
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134052496
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134052496
https://plusone.google.com/share?url=http://www.informit.com/title/9780134052496
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134052496
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134052496/Free-Sample-Chapter

Mastering iOS
Frameworks

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Hoboken , NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Mastering iOS
Frameworks

Beyond the Basics,
Second Edition

Kyle Richter
Joe Keeley

Editor-in-Chief

Mark Taub

Senior Acquisitions
Editor

Trina MacDonald

Development Editor

Sheri Replin

Managing Editor

Kristy Hart

Project Editor

Elaine Wiley

Copy Editor

Cheri Clark

Indexer

Ken Johnson

Proofreader

Kathy Ruiz

Technical
Reviewers

Niklas Saers
Justin Williams

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Senior Compositor

Gloria Schurick

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015932706

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you
may fax your request to (201) 236-3290.

AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV, Aqua,
Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode, Finder, FireWire,
iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod touch, iTunes, the
iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch, Objective-C, Quartz,
QuickTime, QuickTime logo, Safari, Mountain Lion, Yosemite, Spotlight, and Xcode are
trademarks of Apple, Inc., registered in the U.S. and other countries. OpenGL‚ or OpenGL
Logo‚: OpenGL is a registered trademark of Silicon Graphics, Inc.

ISBN-13: 978-0-134-05249-6
ISBN-10: 0-134-05249-8
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing: April 2015

❖

I would like to dedicate this book to my co-workers who
continually drive me to never accept the first solution.

—Kyle Richter

I dedicate this book to my wife, Irene, and two daughters,
Audrey and Scarlett. Your boundless energy and love

inspire me daily.

—Joe Keeley

❖

Table of Contents

 1 UIKit Dynamics 1

The Sample App 1

Introduction to UIKit Dynamics 2

Implementing UIKit Dynamics 3

Gravity 3

Collisions 4

Attachments 7

Springs 8

Snap 9

Push Forces 10

Item Properties 11

In-Depth UIDynamicAnimator and UIDynamicAnimatorDelegate 13

Summary 14

 2 Core Location, MapKit, and Geofencing 15

The Sample App 15

Obtaining User Location 16

Requirements and Permissions 16

Checking for Services 19

Starting Location Request 19

Parsing and Understanding Location Data 22

Significant Change Notifications 23

Using GPX Files to Test Specific Locations 23

Displaying Maps 25

Understanding the Coordinate Systems 25

MKMapKit Configuration and Customization 25

Responding to User Interactions 27

Map Annotations and Overlays 28

Adding Annotations 28

Displaying Standard and Custom Annotation Views 31

Draggable Annotation Views 34

Working with Map Overlays 35

Geocoding and Reverse-Geocoding 36

Geocoding an Address 36

Reverse-Geocoding a Location 40

viiContents

Geofencing 43

Checking for Regional Monitoring Capability 43

Defining Boundaries 44

Monitoring Changes 45

Getting Directions 47

Summary 52

 3 Leaderboards 53

The Sample App 53

Spawning a Cactus 55

Cactus Interaction 58

Displaying Life and Score 60

Pausing and Resuming 62

Final Thoughts on Whack-a-Cac 63

iTunes Connect 63

Game Center Manager 66

Authenticating 68

Common Authentication Errors 69

iOS 6 and Newer Authentication 71

Submitting Scores 73

Adding Scores to Whack-a-Cac 76

Presenting Leaderboards 77

Score Challenges 79

Going Further with Leaderboards 81

Summary 83

 4 Achievements 85

iTunes Connect 85

Displaying Achievement Progress 87

Game Center Manager and Authentication 88

The Achievement Cache 89

Reporting Achievements 90

Adding Achievement Hooks 92

Completion Banners 93

Achievement Challenges 94

Adding Achievements into Whack-a-Cac 97

Earned or Unearned Achievements 98

Partially Earned Achievements 99

viii Contents

Multiple Session Achievements 101

Piggybacked Achievements and Storing Achievement Precision 102

Timer-Based Achievements 103

Resetting Achievements 104

Going Further with Achievements 105

Summary 107

 5 Getting Started with Address Book 109

Why Address Book Support Is Important 109

Limitations of Address Book Programming 110

The Sample App 110

Getting Address Book Up and Running 111

Reading Data from the Address Book 113

Reading Multivalues from the Address Book 114

Understanding Address Book Labels 115

Working with Addresses 116

Address Book Graphical User Interface 118

People Picker 118

Programmatically Creating Contacts 123

Summary 126

 6 Working with Music Libraries 127

The Sample App 127

Building a Playback Engine 129

Registering for Playback Notifications 129

User Controls 131

Handling State Changes 132

Duration and Timers 137

Shuffle and Repeat 138

Media Picker 138

Programmatic Picker 141

Playing a Random Song 141

Predicate Song Matching 142

Summary 144

 7 Implementing HealthKit 145

Introduction to HealthKit 145

Introduction to Health.app 146

The Sample App 147

ixContents

Adding HealthKit to a Project 148

Requesting Permission for Health Data 149

Reading Characteristic HealthKit Data 152

Reading and Writing Basic HealthKit Data 152

Reading and Writing Complex HealthKit Data 155

Summary 160

 8 Implementing HomeKit 161

The Sample App 161

Introduction to HomeKit 162

Setting Up HomeKit Components 162

Developer Account Setup 163

Enabling HomeKit Capability 163

Home Manager 164

Home 166

Rooms and Zones 168

Accessories 170

Services and Service Groups 176

Actions and Action Sets 178

Testing with the HomeKit Accessory Simulator 179

Scheduling Actions with Triggers 181

Summary 181

 9 Working with and Parsing JSON 183

JSON 183

Benefits of Using JSON 183

JSON Resources 184

The Sample App 184

Accessing the Server 184

Getting JSON from the Server 185

Building the Request 185

Inspecting the Response 186

Parsing JSON 186

Displaying the Data 187

Posting a Message 189

Encoding JSON 189

Sending JSON to the Server 191

Summary 193

x Contents

 10 Notifications 195

Differences Between Local and Push Notifications 195

The Sample App 196

App Setup 196

Creating Development Push SSL Certificate 200

Development Provisioning Profile 203

Custom Sound Preparation 208

Registering for Notifications 209

Scheduling Local Notifications 211

Receiving Notifications 212

Push Notification Server 213

Sending the Push Notifications 214

Handling APNs Feedback 215

Summary 216

 11 Cloud Persistence with CloudKit 217

CloudKit Basics 217

The Sample App 218

Setting Up a CloudKit Project 218

Account Setup 218

Enabling iCloud Capabilities 220

CloudKit Concepts 220

Containers 220

Databases 221

Records 221

Record Zones 222

Record Identifiers 222

Assets 222

CloudKit Basic Operations 222

Fetching Records 223

Create and Save a Record 224

Update and Save a Record 226

Subscriptions and Push 227

Push Setup 227

Subscribing to Data Changes 227

User Discovery and Management 229

Managing Data in the Dashboard 233

Summary 235

xiContents

 12 Extensions 237

Types of Extensions 237

Today 237

Share 238

Action 238

Photo Editing 238

Document Provider 238

Custom Keyboard 238

Understanding Extensions 238

API Limitations 239

Creating Extensions 240

Today Extension 242

Sharing Code and Information between Host App and Extension 243

Apple Watch Extension 244

Summary 247

 13 Handoff 249

The Sample App 249

Handoff Basics 249

Implementing Handoff 251

Creating the User Activity 252

Continuing an Activity 253

Implementing Handoff in Document-Based Apps 255

Summary 257

 14 AirPrint 259

AirPrint Printers 259

Testing for AirPrint 261

Printing Text 261

Print Info 262

Setting Page Range 263

UISimpleTextPrintFormatter 263

Error Handling 264

Starting the Print Job 264

Printer Simulator Feedback 265

xii Contents

Print Center 266

UIPrintInteractionControllerDelegate 267

Printing Rendered HTML 268

Printing PDFs 269

Summary 270

 15 Getting Up and Running with Core Data 271

Deciding on Core Data 272

Sample App 273

Starting a Core Data Project 274

Core Data Environment 275

Building Your Managed Object Model 278

Creating an Entity 280

Adding Attributes 280

Establishing Relationships 281

Custom Managed Object Subclasses 282

Setting Up Default Data 282

Inserting New Managed Objects 282

Other Default Data Setup Techniques 284

Displaying Your Managed Objects 285

Creating Your Fetch Request 285

Fetching by Object ID 287

Displaying Your Object Data 288

Using Predicates 290

Introducing the Fetched Results Controller 292

Preparing the Fetched Results Controller 292

Integrating Table View and Fetched Results Controller 294

Responding to Core Data Changes 296

Adding, Editing, and Removing Managed Objects 299

Inserting a New Managed Object 299

Removing a Managed Object 300

Editing an Existing Managed Object 301

Saving and Rolling Back Your Changes 301

Summary 303

 16 Integrating Twitter and Facebook Using Social Framework 305

The Sample App 305

Logging In 306

xiiiContents

Using SLComposeViewController 308

Posting with a Custom Interface 311

Posting to Twitter 311

Posting to Facebook 315

Creating a Facebook App 315

Accessing User Timelines 322

Twitter 322

Facebook 327

Summary 331

 17 Working with Background Tasks 333

The Sample App 334

Checking for Background Availability 334

Finishing a Task in the Background 335

Background Task Identifier 336

Expiration Handler 337

Completing the Background Task 337

Implementing Background Activities 339

Types of Background Activities 339

Playing Music in the Background 340

Summary 344

 18 Grand Central Dispatch for Performance 345

The Sample App 345

Introduction to Queues 347

Running on the Main Thread 347

Running in the Background 349

Running in an Operation Queue 351

Concurrent Operations 351

Serial Operations 353

Canceling Operations 354

Custom Operations 355

Running in a Dispatch Queue 357

Concurrent Dispatch Queues 357

Serial Dispatch Queues 359

Summary 361

xiv Contents

 19 Using Keychain and Touch ID to Secure and Access Data 363

The Sample App 364

Setting Up and Using Keychain 364

Setting Up a New KeychainItemWrapper 365

Storing and Retrieving the PIN 366

Keychain Attribute Keys 367

Securing a Dictionary 368

Resetting a Keychain Item 370

Sharing a Keychain Between Apps 370

Keychain Error Codes 372

Implementing Touch ID 372

Summary 374

 20 Working with Images and Filters 375

The Sample App 375

Basic Image Data and Display 376

Instantiating an Image 376

Displaying an Image 377

Using the Image Picker 379

Resizing an Image 382

Core Image Filters 383

Filter Categories and Filters 383

Filter Attributes 386

Initializing an Image 388

Rendering a Filtered Image 389

Chaining Filters 390

Feature Detection 391

Setting Up a Face Detector 391

Processing Face Features 392

Summary 394

 21 Collection Views 395

The Sample App 395

Introducing Collection Views 396

Setting Up a Collection View 397

Implementing the Collection View Data Source Methods 398

Implementing the Collection View Delegate Methods 401

xvContents

Customizing Collection View and Flow Layout 403

Basic Customizations 403

Decoration Views 405

Creating Custom Layouts 408

Collection View Animations 413

Collection View Layout Changes 413

Collection View Layout Animations 414

Collection View Change Animations 416

Summary 417

 22 Introduction to TextKit 419

The Sample App 420

Introducing NSLayoutManager 420

Detecting Links Dynamically 423

Detecting Hits 424

Exclusion Paths 425

Content Specific Highlighting 427

Changing Font Settings with Dynamic Type 432

Summary 433

 23 Gesture Recognizers 435

Types of Gesture Recognizers 435

Basic Gesture Recognizer Usage 436

Introduction to the Sample App 437

Tap Recognizer in Action 438

Pinch Recognizer in Action 440

Multiple Recognizers for a View 441

Gesture Recognizers: Under the Hood 443

Multiple Recognizers for a View: Redux 444

Requiring Gesture Recognizer Failures 446

Custom UIGestureRecognizer Subclasses 448

Summary 448

 24 Accessing the Photo Library 449

The Sample App 449

The Photos Framework 450

xvi Contents

Using Asset Collections and Assets 451

Permissions 451

Asset Collections 453

Assets 457

Changes in the Photo Library 459

Asset Collection Changes 459

Asset Changes 462

Dealing with Photo Stream 464

Summary 465

 25 Passbook and PassKit 467

The Sample App 468

Designing the Pass 468

Pass Types 469

Pass Layout—Boarding Pass 469

Pass Layout—Coupon 470

Pass Layout—Event 471

Pass Layout—Generic 471

Pass Layout—Store Card 472

Pass Presentation 473

Building the Pass 474

Basic Pass Identification 476

Pass Relevance Information 476

Barcode Identification 477

Pass Visual Appearance Information 478

Pass Fields 478

Signing and Packaging the Pass 481

Creating the Pass Type ID 481

Creating the Pass Signing Certificate 483

Creating the Manifest 488

Signing and Packaging the Pass 489

Testing the Pass 489

Interacting with Passes in an App 491

Updating Passes Automatically 501

Summary 502

xviiContents

 26 Debugging and Instruments 503

Introduction to Debugging 503

The First Computer Bug 504

Debugging Basics with Xcode 504

Breakpoints 506

Customizing Breakpoints 507

Symbolic and Exception Breakpoints 508

Breakpoint Scope 508

Working with the Debugger 509

Instruments 510

The Instruments Interface 512

Exploring Instruments: The Time Profiler 514

Exploring Instruments: Leaks 516

Going Further with Instruments 519

Summary 519

 Index 521

Foreword

I have been working with the iPhone SDK (now iOS SDK) since the first beta released in 2008.
At the time, I was focused on writing desktop apps for the Mac and hadn’t thought much
about mobile app development.

If you chose to be an early adopter, you were on your own. In typical Apple fashion, the
documentation was sparse, and since access to the SDK required an NDA—and, apparently,
a secret decoder ring—you were on your own. You couldn’t search Google or turn to
StackOverflow for help, and there sure as hell weren’t any books out yet on the SDK.

In the seven years (yes, it really has been only seven years) since Apple unleashed the original
iPhone on the world, we’ve come a long way. The iPhone SDK is now the iOS SDK. There
are dozens of books and blogs and podcasts and conferences on iOS development. And ever
since 2009, WWDC has been practically impossible to get into, making it even harder for
developers—old and new—to learn about the latest features coming to the platform. For iOS
developers, there is so much more to learn.

One of the biggest challenges I have as an iOS developer is keeping on top of all the
components and frameworks available in the kit. The iOS HIG should help us with that, but it
doesn’t go far enough—deep enough. Sure, now I can find some answers by searching Google
or combing through StackOverflow; but, more often than not, those answers only explain the
how and rarely the why, and they never provide the details you really need.

And this is what Kyle and Joe have done with this book—they’re providing the detail needed so
you can fully understand the key frameworks that make up the iOS SDK.

I’ve had the pleasure of knowing Kyle and Joe for a number of years. They are two of the
brightest developers I have ever met. They have each written some amazing apps over the
years, and they continuously contribute to the iOS development community by sharing their
knowledge—speaking at conferences and writing other books on iOS development. If you have
a question about how to do something in iOS, chances are good that Kyle and Joe have the
answer for you.

But what makes these guys so awesome is not just their encyclopedic knowledge of iOS, but
their willingness to share what they know with everyone they meet. Kyle and Joe don’t have
competitors, they have friends.

Kyle and Joe’s in-depth knowledge of the iOS SDK comes through in this book. It’s one of the
things I like about this book. It dives into the details for each component covered at a level
that you won’t always find when searching online.

I also like the way the book is structured. This is not something that you’ll read cover to cover.
Instead, you’ll pick up the book because you need to learn how to implement a collection view
or sort out some aspect of running a task in a background thread that you can’t quite wrangle.
You’ll pick up the book when you need it, find the solution, implement it in your own code,

xixForeword

and then toss the book back on the floor until you need it again. This is what makes Mastering
iOS Frameworks an essential resource for any iOS developer—regardless of your experience level.
You might think you’re a master with Core Location and MapKit, but I reckon you’ll find
something here that you never knew before.

Kyle and Joe don’t come with egos. They don’t brag. And they sure don’t act like they are
better than any other developer in the room. They instill the very spirit that has made the Mac
and iOS developer community one of the friendliest, most helpful in our industry, and this
book is another example of their eagerness to share their knowledge.

This book, just like the seminal works from Mark and LaMarche or Sadun, will always be within
arm’s reach of my desk. This is the book I wish I had when I first started developing iOS apps
in 2008. Lucky you, it’s here now.

—Kirby Turner

Chief Code Monkey at White Peak Software, author of Learning iPad Programming: A Hands-On
Guide to Building iPad Apps, Second Edition (Addison-Wesley Professional), and Cocoa developer
community organizer and conference junkie

Preface

Welcome to Mastering iOS Frameworks: Beyond the Basics!

There are hundreds of “getting started with iOS” books available to choose from, and there are
dozens of advanced books in specific topics, such as Core Data or Security. There was, however,
a disturbing lack of books that would bridge the gap between beginner and advanced niche
topics.

This publication aims to provide development information on the intermediate-to-advanced
topics that are otherwise not worthy of standalone books. It’s not that the topics are
uninteresting or lackluster; it’s that they are not large enough topics. From topics such as
working with JSON to accessing photo libraries, these are frameworks that professional iOS
developers use every day but are not typically covered elsewhere.

Additionally, several advanced topics are covered to the level that many developers need
in order to just get started. Picking up a 500-page Core Data book is intimidating, whereas
Chapter 15 of this book provides a very quick and easy way to get started with Core Data.
Additional introductory chapters are provided for debugging and instruments, TextKit,
HomeKit, HealthKit, and CloudKit.

Topics such as Game Center leaderboards and achievements, AirPrint, music libraries, Address
Book, and Passbook are covered in their entirety. Whether you just finished your first iOS
project or you are an experienced developer, this book has something for you.

The chapters have all been updated to work with iOS 8. Please let us know if you encounter
issues and we will release updates and corrections.

If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to
a future edition, please contact us at mastering.ios.frameworks@gmail.com. We are always
interested in hearing what would make this book better and are very excited to continue
refining it.

—Kyle Richter and Joe Keeley

Prerequisites

Every effort has been made to keep the examples and explanations simple and easy to
digest; however, this is to be considered an intermediate to advanced book. To be successful
with it, you should have a basic understanding of iOS development, Objective-C, and C.
Familiarity with the tools such as Xcode, Developer Portal, iTunes Connect, and Instruments
is also assumed. Refer to Programming in Objective-C, by Stephen G. Kochan, and Learning iOS
Development, by Maurice Sharp, Rod Strougo, and Erica Sadun, for basic Objective-C and iOS
skills.

xxiPreface

What You’ll Need

Although you can develop iOS apps in the iOS simulator, it is recommended that you have at
least one iOS device available for testing:

 ■ Apple iOS Developer Account: The latest version of the iOS developer tools including
Xcode and the iOS SDKs can be downloaded from Apple’s Developer Portal (http://
developer.apple.com/ios). To ship an app to the App Store or to install and test on a
personal device, you will also need a paid developer account at $99 per year.

 ■ Macintosh Computer: To develop for iOS and run Xcode, you will need a modern Mac
computer capable of running the latest release of OS X.

 ■ Internet Connection: Many features of iOS development require a constant Internet
connection for your Mac as well as for the device you are building against.

How This Book Is Organized

With few exceptions (Game Center and Core Data), each chapter stands on its own. The
book can be read cover to cover but any topic can be skipped to when you find a need for
that technology; we wrote it with the goal of being a quick reference for many common iOS
development tasks.

Here is a brief overview of the chapters you will encounter:

 ■ Chapter 1, “UIKit Dynamics”: iOS 7 introduced UI Kit Dynamics to add physics-like
animation and behaviors to UIViews. You will learn how to add dynamic animations,
physical properties, and behaviors to standard objects. Seven types of behaviors are
demonstrated in increasing difficulty from gravity to item properties.

 ■ Chapter 2, “Core Location, MapKit, and Geofencing”: iOS 6 introduced new, Apple-
provided maps and map data. This chapter covers how to interact with Core Location to
determine the device’s location, how to display maps in an app, and how to customize
the map display with annotations, overlays, and callouts. It also covers how to set up
regional monitoring (or geofencing) to notify the app when the device has entered or
exited a region.

 ■ Chapter 3, “Leaderboards”: Game Center leaderboards provide an easy way to add
social aspects to your iOS game or app. This chapter introduces a fully featured iPad game
called Whack-a-Cac, which walks the reader through adding leaderboard support. Users
will learn all the required steps necessary for implementing Game Center leaderboards, as
well as get a head start on implementing leaderboards with a custom interface.

 ■ Chapter 4, “Achievements”: This chapter continues on the Whack-a-Cac game
introduced in Chapter 3. You will learn how to implement Game Center achievements
in a fully featured iPad game. From working with iTunes Connect to displaying
achievement progress, this chapter provides all the information you need to quickly get
up and running with achievements.

http://developer.apple.com/ios
http://developer.apple.com/ios

xxii Preface

 ■ Chapter 5, “Getting Started with Address Book”: Integrating a user’s contact
information is a critical step for many modern projects. Address Book framework is one
of the oldest available on iOS; in this chapter you’ll learn how to interact with that
framework. You will learn how to use the people picker, how to access the raw address
book data, and how to modify and save that data.

 ■ Chapter 6, “Working with Music Libraries”: This chapter covers how to access the
user’s music collection from a custom app, including how to see informational data
about the music in the collection, and how to select and play music from the collection.

 ■ Chapter 7, “Implementing HealthKit”: HealthKit provides a centralized location for
health information that can be shared among apps. This chapter explains how to get
started with HealthKit, how to access information available in HealthKit, and how to
read and write various types of health data.

 ■ Chapter 8, “Implementing HomeKit”: This chapter explains how to get started using
HomeKit, which enables iOS devices to communicate with home automation technology.
It explains how to set up a home in HomeKit, and how to discover, set up, and interact
with home automation devices such as lights, locks, and garage door openers.

 ■ Chapter 9, “Working with and Parsing JSON”: JSON, or JavaScript Object Notation,
is a lightweight way to pass data back and forth between different computing platforms
and architectures. As such, it has become the preferred way for iOS client apps to
communicate complex sets of data with servers. This chapter describes how to create
JSON from existing objects, and how to parse JSON into iOS objects.

 ■ Chapter 10, “Notifications”: Two types of notifications are supported by iOS: local
notifications, which function on the device with no network required, and remote
notifications, which require a server to send a push notification through Apple’s Push
Notification Service to the device over the network. This chapter explains the differences
between the two types of notifications, and demonstrates how to set them up and get
notifications working in an app.

 ■ Chapter 11, “Cloud Persistence with CloudKit”: CloudKit offers public and private
remote data storage, with notifications for changes in data. This chapter explains the
basic CloudKit concepts, and illustrates how to build an app that uses CloudKit for
storing and syncing both private and public data remotely.

 ■ Chapter 12, “Extensions”: Extensions provide a way to access an app’s functionality
outside the app’s sandbox. This chapter explains the different types of extensions that are
available, and illustrates how to create a Today extension and an Apple Watch extension.

 ■ Chapter 13, “Handoff”: Handoff is one of the Continuity features introduced with
iOS 8 and Yosemite. It enables the user to switch between devices and have an activity
seamlessly move from one device to another. This chapter explains the basic Handoff
mechanisms, and how to implement Handoff for developer-defined activities and
document-based activities.

xxiiiPreface

 ■ Chapter 14, “AirPrint”: An often-underappreciated feature of the iOS, AirPrint enables
the user to print documents and media to any wireless-enabled AirPrint-compatible
printer. Learn how to quickly and effortlessly add AirPrint support to your apps. By the
end of this chapter you will be fully equipped to enable users to print views, images,
PDFs, and even rendered HTML.

 ■ Chapter 15, “Getting Up and Running with Core Data”: This chapter demonstrates
how to set up an app to use Core Data, how to set up a Core Data data model, and how
to implement many of the most commonly used Core Data tools in an app. If you want
to start using Core Data without digging through a 500-page book, this chapter is for
you.

 ■ Chapter 16, “Integrating Twitter and Facebook Using Social Framework”: Social
integration is the future of computing, and it is accepted that all apps have social features
built in. This chapter walks you through adding support for Facebook and Twitter to
your app using the Social Framework. You will learn how to use the built-in composer
to create new Twitter and Facebook posts. You will also learn how to pull down feed
information from both services and how to parse and interact with that data. Finally,
using the frameworks to send messages from custom user interfaces is covered. By the
end of this chapter, you will have a strong background in Social Framework as well as
working with Twitter and Facebook to add social aspects to your apps.

 ■ Chapter 17, “Working with Background Tasks”: Being able to perform tasks when
the app is not the foreground app was a big new feature introduced in iOS 4, and more
capabilities have been added since. This chapter explains how to perform tasks in the
background after an app has moved from the foreground, and how to perform specific
background activities allowed by iOS.

 ■ Chapter 18, “Grand Central Dispatch for Performance”: Performing resource-intensive
activities on the main thread can make an app’s performance suffer with stutters and
lags. This chapter explains several techniques provided by Grand Central Dispatch for
doing the heavy lifting concurrently without affecting the performance of the main
thread.

 ■ Chapter 19, “Using Keychain and TouchID to Secure and Access Data”: Securing user
data is important and an often-overlooked stage of app development. Even large public
companies have been called out in the news over the past few years for storing user credit
card info and passwords in plain text. This chapter provides an introduction to not only
using the Keychain to secure user data but developmental security as a whole. By the end
of the chapter, you will be able to use Keychain to secure any type of small data on users’
devices and provide them with peace of mind.

 ■ Chapter 20, “Working with Images and Filters”: This chapter covers some basic image-
handling techniques, and then dives into some advanced Core Image techniques to
apply filters to images. The sample app provides a way to explore all the options that
Core Image provides and build filter chains interactively in real time.

xxiv Preface

 ■ Chapter 21, “Collection Views”: Collection views, a powerful new API introduced
in iOS 6, give the developer flexible tools for laying out scrollable, cell-based content.
In addition to new content layout options, collection views provide exciting new
animation capabilities, both for animating content in and out of a collection view and
for switching between collection view layouts. The sample app demonstrates setting up
a basic collection view, a customized flow layout collection view, and a highly custom,
nonlinear collection view layout.

 ■ Chapter 22, “Introduction to TextKit”: iOS 7 introduced TextKit as an easier-to-use
and greatly expanded update to Core Text. TextKit enables developers to provide rich
and interactive text formatting to their apps. Although TextKit is a very large subject,
this chapter provides the basic groundwork to accomplish several common tasks, from
adding text wrapping around an image to inline custom font attributes. By the end of
this chapter, you will have a strong background in TextKit and have the groundwork laid
to explore it more in depth.

 ■ Chapter 23, “Gesture Recognizers”: This chapter explains how to make use of gesture
recognizers in an app. Rather than dealing with and interpreting touch data directly,
gesture recognizers provide a simple and clean way to recognize common gestures and
respond to them. In addition, custom gestures can be defined and recognized using
gesture recognizers.

 ■ Chapter 24, “Accessing the Photo Library”: The iPhone has actually become a very
popular camera, as evidenced by the number of photos that people upload to sites such
as Flickr. This chapter explains how to access the user’s photo library, and handle photos
and videos in a custom app. The sample app demonstrates building some of the concepts
from the iOS 8 version of Photos.app.

 ■ Chapter 25, “Passbook and PassKit”: With iOS 6, Apple introduced Passbook, a
standalone app that can store “passes,” or such things as plane tickets, coupons, loyalty
cards, or concert tickets. This chapter explains how to set up passes, how to create and
distribute them, and how to interact with them in an app.

 ■ Chapter 26, “Debugging and Instruments”: One of the most important aspects of
development is to be able to debug and profile your software. Rarely is this topic covered
even in a cursory fashion. This chapter introduces you to debugging in Xcode and
performance analysis using Instruments. Starting with a brief history of computer bugs,
the chapter walks you through common debugging tips and tricks. Topics of breakpoints
and debugger commands are briefly covered, and the chapter concludes with a look into
profiling apps using the Time Profiler and memory analysis using Leaks. By the end of
this chapter, you will have a clear foundation on how to troubleshoot and debug iOS
apps on both the simulator and the device.

About the Sample Code

Each chapter of this book is designed to stand by itself; therefore, each chapter with the
exception of Chapter 26, “Debugging and Instruments,” has its own sample project. Chapter 3,
“Leaderboards,” and Chapter 4, “Achievements,” share a base sample project, but each expands

xxvPreface

on that base project in unique ways. Each chapter provides a brief introduction to the sample
project and walks the reader through any complex sections of the sample project not relating
directly to the material in the chapter.

Every effort has been made to create simple-to-understand sample code, which often results
in code that is otherwise not well optimized or not specifically the best way of approaching
a problem. In these circumstances the chapter denotes where things are being done
inappropriately for a real-world app. The sample projects are not designed to be standalone
or finished apps; they are designed to demonstrate the functionality being discussed in the
chapter. The sample projects are generic with intention; the reader should be able to focus
on the material in the chapter and not the unrelated sample code materials. A considerable
amount of work has been put into removing unnecessary components from the sample code
and condensing subjects into as few lines as possible.

Many readers will be surprised to see that the sample code in the projects is built with
Objective-C instead of Swift; this is by design as well. Since all the APIs illustrated are built with
Objective-C, it is easier to interact with them using Objective-C, rather than add an additional
layer of complexity by using Swift. The concepts illustrated are easily portable to Swift after
the reader is comfortable with developing in Swift. The sample code is prefixed with “ICF” and
most, but not all, sample projects are named after the chapter title.

When you’re working with the Game Center chapters, the bundle ID is linked to a real app,
which is in our personal Apple account; this ensures that examples continue to work. It also
has the small additional benefit of populating multiple users’ data as developers interact with
the sample project. For chapters dealing with iCloud, Push Notifications, and Passbook, the
setup required for the apps is thoroughly described in the chapter, and must be completed
using a new App ID in the reader’s developer account in order to work.

Getting the Sample Code

You will be able to find the most up-to-date version of the source code at any moment at
https://github.com/dfsw/icf, in the Mastering folder. The code is publicly available and open
source. Each chapter is broken down into its own zip file containing an Xcode project; there
are no chapters with multiple projects. We encourage readers to provide feedback on the source
code and make recommendations so that we can continue to refine and improve it long after
this book has gone to print.

Installing Git and Working with GitHub

Git is a version control system that has been growing in popularity for several years. To clone
and work with the code on GitHub, you will want to first install Git on your Mac. A command-
line version Git is included in the Xcode command-line tool installation, or a current installer
for Git can be found at http://git-scm.com/downloads. Additionally, there are several GUI
front ends for Git, even one written by GitHub, which might be more appealing to developers
who avoid command-line interfaces. If you do not want to install Git, GitHub also allows for
downloading the source files as a zip.

https://github.com/dfsw/icf
http://git-scm.com/downloads

xxvi Preface

GitHub enables users to sign up for a free account at https://github.com/signup/free. After Git
has been installed, from the terminal’s command line $git clone git@github.com:dfsw/
icf.git will download a copy of the source code into the current working directory. The
sample code for this version of the book is in the Mastering folder. You are welcome to fork
and open pull requests with the sample code projects.

Contacting the Authors

If you have any comments or questions about this book, please drop us an e-mail message at
mastering.ios.frameworks@gmail.com, or on Twitter at @kylerichter and @jwkeeley.

https://github.com/signup/free

Acknowledgments

This book could not have existed without a great deal of effort from far too many behind-
the-scenes people; although there are only two authors on the cover, dozens of people were
responsible for bringing this book to completion. We would like to thank Trina MacDonald
first and foremost; without her leadership and her driving us to meet deadlines, we would
never have been able to finish. The editors at Pearson have been exceptionally helpful; their
continual efforts show on every page, from catching our typos to pointing out technical
concerns. The dedicated work of Niklas Saers, Olivia Basegio, Justin Williams, Sheri Replin,
Elaine Wiley, Cheri Clark, Chuti Prasertsith, and Gloria Shurick made the following pages
possible.

We would also like to thank Jordan Langille of Langille Design (http://jordanlangille.com) for
providing the designs for the Whack-a-Cac game featured in Chapters 3 and 4. His efforts have
made the Game Center sample projects much more compelling.

The considerable amount of time spent working on this book was shouldered not only by
us but also by our families and co-workers. We would like to thank everyone who surrounds
us in our daily lives for taking a considerable amount of work off of our plates, as well as
understanding the demands that a project like this brings.

Finally, we would like to thank the community at large. All too often we consulted developer
forums, blog posts, and associates to ask questions or provide feedback. Without the hard
efforts of everyone involved in the iOS community, this book would not be nearly as complete.

http://jordanlangille.com

About the Authors

Kyle Richter is the Chief Executive Officer at MartianCraft, an award-winning Mobile
Development Studio. Kyle began developing software in the early 1990s and has always
been dedicated to the Apple ecosystem. He has authored and coauthored several books on
iOS development, including Beginning iOS Game Center Development, Beginning Social Game
Development, and iOS Components and Frameworks. Between running day-to-day operations
at MartianCraft, Kyle travels the world speaking on development and entrepreneurship. He
currently calls the Florida Keys home, where he spends his time with his border collie. He can
be found on Twitter at @kylerichter.

Joe Keeley is a Partner and Lead Engineer at MartianCraft. Joe provides technical leadership
on iOS projects for clients, and has led a number of successful client projects to completion.
He has liked writing code since first keying on an Apple II, and has worked on a wide variety
of technology and systems projects in his career. Joe has presented several technical topics at
iOS and Mac conferences around the U.S. Joe lives in Denver, Colorado, with his wife and two
daughters, and hopes to get back into competitive fencing again in his spare time. He can be
reached on Twitter at @jwkeeley.

This page intentionally left blank

 9
 Working with and

Parsing JSON

 JSON is a great way to send data back and forth between servers, Web sites, and iOS apps. It is
lighter and easier to handle than XML, and with iOS’s built-in support for JSON, it is easy to
integrate into an iOS project. Many popular Web sites, including Flickr, Twitter, and Google,
offer APIs that provide results in JSON format, and many languages offer JSON support. This
chapter demonstrates how to parse and present JSON from a sample message-board server in an
app, and encode a new message entry in JSON to send to the server.

 JSON

 JavaScript Object Notation (JSON) is a lightweight format for sharing data. It is technically
a part of the language JavaScript and provides a way to serialize JavaScript objects; however,
practically, it is supported in a wide variety of programming languages, making it a great
candidate for sharing data between different platforms. JSON also has the benefit of being
human-readable.

 JSON has a simple and intuitive syntax. At its most basic level, a JSON document can contain
 objects, which are essentially key-value dictionaries like what Objective-C programmers are
familiar with, or arrays. JSON can contain arrays of objects and arrays of values, and can nest
arrays and objects. Values stored in JSON, either in arrays or associated with a key, can be other
JSON objects, strings, numbers, or arrays, or true , false , or null .

 Benefits of Using JSON

 There are many reasons to use JSON in an iOS app:

 ■ Server Support: Communicating information to and from a remote server is a common
use case for iOS apps. Since so many server languages have built-in support for JSON, it is
a natural choice as a data format.

184 Chapter 9 Working with and Parsing JSON

 ■ Lightweight: JSON has little formatting overhead when compared to XML and can
present a significant savings in the amount of bandwidth needed to transmit data
between a server and a device.

 ■ iOS Support: JSON is now fully supported as of iOS 5 with the addition of the
 NSJSONSerialization class. This class can conveniently provide an NSDictionary or
 NSArray (or even mutable varieties) from JSON data or can encode an NSDictionary or
 NSArray into JSON.

 ■ Presentation and Native Handling: The simplest method to get data from a server to
an iOS device is just to use a UIWebView and display a Web page; however, this approach
has drawbacks in terms of performance and presentation. In many cases it is much better
to just pull the data from the server, and present it on the device using native tools like
 UITableView . Performance can be much better, and presentation can be optimized to
work on iOS screen sizes and take advantage of available retina displays.

 JSON Resources

 For more information on JSON, visit http://json.org . That site has a formal definition of JSON,
with specific information on format and syntax.

 The Sample App

 The sample app for this chapter is Message Board, including a Ruby on Rails server and an
iOS app.

 The Ruby on Rails server consists of just one object: the message. It has been set up to support
sending a list of messages in JSON, and to accept new messages in JSON format. The server also
supports Web-based interactions.

 The iOS app will pull messages from the server and display them in a standard table view and
will be able to post new messages to the server in JSON format.

 Accessing the Server

 To view the Message Board Ruby on Rails server, visit http://freezing-cloud-6077.herokuapp.
com/ . The Messages home screen will be visible, as shown in Figure 9.1 .

 The messages server has been set up to handle creating and displaying messages on the Web
and with JSON.

http://json.org
http://freezing-cloud-6077.herokuapp.com/
http://freezing-cloud-6077.herokuapp.com/

185Getting JSON from the Server

 Figure 9.1 Messages home screen.

 Getting JSON from the Server

 To update the sample iOS app to handle JSON, the first thing to address is pulling the message
list from the server and displaying it.

 Building the Request

 First, set up the URL so that the app can make calls to the right location:

 NSString * const kMessageBoardURLString =
➥@"http://freezing-cloud-6077.herokuapp.com/messages.json";

 In the ICFViewController.m implementation, look at the viewWillAppear: method. This
code will initiate the request to the server:

 NSURL *msgURL = [NSURL URLWithString :kMessageBoardURLString];
 NSURLSession *session = [NSURLSession sharedSession];

 NSURLSessionTask *messageTask = [session dataTaskWithURL :msgURL
 ➥ completionHandler :^(NSData *data, NSURLResponse *response, NSError *error) {
 ...
 }];
 [messageTask resume];

 This creates and initiates a network request to the messages.json resource at the server URL.
The network request will run asynchronously, and when data comes back the completion
handler block will be called. The important thing to note is that nothing special is required
here for JSON; this is a standard network call. The only difference is that the .json extension

186 Chapter 9 Working with and Parsing JSON

used in the URL tells the server that the response should be in JSON format. Other servers
might use a Content-Type and/or Accept HTTP header that specifies application/json as
the mime-type to indicate that a JSON response is desired.

 Note

 Using the .json extension is not required for servers to return JSON format data; that is just
how the sample server was set up. It is a common approach but is not required.

 Inspecting the Response

 When the network request has returned, the completion handler will be called. In the sample
app, the data is converted into a UTF-8 string so that it can be logged to the console. This
should not be done for every request in a production app; it is done here to demonstrate how
to see the response for debugging when a problem parsing JSON is encountered.

 NSString *retString =
 ➥ [NSString stringWithUTF8String :[data bytes]];

 NSLog (@"json returned: %@" , retString);

 The log message will display on the console the data received:

 json returned: [{"message":{"created_at":"2012-04-29T21:59:28Z",
 "id":3, "message":"JSON is fun!", "message_date":"2012-04-29",
 "name":"Joe","updated_at":"2012-04-29T21:59:28Z"}},
 {"message":{"created_at":"2012-04-29T21:58:50Z","id":2,
 "message":"Learning about JSON", "message_date":"2012-04-
 29","name":"Joe", "updated_at":"2012-04-29T21:59:38Z"}},
 {"message":{"created_at":"2012-04-29T22:00:00Z","id":4,
 "message":"Wow, JSON is easy.", "message_date":"2012-04-
 29","name":"Kyle", "updated_at":"2012-04-29T22:00:00Z"}},
 {"message":{"created_at":"2012-04-29T22:46:18Z","id":5,
 "message":"Trying a new message.", "message_date":"2012-04-
 29","name":"Joe", "updated_at":"2012-04-29T22:46:18Z"}}]

 Parsing JSON

 Now that JSON has been received from the server, it is just a simple step to parse it. In the case
of the sample app, an array of messages is expected, so parse the JSON into an NSArray :

 NSError *parseError = nil ;
 NSArray *jsonArray =
 ➥ [NSJSONSerialization JSONObjectWithData :data
 options : 0
 error :&parseError];

187Getting JSON from the Server

 if (!parseError) {
 [self setMessageArray :jsonArray];
 NSLog (@"json array is %@" , jsonArray);
 } else {
 NSString *err = [parseError localizedDescription];
 NSLog (@"Encountered error parsing: %@" , err);
 }

 NSJSONSerialization ’s method JSONObjectWithData:options:error: expects as param-
eters the data to be serialized, any desired options (for example, returning a mutable array
instead of a regular array), and a reference to an NSError in case there are any parsing errors.

 In this example, a local instance variable has been updated to the just-parsed array, the table
view has been told to reload data now that there is data to display, and the activity view has
been hidden. Note that the completion handler will most likely be called on a background
queue, so if the user interface will be updated, it will be necessary to switch to the main queue.

 dispatch_async(dispatch_get_main_queue(), ^{
 [self . messageTable reloadData];
 [self . activityView setHidden: YES];
 [self . activityIndicator stopAnimating];
 });

 Displaying the Data

 Now that the JSON has been parsed into an NSArray , it can be displayed in a UITableView .
The magic here is that there is no magic; the JSON received from the server is now just an array
of NSDictionary instances. Each NSDictionary contains information for a message from the
server, with attribute names and values. To display this in a table, just access the array and
dictionaries as if they had been created locally.

 - (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
 {
 UITableViewCell *cell =
 ➥ [tableView dequeueReusableCellWithIdentifier : @"MsgCell"];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 ➥ initWithStyle : UITableViewCellStyleSubtitle
 ➥ reuseIdentifier : @"MsgCell"];

 cell. selectionStyle = UITableViewCellSelectionStyleNone ;
 }
 NSDictionary *message =
 ➥ (NSDictionary *)[[self . messageArray
 ➥ objectAtIndex :indexPath. row]
 ➥ objectForKey : @"message"];

188 Chapter 9 Working with and Parsing JSON

 NSString *byLabel =
 ➥ [NSString stringWithFormat : @"by %@ on %@" ,
 ➥ [message objectForKey : @"name"],
 ➥ [message objectForKey : @"message_date"]];

 cell. textLabel . text = [message objectForKey : @"message"];
 cell. detailTextLabel . text = byLabel;
 return cell;
 }

 - (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
 {
 return [[self messageArray] count];
 }

 The parsed JSON data will be visible in a standard table view, as shown in Figure 9.2 .

 Figure 9.2 Sample app message table view.

189Posting a Message

 Tip

 When a null value is in the JSON source data, it will be parsed into an [NSNull null] . This
can be a problem if nil is expected in a check or comparison, because [NSNull null] will
return YES whereas nil will return NO . It is wise to specifically handle [NSNull null] when
converting to a model object or presenting parsed JSON.

 Posting a Message

 The sample app includes ICFNewMessageViewController to post new messages to the server.
There are two fields on that controller: one for a name and one for a message (see Figure 9.3).
After the user enters that information and hits Save, it will be encoded in JSON and sent to the
server.

 Figure 9.3 Sample app new message view.

 Encoding JSON

 An important detail for sending JSON to a Ruby on Rails server is to encode the data so that
it mirrors what the Rails server provides. When a new message is sent to the server, it should
have the same structure as an individual message received in the message list. To do this, a
dictionary with the attribute names and values for the message is needed, and then a wrapper

190 Chapter 9 Working with and Parsing JSON

dictionary with the key “message” pointing to the attribute dictionary. This will exactly mirror
what the server sends for a message. In the saveButtonTouched: method, set up this diction-
ary, like so:

 NSMutableDictionary *messageDictionary =
 ➥ [NSMutableDictionary dictionaryWithCapacity : 1];

 [messageDictionary setObject :[nameTextField text]
 forKey : @"name"];

 [messageDictionary setObject :[messageTextView text]
 forKey : @"message"];

 NSDate *today = [NSDate date];

 NSDateFormatter *dateFormatter =
 ➥ [[NSDateFormatter alloc] init];

 NSString *dateFmt = @"yyyy'-'MM'-'dd'T'HH':'mm':'ss'Z'" ;
 [dateFormatter setDateFormat :dateFmt];
 [messageDictionary setObject :[dateFormatter stringFromDate :today]
 forKey : @"message_date"];

 NSDictionary *postDictionary = @{ @"message" : messageDictionary } ;

 Note that NSJSONSerialization accepts only instances of NSDictionary , NSArray ,
 NSString , NSNumber , or NSNull . For dates or other data types not directly supported by
 NSJSONSerialization , they will need to be converted to a supported format. For example, in
this example the date was converted to a string in a format expected by the server. Now that
there is a dictionary, it is a simple step to encode it in JSON:

 NSError *jsonSerializationError = nil ;
 NSData *jsonData = [NSJSONSerialization
 ➥ dataWithJSONObject :postDictionary
 ➥ options : NSJSONWritingPrettyPrinted
 ➥ error :&jsonSerializationError];

 if (!jsonSerializationError)
 {
 NSString *serJSON =
 [[NSString alloc] initWithData :jsonData
 encoding : NSUTF8StringEncoding];

 NSLog (@"serialized json: %@" , serJSON);
 ...
 } else
 {

191Posting a Message

 NSLog (@"JSON Encoding failed: %@" ,
 ➥ [jsonSerializationError localizedDescription]);
 }

 NSJSONSerialization expects three parameters:

 1. An NSDictionary or NSArray with the data to be encoded.

 2. Serialization options (in our case, we specified NSJSONWritingPrettyPrinted so that
it’s easy to read; otherwise, the JSON is produced with no whitespace for compactness).

 3. A reference to an NSError .

 If there are no errors encoding the JSON, it will look like this:

 serialized json: {
 "message" : {
 "message" : "Six Test Messages",
 "name" : "Joe",
 "message_date" : "2012-04-01T14:31:11Z"
 }
 }

 Sending JSON to the Server

 After the JSON is encoded, it is ready to be sent to the server. First, an instance of
 NSMutableURLRequest is needed. The request will be created with the URL for the server, and
then will be customized with the HTTP method ("POST") and HTTP headers to indicate that
the uploaded content data is in JSON format.

 NSURL *messageBoardURL =
 ➥ [NSURL URLWithString : kMessageBoardURLString];

 NSMutableURLRequest *request = [NSMutableURLRequest
 requestWithURL :messageBoardURL
 cachePolicy : NSURLRequestUseProtocolCachePolicy
 timeoutInterval : 30.0];

 [request setHTTPMethod : @"POST"];

 [request setValue : @"application/json"
 forHTTPHeaderField : @"Accept"];

 [request setValue : @"application/json"
 forHTTPHeaderField : @"Content-Type"];

 When the request is completed, an NSURLSessionUploadTask can be created. The task requires
the request, the JSON data, and a completion handler. The completion handler will be called
on a background thread, so any user interface updates must be dispatched to the main queue.

192 Chapter 9 Working with and Parsing JSON

 NSURLSession *session = [NSURLSession sharedSession];

 NSURLSessionUploadTask *uploadTask =
 [session uploadTaskWithRequest:uploadRequest fromData:jsonData
 ➥ completionHandler:^(NSData *data, NSURLResponse *response, NSError *error) {

 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;
 BOOL displayError = (error || httpResponse. statusCode != 200);

 dispatch_async (dispatch_get_main_queue (), ^{
 [self . activityView setHidden : YES];
 [self . activityIndicator stopAnimating];
 if (displayError) {
 NSString *errorMessage = error. localizedDescription ;
 if (!errorMessage) {
 errorMessage =
 ➥ [NSString stringWithFormat : @"Error uploading - http status: %i" ,
 ➥ httpResponse. statusCode];
 }

 UIAlertController *postErrorAlertController =
 ➥ [UIAlertController alertControllerWithTitle : @"Post Error"
 message :errorMessage
 preferredStyle : UIAlertControllerStyleAlert];

 [postErrorAlertController addAction :
 ➥ [UIAlertAction actionWithTitle : @"Cancel"
 style : UIAlertActionStyleCancel
 handler : nil]];

 [self presentViewController :postErrorAlertController
 animated : YES
 completion : nil];
 } else {
 [self . presentingViewController dismissViewControllerAnimated : YES
 completion : nil];
 }
 });

 }];
 [uploadTask resume];

 When resume is called on the uploadTask , the request will be made to the server, and the
completion handler will be called when it is complete. Both the error returned in the comple-
tion handler and the response should be checked for errors; an error will be returned if there
is a problem connecting (for example, the device is in airplane mode), or an HTTP status code
might indicate a different problem if there is an issue on the server (for example, if the URL is

193Summary

not found, or if the server cannot process the data sent to it). If the request completes with no
errors, the view controller will be dismissed and message board will be refreshed.

 Summary

 This chapter introduced JavaScript Object Notation (JSON). It explained how to request JSON
data from a server in an iOS app, parse it, and display it in a table. The chapter also described
how to encode an NSDictionary or NSArray into JSON, and send it over the network to a
server.

This page intentionally left blank

 A
 Accessories (HomeKit)

 Accessory Simulator tests, 179 - 180

 configuring, 171 - 175

 discovering, 162

 first time setups, 162

 achievements (games), 85 , 87 , 107

 Achievement Challenges, 94 - 97

 achievement precision, storing,
102 - 103

 authenticating, 88

 caching, 89 - 90

 completion banners, 93

 creating, 85 - 86

 customizing, 105 - 107

 earned/unearned achievements, 98 - 99

 Hidden property, 87

 hooks, 92 - 93

 iTunes Connect, adding achievements
to, 86

 localization information, 87

 multiple session achievements, 101 - 102

 partially earned achievements, 99 - 100

 piggybacked achievements, 102 - 103

 Point Value attribute, 87

 progress, displaying, 87 - 88

 reporting, 90 - 92

 resetting, 104 - 105

 timer-based achievements, 103 - 104

 Whack-a-Cac sample app, 97 - 98

 Action Extensions, 238

 action sets (HomeKit), 162 , 178 - 179

 actions (HomeKit), 178 - 179

 scheduling, 181

 triggers, 181

 Address Book, 109 , 111 - 113 , 126

 GUI. See People Picker (Address Book)

 labels, 115 - 116

 limitations of, 110

 memory management, 113 - 114

 People Picker, 118 - 120

 creating contacts, 122 - 125

 customizing, 120

 editing contacts, 120 - 121

 viewing contacts, 120 - 121

 privacy and authorization, 110

 reading

 data from Address Book, 113 - 114

 multivalues from Address Book,
 114 - 115

 sample app, 110

 street addresses, handling, 116 - 117

 support, importance of, 109

 AirPrint, 259 , 270

 error handling, 264

 PDF, printing, 269 - 270

 Print Center app, 266 - 267

 print jobs, starting, 264 - 265

 Print sample app, 260

Index

522 AirPrint

 printer compatibility, 259

 Printer Simulator tool, 259 , 265

 Printopia, 259

 rendered HTML, printing, 268 - 269

 testing, 259 , 261

 text, printing, 261 - 262

 configuring print info, 262 - 263

 duplexing, 262 - 263

 error handling, 264

 page ranges, 263 - 264

 UIPrintInteractionControllerDelegate,
 267

 animations

 collection views, 395 , 413

 change animations, 416 - 417

 layout animations, 414 - 416

 layout changes, 413 - 414

 UIKit Dynamics, 1 , 14

 attachments, 7 - 8

 classes of, 2

 collisions, 3 - 6

 dynamic behavior, 2

 gravity, 3 - 4

 introduction to, 2

 item properties, 11 - 13

 push forces, 10 - 11

 sample app, 1

 snaps, 9

 springs, 8 - 9

 UIAttachmentBehavior class, 2

 UICollisionBehavior class, 2

 UIDynamicAnimator, 2- 3 , 13

 UIDynamicAnimatorDelegate, 13

 UIDynamicItem protocol, 1 , 12

 UIDynamicItemBehavior class, 2

 UIGravityBehavior class, 2

 UIPushBehavior class, 2

 UISnapBehavior class, 2

 annotations in Map apps, 28

 adding, 28 - 31

 custom views, 31 - 33

 displaying, 31 - 33

 draggable views, 34

 standard views, 31 - 33

 API (Application Programmer Interface)

extension limitations, 239

 APN (Apple Push Notifications), 195 - 196 ,

 216

 Apple documentation, 214

 Development Push SSL Certificates, 200

 feedback, 215

 App ID and push notifications, 196 - 199

 Apple Maps, 15

 Apple Watch Extensions, 244 - 247

 asset collections (photo library), 453 - 457

 assets

 asset collections (photo library),
 459 - 461

 CloudKit, 222

 photo library, 457 - 458 , 462 - 464

 attachments (physics simulations), UIKit

Dynamics, 7 - 8

 attributes, adding to managed object

models in Core Data, 280

 authenticating

 achievements in Game Center, 88

 leaderboards in Game Center, 68 - 69

 common errors, 69 - 71

 iOS 6 and newer authentication,
 71 - 73

 automation (home). See HomeKit

523configuring

 B
 background-task processing, 333 , 339 ,

 344

 background availability, checking for,
 334 - 335

 BackgroundTasks sample app, 334

 expiration handlers, 337

 GCD and performance, 349 - 351

 identifiers, 336

 LongRunningTasks sample app,
 349 - 351

 multitasking availability, checking for,
 335

 music, playing in a background,
 340 - 342

 tasks

 completing, 337 - 339

 executing, 335 - 336

 types of background activities, 339 - 340

 boarding passes (Passbook), 469

 body temperature data, reading/writing in

HealthKit, 155 - 160

 breakpoints (debugging), 506

 customizing, 507 - 508

 exception breakpoints, 508

 scope of, 508 - 509

 symbolic breakpoints, 508

 C
 caching achievements (games), 89 - 90

 Carmageddon , 3

 CloudKit, 217 - 218 , 220 , 222 , 235

 account setup, 217 - 219

 assets, 222

 CloudTracker sample app, 218 , 228

 containers, 220

 dashboard and data management,
 233 - 235

 databases, 221

 iCloud capabilities, enabling, 220

 push notifications, 227

 record identifiers, 222

 record zones, 222

 records, 221 - 222

 creating, 224 - 226

 fetching, 223

 saving, 224 - 226

 updating, 226

 subscriptions to data changes, 227 - 228

 user discovery/management, 229 - 233

 CloudTracker sample app, 218 , 228

 coders/keyed archives and persistent data,

 272

 collection views, 395- 396 , 417

 animations, 395 , 413

 change animations, 416 - 417

 layout animations, 414 - 416

 layout changes, 413 - 414

 custom layouts, creating, 408 - 413

 data source methods, 398 - 401

 delegate methods, 401 - 402

 flow layouts, 395 - 396 , 403 - 408

 organizing, 395

 PhotoGallery sample app, 395 - 396

 setup, 397 - 398

 collisions (physics simulations) and UIKit

Dynamics, 3 - 6

 Combined Leaderboards, 64

 completion banners (achievements), 93

 concurrent operations, running, 351 - 352

 configuring

 Handoff, 251 - 252

 HomeKit, 162 - 179

 leaderboards, 64

524 contacts (Address Book)

 contacts (Address Book)

 creating, 122 - 125

 customizing, 120

 editing, 120 - 121

 viewing, 120 - 121

 containers (CloudKit), 220

 content specific highlighting and TextKit,

 427 - 431

 Continuity and Handoff, 249 , 257

 advertisements, 249 - 251

 configuring, 251 - 252

 continuation, 250 - 251

 document-based apps, implementing
in, 255 - 257

 HandOffNotes sample app, 249

 implementing, 251 - 257

 introduction to, 249 - 251

 testing, 251

 user activity

 continuing, 253 - 255

 creating, 252 - 253

 continuous gesture recognizers, 435

 Cook, Tim, 244

 coordinate systems in Map apps, 25

 Core Data, 271 - 273 , 303

 default data setup, 282

 data model version migrations, 284

 inserting new managed objects,
 282 - 284

 loading data from Web services/
API, 284

 environment of, 275 - 278

 EOF and, 271

 features of, 271

 fetched results controller, 292 , 298 - 299

 deleting rows, 298

 inserting new sections, 297

 inserting rows, 298

 integrating table view with,
 294 - 296

 moving rows, 298

 preparations for, 292 - 294

 removing rows, 298

 removing sections, 297 - 298

 responding to content changes,
 296 - 299

 updating rows, 298

 managed object models, building,
 278 - 279

 adding attributes to, 280

 creating entities, 280

 customized subclasses, 282

 establishing relationships, 281

 managed objects, 299

 adding, 299 - 300

 creating fetch requests, 285 - 287

 displaying, 285 - 291

 displaying object data, 288 - 290

 editing, 301

 fetching by object ID, 287

 predicates, 290 - 291

 removing, 300 - 301

 rolling back changes, 301 - 303

 saving changes, 301 - 303

 MyMovies sample app, 273

 displaying object data, 288 - 290

 friend chooser, 285 - 287

 movie display view, 287

 movie list view controller, 292 - 299

 predicates, 290 - 291

 Shared Movies tab, 291

 projects, starting, 274 - 278

 SQLite, 271

 table view, integrating with fetched
results controller, 294 - 296

525Development Push SSL Certificates

 customizing

 achievements (games), 105 - 107

 breakpoints (debugging), 507 - 508

 flow layouts (collection views), 403

 basic customizations, 403 - 404

 decoration views, 405 - 408

 leaderboards, 81 - 82

 People Picker (Address Book), 120

 D
 dashboard (CloudKit) and data manager,

 233 - 235

 data security. See security

 databases

 CloudKit, 221

 object databases. See Core Data

 debugging, 503 , 519 - 520

 breakpoints, 506

 customizing, 507 - 508

 exception breakpoints, 508

 scope of, 508 - 509

 symbolic breakpoints, 508

 first computer bug, 504

 Instruments, 510 - 511 , 519

 interface of, 511 - 514

 Leaks instrument, 516 - 518

 Time Profiler instrument, 514 - 516

 introduction to, 503 - 504

 Xcode, 504 - 505 , 509 - 519

 decoration views (collection views),

 405 - 408

 developers (game) and physics

simulations, 3

 development provisioning profiles and push

notification tests, 203 - 207

 Development Push SSL Certificates,

 200 - 203

 Core Image filters, 383 , 394

 face detector, 391

 processing facial features, 392 - 394

 setup, 391 - 392

 filters

 attributes of, 386 - 388

 categories of, 383 - 386

 chaining, 390 - 391

 images

 initializing, 388 - 389

 rendering filtered images, 389 - 390

 Core Location, 15

 FavoritePlaces sample app

 purpose of, 15

 user location requests, 16 - 24

 geofencing (regional monitoring), 43

 boundary definitions, 44 - 45

 monitoring changes, 45 - 46

 regional monitoring capability
checks, 43 - 44

 importing, 16

 user location requests, 16

 location services checks, 19

 parsing location data, 22 - 23

 permissions, 16 - 19

 requirements, 16 - 19

 significant location change notifi-
cations, 23

 starting requests, 19 - 22

 testing locations, 23 - 24

 understanding data, 22 - 23

 Core Text, 419

 coupons (Passbook), 469 - 471

 CSV (Comma Separated Values) and persis-

tent data, 273

 Custom Keyboard Extensions, 238

526 dictionaries (Keystone sample app)

 dictionaries (Keystone sample app),

securing, 368 - 370

 Dijkstra, Edsger W., 503

 Direct SQLite and persistent data, 273

 directions, getting via Maps.app, 47 - 51

 discrete gesture recognizers, 435

 dispatch queues and GCD (Grand Central

Dispatch), 357 , 361

 concurrent dispatch queues, 357 - 359

 serial dispatch queues, 359 - 361

 Document Provider Extensions, 238

 duplexing (printing), 262 - 263

 Dylan, Bob, 143

 dynamic behavior and UIKit Dynamics, 2

 Dynamic Link Detection and TextKit,

 423 - 424

 Dynamic Type and TextKit, 432

 E
 earned/unearned achievements (games),

 98 - 99

 embedded frameworks (extensions),

creating, 243 - 244

 entities, creating for managed object

models in Core Data, 280

 EOF (Enterprise Object Framework) and

Core Data, 271

 error codes (Keychain sample app), 372

 error handling when printing, 264

 events (Passbooks), 469 , 471

 exception breakpoints (debugging), 508

 exclusion paths and TextKit, 425 - 426

 expiration handlers and background-task

processing, 337

 extensions, 237 , 247

 Action Extensions, 238

 API limitations, 239

 Apple Watch Extensions, 244 - 247

 creating, 240 - 241

 Custom Keyboard Extensions, 238

 Document Provider Extensions, 238

 embedded frameworks, creating,
 243 - 244

 functionality of, 238 - 239

 host apps, sharing information with,
 243 - 244

 Photo Editing Extensions, 238

 Share Extensions, 238

 Today Extensions, 237 , 240 , 242

 WatchKit, 244 - 247

 F
 face detector (Core Image filters), 391

 processing facial features, 392 - 394

 setup, 391 - 392

 Facebook and Social Framework, 305 , 331

 Facebook app, creating, 315 - 316

 logins, 306 - 308

 permissions

 basic Facebook permissions,
 317 - 318

 publishing to stream permissions,
 319 - 320

 posting to

 Facebook, 311 , 315

 streams, 320 - 321

 SLComposeViewController, 308 - 310

 SocialNetworking sample app, 305 - 306

 user timelines, accessing, 322 , 327 - 331

 FavoritePlaces sample app

 annotations, 28

 adding, 28 - 31

 custom views, 31 - 33

 displaying, 31 - 33

 draggable views, 34

 standard views, 31 - 33

527 Game Center

 font settings (text), changing in TextKit,

 432

 foreground app, 333

 formatting scores in Whack-a-Cac sample

app, 65 - 66

 frameworks (embedded), creating for

extensions and host apps, 243 - 244

 G
 Game Center

 achievements, 85 , 87 , 107

 Achievement Challenges, 94 - 97

 adding to iTunes Connect, 86

 authenticating, 88

 caching, 89 - 90

 completion banners, 93

 creating, 85 - 86

 customizing, 105 - 107

 displaying achievements, 87 - 88

 earned/unearned achievements,
 98 - 99

 Hidden property, 87

 hooks, 92 - 93

 localization information, 87

 multiple session achievements,
 101 - 102

 partially earned achievements,
 99 - 100

 piggybacked achievements,
 102 - 103

 Point Value attribute, 87

 reporting, 90 - 92

 resetting, 104 - 105

 storing achievement precision,
 102 - 103

 timer-based achievements, 103 - 104

 Whack-a-Cac sample app, 97 - 104

 Game Center Manager, 66 - 68 , 88

 displaying maps, 25

 coordinate systems, 25

 Mercator Projection, 25

 geocoding addresses, 36 - 40

 geofencing (regional monitoring), 43

 boundary definitions, 44 - 45

 monitoring changes, 45 - 46

 regional monitoring capability
checks, 43 - 44

 map view, 28

 MKMapKit, configuring/customizing,
 25 - 26

 overlays, 28 , 35 - 36

 purpose of, 15

 reverse-geocoding addresses, 36 , 40 - 43

 user interactions, responding to, 27 - 28

 user location requests, 16

 location services checks, 19

 parsing location data, 22 - 23

 permissions, 16 - 19

 requirements, 16 - 19

 significant location change notifi-
cations, 23

 starting requests, 19 - 22

 testing locations, 23 - 24

 understanding data, 22 - 23

 fetched results controller (Core Data), 292

 filters (Core Image filters), 383

 attributes of, 386 - 388

 categories of, 383 - 386

 chaining, 390 - 391

 rendering filtered images, 389 - 390

 fitness/health apps. See HealthKit

 flow layouts (collection views), 395- 396

 customizing, 403 - 404

 decoration views, 405 - 408

528 Game Center

 iTunes Connect

 adding achievements to, 86

 configuring Game Center behavior
in, 63 - 64

 leaderboards, 53 , 83

 Apple's limit on number of leader-
boards, 65

 authenticating, 68 - 73

 Combined Leaderboards, 64

 configuring, 64 - 65

 configuring behavior in iTunes
Connect, 63 - 64

 customizing leaderboard systems,
 81 - 82

 deleting, 64

 formatting scores, 65 - 66

 localization information, 66

 presenting, 77 - 79

 Single Leaderboards, 64

 sort-order option, 66

 scores

 Game Center Challenges, 79 - 81

 submitting, 73 - 76

 sort-order option, 66

 Whack-a-Cac sample app, 53 - 55 , 63

 achievement hooks, 92 - 93

 achievements, 97 - 104

 configuring leaderboards, 65

 displaying life, 60 - 61

 displaying score, 60

 Game Center Manager and, 66 - 68

 hooks (achievements), 92 - 93

 interacting with cacti (cactus),
 58 - 60

 pausing games, 62

 resuming games, 62

 spawning cacti (cactus), 55 - 58

 game developers and physics

simulations, 3

 GarageBand, custom sound and notifica-

tions, 208 - 209

 GCD (Grand Central Dispatch) and perfor-

mance, 345 , 361

 dispatch queues, 357 , 361

 concurrent dispatch queues,
357 - 359

 serial dispatch queues, 359 - 361

 LongRunningTasks sample app,
345 - 346

 background-task processing,
349 - 351

 running in operation queues,
 351 - 357

 running main threads, 347 - 349

 operation queues, running in, 361

 cancelling operations, 354 - 355

 concurrent operations, 351 - 352

 custom operations, 355 - 357

 serial operations, 353 - 354

 queues, 347

 generic passes (Passbooks), 469 , 471 - 472

 geocoding addresses in Map apps, 36 - 40 .

 See also reverse-geocoding in Map apps

 geofencing (regional monitoring), 43

 boundaries, defining, 44 - 45

 monitoring

 changes, 45 - 46

 regional monitoring capability
checks, 43 - 44

 gesture recognizers, 435 , 448

 basic usage, 436

 continuous gesture recognizers, 435

 custom UIGestureRecognizer subclasses,
 448

 discrete gesture recognizers, 435

529HomeKit

 Health.app

 Dashboard, 146

 introduction to, 146

 reading characteristic data, 152

 HealthKit, 145 , 160

 framework guide website, 145

 ICFFever sample app, 147

 adding HealthKit to, 148 - 149

 permission requests, 150

 reading/writing data, 152 - 154

 introduction to, 145 - 146

 new projects, adding to, 148 - 149

 permission requests, 149 - 151

 privacy, 145 - 146

 reading/writing data

 basic data, 152 - 154

 body temperature data, 155 - 160

 characteristic data, 152

 complex data, 155 - 160

 WWDC 2014, 145

 Hidden property (achievements), 87

 highlighting (content specific) and TextKit,

 427 - 431

 hit detection and TextKit, 424 - 425

 HomeKit, 161 , 181

 Accessories

 Accessory Simulator tests, 179 - 180

 configuring, 170 - 175

 discovering, 162

 first time setups, 162

 action sets, 162 , 178 - 179

 actions, 178 - 179

 scheduling, 181

 triggers, 181

 capability setup, 163 - 164

 configuring, 162 - 179

 data access, 162

 event sequence of a recognizer,
 443 - 444

 failures, requiring, 446 - 447

 Gesture Playground sample app, 437

 pinch gesture recognizers, 440 - 441

 tap gesture recognizers, 438 - 440

 multiple recognizers, using per view,
 441 - 445

 pinch gesture recognizers, 440 - 441

 tap gesture recognizers, 436 , 438 - 440

 types of, 435

 GPS (Global Positioning System) in Map

apps, 22

 GPX (GPS Exchange Format) files, testing

locations in Map apps, 23 - 24

 graphics. See image handling; photo library

 gravity (physics simulations), 3 - 4

 H
 Handoff, 249 , 257

 advertisements, 249 - 251

 configuring, 251 - 252

 continuation, 250 - 251

 document-based apps, implementing
in, 255 - 257

 HandOffNotes sample app, 249

 implementing

 configurations, 251 - 252

 continuing user activity, 253 - 255

 creating user activity, 252 - 253

 document-based apps, 255 - 257

 introduction to, 249 - 251

 testing, 251

 user activity

 continuing, 253 - 255

 creating, 252 - 253

 Harvard University, 504

530 HomeKit

 developer account setup, 163

 enabling, 162

 Home Manager, 164 - 168

 HomeNav sample app, 161

 Accessory configuration, 171 - 175

 adding homes to, 166 - 168

 iCloud setup, 165 - 166

 introduction to, 162

 Rooms, 162 , 168 - 169

 Service Groups, 176 - 178

 Services, 176 - 178

 triggers, 181

 Zones, 169 - 170

 hooks (achievements), 92 - 93

 Hopper, Grace Murray, 504

 horizontal accuracy in Map apps, 22

 HTML (rendered), printing, 268 - 269

 I
 ICFFever sample app, 147

 adding HealthKit to, 148 - 149

 permission requests, 150

 reading/writing data

 basic data, 152 - 154

 body temperature data, 155 - 160

 complex data, 155 - 160

 iCloud

 CloudKit, 217 - 218 , 220 , 222 , 235

 account setup, 217 - 219

 assets, 222

 containers, 220

 creating records, 224 - 226

 dashboard and data management,
 233 - 235

 databases, 221

 enabling iCloud capabilities, 220

 fetching records, 223

 push notifications, 227

 record identifiers, 222

 record zones, 222

 records, 221 - 222

 saving records, 224 - 226

 subscriptions to data changes,
 227 - 228

 updating records, 226

 user discovery/management,
 229 - 233

 CloudTracker sample app, 218 , 228

 components of, 217

 HandOffNotes sample app, 249

 HomeKit setup, 165 - 166

 Key-Value Storage, 272

 Photo Stream, 464

 image handling, 375 - 376 , 394

 Core Image filters, 383 , 394

 chaining filters, 390 - 391

 face detector, 391 - 394

 filter attributes, 386 - 388

 filter categories, 383 - 386

 initializing images, 388 - 389

 rendering filtered images, 389 - 390

 Image Picker, 379 - 382

 ImagePlayground sample app, 375

 images

 displaying, 377 - 379

 initializing (Core Image Filters),
 388 - 389

 instantiating, 376 - 377

 rendering filtered images (Core
Image Filters), 389 - 390

 resizing, 382 - 383

 photo library, 449

 PhotoLibrary sample app, 449 - 450

 Photos framework, 449 - 450

531leaderboards

 K
 keyboards and Custom Keyboard

Extensions, 238

 Keychain sample app, 363 - 364 , 374

 apps, sharing between, 370 - 371

 attribute keys, 367

 dictionaries, securing, 368 - 370

 error codes, 372

 items, resetting, 370

 PIN, storing/retrieving, 366 - 367

 setup, 365 - 366

 updating, 363

 keyed archives/coders and persistent data,

 272

 L
 labels (Address Book), 115 - 116

 latitude and longitude in Map apps, 22

 geocoding addresses, 36 - 40

 reverse-geocoding addresses, 36 , 40 - 43

 leaderboards, 53 , 83

 Apple's limit on number of leader-
boards, 65

 authenticating, 68 - 73

 Combined Leaderboards, 64

 configuring, 64

 deleting, 64

 Game Center

 authenticating leaderboards, 68 - 73

 configuring behavior in iTunes
Connect, 63 - 64

 presenting leaderboards in, 77 - 79

 score challenges, 79 - 81

 submitting scores to, 73 - 76

 leaderboard systems, customizing,
 81 - 82

 localization information, 66

 Instruments (Xcode), 510 - 511 , 519

 interface of, 511 - 514

 Leaks instrument, 516 - 518

 Time Profiler instrument, 514 - 516

 iOS

 background-task processing, 333

 Continuity, 249

 foreground app, 333

 Handoff, 249

 Message Board sample app, 184 - 189

 provisioning profiles and push notifica-
tion tests, 203 - 207

 iPhones and music libraries, 127

 item properties (physics simulations) and

UIKit Dynamics, 11 - 13

 iTunes Connect

 achievements, adding to, 86

 Game Center, configuring behavior in,
 63 - 64

 new apps, submitting to, 63

 J
 Jobs, Steve, 127

 JSON (JavaScript Object Notation), 183 ,

 193

 benefits of, 183 - 184

 Message Board sample app, 184

 messages, posting, 189 - 191

 parsing, 186 - 187

 persistent data and, 273

 servers, getting JSON from, 185

 building requests, 185 - 186

 displaying data, 187 - 189

 inspecting responses, 186

 parsing JSON, 186 - 187

 servers, sending JSON to, 191 - 193

 website, 184

532 leaderboards

 scores

 formatting, 65 - 66

 score challenges, 79 - 81

 submitting to Game Center, 73 - 76

 Single Leaderboards, 64 - 65

 sorting, 66

 Leaks instrument, 516 - 518

 life, displaying in Whack-a-Cac sample app,

 60 - 61

 links, Dynamic Link Detection and TextKit,

 423 - 424

 local notifications, 195- 196 , 216

 custom sound setup, 208 - 209

 scheduling, 211 - 212

 testing, 212

 localization information

 achievements, 87

 leaderboards, 66

 locations (maps), 15

 annotations, 28

 adding, 28 - 31

 custom views, 31 - 33

 displaying, 31 - 33

 draggable views, 34

 standard views, 31 - 33

 Apple Maps, 15

 Core Location, 15

 importing, 16

 user location requests, 16 - 24

 geocoding addresses, 36 - 40

 geofencing (regional monitoring), 43

 boundary definitions, 44 - 45

 monitoring changes, 45 - 46

 regional monitoring capability
checks, 43 - 44

 GPS, 22

 horizontal accuracy, 22

 latitude and longitude, 22

 map view, 28

 MapKit, 15

 displaying maps, 25 - 28

 importing, 16

 Maps.app, getting directions, 47 - 51

 overlays, 28 , 35 - 36

 reverse-geocoding addresses, 36 , 40 - 43

 testing, 23 - 24

 logging into Social Framework, 306 - 308

 longitude and latitude in Map apps, 22

 geocoding addresses, 36 - 40

 reverse-geocoding addresses, 36 , 40 - 43

 LongRunningTasks sample app, 345 - 346

 background-task processing, 349 - 351

 custom operations, 355 - 357

 main thread, running, 347 - 349

 operation queues, running in, 351

 cancelling operations, 354 - 355

 concurrent operations, 351 - 352

 serial operations, 353 - 354

 M
 manifests (passes), 488

 MapKit, 15

 annotations, 28

 adding, 28 - 31

 custom views, 31 - 33

 displaying, 31 - 33

 draggable views, 34

 standard views, 31 - 33

 displaying maps, 25

 coordinate systems, 25

 Mercator Projection, 25

 geocoding addresses, 36 - 40

 importing, 16

 map view, 28

533MyMovies sample app

 Mercator Projection in Map apps, 25

 Message Board sample app, 184

 MobileMe, 217

 multiple session achievements (games),

 101 - 102

 multitasking and background-task

processing, 335

 music, playing in a background, 340 - 342

 music libraries, 127 , 144

 Media Picker, 138 - 141

 playback engines, 129

 handling state changes, 132 - 137

 playback duration, 137 - 138

 registering notifications, 129 - 130

 repeat feature, 138

 shuffle feature, 138

 timers, 137 - 138

 user controls, 131 - 132

 Player sample app, 127 - 128

 handling state changes, 132 - 137

 playback duration, 137 - 138

 repeat feature, 138

 shuffle feature, 138

 timers, 137 - 138

 user controls, 131 - 132

 Programmatic Picker, 141

 playing random songs, 141 - 142

 predicate song matching, 142 - 143

 MyMovies sample app, 273

 displaying object data, 288 - 290

 friend chooser, 285 - 287

 movie display view, 287

 movie list view controller, 292 - 299

 predicates, 290 - 291

 Shared Movies tab, 291

 MKMapKit, configuring/customizing,
 25 - 26

 overlays, 28 , 35 - 36

 reverse-geocoding addresses, 36 , 40 - 43

 user interactions, responding to, 27 - 28

 maps, 15

 annotations, 28

 adding, 28 - 31

 custom views, 31 - 33

 displaying, 31 - 33

 draggable views, 34

 standard views, 31 - 33

 Apple Maps, 15

 Core Location, 15

 importing, 16

 user location requests, 16 - 24

 geocoding addresses, 36 - 40

 geofencing (regional monitoring), 43

 boundary definitions, 44 - 45

 monitoring changes, 45 - 46

 regional monitoring capability
checks, 43 - 44

 GPS, 22

 horizontal accuracy, 22

 latitude and longitude, 22

 map view, 28

 MapKit

 displaying maps, 25 - 28

 importing, 16

 Maps.app, getting directions, 47 - 51

 overlays, 28 , 35 - 36

 reverse-geocoding addresses, 36 , 40 - 43

 testing locations, 23 - 24

 Mark II Aiken Relay Calculator, 504

 Media Picker feature (music libraries),

 138 - 141

 memory management and NARC (New,

Allow, Retain, Copy), 113 - 114

534 NARC (New, Allow, Retain, Copy) and memory management

 N
 NARC (New, Allow, Retain, Copy) and mem-

ory management, 113 - 114

 NeXT EOF (Enterprise Object Framework)

and Core Data, 271

 notifications, 195

 APN, 195- 196 , 216

 Apple documentation, 214

 feedback, 215

 CloudTracker sample app, 228

 custom sound setup, 208 - 209

 local notifications, 195 - 196 , 216

 custom sound setup, 208 - 209

 scheduling, 211 - 212

 testing, 212

 push notifications, 195- 196 , 216

 APN, 195- 196 , 200 , 214

 App ID, 196 - 199

 app setup, 196 - 199

 CloudKit, 227

 custom sound setup, 208 - 209

 development provisioning profiles,
 203 - 207

 Development Push SSL Certificates,
 200 - 203

 iOS provisioning profiles, 203 - 207

 sending, 214 - 215

 servers, 213 - 214

 testing, 203 - 207 , 212

 receiving, 212 - 213

 registering for, 209 - 211

 ShoutOut sample app, 196

 receiving push notifications, 215

 registering for notifications,
 209 - 211

 NSDictionaries, 367

 NSLayoutManager (TextKit), 420 - 421

 NSLayoutManagerDelegate, 423

 NSTextContainer, 423

 NSTextStore, 421

 NSUserDefaults and persistent data, 272

 O
 object databases. See Core Data

 operation queues and GCD (Grand Central

Dispatch), 351 , 361

 cancelling operations, 354 - 355

 concurrent operations, running,
 351 - 352

 custom operations, 355 - 357

 serial operations, 353 - 354

 OS X Yosemite

 Continuity, 249

 Handoff, 249 - 250

 overlays in Map apps, 28 , 35 - 36

 P
 page ranges, setting for printing, 263 - 264

 parsing JSON, 186 - 187

 partially earned achievements (games),

 99 - 100

 Passbook, 467 , 502

 Pass Test sample app, 468

 passes

 adding, 494 - 497

 app interactions, 491 - 494

 barcode information, 477

 boarding passes, 469

 building, 474 - 481

 coupons, 469 - 471

 customizing appearance of,
 468 - 478

 designing, 468 - 474

535 persistent data

 LongRunningTasks sample app,
 345 - 346

 running in operation queues,
 351 - 357

 running main threads, 347 - 349

 operation queues, running in, 361

 cancelling operations, 354 - 355

 concurrent operations, 351 - 352

 custom operations, 355 - 357

 serial operations, 353 - 354

 queues, 347

 permissions

 HealthKit permission requests, 150

 photo library, 451 - 453

 persistent data

 coders/keyed archives, 272

 Core Data, 271- 273 , 299 , 303

 adding managed objects, 299 - 300

 building managed object models,
 278 - 282

 default data setup, 282 - 284

 displaying managed objects,
 285 - 291

 editing managed objects, 301

 environment of, 275 - 278

 EOF and, 271

 features of, 271

 fetched results controller, 292 - 299

 MyMovies sample app, 273

 removing managed objects,
 300 - 301

 rolling back changes to managed
objects, 301 - 303

 saving changes to managed
objects, 301 - 303

 SQLite, 271

 starting projects, 274 - 278

 events, 469 , 471

 fields, 478 - 481

 generic passes, 469 , 471 - 472

 identification, 476

 manifests, 488

 packaging, 489

 Pass Type ID, 481 - 483

 presenting, 473 - 474

 removing, 500 - 501

 relevance, 476 - 477

 showing, 499

 signing, 489

 signing certificates, 483 - 488

 simulating updates, 497 - 499

 store cards, 469 , 472 - 473

 testing, 489 - 490

 types of, 469

 updating, 497 - 499 , 501

 PassKit, 467 , 502

 password security. See security

 pausing games, Whack-a-Cac sample app,

 62

 PDF (Portable Document Format), printing,

 269 - 270

 People Picker (Address Book), 118 - 120

 contacts

 creating, 122 - 125

 editing, 120 - 121

 viewing, 120 - 121

 customizing, 120

 performance and GCD (Grand Central

Dispatch), 345 , 361

 dispatch queues, 357 , 361

 concurrent dispatch queues,
 357 - 359

 serial dispatch queues, 359 - 361

536 persistent data

 CSV, 273

 Direct SQLite, 273

 iCloud Key-Value Storage, 272

 JSON, 273

 MyMovies sample app, 273

 displaying object data, 288 - 290

 friend chooser, 285 - 287

 movie display view, 287

 movie list view controller, 292 - 299

 predicates, 290 - 291

 Shared Movies tab, 291

 NSUserDefaults, 272

 plist (Property List), 272

 structured text files, 273

 Photo Editing Extensions, 238

 photo library, 449 , 451 , 459 , 465

 asset collections, 453 - 457 , 459 - 461

 assets, 457 - 458 , 462 - 464

 permissions, 451 - 453

 Photo Stream, 464

 PhotoLibrary sample app, 449 - 450

 Photos framework, 449- 450

 PHAsset, 450

 PHAssetCollection, 450

 PHFetchResult, 450

 PHImageManager, 450

 PHPhotoLibrary, 450

 PhotoGallery sample app, 395 - 396

 physics simulators and UIKit Dynamics, 1 ,

 3 , 14

 attachments, 7 - 8

 classes of, 2

 collisions, 3 - 6

 dynamic behavior, 2

 gravity, 3 - 4

 introduction to, 2

 item properties, 11 - 13

 push forces, 10 - 11

 sample app, 1

 snaps, 9

 springs, 8 - 9

 UIAttachmentBehavior class, 2

 UICollisionBehavior class, 2

 UIDynamicAnimator, 2- 3 , 13

 UIDynamicAnimatorDelegate, 13

 UIDynamicItem protocol, 1 , 12

 UIDynamicItemBehavior class, 2

 UIGravityBehavior class, 2

 UIPushBehavior class, 2

 UISnapBehavior class, 2

 pictures. See image handling; photo library

 piggybacked achievements (games),

 102 - 103

 pinch gesture recognizers, 440 - 441

 playback engines

 playback duration, 137 - 138

 repeat feature, 138

 shuffle feature, 138

 state changes, handling, 132 - 137

 timers, 137 - 138

 user controls, 131 - 132

 playback engines (music libraries), 129 - 130

 Player sample app (music libraries),

 127 - 128

 playback duration, 137 - 138

 repeat feature, 138

 shuffle feature, 138

 state changes, handling, 132 - 137

 timers, 137 - 138

 user controls, 131 - 132

 plist (Property List) and persistent data,

 272

 Point Value attribute (achievements), 87

 predicates, displaying managed objects in

Core Data, 290 - 291

537record zones (CloudKit)

 storing/retrieving PIN, 366 - 367

 updating, 363

 Touch ID, 374

 error codes, 373

 implementing, 372 - 373

 push forces (physics simulations) and UIKit

Dynamics, 10 - 11

 push notifications, 195 - 196 , 216

 APN, 195 - 196

 Apple documentation, 214

 Development Push SSL Certificates,
 200

 App ID, 196 - 199

 app setup, 196 - 199

 CloudKit, 227

 custom sound setup, 208 - 209

 development provisioning profiles,
 203 - 207

 Development Push SSL Certificates,
 200 - 203

 iOS provisioning profiles, 203 - 207

 sending, 214 - 215

 servers, 213 - 214

 testing, 203 - 207 , 212

 Q
 queues and GCD (Grand Central Dispatch),

 347

 dispatch queues, 357 , 361

 concurrent dispatch queues,
 357 - 359

 serial dispatch queues, 359 - 361

 operation queues, running in, 351 , 361

 R
 receiving notifications, 212 - 213

 record identifiers (CloudKit), 222

 record zones (CloudKit), 222

 printing

 AirPrint, 259 , 270

 error handling, 264

 page ranges, 263 - 264

 Print Center app, 266 - 267

 printer compatibility, 259

 Printer Simulator tool, 259 , 265

 printing PDF, 269 - 270

 printing rendered HTML, 268 - 269

 printing text, 261 - 265

 starting jobs, 264 - 265

 testing, 259 , 261

 UIPrintInteractionController-
Delegate, 267

 duplexing, 262 - 263

 Print Center app, 266 - 267

 Print sample app, 260

 Printopia, 259

 privacy

 Address Book, 110

 HealthKit, 145 - 146

 Programmatic Picker feature (music

libraries), 141 , 144

 predicate song matching, 142 - 143

 random songs, playing, 141 - 142

 properties of items (physics simulations)

and UIKit Dynamics, 11 - 13

 Property List (plist) and persistent data,

 272

 protecting data

 Keychain sample app, 363 - 364 , 374

 attribute keys, 367

 error codes, 372

 resetting items, 370

 securing dictionaries, 368 - 370

 setup, 365 - 366

 sharing between apps, 370 - 371

538 records (CloudKit)

 records (CloudKit), 221 - 222

 creating, 224 - 226

 fetching, 223

 saving, 224 - 226

 updating, 226

 regional monitoring. See geofencing

 relationships, establishing in managed

object models in Core Data, 281

 remote notifications. See push notifications

 rendered HTML, printing, 268 - 269

 repeat feature (playback engines), 138

 reporting achievements (games), 90 - 92

 resetting achievements (games), 104 - 105

 resizing images, 382 - 383

 resuming (pausing) games, Whack-a-Cac

sample app, 62

 reverse-geocoding addresses in Map apps,

 36 , 40 - 43 . See also geocoding addresses

in Map apps

 Rooms (HomeKit), 162 , 168 - 169

 Ruby on Rails and Message Board sample

app, 184

 JSON, encoding, 189 - 191

 server access, 184

 S
 saving records (CloudKit), 224 - 226

 scheduling

 actions (HomeKit), 181

 local notifications, 211 - 212

 scores

 Game Center

 customizing leaderboard systems,
 81 - 82

 score challenges, 79 - 81

 submitting to, 73 - 76

 Whack-a-Cac sample app

 adding scores to, 76 - 77

 displaying, 60

 formatting, 65 - 66

 security

 Keychain sample app, 363 - 364 , 374

 attribute keys, 367

 error codes, 372

 resetting items, 370

 securing dictionaries, 368 - 370

 setup, 365 - 366

 sharing between apps, 370 - 371

 storing/retrieving PIN, 366 - 367

 updating, 363

 Touch ID, 374

 error codes, 373

 implementing, 372 - 373

 serial operations, running, 353 - 354

 Service Groups (HomeKit), 176 - 178

 Services (HomeKit), 176 - 178

 Share Extensions, 238

 Shared Movies tab (MyMovies sample app),

 291

 sharing information betwen host apps and

extensions, 243 - 244

 ShoutOut sample app, 196

 notifications, registering for, 209 - 211

 push notifications, receiving, 215

 shuffle feature (playback engines), 138

 Sina Weibo and Social Framework, 305

 Single Leaderboards, 64 - 65

 sizing images, 382 - 383

 SLComposeViewController, 308 - 310

 snaps (physics simulations) and UIKit

Dynamics, 9

539 text

 submitting

 new apps to iTunes Connect, 63

 scores to Game Center, 73 - 76

 subscribing to data changes in CloudKit,

 227 - 228

 symbolic breakpoints (debugging), 508

 T
 tap gesture recognizers, 436 , 438 - 440

 temperature (body), reading/writing data in

HealthKit, 155 - 160

 testing

 Accessory Simulator tests (HomeKit),
 179 - 180

 AirPrint, 259 , 261

 Handoff, 251

 local notifications, 212

 passes (Passbook), 489 - 490

 push notifications, 203 - 207

 text

 AirPrint, printing text via, 261 - 262

 configuring print info, 262 - 263

 duplexing, 262 - 263

 error handling, 264

 page ranges, 263 - 264

 Printer Simulator tool, 265

 starting print jobs, 264 - 265

 Core Text, 419

 TextKit, 419 , 433

 changing font settings (text), 432

 content specific highlighting,
 427 - 431

 Dynamic Link Detection, 423 - 424

 Dynamic Type, 432

 exclusion paths, 425 - 426

 hit detection, 424 - 425

 NSLayoutManager, 420 - 423

 sample app, 420

 Social Framework, 305 , 331

 logins, 306 - 308

 posting to

 Facebook, 311 , 315 - 321

 Twitter, 311

 SLComposeViewController, 308 - 310

 SocialNetworking sample app, 305 - 306

 user timelines, accessing

 Facebook timelines, 322 , 327 - 331

 Twitter timelines, 322 - 327

 songs in Programmatic Picker (music

libraries)

 predicate song matching, 142 - 143

 random songs, playing, 141 - 142

 sort-order option (Game Center), 66

 sound (custom) and notifications, 208 - 209

 springs (physics simulations) and UIKit

Dynamics, 8 - 9

 SpriteKit, 2

 SQLite

 Core Data and, 271

 Direct SQLite and persistent data, 273

 SSL (Secure Socket Layer) and

Development Push SSL Certificates,

 200 - 203

 store cards (Passbooks), 469 , 472 - 473

 storing

 achievement precision (games),
 102 - 103

 iCloud Key-Value Storage and persis-
tent data, 272

 PIN in Keychain sample app, 366 - 367

 street addresses, handling in Address

Book, 116 - 117

 structured text files and persistent data,

 273

 subclasses, customized in managed object

models in Core Data, 282

540 Time Profiler instrument

 Time Profiler instrument, 514 - 516

 timers

 playback engines, 137 - 138

 timer-based achievements (games),
 103 - 104

 Today Extensions, 237 , 240 , 242

 Touch ID, 374

 error codes, 373

 implementing, 372 - 373

 triggers (HomeKit), 181

 Twitter and Social Framework, 305 , 331

 logins, 306 - 308

 posting to Twitter, 311 - 315

 SLComposeViewController, 308 - 310

 SocialNetworking sample app, 305 - 306

 user timelines, accessing, 322 - 327

 U
 UIAttachmentBehavior class, 2

 UICollisionBehavior class, 2

 UIDynamicAnimator, 2 , 13

 creating, 3

 multiple instances of, 3

 UIDynamicAnimatorDelegate, 13

 UIDynamicItem protocol, 1 , 12

 UIDynamicItemBehavior class, 2

 UIGravityBehavior class, 2

 UIKit Dynamics, 1 , 14

 attachments, 7 - 8

 classes of, 2

 collisions, 3 - 6

 dynamic behavior, 2

 gravity, 3 - 4

 introduction to, 2

 item properties, 11 - 13

 push forces, 10 - 11

 sample app, 1

 snaps, 9

 springs, 8 - 9

 UIAttachmentBehavior class, 2

 UICollisionBehavior class, 2

 UIDynamicAnimator, 2 , 13

 creating, 3

 multiple instances of, 3

 UIDynamicAnimatorDelegate, 13

 UIDynamicItem protocol, 1 , 12

 UIDynamicItemBehavior class, 2

 UIGravityBehavior class, 2

 UIPushBehavior class, 2

 UISnapBehavior class, 2

 UIPrintInteractionControllerDelegate, 267

 UIPushBehavior class, 2

 UISnapBehavior class, 2

 unearned/earned achievements (games),

 98 - 99

 updating

 passes (Passbook), 497 - 499 , 501

 records (CloudKit), 226

 UTI (Uniform Type Indicators), Handoff and

document-based app implementations,

 256

 V - W
 WatchKit, 244 - 247

 Whack-a-Cac sample app, 53 - 55 , 63

 achievements, 97 - 98

 earned/unearned achievements,
 98 - 99

 hooks, 92 - 93

 multiple session achievements,
 101 - 102

 partially earned achievements,
 99 - 100

 piggybacked achievements, 102 - 103

541Zones (HomeKit)

 storing achievement precision,
 102 - 103

 timer-based achievements, 103 - 104

 cacti (cactus)

 interaction with, 58 - 60

 spawning, 55 - 58

 Game Center Manager and, 66 - 68

 leaderboards, configuring, 65

 life, displaying, 60 - 61

 pausing games, 62

 resuming games, 62

 score, displaying, 60

 scores, submitting, 76 - 77

 WWDC 2014 and HealthKit, 145

 X
 Xcode

 background-task processing

 executing tasks, 335 - 336

 types of background activities,
 339 - 340

 CloudKit

 account setup, 217 - 219

 enabling iCloud capabilities, 220

 Core Data

 building managed object models,
 278 - 282

 fetched results controller, 292 - 299

 starting projects, 274 - 278

 debugging, 504 - 505 , 509 - 520

 HomeKit

 capability setup, 163 - 164

 developer account setup, 163

 Instruments, 510 - 511 , 519

 interface of, 511 - 514

 Leaks instrument, 516 - 518

 Time Profiler instrument, 514 - 516

 testing locations in Map apps, 23 - 24

 Y
 Yosemite (OS X)

 Continuity, 249

 Handoff, 249 - 250

 Z
 Zones (HomeKit), 169 - 170

	Table of Contents
	9 Working with and Parsing JSON
	JSON
	Benefits of Using JSON
	JSON Resources

	The Sample App
	Accessing the Server
	Getting JSON from the Server
	Building the Request
	Inspecting the Response
	Parsing JSON
	Displaying the Data

	Posting a Message
	Encoding JSON
	Sending JSON to the Server

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V - W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

