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 Preface  

 Developers can never have too many useful ideas to draw from, and this latest entry in the 
bestselling  Cookbook  series is filled with delicious possibilities.  The Gourmet iOS Developer’s 
Cookbook  offers a curated selection of programming recipes to inspire your everyday iOS 
programming efforts. This volume serves up a new banquet of turnkey solutions for projects big 
and small. It offers a fresh collection of versatile solutions that promise to add spice to 
your code.  

 The goal here is simple. Each chapter should enable you to walk away with fresh ideas and 
master techniques off the beaten track. Whether you’re reading about new takes on old tech-
nologies or completely fresh APIs, here’s hoping you’ll say, “Hey, I didn’t know you could do 
that!” or “That’s really cool.”  

  The Gourmet iOS Developer’s Cookbook  offers a deep dive into the nonobvious. Its chapters cover 
techniques and technologies that skew away from the common and enable you to explore new 
development cuisines. It’s not a book for those just learning how to cook apps. It offers tasty 
recipes for the iOS enthusiast who wants to builds fragrant, delicious, and exotic routines.  

  How This Book Is Organized  

 This book offers practical iOS development recipes. Here’s a rundown of what you’ll find in this 
book’s chapters:  

    ■     Chapter   1   , “Media” —This chapter explores advances that have made their way into 
AVFoundation over the past few years and shows how you can integrate these features 
into your own applications. In this chapter, you’ll read about speech generation, barcode 
recognition (which enables you to leverage the device camera to recognize a wide range 
of barcode styles), and application of modern language features to AVFoundation movie 
creation.   

   ■     Chapter   2   , “Dynamic Typography” —iOS’s overhauled interface has shifted emphasis 
away from buttons and bars to a sparser and more text-centered experience, where text 
components have become even more critical parts of UI design. This chapter introduces 
ways your text can update itself automatically to match user preferences and expectations 
and discusses some critical lessons to be learned along the way.   

   ■     Chapter   3   , “Text Kit” —Flexible text presentation is one of the most exciting and 
developing areas of iOS. With every new iOS release, these APIs have grown, matured, 
and expanded. Most UIKit interface classes now support rich text features. In the most 
modern iOS releases, that support has expanded to a suite of layout classes that continue 
to add mature type and frame settings to create flexible presentations.   

   ■     Chapter   4   , “Attributed Strings and Document Containers” —Over the past few years, 
attributed strings have grown enormously in power and potential, and they now provide 
support for HTML and RTF rich text documents. Attributed strings provide seamless 
polymorphism between text presentation and representation. Text design now better 
migrates to the iOS screen and from iOS to other destinations. This chapter explores 
those expanded possibilities.   
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   ■     Chapter   5   , “Animation” —Of the technologies updated in the past couple years, iOS 
animation is one of the ones that has been most enhanced by new APIs. New dynamic 
styles enable your interfaces to integrate real-world physics for better and more exciting 
presentations and interactions. This chapter begins the discussion of animation features, 
introducing some of the profound updates that you’ll use in your apps.   

   ■     Chapter   6   , “Dynamic Animators” —Dynamic animators are some of the most exciting 
elements of iOS. Their physics-based view behaviors create lively and curious interfaces. 
At the same time, they can be difficult to work with. In this chapter, you’ll learn how to 
incorporate these classes into your iOS apps for the best possible results and the fewest 
headaches.   

   ■     Chapter   7   , “Presentations” —In the latest versions of iOS, user alerts are fully 
re-imagined and popovers are now universally available. Special effects highlight 
presentations to provide the greatest visual impact when you overlay content for modal 
interaction. This chapter gets you up to speed on these modern techniques.   

   ■     Chapter   8   , “Shape Magic” —Non-rectangular views enable your apps to expand 
possibilities with fun and clever effects. For example, you might draw attention to a view 
by animating a halo behind it. Or you might use shapes to better stack buttons together 
for visual seamlessness. This chapter covers many advanced shape techniques you can 
use to add pizzazz to your user interfaces.   

   ■     Chapter   9   , “Adaptive Deployment” —As the iOS family continues to grow, apps 
should automatically support all new displays, orientations, and screens. Although iOS 
targets are not nearly as splintered as Android’s multitude, interfaces face numerous 
configurations for universal deployment. A truly adaptive app gracefully responds with a 
well-designed and engaging interface, ready for the user at any size. This chapter explores 
the basics of these new technologies and the APIs you need to learn for moving your 
apps forward.   

   ■     Chapter   10   , “Development Helpers” —At times, it helps to have methods, functions, 
and techniques to help you through the development process. Together, the solutions 
in this chapter support you when building apps. They enable you to speed through your 
development day to better arrive at the app you’re working on.   

   ■     Chapter   11   , “A Taste of Swift” —Apple introduced the Swift programming language 
at the June 2014 WWDC Keynote. Swift offers a performance-tuned type-safe modern 
programming language. Today, many development fundamentals have coalesced, 
although the language and toolset have continued to evolve. This chapter surveys the 
base essentials of Swift development, providing a taste of this new technology. You won’t 
learn the language in this chapter. Instead, you’ll explore concepts and development 
issues that affect you as an iOS developer to get a sense of where this important 
technology is going.     

  About the Sample Code  

 This book follows the trend I started in my  iOS Developer’s Cookbook  series. This book’s sample 
code always starts off from a single  main.m  file, where you’ll find the heart of the application 
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powering the example. This is not how people normally develop iOS or Cocoa applications—
nor how they should be developing them. It’s hard to tell a story when readers must search 
through many files and try to find out what is relevant and what is not. Offering a single 
launching point concentrates the story, allowing access to an idea from a coherent starting 
point.  

  Getting the Sample Code  

 You’ll find the source code for this book at  https://github.com/erica/iOS-Gourmet-Cookbook  
on the open-source GitHub hosting site. There, you’ll find a chapter-by-chapter collection of 
source code that provides examples of the material covered in this book.  

 Retrieve sample code either by using git tools to clone the repository or by clicking GitHub’s 
Download button, which was at the right center of the page when I wrote this book. It enables 
you to retrieve the entire repository as a ZIP archive or tarball.   

  Contribute!  

 Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the 
Cocoa Touch libraries. Get involved. Pitch in by suggesting bug fixes and corrections and by 
expanding the code that’s on offer. GitHub allows you to fork repositories and grow them with 
your own tweaks and features and then share them back to the main repository. If you come 
up with a new idea or approach, let me know.   

  Getting GitHub  

 GitHub ( http://github.com ) is the largest git-hosting site, with more than 150,000 public repos-
itories. It provides both free hosting for public projects and paid options for private projects. 
With a custom web interface that includes wiki hosting, issue tracking, and an emphasis on 
social networking among project developers, it’s a great place to find new code or collaborate 
on existing libraries. Sign up for a free account at the GitHub website, where you can then copy 
and modify this repository or create your own open-source iOS projects to share with others.    

  Contacting the Author  

 If you have any comments or questions about this book, please drop me an e-mail message at 
 erica@ericasadun.com  or stop by the GitHub repository and contact me there.   

https://github.com/erica/iOS-Gourmet-Cookbook
http://github.com
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 Dynamic Animators  

    Dynamic animators are some of the most exciting elements of iOS, even if they are among 
the least practical. Their physics-based view behaviors create lively and curious interfaces. At 
the same time, they can be fussy to work with. They don’t happily coexist with Auto Layout 
because they directly update frame values and can rotate views. That said, dynamic animators 
are tremendously fun. They help make your UIs pop and are well worth exploring to discover 
what features they can provide your users.   

     Physics-Based Behaviors  

 The  UIDynamicAnimator  class emulates interface “physics.” It coalesces this functionality into 
distinct behaviors like snapping, pushing, attachment, and collision. Here’s a quick overview of 
the primitive UIKit dynamic behaviors:  

    ■    Attachments —    UIAttachmentBehavior  instances tie a view either to a position or to 
another view. It’s basically a virtual string with a set length, although you can make it 
act more like a spring by updating damping and frequency properties.   

   ■    Collisions —    UICollisionBehavior  instances allow views to collide with each other 
or with path-based boundaries. In a collision, energy can be passed from one item to 
another, and a view’s trajectory can be changed.   

   ■    Gravity —    UIGravityBehavior  instances apply acceleration to views. You set where 
“down” is and allow the gravity vector to act on velocities over time.   

   ■    Pushes —    UIPushBehavior  instances add an impulse force to views, adding new energy to 
the system.   

   ■    Snaps —    UISnapBehavior  instances act as magnets, drawing views to attachment points.   

   ■    Dynamic items —    UIDynamicItemBehavior  is the odd man out in this list. Instead of 
acting as a force, dynamic items are objects affected by forces. These behaviors enable 
your views to participate in the other behaviors listed here. You can attach, collide, push, 
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snap, and weigh down views by treating them as having physical properties. 
The dynamic item behavior defines density, elasticity, friction, and resistance and 
manages linear and angular item velocities.    

 You can best explore how these items work by running Apple’s UIKit Dynamic Catalog sample 
code ( https://developer.apple.com/library/ios/samplecode/DynamicsCatalog ). This sample code 
illustrates available dynamic behaviors, presenting a wide range of effects you can create in 
your own apps. Most importantly, it lets you see, interact with, and explore each behavior on 
its own.  

  Building Dynamics  

 Once you’ve finished exploring Apple’s dynamics catalog, start building your own examples. To 
begin, you need to create a dynamic animator, like this:  

  self.animator = [[UIDynamicAnimator alloc]
      initWithReferenceView:self.view];   

 This top-level class acts as an intermediary between your views and any dynamic behaviors 
you add to the system. The animator provides context for the animations, establishing either a 
reference view to create a coordinate system or a reference layout when working with collection 
views.  

 Typically, you use a view controller’s primary view as a reference, although you are not limited 
to this. Use any view backdrop that’s large enough to contain the actors in your drama. And, as 
you’ll see, you can extend animated views beyond the parent view, if needed.  

  Dynamics Delegation  

 Delegation enables you to know when an animator pauses, an important tool for 
tracking the end of an animation sequence. An animator delegate declares the 
 UIDynamicAnimatorDelegate  protocol and conforms to that protocol by implementing the 
optional  dynamicAnimatorDidPause:  and  dynamicAnimatorWillResume:  methods. Assign 
a delegate like this:  

  self.animator.delegate = self;   

 When you implement a delegate, you know when animation sequences coalesce, which enables 
you to clean up your simulation after the physics have come to a static resting point. Be aware 
that some animations may never “stop,” especially those that do not employ energy-lowering 
strategies like friction and resistance.   

  Creating and Adding Behaviors  

 Each dynamic animator can coordinate many behaviors at once. For example, you might want 
to create a dynamic system where views “fall” in the direction of gravity but bounce off each 

https://developer.apple.com/library/ios/samplecode/DynamicsCatalog
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other and remain within the boundaries of the view controller’s view. Or you might create a 
snapping behavior that involves collision detection, bumping some views out of the way.  

 Add each behavior to the animator with the  addBehavior:  method. This method applies the 
behavior to the current state. If the animator is active, the behavior will immediately start. The 
following snippet creates a new snapping behavior and adds it to an animator:  

  UISnapBehavior *snapBehavior = [[UISnapBehavior alloc]
      initWithItem:testView snapToPoint:point];
  [self.animator addBehavior:snapBehavior];   

 The standard behavior-creation pattern is to allocate an instance and initialize it with one or 
more items. This example uses a single item ( testView ) and sets a single parameter, a snap-to 
point. When this is added to the animator, the view moves until its center co-aligns with the 
snap point.  

 Each dynamic behavior is distinct in terms of the details associated with the class’s API. Gravity 
behavior initializers accept an array of child items, although you can add and remove items 
at later times. Attachment behaviors include a suite of initializers that supply anchor points, 
dynamic items, and offsets away from the anchors. Each behavior class is a new adventure, 
and it’s well worth your time to read through their APIs as they are all quite different from 
each other.     

  Detecting Pauses  

 Behavior lifetimes vary. After adding a behavior to an animator, you leave it in place for 
varying degrees of time: until some application state has changed, until the animation has 
come to a stopping point (or has reasonably coalesced to the point where the user perceives it 
as having stopped), or until the application ends. The lifetime you select depends on the kind 
of behavior you define. For example, a collision behavior that keeps views inside a parent view 
controller may persist indefinitely. You might remove a snap behavior as soon as the view has 
moved to the newly requested  position or a push behavior as soon as the impulse has finished.  

 The problem is, however, that the built-in dynamic animator can take a long time to detect 
that the views it manages have stopped moving. Consider the following list of times and 
frames for a snapped view:  

  [0.03] NSRect: {{121.55639, 217.55638}, {66.88723, 66.88723}}
  [0.07] NSRect: {{91.418655, 206.41866}, {81.162689, 81.162689}}
  [0.10] NSRect: {{60.333874, 201.33388}, {83.332253, 83.332253}}
  [0.13] NSRect: {{44.293236, 204.29323}, {79.413528, 79.413528}}
  [0.17] NSRect: {{42.394054, 213.39406}, {68.211891, 68.211891}}
  [0.20] NSRect: {{44.46402, 221.46402}, {60.071957, 60.071957}}
  [0.23] NSRect: {{44.94722, 222.94722}, {61.105556, 61.105556}}
  [0.27] NSRect: {{47.207447, 223.70744}, {60.58511, 60.58511}}
  [0.30] NSRect: {{49.458027, 223.45802}, {60.083942, 60.083942}}
  [0.33] NSRect: {{50.481998, 222.48199}, {60.035999, 60.035999}}
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  [0.37] NSRect: {{50.987999, 221.98801}, {60.023998, 60.023998}}
  [0.40] NSRect: {{51, 221.5}, {60, 60}}
  [0.43] NSRect: {{50.5, 221.5}, {60, 60}}
  [0.47] NSRect: {{50, 221.5}, {60, 60}}
  [0.50] NSRect: {{50, 222}, {60, 60}}
  [0.53] NSRect: {{50, 222}, {60, 60}}
  [0.57] NSRect: {{50, 222}, {60, 60}}
  ...[snipped 0.60 to 1.10]...
  [1.13] NSRect: {{50, 222}, {60, 60}}
  [1.17] NSRect: {{50, 222}, {60, 60}}
  Elapsed time:  1.167326   

 This view reaches its final position after half a second has passed. The dynamic animator does 
not pause until 1.17 seconds—more than double the required time. In user experience terms, 
those extra 0.67 seconds can feel like forever.  

 The reason for the delay becomes clear when you sneak down into the animator and look up 
the view’s linear and angular velocity:  

  [0.60] NSRect: {{50, 222}, {60, 60}}
      Linear Velocity: NSPoint: {1.8314272, 1.0867469}
      Angular Velocity: 0.000001   

 Those values do not drop to 0 until that extra time has passed:  

  [1.17] NSRect: {{50, 222}, {60, 60}}
      Linear Velocity: NSPoint: {0, 0}
      Angular Velocity: 0.000000   

 In a practical sense, the velocities are meaningless once the view frame stops changing. When 
you know in advance that no outside forces will impel a view to start moving again after it’s 
reached a resting point, leverage this information. Trim down your waiting time by tracking a 
view’s frame.  

  Listing   6-1    defines a watcher class that monitors views until they stop changing. After a view 
has remained fixed for a certain period of time (here for at least 0.1 seconds), this class contacts 
a delegate and lets it know that the view has stopped moving. That callback enables you to 
update your dynamic animator and remove the behavior so the animator can more quickly 
come to a pause.  

 When run with the same snap animation as the previous example, the new watcher detects the 
final frame at 0.50. By 0.60, the delegate knows to stop the animation, and the entire sequence 
stops nearly 0.55 seconds earlier:  

  [0.47] NSRect: {{50, 221.5}, {60, 60}}
  [0.50] NSRect: {{50, 222}, {60, 60}}
  [0.53] NSRect: {{50, 222}, {60, 60}}
  [0.57] NSRect: {{50, 222}, {60, 60}}
  [0.60] NSRect: {{50, 222}, {60, 60}}
  Elapsed time: 0.617352   
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 Use this kind of short-cutting approach to re-enable GUI items that might otherwise be inac-
cessible to users once you know that the animation has come to a usable end point. While 
this example implements a pixel-level test, you might vary this approach to detect low angular 
velocities and other “close enough” tests to help end the animation effects within a reasonable 
amount of time.  

  Listing 6-1   Watching Views  

 // Info stores the most recent frame, count, delegate
  @interface WatchedViewInfo : NSObject
  @property (nonatomic) CGRect frame;
  @property (nonatomic) NSUInteger count;
  @property (nonatomic) CGFloat pointLaxity;
  @property (nonatomic) id <ViewWatcherDelegate> delegate;
  @end
  
  @implementation WatchedViewInfo
  @end
  
  // Watcher class
  @implementation ViewWatcher
  {
      NSMutableDictionary *dict;
  }
  
  - (instancetype) init
  {
      if (!(self = [super init])) return self;
      dict = [NSMutableDictionary dictionary];
      _pointLaxity = 10;
      return self;
  }
  
  // Determine whether two frames are "close enough"
  BOOL CompareFrames(CGRect frame1, CGRect frame2, CGFloat laxity)
  {
      if (CGRectEqualToRect(frame1, frame2)) return YES;
      CGRect intersection = CGRectIntersection(frame1, frame2);
      CGFloat testArea =
          intersection.size.width * intersection.size.height;
      CGFloat area1 = frame1.size.width * frame1.size.height;
      CGFloat area2 = frame2.size.width * frame2.size.height;
      return ((fabs(testArea - area1) < laxity) &&
              (fabs(testArea - area2)  < laxity));
  }
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  // See whether the view has stopped moving
  - (void) checkInOnView: (NSTimer *) timer
  {
      int kThreshold = 3; // must remain for 0.3 secs
  
      // Fetch the view and the info
      UIView *view = (UIView *) timer.userInfo;
      NSNumber *key = @((int)view);
      WatchedViewInfo *watchedViewInfo = dict[key];
  
      // Matching frame? If so update count
      BOOL steadyFrame = CompareFrames(watchedViewInfo.frame,
          view.frame, _pointLaxity);
      if (steadyFrame) watchedViewInfo.count++;
  
      // Threshold met
      if (steadyFrame && (watchedViewInfo.count > kThreshold))
      {
          [timer invalidate];
          [dict removeObjectForKey:key];
          [watchedViewInfo.delegate viewDidPause:view];
          return;
      }
  
      if (steadyFrame) return;
  
      // Replace frame with new frame
      watchedViewInfo.frame = view.frame;
      watchedViewInfo.count = 0;
  }
  
  - (void) startWatchingView: (UIView *) view
      withDelegate:  (id <ViewWatcherDelegate>) delegate
  {
      NSNumber *key = @((int)view);
      WatchedViewInfo *watchedViewInfo = [[WatchedViewInfo alloc] init];
      watchedViewInfo.frame = view.frame;
      watchedViewInfo.count = 1;
      watchedViewInfo.delegate = delegate;
      dict[key] = watchedViewInfo;
  
      [NSTimer scheduledTimerWithTimeInterval:0.03 target:self
          selector:@selector(checkInOnView:) userInfo:view repeats:YES];
  }
  @end   



131Detecting Pauses

  Creating a Frame-Watching Dynamic Behavior  

 While the solution in  Listing   6-1    provides general view oversight, you can implement the frame 
checker in a much more intriguing form: as the custom dynamic behavior you see in  Listing 
  6-2   . This approach that adapts  Listing   6-1    to a new form requires just a couple adjustments to 
work as a behavior:  

    ■   The behavior from the  checkInOnView:  method is now implemented in the behavior’s 
 action  property. This block is called directly by the animator, using its own timing 
system, so the threshold is slightly higher in this implementation than in  Listing   6-1   .   

   ■   Instead of calling back to a delegate, this approach unloads both the watcher and the 
client behavior directly in the  action  block. This may be problematic if the behavior 
controls additional items, but for snap behaviors and their single items, it is a pretty safe 
approach.    

 To enable the watcher, you must add it to the animator as a separate behavior. Here’s how you 
allocate it and initialize it with a client view and an affected behavior:  

  UISnapBehavior *snapBehavior = [[UISnapBehavior alloc]
      initWithItem:testView snapToPoint:p];
  [self.animator addBehavior:snapBehavior];
  WatcherBehavior *watcher = [[WatcherBehavior alloc]
      initWithView:testView behavior:snapBehavior];
  [self.animator addBehavior:watcher];   

 Once it is added, it works just like  Listing   6-1   , iteratively checking the view’s frame to wait for a 
steady state.  

  Listing 6-2   Watching Views with a Dynamic Behavior  

 // Create custom frame watcher
  @interface WatcherBehavior : UIDynamicBehavior
  - (instancetype) initWithView: (UIView *) view
      behavior: (UIDynamicBehavior *) behavior;
  @property (nonatomic) CGFloat pointLaxity; // defaults to 10
  @end
  
  // Store the view, its most recent frame, and a count
  @interface WatcherBehavior ()
  @property (nonatomic) UIView *view;
  @property (nonatomic) CGRect mostRecentFrame;
  @property (nonatomic) NSInteger count;
  @property (nonatomic) UIDynamicBehavior *customBehavior;
  @end
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  @implementation WatcherBehavior
  - (instancetype) initWithView: (UIView *) view
      behavior: (UIDynamicBehavior *) behavior
  {
      if (!(self = [super init])) return self;
  
      // Initialize instance
      _view = view;
      _mostRecentFrame = _view.frame;
      _count = 0;
      _pointLaxity = 10;
      _customBehavior = behavior;
  
      // Create custom action for the behavior
      __weak typeof(self) weakSelf = self;
      self.action = ^{
          __strong typeof(self)  strongSelf = weakSelf;
          UIView *view = strongSelf.view;
  
          CGRect currentFrame = view.frame;
          CGRect recentFrame = strongSelf.mostRecentFrame;
          BOOL steadyFrame = CompareFrames(currentFrame,
              recentFrame, strongSelf.pointLaxity);
          if (steadyFrame) strongSelf.count++;
  
          NSInteger kThreshold = 5;
          if (steadyFrame && (strongSelf.count > kThreshold))
          {
              [strongSelf.dynamicAnimator
                  removeBehavior:strongSelf.customBehavior];
              [strongSelf.dynamicAnimator removeBehavior:strongSelf];
              return;
          }
  
          if (!steadyFrame)
          {
              strongSelf.mostRecentFrame = currentFrame;
              strongSelf.count = 0;
          }
      };
  
      return self;
  }
  @end     
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  Implementing Snap Zones  

 One of my favorite dynamic animator tricks involves creating snap zones—areas of your inter-
face that pull in dragged items once they overlap a particular region. This approach allows you 
to collect items into well-managed zones and offer a pleasing “snap-into-place” animation. In 
the general form shown in  Listing   6-3   , there’s no further test beyond whether a dragged view 
has strayed into a zone. However, you might want to expand the approach to limit blue items 
to blue zones or red items to red zones, and so forth.  

  Listing   6-3    assumes that users will have access to multiple zones and even that a view might 
move from one zone directly to another. It uses a tagging scheme to keep track of this potential 
reparenting. A free view has no current parent and can move freely about. When a free view 
overlaps a snap zone, however, it suspends dragging by disabling the view’s gesture recognizer 
and adds a snap-to-parent behavior. The view slides into place into its new parent. Once it 
arrives, as the dynamic animator pauses, the recognizer is re-enabled.  

 Allowing a view to escape from its new parent’s bounds is the tricky bit—and the motivating 
reason for the view tagging. You do not want a view to recapture its child unless the drag-
ging gesture has ended, which is why this method keeps track of the gesture state. With new 
parents, however, the snap behavior is added (and the gesture is suspended) as soon as a view 
strays over the line. Balancing the escapes and the captures ensures that the user experience is 
snappy and responsive and does not thwart the user’s desires to remove a view from a parent.  

  Listing 6-3   Handling Multiple Snap Zones  

 - (void) draggableViewDidMove: (NSNotification *) note
  {
      // Check for view participation
      UIView *draggedView = note.object;
      UIView *nca = [draggedView nearestCommonAncestorWithView:
          _animator.referenceView];
      if (!nca) return;
  
      // Retrieve state
      UIGestureRecognizer *recognizer = (UIGestureRecognizer *)
          draggedView.gestureRecognizers.lastObject;
      UIGestureRecognizerState state = [recognizer state];
  
      // View frame and current attachment
      CGRect draggedFrame = draggedView.frame;
      BOOL free = draggedView.tag == 0;
  
      for (UIView *dropZone in _dropZones)
      {
          // Make sure all drop zones are views



134 Chapter 6 Dynamic Animators

          if (![dropZone isKindOfClass:[UIView class]])
              continue;
  
          // Overlap?
          CGRect dropFrame = dropZone.frame;
          BOOL overlap = CGRectIntersectsRect(draggedFrame, dropFrame);
  
          // Free moving
          if (!overlap && free)
          {
              continue;
          }
  
          // Newly captured
          if (overlap &&  free)
          {
              if (suspendedRecognizer)
              {
                  NSLog(@"Error: attempting to suspend second recognizer");
                  break;
              }
  
              // New parent.
              // CAPTURED is an integer offset for tagging
              suspendedRecognizer = recognizer;
              suspendedRecognizer.enabled = NO; // stop!
              draggedView.tag = CAPTURED + dropZone.tag; // mark as captured
              UISnapBehavior *behavior = [[UISnapBehavior alloc]
                  initWithItem:draggedView
                  snapToPoint:RectGetCenter(dropFrame)];
              [_animator addBehavior:behavior];
              break;
          }
  
          // Is this the current parent drop zone?
          BOOL isParent = (dropZone.tag + CAPTURED == draggedView.tag);
  
          // Current parent
          if (overlap && isParent)
          {
              switch (state)
              {
                  case UIGestureRecognizerStateEnded:
                  {
                      // Recapture
                      UISnapBehavior *behavior = [[UISnapBehavior alloc]
                          initWithItem:draggedView
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                          snapToPoint:RectGetCenter(dropFrame)];
                      [_animator addBehavior:behavior];
                      break;
                  }
                  default:
                  {
                      // Still captured  but no op
                      break;
                  }
              }
              break;
          }
  
          // New parent
          if (overlap)
          {
              suspendedRecognizer = recognizer;
              suspendedRecognizer.enabled = NO; // stop!
              draggedView.tag = CAPTURED + dropZone.tag;
              UISnapBehavior *behavior = [[UISnapBehavior alloc]
                  initWithItem:draggedView
                  snapToPoint:RectGetCenter(dropFrame)];
              [_animator addBehavior:behavior];
              break;
          }
      }
  }    

  Leveraging Real-World Physics  

 The built-in gravity dynamic animator consists of a downward force. You can adjust the force’s 
vector to point gravity in other directions, but it’s a static system. You can, however, integrate 
the gravity behavior with Core Motion to produce a much more satisfying effect. Apple’s Core 
Motion framework enables your apps to receive motion-based data from device hardware, 
including the onboard accelerometer and gyroscope. The framework converts motion data into 
a form of input that your device can use to coordinate application changes with the way your 
user’s device is held and moved over time.  

  Listing   6-4    builds a motion manager singleton. It uses Core Motion to listen for accelerom-
eter updates, and when it receives them, it calculates a working vector and posts notifications 
with that information. You may be curious about that extra 0.5 added to the y component; it 
produces a more natural vector for holding a device in your hand.  
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  Listing 6-4   Broadcasting Motion Updates  

 #define VALUE(struct) ({ __typeof__(struct) __struct = struct; \
      [NSValue valueWithBytes:&__struct \
      objCType:@encode(__typeof__(__struct))]; })
  
  NSString *const MotionManagerUpdate = @"MotionManagerUpdate";
  NSString *const MotionVectorKey = @"MotionVectorKey";
  
  static MotionManager *sharedInstance = nil;
  
  @interface MotionManager ()
  @property (nonatomic, strong) CMMotionManager *motionManager;
  @end
  
  @implementation MotionManager
  + (instancetype) sharedInstance
  {
      if (!sharedInstance)
          sharedInstance = [[self alloc] init];
  
      return sharedInstance;
  }
  
  - (void) shutDownMotionManager
  {
      NSLog(@"Shutting down motion manager");
      [_motionManager stopAccelerometerUpdates];
      _motionManager = nil;
  }
  
  - (void) establishMotionManager
  {
      if (_motionManager)
          [self shutDownMotionManager];
  
      // Establish the motion manager
      NSLog(@"Establishing motion manager");
      _motionManager = [[CMMotionManager alloc] init];
  }
  
  - (void) startMotionUpdates
  {
      if (!_motionManager)
          [self establishMotionManager];
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      if (_motionManager.accelerometerAvailable)
          [_motionManager
           startAccelerometerUpdatesToQueue:[[NSOperationQueue alloc] init]
           withHandler:^(CMAccelerometerData *data, NSError *error)
           {
               CGVector vector = CGVectorMake(data.acceleration.x, -
                   (data.acceleration.y + 0.5));
               NSDictionary *dict  = @{MotionVectorKey:VALUE(vector)};
               [[NSNotificationCenter defaultCenter]
                   postNotificationName:MotionManagerUpdate
                   object:self userInfo:dict];
           }];
  
  }
  @end   

  Connecting a Gravity Behavior to Device Acceleration  

 On the other end of things, create an observer for motion updates. The following snippet 
builds a gravity behavior and updates its  gravityDirection  property whenever the physical 
device moves:  

  // Build device gravity behavior
  _deviceGravityBehavior = [[UIGravityBehavior alloc] initWithItems:@[]];
  
  // Add observer
  __weak typeof(self) weakSelf = self;
  id observer = [[NSNotificationCenter defaultCenter]
      addObserverForName:MotionManagerUpdate object:nil
      queue:[NSOperationQueue mainQueue]
      usingBlock:^(NSNotification *note) {
          __strong typeof(self) strongSelf = weakSelf;
  
          // Retrieve vector
          NSDictionary *dict = note.userInfo;
          NSValue *value = dict[MotionVectorKey];
          CGVector vector;
          [value getValue:&vector];
  
          // Set gravity direction to that vector
          strongSelf.deviceGravityBehavior.gravityDirection = vector;
  }];
  [_observers addObject:observer];   

 As the  gravityDirection  property updates, any child items (none are yet added in this code) 
respond to the new force, moving in the appropriate direction.   
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  Creating Boundaries  

 One of the biggest annoyances about gravity is that it never stops. When you apply a gravity 
behavior to a view, it will accelerate off the screen and keep going on essentially forever. 
Bye-bye, view. To avoid this, add a boundary. The  UICollisionBehavior  has a built-in solu-
tion for enclosures. Enable its  translatesReferenceBoundsIntoBoundary  property, and it 
sets the animator’s reference view as a default boundary for its items:  

  _boundaryBehavior = [[UICollisionBehavior alloc] initWithItems:@[]];
  _boundaryBehavior.translatesReferenceBoundsIntoBoundary = YES;   

 When building behaviors like this, it’s important to spot-check your key steps. Remember that 
animators own behaviors, and behaviors own items, which are typically views. Don’t forget 
to add items to each behavior that affects them. For this example of device-based gravity, add 
views to both the gravity behavior  and  the boundary behavior. Also, make sure to add the 
behaviors to the animator. Always make sure your views fall fully within the collision boundar-
ies  before  adding a behavior to the animator. Views that cross the boundary or lie outside the 
boundary will not respond properly to the “keep items within the reference  bounds” rule.  

 Collision behaviors also enable views to bounce off each other. By default, any view added to a 
collision behavior will participate not only in view-to-boundary collisions but also in view-to-
view collisions. If for any reason you don’t want this to happen, you can update the behavior’s 
 collisionMode  property to exclude item-to-item collisions:  

  _boundaryBehavior = [[UICollisionBehavior alloc] initWithItems:@[]];
  _boundaryBehavior.translatesReferenceBoundsIntoBoundary = YES;
  _boundaryBehavior.collisionMode = UICollisionBehaviorModeBoundaries;    

  Enhancing View Dynamics  

 Dynamic item behaviors customize view traits—making them springier or duller, heavier or 
lighter, smoother or stickier, and so forth. Unlike the other built-in behaviors, dynamic item 
behaviors focus less on external forces and more on individual view properties. For example, 
say you have views that you want to add bounce to. Create a dynamic item behavior and adjust 
its  elasticity  property:  

  _elasticityBehavior = [[UIDynamicItemBehavior alloc] initWithItems:items];
  _elasticityBehavior.elasticity = 0.8; // Higher values are more elastic
  [_animator addBehavior:_elasticityBehavior];   

 Dynamic item properties include the following:  

    ■    Rotation (   allowsRotation   ) —This property allows or disallows view rotation as the view 
participates in the dynamic system. When it is enabled (the default), views may rotate as 
they collide with other items.   

   ■    Angular resistance (   angularResistance   ) —Angular resistance creates a damping effect 
on rotation. As the value of this property rises from 0 to 1, views stop tumbling more 
quickly.   
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   ■    Resistance (   resistance   ) —Also ranging from 0 to 1, the linear resistance property is 
analogous to angular resistance. Instead of damping rotation, it limits linear velocity. You 
can think of this as a natural viscosity in the view’s “atmosphere,” where 0 is close to 
operating in a vacuum, and 1 is like moving through thick syrup.   

   ■    Density (   density   ) —An item’s  density  property controls its virtual mass. Any dynamic 
behavior that uses mass as a factor (such as collisions and friction) responds to the 
current value of this property, which defaults to 1. Because items have density, a view 
that’s twice the size of another along each dimension will contribute four times the 
effective mass when set to the same density or equal mass when set to a quarter of the 
density.   

   ■    Elasticity (   elasticity   ) —Ranging from 0 to 1, this property establishes how elastic a 
view’s collisions will be. At 0, collisions are lifeless, with no bounce at all. A setting of 1 
creates completely elastic collisions with wildly bouncy items.   

   ■    Friction (   friction   ) —The  friction  property creates linear resistance, producing a kind 
of “stickiness” for when items slide across each other. As the  friction  setting rises from 
0 (friction-free) to 1 (the strongest possible friction), views tend to disperse energy on 
contact and connect more strongly to each other and to boundaries.      

  Custom Behaviors  

 Apple provides a library of default behaviors that includes forces (attachments, collisions, 
gravity, pushes, and snaps) and “dynamic items” that describe how a physics body reacts to 
forces. You can also create your own behaviors that operate with dynamic animators. This 
section discusses how you might do this in your own projects.  

 You choose from two approaches when creating custom dynamic behaviors. First, you can 
hook your changes onto an existing behavior and transform its updates to some new style. 
That’s the approach Apple uses in the Dynamic Catalog example that converts an attachment 
point animator to a boundary animation. It transforms an elastic attachment to view morph-
ing. Second, you can create a new behavior and establish your own rules for coalescing its 
results over time. This approach enables you create any kind of behavior you can imagine, 
as long as you express it with regard to the animator’s timeline. Both have  advantages and 
drawbacks.  

  Creating Custom Dynamic Items  

 Before jumping into custom behaviors, you need to understand dynamic items more fully. 
Dynamic items are the focal point of the dynamic animation process. Until this point, I have 
used views as dynamic items—after all, they provide the  bounds ,  center , and  transform  prop-
erties required to act in this role—but dynamic items are not necessarily views. They are merely 
objects that conform to the  UIDynamicItem  protocol. This protocol ensures that these proper-
ties are available from conforming objects. Because of this abstraction, you can dynamically 
animate custom objects as easily as you animate views.  
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 Consider the following class. It consists of nothing more than three properties, ensuring that it 
conforms to the  UIDynamicItem  protocol:  

  @interface CustomDynamicItem : NSObject <UIDynamicItem>
  @property (nonatomic) CGRect bounds;
  @property (nonatomic) CGPoint center;
  @property (nonatomic) CGAffineTransform transform;
  @end
  @implementation CustomDynamicItem
  @end   

 After adding this class to your project, you can instantiate and set properties however you like. 
For example, you might use the following lines of code to create a new custom item:  

  item = [[CustomDynamicItem alloc] init];
  item.bounds = CGRectMake(0, 0, 100, 100);
  item.center = CGPointMake(50, 50);
  item.transform = CGAffineTransformIdentity;   

 Once you have established a dynamic item, you may pass it to a behavior and add that behav-
ior to an animator, just as you would with a view:  

  animator = [[UIDynamicAnimator alloc] init];
  UIPushBehavior *push = [[UIPushBehavior alloc]
      initWithItems:@[item] mode:UIPushBehaviorModeContinuous];
  push.angle = M_PI_4;
  push.magnitude = 1.0;
  [animator addBehavior:push];
  push.active = YES;   

 What happens next, however, may surprise you. If you monitor the item, you’ll find that its 
center property updates, but its bounds and transform remain untouched:  

  2014-12-01 13:33:08.177 Hello World[55151:60b] Bounds: [0, 0, 100, 100],  Center: 
   (86 86),  Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
  1.000000} Translation: {0.000000, 0.000000}
  2014-12-01 13:33:09.176 Hello World[55151:60b] Bounds: [0, 0, 100, 100],  Center: 
   (188 188) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
  1.000000} Translation: {0.000000, 0.000000}
  2014-12-01 13:33:10.175 Hello World[55151:60b] Bounds: [0, 0, 100, 100],  Center: 
   (351 351) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
  1.000000} Translation: {0.000000, 0.000000}
  2014-12-01 13:33:11.176 Hello World[55151:60b] Bounds: [0, 0, 100, 100],  Center: 
   (568 568) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
  1.000000} Translation: {0.000000, 0.000000}   

 This curious state of affair happens because the dynamic animator remains completely agnostic 
as to the kind of underlying object it serves. This abstract  CustomDynamicItem  class provides 
no links between its  center  property and its  bounds  property the way a view would. If you 
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want these items to update synchronously, you must add corresponding methods. For example, 
you might implement a solution like this:  

  - (void) setCenter:(CGPoint)center
  {
      _center = center;
      _bounds = RectAroundCenter(_center, _bounds.size);
  }
  
  - (void) setBounds:(CGRect)bounds
  {
      _bounds = bounds;
      _center = RectGetCenter(bounds);
  }   

 I’m not going to present a full implementation that allows the item to respond to transform 
changes—for two reasons. First, in real life, you almost never want to create custom items in 
this fashion. Second, when you actually do need this, you’ll be far better off using an actual 
view as an underlying model. Allowing a  UIView  instance to do the math for you will save you 
a lot of grief, especially since you’re trying to emulate a view in the first place.  

  Note 

 I am unaware of any workaround that will allow you to create non-rectangular dynamic items at 
this time.    

  Subverting Dynamic Behaviors  

 As mentioned earlier, Apple created a Dynamic Catalog example that redirects the results of an 
attachment behavior to create a bounds animation. It accomplishes this by building an abstract 
dynamic item class. This class redirects all changes applied to the item’s center to a client view’s 
width and height. This means that while the physics engine thinks it’s bouncing around a view 
in space, the actual expressions of those dynamics are producing  bounds  shifts. The following 
code performs this mapping:  

  // Map bounds to center
  - (CGPoint)center
  {
      return CGPointMake(_item.bounds.size.width, _item.bounds.size.height);
  }
  
  // Map center to bounds
  - (void)setCenter:(CGPoint)center
  {
      _item.bounds = CGRectMake(0, 0, center.x, center.y);
  }   
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 I dislike this approach for the following reasons:  

    ■   The animator isn’t animating the view’s center at the point you think it is. You must 
establish an anchor point within the view’s own coordinate system so the center values 
make any sense to use.   

   ■   All you’re getting back from this exercise is a damped sinusoid, as in  Listing   5-2   . Just use 
a damped sinusoid to begin with, and you’ll avoid any unintentional side effects.   

   ■   How often are you just sitting around in your development job, thinking, “Hey, I’ll 
just take the output of a physics emulation system and map its results into another 
dimension so I can create an overly complex sample application that has no general 
reuse value?” Right, me either.     

  Better Custom Dynamic Behaviors  

 As you read this section, remember that  better  is a relative term. The biggest problem when it 
comes to custom dynamic behaviors is that Apple has not released a public API that keeps a 
completely custom item animating until it reaches a coalesced state. This means that while 
 Listing   6-5    offers a more satisfying solution than Apple’s solution, it’s still a hack.  

 The main reason for this is that while built-in dynamic behaviors can tell the animator “Hey, 
I’m done now” by using private APIs that allow the animator to stop, you and I cannot tickle 
the animator to make sure it keeps on ticking. Enter this class’s “clock mandate.” It’s a gravity 
behavior added to the  ResizableDynamicBehavior  as a child.  

 The gravity behavior works on an invisible view, which is itself added to the animated view so 
that it belongs to the right hierarchy. (This is an important step so you don’t generate excep-
tions.) Once it is added, the gravity behavior works forever. When you’re ready for the dynamic 
behavior to end, simply remove it from its parent. Without this extra trick, the animation ends 
on its own about a half second after you start it.  

 I developed the damped equation used in the  action  block after playing with graphing. As 
 Figure   6-1    shows, I was looking for a curve that ended after about one and a half cycles. You 
cannot depend on the animator’s elapsed time, which doesn’t reset between behaviors. To 
power my curve, I made sure to create a clock for each behavior and use that in the action 
block.  

 

 Figure 6-1   A fast-decaying sin curve provides a nice match to the view animation.         
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 A few final notes on this one:  

    ■   You need to attach some sort of built-in animator like gravity, or your  action  property 
will not be called. Gravity offers the simple advantage of never ending.   

   ■   You must establish the  bounds  as is done here, or your view immediately collapses to a 
0 size.   

   ■   The  identity  transform in the last step isn’t strictly necessary, but I wanted to ensure 
that I cleaned up after myself as carefully as possible.   

   ■   To slow down the effect, reduce the number of degrees traveled per second. In this case, 
it goes 2 * pi every second.   

   ■   To increase or decrease the animation magnitude, adjust the multiplier. Here it is 1 + 0.5 
*  the scale.  The 1 is the identity scale, and you should keep it as is. Tweak the 0.5 value 
up to expand the scaling or down to diminish it.   

   ■   You can bring the animation to coalescence faster or slower by adjusting the final 
multiplier in the exponentiation. Here it is set to 2.0, which produces fairly rapid 
damping. Higher values produce stronger damping; lower values allow the animation to 
continue longer.    

  Listing 6-5   Extending a Custom Behavior’s Lifetime  

 @interface ResizableDynamicBehavior ()
  @property (nonatomic, strong) UIView *view;
  @property (nonatomic) NSDate *startingTime;
  @property (nonatomic) CGRect frame;
  @property (nonatomic) UIGravityBehavior *clockMandate;
  @property (nonatomic) UIView *fakeView;
  @end
  
  @implementation ResizableDynamicBehavior
  - (instancetype) initWithView: (UIView *) view
  {
      if (!view) return nil;
      if (!(self = [super init])) return  self;
      _view = view;
      _frame = view.frame;
  
      // Establish a falling view to keep the timer going
      _fakeView = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 10, 10)];
      [view addSubview:_fakeView];
      _clockMandate = [[UIGravityBehavior alloc] initWithItems:@[_fakeView]];
      [self addChildBehavior:_clockMandate];
  
      // The action block is called at every animation cycle
      __weak typeof(self) weakSelf = self;
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      self.action = ^{
          __strong typeof(self) strongSelf = weakSelf;
  
          // Start or update the clock
          if (!strongSelf.startingTime)
               strongSelf.startingTime = [NSDate date];
          CGFloat time = [[NSDate date]
              timeIntervalSinceDate:strongSelf.startingTime];
  
          // Calculate the current change
          CGFloat scale =  1 + 0.5 * sin(time * M_PI * 2) *
              exp(-1.0 * time * 2.0);
  
          // Apply the bounds and transform
          CGAffineTransform transform =
              CGAffineTransformMakeScale(scale, scale);
          strongSelf.view.bounds = (CGRect){.size = strongSelf.frame.size};
          strongSelf.view.transform = transform;
          [strongSelf.dynamicAnimator
              updateItemUsingCurrentState:strongSelf.view];
  
          // Stop after 3 * Pi
          if (time > 1.5)
          {
              [strongSelf removeChildBehavior:strongSelf.clockMandate];
              [strongSelf.fakeView removeFromSuperview];
              strongSelf.view.transform = CGAffineTransformIdentity;
          }
      };
  
      return self;
  }
  @end    

  Custom Secondary Behaviors  

 You do far less work when your custom behavior acts side-by-side with a known system-
supplied one. You don’t have to establish an overall animation end point, the way  Listing   6-5    
does. Consider  Listing   6-6   , which creates a behavior that modifies a view transformation over 
time. This class is duration agnostic. Its only customizable feature is an acceleration property, 
which establishes how fast the changes accelerate to an end point.  

 With custom behaviors, it’s really important that you not tie yourself to a set timeline. While 
a system-supplied snap behavior might end after 80 updates or so, you should never rely on 
knowing that information in advance. In contrast, with keyframes, you are free to interpolate 
a function over time. With dynamics, you establish a system that  coalesces , reaching a natural 
stopping point on its own.  
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 For example,  Listing   6-6    uses velocity and acceleration to drive its changes from 0% to 100%, 
applying an easing function to that transit to produce a smooth animated result. At no point 
does the behavior reference elapsed time. Instead, all updates are driven by the dynamic anima-
tion’s heartbeat and applied whenever the  action  method is called.  

  Figure   6-2    shows the animation in action, with the two behaviors acting in parallel. As the 
views draw near to their snap points, they apply the requested transforms to finish with a coor-
dinated pile of views.  

 

 Figure 6-2   In this animation, a snap behavior draws the views together, and a transformation 
behavior angles each item to form a tight nest.         

  Listing 6-6   Building a Transform-Updating Behavior  

 - (instancetype) initWithItem: (id <UIDynamicItem>) item
      transform: (CGAffineTransform) transform;
  {
      if (!(self = [super init])) return self;
  
      // Store the passed information
      _item = item;
      _originalTransform = item.transform;
      _targetTransform = transform;
  
      // Initialize velocity and acceleration
      _velocity = 0;
      _acceleration = 0.0025;
  
      // The weak and strong workarounds used here avoid retain cycles
      // when using blocks.
      ESTABLISH_WEAK_SELF;
      self.action = ^(){
          ESTABLISH_STRONG_SELF;
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          // Pull out the original and destination transforms
          CGAffineTransform t1 = strongSelf.originalTransform;
          CGAffineTransform t2 = strongSelf.targetTransform;
  
          // Original
          CGFloat xScale1 = sqrt(t1.a * t1.a + t1.c * t1.c);
          CGFloat yScale1 = sqrt(t1.b * t1.b + t1.d * t1.d);
          CGFloat  rotation1 = atan2f(t1.b, t1.a);
  
          // Target
          CGFloat xScale2 = sqrt(t2.a * t2.a + t2.c * t2.c);
          CGFloat yScale2 = sqrt(t2.b * t2.b + t2.d * t2.d);
          CGFloat rotation2 = atan2f(t2.b, t2.a);
  
          // Calculate the animation acceleration progress
          strongSelf.velocity = velocity + strongSelf.acceleration;
          strongSelf.percent = strongSelf.percent + strongSelf.velocity;
          CGFloat percent = MIN(1.0, MAX(strongSelf.percent, 0.0));
          percent = EaseOut(percent, 3);
  
          // Calculated items
          CGFloat targetTx = Tween(t1.tx, t2.tx, percent);
          CGFloat targetTy = Tween(t1.ty, t2.ty, percent);
          CGFloat targetXScale = Tween(xScale1, xScale2, percent);
          CGFloat targetYScale = Tween(yScale1, yScale2, percent);
          CGFloat targetRotation = Tween(rotation1, rotation2, percent);
  
          // Create transforms
          CGAffineTransform scaleTransform =
              CGAffineTransformMakeScale(targetXScale, targetYScale);
          CGAffineTransform rotateTransform  =
              CGAffineTransformMakeRotation(targetRotation);
          CGAffineTransform translateTransform =
              CGAffineTransformMakeTranslation(targetTx, targetTy);
  
          // Combine and apply transforms
          CGAffineTransform t = CGAffineTransformIdentity;
          t = CGAffineTransformConcat(t, rotateTransform);
          t = CGAffineTransformConcat(t, scaleTransform);
          t = CGAffineTransformConcat(t, translateTransform);
          strongSelf.item.transform = t;
      };
  
      return self;
  }     
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  Collection Views and Dynamic Animators  

 Leveraging the power of dynamic animators in collection views is possible courtesy of a few 
UIKit extensions. Dynamic animators add liveliness to your presentations during scrolling and 
when views enter and leave the system. The dynamic behavior set is identical to that used for 
normal view animation, but the collection view approach requires a bit more overhead and 
bookkeeping as views may keep appearing and disappearing during scrolls.  

 The core of the dynamic animator system is the  UIDynamicItem  protocol. The 
 UICollectionViewLayoutAttributes  class, which represents items in the collection 
view, conforms to this protocol. Each instance provides the required  bounds ,  center , and 
 transform  properties you need to work with dynamic animators. So although you don’t 
work directly with views, you’re still well set to introduce dynamics.  

  Custom Flow Layouts  

 The key to using dynamic animation classes with collection views is to build your own custom 
 UICollectionViewFlowLayout  subclass. Flow layouts create organized presentations in your 
application. Their properties and instance methods specify how the flow sets itself up to place 
items onscreen. In the most basic form, the layout properties provide you with a geometric 
vocabulary, where you talk about row spacing, indentation, and item-to-item margins. With 
custom subclasses, you can extend the class to produce eye-catching and nuanced results.  

 To support dynamic animation, your custom class must coordinate with an animator instance. 
You typically set it up in your flow layout initializer by using the  UIDynamicAnimator  collec-
tion view-specific initializer. This prepares the animator for use with your collection view and 
enables it to take control of reporting item attributes on your behalf. As you’ll see, the dynamic 
animator takes charge of many methods you normally would have to implement by hand.  

 The following init method allocates an animator and adds a custom “spinner” behavior. The 
 UIDynamicItemBehavior  class enables you to add angular velocity to views, creating a spin-
ning effect, which you see in action in  Figure   6-3   :  

  - (instancetype) initWithItemSize: (CGSize) size
  {
      if (!(self = [super init])) return self;
       _animator = [[UIDynamicAnimator alloc] 
           initWithCollectionViewLayout:self]; 
       _spinner = [[UIDynamicItemBehavior alloc] init]; 
       _spinner.allowsRotation = YES; 
       [_animator addBehavior:_spinner]; 
      self.scrollDirection = UICollectionViewScrollDirectionHorizontal;
      self.itemSize = size;
      return self;
  }   
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 Figure 6-3   Allowing dynamic items to rotate enables you to add angular velocities, causing views 
to tilt and spin.          

  Returning Layout Attributes  

 As mentioned earlier, a dynamic animator can take charge of reporting layout attributes. The 
following methods do all the work, redirecting the normal geometry through the animator:  

  - (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect
  {
      return  [_animator itemsInRect:rect]; 
  }
  
  - (UICollectionViewLayoutAttributes *)layoutAttributesForItemAtIndexPath:
      (NSIndexPath *)indexPath
  {
      UICollectionViewLayoutAttributes *dynamicLayoutAttributes =
           [_animator layoutAttributesForCellAtIndexPath:indexPath]; 
  
      // Check whether the attributes were properly generated
      return dynamicLayoutAttributes ?
          [_animator layoutAttributesForCellAtIndexPath:indexPath] :
          [super layoutAttributesForItemAtIndexPath:indexPath];
  }
  
  - (BOOL)shouldInvalidateLayoutForBoundsChange:(CGRect)newBounds
  {
      return YES;
  }   
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 For safety, the second method checks that the animator properly reports attributes. If it fails, 
the method falls back to the default implementation.   

  Updating Behaviors  

 With collection views, the hardest work involves coordinating items with behaviors. Although 
you can allow behaviors to control items that are no longer onscreen, as a general rule, you 
probably want to weed out any items that have left the display and add any items that have 
moved into place.  Listing   6-7    demonstrates this approach.  

 You start by calculating the onscreen rectangle and request the array of items that appear in 
that space. Use each item’s index path to compare it to items owned by a behavior. If a behav-
ior item does not appear in the onscreen list, remove it. If an onscreen item isn’t yet owned by 
the behavior, add it.  

 Although you mostly just add physics behaviors and let them run, I decided to tie  Listing   6-7    
to user interaction. The speed and direction of the backing scroll view add “impulses” to each 
view, nudging their angular velocity in one direction or the other.  

  Listing 6-7   Adding Physics-Based Animation to Collection Views  

 // Scroll view delegate method establishes the current speed
  - (void)scrollViewDidScroll:(UIScrollView *)scrollView
  {
      scrollSpeed = scrollView.contentOffset.x - previousScrollViewXOffset;
      previousScrollViewXOffset = scrollView.contentOffset.x;
  }
  
  // Prepare the flow layout
  - (void) prepareLayout
  {
      [super prepareLayout];
  
      // The collection view isn't established in init, catch it here.
      if (!setupDelegate)
      {
          setupDelegate = YES;
          self.collectionView.delegate = self;
      }
  
      // Retrieve onscreen items
      CGRect currentRect = self.collectionView.bounds;
      currentRect.size = self.collectionView.frame.size;
      NSArray *items = [super layoutAttributesForElementsInRect:currentRect];
  
      // Clean up any item that's now offscreen
      NSArray *itemPaths = [items valueForKey:@"indexPath"];
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      for (UICollectionViewLayoutAttributes *item in _spinner.items)
      {
          if (![itemPaths containsObject:item.indexPath])
              [_spinner removeItem:item];
      }
  
      // Add all onscreen items
      NSArray *spinnerPaths = [_spinner.items valueForKey:@"indexPath"];
      for  (UICollectionViewLayoutAttributes *item in items)
      {
          if (![spinnerPaths containsObject:item.indexPath])
              [_spinner addItem:item];
      }
  
      // Add impulses
      CGFloat impulse = (scrollSpeed /
          self.collectionView.frame.size.width) * M_PI_4 / 4;
      for (UICollectionViewLayoutAttributes *item in _spinner.items)
      {
          CGAffineTransform t = item.transform;
          CGFloat rotation = atan2f(t.b, t.a);
          if (fabs(rotation) > M_PI / 32) impulse = - rotation * 0.01;
          [_spinner addAngularVelocity:impulse forItem:item];
      }
  }     

  Building a Dynamic Alert View  

 I stumbled across developer Victor Baro’s dynamic iOS “jelly view” ( http://victorbaro.com/
2014/07/vbfjellyview-tutorial/ ), which instantly caught my eye. This clever hack uses dynamic 
attachment behaviors that wiggle in harmony, enabling you to create views that emulate Jell-O. 
Although its utility is limited in practical deployment, it provides a superb example of how 
traditional iOS elements like alerts can be re-imagined using modern APIs.  Figure   6-4    shows a 
jelly view alert in motion, squashing and stretching as it bounces off an invisible center ledge 
within the main UI.   

  Connecting Up the Jelly  

 The secret to the jelly effect lies in an underlying 3×3 grid of tiny views, all attached to each 
other and to the main view’s center using  UIAttachmentBehavior  instances (see  Figure   6-5   ). 
These views and their attachments create a semi-rigid backbone that provides the view physics. 
 Listing   6-8    details how these views and attachments are made and installed. The elasticity 
of the connections allows the views to move toward and away from each other, creating a 
deformed skeleton for the view presentation.  

http://victorbaro.com/2014/07/vbfjellyview-tutorial/
http://victorbaro.com/2014/07/vbfjellyview-tutorial/
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 Figure 6-5   The nine connected points form a spring-based skeleton for the Jell-O animation.         

  Listing 6-8   Establishing Jelly Dynamics  

 - (void) establishDynamics : (UIDynamicAnimator *) animator
  {
      if (animator) _animator = animator;
  
      // Create baseline dynamics for primary view
      UIDynamicItemBehavior *dynamic =
          [[UIDynamicItemBehavior alloc] initWithItems:@[self]];
      dynamic.allowsRotation = NO;
      dynamic.elasticity = _elasticity / 2;

 Figure 6-4   This “jelly view” distorts its shape as it uses UIKit dynamics to emulate a view built 
onto a blob of Jell-O.        
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      dynamic.density = _density;
      dynamic.resistance = 0.9;
      [_animator addBehavior:dynamic];
  
      // Establish jelly grid
      for (int i = 0; i < 9; i++)
      {
          // Add dynamics
          UIView *view = [self viewWithTag:(i + 1)];
          UIDynamicItemBehavior *behavior =
              [[UIDynamicItemBehavior alloc] initWithItems:@[view]];
          behavior.elasticity = _elasticity * 2;
          behavior.density = _density;
          behavior.resistance = 0.2;
          [_animator addBehavior:behavior];
  
          // Attach each grid view to main jelly view center
          UIAttachmentBehavior *attachment =
              [[UIAttachmentBehavior alloc] initWithItem:view  attachedToItem:self];
          attachment.damping = _damping;
          attachment.frequency = _frequency;
          [_animator addBehavior:attachment];
  
          // Attach views to each other
          if ((i + 1) != 5) // skip center
          {
              NSInteger xTag = [@[@(1), @(2), @(5), @(0), @(4), @(8),
                  @(3), @(6), @(7)][i] integerValue] + 1;
              UIView *nextView = [self viewWithTag:xTag];
              attachment = [[UIAttachmentBehavior alloc]
                  initWithItem:view attachedToItem:nextView];
              attachment.damping = _damping;
              attachment.frequency = _frequency;
              [_animator addBehavior:attachment];
          }
      }
  }    

  Drawing the View  

  UIView  instances are rectangular, not gelatinous. To create a view that  looks  as if it deforms, 
even if the underlying view remains rectangular, you must hide each of the underlying views 
from  Figure   6-5    and draw a unified shape that represents the adjusted skeleton. You do this by 
observing changes on each of the component views. When they move, which you detect by 
observing the  center  property, the jelly view needs a redraw.  Listing   6-9    shows the redrawing 
code.  



153Building a Dynamic Alert View

 This code works by building a Bezier path from corner point to corner point to corner point. 
It uses the center views along each edge as control points to produce its inflected curves. 
Once the curved path is calculated, a standard  drawRect:  method fills in the curve to present 
the view.  

  Listing 6-9   Drawing the Jelly View  

 - (void) observeValueForKeyPath:(NSString *)keyPath
                         ofObject:(id)object
                           change:(NSDictionary *)change
                          context:(void *)context
  {
      // Update whenever a child view center changes
      [self setNeedsDisplay];
  }
  
  - (UIBezierPath *) cornerCurve
  {
      // Build a series of quad curve elements from point to point to point
      UIBezierPath *path = [UIBezierPath bezierPath];
      UIView *v0 = [self viewWithTag:1];
      [path moveToPoint:v0.center];
  
      // The corner points are view destinations.
      // The centers act as control points.
      NSArray *destinations = @[@(2), @(8), @(6), @(0)];
      NSArray *controlPoints = @[@(1), @(5), @(7), @(3)];
  
      for (int i = 0; i < 4; i++)
      {
          NSInteger dTag = [destinations[i] integerValue] + 1;
          NSInteger cTag = [controlPoints[i] integerValue] + 1;
           UIView *vd = [self viewWithTag:dTag];
          UIView *vc = [self viewWithTag:cTag];
          [path addQuadCurveToPoint:vd.center controlPoint:vc.center];
      }
      return path;
  }
  
  - (void) drawRect:(CGRect)rect
  {
      // Build the curves and draw the shape
      [_color set];
      [[self cornerCurve] fill];
  }    
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  Deploying Jelly  

 While the jelly view is fun to create, deploy with care. Most users have a fixed limit of patience. 
Any dynamic elements will tend to run longer in presentation and dismissal than standard 
system-supplied UI elements. They have more complicated visual stories to tell. Because of this, 
you might need to trade off the cool visual flourishes that excite a developer if you want to put 
the user experience first. A jelly-based alert may be exciting to develop, but an overly long alert 
that takes precious seconds to settle may add one-star reviews to your product.  

 A user will not be able to tell if your app was developed using UIKit, OpenGL, Cocos2D, or 
SpriteKit. Just because you can now do exciting dynamics in UIKit is not sufficient reason to 
include those solutions. Your apps must defer to and serve the needs of your users rather than 
pad your resume and augment your portfolio. Keep this in mind and use dynamic animators 
sparingly.     

     Wrap-up  

 Here are final points to wrap up what you’ve read in this chapter:  

    ■   Dynamic animators and behaviors are like a UI building toy set. They are enormously fun 
to work with and produce a really great range of results. I best like interactions that direct 
the user to natural results like the snap zones shown in  Listing   6-3    and ones that provide 
a user-based experience like the device gravity that coordinates with a motion manager 
in  Listing   6-4   .   

   ■   Although it’s easy to get super-flashy with all the built-in physics, some of the best effects 
are the subtlest. It’s the little flourishes—such as bounces when views enter and leave a 
screen, or collisions when collection items interact with each other—that produce the 
best results.   

   ■   Layering and coordinating behaviors can stylize and customize the otherwise default 
animations. The scaling, stacking, and rotation I added for  Figure   6-2    help send the 
message that these items have been “put away.”   

   ■   Some things you might not initially think of as behaviors can turn out to be super-
handy. You saw this with the “watcher” behavior in  Listing   6-2   . Although this custom 
behavior doesn’t introduce any view changes, it helps tune the dynamic system to 
produce greater responsiveness.   

   ■   Always consider behavior lifetimes. You should clean up after your behaviors if they’re 
short lived and retain them if they persist.   

   ■   Sometimes it’s simpler to create basic and keyframe animations like the ones you saw 
in  Chapter   5, “Animation,”    than to implement dynamic behaviors with the associated 
overhead.       
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  from frames,   19 - 23  

  images, adding,   23  

  pixel buffer, creating,   16 - 17  

  QR codes,   6 - 8  

  shaped buttons,   190 - 193  

  side-by-side iPhone split views,   215 - 218  

  transitioning objects,   114 - 116  

  views around layers,   118  

  virtual planes,   110 - 111   

   buttons  

  alert buttons, enabling/disabling,   161  

  shaped buttons, building,   190 - 193    

  C 
   calculating text positions,   95   

   characterOffsetOfPosition:withinRange: 

method,   95   

   CIQRCodeGenerator filter,   5   

   circular views, creating,   180 - 183   

   Clang compiler,   229   

   class descent,   255 - 256   

   classes  

  accessing,   252 - 253  

  AVAssetWriter class,   19  

  AVMetadataObject class,   11  

  NSMutableAttributedString class,   56  

  size classes,   204 - 205  

  UIAlertController class,   155  
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  insets,   60 - 61  

  RTFD containers,   84   

   ContextDrawingBlock,   17 - 18   

   converting  

  attributed strings to document 
data,   89 - 90  

  attributed strings to document 
representations,   81 - 82  

  comments to warnings,   229 - 231  

  HTML to attributed strings,   78 - 83  

  document type dictionaries,   79 - 81  

  RTFD text to data,   85 - 86   

   coordinate spaces,   205 - 206   

   coordinating implicit animations,   119 - 120   

   Core Image filter,   5  

  CIQRCodeGenerator filter, 
parameters,   5 - 6   

   Core Motion, integrating with gravity 

behavior,   135 - 137   

   Core Text  

  glyphs,   47 - 50  

  Text Kit, ligatures,   46 - 47   

   creating  

  attributed strings from HTML, 
document type dictionaries,   79 - 81  

  boundaries for gravity behavior,   138  

  custom behaviors,   139 - 146  

  dynamic animators,   126 - 127  

  adding behaviors,   126 - 127  

  delegation,   126  

  frame-watching dynamic behaviors, 
  131 - 132  

  HTML from attributed strings,   82  

  mask views,   166 - 169  

  movies,   14 - 23  

  expressive drawing,   18 - 19  

  from frames,   19 - 23  

  images, adding,   23  

  UIBlurEffect class,   170  

  UIDictationController class,   5  

  UIDynamicAnimator class,   125 - 126  

  UIFont class,   27  

  UIFontDescriptor class,   40 - 41  

  UIImageAsset class,   210 - 211  

  UIImageView class,   210  

  UIInterpolatingMotionEffect class,   111  

  UIKit, enhancements to,   75 - 78  

  UITextView class,   59  

  UITraitCollection class,   201  

  UIVisualEffectView class,   169   

   closestPositionToPoint: method,   96   

   Cocoa Touch, APIs,   248   

   Code 39 barcode system,   9   

   Code 93 barcode system,   9   

   Code 128 barcode system,   9   

   collapsed property,   218   

   collection views  

  dynamic animators,   147 - 150  

  custom flow layouts,   147  

  returning layout attributes, 
  148 - 149  

  physics-based behaviors, 
adding,   149 - 150   

   collisions,   125   

   combining trait collections,   203 - 204   

   comments, converting to warnings, 

  229 - 231   

   comparing Objective-C and Swift,   239 - 240   

   completion blocks,   3 - 4  

  implicit completion blocks, building, 
  120 - 121   

   containers,   46 ,  57 - 62  

  adaptive flow,   58 - 60  

  bounding rectangles,   62  

  exclusion zones,   61  
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   designing for traits,   204   

   detecting  

  faces,   14  

  pauses,   127 - 132   

   diagnostics, overriding,   235   

   dictation,   5   

   directives  

  converting comments to warnings, 
  229 - 231  

  errors,   232 - 233  

  messages,   234  

  overriding diagnostics,   235  

  testing for the simulator,   232  

  unused variable warnings,   235 - 236  

  warnings,   231 - 232  

  wrapping pragmas,   234 - 235   

   disabling  

  alert buttons,   161  

  interpolation for QR codes,   7 - 8  

  motion effects,   110   

   displaying supported glyphs for 

fonts,   53 - 55   

   displayModeButtonItem property,   218 - 219   

   displayScale property,   202   

   document attribute dictionaries, 

establishing,   89 - 90   

   documents, creating representations from 

attributed strings,   81 - 82   

   draggable exclusion zones,   69 - 71   

   drawInContext:method,   123   

   drawing  

  into pixel buffer,   17 - 18  

  properties,   123 - 124   

   duration of implicit animations,   118 - 119   

  PDFs,   71 - 73  

  QR codes,   6 - 8  

  views  

  Bezier-based shape image views, 
  184 - 185  

  round views,   180 - 183  

  virtual planes,   110 - 111   

   Cupcake Ipsum website,   223   

   custom behaviors, creating,   139 - 146   

   custom dynamic behaviors  

  improving,   142 - 144  

  secondary behaviors,   144 - 146   

   custom flow layouts,   147   

   custom properties, animating,   121 - 122   

   custom transition animations,   113 - 116  

  building transitioning objects,   114 - 116  

  delegation,   114  

  UIViewControllerAnimated-
Transitioning protocol,   113   

   customAnimationForKey: method,   121   

   customizing font sizes,   38    

  D 
   damped harmonics, spring-based 

animation,   106 - 109  

  damping constant,   109  

  practical uses for,   108 - 109   

   DampedSinusoid() function,   103   

   declaring key support,   97 - 98   

   defining trait collections,   202 - 203   

   delegate callbacks for 

AVSpeechSynthesizer class,   3 - 4   

   delegation,   114  

  dynamics delegation,   126   

   density property,   139   



267exclusion zones

  integrating with attributed 
strings,   31 - 35  

  applying text style ranges,   34 - 35  

  scanning for text style ranges, 
  32 - 34  

  string attributes, modifying fonts 
with,   42  

  styles,   26  

  building fonts from,   28  

  type updates, listening for,   28 - 31    

  E 
   EAN (European Article Number) barcode,   9   

   effect views,   169 - 174  

  animating,   172 - 174  

  blur effect, building,   170 - 171  

  vibrancy effects,   171 - 172   

   elasticity property,   139   

   enabling  

  alert buttons,   161  

  metadata output,   11   

   endEditing method,   56   

   enhancing  

  attributed strings,   91 - 94  

  barcode recognition,   14  

  view dynamics,   138 - 139   

   enumerateAttributesInRange:options:

usingBlock: method,   88   

   enumerating  

  attributes,   87 - 88  

  optionals,   245 - 246   

   error handling in Swift,   251   

   “even/odd” fill rule,   186   

   exclusion zones,   61  

  draggable exclusion zones,   69 - 71   

   dynamic animators,   125  

  collection views,   147 - 150  

  custom flow layouts,   147  

  returning layout attributes, 
  148 - 149  

  creating,   126 - 127  

  adding behaviors,   126 - 127  

  delegation,   126  

  detecting pauses,   127 - 132  

  frame-watching dynamic 
behaviors, creating,   131 - 132  

  monitoring views,   128 - 130  

  gravity behavior  

  connecting to device 
acceleration,   137  

  creating boundaries,   138  

  integrating with Core Motion, 
  135 - 137  

  jelly view alert, building,   150 - 154  

  deploying jelly,   154  

  drawing the view,   152 - 153  

  physics-based behaviors,   125 - 126  

  snap zones,   133 - 135   

   dynamic behaviors, subverting,   141 - 142   

   Dynamic Type,   25 - 31  

  attribute-ready dynamic elements, 
  35 - 38  

  custom font faces,   36  

  dynamic text views,   37 - 38  

  font descriptors  

  caveats,   40 - 41  

  multiple font variations,   41  

  font sizes,   27  

  accessibility versions,   27  

  customizing,   38  

  user-controlled sizes,   43  
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  G 
   generating  

  random feeds,   227  

  random user data,   225 - 226   

   gestures  

  draggable exclusion zones,   69 - 71  

  taps, spring-based animation,   106 - 109   

   GitHub    , xv

  lorem ipsum projects,   222   

   glyphs,   46 - 55 ,  66  

  bounding rectangles,   62  

  layout managers,   56 - 57  

  ligatures,   46 - 47  

  supported glyphs for fonts, displaying, 
  53 - 55  

  UIKit,   51 - 53   

   gravity behavior,   125  

  connecting to device acceleration,   137  

  creating boundaries,   138  

  integrating with Core Motion,   135 - 137    

  H 
   hardware key support,   97 - 99  

  declaring,   97 - 98   

   headlines,   26   

   horizontalSizeClass property,   202   

   HTML  

  converting to attributed strings,   78 - 83  

  document type dictionaries,   79 - 81  

  creating from attributed strings,   82  

  markup initialization,   83  

  writing RTFD containers from 
data,   86 - 87   

   expressive drawing,   18 - 19   

   extending mutable attributed strings,   94   

   extracting bounds,   13    

  F 
   faces, detecting,   14   

   fading logos, building,   122   

   Fake Name Generator,   225 - 226   

   files, saving from the simulator,   237   

   filters, Core Image filter,   5   

   flow layouts,   147   

   font descriptors,   39 - 42  

  caveats,   40 - 41  

  multiple font variations,   41   

   font sizes (Dynamic Type),   27  

  accessibility versions,   27  

  custom sizing,   38  

  user-controlled font sizes,   43   

   fonts  

  modifying with string attributes,   42  

  with multiple variations,   41  

  supported glyphs, displaying,   53 - 55  

  updating with dynamic attributes, 
  35 - 38  

  custom font faces,   36  

  dynamic text views,   37 - 38   

   footnotes (Dynamic Type),   26   

   frames, building movies from,   19 - 23   

   frame-watching dynamic behaviors, 

creating,   131 - 132   

   friction property,   139   

   Fuller, Landon,   238   

   functions  

  DampedSinusoid() function,   103  

  UIGraphicsPopContext() function,   17  

  UIGraphicsPushContext() function,   17    
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   integrating  

  Dynamic Type with attributed 
strings,   31 - 35  

  applying text style ranges,   34 - 35  

  scanning for text style 
ranges,   32 - 34  

  gravity behavior with Core Motion, 
  135 - 137   

   intercepting updates,   122   

   International Article Number barcode,   9   

   interpolation, disabling for QR codes,   7 - 8   

   iOS 8  

  attributed text updates,   36  

  split view controllers,   214 - 219  

  supported barcode formats,   8 - 9    

  J-K 
   jelly view alert, building,   150 - 154  

  deploying jelly,   154  

  drawing the view,   152 - 153   

   JSON feed resources,   227   

   

key support,   97 - 99  

  declaring,   97 - 98   

   keyframe animation,   101 - 103  

  blocking animators,   105 - 106  

  DampedSinusoid() function,   103  

  scale transformation,   103 - 105  

  shaking effect,   102 - 103    

  L 
   labels, enabling touch,   63 - 69  

  adding visual feedback,   67 - 69  

  checking for links,   67  

  glyphs,   66  

   hybrid language development,   252 - 256  

  accessing classes,   252 - 253  

  class descent,   255 - 256  

  Objective-C, calling from Swift,   252    

  I 
   images  

  adding to movies,   23  

  building from PDFs,   211 - 214  

  placeholders,   223 - 225   

   implementing snap zones,   133 - 135   

   implicit animations,   116 - 124  

  animating custom properties,   121 - 122  

  completion blocks,   120 - 121  

  coordinating,   119 - 120  

  drawing properties,   123 - 124  

  intercepting updates,   122  

  layers  

  building,   117 - 118  

  views, building,   118  

  timing,   118 - 119   

   improving custom dynamic 

behaviors,   142 - 144   

   inferred types,   244   

   initializing attributed strings from a file, 

  84 - 85   

   inputCorrectionLevel parameter 

(CIQRCodeGenerator filter),   5 - 6   

   inputMessage parameter 

(CIQRCodeGenerator filter),   5 - 6   

   insets,   60 - 61   

   inspecting  

  attributes,   87 - 88  

  items with playgrounds,   258 - 259   
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   media  

  barcodes,   5 - 8  

  enhancing recognition,   14  

  extracting bounds,   13  

  iOS-supported barcode formats,   8 - 9  

  listening for metadata objects, 
  10 - 11  

  QR codes, building,   6 - 8  

  responding to metadata,   11 - 13  

  dictation,   5  

  movies  

  adding images,   23  

  building,   16 - 17  

  creating from frames,   19 - 23  

  expressive drawing,   18 - 19  

  TTS,   1 - 4  

  completion blocks,   3 - 4  

  utterances,   2   

   messages,   234   

   metadata  

  enabling output,   11  

  objects, listening for,   10 - 11  

  responding to,   11 - 13   

   methods  

  actionForKey method,   118  

  animationKey method,   194  

  attributedStringWithAttachment 
method,   78  

  characterOffsetOfPosition:withinRange: 
method,   95  

  closestPositionToPoint: method,   96  

  customAnimationForKey: method,   121  

  drawInContext: method,   123  

  enumerateAttributesInRange:options:
usingBlock: method,   88  

  needsDisplayForKey: method,   122  

  setAnimation: method,   194  

  synchronizing Text Kit items with 
labels,   64 - 65  

  translating coordinates,   65 - 66   

   layers  

  animation-ready layers, building, 
  117 - 118  

  border layers, generating,   188 - 190  

  views, building,   118   

   layout managers (Text Kit),   46 ,  56 - 57   

   layouts  

  attributes, returning,   148 - 149  

  Auto Layout,   201  

  containers,   57 - 62  

  adaptive flow,   58 - 60  

  exclusion zones,   61  

  insets,   60 - 61  

  custom flow layouts,   147  

  document attribute dictionaries,   89 - 90  

  draggable exclusion zones,   69 - 71  

  side-by-side iPhone split views, 
building,   215 - 218   

   learning Swift,   259   

   ligatures,   46 - 47   

   listening  

  for metadata objects,   10 - 11  

  for type updates,   28 - 31   

   logging,   238   

   lorem ipsum text,   221 - 223  

  requesting,   222 - 223   

   Lorem Pixel website,   224    

  M 
   Markdown,   83   

   marking non-null and nullable items,   236   

   mask views,   164 - 169  

  building,   166 - 169  

  shape layer masking,   164 - 166   
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   NSMutableAttributedString class,   56   

   nullable items, marking,   236    

  O 
   Objective-C  

  calling from Swift,   252  

  comparing to Swift,   239 - 240  

  preparing Swift for,   254 - 255   

   objects  

  text ranges,   95 - 97  

  transitioning objects, building,   114 - 116   

   optionals,   243 - 248  

  enumeration,   245 - 246  

  inferred types,   244  

  unwrapping,   246 - 247   

   overriding  

  relationships between trait collections 
and assets,   210 - 211  

  trait collections,   214 - 219    

  P 
   parameters for CIQRCodeGenerator 

filter,   5 - 6   

   pauses, detecting,   127 - 132   

   PDF417 standard,   9   

   PDFs  

  building,   71 - 73  

  creating images from,   211 - 214  

  printing,   74   

   physics-based behaviors,   125 - 126  

  adding to collection views,   149 - 150  

  custom behaviors, creating,   139 - 146  

  frame-watching dynamic behaviors, 
creating,   131 - 132  

  transformedMetadataObjectFor-
MetadataObject method,   13  

  viewWillTransitionToSize:with-
TransitionCoordinator: method,   207   

   modifying  

  attributed strings,   93 - 94  

  fonts with string attributes,   42   

   monitoring  

  items with playgrounds,   258 - 259  

  views,   128 - 130   

   motion effects,   109 - 112  

  disabling,   110  

  shadow effects,   111 - 112  

  virtual planes,   109 - 110  

  building,   110 - 111   

   movies  

  building,   14 - 23  

  expressive drawing,   18 - 19  

  pixel buffer, creating,   16 - 17  

  images, adding,   23  

  pixel buffer  

  creating,   16 - 17  

  drawing into,   17 - 18   

   multiple snap zones, handling,   133 - 135   

   mutable attributed strings, extending,   94    

  N 
   needsDisplayForKey: method,   122   

   NeXTSTEP,   83   

   non-null items, marking,   236   

   NSAttributedString  

  class convenience methods,   91 - 92  

  integrating with Dynamic Type,   31 - 35  

  applying text style ranges,   34 - 35  

  scanning for text style ranges, 
  32 - 34   
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  mask views,   164 - 169  

  building,   166 - 169  

  shape layer masking,   164 - 166  

  popovers,   175 - 177  

  supporting bubbles,   176 - 177   

   printing text views,   73 - 74   

   properties  

  of dynamic behaviors,   138 - 139  

  of trait collections,   202  

  UIScreen properties,   205 - 207  

  application frame,   206  

  coordinate spaces,   205 - 206  

  scale,   207  

  screen bounds,   206   

   pushes,   125    

  Q-R 
   QR (Quick Response) codes,   5  

  building,   6 - 8   

   Quartz 2D contexts, adding to UIKit context 

stack,   17 - 18   

   

random feeds, generating,   227   

   random generation suite,   228 - 229   

   Random User Generator,   225   

   range dictionaries  

  applying text style ranges,   34 - 35  

  scanning for text style ranges,   32 - 34   

   reading barcodes  

  enhancing recognition,   14  

  extracting bounds,   13  

  iOS-supported barcode formats,   8 - 9  

  listening for metadata objects,   10 - 11  

  responding to metadata,   11 - 13   

   repairing attributes for text storage,   56   

   requesting lorem ipsum text,   222 - 223   

  gravity  

  connecting to device 
acceleration,   137  

  creating boundaries,   138  

  integrating with Core Motion, 
  135 - 137  

  improving,   142 - 144  

  pauses, detecting,   127 - 132  

  properties,   138 - 139  

  secondary behaviors,   144 - 146  

  subverting,   141 - 142   

   pitch of voice playback, adjusting,   3   

   pixel buffer  

  creating,   16 - 17  

  drawing into,   17 - 18   

   placeholders  

  for images,   223 - 225  

  lorem ipsum text,   221 - 223   

   playgrounds,   256 - 258   

   popovers,   175 - 177  

  supporting bubbles,   176 - 177   

   positions, text positions  

  calculating,   95  

  geometry,   95 - 96  

  updating selection points,   97   

   pragmas, wrapping,   234 - 235   

   presentations,   155  

  alerts,   155 - 163  

  building,   156 - 161  

  buttons, enabling,   161  

  class deprecations,   155 - 156  

  text fields, adding,   162 - 163  

  effect views,   169 - 174  

  animating,   172 - 174  

  blur effect,   170 - 171  

  vibrancy effects,   171 - 172  
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   side-by-side iPhone split views, building, 

  215 - 218   

   simulator, saving files from,   237   

   size classes,   204 - 205   

   snap zones,   133 - 135  

  multiple snap zones, handling,   133 - 135   

   snaps,   125   

   speech generation,   1  

  completion blocks,   3 - 4  

  TTS, utterances,   2   

   “spinner” effect, creating,   147   

   split view controllers,   214 - 219  

  side-by-side iPhone split views, 
building,   215 - 218   

   spring-based animation,   106 - 109  

  damping constant,   109  

  practical uses for,   108 - 109   

   string attributes, modifying fonts with,   42   

   structs, UIEdgeInsets struct,   60   

   styles  

  building fonts from,   28  

  Dynamic Type,   26  

  layout managers,   56 - 57   

   subheadlines,   26   

   subverting dynamic behaviors,   141 - 142   

   supported barcode formats,   8 - 9   

   Swift,   239  

  APIs,   249 - 251  

  calling from Objective-C,   253 - 254  

  error handling,   251  

  iOS apps, building,   240 - 243  

  learning,   259 - 260  

  non-optionals, assigning values to,   248  

  versus Objective-C,   239 - 240  

   resistance property,   139   

   resizing Bezier paths,   181 - 183   

   responding to metadata,   11 - 13   

   Retina display scales,   202   

   retrieving sample code     , xv

   returning copies of strings with new 

attributes,   92 - 93   

   rotation property,   138  

  “spinner” effect, creating,   147   

   round views, creating,   180 - 183   

   RTF,   83   

   RTFD containers  

  converting text to data,   85 - 86  

  writing from data,   86 - 87    

  S 
   sample code, retrieving     , xv

   saving files from the simulator,   237   

   scale property,   207   

   scanning for text style ranges,   32 - 34   

   screen bounds,   206   

   setAnimation: method,   194   

   shadow effects,   111 - 112   

   shake keyframe animation,   102 - 103   

   shape layer masking,   164 - 166   

   shaped buttons, building,   190 - 193   

   shaped views  

  animations, adding,   193 - 199  

  borders, adding,   187 - 190  

  creating,   179 - 187  

  Bezier-based shape image views, 
  184 - 185  

  round views,   180 - 183   

   shapes, unclosed shapes,   185 - 187   
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  touch-enabled labels,   63 - 69  

  adding visual feedback,   67 - 69  

  checking for links,   67  

  glyphs,   66  

  synchronizing Text Kit items with 
labels,   64 - 65  

  translating coordinates,   65 - 66   

   text ranges,   95 - 97  

  text positions  

  calculating,   95  

  geometry,   95 - 96  

  updating selection points,   97   

   text storage (Text Kit),   46 ,  55 - 56  

  objects,   55  

  repairing attributes,   56   

   text style ranges  

  applying,   34 - 35  

  scanning for,   32 - 34   

   text views  

  dynamic text views,   37 - 38  

  printing,   73 - 74   

   touch-enabled labels,   63 - 69  

  adding visual feedback,   67 - 69  

  checking for links,   67  

  glyphs,   66  

  synchronizing Text Kit items with 
labels,   64 - 65  

  translating coordinates,   65 - 66   

   trait collections,   201 - 204  

  combining,   203 - 204  

  defining,   202 - 203  

  designing for,   204  

  overriding relationships with assets, 
  210 - 211  

  properties,   202  

  split view controllers,   214 - 219   

  optionals,   243 - 248  

  enumeration,   245 - 246  

  inferred types,   244  

  unwrapping,   246 - 247  

  playgrounds,   256 - 258  

  preparing for Objective-C,   254 - 255   

      The Swift Programming Language     , 259   

   system animations,   109    

  T 
   tabular text,   76   

   tap gestures, spring-based animation, 

  106 - 109  

  damping constant,   109  

  practical uses for,   108 - 109   

   text  .   See also  Dynamic Type 

  RTFD text, converting to data,   85 - 86   

   text fields, adding to alerts,   162 - 163   

   Text Kit,   43  

  containers,   46 ,  57 - 62  

  adaptive flow,   58 - 60  

  bounding rectangles,   62  

  exclusion zones,   61  

  insets,   60 - 61  

  exclusion zones, draggable exclusion 
zones,   69 - 71  

  glyphs,   46 - 55  

  ligatures,   46 - 47  

  layout managers,   46 ,  56 - 57  

  PDFs  

  building,   71 - 73  

  printing,   74  

  text storage,   46 ,  55 - 56  

  objects,   55  

  repairing attributes,   56  

  text views, printing,   73 - 74  
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   UIKit  

  adding Quartz 2D contexts,   17 - 18  

  APIs,   50 - 51  

  classes, enhancements to,   75 - 78  

  dynamic behaviors,   125 - 126  

  font descriptors,   39 - 42  

  glyphs,   51 - 53  

  spring-based animation,   106 - 109   

   UINavigationControllerDelegate 

protocol,   114   

   UIScreen properties,   205 - 207  

  application frame,   206  

  coordinate spaces,   205 - 206  

  scale,   207  

  screen bounds,   206   

   UISystemAnimationDelete animation,   109   

   UITabBarControllerDelegate protocol,   114   

   UITextInput protocol, text ranges  

  geometry,   95 - 96  

  positions, calculating,   95  

  updating selection points,   97   

   UITextView class,   59   

   UITraitCollection class,   201   

   UIViewControllerAnimatedTransitioning 

protocol,   113 - 114   

   UIVisualEffectView class,   169   

   unclosed shapes,   185 - 187   

   unused variable warnings,   235 - 236   

   unwrapping optionals,   246 - 247   

   UPC (Universal Product Code) standard,   9   

   updating fonts,   35 - 38  

  custom font faces,   36  

  dynamic text views,   37 - 38   

   user interface idioms,   202   

   transformedMetadataObjectForMetadata-

Object method,   13   

   TTS (text-to-speech),   1 - 4  .   See also  dictation 

  utterances,   2  

  completion blocks,   3 - 4  

  pitchMultiplier,   3   

   type updates, listening for,   28 - 31   

   typography  

  Dynamic Type,   25 - 31  

  font sizes,   27  

  integrating with attributed strings, 
  31 - 35  

  styles,   26  

  type updates, listening for,   28 - 31  

  glyphs  

  ligatures,   46 - 47  

  supported glyphs for fonts, 
displaying,   53 - 55    

  U 
   UIAlertController class,   155   

   UIBlurEffect class,   170   

   UIDictationController class,   5   

   UIDynamicAnimator class,   125 - 126   

   UIDynamicItem protocol,   139   

   UIEdgeInsets struct,   60   

   UIFont class,   27   

   UIFontDescriptor class,   40 - 41   

   UIGraphicsPopContext() function,   17   

   UIGraphicsPushContext() function,   17   

   UIImageAsset class,   210 - 211   

   UIImageView class,   210   

   UIInterpolatingMotionEffect class,   111   
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  monitoring,   128 - 130  

  round views, creating,   180 - 183  

  shaped views  

  animations, adding,   193 - 199  

  borders, adding,   187 - 190  

  text views, printing,   73 - 74   

   viewWillTransitionToSize:

withTransitionCoordinator: method,   207   

   virtual planes,   109 - 110  

  building,   110 - 111   

   visual feedback, adding to touch-enabled 

labels,   67 - 69   

   voice playback, adjusting pitch,   3    

  W 
   warnings,   231 - 232  

  unused variable warnings,   235 - 236   

   websites  

  Bacon Ipsum,   223  

  Clang Language Extensions,   234  

  Cupcake Ipsum,   223  

  Lorem Pixel,   224   

   wrapping pragmas,   234 - 235   

   writing RTFD containers from data,   86 - 87   

   X-Y-Z   
   XML feed resources,   228

   

   yaw,   14     

   user-controlled font sizes,   43   

      Using Swift with Cocoa and 
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UIViewControllerAnimatedTransitioning 

protocol,   113   
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