsChange:(CGRect)newBounds
 {
 return YES;
 }

149Collection Views and Dynamic Animators

 For safety, the second method checks that the animator properly reports attributes. If it fails,
the method falls back to the default implementation.

 Updating Behaviors

 With collection views, the hardest work involves coordinating items with behaviors. Although
you can allow behaviors to control items that are no longer onscreen, as a general rule, you
probably want to weed out any items that have left the display and add any items that have
moved into place. Listing 6-7 demonstrates this approach.

 You start by calculating the onscreen rectangle and request the array of items that appear in
that space. Use each item’s index path to compare it to items owned by a behavior. If a behav-
ior item does not appear in the onscreen list, remove it. If an onscreen item isn’t yet owned by
the behavior, add it.

 Although you mostly just add physics behaviors and let them run, I decided to tie Listing 6-7
to user interaction. The speed and direction of the backing scroll view add “impulses” to each
view, nudging their angular velocity in one direction or the other.

 Listing 6-7 Adding Physics-Based Animation to Collection Views

 // Scroll view delegate method establishes the current speed
 - (void)scrollViewDidScroll:(UIScrollView *)scrollView
 {
 scrollSpeed = scrollView.contentOffset.x - previousScrollViewXOffset;
 previousScrollViewXOffset = scrollView.contentOffset.x;
 }

 // Prepare the flow layout
 - (void) prepareLayout
 {
 [super prepareLayout];

 // The collection view isn't established in init, catch it here.
 if (!setupDelegate)
 {
 setupDelegate = YES;
 self.collectionView.delegate = self;
 }

 // Retrieve onscreen items
 CGRect currentRect = self.collectionView.bounds;
 currentRect.size = self.collectionView.frame.size;
 NSArray *items = [super layoutAttributesForElementsInRect:currentRect];

 // Clean up any item that's now offscreen
 NSArray *itemPaths = [items valueForKey:@"indexPath"];

150 Chapter 6 Dynamic Animators

 for (UICollectionViewLayoutAttributes *item in _spinner.items)
 {
 if (![itemPaths containsObject:item.indexPath])
 [_spinner removeItem:item];
 }

 // Add all onscreen items
 NSArray *spinnerPaths = [_spinner.items valueForKey:@"indexPath"];
 for (UICollectionViewLayoutAttributes *item in items)
 {
 if (![spinnerPaths containsObject:item.indexPath])
 [_spinner addItem:item];
 }

 // Add impulses
 CGFloat impulse = (scrollSpeed /
 self.collectionView.frame.size.width) * M_PI_4 / 4;
 for (UICollectionViewLayoutAttributes *item in _spinner.items)
 {
 CGAffineTransform t = item.transform;
 CGFloat rotation = atan2f(t.b, t.a);
 if (fabs(rotation) > M_PI / 32) impulse = - rotation * 0.01;
 [_spinner addAngularVelocity:impulse forItem:item];
 }
 }

 Building a Dynamic Alert View

 I stumbled across developer Victor Baro’s dynamic iOS “jelly view” (http://victorbaro.com/
2014/07/vbfjellyview-tutorial/), which instantly caught my eye. This clever hack uses dynamic
attachment behaviors that wiggle in harmony, enabling you to create views that emulate Jell-O.
Although its utility is limited in practical deployment, it provides a superb example of how
traditional iOS elements like alerts can be re-imagined using modern APIs. Figure 6-4 shows a
jelly view alert in motion, squashing and stretching as it bounces off an invisible center ledge
within the main UI.

 Connecting Up the Jelly

 The secret to the jelly effect lies in an underlying 3×3 grid of tiny views, all attached to each
other and to the main view’s center using UIAttachmentBehavior instances (see Figure 6-5).
These views and their attachments create a semi-rigid backbone that provides the view physics.
 Listing 6-8 details how these views and attachments are made and installed. The elasticity
of the connections allows the views to move toward and away from each other, creating a
deformed skeleton for the view presentation.

http://victorbaro.com/2014/07/vbfjellyview-tutorial/
http://victorbaro.com/2014/07/vbfjellyview-tutorial/

151Building a Dynamic Alert View

 Figure 6-5 The nine connected points form a spring-based skeleton for the Jell-O animation.

 Listing 6-8 Establishing Jelly Dynamics

 - (void) establishDynamics : (UIDynamicAnimator *) animator
 {
 if (animator) _animator = animator;

 // Create baseline dynamics for primary view
 UIDynamicItemBehavior *dynamic =
 [[UIDynamicItemBehavior alloc] initWithItems:@[self]];
 dynamic.allowsRotation = NO;
 dynamic.elasticity = _elasticity / 2;

 Figure 6-4 This “jelly view” distorts its shape as it uses UIKit dynamics to emulate a view built
onto a blob of Jell-O.

152 Chapter 6 Dynamic Animators

 dynamic.density = _density;
 dynamic.resistance = 0.9;
 [_animator addBehavior:dynamic];

 // Establish jelly grid
 for (int i = 0; i < 9; i++)
 {
 // Add dynamics
 UIView *view = [self viewWithTag:(i + 1)];
 UIDynamicItemBehavior *behavior =
 [[UIDynamicItemBehavior alloc] initWithItems:@[view]];
 behavior.elasticity = _elasticity * 2;
 behavior.density = _density;
 behavior.resistance = 0.2;
 [_animator addBehavior:behavior];

 // Attach each grid view to main jelly view center
 UIAttachmentBehavior *attachment =
 [[UIAttachmentBehavior alloc] initWithItem:view attachedToItem:self];
 attachment.damping = _damping;
 attachment.frequency = _frequency;
 [_animator addBehavior:attachment];

 // Attach views to each other
 if ((i + 1) != 5) // skip center
 {
 NSInteger xTag = [@[@(1), @(2), @(5), @(0), @(4), @(8),
 @(3), @(6), @(7)][i] integerValue] + 1;
 UIView *nextView = [self viewWithTag:xTag];
 attachment = [[UIAttachmentBehavior alloc]
 initWithItem:view attachedToItem:nextView];
 attachment.damping = _damping;
 attachment.frequency = _frequency;
 [_animator addBehavior:attachment];
 }
 }
 }

 Drawing the View

 UIView instances are rectangular, not gelatinous. To create a view that looks as if it deforms,
even if the underlying view remains rectangular, you must hide each of the underlying views
from Figure 6-5 and draw a unified shape that represents the adjusted skeleton. You do this by
observing changes on each of the component views. When they move, which you detect by
observing the center property, the jelly view needs a redraw. Listing 6-9 shows the redrawing
code.

153Building a Dynamic Alert View

 This code works by building a Bezier path from corner point to corner point to corner point.
It uses the center views along each edge as control points to produce its inflected curves.
Once the curved path is calculated, a standard drawRect: method fills in the curve to present
the view.

 Listing 6-9 Drawing the Jelly View

 - (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
 {
 // Update whenever a child view center changes
 [self setNeedsDisplay];
 }

 - (UIBezierPath *) cornerCurve
 {
 // Build a series of quad curve elements from point to point to point
 UIBezierPath *path = [UIBezierPath bezierPath];
 UIView *v0 = [self viewWithTag:1];
 [path moveToPoint:v0.center];

 // The corner points are view destinations.
 // The centers act as control points.
 NSArray *destinations = @[@(2), @(8), @(6), @(0)];
 NSArray *controlPoints = @[@(1), @(5), @(7), @(3)];

 for (int i = 0; i < 4; i++)
 {
 NSInteger dTag = [destinations[i] integerValue] + 1;
 NSInteger cTag = [controlPoints[i] integerValue] + 1;
 UIView *vd = [self viewWithTag:dTag];
 UIView *vc = [self viewWithTag:cTag];
 [path addQuadCurveToPoint:vd.center controlPoint:vc.center];
 }
 return path;
 }

 - (void) drawRect:(CGRect)rect
 {
 // Build the curves and draw the shape
 [_color set];
 [[self cornerCurve] fill];
 }

154 Chapter 6 Dynamic Animators

 Deploying Jelly

 While the jelly view is fun to create, deploy with care. Most users have a fixed limit of patience.
Any dynamic elements will tend to run longer in presentation and dismissal than standard
system-supplied UI elements. They have more complicated visual stories to tell. Because of this,
you might need to trade off the cool visual flourishes that excite a developer if you want to put
the user experience first. A jelly-based alert may be exciting to develop, but an overly long alert
that takes precious seconds to settle may add one-star reviews to your product.

 A user will not be able to tell if your app was developed using UIKit, OpenGL, Cocos2D, or
SpriteKit. Just because you can now do exciting dynamics in UIKit is not sufficient reason to
include those solutions. Your apps must defer to and serve the needs of your users rather than
pad your resume and augment your portfolio. Keep this in mind and use dynamic animators
sparingly.

 Wrap-up

 Here are final points to wrap up what you’ve read in this chapter:

 ■ Dynamic animators and behaviors are like a UI building toy set. They are enormously fun
to work with and produce a really great range of results. I best like interactions that direct
the user to natural results like the snap zones shown in Listing 6-3 and ones that provide
a user-based experience like the device gravity that coordinates with a motion manager
in Listing 6-4 .

 ■ Although it’s easy to get super-flashy with all the built-in physics, some of the best effects
are the subtlest. It’s the little flourishes—such as bounces when views enter and leave a
screen, or collisions when collection items interact with each other—that produce the
best results.

 ■ Layering and coordinating behaviors can stylize and customize the otherwise default
animations. The scaling, stacking, and rotation I added for Figure 6-2 help send the
message that these items have been “put away.”

 ■ Some things you might not initially think of as behaviors can turn out to be super-
handy. You saw this with the “watcher” behavior in Listing 6-2 . Although this custom
behavior doesn’t introduce any view changes, it helps tune the dynamic system to
produce greater responsiveness.

 ■ Always consider behavior lifetimes. You should clean up after your behaviors if they’re
short lived and retain them if they persist.

 ■ Sometimes it’s simpler to create basic and keyframe animations like the ones you saw
in Chapter 5, “Animation,” than to implement dynamic behaviors with the associated
overhead.

Index

 Symbols
 #error directive, 232 - 233

 #warning directive, 231 - 232

 A
 accessibility versions of font sizes, 27

 accessing classes, 252 - 253

 action controllers, building, 156 - 161

 actionForKey method, 118

 adaptive deployment

 rotation, 207 - 208

 trait collections, 201 - 204

 combining, 203 - 204

 defining, 202 - 203

 designing for, 204

 properties, 202

 UIScreen properties, 205 - 207

 application frame, 206

 coordinate spaces, 205 - 206

 scale, 207

 screen bounds, 206

 adaptive flow, 58 - 60

 adding

 animations to shaped views, 193 - 199

 behaviors to dynamic animators,
 126 - 127

 borders to shaped views, 187 - 190

262 adding

 physics-based behaviors to collection
views, 149 - 150

 Quartz 2D contexts to UIKit context
stack, 17 - 18

 text fields to alerts, 162 - 163

 touch to labels, 63 - 69

 checking for links, 67

 glyphs, 66

 implementing visual feedback,
 67 - 69

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 adjusting

 attributes, 93 - 94

 pitch of voice playback, 3

 alerts, 155 - 163

 building, 156 - 161

 buttons, enabling, 161

 class deprecations, 155 - 156

 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 text fields, adding, 162 - 163

 angular velocity, creating the “spinner”

effect, 147

 angularResistance property, 138

 animation, 101

 adding to shaped views, 193 - 199

 blocking animators, 105 - 106

 custom dynamic behaviors

 improving, 142 - 144

 secondary behaviors, 144 - 146

 custom dynamic items, 139 - 141

 custom transition animations, 113 - 116

 building transitioning objects,
 114 - 116

 delegation, 114

 UIViewControllerAnimated-
Transitioning protocol, 113

 dynamic animators, 125

 collection views, 147 - 150

 creating, 126 - 127

 detecting pauses, 127 - 132

 snap zones, 133 - 135

 effect views, animating, 172 - 174

 implicit animations, 116 - 124

 animating custom properties,
 121 - 122

 animation-ready layers, building,
 117 - 118

 completion blocks, 120 - 121

 coordinating, 119 - 120

 drawing properties, 123 - 124

 intercepting updates, 122

 timing, 118 - 119

 views, 118

 keyframe animation, 101 - 103

 DampedSinusoid() function, 103

 scale transformation, 103 - 105

 shaking effect, 102 - 103

 motion effects, 109 - 112

 disabling, 110

 shadow effects, 111 - 112

 virtual planes, 109 - 111

 physics-based behaviors, subverting,
 141 - 142

263barcode recognition

 spring-based animation, 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 system animations, 109

 view animation, 101

 animationKey method, 194

 APIs

 Cocoa Touch, 248

 iOS dictation APIs, 5

 Swift, 249 - 251

 UIKit, 50 - 51

 Apple Swift Blog, 260

 application frame property, 206

 applying text style ranges, 34 - 35

 apps (iOS), building in Swift, 240 - 243

 assets, 208 - 214

 overriding relationships with trait
collections, 210 - 211

 assigning values to non-optionals, 248

 attachments, 77 - 78 , 125

 attributed strings

 adjusting attributes, 93 - 94

 attachments, 77 - 78

 building from HTML, 78 - 83

 document type dictionaries, 79 - 81

 converting to document data, 89 - 90

 converting to document
representations, 81 - 82

 enhancing, 91 - 94

 fonts, updating, 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 initializing from a file, 84 - 85

 inspecting attributes, 87 - 88

 integrating with Dynamic Type, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style ranges,
 32 - 34

 modifying fonts, 42

 mutable attributed strings,
extending, 94

 returning copies of strings with new
attributes, 92 - 93

 RTFD integration, 76 - 77

 tabular text, 76

 attributedStringWithAttachment

method, 78

 Auto Layout, 201

 AVAssetWriter class, 19

 AVCaptureMetadataOutputObjectsDelegate

protocol, 11

 AVFoundation, movies

 building, 14 - 23

 pixel buffer, creating, 16 - 17

 AVMetadataObject class, 11

 AVSpeechSynthesizer class, delegate

callbacks, 3 - 4

 Aztec code, 9

 B
 Bacon Ipsum website, 223

 barcode recognition, 1 , 5 - 8

 CIQRCodeGenerator filter,
parameters, 5 - 6

 enhancing recognition, 14

 extracting bounds, 13

 IOS-supported barcode formats, 8 - 9

 metadata, responding to, 11 - 13

 metadata objects, listening for, 10 - 11

264 barcode recognition

 QR codes

 building, 6 - 8

 disabling interpolation, 7 - 8

 Baro, Victor, 150

 beginEditing method, 56

 Bezier paths

 exclusion zones, 61

 resizing, 181 - 183

 Bezier-based shape image views,

creating, 184 - 185

 blocking animators, 105 - 106

 blocks

 ContextDrawingBlock, drawing into
the pixel buffer, 17 - 18

 movies, building, 15 - 16

 blogs, Apple Swift Blog, 260

 blur effect, building, 170 - 171

 body style, 26

 borders, adding to shaped views, 187 - 190

 boundaries

 creating for gravity behavior, 138

 screen bounds, 206

 bounding rectangles, 62

 bounds, extracting, 13

 bubbles, 176 - 177

 building

 action controllers, 156 - 161

 alerts, 156 - 161

 animation-ready layers, 117 - 118

 attributed strings from HTML, 78 - 83

 document type dictionaries, 79 - 81

 AVFoundation movies, 14 - 23

 blur effect, 170 - 171

 fonts from text styles, 28

 HTML from attributed strings, 82

 images from PDFs, 211 - 214

 iOS apps in Swift, 240 - 243

 jelly view alert, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 mask views, 166 - 169

 movies

 expressive drawing, 18 - 19

 from frames, 19 - 23

 images, adding, 23

 pixel buffer, creating, 16 - 17

 QR codes, 6 - 8

 shaped buttons, 190 - 193

 side-by-side iPhone split views, 215 - 218

 transitioning objects, 114 - 116

 views around layers, 118

 virtual planes, 110 - 111

 buttons

 alert buttons, enabling/disabling, 161

 shaped buttons, building, 190 - 193

 C
 calculating text positions, 95

 characterOffsetOfPosition:withinRange:

method, 95

 CIQRCodeGenerator filter, 5

 circular views, creating, 180 - 183

 Clang compiler, 229

 class descent, 255 - 256

 classes

 accessing, 252 - 253

 AVAssetWriter class, 19

 AVMetadataObject class, 11

 NSMutableAttributedString class, 56

 size classes, 204 - 205

 UIAlertController class, 155

265creating

 insets, 60 - 61

 RTFD containers, 84

 ContextDrawingBlock, 17 - 18

 converting

 attributed strings to document
data, 89 - 90

 attributed strings to document
representations, 81 - 82

 comments to warnings, 229 - 231

 HTML to attributed strings, 78 - 83

 document type dictionaries, 79 - 81

 RTFD text to data, 85 - 86

 coordinate spaces, 205 - 206

 coordinating implicit animations, 119 - 120

 Core Image filter, 5

 CIQRCodeGenerator filter,
parameters, 5 - 6

 Core Motion, integrating with gravity

behavior, 135 - 137

 Core Text

 glyphs, 47 - 50

 Text Kit, ligatures, 46 - 47

 creating

 attributed strings from HTML,
document type dictionaries, 79 - 81

 boundaries for gravity behavior, 138

 custom behaviors, 139 - 146

 dynamic animators, 126 - 127

 adding behaviors, 126 - 127

 delegation, 126

 frame-watching dynamic behaviors,
 131 - 132

 HTML from attributed strings, 82

 mask views, 166 - 169

 movies, 14 - 23

 expressive drawing, 18 - 19

 from frames, 19 - 23

 images, adding, 23

 UIBlurEffect class, 170

 UIDictationController class, 5

 UIDynamicAnimator class, 125 - 126

 UIFont class, 27

 UIFontDescriptor class, 40 - 41

 UIImageAsset class, 210 - 211

 UIImageView class, 210

 UIInterpolatingMotionEffect class, 111

 UIKit, enhancements to, 75 - 78

 UITextView class, 59

 UITraitCollection class, 201

 UIVisualEffectView class, 169

 closestPositionToPoint: method, 96

 Cocoa Touch, APIs, 248

 Code 39 barcode system, 9

 Code 93 barcode system, 9

 Code 128 barcode system, 9

 collapsed property, 218

 collection views

 dynamic animators, 147 - 150

 custom flow layouts, 147

 returning layout attributes,
 148 - 149

 physics-based behaviors,
adding, 149 - 150

 collisions, 125

 combining trait collections, 203 - 204

 comments, converting to warnings,

 229 - 231

 comparing Objective-C and Swift, 239 - 240

 completion blocks, 3 - 4

 implicit completion blocks, building,
 120 - 121

 containers, 46 , 57 - 62

 adaptive flow, 58 - 60

 bounding rectangles, 62

 exclusion zones, 61

266 creating

 designing for traits, 204

 detecting

 faces, 14

 pauses, 127 - 132

 diagnostics, overriding, 235

 dictation, 5

 directives

 converting comments to warnings,
 229 - 231

 errors, 232 - 233

 messages, 234

 overriding diagnostics, 235

 testing for the simulator, 232

 unused variable warnings, 235 - 236

 warnings, 231 - 232

 wrapping pragmas, 234 - 235

 disabling

 alert buttons, 161

 interpolation for QR codes, 7 - 8

 motion effects, 110

 displaying supported glyphs for

fonts, 53 - 55

 displayModeButtonItem property, 218 - 219

 displayScale property, 202

 document attribute dictionaries,

establishing, 89 - 90

 documents, creating representations from

attributed strings, 81 - 82

 draggable exclusion zones, 69 - 71

 drawInContext:method, 123

 drawing

 into pixel buffer, 17 - 18

 properties, 123 - 124

 duration of implicit animations, 118 - 119

 PDFs, 71 - 73

 QR codes, 6 - 8

 views

 Bezier-based shape image views,
 184 - 185

 round views, 180 - 183

 virtual planes, 110 - 111

 Cupcake Ipsum website, 223

 custom behaviors, creating, 139 - 146

 custom dynamic behaviors

 improving, 142 - 144

 secondary behaviors, 144 - 146

 custom flow layouts, 147

 custom properties, animating, 121 - 122

 custom transition animations, 113 - 116

 building transitioning objects, 114 - 116

 delegation, 114

 UIViewControllerAnimated-
Transitioning protocol, 113

 customAnimationForKey: method, 121

 customizing font sizes, 38

 D
 damped harmonics, spring-based

animation, 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 DampedSinusoid() function, 103

 declaring key support, 97 - 98

 defining trait collections, 202 - 203

 delegate callbacks for

AVSpeechSynthesizer class, 3 - 4

 delegation, 114

 dynamics delegation, 126

 density property, 139

267exclusion zones

 integrating with attributed
strings, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style ranges,
 32 - 34

 string attributes, modifying fonts
with, 42

 styles, 26

 building fonts from, 28

 type updates, listening for, 28 - 31

 E
 EAN (European Article Number) barcode, 9

 effect views, 169 - 174

 animating, 172 - 174

 blur effect, building, 170 - 171

 vibrancy effects, 171 - 172

 elasticity property, 139

 enabling

 alert buttons, 161

 metadata output, 11

 endEditing method, 56

 enhancing

 attributed strings, 91 - 94

 barcode recognition, 14

 view dynamics, 138 - 139

 enumerateAttributesInRange:options:

usingBlock: method, 88

 enumerating

 attributes, 87 - 88

 optionals, 245 - 246

 error handling in Swift, 251

 “even/odd” fill rule, 186

 exclusion zones, 61

 draggable exclusion zones, 69 - 71

 dynamic animators, 125

 collection views, 147 - 150

 custom flow layouts, 147

 returning layout attributes,
 148 - 149

 creating, 126 - 127

 adding behaviors, 126 - 127

 delegation, 126

 detecting pauses, 127 - 132

 frame-watching dynamic
behaviors, creating, 131 - 132

 monitoring views, 128 - 130

 gravity behavior

 connecting to device
acceleration, 137

 creating boundaries, 138

 integrating with Core Motion,
 135 - 137

 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 physics-based behaviors, 125 - 126

 snap zones, 133 - 135

 dynamic behaviors, subverting, 141 - 142

 Dynamic Type, 25 - 31

 attribute-ready dynamic elements,
 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 font descriptors

 caveats, 40 - 41

 multiple font variations, 41

 font sizes, 27

 accessibility versions, 27

 customizing, 38

 user-controlled sizes, 43

268 expressive drawing

 G
 generating

 random feeds, 227

 random user data, 225 - 226

 gestures

 draggable exclusion zones, 69 - 71

 taps, spring-based animation, 106 - 109

 GitHub , xv

 lorem ipsum projects, 222

 glyphs, 46 - 55 , 66

 bounding rectangles, 62

 layout managers, 56 - 57

 ligatures, 46 - 47

 supported glyphs for fonts, displaying,
 53 - 55

 UIKit, 51 - 53

 gravity behavior, 125

 connecting to device acceleration, 137

 creating boundaries, 138

 integrating with Core Motion, 135 - 137

 H
 hardware key support, 97 - 99

 declaring, 97 - 98

 headlines, 26

 horizontalSizeClass property, 202

 HTML

 converting to attributed strings, 78 - 83

 document type dictionaries, 79 - 81

 creating from attributed strings, 82

 markup initialization, 83

 writing RTFD containers from
data, 86 - 87

 expressive drawing, 18 - 19

 extending mutable attributed strings, 94

 extracting bounds, 13

 F
 faces, detecting, 14

 fading logos, building, 122

 Fake Name Generator, 225 - 226

 files, saving from the simulator, 237

 filters, Core Image filter, 5

 flow layouts, 147

 font descriptors, 39 - 42

 caveats, 40 - 41

 multiple font variations, 41

 font sizes (Dynamic Type), 27

 accessibility versions, 27

 custom sizing, 38

 user-controlled font sizes, 43

 fonts

 modifying with string attributes, 42

 with multiple variations, 41

 supported glyphs, displaying, 53 - 55

 updating with dynamic attributes,
 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 footnotes (Dynamic Type), 26

 frames, building movies from, 19 - 23

 frame-watching dynamic behaviors,

creating, 131 - 132

 friction property, 139

 Fuller, Landon, 238

 functions

 DampedSinusoid() function, 103

 UIGraphicsPopContext() function, 17

 UIGraphicsPushContext() function, 17

269labels, enabling touch

 integrating

 Dynamic Type with attributed
strings, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style
ranges, 32 - 34

 gravity behavior with Core Motion,
 135 - 137

 intercepting updates, 122

 International Article Number barcode, 9

 interpolation, disabling for QR codes, 7 - 8

 iOS 8

 attributed text updates, 36

 split view controllers, 214 - 219

 supported barcode formats, 8 - 9

 J-K
 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 JSON feed resources, 227

key support, 97 - 99

 declaring, 97 - 98

 keyframe animation, 101 - 103

 blocking animators, 105 - 106

 DampedSinusoid() function, 103

 scale transformation, 103 - 105

 shaking effect, 102 - 103

 L
 labels, enabling touch, 63 - 69

 adding visual feedback, 67 - 69

 checking for links, 67

 glyphs, 66

 hybrid language development, 252 - 256

 accessing classes, 252 - 253

 class descent, 255 - 256

 Objective-C, calling from Swift, 252

 I
 images

 adding to movies, 23

 building from PDFs, 211 - 214

 placeholders, 223 - 225

 implementing snap zones, 133 - 135

 implicit animations, 116 - 124

 animating custom properties, 121 - 122

 completion blocks, 120 - 121

 coordinating, 119 - 120

 drawing properties, 123 - 124

 intercepting updates, 122

 layers

 building, 117 - 118

 views, building, 118

 timing, 118 - 119

 improving custom dynamic

behaviors, 142 - 144

 inferred types, 244

 initializing attributed strings from a file,

 84 - 85

 inputCorrectionLevel parameter

(CIQRCodeGenerator filter), 5 - 6

 inputMessage parameter

(CIQRCodeGenerator filter), 5 - 6

 insets, 60 - 61

 inspecting

 attributes, 87 - 88

 items with playgrounds, 258 - 259

270 labels, enabling touch

 media

 barcodes, 5 - 8

 enhancing recognition, 14

 extracting bounds, 13

 iOS-supported barcode formats, 8 - 9

 listening for metadata objects,
 10 - 11

 QR codes, building, 6 - 8

 responding to metadata, 11 - 13

 dictation, 5

 movies

 adding images, 23

 building, 16 - 17

 creating from frames, 19 - 23

 expressive drawing, 18 - 19

 TTS, 1 - 4

 completion blocks, 3 - 4

 utterances, 2

 messages, 234

 metadata

 enabling output, 11

 objects, listening for, 10 - 11

 responding to, 11 - 13

 methods

 actionForKey method, 118

 animationKey method, 194

 attributedStringWithAttachment
method, 78

 characterOffsetOfPosition:withinRange:
method, 95

 closestPositionToPoint: method, 96

 customAnimationForKey: method, 121

 drawInContext: method, 123

 enumerateAttributesInRange:options:
usingBlock: method, 88

 needsDisplayForKey: method, 122

 setAnimation: method, 194

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 layers

 animation-ready layers, building,
 117 - 118

 border layers, generating, 188 - 190

 views, building, 118

 layout managers (Text Kit), 46 , 56 - 57

 layouts

 attributes, returning, 148 - 149

 Auto Layout, 201

 containers, 57 - 62

 adaptive flow, 58 - 60

 exclusion zones, 61

 insets, 60 - 61

 custom flow layouts, 147

 document attribute dictionaries, 89 - 90

 draggable exclusion zones, 69 - 71

 side-by-side iPhone split views,
building, 215 - 218

 learning Swift, 259

 ligatures, 46 - 47

 listening

 for metadata objects, 10 - 11

 for type updates, 28 - 31

 logging, 238

 lorem ipsum text, 221 - 223

 requesting, 222 - 223

 Lorem Pixel website, 224

 M
 Markdown, 83

 marking non-null and nullable items, 236

 mask views, 164 - 169

 building, 166 - 169

 shape layer masking, 164 - 166

271physics-based behaviors

 NSMutableAttributedString class, 56

 nullable items, marking, 236

 O
 Objective-C

 calling from Swift, 252

 comparing to Swift, 239 - 240

 preparing Swift for, 254 - 255

 objects

 text ranges, 95 - 97

 transitioning objects, building, 114 - 116

 optionals, 243 - 248

 enumeration, 245 - 246

 inferred types, 244

 unwrapping, 246 - 247

 overriding

 relationships between trait collections
and assets, 210 - 211

 trait collections, 214 - 219

 P
 parameters for CIQRCodeGenerator

filter, 5 - 6

 pauses, detecting, 127 - 132

 PDF417 standard, 9

 PDFs

 building, 71 - 73

 creating images from, 211 - 214

 printing, 74

 physics-based behaviors, 125 - 126

 adding to collection views, 149 - 150

 custom behaviors, creating, 139 - 146

 frame-watching dynamic behaviors,
creating, 131 - 132

 transformedMetadataObjectFor-
MetadataObject method, 13

 viewWillTransitionToSize:with-
TransitionCoordinator: method, 207

 modifying

 attributed strings, 93 - 94

 fonts with string attributes, 42

 monitoring

 items with playgrounds, 258 - 259

 views, 128 - 130

 motion effects, 109 - 112

 disabling, 110

 shadow effects, 111 - 112

 virtual planes, 109 - 110

 building, 110 - 111

 movies

 building, 14 - 23

 expressive drawing, 18 - 19

 pixel buffer, creating, 16 - 17

 images, adding, 23

 pixel buffer

 creating, 16 - 17

 drawing into, 17 - 18

 multiple snap zones, handling, 133 - 135

 mutable attributed strings, extending, 94

 N
 needsDisplayForKey: method, 122

 NeXTSTEP, 83

 non-null items, marking, 236

 NSAttributedString

 class convenience methods, 91 - 92

 integrating with Dynamic Type, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style ranges,
 32 - 34

272 physics-based behaviors

 mask views, 164 - 169

 building, 166 - 169

 shape layer masking, 164 - 166

 popovers, 175 - 177

 supporting bubbles, 176 - 177

 printing text views, 73 - 74

 properties

 of dynamic behaviors, 138 - 139

 of trait collections, 202

 UIScreen properties, 205 - 207

 application frame, 206

 coordinate spaces, 205 - 206

 scale, 207

 screen bounds, 206

 pushes, 125

 Q-R
 QR (Quick Response) codes, 5

 building, 6 - 8

 Quartz 2D contexts, adding to UIKit context

stack, 17 - 18

random feeds, generating, 227

 random generation suite, 228 - 229

 Random User Generator, 225

 range dictionaries

 applying text style ranges, 34 - 35

 scanning for text style ranges, 32 - 34

 reading barcodes

 enhancing recognition, 14

 extracting bounds, 13

 iOS-supported barcode formats, 8 - 9

 listening for metadata objects, 10 - 11

 responding to metadata, 11 - 13

 repairing attributes for text storage, 56

 requesting lorem ipsum text, 222 - 223

 gravity

 connecting to device
acceleration, 137

 creating boundaries, 138

 integrating with Core Motion,
 135 - 137

 improving, 142 - 144

 pauses, detecting, 127 - 132

 properties, 138 - 139

 secondary behaviors, 144 - 146

 subverting, 141 - 142

 pitch of voice playback, adjusting, 3

 pixel buffer

 creating, 16 - 17

 drawing into, 17 - 18

 placeholders

 for images, 223 - 225

 lorem ipsum text, 221 - 223

 playgrounds, 256 - 258

 popovers, 175 - 177

 supporting bubbles, 176 - 177

 positions, text positions

 calculating, 95

 geometry, 95 - 96

 updating selection points, 97

 pragmas, wrapping, 234 - 235

 presentations, 155

 alerts, 155 - 163

 building, 156 - 161

 buttons, enabling, 161

 class deprecations, 155 - 156

 text fields, adding, 162 - 163

 effect views, 169 - 174

 animating, 172 - 174

 blur effect, 170 - 171

 vibrancy effects, 171 - 172

273Swift

 side-by-side iPhone split views, building,

 215 - 218

 simulator, saving files from, 237

 size classes, 204 - 205

 snap zones, 133 - 135

 multiple snap zones, handling, 133 - 135

 snaps, 125

 speech generation, 1

 completion blocks, 3 - 4

 TTS, utterances, 2

 “spinner” effect, creating, 147

 split view controllers, 214 - 219

 side-by-side iPhone split views,
building, 215 - 218

 spring-based animation, 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 string attributes, modifying fonts with, 42

 structs, UIEdgeInsets struct, 60

 styles

 building fonts from, 28

 Dynamic Type, 26

 layout managers, 56 - 57

 subheadlines, 26

 subverting dynamic behaviors, 141 - 142

 supported barcode formats, 8 - 9

 Swift, 239

 APIs, 249 - 251

 calling from Objective-C, 253 - 254

 error handling, 251

 iOS apps, building, 240 - 243

 learning, 259 - 260

 non-optionals, assigning values to, 248

 versus Objective-C, 239 - 240

 resistance property, 139

 resizing Bezier paths, 181 - 183

 responding to metadata, 11 - 13

 Retina display scales, 202

 retrieving sample code , xv

 returning copies of strings with new

attributes, 92 - 93

 rotation property, 138

 “spinner” effect, creating, 147

 round views, creating, 180 - 183

 RTF, 83

 RTFD containers

 converting text to data, 85 - 86

 writing from data, 86 - 87

 S
 sample code, retrieving , xv

 saving files from the simulator, 237

 scale property, 207

 scanning for text style ranges, 32 - 34

 screen bounds, 206

 setAnimation: method, 194

 shadow effects, 111 - 112

 shake keyframe animation, 102 - 103

 shape layer masking, 164 - 166

 shaped buttons, building, 190 - 193

 shaped views

 animations, adding, 193 - 199

 borders, adding, 187 - 190

 creating, 179 - 187

 Bezier-based shape image views,
 184 - 185

 round views, 180 - 183

 shapes, unclosed shapes, 185 - 187

274 Swift

 touch-enabled labels, 63 - 69

 adding visual feedback, 67 - 69

 checking for links, 67

 glyphs, 66

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 text ranges, 95 - 97

 text positions

 calculating, 95

 geometry, 95 - 96

 updating selection points, 97

 text storage (Text Kit), 46 , 55 - 56

 objects, 55

 repairing attributes, 56

 text style ranges

 applying, 34 - 35

 scanning for, 32 - 34

 text views

 dynamic text views, 37 - 38

 printing, 73 - 74

 touch-enabled labels, 63 - 69

 adding visual feedback, 67 - 69

 checking for links, 67

 glyphs, 66

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 trait collections, 201 - 204

 combining, 203 - 204

 defining, 202 - 203

 designing for, 204

 overriding relationships with assets,
 210 - 211

 properties, 202

 split view controllers, 214 - 219

 optionals, 243 - 248

 enumeration, 245 - 246

 inferred types, 244

 unwrapping, 246 - 247

 playgrounds, 256 - 258

 preparing for Objective-C, 254 - 255

 The Swift Programming Language , 259

 system animations, 109

 T
 tabular text, 76

 tap gestures, spring-based animation,

 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 text . See also Dynamic Type

 RTFD text, converting to data, 85 - 86

 text fields, adding to alerts, 162 - 163

 Text Kit, 43

 containers, 46 , 57 - 62

 adaptive flow, 58 - 60

 bounding rectangles, 62

 exclusion zones, 61

 insets, 60 - 61

 exclusion zones, draggable exclusion
zones, 69 - 71

 glyphs, 46 - 55

 ligatures, 46 - 47

 layout managers, 46 , 56 - 57

 PDFs

 building, 71 - 73

 printing, 74

 text storage, 46 , 55 - 56

 objects, 55

 repairing attributes, 56

 text views, printing, 73 - 74

275user interface idioms

 UIKit

 adding Quartz 2D contexts, 17 - 18

 APIs, 50 - 51

 classes, enhancements to, 75 - 78

 dynamic behaviors, 125 - 126

 font descriptors, 39 - 42

 glyphs, 51 - 53

 spring-based animation, 106 - 109

 UINavigationControllerDelegate

protocol, 114

 UIScreen properties, 205 - 207

 application frame, 206

 coordinate spaces, 205 - 206

 scale, 207

 screen bounds, 206

 UISystemAnimationDelete animation, 109

 UITabBarControllerDelegate protocol, 114

 UITextInput protocol, text ranges

 geometry, 95 - 96

 positions, calculating, 95

 updating selection points, 97

 UITextView class, 59

 UITraitCollection class, 201

 UIViewControllerAnimatedTransitioning

protocol, 113 - 114

 UIVisualEffectView class, 169

 unclosed shapes, 185 - 187

 unused variable warnings, 235 - 236

 unwrapping optionals, 246 - 247

 UPC (Universal Product Code) standard, 9

 updating fonts, 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 user interface idioms, 202

 transformedMetadataObjectForMetadata-

Object method, 13

 TTS (text-to-speech), 1 - 4 . See also dictation

 utterances, 2

 completion blocks, 3 - 4

 pitchMultiplier, 3

 type updates, listening for, 28 - 31

 typography

 Dynamic Type, 25 - 31

 font sizes, 27

 integrating with attributed strings,
 31 - 35

 styles, 26

 type updates, listening for, 28 - 31

 glyphs

 ligatures, 46 - 47

 supported glyphs for fonts,
displaying, 53 - 55

 U
 UIAlertController class, 155

 UIBlurEffect class, 170

 UIDictationController class, 5

 UIDynamicAnimator class, 125 - 126

 UIDynamicItem protocol, 139

 UIEdgeInsets struct, 60

 UIFont class, 27

 UIFontDescriptor class, 40 - 41

 UIGraphicsPopContext() function, 17

 UIGraphicsPushContext() function, 17

 UIImageAsset class, 210 - 211

 UIImageView class, 210

 UIInterpolatingMotionEffect class, 111

276 user-controlled font sizes

 monitoring, 128 - 130

 round views, creating, 180 - 183

 shaped views

 animations, adding, 193 - 199

 borders, adding, 187 - 190

 text views, printing, 73 - 74

 viewWillTransitionToSize:

withTransitionCoordinator: method, 207

 virtual planes, 109 - 110

 building, 110 - 111

 visual feedback, adding to touch-enabled

labels, 67 - 69

 voice playback, adjusting pitch, 3

 W
 warnings, 231 - 232

 unused variable warnings, 235 - 236

 websites

 Bacon Ipsum, 223

 Clang Language Extensions, 234

 Cupcake Ipsum, 223

 Lorem Pixel, 224

 wrapping pragmas, 234 - 235

 writing RTFD containers from data, 86 - 87

 X-Y-Z
 XML feed resources, 228

 yaw, 14

 user-controlled font sizes, 43

 Using Swift with Cocoa and
Objective-C , 259

 utterances, 2

 completion blocks, 3 - 4

 V
 verticalSizeClass property, 202

 vibrancy effects, 171 - 172

 view animation, 101

 view controllers,

UIViewControllerAnimatedTransitioning

protocol, 113

 views

 Bezier-based shape image views,
creating, 184 - 185

 building around layers, 118

 collection views

 dynamic animators, 147 - 150

 physics-based behaviors, adding,
 149 - 150

 dynamics, enhancing, 138 - 139

 effect views, 169 - 174

 animating, 172 - 174

 vibrancy effects, 171 - 172

 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 mask views, 164 - 169

 building, 166 - 169

 shape layer masking, 164 - 166

	Contents
	Preface
	6 Dynamic Animators
	Physics-Based Behaviors
	Building Dynamics

	Detecting Pauses
	Creating a Frame-Watching Dynamic Behavior

	Implementing Snap Zones
	Leveraging Real-World Physics
	Connecting a Gravity Behavior to Device Acceleration
	Creating Boundaries
	Enhancing View Dynamics

	Custom Behaviors
	Creating Custom Dynamic Items
	Subverting Dynamic Behaviors
	Better Custom Dynamic Behaviors
	Custom Secondary Behaviors

	Collection Views and Dynamic Animators
	Custom Flow Layouts
	Returning Layout Attributes
	Updating Behaviors

	Building a Dynamic Alert View
	Connecting Up the Jelly
	Drawing the View
	Deploying Jelly

	Wrap-up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

