L5

Big Nerd

Ranch

Cocoa Programming for OS X

Cocoa Programming for OS X: The Big Nerd Ranch Guide

by Aaron Hillegass, Adam Preble and Nate Chandler

Copyright © 2015 Big Nerd Ranch, LLC.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC.

200 Arizona Ave NE

Atlanta, GA 30307

(770) 817-6373
http://www.bignerdranch.com/
book-comments @bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134077113
ISBN-13 978-0134077116

Fifth edition, first printing, April 2015
Release D.5.1.1

http://www.bignerdranch.com/
http://www.informit.com

For Aaron’s sons, Walden and Otto

For Adam’s daughters, Aimee and Leah

For Nate’s nieces and nephews

This page intentionally left blank

Acknowledgments

Creating this book required the efforts of many people. We want to thank them for their help. Their
contributions have made this a better book than we could have ever written alone.

Thanks to the students who took the Cocoa programming course at the Big Nerd Ranch. They helped
us work the kinks out of the exercises and explanations that appear here. Their curiosity inspired us to
make the book more comprehensive, and their patience made it possible.

Thank you to all the readers of the first four editions who made such great suggestions on our forums
(http://forums.bignerdranch.com/).

Thank you to our technical reviewers, Juan Pablo Claude, Chris Morris, Nick Teissler, Pouria Almassi,
and John Gallagher, who made great additions and caught many of our most egregious errors.

Finally, a very big thank you to our support team in writing this book: Liz Holaday, for copy-editing;
Chris Loper, whose excellent tool chain made writing this book that much easier; and most of all Susan
Loper, whose collaboration helped us write the kind of book we believe this technology deserves.

http://forums.bignerdranch.com/

This page intentionally left blank

Table of Contents

INErOAUCTION ...uiiniii ittt ettt et e e enaes XVvii
AbOUt This BOOKciiiiiiiiii e Xvii
Prer@qUiSItEscuininiiiie it XViii
Typographical CONVENTIONSiiuiitiiiiiiiiei ettt XVviii
What’s new in the fifth edition?c.ocoiiiiiiiiiiiii e Xviil

The StOry Of COCOQ ..euniniiiiiii et XViii
NeXTSTEP and OPenSteDcuuiiuiiiiiiiiiiiie et Xix
From NeXTSTEP to OS X t0 108 ...t Xix
OSX, UniX, aNd COCOA ...vuvininiieiniiet et eenes XX
Introducing the Swift Languageccoiiiiiiiiii e XX
The Cocoa Frameworkscoiiiiiiiiiiiiiiii e XX1
Tools for Cocoa Programmingcoeeiiiiniiiiiiiiiiie e XXi
Some AdVice 0N LEarNingGouueiniiniiniiii e xxii
L. Let’s GOt SHATEA ...ueiniiiiii ettt et ettt ettt e e e eaaen 1
Creating an Xcode PrOJECTouuiiniinii e 1
Getting around 1N XCOAEuuiiniiniiiie e e 3
APPICAION DESIGN ...eniiiiiiiei e e 4
Model-View-Controllercoiiiuiiiiiiiiii e 4
Creating the MainWindowController Classcooeuiiiiiiiiiniiiiiiiiii e 6
Creating the User Interface in Interface Buildercoiuiiiiiiiiiiiiinii e 8
AdAING VIEW ODJECES e.eniniiiiiieiit ittt ettt et eae e 9
Configuring VIEW ODJECES ...vuiuniiniineieieiei e e e e et e e e e eaeanas 11

XIB files and NIB fileSoouiiiiiiiiiii e 14
Showing the WINAOWcouiiniiniiii e e e e e e 14
MaKing CONMNECTIONS ...euueunieneineinet ittt et e et e et et et et et et et et et e e et ea et eanetneanennaes 17
Creating an OULIELiiuiinii ettt ettt eaee 17
CoNNECING AN OULIELeutinititiit ittt ettt et et e e e e ens 18
Defining an action methodcoiiiniiiiiiiiii e 19
CONNECHNGZ ACHIOMS ..tuettetnetn et e e e e eeneanaas 20
Creating the Model Layerccvouiiiiiiiiii e 22
Connecting the Model Layer to the Controllercooooviiiiiiiiiiiiiiiiiiiieeeeeeen 24
Improving Controller DeSIZNouuiuniiiiii e 24
N U LA % o1 N 27
INtroducing SWITt ... e 27
TYPES TN SWITL e et et e aaas 27
USING Standard TYPES ...eneneiniiei et e anas 28
INFRITING LY PES ettt et et et e ea e 30
SPECIEYING LYPES vttt ettt et ettt e e et et e e et et e e e aeaaas 30
Literals and SUDSCTIPLING ...uvunirniniiiitiiiii et e e 32
INIHALIZETS ..evniiniii i ettt 33
PIOPEILIES ..eninieeie e 34
Instance Methodsccooiiiiiiii i e 34
10515 0] 1 F: 1 KT 34
SubsCripting dICHONATIESueuiuinitin ittt et e e e e e e e ans 36
Loops and String INterpolationccoiiuiiniiiiiiiiiiiii e 36

vii

Cocoa Programming for OS X

Enumerations and the Switch Statementc.ooveiuiiiiiiiiiiiiiiiii e 38
Enumerations and raw VAlUESccoiiiiiiiiiiiiiiiiniii e 39
Exploring Apple’s Swift DOCUmMentationc.ceuuiiiiiiiiiiniiiiniiiin e 39
3. Structures and CIASSESceuuuiiiuuiiiieeiti et ettt ettt et ettt e ea e 41
SEIUCKUIES ..ottt iei ettt et ettt ettt e et e e et et e e e e e e et e eeaaeeeaans 41
Instance MEthOdScouuiiiiiiiiiiii e 43
Operator OVETIOAdINGiinii e 44
CIASSES vttt ettt ettt et ettt et et ettt ettt et et et et e e e e eaas 45
Designated and convenience iNitialiZerscc.veeuiuniiuniiineiieiiei e eieeanas 46

Add an instance Methodcoiiiiiiiiiiiiiiiii e 46
INREIIEANCE ..evuneiiiiiiii e et 49
ComPULEd PrOPEItIES ... c.ueeneiineiie ittt et ettt e e e e 51
Reference and Value TYPESceuiuniiniiiiiiei et 53
Implications of reference and value typesccoveiuiiiiiiiiiiiiiiiiiiiie e, 53
Choosing between reference and value typesc.oveuuiiiiiiiiiiiiiiiiiiiiiieieceeeee, 54
Making Types Printablecouiiiiiiiiiii e 54
SWift and ODBJECHVE-C ... couiiiiie it e e e eeanas 55
Working with Foundation TYPEeSceuuiiuiiiniiiiie et 56
Basic DIIAZING ...ueeniieiieit e e 56
Bridging with COLECHONSuuieniin ittt e e 57
RUNEIME EITOTS ..oouiiiiiiiii et 58
More Exploring of Apple’s Swift Documentationc.c.cceuiveiiiiiiiniiiniiiineiiieeinneee, 59
Challenge: Safe Landingooouuiiiiiiiiiiiii e 59
Challenge: VEctor ANZIEcouuiiiiiiiiiiiiii ettt 59
4. MemOTY MANAQZEIMENL ... c..ueetniiniii ittt et e ettt e e e e et e et e et e et e et e ea e en e aneas 61
Automatic Reference COUNTINGc.oeeuiiniiiniii e 61
Objects have reference COUNTSc..iiuuiiiiiiie it 61
Deallocating objects in @ hierarchycc.cooviiiiiiiiiiiii e, 62
Strong and Weak Referencesoo.oiiiiiiiiiiiiiiii e 65
Strong referenCe CYCIESeiuniitiii it 65
UnOwned TfETENCESc..uiiiiiiiiiiii et 67
WHhat 18 ARC? ..ottt 68
5. CONEIOIS ..ttt et 69
Setting up RGBWEIL ... e 70
Creating the MainWindowController classcoeiiiiiiiiiiiiiiiiiiiiii e, 70
Creating an empty XIB filec.ooouiiiiiiiii e 71
Creating an instance of MainWindowControllerccoooviiiiiiiiiiniiniini e, 74
Connecting a window controller and its Windowcccoiiiiiiiiiiiiiiiiiiiiene. 75
ADOUL CONLTOLS .ottt e e et et e eaaeees 78
Working With CONLIOISciuuniiiiiiii et 79
A word about NSCellcoouiiiiiiiiiiiiii e 80
Connecting the slider’s target and aCtionccoveeiiiiiiiiiiiiiin e 80

A CONLINUOUS CONLIOL ..evvtiiiiiiiie ittt e e 82
Setting the slider’s range Valuescoviiiiiiiiniiiii e 83
Adding tWo mOre SHACTSeeuuiiiiiiiie e 85
NSColorWell and NSCOIOTcouuiiiiiiiiiiiiieiie e 86
Disabling @ CONLIOLouniiiiiiii e 88
Using the DOCUMENTAIONc..uiiuiiniie ittt et et e e e e 88

viii

Cocoa Programming for OS X

Changing the color of the color Wellcoiiiiiiiiiiiiiiii e, 91
Controls and OULIELSeiuuiiiiiiiiiiiii ettt e 93
Implicitly unwrapped Optionalsc..oeeiuiiiiiiiiiiniiiiieiie e 95

For the More Curious: More on NSCOIOTcccuuiiiiiiiiiiiiiiiiiiiinciin e 95
For the More Curious: Setting the Target Programmaticallycccooeiiiiiiiiniiiiienninn. 96
Challenge: Busy Boardc..ooiiiiiiiiiiiiiii e 96
Debugging HINScoviniiiiiiiiii e 97
6. DEICZALIONueiiiiiiiii ettt ettt ettt ettt e e e 99
Setting UP SPEAKLNEviiuiiiiiiiiii i e 99
Creating and using an Xcode SIIPPELceuueeuniiniiniiieiie e e e eieeanas 101
Creating the USer INerfaCecuuiiuiiiiiii i 103
Synthesizing SPEECHuuiiiii e 106
UPdating BULtONS ... c..iunii it ettt e 107
DEIEZALION ...eitiiiii ittt 109
Being @ deleZAteoeuuiiiiiiii e 110
Implementing another delegatecooeeuiiiiiiiiiiii e 112
Common errors in implementing a delegatecooeeoviiiiiiiiiiiiiiiiiiiiieeeeen, 114
Cocoa classes that have delegatesooiuiiiiiiiiiiiiii e 115
Delegate protocols and NOtIfICAtIONScc.ueiuiiniiuneiieiiai e 115
NSApplication and NSApplicationDelegatec.uviuiiiiiiiniiiiiiiiiiiee e 115
The mMain eVENt LOOP ...euuiiniii e 116

For the More Curious: How Optional Delegate Methods Workcc.ccoeiiiiiiininn.e. 116
Challenge: Enforcing a Window’s Aspect Ratioc.ccooiiiiiiiiiiiiiiiiiiiinenecee, 117
7. Working with Table VIEWSccouiiiiiiiiiiiiii e 119
ADOUL TabIe VIBWS ...eevuiiiiiiiiiiii ettt 119
Delegates and data SOUICESccuueiuniiiiiiii et eae e 120

The table view-data SOUICE CONVEISALIONcccuuieruniiiiineiiieiiineiiieeiieeeieeeianeenen 120
SpeakLine’s table view and helper ObJectsccoiiiuiiiiiiiiiiiiiiiieiieeeea 121
Getting VoiCe DAtaiiniiiiiie e 121
Retrieving friendly namescooviuiiiiiiiiiii e 122
Adding @ Table VIEWc.uiiuiiiiiiiii et 123
Table view and related ObJECESiiuuiiuiiiiii e 124
Tables, CellS, ANd VIEWSvrinitiete e e e e 126
Table CEll VIEWS ..ceeuniiiiiiiiii i 127

The NSTableViewDataSource Protocolccoeviiiiiiiiiiiiiiiiiiiiin e 128
Conforming to the ProtoColoeeuiiiiiiiiii e 128
Connecting the dataSource outletccoviiiiiiiiiiiiiii e 128
Implementing data source methodsc.ceeeiuiiiiiiiiiiiiiiiniiii e 129
Binding the text field to the table cell VIEWcoceiiiiiiiiiiiiiiiiiiii e 130

The NSTableViewDelegate Protocolcc.viiuiiiniiiiiiiiieiie e 131
Making a connection with the assistant €ditorccoveeviiiiiiiiiiiiiiiiiieineeen, 132
Implementing a delegate methodcooeoiiiiiiiiiiiiii e 133
Pre-selecting the default VOICEcouiiiiiiiiiiiii e 133
Challenge: Make a Data SOUICEc.uiiuniiniiiiiiieie e 134
8. KVC, KVO, and Bindingsceuueiuiiiiiiiiiii ettt et 135
BANAINES .. ceniee e 136
Setting up TREIMOSTALuietiiii i 136
USING DINAINES ...eeneeniie ittt ettt e e e e e 137

Cocoa Programming for OS X

Key-value ODSEIVINGoovuiiiiiiiiiiii e 139
Making keys obServableo.oiiiiiiiiiiii e 140
Binding other attribULeSscouuiiiniiieiii e 142
KVC and Property ACCESSOISc.uiuuiuneiiett ettt et et e e e et et et et et e e e eieeanas 145
KVC and Nl ...oooniiii e 146
Debug@ing BIindingseuuiiuiiniieiie e 146
USING the DEDUZEZET .. c.uieneiie e 147
USING DIEAKPOINLS ...evuitieiteiieei et ettt e e e e e e 148
Stepping through COdec..iiiiiiiiiiiiiiii e 149

The LLDB CONSOLEuoiiiiiiiiiiiiiiiii e e 151
Using the debugger to see bindings in aCtioncceuveiuviiiiiiiiiineineineiieann. 152

For the More Curious: Key Pathsooooiiiiiiiii e 153
For the More Curious: More on Key-Value ObServingcooeeuveiuiiiiiineiineinainaannn. 154
For the More Curious: Dependent Keysccoviiiiiiiiiiiiiiiie e 155
Challenge: Convert RGBWell to Use Bindingsccoeeuiiiiiiiiiiiiiiiiiiiiineiieieeieean 156
9. NSATTAYCONLIOIIET ..evitiiiiiiii i ettt 157
RaiseMan’s Model LaYerc..oiuiiiiiiiiiiii e 158
RaiseMan’s VIEW Layerccuuiiuiiiiiiiiiii e 160
Introducing NSATrayControllerccuiuniiieiie e 160
Adding an Array Controller to the XIBcciiiiiiiiiiiiiiiie e 162
Binding the Array Controller to the Modelcoiiiiiiiiiiiiiiiiii e 163
Binding the Table View’s Content to the Array Controllerc..ccovieiviiiiiiiiniiinennn.e. 164
Connecting the Add Employee BUttoncoouuiiiiiiiiieiiiiii e 164
Binding the Text Fields to the Table Cell VIEWSocuuiiiiiiiiiiiiiiiiiiiieiecec e 165
Formatting the Raise Text Fieldcoiiiiiiiiiiiii e, 167
Connecting the Remove BUttoncooiiiiiiiiiiiiiiiii e 169
Binding the Table View’s Selection to the Array Controllerccoeveiiiiiiiiiiiinnennn. 169
Configuring RaiseMan’s Remove Buttoncoooiiiiiiiiiiiiiiiii e 171
Sorting i RAISEIMANccuuiiiiiiii ettt 171
How Sorting Works in RaiSeMancouiiiiiiiiiiiiiie e 174
For the More Curious: The caselnsensitiveCompare(_:) Methodccoveeiiiiiiiiinn. 175
For the More Curious: Sorting Without NSArrayControllerccoeeveiiiiiiiniiieenn.en. 176
For the More Curious: Filteringcooviiiiiiiiiiii e 177
For the More Curious: Using Interface Builder’s View Hierarchy Popover 178
Challenge: Sorting Names by Lengthcooooiiiiiiiiiiii e 180
10. Formatters and Validationco.oiiiiiiiiiiiiiiiiiii et 181
FOIMAtIersooueiii i 181
Formatters, programmaticallyccoiiiiiiiiiiiiiii e 181
Formatters and a control’s objectValuecooeeuiiiniiiiiiiiiniiiee e 182
Formatters and 10CaliZationc..vviuuiiiiiiiiiniiin e e 183
Validation with Key-Value Codingccuviiuiiiiiiiiiiiiiieii e 183
Adding Key-Value validation to RaiseManc..ccoveiuiiiiiiiiiiiiiniineineieeeneee, 183

For the More Curious: NSValueTransformerccooeeiviiiiiiiiiiiiiiniin e 187
11, NSUNOMEANAZET ...euueiiiniiiieiiie ittt et ettt et et e e et e et et e eaieeenaee 189
Message Passing and NSINVOCAtIONcouuiiiiiiiiiiiiiiiiiin et 189
How the NSUndoManager WOTKSccouiiiiiiiiiiiiiniiin e e 190
Using NSUNOMANAZEToevuniiiiiiiieiiie it ee ettt ettt e et e e e eaa e eens 191
Key-Value Coding and To-Many Relationshipscceoeuiviiiiniiiiniiiiiiiiiiiircincci e, 192

Cocoa Programming for OS X

Adding Undo to RAISEMANcouuiiiiiiiiiiiiiiiiin et 194
Key-Value ODBSEIVINE ...c..uiiitiiiiiiiiiiiiii ettt ea e 195
Using the Context Pointer Defensivelyccoooiiiiiiiiiiiiiiiiiii e 196
UNAO fOT EAIS ..ueeviniiiiiiii i ettt 197
Begin Editing on INSEIToiiiiiiiiiiiiiiiii et 199
For the More Curious: Windows and the Undo Managerccoeeeuieiiieinniiiiineiineennss 201
120 ATCRIVIIIZ ..t e et ettt et e e 203
NSCoder and NSCOING .. c.ueuniieiieiiei et e eieeanas 204
ENCOING .. eniiniie e 204
DECOMING ..ttt 205

The Document ATCHITECTUIEuiiuniiiiiiiiii ettt eeaane 206
Info.plist and NSDocumentControllercooviiiiiiiiiiiiiiieieie e 207
INSDIOCUIMENL ettt ettt et et et e e e e e e et e e e et e e e e eanes 207
NSWINdoOWCONIIOIIETceuuiiiiiiii ittt e 210
Saving and NSKeyedATChIVETocuuiiiiiiiiiie e 211
Loading and NSKeyedUnNarchivercoocouiiiiiiiiiie e 211
Setting the Extension and Icon for the File Typeccooeiuiiiiiiiiiiiiii i 212
Application Data and URLSc.oiuiiiiiiiiiiiii e 215
For the More Curious: Preventing Infinite LOOPSc.oeeuiiiniiiiiiiiiniieeeeee e, 216
For the More Curious: Creating a Protocolcoiiiiiiiiiiiiiiiiii e 217
For the More Curious: Automatic Document Savingcccoouviiiiiiiiiineiiiiiniieinean. 218
For the More Curious: Document-Based Applications Without Undocoocoeeenninn. 218
For the More Curious: Universal Type Identifierscooviiiiiiiiniiiiiiiiiieee, 218
13. Basic €Core Dataiuiiiiiii e 221
Defining the Object MOdelcc.iiiiiiiiiii e 221
Configure the Array CONtrollercouiiiiiiiii e 223
Add the VIBWS ..ceiiiiie i et 225
Connections and BIndingsccouuviiiiiiiiiiiiiiiiici e 229
How Core Data WOTKSooouiiiiiiiiiiii e 234
Fetching Objects from the NSManagedObjectCONteXtoeuuvuneiuneeneiiiiiniiiieeieeieennens 235
PersiStent StOre TYPES ...cuuneuniineiieii ettt et 236
Choosing a Cocoa Persistence TeChnologyc.oceuiiiiiiiiiiiiiiiiii e 237
Customizing Objects Created by NSArrayControllerccovieiiiiiiiiiiiiiiineineieen. 237
Challenge: Begin Editing on Addooiiiiiiiii e 238
Challenge: Implement RaiseMan Using Core Datac.oooiiiiiiiiiiiiiiiiiiece, 238
| B ol B S 10 LU PRSPPI 239
INSUSEIDETAULLS ..evuneiiiieiiiee it 239
Adding User Defaults to SpeaklLinecoceuiiiiiiiiiiiiiiie e 240
Create Names for the Defaultsoooiiiiiiiiiiii e 241
Register Factory Defaults for the Preferencescoocooviiiiiiiiiiiiiiiiniiinec, 241
Reading the Preferencesoo..iiuiiiiiiiii e 242
Reflecting the Preferences in the UIoooiiiiiiiiiiiii e 243
Writing the Preferences to User Defaultsoooiiiiiiiiiiiiiiie e, 243
Storing the User Defaultsc.iiiiiiiiii e 244
What Can Be Stored in NSUserDefaults?coouiviiiiiiiiiiiiiiiiiiiiiiicie e 245
Precedence of Types of Defaultsooouiiiniiiiiiiiiiiiii e 246
What is the User’s Defaults Database?c..oiuiiiiiiiiiiiiiiiiii e 246
For the More Curious: Reading/Writing Defaults from the Command Line 247

Xi

Cocoa Programming for OS X

For the More Curious: NSUserDefaultsControllerc.cooeviiiiiiiiiniiiiniiiiniiiieeiine, 248
Challenge: Reset Preferencesc..iuuiiiiiiiiiii e 248
15. Alerts and CIOSUIEScc.uuiiiuuiiiieiii ettt ettt ettt e e et et e e e et e eaaaeeaaneas 249
INSAILBIE ..ttt et ettt et et e e e et e eaa e eaas 249
Modals and SREELSoiiuuiiiiiiiiiiii e 250
Completion Handlers and CIOSUIESoiuuiuniiiiiiieine e 251
Closures and CAPLUIINGeuueuniineiie it et e e e e e e e ea e e eaneeanees 252
Make the User Confirm the Deletioncooiiiiiiiiiiiiiiiniiiin e 253
For the More Curious: Functional Methods and Minimizing Closure SyntaX 256
Challenge: Don’t Fire Them QUIte Yetc.uiiuuiiuiiiiiiiiiiiie e 256
Challenge: Different Messages for Different Situationsccooeiiiiiiieiniiiiiiniiineennnen. 257
16. USINg NOITICAIONS +..ueiiiiiiiiiiiieiii ettt et et e e e e 259
What NOHTICAONS AT ..evuneiiiniiiiiiiii ettt et et ettt et et e e e e e e enane 259
What Notifications Are NOTcoeuuiiiiiiiieii et eaane 259
INSNOBFICATION ..evuteiiineiiiie ettt et e e e et et e e e e e 259
INSNOUTICAHONCENLETeevvieiiieiii ittt ettt et et et e e e e et eeaaeeeaes 259
Starting the Chatter APPLICALIONc.uiuniiiniiie ittt e e 261
Using Notifications in Chattereeuueiiieiiiiiii e e e 265
For the More Curious: Delegates and Notificationsccoveeuieiiiiiiiiiiiiiieinenenn. 268
Challenge: Beep-Deep!oeu i 268
Challenge: Add USEIMAMESc.uiuuiuneiieii ettt et et e e e e e eieeaes 268
Challenge: Colored TEXEeeuiunii et e e eaeees 268
Challenge: Disabling the Send Buttonc.ooiuiiiiiiiiiiiii e 268
17. NSVIEW and DIAWINGcuuiiniieiieii ettt e e e e et et e e eaaaas 271
Setting Up the Dice APPLCATIONeuuietniiiiii ittt 271
Creating a VIEW SUDCIASSo.uiuniiitiiie e 273
Views, Rectangles, and Coordinate SYSIEMSc..eeuueiuiiniiiniiieiieineie e 274
TAIME oeeei i 274
DOUNAS ettt 276
CUSLOM DIFAWINE ... ettt e e ettt e e 276
ArAWRECH(_ D) orininiiii et 277
When is my VIEW draWn?o.ocoiiiiiiii e 278
Graphics coOntexts and SEAESc..ieuuiiuniiueiie et e e e 278
Drawing @ di€ faCCoeeiuniiiiiiiiiiiiii e 279
Saving and Restoring the Graphics Statec.oveuiiiiiiiiiiiiiiiiiei e 284
Cleaning up with AULO LayOoulccoiiiuiiiiiiiiie e 285
Drawing IMaZeScouuiiuneiiiiii e 286
Inspectable properties and designable VIEWScc.oveiiuniiiiieiiiiniiiiniiineiiieeiin, 289
Drawing images with finer Controlccooeiiiiiiiiiiiiiiiiin e 290
SCIOIL VIBWS ..ttt ettt e e e e 291
Creating Views Programmaticallyccoovviiiiiiiiiniiiiniiiiiiiei e 293
For the More Curious: Core Graphics and QUArtzccceeeeiiiiiiiiniiiiniiineiiieeies 294
For the More Curious: Dirty ReCtSccuoviiiiiiiiiiiiiiiiiiiiiin e 295
For the More Curious: FLipped VIEWSc..coiiiiiiiiiiiiiiiiiiiiiiiin e 295
Challenge: Gradi@Ntseeeuuiiiiuniiiieiii ettt ettt et e e e eeaaeeenes 295
Challenge: STIOKEcouuniiiiiiiie ittt ettt et e e e e 295
Challenge: Make DieView Configurable from Interface Buildercco.oooiiiiiii 295
18, MOUSE EVENLSouiiiiiiiiii e 297

Xii

Cocoa Programming for OS X

INSRESPONACT ...ttt ettt et e e et et e e e e e eee 297
INSEVEIE ittt ettt ettt ettt ea e 297
Getting MouSe EVENLS ...c..uviiiiiiiiiiiiiiiiii e 298
CLick 10 ROIL coeniiiii et 299
Improving Hit DELECTIONc.uiuniieiieii et 300
GesSture RECOZMIZETSeuniieii it 301
Challenge: NSBezierPath-based Hit TeStingocuiiuiiiiiiiiiiiiiee e, 303
Challenge: A DIraWing ADPP «..ceueuueiniie ettt et e e e anes 303
19. Keyboard EVENLScc.uuiiiiiiiiiiiiiieiii ettt 305
INSRESPONACT ... et ettt ettt ettt e e e e e eanae 307
INSEVEIE ..ttt ettt et ettt ettt e ea e 307
Adding Keyboard Input to DIEVIEWcouniiiiiiiiiiiiiii e 307
Accept fIrst TESPONALTeuuiitiii it 308
Receive keyboard @VENLSoiuuiiuiiiieiieii et 308
Putting the dice in DICEccuiiniiiii e 308
FOCUS RINES eviiiiiiiii e ettt 309
The Key VIEW LOOP ...iuniiiiiieiiii et 310
For the More Curious: ROIOVEISciuuiiiiiiiiiiiiin e 310
20. Drawing Text With ALIrIDULESc.uietniiiii e 313
INSTFONE ettt ettt e e e 313
INSAUIDULEASIIING . o.neeeeinee ettt et e e e e e eans 314
Drawing Strings and Attributed Stringscouieiuiiiiiiiiiiii e 316
Drawing Text Die FaCesceuuiiiiiiiiiiiie e 317
EXEENSIONS ..evtniiiieiiie it ettt ettt et e 318
Getting Your View to Generate PDF Dataccoooiiiiiiiiiiiiiiii e 318
For the More Curious: NSFONtManagerccuueeuiiniiiiiiiiiiii e 320
Challenge: Color Text as SpeakLine Speaks Itcoooiiiiiiiiiiiiiiii e, 320
21. Pasteboards and Nil-Targeted ACHONSc.utiuuiiuniitiii it e e e e 323
INSPASIEDOAITevvieiiiieiiie ettt 324
Add Cut, Copy, and Paste t0 DICEc.ieuiiiniiiiiiiii e 325
Nil-Targeted ACHOMNSeuneiieitei ettt et et e et e e e e e eans 326
Looking at the XIB fileoouuiiiiiiiiiiii e 328
Menu Item Validationc..oeiiuiiiiiiiiiniii e 329
For the More Curious: Which Object Sends the Action Message?c.cccveevvieniiineennnen. 330
For the More Curious: UTIs and the Pasteboardcccocoiiiiiiiiiiiiiiiiiinn 330
CUStOM UTIS ..oevniiiiiiie et 330

For the More Curious: Lazy COPYINGueuuueuniuneiieiieii ettt 330
Challenge: Write Multiple Representationsc..veuuieueiieiiieiiiiieienee e 331
Challenge: Menu TEemMo.uiiiiiiiiie e e 331
22, Drag-and-DIODcouuiiuiiii e 333
Make DieView @ DIag SOUICEcuuiiuniiiiiieiie ettt 333
StArting @ ALAZ «..ueeeien e e 334

ATEEr the dIOP .o.neiniie it 336
Make DieView a Drag DestiNationcc.ieiueiuiiiiiiiii e 337
1egiSterFOrDrag@edTyPEs(L 1) «euueeuieniin ittt 338

Add highlightingc.oooniiiiii e 338
Implement the dragging destination methodscooeiiiiiiiiiiiiiinine 338

For the More Curious: Operation Maskcccooeiiiiiiiiiiiiiniiiiniiece e 339

Cocoa Programming for OS X

230 INSTIINCT +.ueitie ettt ettt ettt e e e et e e e e et e eaa e eaas 341
NSTimer-based ANIMAIONcouuviiiiiiiiiiiii ettt e e 341

HOW TImers WOTKoiiiniiiiiiii et 343
NSTimer and Strong/Weak Referencesc..c.oviiiiiiiiiiiiiiiiiiiiiie e 343

For the More Curious: NSRUNLOOPcuiuniiiiiiiiiiiiii e 343

24 SHERLS ..o eii ettt ettt et ea e 345
AdAINg @ SRHEET ...oeniiiie e 345
Create the WIndow CONtIOLIETc...viiiiiiiiiiiiiiiin e e 346

Set Up the Menu TteIMiuniiiiiii e 348

Lay Out the INTerfaceoeouuuiiiiiiiiiiii et 349
Configuring the DIie VIBWSc.uiiiiiiiiii e 352
Present the ShEEtoiiiiiiiiiii e 353
MoOdal WINAOWS ...eeuiiiiiiiiieiii ettt et e e e et e eaa e 355
Encapsulating Presentation APISoiiiiiiiii e 355
Challenge: Encapsulate Sheet Presentationcoviiiiiiiiiniiniiiiii e, 356
Challenge: Add Menu Item Validationccoveiiiiiiiiiiiiiiiiii e 357

25. AU LAYOUL .eutiiiiiii it 359
What iS AUto Layout?c...oiiiiiiiiiiiiiiiii e 359
Adding Constraints t0 RaiSEManc.oviiiiiiiiiiiiiiiiiiiicin e 359
Constraints from SUDVIEW tO SUPEIVIEWc..ceuuiiuniiuiiiiiii et 360
Constraints between SIDINGSoiiuiiiiiiie e 367

S1ZE CONSIIAINES ..evuuiiiiiiiiieiii et ettt et e et et e eaieeaiaee 368

Intrinsic CONLENt SIZEeieuuiiiiiiii ittt 370
Creating Layout Constraints Programmaticallycooooiiiiiiiiiiiiniiiniie 371
Visual Format LangUagecoueiiiiiiiiiiiii e 371

Does Not Compute, Part 1: Unsatisfiable Constraintsccoceeeuneiineiiniinniineiineenneen. 373
Does Not Compute, Part 2: Ambiguous Layoutc.cocoiiiiiiiiiiiiiiiiiiineieieeen 374

For the More Curious: Autoresizing Masksoooiiiiiiiiiiiiiii e, 375
Challenge: Add Vertical CONSIAINESc.uiuniuneitneiteii et e et e e e e e eieeanas 376
Challenge: Add Constraints Programmaticallycooiiiiiiiiiiiiiiiiiiiiieneneeeen, 377

26. Localization and Bundlescocooouiiiiiiiiiiiii e 379
Different Mechanisms for Localizationcccccoiiiiiiiiiiiiiiiiiiin e, 379
Localizing a XIB Fleoiuniiiiiiiiiie e 381
Localizing String Literalsc.oiiuiiiiiiiii e 385
Demystifying NSLocalizedString and genstringsceceeuveiuniiiineiiineiiineeiieenineeenen. 389
Explicit Ordering of Tokens in Format Stringscccoeveiiiiiiiiniiiiniiiniiinciinecieeee 390
INSBUNAIE ..ttt 390
NSBundle’s role in 10calizationooeuiviiiiiiiiiiiiiiiiii e 391

Loading code from bundlesccoiviiiiiiiiiiiiiiiiiiii e 393

For the More Curious: Localization and Pluralitycccoooiiiiiiiniiniiinie, 393
Challenge: Localizing the Default Name for a Newly Added Employeec...cc....... 394
Challenge: Localizing the Undo Action Namesccceuviiiiiiiiiiiiniiiieiiieeiineeiieenn 395

27 PIINEINE ©oniiiiiii ettt ettt et e e e 397
Dealing with Paginationccooouiiiiiiiiiiiiiiin e 397
Adding Printing to RaiSEManccouiiiiiiiiiiiiiiiiiiii e 398

For the More Curious: Are You Drawing to the Screen?cooooviiiiiiiiiiiiiiiiineineennes 402
Challenge: Add Page NUMDETScc.iiiuiiiiiiiii e 403
Challenge: Persist Page SELUPcc.iiuiiiiiiiiiiii e 403

Xiv

Cocoa Programming for OS X

28. WED SEIVICES ..evvuiiiieiiie ittt ettt ettt et et e et e 405
Web Services APISiiiiniiiiiiii e 405
RanChFOrecast PrOJECtcouuiiuiii it 406

NSURLSession and asynchronous API designcceuvveiiiiiiiniiiiniiiineiiieennnes 409
NSURLSession, HTTP status codes, and €ITOISoueuieiniiinieeeiieeeeeeeeeeeeeanans 413
Add JSON parsing to ScheduleFetcherooooiiiiiiiiiiii e, 414
Lay out the interfacecoviiiiiiiii e 416
Opening URLS ... e e 418
Safely Working with Untyped Data StrucCturescouveeiuniiiiiiiineiiieiiieeeieeniieenn 419
For the More Curious: Parsing XMLc.oiiuiiiiiiiiiiiiii e 420
Challenge: Improve Error Handlingcoooooiiiiiiiiiiiiiiii e, 421
Challenge: Add @ SPINNETeiuniiniii ettt e e 421
Challenge: Parse the XML Courses Feedcoccoviiiiiiiiiiiiiiiie e 421

29, UNIE TESHIE ..eevunetitieiii ettt et ettt ettt et e e et et e e e et et e eeaaeeaanes 423
TeStING 10 XCOAE ...eeniiniie ittt et et et e e e e e e 423
YOUL FIISE TEST weueitie ittt et 425
A Note on Literals in TeSTINGovuniiineiieiiiii e 428
Creating a Consistent Testing Environmentc.ooooiiiiiiiiiiiiiiiiiiie e 428
Sharing CONSLANESueteii ittt e e e et e e et et e e e ea e en e et eanaennaas 430
Refactoring for TESTNGc..ceuuiitiiiii e et e e 431
For the More Curious: Access MOAIfIETSeiiuiiiiiiiiiiiniiiiiiiieiiie e 434
For the More Curious: Asynchronous TeStingccceeuuviiiiiniineiiiiiiiieeeeieen, 435
Challenge: Make Course Implement Equatablecoooiiiiiiiiiiiiiiiieen, 436
Challenge: Improve Test Coverage of Web Service Responsesccocoeveuiiiiniiiniinnnen.. 437
Challenge: Test Invalid JSON DiCHONAIYc.uveuiiniiiiiieiee e 437

30. VIEW CONLTOIIBLS ..evviiiiieiii ettt ettt et e e et eeaa e eaa 439
INSVIEWCONIIOIIET ...ceviiiiiiiiii e et 440
Starting the ViewControl APPLCAtIONc..iiuuiiuiiiiiiii e 441
Windows, Controllers, and Memory Managementocuuveuuieinieineiieiieiineiaeieeanes 444
Container View CONLIOLIETSc..uiiiiiiiiiiiiiiineiii et 444
Add a Tab View CONLIOLIETiiuuniiiiiiiieiii et 445
View Controllers vs. Window Controllersceeeuuviiiiiiiiiniiiniiiiieeiieeii e 446
Considerations for OS X 10.9 and Earlierc.c.cooiiiiiiiiiiiini e, 447
Challenge: SpeakLineViewCoOntrollercc.viuuiiiniiiiiiiiiieii e 447
Challenge: Programmatic View COntrollerooouviuiiiiiiiiiiiiiiiiieie e, 447
Challenge: Add a Window COntrollercc.viiuiiiniiiiiieie e 448

31. View Swapping and Custom Container View Controllerscccoeviirveiinniiiineiiineennnneen. 449
VIBW SWAPPINE .. oeeiineiiieiii ettt ettt et ettt et et e e et e e et et e e eaaeees 449
NerdTabVIewWCONtIrOLIETcouuuiiiiniiiiiiiiieiie e e 449
Adding Tab TMAZESuueeniiniii et 454
Challenge: Boxless NerdTabViewControllerc.ociuiiiiiiiiiiiiiiineiieneie e 455
Challenge: NerdSplitVieWCONtrollercc.uiiuiiniiiiiiee e 455
Challenge: Draggable DiVIdercouiiiuiiiiiiiiiiiie e 455

RN 10 740 0T ¢« KPP 457
A New UI for RanchFOTECaStciuuuiiiiiiiiiiiiiii e 457

Adding the course LISt ..ot 462
Adding the Web VIEWiiuiiiiiiiiii e 465
Connecting the Course List Selection with the Web Viewcooiiiiiiiiiiiiiiiiinin., 466

XV

Cocoa Programming for OS X

Creating the CourseListViewControllerDelegatec..ccoveiiiiiiiiiiiiiiineineenneen. 468

Creating the parent view CONIOLIETocouiiiiiiiiiiiiiiiiiii e 468

For the More Curious: How is the Storyboard Loaded?ccooeuiiiiiiiiiiiiiiiiiinenes 470

33, COre ANIMALION ...evvuniiiniiieeiti ettt et et et e et et et e e et e eaa et et e e et e e et e eaieeaaneeenans 471
(07N 7) LT 471
SCALETEA +..eeeieeii ettt ettt ettt ettt e e 472
Implicit Animation and ACHONScuuuiiniiieii et e e 476
MOTE ON CALAYET ...eeniiie ittt e e 477
Challenge: Show FIlenamesoeuuiiiniiiiiiiiiiei e 478
Challenge: Reposition Image Layersc..iiuiiuiiiiniiiiiiiii e 478

34, COMNCUITEIICY ..eevuneinnneiii ettt et et e et et et et e e et e et e e e et e et e et e e eb e e et e e et eeaaaeeanaes 479
MUltIthreadingooovuniiiiiiii e 479

A Deep Chasm Opens Before YOUcc..ooeiuiiiiiiiiiiiiiiiiniiiii e 479
Improving Scattered: Time Profiling in InStrumentscooooviiiiiiiiiiiiiiiiinineieanns 481
Introducing INSIUMENESc.uuiuniinii e 481

Analyzing output from INStrumMEentsc.oeiuieiiiiiiiiii e 484
NSOPEratioNQUEUEeuuieneiie ittt et ettt et e et e et et e e e eaeebeenaas 484
Multithreaded SCatteredc..vviiiniiiiiiiiiiiiiie e 484

Thread SYNCRIONIZAtIONcuuniiiiiiiii e 485

For the More Curious: Faster SCatteredveiiuiiiiiiiiiiniiiniii e e 486
Challenge: An Even Better Scatteredc.ooiuiiiiiiiiiiiiiii e 487

35 INSTASK ittt et eaa e 489
ZIPSPECIOT ...ttt et 489
Asynchronous Readsoo.oiiiiiiiiiiiiiiiiiii e 493
TPINE ot 494
Challenge: .tar and .t8Z FIIEScoouuiiiiiiiiiiiiii e 497

36. DiStributing YOUT ADD «oevuueeiuiiiieiiie ettt et et ettt et et e e e eaene 499
Build CONfIZUIAtiONSccouuiiiiiiiie it ettt 499
Preprocessor Directives: Using Build Configurations to Change Behavior 500
Creating a Release Buildcoiiiiiiiiii e 503

A Few Words on INStallerscoouiiiiiiiiiiiiiiiii i 505

ADPD SANADOX ..ttt et 505
ENLIIEMENTS ..oevuniiiiiiii ittt et et 505

CONLAINETSueiiineiiiie ettt ettt et ettt e e et e et et e et et e e et eeaa e eaans 506

Mediated file access and POWEIDOXcoouiiiiiiiiiniiiiiiiiiiiiin e 506

The Mac APP STOTE ...ttt ettt e e e e e e ees 507
Receipt Validationc.oeiuiiiiiii e 507
Local receipt VErifICAtioNnc..ceuuiiuiiiiiiiiii et 507
Server-based VErificationceeeuuiiiiiiiiiiniiiniii e 508

37 ATIEIWOIA ooiiiiiii et 511
INAEX ettt 513

XVi

Introduction

If you are developing applications for OS X, or are hoping to do so, this book will be your foundation
and will help you understand Cocoa, the set of frameworks for developing applications for OS X. You,
the developer, are going to love developing for OS X because Cocoa will enable you to write full-
featured applications in a more efficient and elegant manner.

About This Book

This book covers the major design patterns of Cocoa and includes an introduction to the Swift
language. It will also get you started with the most commonly-used developer tools: Xcode and
Instruments. After reading this book, you will understand these major design patterns which will
enable you to understand and use Apple’s documentation — a critical part of any Cocoa developer’s
toolkit — as well as build your own Cocoa applications from scratch.

This book teaches ideas and provides hands-on exercises that show these ideas in action. Each chapter
will guide you through the process of building or adding features to an application.

Often, we will ask you to do something and explain the details or theory afterward. If you are
confused, read a little more. Usually, the help you seek will be only a paragraph or two away.

Because of the hands-on nature of the book, it is essential that you do the exercises and not just read
the words. Doing the exercises will help build the kind of solid understanding that will enable you

to develop on your own when you are finished with this book. You will also learn a great deal from
making mistakes, reading error messages, and figuring out what went wrong — practical experience you
can’t get from reading alone. At first, you may want to stick with what we show you, but later in the
book when you are more comfortable with the environment, you should feel free to experiment with
the exercises and add your own ideas.

Most chapters end with one or two challenge exercises. These exercises are important to do as well.
Taking on these challenges gives you the opportunity to test your skills and problem-solve on your
own.

You can get help with this book at bignerdranch.com/books, where you will find errata and
downloadable solutions for the exercises. You can also post questions and find relevant conversations
on the Big Nerd Ranch forums at forums.bignerdranch.com.

We ask that you not use the downloadable solutions as a shortcut for doing the exercises. The act of
typing in code has far more impact on your learning than most people realize. By typing the code
yourself (and, yes, making mistakes), you will absorb patterns and develop instincts about Cocoa
programming, and you will miss out on these benefits if you rely on the solutions or copy and paste the
code instead.

There is a lot of code in this book. Through that code, we will introduce you to the idioms of the Cocoa
community. Our hope is that by presenting exemplary code, we can help you to become more than a
Cocoa developer — a stylish Cocoa developer.

Most of the time, Cocoa fulfills the following promise: Common things are easy, and uncommon things
are possible. If you find yourself writing many lines of code to do something rather ordinary, you are
probably on the wrong track. There is a popular adage in the community which you should bear in
mind: Don'’t fight the framework. Cocoa is opinionated and you will benefit greatly from adapting your
way of doing things to its way of doing things.

XVii

http://www.bignerdranch.com/books
http://forums.bignerdranch.com

Introduction

Prerequisites

This book is written for programmers and assumes that you are familiar with basic programming
concepts (like functions, variables, and loops) as well as object-oriented concepts (like classes, objects,
and inheritance). If you do not fit this profile, you will find this book tough going. You are not expected
to have any experience with Mac programming.

One of the challenges of learning Cocoa programming is learning the Swift language. If you have a
basic foundation in programming and know something about objects, you will find learning Swift
to be easy. This book includes three chapters to introduce to you to the language. Then you will
learn more Swift as you build Cocoa applications throughout the book. If you would prefer a gentler
introduction, start with Apple’s The Swift Programming Language, available in the iBooks store or
from developer.apple.com/swift, offers a more gentle introduction. Or, if you can wait until Summer
2015, you can read Swift Programming: The Big Nerd Ranch Guide first.

This is a hands-on book and assumes that you have access to OS X and the developer tools. The book
requires OS X Yosemite (10.10) or higher. The exercises are written for Xcode 6.3 and Swift 1.2.

We strongly recommend that you join Apple’s Mac Developer Program at developer.apple.com/
programs. Joining the program gives you access to pre-release versions of Xcode and OS X. These
can be very useful when trying to stay ahead of Apple’s development curve. In addition, you must be a
member of the developer program to distribute your apps on the App Store.

Typographical conventions

To make the book easier to follow, we have used several typographical conventions.

In Swift, class names are always capitalized. In this book, we have also made them appear in a
monospaced bold font. In Swift, method names start with a lowercase letter. Here, method names will
also appear in a monospaced bold font. For example, you might see “The class NSWindowController
has the method showWindow(_:).”

Other literals, including instance variable names that you would see in code, will appear in a
regular monospaced font. Also, filenames will appear in this same font. Thus, you might see “In
MyClass.swift, set the optional favoriteColor to nil.”

Code samples in this book appear in the regular monospaced font. New portions, which you will need
to type yourself, will appear in bold. Code that you should delete is struck-through.

What'’s new in the fifth edition?

This fifth edition includes technologies introduced in OS X 10.8, 10.9, and 10.10. It is updated

for Xcode 6.3 and Swift 1.2. It includes coverage of Swift basics, Auto Layout, unit testing, view
controllers and expanded coverage of view swapping, storyboards, modernized localization and web
services APIs, JSON parsing, Key-Value Validation, and a strong emphasis on demonstrating best
practices for application architecture.

The Story of Cocoa

Once upon a time, two guys named Steve started a company called Apple Computer in their garage.
The company grew rapidly, so they hired an experienced executive named John Sculley to be its CEO.

XViii

http://developer.apple.com/swift
http://developer.apple.com/programs
http://developer.apple.com/programs

NeXTSTEP and OpenStep

After a few conflicts, John Sculley moved Steve Jobs to a position where he had no control over the
company. Steve Jobs left to form another computer company, NeXT Computer.

NeXT hired a small team of brilliant engineers. This small team developed a computer, an operating
system, a printer, a factory, and a set of development tools. Each piece was years ahead of competing
technologies. Unfortunately, the computer and the printer were commercial failures. In 1993, the
factory closed, and NeXT Computer, Inc. became NeXT Software, Inc. The operating system and the
development tools continued to sell under the name NeXTSTEP.

NeXTSTEP and OpenStep

NeXTSTEP was very popular with scientists, investment banks, and intelligence agencies. These
groups found that NeXTSTEP enabled them to turn their ideas into applications faster than any other
technology. In particular, NeXTSTEP had three important features:

a Unix-based operating system

NeXT decided to use Unix as the core of NeXTSTEP. It relied on the source code for BSD Unix
from the University of California at Berkeley. Why Unix? Unix crashed much less frequently
than Microsoft Windows or Mac OS and came with powerful, reliable networking capabilities.

a powerful window server

A window server takes events from the user and forwards them to the applications. The
application then sends drawing commands back to the window server to update what the user
sees. One of the nifty things about the NeXT window server is that the drawing code that

goes to the window server is the same drawing code that would be sent to the printer. Thus, a
programmer has to write the drawing code only once, and it can then be used for display on the
screen or printing.

If you have used Unix machines before, you are probably familiar with the X window server.
The window server for OS X is completely different but fulfills the same function as the X
window server: It gets events from the user, forwards them to the applications, and puts data
from the applications onto the screen.

an elegant set of libraries and tools

NeXTSTEP came with a set of libraries and tools to enable programmers to deal with the
window server in an elegant manner. The libraries were called frameworks. In 1993, the
frameworks and tools were revised and renamed OpenStep.

Programmers loved OpenStep because they could experiment more easily with new ideas. In
fact, Tim Berners-Lee developed the first web browser and web server on NeXTSTEP using the
OpenStep libraries and tools. Securities analysts could code and test new financial models much
more quickly. Colleges could develop the applications that made their research possible. We do
not know what the intelligence community was using it for, but they bought thousands of copies
of OpenStep.

From NeXTSTEP to OS X to iOS

For many years, Apple Computer had been working to develop an operating system with many of the
same features as NeXTSTEP. This effort, known as Project Copland, gradually spun out of control,

XiX

Introduction

and Apple finally decided to pull the plug and buy the next version of Mac OS instead. After surveying
the existing operating systems, Apple selected NeXTSTEP. Because NeXT was small, Apple simply
bought the whole company in December 1996. In 1997, Steve Jobs returned to Apple.

NeXTSTEP became Mac OS X, and OpenStep became Cocoa. In 2001, the first desktop version
of Mac OS X was released with several more to follow. In 2012, Apple dropped the “Mac,” and the
operating system became known as OS X.

The mutation of NeXTSTEP didn’t stop with OS X. i0S, the operating system for iPhones and iPads,
is based on OS X, and i0S’s Cocoa Touch is built on the same foundations as Cocoa. As a developer
you will find that your knowledge transfers well between the two: the design patterns are identical, and
many of the APIs are very similar if not the same.

0SX, Unix, and Cocoa

OS X is Unix underneath, and you can get all the standard Unix programs (such as the Apache Web
server) on OS X. It is extremely stable, and the user interface is spectacular.

(Apple has made the source code to the Unix part of OS X available under the name Darwin. A
community of developers continues to work to improve Darwin. You can learn more about Darwin at
www.macosforge.org.)

As shown in Figure 1, the window server and your application are Unix processes. Cocoa is your
application’s interface to the window server to receive events and draw to the screen. At the same time
it has access to the Unix layer where it can make lower level calls.

Figure 1 Where is Cocoa?

events
Window ; R Your
Server | o=" Cocoa Al
drawing PP
4.4 BSD UNIX
Mach Microkernel

Introducing the Swift Language

Programming in Cocoa was initially done in a language called Objective-C. Objective-C is an
extension of the C programming language that adds constructs for object-oriented programming. In
that respect it bears a superficial resemblance to C++, but the two are extremely different. Unlike C++,
Objective-C is weakly typed and extremely powerful. With power comes responsibility: Objective-C
also allows programmers to make ridiculous errors.

Over the past several years, Apple’s engineers have gone to heroic lengths to make Objective-C faster
and add more modern features, but in order to move forward, a new language was needed, free of the

limitations of the past. Swift, developed by a small team led by Chris Lattner, was the answer. Apple

introduced Swift in 2014.

XX

http://www.macosforge.org

The Cocoa Frameworks

Swift maintains the expressiveness of Objective-C while introducing a syntax that is significantly
more rich, succinct, and — in the opinion of some — readable. It emphasizes type safety and introduces
advanced features such as optionals and generics. Swift is much stricter than Objective-C and will not
allow you to make as many ridiculous errors.

Although we will focus on Swift, you can still write Cocoa code in Objective-C, even alongside Swift,
compiling the two in the same project.

Most importantly, Swift allows the use of these new features while relying on the same tested, elegant
Cocoa frameworks that developers have built upon for years and years.

The Cocoa Frameworks

A framework is a collection of classes that are intended to be used together. That is, the classes are
compiled together into a reusable library of binary code. Any related resources are put into a directory
with the library. The directory is given the extension . framework. You can find the built-in frameworks
for your machine in /System/Library/Frameworks. Cocoa is made up of three frameworks:

* Foundation: Every object-oriented programming language needs the standard value, collection,
and utility classes. Strings, dates, lists, threads, and timers are in the Foundation framework. All
Cocoa apps, from command-line tools to fully-featured GUI apps, use Foundation. Foundation is
also available on iOS.

* AppKit: All things related to the user interface are in the AppKit framework. These include
windows, buttons, text fields, events, and drawing classes. AppKit is built on top of Foundation
and is used in practically every graphical application on OS X.

* Core Data: Core Data makes it easy to save objects to a file and then reload them into memory. It
is a persistence framework.

In addition to the three Cocoa frameworks, over a hundred frameworks ship with OS X. The
frameworks offer a wide variety of features and functionality. For example, AVFoundation is great
for working with audio and video, AddressBook provides an API to the user’s contacts (with their
permission), and and SpriteKit is a full-featured 2D game engine with physics. You can pick and
choose from these frameworks to suit the needs of your application. You can also create your

own frameworks from the classes that you create. Typically, if a set of classes is used in several
applications, you will want to turn them into a framework.

This book will focus on the Cocoa frameworks and especially Foundation and AppKit because they
will form the basis of most Cocoa applications that you will write. Once you have mastered these,
other frameworks will be easier to understand.

Tools for Cocoa Programming

Xcode is the IDE (integrated development environment) used for Cocoa development.

Xcode is available for free on the Mac App Store. Pre-release versions can be downloaded at
developer.apple.com/mac. (You will need to join Apple’s Mac Developer Program to access these.) We
strongly recommend using Xcode 6.3 with Swift 1.2 or later for the exercises in this book.

Xcode tracks all the resources that go into an application: code, images, sounds, and so on. You edit
your code in Xcode, and Xcode compiles and launches your application. Xcode can also be used to

XXi

Introduction

invoke and control the debugger. Behind the scenes, swiftc (Apple’s Swift compiler) will be used to
compile your code, and LLDB (Low Level Debugger) will help you find your errors.

Inside Xcode, you will use the Interface Builder editor as a GUI builder to lay out windows and

add Ul elements to those windows. But Interface Builder is more than a simple GUI builder. In
Interface Builder, you can create objects and edit their attributes. Most of those objects are Ul elements
from the AppKit framework such as buttons and text fields, but some will be instances of classes that
you create.

You will use Instruments to profile your application’s CPU, memory, and filesystem usage. Instruments
can also be used to debug memory-management issues. Instruments is built on top of dtrace, which
makes it possible to create new instruments.

Some Advice on Learning

All sorts of people come to our class: the bright and the not so bright, the motivated and the lazy,
the experienced and the novice. Inevitably, the people who get the most from the class share one
characteristic: they remain focused on the topic at hand.

The first trick to maintaining focus is to get enough sleep: ten hours of sleep each night while you are
studying new ideas. Before dismissing this idea, try it. You will wake up refreshed and ready to learn.
Caffeine is not a substitute for sleep.

The second trick is to stop thinking about yourself. While learning something new, many students will
think, “Damn, this is hard for me. I wonder if I am stupid.” Because stupidity is such an unthinkably
terrible thing in our culture, they will then spend hours constructing arguments to explain why they are
intelligent yet having difficulties. The moment you start down this path, you have lost your focus.

Aaron used to have a boss named Rock. Rock earned a degree in astrophysics from Cal Tech, but never
had a job that used his knowledge of the heavens. When asked if he regretted getting the degree, he
replied, “Actually, my degree in astrophysics has proved to be very valuable. Some things in this world
are just hard. When I am struggling with something, I sometimes think ‘Damn, this is hard for me. I
wonder if I am stupid,” and then I remember that I have a degree in astrophysics from Cal Tech; I must
not be stupid.”

Before going any further, assure yourself that you are not stupid and that some things are just hard.
Armed with this affirmation and a well-rested mind, you are ready to conquer Cocoa.

XXii

Structures and Classes

At this point you should be somewhat familiar with using Swift’s standard types: strings, arrays,
enums, etc. It is time to move on to bigger and better things: defining your own types. In this chapter,
you will build a simple 2D physics simulation. You will create your own structure and a few classes,
and you will learn about the differences between them.

Structures

In Cocoa, structures are typically used to represent groupings of data. For example, there is NSPoint,
which represents a point in 2D space with an X and a Y value. As your first structure you will create a
2D vector structure.

Create a new playground. From Xcode’s File menu, select New... = Playground. Name the playground
Physics and save it with the rest of your projects.

Start by defining the Vector structure:

import Cocoa

struct Vector {
var x: Double
var y: Double

Much like C structures, Swift structures are composite data types. They are composed of one or more
fields, or properties, each of which has a specified type. A few lines down, create an instance of Vector
and access its properties:

let gravity = Vector(x: 0.0, y: -9.8) // {x 0, y -9.800000000000001}
gravity.x // 0
gravity.y // —9.800000000000001

You just used Swift’s automatic initializer to create an instance of this structure. The automatic
initializer has a parameter for each property in the structure. If you were to add a z field, this code
would cause a compiler error because it lacks a z parameter. (Do not worry about the zeros; that is just
typical floating point fun.)

You can provide your own initializers, but when you do, the automatic initializer is no longer provided.
Go back to Vector and add an initializer that takes no parameters and initializes x and y to @.

41

Chapter 3 Structures and Classes

struct Vector {
var x: Double
var y: Double

init() {
X =0
y==20
}

I

Initializers in Swift use the init keyword, followed by the parameter list, and then the body of the
initializer. Within the body, the x and y properties are assigned directly.

An initializer must initialize all of the properties of its structure.

As we warned, defining this initializer has caused the automatic one to vanish, causing an error in the
playground. You can easily define it manually, however:

struct Vector {
var x: Double
var y: Double

init() {
X =0
y =0
}
init(x: Double, y: Double) {
self.x = x
self.y = y
}

}

A Swift programmer would say that this initializer takes two parameters, x and y, both of type Double.

What is self? It represents the instance of the type that is being initialized. Using self.propertyName
is usually unnecessary (you did not use it in init()), but because the initializer’s parameter names
match the names of the properties you must use self to tell the compiler that you mean the property
and not the parameter.

Before continuing, let’s make an improvement. As the Vector structure stands, its two initializers have
independent code paths. It would be better to have them use one code path by having the parameterless
initializer call the initializer which takes both x and y.

struct Vector {
var x: Double
var y: Double

init() {
b
y—=—b9
self.init(x: 0, y: 0)

¥

init(x: Double, y: Double) {
self.x = x
self.y =y

¥

42

Instance methods

A single code path for initialization is not required for structures, but it is a good habit to get into as
you will use it when working with classes.

Instance methods

Methods allow you to add functionality to your data types. In Swift, you can add methods to structures
as well as classes (and enums!). Instance methods operate within the context of a single instance of the
type. Add an instance method for multiplying a vector by a scalar:

struct Vector {

init(x: Double, y: Double) {
self.x X
self.y =y

}

func vectorByAddingVector(vector: Vector) -> Vector {
return Vector(x: self.x + vector.x,
y: self.y + vector.y)

The func keyword in the context of a structure indicates that this is a method. It takes a single
parameter of type Double and returns an instance of Vector.

Try this new method out:

let gravity = Vector(x: 0.0, y: -9.8) // {x 0, y -9.800000000000001}
gravity—x

gravity—y
let twoGs = gravity.vectorByAddingVector(gravity) // {x 0, y -19.6}

What is the name of this method? In conversation you would call it vectorByAddingVector, but in this
text we include parameters, like this: vectorByAddingVector(_:). By default, the first parameter of a
method is not named — thus the underscore.

Why not name the first parameter? Because the convention — inherited from Objective-C and Cocoa
— is that the base name of the method includes the name of the first parameter, in this case Vector.
Suppose you added another parameter to that method. What would it look like?

func vectorByAddingVector(vector: Vector, numberOfTimes: Int) —> Vector {
var result = self
for _ in 0..<number0fTimes {

This method would be called vectorByAddingVector(_:numberOfTimes:). Note that there is a colon
for each parameter.

This can lead to verbose method names, but the code actually becomes very readable. No guessing or
relying on the IDE to tell you what the third parameter is!

By default, each parameter’s internal name is the same as its external name (except the first
parameter, that is). In vectorByAddingVector(_:number0fTimes:), the second parameter is named

43

Chapter 3 Structures and Classes

number0fTimes. That is certainly very descriptive, but you might prefer to use a shorter name (like
times) within the method. In that case you would explicitly set the internal parameter name like this:

func vectorByAddingVector(vector: Vector, numberOfTimes times: Int) —> Vector {
var result = self
for _ in 0..<times {

The method’s signature has not changed. For those calling it, its name is still
vectorByAddingVector(_:number0fTimes:), but internally you have the satisfaction of using the
name you want.

Using self in instance methods

As in initializers, self represents the instance that the method is being called on. As long as there is no
conflict with named parameters or local variables, however, it is entirely optional, so we prefer to leave
it off. Make this change to vectorByAddingVector(_:).

struct Vector {

func vectorByAddingVector(vector: Vector) —> Vector {
returaVYectorOe—setf——veetore
y+——setfy—+—veeter—y)
return Vector(x: x + vector.x,
y: y + vector.y)

Operator Overloading

By overloading operators you can make your own types work with common (and even uncommon)
operators. This ability falls deep beyond the “with great power comes great responsibility” line.
However, vectors are a natural and respectable application for this technique.

To define an operator overload you simply add a function that takes the appropriate types. To start with,
instead of calling vectorByAddingVector(_:), it would be nice to use the + operator. Overload + and *
for adding and scaling vectors, respectively.

struct Vector {
¥

func +(left: Vector, right: Vector) -> Vector {
return left.vectorByAddingVector(right)
}

func *(left: Vector, right: Double) -> Vector {
return Vector(x: left.x * right , y: left.y * right)
}

Now you can very succinctly manipulate vectors:

let twoGs = gravity + gravity
let twoGsAlso = gravity * 2.0

44

Classes

Note that the order of types for binary operators like * and + is important. In order to write 2.0 *
gravity you will need to implement another operator overload function:

func *(left: Double, right: Vector) —> Vector {
return right * left
¥

Classes

Now that you have the beginnings of a robust vector type, let’s put it to work. Your 2D physics
simulation will consist of two classes: Particle, which represents a single moving object within the
simulation, and Simulation, which contains an array of Particle instances.

Classes are very similar to structures. They have a lot of the same features: initializers, properties,
computed properties, and methods. They have a significant difference, however, which we will discuss
once the simulation is up and running.

Start by defining the Particle class in your playground. The position is not important, as long as
it is above or below (but not inside!) the Vector structure. A Particle has three Vector properties:
position, velocity, and acceleration.

struct Vector {
¥
class Particle {
var position: Vector

var velocity: Vector
var acceleration: Vector

Classes and structures differ significantly in terms of initializers. Most noticeably, classes do not have
automatic initializers, so you will see a compiler error: Class 'Particle’ has no initializers.

Fix this by adding an initializer to Particle:

class Particle {

var position: Vector
var velocity: Vector
var acceleration: Vector

init(position: Vector) {
self.position = position
self.velocity = Vector()
self.acceleration = Vector()

You do not need to provide a parameter for every property in a class like you did in Vector’s
init(x:y:). You just need to initialize everything. As with initializers for structures, a class’s

45

Chapter 3 Structures and Classes

initializer must initialize all of its properties before returning or performing any other tasks. By
requiring this of initializers the Swift compiler guarantees that every instance is fully initialized before
it is put to work.

Another approach is to give properties default values:

class Particle {

var position: Vector
var velocity: Vector = Vector()
var acceleration: Vector = Vector()

init(position: Vector) {
self.position = position
}

In a simple case like this, there is not a clear benefit to either approach.

Designated and convenience initializers

Like structures, classes can have multiple initializers. At least one of them will be the designated
initializer. Remember how you refactored Vector’s init() to call init(x:y:)? A designated
initializer is an initializer which other, non-designated initializers — convenience initializers — must
call. The rule of thumb with designated initializers is that they are typically the one with the most
parameters. Most classes will only have one designated initializer.

The init(position:) initializer is the Particle class’s designated initializer. Add a convenience
initializer:

class Particle {

init(position: Vector) {
self.position = position
self.velocity = Vector()
self.acceleration = Vector()
}

convenience init() {

self.init(position: Vector())
}

There is an exception to these designated initializer rules: required initializers, which you will see in
Chapter 12.

Add an instance method

A particle has a position, velocity, and acceleration. It should also know a little about particle dynamics
— specifically, how to update its position and velocity over time. Add an instance method, tick(_:), to
perform these calculations.

46

Add an instance method

class Particle {

convenience init() {
self.init(position: Vector())
¥

func tick(dt: NSTimeInterval) {
velocity = velocity + acceleration * dt
position = position + velocity * dt
position.y = max(@, position.y)

The tick(_:) method takes an NSTimeInterval parameter, dt, the number of seconds to simulate.
NSTimeIntervalis an alias for Double.

Below the definition of Particle, define the Simulation class, which will have an array of Particle
objects and its own tick(_:) method:

class Particle {
¥
class Simulation {

var particles: [Particle] = []
var time: NSTimeInterval = 0.0

func addParticle(particle: Particle) {
particles.append(particle)
}

func tick(dt: NSTimeInterval) {
for particle in particles {
particle.acceleration =
particle.tick(dt)
particle.acceleration

particle.acceleration + gravity

Vector()

}

time += dt

The Simulation class has no initializers defined since all of its properties have default values. The
for-in loop iterates over the contents of the particles property. The tick(_:) method applies
constant acceleration due to gravity to each of the particles before simulating them for the time
interval.

Before you warm up the simulator and add a particle, add a line to evaluate particle.position.y.
You will use this shortly with the playground’s Value History. Additionally, add some code to remove
particles once they drop below y = @:

47

Chapter 3 Structures and Classes

class Simulation {

func tick(dt: NSTimeInterval)
for particle in particles
particle.acceleration
particle.tick(dt)
particle.acceleration
particle.position.y

I A

particle.acceleration + gravity

Vector()

}
time += dt
particles = particles.filter { particle in
let live = particle.position.y > 0.0
if !'live {
println("Particle terminated at time \(self.time)")
}

return live

The last chunk of code filters the particles array, removing any particles that have fallen to the
ground. This is a closure, and it is OK if you do not understand it at this point. You will learn more
about closures in Chapter 15.

Now you are ready to run the simulator. Create an instance of the simulator and a particle, add the
particle to the simulation, and see what happens.

class Simulation {
¥

let simulation = Simulation()

let ball = Particle()
ball.acceleration = Vector(x: 0, y: 100)
simulation.addParticle(ball)

while simulation.particles.count > 0 && simulation.time < 500 {
simulation.tick(1.0)

}

You should see the playground tally up (20 times) on a number of lines. If the playground runs the
simulation continuously, you can stop it by commenting out the while loop. Select the three lines and
hit Command-/ to toggle the comment marks:

// while simulation.particles.count > @ && simulation.time < 500 {
// simulation.tick(1.0)
// Y

Double-check your code against the listings above, in particular the lines that filter the particles array
and the line that increments time.

48

Inheritance

Once you have the simulation running as expected, click the Variables View circle in the playground
sidebar on the line that reads particle.position.y, as shown in Figure 3.1. A graph will appear,
showing the Y values of the particle over time. The X axis on this graph represents iterations over time
and not the X coordinate of the particle.

Figure 3.1 Graph data history of particle.position.y

B8

119
120
121

123
124

125
126
127

129
130
131

133
134
135
136
137
138
139
140
141
1452
143
144
145
146

Physics.playground — Edited
i Physics.playground

func tick(dt: NSTimeInterval) {
for particle in particles {
particle.acceleration =
particle.tick(dt)
particle.acceleration = Vector()
particle.position.y

particle.acceleration + gravity

b
time += dt
particles = particles.filter { particle in
let live = particle.position.y > 0.0
if !live {
println("Terminated at time \(self.time)")

return live

}

let simulation = Simulation()

let ball = Particle()

ball.acceleration = Vector(x: @, y: 100)
simulation.addParticle(ball)

hhile simulation.particles.count > @ && simulation.time < 500 {
simulation.tick(1.0)

Inheritance

(20 times)
(20 times)
(20 times)
(20 times)

(20 times)
(20 times)

"Terminated at time 20.0"

(20 times)

{0 elements time 0}

{{x 0,y 0}{x0,y0}{x0,y 0}
{{x 0,y 0} {x0,y0}{x 0, y 100}}
{l{...}] time 0}

(20 times)

1 30

Suppose you wanted to simulate a particle that had different behavior than the Particle class you
have already implemented: a rocket that propels itself with thrust over a certain period of time. Since
Particle already knows about physics, it would be natural to extend and modify its behavior through
subclassing.

Define the Rocket class as a subclass of Particle.

49

Chapter 3 Structures and Classes

class Rocket: Particle {

let thrust: Double
var thrustTimeRemaining: NSTimeInterval
let direction = Vector(x: 0, y: 1)

convenience init(thrust: Double, thrustTime: NSTimeInterval) {
self.init(position: Vector(), thrust: thrust, thrustTime: thrustTime)
}

init(position: Vector, thrust: Double, thrustTime: NSTimeInterval) {
self.thrust = thrust
self.thrustTimeRemaining = thrustTime
super.init(position: position)

The thrust property represents the magnitude of the rocket’s thrust. thrustTimeRemaining is the
number of seconds that the thrust will be applied for. direction is the direction that the thrust will be
applied in.

Take a minute to go through the initializers you just typed in. Which is the designated initializer?
(Remember the rule of thumb about designated initializers?)

In order to guarantee that a class’s properties are initialized, initializers are only inherited if a subclass
does not add any properties needing initialization. Thus, Rocket provides its own initializers and calls
the superclass’s designated initializer.

Next you will override the tick(_:) method, which will do a little math to calculate the acceleration
due to thrust and apply it before calling the superclass’s — Particle’s — tick(_:) method.

class Rocket: Particle {

init(position: Vector, thrust: Double, thrustTime: NSTimeInterval) {
self.thrust = thrust
self.thrustTimeRemaining = thrustTime
super.init(position: position)

b

override func tick(dt: NSTimeInterval) {
if thrustTimeRemaining > 0.0 {
let thrustTime = min(dt, thrustTimeRemaining)
let thrustToApply = thrust * thrustTime
let thrustForce = direction * thrustToApply
acceleration = acceleration + thrustForce
thrustTimeRemaining -= thrustTime

super.tick(dt)

Finally, create an instance of Rocket and add it to the simulation in place of the ball:

50

Computed Properties

let simulation = Simulation()

et batt—=Particte)
batlaceeteration=YeeterOe—0—y+—160)
et oF s eletbatl)

// let ball = Particle()
// ball.acceleration = Vector(x: 0, y: 100)
// simulation.addParticle(ball)

let rocket = Rocket(thrust: 10.0, thrustTime: 60.0)
simulation.addParticle(rocket)

The simulation will run for 70 “seconds” with these parameters. The Value History shows quite a
different profile! (Figure 3.2)

Figure 3.2 The rocket’s Y position over time

@ Physics.playground

a2 Physics.playground

123 particle.acceleration = Vector() (70 times)

124 particle.position.y (70 times)

125 }

126 time += dt

127 particles = particles.filter { particle in (70 times)

128 let live = particle.position.y > 0.0 (70 times)

129 if 1live {

130 println("Terminated at time \(self.time)") “Terminated at time 70.0"
131

132 return live (70 times)

133 }

134 }

135

136}

137

138 let simulation = Simulation() {0 elements time 0}

140 //let ball = Particle()

151 //ball.acceleration = Vector(x: @, y: 100)

142 //simulation.addParticle(ball)

144 let rocket = Rocket(thrust: 10.0, thrustTime: 60.0) {{{.--} {...} {-..}} thrust 10 thrustTimeRemain...
145 simulation.addParticle(rocket) {[{--.}] time 0}

148 while simulation.particles.count > @ & simulation.time < 500 {
149 simulation.tick(1.0) (70 times)

Note that inheritance is one key differentiator between classes and structures: structures do not support
inheritance.

Computed Properties

It is frequently useful to find a vector’s length or magnitude. You could do this by adding a function
returning a Double:

51

Chapter 3 Structures and Classes

struct Vector {
func length() —> Double {
return sqrt(xkx + y*y)
}

I

However, it is much more natural to think of this as a read-only property. In Swift the general term for
this is computed property, which is in contrast to the stored properties you have been using so far. A
read-only computed property version of length would look like this:

struct Vector {

var length: Double {
get {
return sqrt(x*x + y*y)
}

I

This read-only computed property pattern (called a “getter”) is so common, in fact, that Swift provides
a shorthand means of expressing it. Add this to Vector:

struct Vector {
var length: Double {
return sqrt(x*x + y*y)
}

i

At other times it is useful to have a getter and setter for a computed property. This tends to be used
to alias other properties or to transform a value before it is used elsewhere. For example, you could
abstract the setting of the textField from the RandomPassword with a computed property:

class MainWindowController: NSWindowController {
@IBOutlet weak var textField: NSTextField!
var generatedPassword: String {

set {
textField.stringValue = newValue

¥
get {

return textField.stringValue
¥

@IBAction func generatePassword(sender: AnyObject) {
let length = 8
generatedPassword = generateRandomString(length)

52

Reference and Value Types

Computed properties do not have any storage associated with them. If you need to store a value, you
must create a separate stored property for it.

Reference and Value Types

Structures and classes are far more alike in Swift than they are in most languages. However, there is
one major difference in how they operate: classes are reference types; structures, enums, and tuples are
value types.

What does it mean to be a value type? For one thing, a value type is always treated as a single value,
even if it is composed of several individual values via its properties.

In practical terms, this means that when a value type is assigned or passed as a parameter, a copy is
made. The following code demonstrates the effect with the Vector structure:

var vector@ = Vector(x: @, y: 0) vector? = {x 0, y 0}
var vectorl = vectoro vector® = {x @, y 0}, vectorl = {x 0, y 0}
vectord.x = 1 vector® = {x 1, y 0}, vectorl = {x 0, y 0}

When vectoro is assigned to vectorl, the entire value of vector@ is copied into the memory
represented by vectorl. When vector® is changed, vectorl is unaffected.

Contrast this behavior with classes, which, again, are reference types:

let balld = Particle() balle —> Particle: {x 0, y 0} ...
let balll = balloe ball@, balll —> Particle: {x 0, y 0} ...
ball@.particle.x = 1 ball@g, balll —> Particle: {x 1, y 0} ...

Even though you assign ball@ to balll, there is still only one Particle instance in existence; no
copies are made. The ball@ constant is a reference to the instance, and when bal1@ is assigned to
balll, ball1l is then a reference to the same instance.

(A reference is similar to a pointer in C-based languages. However, a pointer stores the actual memory
address of the object and you can access that address directly. A Swift reference does not provide direct
access to the address of the object being referenced.)

There is another reference type. Functions are types so that a function can be passed in to other
functions as a defined parameter, or even assigned to a property. This is the basis of closures, which
you saw briefly earlier in this chapter, and which you will see again in Chapter 15.

Implications of reference and value types

Passing by reference instead of by value has two main implications. The first has to do with mutability.
With a value type the code manipulating that value has complete control over it.

Reference types, however, are much different: any part of the software that has a reference to an
instance of a reference type can change it. In object oriented programming this can be desirable, but in
complex (and especially multithreaded) software it is a liability. An object being changed “behind your
back” can cause crashes at best and strange or difficult-to-debug behavior at worst.

Swift constants help further illustrate this point. A constant value type cannot be changed once it is
defined, period:

53

Chapter 3 Structures and Classes

let vector: Vector
if someCondition {
vector = Vector(x: 0, y: 1)

¥
else {
vector = Vector(x: 0, y: -1)
¥
vector.x =1 // Error: Immutable value 'vector' may only be initialized once

A constant reference provides no such protection. Only the reference itself is constant.

let cannonball = Particle()
cannonball.velocity = Vector(x: 100, y: 5) // No error!

Note that constants within a class or structure are constant. The Rocket class’s thrust property,
defined with let and given an initial value in the initializer, cannot be changed:

let rocket = Rocket(thrust: 10.0, thrustTime: 60.0)
rocket.thrust = 3 // Error: Cannot assign 'thrust' in 'rocket'

Choosing between reference and value types

How does a Cocoa programmer decide whether to use a structure or a class for their new type? In order
to answer that you will need to know how the type will be used.

The vast majority of Cocoa is built on reference types: subclasses of the Objective-C base class
NSObject, which provides a lot of important functionality for Cocoa. As such, large portions of your
app, namely the controller and view layers, will also need to descend from NSObject.

The model layer is where the answer gets fuzzy. Model-oriented Cocoa technologies such as KVC,
KVO, and Bindings also depend on NSObject, so many app’s models will also. For other apps whose
models are perhaps more heavy on logic and computation, and less about binding to the UI, you are
free to choose the Swift type that makes the most sense for the problem you are trying to solve. Do you
want the shared mutable state provided by reference types, or do you prefer the safety of value types?
Both have their advantages and costs.

Cocoa, with its deep roots in MVC and Objective-C, will always rely heavily on reference types. In
comparison to Objective-C, however, Swift takes great strides in making value types powerful. As a
Cocoa programmer, both will be important tools in your belt.

Making Types Printable

If you use a Vector value in string interpolation, you will not get a very pleasing result:
println("Gravity is \(gravity).") "Gravity is __ 1ldb_expr_247.Vector."
You can improve this by conforming to the Printable protocol, which looks like this:

protocol Printable {

var description: String { get }
¥

We will cover protocols in more detail in Chapter 6, but the short version is that a protocol defines a
set of properties or methods. In order to conform to a protocol, your type must implement the required
properties and methods.

54

Swift and Objective-C

To conform to Printable, you must implement a read-only computed property called description to
return a String. Start by declaring that Vector conforms to Printable:

sEruet—VVecter—f

struct Vector: Printable {
var x: Double
var y: Double

Finally, implement description:

struct Vector: Printable {

var description: String {
return "(\(x), \(y))"
}

b

Your Vectors now look great in strings:

println("Gravity is \(gravity).") "Gravity is (0.0, -9.8)."

Swift and Objective-C

Although you will write your classes in Swift, the classes in the Cocoa frameworks are written in
Objective-C. Swift was designed to work seamlessly with Objective-C classes. While you can write
Cocoa apps in pure Swift, without a line of Objective-C, it is important to have a basic understanding
of how Objective-C works.

Objective-C methods (which are only available on classes, not structures) are not called like functions
or like Swift methods. Instead of calling a method on an object, Objective-C sends the object a
message.

A message consists of a receiver, selector, and any parameters. The selector is the name of the method
you want executed. The receiver is the object that you want to execute that method. Here is an example
of sending a message in Objective-C:

NSString *newString;
newString = [originalString stringByReplacingOccurrences0fString: @"Mavericks"
withString: @"Yosemite"];

In this example, the receiver is originalString, an instance of NSString, and the selector is
stringByReplacingOccurrences0fString:withString:. The parameters are the two NSString
literals.

Note that the selector in the message is “the name of the method.” It is not the method itself or even a
reference to it. You can think of a selector as a glorified string.

Objective-C classes know how to receive a message, match the selector with a method of the same
name, and execute the method. Or they can do something else with the selector, like forward it in

a message to another class. Relying on selectors and message-passing is relatively unique among
languages in modern use, and its dynamic nature made the powerful design patterns of Cocoa, and later
108, possible.

55

Chapter 3 Structures and Classes

Calling a method is a cut-and-dried process. Either the object implements the method or it does not,
and this can be determined at compile time. Passing a message, on the other hand, is dynamic. At
runtime, the object is asked, “Does your class implement a method with this name?” If yes, the method
with that name is executed. If no, the message is run up the inheritance hierarchy: The superclass

is asked, “Do you have a method with this name?” If that class does not have the method, then its
superclass is asked, and so on. If the message reaches NSObject at the top of the hierarchy, and

NSObject says, “No, I do not have a method with that name,” then an exception occurs, and your app
will halt.

You are developing in Swift, which means that you are not writing message sends in code; you are
calling methods. These Swift methods have to be named in such a way that the Swift compiler can turn
a method call into a message send when the receiver is an Objective-C object.

If you were to write the above message send in Swift, it would look like this:

let newString = originalString.stringByReplacingOccurrences0fString("Mavericks"
withString: "Yosemite")

Remember, the Swift method has two parameters in the parameter list, but only one has a
name. This is why you see methods named in this text and in Apple’s documentation with
underscores where you expect a parameter name. For example, this method is listed as
stringByReplacingOccurrences0fString(_:withString:).

Working with Foundation Types

In Objective-C, a number of familiar types are implemented as classes as part of the Foundation
framework: NSString, NSNumber, NSArray, NSDictionary, and NSSet. Because Cocoa was built for
Objective-C, you will often run into these classes when working with the Cocoa APIs. The good news
is that Apple has made transitioning between the Swift and Foundation (Objective-C) counterparts
relatively painless. They are foll-free bridged, meaning that there is minimal computational cost in
converting between the two.

Basic bridging
Swift types are automatically bridged to their Foundation counterparts:

let string = "Howdy"
let objcString: NSString = string

The reverse is not true, however:

let swiftString: String = objcString // Error!
Instead, you must explicitly cast it using as:

let swiftString: String = objcString as String // Ok!

Another class that you may see is NSNumber. Because Foundation collections can only store objects, in
order to store numbers they must be represented by an object. NSNumber is the class that Objective-C
programmers use for this task. Swift numbers also bridge easily with NSNumber:

let objcNumber: NSNumber = 3
let swiftNumber = objcNumber as Int

56

Bridging with collections

Bridging with collections

Bridging with collections is similar, but a wrinkle emerges when casting from a Foundation array back
to Swift:

let array = [1, 2, 4, 8]
let objcArray: NSArray = array // So far so good...
let swiftArray: [Int] = objcArray as [Int] // Error!

You may be surprised to learn that Foundation collections can hold any kind of object — that is, the
collection’s contents do not have to be of the same type! You will see the Swift type AnyObject used
with these collections, like this: [AnyObject]. (If you are familiar with Objective-C, AnyObject has the
same meaning as id.)

The solutions to this problem are similar to unwrapping optionals: there are safe and unsafe paths. The
unsafe path is to use as!, the forced cast operator:

let swiftArray: [Int] = objcArray as! [Int]

As with forced unwrapping, if the type cannot be cast successfully your app will crash. If you
are certain that the type is correct, such as when the value is coming from a known API, this is a
reasonable assumption to make.

If you are not so certain, you should use the optional type casting operator as?, which will evaluate to
nilif the values cannot be safely cast:

if let swiftArray: [Int] = objcArray as? [Int] {

, .

This situation is most commonly seen with Cocoa APIs using NSDictionary: it is typical for the keys

to all be NSStrings, but the types of the values commonly differ depending on the key. We will further
discuss how to handle these untyped collections safely in Chapter 28.

Suppose you were working with an Objective-C class that supplied a dictionary. When Swift imports
the class, it does a basic level of conversion, but it does not know what type the method actually
returns, so it is shown as [NSObject : AnyObject]!:

class NSProcessInfo: NSObject {

var environment: [NSObject : AnyObject]! { get }

To work with this API you first need to know the actual types contained in the dictionary, which can
usually be found in the documentation. You will then need to safely cast the result to Swift types:

let processInfo = NSProcessInfo()
if let environment = processInfo.environment as? [String : String]l {
if let path: String = environment["PATH"] {
println("Path is: \(path)")

57

Chapter 3 Structures and Classes

It is important to remember that Swift strings and collections are value types and the Foundation types
are all reference types. While Swift’s compiler can enforce the constant-ness of an array, with NSArray
the same array object may be referenced by many parts of an application.

The Foundation classes we have discussed so far are all immutable, meaning that they cannot be
changed — equivalent to being defined with Swift’s let. Each of them has a mutable subclass:
NSMutableArray, NSMutableString, and so forth. This has less of an impact on Swift code, but it is
important to watch out for if you are working with a significant body of Objective-C code. Because it
is a reference type, an instance of NSMutableArray could be changed by any code that has a reference
to it.

Runtime Errors

Despite your best efforts, things will sometimes go wrong while your app is running. In Cocoa, these
errors fall into two categories.

Programmer errors are situations that should never happen, which means that they are the result of,
well, a mistake you made. (We say they should never happen... but we have made plenty of these.)
Examples include not meeting the precondition of a method (the index was not within the array’s
bounds), performing an illegal operation (such as force-casting incorrectly or force-unwrapping a nil),
or sending a message to an Objective-C object that does not understand it.

Swift alerts you to programmer errors by trapping, which results in stopping the program. Cocoa APIs
use Objective-C exceptions. A trap is typically accompanied by a fatal error line in the console,
while exceptions have much longer output showing the full stack. Note that Swift does not presently
support exceptions.

Recoverable errors, on the other hand, are errors that your application can check for, deal with, and
move on from. Examples include being unable to contact a remote server, errors parsing data, or
lacking hardware capabilities.

Recoverable errors will be communicated to your code through the return values of methods (such as
a nilreturn). For more sophisticated APIs, especially those involving I/O, an NSError object will be
used. You will learn about NSError in Chapter 12.

You can code defensively and check preconditions in your own code using assert() and
fatalError(). For example:

let condition: Bool = ...
assert(condition, "Condition was not met")

fatalError() is useful in methods that are declared to return a value. The Swift compiler requires that
all code paths return a value — unless you call a noreturn function like fatalError():

func openFortuneCookie() —> String {
if let cookie = cookie {
return cookie.fortune

¥

else {
fatalError("Must have cookie!")
// No return statement

¥

58

More Exploring of Apple’s Swift Documentation

More Exploring of Apple’s Swift Documentation

Your homework for this chapter is to browse through the Classes and Structures, Properties, Methods,
and Initialization sections of Apple's The Swift Programming Language guide. You should also tackle
the challenge exercises given below.

Challenge: Safe Landing

Your investors have pointed out that rockets are expensive and letting them plummet to the ground does
not enhance reusability. Enhance the Rocket class to deploy a parachute in order to slow its descent
once it is descending (i.e., shows negative velocity on the Y axis) and reaches a certain altitude.

Challenge: Vector Angle

Your Vector structure should be able to report its angle in radians. Add a read-only, computed property
to it called angle.

The angle of a vector can be expressed in Swift as:

atan2(y, x)

59

This page intentionally left blank

Index
Symbols

(_:), meaning of, 43

.icns file, 212

. lproj files (localization), 379
.tar files, 497

. tgz files, 497

.xcdatamodeld (Core Data), 221
// MARK:, 105

@IBAction, 20
@IBDesignable, 290
@IBInspectable, 289
@IBOutlet, 18
@NSApplicationMain, 116

A

accents, typing, 384
acceptsFirstResponder (NSResponder), 307
acceptsMouseMovedEvents (NSWindow), 310
access modifiers, 427, 434, 435
actions

(see also connections, controls, NSControl,

outlets)

and AnyObject, 81

connecting in Interface Builder, 20

defined, 17

feature of NSControl, 78

and menu items, 263, 264

as messages, 78, 82

methods for, 19, 81

nil-targeted, 326-328

and NSApplication, 330

setting programmatically, 96
actions (CALayer), 476
addChildViewController(_:)
(NSViewController), 454
addObserver(_:selector:name:object:)
(NSNotificationCenter), 260
addSubview(_:) (NSView), 449
alerts, 249-251
alpha values (NSColor), 91
ambiguous layouts (Auto Layout), 374, 375
animations, 471-477

and timers, 341
AnyObject, 81, 454

API Reference, 88
App Store (distribution), 507-509
AppDelegate
about, 115, 116
role, 5
and window controllers, 14, 24-26
append(_:), 34
AppKit (framework), xxi, 71, 276
Apple Developer Programs, xviii
application architecture
basic, 14, 26
document-based, 158, 206-210
master/detail, 444
with multiple view controllers, 466
and MVC, 4-6
single-window, 70-77, 101-103
and view controllers, 439, 440, 444-446
and window controllers, 26, 74-77, 446
application bundles, 390, 489
applications
(see also application architecture, projects)
App Store, using, 507-509
build configurations for, 499
containers for, 506
copy protection for, 507
custom file extensions for, 212-214
custom file icons for, 212-214
distributing, 504, 507-509
document-based, 158
entitlements of, 505
and event loop, 116
exporting, 504
installers for, 505
launching, 116
lifecycle methods, 115
localizing, 379-389
locations for data, 215, 216
mediated file access, 506
and multiple threads, 479
packaging, 505
printing from, 397-403
and release builds, 503, 504
sandboxing, 505-507
storage for, 215, 216
and system resources, 505
unit testing, 423
ARC (Automatic Reference Counting), 61, 65, 68
(see also memory management)

513

Index

archivedDataWithRootObject(_:), 211
archiving
about, 203
build targets, 503
decoding, 205, 206
and document architecture, 206
encoding, 204, 205
loading objects, 211
NSCoder, 204-206
NSData, 211
NSKeyedArchiver, 211
NSKeyedUnarchiver, 211
preventing infinite loops in, 216, 217
saving objects, 211
vs. Core Data, 237
XIB files, 14
ARepeat (NSEvent), 307
arrangedObjects (NSArrayController), 161,
169, 173
array controllers
(see also NSArrayController)
about, 160-164
customizing, 237
filtering with, 177, 178
immediate fetching, 224
labeling in Interface Builder, 224
and model abstractions, 162
and NSManagedObjectContext, 223
sorting with, 171-175
as target of controls, 164, 165
arrays
about, 31-33
append(_:), 34
count, 34
filtering, 177
memory management of, 63
and NSArray, 57
reverse(), 34
subscripting, 32
and traps, 33
as, 56
assert(), 58
assertions (unit testing), 424-427, 434
assistant editor, 132
associated values (enums), 411
astrophysics degrees, xxii
attributes (Core Data), 221-224
attributes (views), 11-13

514

attributes inspector (Xcode), 11, 83
Auto Layout

(see also constraints)

adding constraints, 365

ambiguous layouts, 374, 375

vs. autoresizing masks, 375, 376

clip view warning, 124

described, 359

intrinsic content size, 370

and NSBox, 449, 455

unsatisfiable constraints, 373, 374

Visual Format Language, 371-373

visualizeConstraints(_:), 375

with right-to-left languages, 371
auto-complete (Xcode), 111
automatic document saving, 218
automatic initializers, 41
autoresizing masks, 375, 376
availableTypeFromArray(_:)
(NSPasteboardItem), 325

background threads, 412, 479, 484
Base.lproj, 387
beginCriticalSheet(_: completi..) (NSWindow),
345
beginDraggingSessionWithItems(..) (NSView),
334
beginSheet(_:completionHandler:)
(NSWindow), 345, 353
beginSheetModalForWindow(_: comple..)
(NSAlert), 251
bindings

array controllers, 160-164

benefits of, 136

with Core Data, 221

creating, 138, 139

creating programmatically, 154

debugging, 146, 152, 153

and KVC/KVO, 136, 139, 142

and NSObject, 159, 408

patterns for, 231

for table data, 130

and value transformers, 187

when to use, 145
bindings inspector (Xcode), 130
blocking

Index

(see also multithreading)
CPU-bound, 484
I/0-bound, 484
and modal windows, 251, 355
boldSystemFont0fSize(_:) (NSFont), 313
Bool, 31
boolean types, 31
boolForKey(_:) (NSUserDefaults), 240
bounds (NSView), 276
breakpoint navigator, 151
breakpoints, 148, 151
bridging, 56-58
build actions, 500
build configurations
changing app behavior with, 500-503
debug, 98, 499
debugging symbols in, 499
finding, 499
and Instruments, 481
and preprocessor directives, 500-503
release, 98, 499
setting flags in, 500-503
specifying, 500
build targets, 423, 503
bundles
application, 212, 390, 489
described, 390, 391
identifiers for, 216, 246
and localization, 380, 391, 392
main, 390
and strings files, 391
buttons
disabling, 108
in Interface Builder, 10
radio, 97
recessed, 143
titles for, 11

C

CAAnimation, 472
CABasicAnimation, 477
CAGradientLayer, 478
CALayer
about, 471
actions, 476
delegate of, 477
described, 472

subclasses, 478
CALayerDelegate, 477
canvas (Interface Builder), 8
CAOpenGLLayer, 478
capture lists, 252
caselnsensitiveCompare(_:), 175
CAShapelLayer, 478
casting, 56-58
categories, 318
CATextLayer, 478
CATransaction, 472, 477
cell-based tables, 126
cells
and controls, 80
history in Cocoa, 80, 126
in table views, 126-128
CGFloat, 91, 92
CGRect
contains(_:), 300
characters (NSEvent), 307
checkboxes (NSButton), 97
Clang Static Analyzer, 68
class methods, 121
classes
(see also individual class names, initializers,
methods, objects, properties, types)
about, 4
creating new, 6-8
defining, 45-48
extending, 318
and inheritance, 49-51
initializing, 46
making @IBDesignable, 290
prefixes for, 162
in product modules, 162
reference pages for, 88
vs. structures, 53, 54
clearContents() (NSPasteboard), 324
clickCount (NSEvent), 298
clip views, 125
closures, 53, 251-256
Cocoa
API reference, 88
classes in, 54, 55, 88
documentation, 88
frameworks in, xxi, 71
history of, xviii-xx
Cocoa Touch (framework), 512

515

Index

CocoaHeads, 512
code snippet library, 101
code snippets, 101-103
color (NSColorWell), 89
color wells, 87
com.pkware.zip-archive, 490
completion handlers
about, 251, 252
with asynchronous API, 409
implementing, 410-418
testing, 435, 436
computed properties
about, 51-53
and KVC, 145
storage for, 146
concludeDragOperation(_:)
(NSDraggingDestination), 337
concurrency, 479-481, 484-487
conditionals
if-else, 105
if-let, 36
switch, 38
connections (in Interface Builder), 17-22
(see also actions, outlets)
with assistant editor, 132
to File's Owner, 76
connections inspector, 21
connections panel, 18
console
exceptions in, 184
importance in debugging, 98
LLDB (debugger), 151, 152
viewing in playground, 36
viewing in project, 82
constants, 29, 30
constraints (Auto Layout)
(see also Auto Layout)
adding in Interface Builder, 360-368
adding programmatically, 377
and ambiguous layouts, 374, 375
animating, 371
between siblings, 367, 368
creating in Interface Builder, 359, 364
creating programmatically, 371
debugging, 373-375
for positioning views, 359
priorities of, 363
size constraints, 368

516

subview-superview, 360-366

types of, 359

unsatisfiable, 373, 374
containers (for applications), 506
containers (view controllers), 445
contains(_:) (CGRect), 300
content (NSArrayController), 161
Content Array (array controllers), 161, 162
content views, 4, 73
contexts (graphics), 278, 284
continuous (NSControl), 82
controller layer MVC), 5

(see also view controllers, window controllers)
controllers

(see also Model-View-Controller)
controls

(see also actions, NSControl)

about, 78, 79

and action messages, 78, 82

array controllers as targets, 164, 165

and cells, 80

creating programmatically, 372

enabling/disabling, 88

formatting, 182

making continuous, 82

outlets to, 93

and target-action, 78
convertPoint(_:fromView:) (NSView), 301
convertPoint(_:toView:) (NSView), 301
copy protection, 507
copying-and-pasting (implementing), 323-326
Core Animation, 471-478
Core Data

.xcdatamodeld, 221

attributes, 221-224

benefits of, 221, 237

with bindings, 221

data model inspector, 236

and data set size, 237

defining object model, 221-223

entities, 221-224

explained, 234

faulting, 237

fetch requests, 235

NSManagedObject, 221

NSManagedObjectContext, 223, 235, 237

NSManagedObjectModel, 221, 235

NSPersistentDocument, 235

Index

pros and cons, 237

relationships, 221

and SQLite, 236, 237

store types, 236

vs. archiving, 237
Core Graphics (framework), 276, 294
count (arrays), 34
createDirectoryAtURL(_:withIntermed..)
(NSFileManager), 216
currentContextDrawingToScreen()
(NSGraphicsContext), 402
cutting-and-pasting (implementing), 323-326

D

Dalrymple, Mark, 512
Darwin (Unix), xx
data model inspector (Core Data), 236
data sources (run loops), 493
data sources (table views), 120, 128-131
dataForType(_:) (NSPasteboardItem), 325
dataOfType(_:error:) (NSDocument), 208
dataSource (NSTableView), 120
dataSource (property)
exposed as outlet, 128
setting in Interface Builder, 128
dataWithPDFInsideRect(_:) (NSView), 318
date formatters, 181, 416
date pickers, 227
debug builds, 98, 499
DEBUG compile-time value, 501
debug navigator, 148
debugger bar, 149
debugging
(see also debugging tools, errors, exceptions)
Auto Layout constraints, 373-375
bindings, 146, 152, 153
exceptions, 151
hints, 97, 98
stack trace, 148
stepping through methods, 149, 150
symbols, 499
with zombie objects, 98
debugging tools
breakpoints, 148, 151
debug navigator, 148
debugger, 147-151
LLDB (debugger) console, 151, 152

stack trace, 148, 149

variables view, 149
decodeBoolForKey(_:) (NSCoder), 205
decodeDoubleForKey(_:) (NSCoder), 205
decodeFloatForKey(_:) (NSCoder), 205
decodeIntForKey(_:) (NSCoder), 205
decodeObjectForKey(_:) (NSCoder), 205
default: (switch statement), 38
defaultCenter() (NSNotificationCenter), 260
defaults, 239, 240
delegate (property), 111-115

(see also delegate methods, delegation)

exposed as outlet, 131

setting in Interface Builder, 114, 131
delegate methods

(see also delegate, delegation)

and notifications, 115

optional, 110, 116

required, 110

types of, 113

using auto-complete for, 111
delegation

(see also delegate, delegate methods)

about, 110, 111

classes using, 115

errors in implementing, 114

NSWindowDelegate, 113

and protocols, 110

steps in implementing, 111

vs. subclassing, 109, 110

and table views, 120

and web services, 410
dependent keys, 155
developer programs, xviii
dictionaries

about, 31, 32

accessing, 36

and NSDictionary, 57

subscripting, 36
didChangeValueForKey(_:), 141
didSet (property observer), 108
directories

(see also bundles)

(see also bundles, files)

.lproj, 379

application, 215, 216

as file wrappers, 207

localization, 379, 387

517

Index

project source, 386
dirty rects, 278, 295
dismissWithModalResponse(_:), 354
distributing (applications), 504, 507-509
DMG (disk image), 505
dock (Interface Builder), 8
Document (template-created class), 158
document architecture, 206-210
document controllers, 207
document outline (Interface Builder), 8, 127
document-based applications, 158

and printing, 397

and responder chain, 328
documentation

for Cocoa classes, 88-91

for protocols, 112

for Swift, 39
documents

(see also document architecture, document

controllers, files, NSDocument)

automatic saving of, 218

extensions for, 212-214

icons for, 212-214

loading, 209

and loading NIB files, 209

printing from, 397-403

saving, 207
DOM parsing, 420
Double, 31
doubleValue, 78
drag-and-drop, 333-339
draggingEntered(_:)
(NSDraggingDestination), 337, 339
draggingExited(_:) (NSDraggingDestination),
337
draggingSession(_:endedAtPoint: operati..)
(NSDraggingSource), 336
draggingSession(_: sourceOperationM..), 334
draggingUpdated(_:)
(NSDraggingDestination), 337
drawAtPoint(_:) (NSAttributedString), 316
drawAtPoint (_:withAttributes:) (NSString),
316
drawFocusRingMask() (NSView), 309
drawing

(see also animations, views)

and dirty rects, 278, 295

frameworks for, 294

518

and graphics contexts, 278, 284

images, 286-290

and layers, 471

PDF data, 318

and points, 275

printer vs. screen, 402

views, 276-279
drawInRect(_:) (NSImage), 288
drawInRect(_:fromRect: op..) (NSImage), 290
drawInRect(_:withAttributes:) (NSString),
316
drawLayer(_:inContext:), 477
drawRect(_:) (NSView), 277-279
dynamic, 140, 141

enabled, 88
encodeBool(_: forKey:) (NSCoder), 204
encodeConditionalObject(_:forKey:)
(NSCoder), 216
encodeDouble(_: forKey:) (NSCoder), 204
encodeFloat(_:forKey:) (NSCoder), 204
encodeInt(_:forKey:) (NSCoder), 204
encodeObject(_:forKey:) (NSCoder), 204
encodeWithCoder(_:) (NSCoding), 204, 205
endSheet (_:returnCode:) (NSWindow), 345, 354
entities (Core Data), 221-224
entitlements (application), 505
enumerate(), 37
enums (enumerations)

with associated values, 411

defined, 38

instance methods in, 43

nested, 411

and raw values, 39

and switch statements, 38
errors

(see also debugging, exceptions, NSError)

Auto Layout, 374, 375

auto-saving, 199

with bindings, 146, 147

and completion handlers, 410

and enums, 411

in event-handling, 184

exceptions, 58

HTTP codes, 413, 414

in delegation, 114

Index

in playgrounds, 30

with KVC, 183

runtime, 58

traps, 33, 58

with untyped data, 419

XCTFail(), 434
event loop, 116
events

(see also mouse events)

errors in handling, 184

in event loop, 116

keyboard, 305-310

mouse (see mouse events)
exception breakpoints, 151
exceptions, 58, 151

(see also errors)
expressions

evaluating with LLDB, 151

and string interpolation, 37
extensions (of a class), 318

F

factory defaults, 239
fallthrough (switch statement), 38
fatalError(), 58
faulting (Core Data), 237
fetch requests (Core Data), 235
file handles, 492, 493, 496
file wrappers, 207
File's Owner, 76
files
(see also directories, documents)
copying, 462
custom extensions for, 212-214
custom icons for, 212-214
formats for pasting, 323
in project, 3
loading, 209
saving, 207
fileWrapperOfType(_:error:) (NSDocument),
208
fill() (NSBezierPath), 277
filter(), 177, 256
filtering (array controllers), 177, 178
find(), 134
first responder, 305-308, 328
(see also NSResponder, responder chain)

flagsChanged(_:) (NSResponder), 307
flipped views, 295
Float, 31
floatForKey(_:) (NSUserDefaults), 240
floating-point types, 31, 33, 424
floatValue, 78
focus rings, 309
fonts, 313, 314, 320
for-in, 37
forced unwrapping (of optionals), 35
formatter (NSControl), 182
formatters
about, 181-183
and controls, 182
date, 181
interaction with locale, 183
number, 167, 169, 182
vs. KVC validation, 183
writing custom, 183
forwardInvocation(_:) (NSInvocation), 189
Foundation (framework), xxi, 56, 159
frame (NSView), 274-276
frameworks
AppKit, xxi, 71
Cocoa, xxi, 71
Cocoa Touch, 512
Core Data, 221, 235, 237
Core Graphics, 276, 294
defined, xxi
documentation for, 88
for drawing, 294
Foundation, xxi, 56, 159
importing, 71, 159
Quartz, 294
shipped with OS X, xxi
XCTest, 424, 425
func, 43
functional programming, 256
functions
(see also closures, initializers, methods)
for functional programming, 256
as types, 53

G

generalPasteboard() (NSPasteboard), 324
genstrings (localization), 385, 387, 389
gesture recognizers, 301, 302

519

Index

Grand Central Dispatch (GCD) (multithreading),
486
graphics contexts, 278, 284
drawing to screen, 402
graphics states, 278, 284
groups (project files), 3

H

Hashable, 31

helper objects, 110
hierarchies, view, 5

hit testing/detection, 300, 303
HTTP, 405

HTTP status codes, 413, 414

.icns file, 212
identity inspector, 76
if-else, 105
if-let, 36
image wells, 227, 228
images, 286-290
implicit animation, 476
implicitly unwrapped optionals, 95
importing frameworks, 71, 159
importing modules, 427
Info.plist, 207
init (keyword), 42
init(coder:) (NSCoding), 204-206
init(..) (see initializers)
initialFirstResponder (NSWindow), 265, 310
initializers
about, 33
automatic, 41
chaining, 42
for classes, 45-47
designated, 46, 206
inheriting, 50, 206
parameters, 42
and properties, 42
for standard types, 33, 34
for structures, 41, 42
writing, 41
inspectors
attributes, 11
bindings, 130
connection, 21

520

data model, 236
identity, 76
installers (application), 505
instances, 33
Instruments, xxii, 481-484
Int, 31
integer types, 31
integerForKey(_:) (NSUserDefaults), 240
integervalue, 78
Interface Builder
adding menu items, 319
adding views in, 9-13
assistant editor, 132
connecting dataSource in, 128
connecting delegate in, 114
connecting objects in, 17-22, 76
connections panel, 18
copying and pasting in, 85, 86
creating bindings in, 138, 139
designing custom classes in, 290
File's Owner, 76
inspecting custom properties in, 289
navigating, 8
overview, xxii
placeholders, 76
view hierarchy popover, 178-180
internal (access modifier), 427, 434
interpretKeyEvents(_:) (NSResponder), 308
intrinsicContentSize, 286
invalidate() (NSTimer), 342
isEmpty (strings), 34

J

Jobs, Steve, xviii
JSON parsing, 414
jump bar (Xcode), 105

K
key paths, 153, 154
key view loop, 310
key windows, 305, 306, 327
key-value coding (see KVC)
key-value observing (see KVO)
key-value pairs

(see also KVC, KVO)

in dictionaries, 31

in strings files (localization), 390

Index

key-value validation, 181, 183-186
keyboard events, 305-310
keyCode (NSEvent), 307
keyDown(_:) (NSResponder), 307
keyPathsForValuesAffectingFullName(), 155
keys

(see also KVC, KVO)

dependent, 155

in dictionaries, 31

in key-value coding, 135

making observable, 140

observing, 139
keyUp(_:) (NSResponder), 307
Knight Rider, 109
knowsPageRange(_:) (NSView), 398
KVC (key-value coding)

(see also key-value validation, KVO)

about, 135

and proxy objects, 193

and to-many relationships, 192

and bindings, 136

and computed properties, 145

empty string exceptions, 183

in undo, 192

method naming conventions, 193

methods, 135, 146

and nil, 146, 183-186

and predicates, 177

and property accessors, 145

and type safety, 142

validate(_:error:), 185

validation for, 183-186
KVO (key-value observing)

about, 139

and bindings, 139, 142

compliance, 140

dependent keys, 155

in undo, 195

methods, 141

and Swift, 140

L

labelFont0fSize(_:) (NSFont), 313
labels, 80
layer (NSView), 473
layers
animating, 476

creating, 473
drawing, 471
lazy copying (pasteboard), 330, 331
length (NSRange), 314
let, 29, 30
level indicators, 227, 228
libraries
code snippet, 101
object, 9, 10
lineToPoint () (NSBezierPath), 278
literal values, 32, 33
in testing, 428
LLDB (debugger), xxi, 151, 152
(see also debugging)
loading documents, 209
loading NIB files, 75-77
loading objects, 211
loadView() (NSViewController), 440, 465
Localizable.strings, 385, 387, 388
localization
adding localizations to projects, 381
and NSBundle, 391, 392
base directory, 387
described, 379
directories, 387
and formatters, 183
genstrings, 387
global resources, 392
images, 379
language-specific resources, 392
and NIB files, 380
NSLocalizedString, 385-390
of XIB files, 380, 382-385
and plurals, 393, 394
region-specific resources, 392
replacing string literals, 385
of resources (non-XIB), 379
and strings files, 379, 380, 382-390
token ordering in strings, 390
ways to achieve, 379, 380
location (NSRange), 314
locationInWindow (NSEvent), 297, 300
loops
event, 116
examining in Value History, 37
for, 37
for-in, 37
run, 343

521

Index

in Swift, 36
. lproj files (localization), 379

M

Mac App Store (distribution), 507-509
Mac Developer Program, xviii
main bundle, 390
main thread, 479
managed object model (Core Data), 221
managedObjectContext (NSArrayController),
223
map(), 256
// MARK:, 105
master/detail interfaces, 444
maxValue (NSSlider), 83
mediated file access, 506
memory management
and arrays, 63
in closures, 252, 253
and delegate, 112
and Instruments, 483
manual reference counting, 68
need for, 61
and notifications, 267
of windows, 444
for reference types, 61
reference counting, 61-65
strong reference cycles, 65-67
strong references, 65
and timers, 343
unowned references, 67
for value types, 61
weak references, 65, 67
and zombie objects, 98
menu items
creating in Interface Builder, 319
disabling, 329
hooking up, 263, 264
and keyboard events, 310
and NSDocument, 207, 209
and NSDocumentController, 207
state, 329
targets of, 326-328
validating, 329
messageFont0fSize(_:) (NSFont), 313
messages
(see also methods)

522

action, 78

explained, 55, 56

and NSInvocation, 189
methods

(see also individual method names, initializers,

messages, properties)
(_:), meaning of, 43
about, 43
action, 81
application lifecycle, 115
class, 121
in classes, 46
data source, 121, 129
defined, 27, 34
delegate, 268
in enums, 43
in extensions, 318
KVC, 135
KVO, 141
naming conventions, 43
optional, 110, 116
parameters, 43
in protocols, 110
required, 110
spelling errors in, 114
static, 27
stepping through, 149, 150
in structures, 43
minValue (NSSlider), 83
modal alerts, 249, 250
modal windows, 355
model key path, 139
model layer (MVC), 5
binding to array controller, 163, 164
encapsulating in web services, 409
and table views, 120
Model-View-Controller MVC)
(see also application architecture, controller
layer, model layer, view layer)
defined, 4-6
and web services, 407, 409
modifierFlags (NSEvent), 297, 307
modules, 427
modules (product), 162
mouse events
(see also events, first responder, NSEvent)
checking click count, 298
double-clicks, 298

Index

gesture recognizers, 301, 302
handler methods, 297
hit testing, 300
mouseDragged(_:), 335
rollovers, 310, 311
mouseDragged(_:) (NSResponder), 335
mouseEntered(_:) (NSResponder), 310
mouseExited(_:) (NSResponder), 310
mouseMoved(_:) (NSResponder), 310
moveToPoint () (NSBezierPath), 278
multithreading
background threads, 412, 479, 484
complexities in using, 479
considerations with mutable Array, 486
Grand Central Dispatch (GCD), 486
main thread, 479
mutex, 486
NSOperationQueue, 484, 485
NSRecursiveLock, 486
operation queues, 412
race conditions, 480, 481
thread synchronization, 485, 486
threads, 479
and web services, 409
mutability, 53
mutex (multithreading), 486
MVC (see Model-View-Controller)

navigators (Xcode)

about, 3

breakpoint, 151

debug, 148

project, 3
needsDisplay (NSView), 278
nested types, 411
nextKeyView (NSView), 310
nextResponder (NSResponder), 327
NeXTSTEP, xviii-xx, 5
NIB files

(see also XIB files)

defined, 14

loading, 75-77

and loading documents, 209

and localization, 380

names of, 24-26

naming conventions for, 72

nil-targeted actions, 326-328
notifications
about, 259
adding observers for, 260
constants for, 265
in delegate methods, 115, 268
and memory management, 267
observing, 259-261
posting, 260, 261, 266
registering for, 260, 266
removing observers of, 260, 267
responding to, 267
unregistering for, 260, 267
and web services, 410
NS prefix, 5
NSAlert, 249-251
NSApplication
(see also AppDelegate, applications)
about, 115, 116
in responder chain, 327
sendAction(_:to:from:), 330
NSApplicationDelegate, 115
@NSApplicationMain, 116
NSArray, 57
(see also arrays)
NSArrayController
(see also array controllers)
arrangedObjects, 161, 169, 173
content, 161
managedObjectContext, 223
selectionIndexes, 161, 169
subclassing for custom objects, 237
NSAttributedString, 314-317
(see also NSString, strings)
NSBezierPath, 276
NSBox, 449, 452, 455
NSBundle, 390-393
NSButton, 10
(see also buttons)
NSCell, 80
NSClipView, 125
NSCoder, 204-206
NSCoding (protocol), 204-206
NSColor, 90, 91, 95
NSColorWell, 89
NSComparisonResult, 176
NSControl
(see also controls)

523

Index

action, 78
continuous, 82
enabled, 88
formatter, 182
inheritance hierarchy of, 78
setting target/action programmatically, 96
target, 78, 82
value properties, 78
NSData, 208, 209, 211
NSDateFormatter, 181
NSDatePicker, 227
NSDictionary, 57
(see also dictionaries)
NSDistributedNotificationCenter, 259
NSDocument
(see also documents, NSDocumentController)
about, 158, 207-209
and archiving, 206
dataOfType(_:error:), 208
fileWrapperOfType(_:error:), 208
NSDocumentChangeType, 218
printOperationWithSettings(_:error:),
397, 401
readFromData(_:ofType:error:), 209
readFromFileWrapper(_:ofType:error:),
209
readFromURL(_:ofType:error:), 209
in responder chain, 327
updateChangeCount(_:), 218
windowControllerDidLoadNib(_:), 209
writeToURL(_:ofType:error:), 208
NSDocumentController, 207
(see also NSDocument)
in responder chain, 327
NSDraggingDestination (protocol), 337
NSDraggingInfo (protocol), 337
NSDraggingItem, 335
NSDraggingSource (protocol), 334
NSDragOperation, 333
NSError, 208, 209
(see also errors)
NSErrorPointer, 208, 209
NSEvent
(see also events)
and keyboard events, 307
and mouse events, 297
NSFetchRequest, 235
NSFileHandle, 492, 493, 496

524

NSFileManager, 215
NSFont, 313, 314
NSFontAttributeName (NSAttributedString),
315
NSFontManager, 320
NSForegroundColorAttributeName
(NSAttributedString), 315
NSFormatter, 183
NSGradient, 295, 338
NSGraphicsContext, 284, 402
NSImage

drawing on, 335

drawInRect(_:), 288

drawInRect(_:fromRect: op..), 290
NSImageView, 227, 228
NSInvocation, 189
NSKeyedArchiver, 204, 211
NSKeyedUnarchiver, 211
NSLevellIndicator, 227, 228
NSLocalizedString (localization), 385-390
NSMakeRange(), 314
NSManagedObject (Core Data), 221
NSManagedObjectContext (Core Data), 221, 223,
235,237
NSManagedObjectModel (Core Data), 221, 235
NSMatrix, 97
NSMenuItem (see menu items)
NSMutableAttributedString, 314
NSMutableURLRequest, 406
NSNotification, 259

(see also notifications)
NSNotificationCenter

about, 259

commonly-used methods, 260

and memory management, 267
NSNumber, 56
NSNumberFormatter, 181, 182
NSObject

base Cocoa class, 54

required for bindings, 408
NSOperationQueue (multithreading), 412, 484,
485
NSParagraphStyleAttributeName
(NSAttributedString), 315
NSPasteboard, 323-325, 330, 331
NSPasteboardItem, 324, 325, 330, 331
NSPasteboardReading (protocol), 324
NSPasteboardWriting (protocol), 324

Index

NSPersistentDocument (Core Data), 221, 235
NSPipe, 489, 492, 496, 497
NSPoint, 274
NSPredicate, 177, 235
NSPrintInfo, 403
NSPrintOperation, 397
NSRange, 314
NSRect, 274
NSRecursivelLock (multithreading), 486
NSResponder
about, 78
first responder methods, 307, 308
mouse event handler methods, 297, 298
mouseDragged(_:), 335
nextResponder, 327
responder chain, 327, 328
NSRunLoop, 343
NSSavePanel, 319
NSScroller, 125
NSScrollView, 291
NSShadow, 284
NSShadowAttributeName (NSAttributedString),
315
NSSlider, 79, 83
NSSlidercCell, 80
NSSortDescriptor, 171-176
NSSpeechSynthesizer
implementing, 106, 107
voices available for, 121
NSSpeechSynthesizerDelegate (protocol), 110
NSSplitView, 445
NSSplitViewController, 444, 445
NSStackView, 453
NSString
(see also NSAttributedString, strings)
drawAtPoint(_:withAttributes:), 316
drawInRect(_:withAttributes:), 316
sizeWithAttributes(_:), 316
and String, 56
NSSuperscriptAttributeName
(NSAttributedString), 315
NSTableColumn, 125
NSTableHeaderView, 125
NSTableView
(see also NSTableViewDataSource,
NSTableViewDelegate, table views)
dataSource, 120
reloadData(), 134

sortDescriptors, 173
NSTableViewDataSource
implementing, 128-131
numberOfRowsInTableView(_:), 121, 129
tableView(_: objectValueForTa..), 121, 129
NSTableViewDelegate, 131-133
NSTabView, 445
NSTabViewController, 445, 446, 449-455
NSTask, 489, 491, 496
NSTextField (see text fields)
NSTextFieldCell, 80
NSTimer, 341-343
NSUnderlineColorAttributeName
(NSAttributedString), 315
NSUnderlineStyleAttributeName
(NSAttributedString), 315
NSUndoManager, 191, 192, 201
NSURL, 406
NSURLRequest, 406
NSURLSession, 406, 413, 414
NSURLSessionDataTask, 409
NSURLSessionTask, 406, 409
NSUserDefaults, 239, 240
NSValueTransformer, 187
NSView
(see also NSViewController, views)
addSubview(_:), 449
beginDraggingSessionWithItems(..), 334
bounds, 276
convertPoint(_:fromView:), 301
convertPoint(_:toView:), 301
custom subclasses of, 271, 273-279
dataWithPDFInsideRect(_:), 318
drawFocusRingMask(), 309
drawRect(_:), 277-279
flipped, 295
frame, 274-276
intrinsicContentSize, 286
knowsPageRange(_:), 398
layer, 473
needsDisplay, 278
nextKeyView, 310
_NSViewBackingLayer, 478
rectForPage(_:), 398
registerForDraggedTypes(_:), 337, 338
removeFromSuperview(), 449
setNeedsDisplayInRect(_:), 295
viewDidMoveToWindow(), 310

525

Index

wantslLayer, 473
_NSViewBackingLayer, 478
NSViewController

(see also NSView, view controllers)

about, 440

loadView(), 440, 465

nibName, 442

in responder chain, 327

view, 440

viewLoaded, 451
NSWindow

(see also NSWindowController,

NSWindowDelegate, windows)

beginCriticalSheet(_: completi..), 345

beginSheet(_:completionHandler:), 345,

353

endSheet(_:returnCode:), 345, 354

firstResponder, 305-308

initialFirstResponder, 310

sheet methods, 345

sheetParent, 354

visualizeConstraints(_:), 375
NSWindowController

(see also NSWindow, window controllers)

and NSDocument, 210

in responder chain, 327

window, 75-77

windowDidLoad(), 93, 94

windowNibName, 24, 25, 75
NSWindowDelegate (protocol), 112, 113
NSWorkspace, 418
NSXMLDocument, 420
NSXMLNode, 420
number formatters, 167, 169, 182
numberOfRowsInTableView(_:), 121, 129

o)

object library (Xcode), 9, 10
object-oriented programming, 4
objectForKey(_:) (NSUserDefaults), 240
Objective-C

(see also Cocoa, KVC, KVO)

about, xx

and bindings, 408

dynamic, 140-142

in documentation, 91

messages, 55, 56, 189

526

reference types, 54
and Swift, 55
objects
(see also classes, methods, properties)
about, 4
and memory management, 61-65
objectValue (NSControl)
about, 78
binding to, 130
formatting, 182
and table data, 127
observers (notifications), 259-261
observers (property), 108
OpenStep, xix
operation masks (drag-and-drop), 339
operation queues, 412, 484, 485
operators, overloading, 44
optional (protocol methods), 110, 116
optional binding, 36
optional chaining, 117
optionals
about, 34
as?,57
and casting, 57
chaining, 117
and dictionary subscripting, 36
forced unwrapping of, 35
if-let, 36
implicitly unwrapped, 95
and optional binding, 36
syntax for, 34
unwrapping, 35
origin (NSRect), 274
0OS X
(see also Cocoa)
frameworks for, xxi
history of, xix
as Unix-based, xx
outlets
(see also properties)
assistant editor, connecting with, 132
connecting in Interface Builder, 18, 19, 132
creating in code, 17
dataSource, 128
defined, 17
delegate, 114, 131
as implicitly unwrapped optionals, 95
as weak references, 67

Index

when to use, 93
overloading operators, 44

P

packaging (applications), 505
pagination (printing multiple pages), 397
parameter names, 43
pasteboards, 323-325, 330, 331
pasting (implementing) (see pasteboards)
PDFs, generating, 318
performance issues, 482, 484
performDragOperation(_:)
(NSDraggingDestination), 337
persistence (see archiving, Core Data)
pipes, 492, 496, 497
placeholder text, 105
placeholders, 76
playgrounds (Xcode), 28-30

errors in, 30

Value History, 37

viewing console in, 36
pointers, 53
points (in drawing), 275
postNotification(_:)
(NSNotificationCenter), 260
postNotificationName(_:object:)
(NSNotificationCenter), 260
Powerbox, 506
predicates, 177, 235
preferences (user), 239, 240
prepareForDragOperation(_:)
(NSDraggingDestination), 337
preprocessor directives, 500-503
pressure (NSEvent), 298
Printable (protocol), 54
printing, 397-403
printOperationWithSettings(_:error:)
(NSDocument), 397, 401
private (access modifier), 434
product modules, 162
programmer errors, 58
programming

functional, 256

object-oriented, 4
project navigator, 3
projects

(see also applications)

copying files into, 462
creating, 1-3
source directories of, 386
targets in, 423
properties
(see also methods, outlets)
in attributes inspector, 83
computed, 51-53, 146
default values, 46
defined, 34
didSet, 108
and extensions, 318
initializing, 42, 46
making @IBInspectable, 289
shadowing, 17
stored, 52
willSet, 108
property observers, 108
propertyListForType(_:) (NSPasteboardItem),
325
protocols
CALayerDelegate, 477
conforming to, 110, 111
creating, 217, 454
defining roles with, 110
documentation for, 112
header files for, 114
NSApplicationDelegate, 115
NSCoding, 204-206
NSDraggingDestination, 337
NSDraggingInfo, 337
NSDraggingSource, 334
NSPasteboardReading, 324
NSPasteboardWriting, 324
NSSpeechSynthesizerDelegate, 110
NSTableViewDataSource, 128-131
NSTableViewDelegate, 131-133
NSWindowDelegate, 113
optional methods in, 110, 116
Printable, 54
reference pages for, 112
required methods in, 110
public (access modifier), 428, 434

Q

Quartz (framework), 294
Quick Help (Xcode), 30

527

Index

R

race conditions (multithreading), 480, 481
radio buttons (NSButton), 97
Range, 37
rawValue (enums), 39
readFromData(_:ofType:error:) (NSDocument),
209
readFromFileWrapper(_:ofType:error:)
(NSDocument), 209
readFromURL(_:ofType:error:), 491
readFromURL(_:ofType:error:) (NSDocument),
209
readObjects(_:options:) (NSPasteboard), 324
receipt validation, 507-509
receivers, 55
recoverable errors, 58
rectForPage(_:) (NSView), 398
redo stack, 190
reduce(), 256
reference counting, 61-65, 68
reference types, 53, 54
references, strong, 65
references, unowned, 67
references, weak, 65
registerDefaults(_:) (NSUserDefaults), 240
registerForDraggedTypes(_:), 337
registerForDraggedTypes(_:) (NSView), 337,
338
relationships (Core Data), 221
release builds, 98, 499, 503, 504
reloadData() (NSTableView), 134
removeFromSuperview() (NSView), 449
removeObjectForKey(_:) (NSUserDefaults),
240
removeObserver(_:) (NSNotificationCenter),
260
representedObject, 454
resignFirstResponder() (NSResponder), 307
resources

(see also bundles)

application access to, 505

for future learning, 511, 512

in bundles, 390, 391

localizing, 379
responder chain, 327, 328
restoreGraphicsState() (NSGraphicsContext),
284

528

reverse(), 34

RoboCop, 109

run loops, 343, 493

runModal() (NSAlert), 250
runModalForWindow(_:) (NSApplication), 355
runtime errors, 58

S

sandboxing (applications), 505-507
saveGraphicsState() (NSGraphicsContext),
284
saving documents, 207, 218
saving objects, 211
SAX parsing, 421
scenes (storyboards), 457, 463, 470
scheduledTimerWithTimeInterval (NSTimer),
342
Scheme Editor, 500, 502, 503
scroll views, 125, 291
scrollers, 125
Sculley, John, xviii
segues (storyboards), 457, 459
selectionIndexes (NSArrayController), 161,
169
selectors, 55
selectTab(_:), 451
selectTabAtIndex(_:), 451
self

in closures, 252

in initializers, 42

in instance methods, 44

and property names, 17
sendAction(_:to:from:) (NSApplication), 330
sender (action methods), 81
setBool(_:forKey:) (NSUserDefaults), 240
setData(_:forType:) (NSPasteboardItem), 325
setFloat(_:forKey:) (NSUserDefaults), 240
setInteger(_:forKey:) (NSUserDefaults), 240
setNeedsDisplayInRect(_:) (NSView), 295
setNilValueForKey(_:), 146
setObject(_:forKey:) (NSUserDefaults), 240
setPropertylList(_:forType:)
(NSPasteboardItem), 325
sets, 32, 33
setString(_:forType:) (NSPasteboardItem),
325
setUp(), 424, 429

Index

setValue(_:forKey:), 135
shadowing (properties), 17
shadows, drawing, 284
Shared User Defaults Controller, 139
sharedDocumentController()
(NSDocumentController), 207
sheetParent (NSWindow), 354
sheets
and alerts, 251
vs. modal window, 355
presenting, 353-355
Visible At Launch, 349
size (NSAttributedString), 316
size (NSRect), 274
sizeWithAttributes(_:) (NSString), 316
sliders
about, 79
setting range of, 83
snippets (code), 101-103
sort descriptors, 171-176, 235
sortDescriptors (NSTableView), 173
sorting (array controllers), 171-175
sorting (table views), 176
speech synthesis, implementing, 106, 107
split view controllers, 459
springs (autoresizing), 375
SQLite, 236, 237
stack (memory), 149
stack trace, 148, 149
stacks, undo and redo, 190
standardUserDefaults() (NSUserDefaults),
240
states, graphics, 278, 284
static methods, 27
stopModalWithCode(_:) (NSApplication), 355
storage, application, 215, 216
store types (Core Data), 236
storyboards
about, 457
loading, 470
scenes, 457, 463, 470
segues, 457, 459
string interpolation, 37
stringForType(_:) (NSPasteboardItem), 325
strings
(see also NSAttributedString, NSString)
initializers for, 33
interpolation, 37

isEmpty, 34

literal, 32

NSAttributedString, 314-317

and NSString, 56
strings files (localization), 379, 380, 382-391
strings tables (localization), 385
stringValue, 78
stroke() (NSBezierPath), 277, 278
strong reference cycles, 65-67
strong references, 65
structures, 41-44

vs. classes, 53, 54
struts (autoresizing), 375
subclassing

vs. extensions, 318

vs. helper objects, 110
subscripting

arrays, 32

dictionaries, 36
subviews (NSView), 63
Swift, 28

about, xx, 27

documentation for, 39

and Objective-C, 55
switch, 38
switch statements, 38
systemFont0fSize(_:) (NSFont), 313

T

tab images, 454

tab view controllers, 445, 446, 449-455

table cell views
about, 127, 128
with checkbox, 226
different views in, 225-227
with formatters, 226
with images, 225

table columns, 125

table header views, 125

table view
delegate’s role, 120

table view cells, 127

table views
(see also NSTableView,
NSTableViewDataSource,
NSTableViewDelegate)
about, 119-121

529

Index

Apple’s guide to, 134
binding to array controllers, 160-164
bindings, data supplied from, 129
cell-based, 126
cells in, 126-128
and clip views, 125
as collections of classes, 124
columns in, 125
and data sources, 120, 128-131
data source methods vs. bindings, 129, 134
delegate for, 131-133
displaying data with bindings, 130
header views, 125
in Interface Builder, 123-128
and scroll views, 125
and scrollers, 125
Selection Indexes, 161
sorting in, 171-176
view-based, 126
tableView(_: objectValueForTa..), 121, 129
tableViewSelectionDidChange(_:), 133
Taligent, 69
.tar files, 497
target (NSControl)
setting programmatically, 96
target-action (NSControl), 78, 418
targets
(see also actions, controls)
about, 78
array controllers as, 164, 165
nil, 326-328
project, 503
as weak references, 82
targets (in projects), 423
tearDown (), 424, 429
test fixtures, 431
testExample(), 424
testing (see unit testing)
testPerformanceExample(), 424
text fields
alignment of, 12
as table view cells, 127
behavior, setting, 12
cut, copy, and paste, 24
editable, 12
changing fonts, 12
in Interface Builder, 9
as labels, 80

530

and placeholder text, 105
selectable, 12
styles of, 80

.tgz fies, 497

thread synchronization (multithreading), 485, 486

threads (see multithreading)
Time Profiler (Instruments), 481-484
timers, 341-343
timestamp (NSEvent), 298
titleBarFont0fSize(_:) (NSFont), 313
toll-free bridging, 56
toolTipsFont0fSize(_:) (NSFont), 313
top-level objects, 444
trailing closure syntax, 256
traps, 33
tuples, 37
type inference, 30
type safety, 142
types
(see also classes, enumerations, structures,
UTIs)
boolean, 31
bridging, 56-58
casting, 56-58
floating-point, 31, 33
hashable, 31
inference of, 30
instances of, 33
integer, 31
nested, 411
reference, 53, 54
sets, 32, 33
specifying, 30
tuples, 37
values, 53, 54
types (NSPasteboardItem), 325

U

unarchiveObjectWithData(_:), 212
unarchiving (NIB files), 14, 75-77
undo

about, 189-192

implementing, 197-202
undo stack, 190

Unicode warning for Localizable.strings, 388

unit testing
about, 423

Index

assertions, 424-427
asynchronous tasks, 435, 436
planning for, 431
refactoring for, 431-434
test fixtures, 431
using constants in, 428-431
Unix, xix
unowned references, 67
updateChangeCount(_:) (NSDocument), 218
URLForResource(_:withExtension:)
(NSBundle), 391
URLsForDirectory(_:inDomains:)
(NSFileManager), 215
user defaults, 239, 240
user interfaces
(see also Interface Builder, views)
with bindings, 136, 145
creating in Interface Builder, 8-13
master/detail, 444
as view layer in MVC, 4
user preferences, 239, 240

userFixedPitchFont0fSize(_:) (NSFont), 313

userFont0fSize(_:) (NSFont), 313
utilities (Xcode), 3
UTIs (universal type identifiers)
about, 218
exported, 215
and pasteboards, 324, 325, 330

\'

validate(_:error:), 185
validateMenuItem(_:) (NSMenuValidation),
329
validation
key-value, 181, 183-186
value transformers, 187
value transformers, 187
value types, 53, 54
valueForKey(_:), 135
var, 29
variables, 29
capturing in closures, 252
variables view, 49, 149
view (NSViewController), 440
view controllers, 459
(see also NSViewController, views)
about, 439-441

architecture, 466

benefits of using, 440, 444

container, 445

instantiating in storyboards, 470

loading views, 451

making reusable, 465

and memory management, 444

and NIB files, 442

pre-OSX 10.0, 447

reason for, 439, 440

split, 459

and swapping views, 449-455

tab, 445, 446, 449-455

views of, 440, 465

ways to connect multiple, 466

when to use, 446

vs. window controllers, 444, 446
view hierarchies, 5, 10

and responder chain, 327
view hierarchy popover, 178-180
view layer MVC), 4, 5

(see also views)
view swapping, 449-455
view-based tables, 126
viewDidMoveToWindow() (NSView), 310
viewLoaded (NSViewController), 451
views

(see also NSView, view controllers)

adding in Interface Builder, 9-13

archiving, 14

attributes, configuring, 11-13

binding to array controller, 162

connecting in Interface Builder, 17-22, 132

content views, 73

copying and pasting, 85, 86

creating custom, 273-279

creating programmatically, 293, 294

described, 271

drawing, 276-279

and first-responder status, 305-308

flipped, 295

and focus rings, 309

hierarchies of, 5, 10

in MVC, 4,5

and key view loop, 310

in NIB files, 14

positioning, 274-276

unarchiving, 14, 75-77

531

Index

WKWebView, 465

in XIB files, 14
Visible At Launch, 73, 76, 349
Visual Format Language (Auto Layout), 371-373
visualizeConstraints(_:) (NSWindow), 375

w

wantsLayer (NSView), 473
weak, 65

weak references, 65, 67
web services

described, 271

disabling resizing of, 125
first responders of, 305-308
key, 305, 306

loading, 75-77

modal, 355

resizing, 125

showing, 75

and view hierarchies, 5, 10
Visible At Launch, 73, 76, 349
and window controllers, 75-77

about, 405, 406

and asynchronous tasks, 409-413
and completion handlers, 409

and completion handlers, 410-418
and HTTP, 405

making requests, 406, 410

reusing classes with, 409
synchronous API, 409

testing asynchronous tasks, 435, 436
and threads, 409

windowShouldClose(_:) (NSWindowDelegate),
113

WKWebView, 465

writeObjects(_:) (NSPasteboard), 324
writeToURL(_:ofType:error:) (NSDocument),
208

X

.xcdatamodeld (Core Data), 221
Xcode

ways to fetch asynchronously, 410
willChangeValueForKey(_:), 141
willSet (property observer), 108
window (NSEvent), 298
window (NSWindowController), 75-77
window controllers

(see also NSWindowController, windows)

and AppDelegate, 14, 24-26

and documents, 210

initializing, 17

instantiating in storyboards, 470

loading NIB files, 75-77

loading windows, 75-77

and NIB names, 24-26

vs. view controllers, 444, 446

when to use, 446

and windows, 75-77
window servers, Xix
windowControllerDidLoadNib(_:)
(NSDocument), 209
windowDidLoad (), 93, 94
windowNibName, 25
windowNibName (NSWindowController), 24, 75
windows

(see also NSWindow, window controllers)

and content views, 4

532

(see also debugging tools, Interface Builder)
adding localizations in, 381
assistant editor, 132
attributes inspector, 11
auto-complete, 111

Cocoa documentation in, 88
code snippets in, 101-103
connections inspector, 21
creating classes in, 6-8
creating projects in, 1-3
data model inspector, 236
debugger, 147-151

files in, 3

groups, 3

identity inspector, 76
Instruments, 481-484

jump bar, 105

modules, 427

navigator area, 3
navigators, 3

overview, xxi

playgrounds, 28-30

project navigator, 3

project source directories, 386
project window, 3

Quick Help, 30

Index

saving files in, 14

testing in, 423

Time Profiler, 481-484

using // MARK:, 105

utilities area, 3

variables view, 49, 149
XCTAssert(expr), 424
XCTAssertEqual(expr), 424
XCTAssertEqualWithAccuracy (expr), 424
XCTAssertFalse(expr), 424
XCTAssertNotEqual(expr), 424
XCTAssertNotEqualWithAccuracy(expr), 424
XCTAssertNotNil(expr), 424
XCTAssertTrue(expr), 424
XCTest (framework), 424, 425
XCTestCase

setUp(), 424, 429

tearDown (), 424, 429

testExample(), 424

testPerformanceExample(), 424
XCTFail(), 424, 434
XIB files

(see also NIB files)

archiving files in, 14

connections in, 17, 76

defined, 14

File's Owner, 76

localizing, 380, 382-385

naming conventions for, 72

and NIB files, 14

placeholders, 76

pronounced as “zib”, 8
XML parsing, 420, 421

Z

zip files
for distribution, 505
inspecting, 489
zipinfo utility, 489
zombie objects, 98

533

	Table of Contents
	Introduction
	About This Book
	Prerequisites
	Typographical conventions
	What's new in the fifth edition?

	The Story of Cocoa
	NeXTSTEP and OpenStep
	From NeXTSTEP to OS X to iOS
	OSX, Unix, and Cocoa

	Introducing the Swift Language
	The Cocoa Frameworks
	Tools for Cocoa Programming
	Some Advice on Learning

	3. Structures and Classes
	Structures
	Instance methods

	Operator Overloading
	Classes
	Designated and convenience initializers
	Add an instance method
	Inheritance

	Computed Properties
	Reference and Value Types
	Implications of reference and value types
	Choosing between reference and value types

	Making Types Printable
	Swift and Objective-C
	Working with Foundation Types
	Basic bridging
	Bridging with collections

	Runtime Errors
	More Exploring of Apple's Swift Documentation
	Challenge: Safe Landing
	Challenge: Vector Angle

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

