
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134048192
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134048192
https://plusone.google.com/share?url=http://www.informit.com/title/9780134048192
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134048192
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134048192/Free-Sample-Chapter

Apache Cordova 4
Programming

Apache Cordova 4
Programming

John M. Wargo

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Wargo, John M.

Apache Cordova 4 programming / John M Wargo.
 pages cm

Includes index.
ISBN 978-0-13-404819-2 (pbk. : alk. paper)
1. Mobile computing—Computer programs. 2. Application program interfaces (Computer software)

3. Application software—Development. 4. Apache Cordova. I. Title.
QA76.59.W368 2015
004.167—dc23
 2015003045

Screen captures © 2015 Adobe Systems Incorporated. All rights reserved. Adobe, PhoneGap and
PhoneGap Build is/are either [a] registered trademark[s] or a trademark[s] of Adobe Systems Incorporated
in the Unites States and/or other countries.

Apache, Apache Cordova, and the Cordova logo are trademarks of The Apache Software Foundation. Used
with permission. No endorsement by The Apache Software Foundation is implied by the use of these marks.

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-404819-2
ISBN-10: 0-13-404819-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2015

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

This is yet another book that couldn’t exist except for
the unwavering support (and extreme patience)

of my wife, Anna. Crazy about you!

Not so much direct support, but still a lot of patience
from Elizabeth and August as well. I’m sorry I

wasn’t able to sneak pictures of you guys
into the manuscript this time.

This page intentionally left blank

Contents

 Foreword xiii

 Preface xv

 Acknowledgments xxi

 About the Author xxiii

 1 The What, How, Why, and More of Apache Cordova 1

An Introduction to Apache Cordova 1

What Is Adobe PhoneGap? 3

A Little PhoneGap/Cordova History 4

Cordova Components 4

Access to Native APIs 5

Cordova User Interface Capabilities 10

Supported Platforms 12

Cordova License 13

Working with Cordova 13

Designing for the Container 13

Coding Cordova Applications 15

Building Cordova Applications 16

Putting Cordova to Best Use 18

Getting Support 20

Resources 20

Cordova Going Forward 23

Hybrid Application Frameworks 25

Wrap-Up 25

 2 Anatomy of a Cordova Application 27

Hello World! 27

Cordova Initialization 29

Leveraging Cordova APIs 35

Structuring Your Application’s Code 38

The Generated Web Application Files 41

Responsive Design and Cordova 45

Wrap-Up 50

viii Contentsviii Contents

 3 Configuring a Cordova Development Environment 51

Installing the Cordova CLI 51

Android Development Tools 52

iOS Development Tools 63

CLI Installation 65

Installing Plugman 69

Wrap-Up 70

 4 Using the Cordova Command-Line Interfaces 71

Troubleshooting 72

Configuring Proxy Settings 72

Enabling Verbose Output 74

The Cordova CLI 75

Cordova CLI Command Summary 76

Using the Cordova CLI 76

Upgrading Cordova and Cordova Projects 103

The Plugman CLI 104

Plugman CLI Command Summary 105

Using the Plugman CLI 105

Wrap-Up 120

 5 The Mechanics of Cordova Development 121

Cordova Development Issues 121

Dealing with API Inconsistency 122

Application Graphics, Splash Screens, and Icons 123

Developing Cordova Applications 124

Configuring a Cordova Application 131

Testing Cordova Applications 134

Leveraging Cordova Debugging Capabilities 135

Using alert() 135

Writing to the Console 136

Debugging and Testing Using External Tools 139

Weinre 139

Ripple Emulator 145

PhoneGap Developer App 148

GapDebug 151

Wrap-Up 156

ixContents

 6 Automation and the Cordova CLI 157

Automating the Project Setup Step 157

Windows Command File 158

Bash Script 160

Cross-Platform Approach Using NodeJS 162

Automating the Cordova Process 164

Wrap-Up 167

 7 Android Development with Cordova 169

Using the Android Developer Tools 170

Managing the Android SDK 170

Using the Android Virtual Device Manager 172

Using the ADT IDE 178

Monitoring Application Activity Outside of the ADT IDE 191

Grabbing a Screen Shot 192

Testing on a Physical Device 192

Using the Chrome Debugging Tools 195

Wrap-Up 202

 8 Firefox OS Development with Cordova 203

Firefox OS Developer Tools 203

Debugging with the Firefox OS Simulator 207

Debugging Applications on a Firefox OS Device 218

Wrap-Up 220

 9 iOS Development with Cordova 221

Working with Xcode 221

Testing Cordova Applications in Xcode 225

Using the Safari Web Inspector 227

Wrap-Up 233

 10 Ubuntu Development with Cordova 235

Installing the Cordova CLI on Ubuntu 235

Debugging Ubuntu Applications 237

Wrap-Up 243

x Contentsx Contents

 11 Windows Development with Cordova 245

Windows versus WP8 Projects and Cordova 245

Windows Phone Limitations and Security Restrictions 247

JavaScript alert Not Supported 247

Application Security Model Limitations 248

Windows Development System Requirements 249

Windows Phone Development Tools 250

Windows App Store Setup 251

Configuring a Windows Phone Device for Application
Testing 251

Cordova Development Workflow Using Visual Studio 254

Creating a Project 254

Opening a Cordova Project 256

Running a Cordova Application in Visual Studio 258

Controlling the Windows Phone Emulator 259

Debugging Cordova Applications Using Visual
Studio 262

Using Visual Studio Tools for Apache Cordova 265

Wrap-Up 281

 12 Using PhoneGap Build 283

What Is PhoneGap Build? 283

Quick Prototyping 284

Collaboration 285

Content Refresh through Hydration 285

Using PhoneGap Build 286

A Quick Example 286

Configuring a PhoneGap Build Application 294

Adding Plugins to a PhoneGap Build Project 301

Deploying PhoneGap Build Applications 302

Wrap-Up 306

 13 Using the PhoneGap CLI 307

Getting Help 308

Project Management 309

Anatomy of the Default PhoneGap Application 310

PhoneGap CLI Workflow Differences 312

Interacting with the PhoneGap Build Service 312

Wrap-Up 315

xiContents

 14 Working with the Cordova APIs 317

The Cordova Core APIs 317

Working with the Cordova API Documentation 319

Checking API Availability 320

Catching Errors 321

Setting Application Permissions 322

Cordova Objects 324

Connection Type 324

device 326

Alerting the User 326

Hardware Notifications 326

Visual Notifications 327

Cordova Events 332

Hardware APIs 334

Accelerometer 335

Compass 337

Geolocation 339

Camera 340

Capturing Media Files 345

Globalization 347

Working with the Contacts Application 352

Playing/Recording Media Files 358

InAppBrowser 359

Loading Content 360

Browser Window Events 363

Execute Scripts 364

Insert CSS 365

Splashscreen 367

StatusBar 367

Wrap-Up 371

 15 Cordova Development End to End 373

About the Application 373

Creating the Application 374

Using Merges 385

Application Icons 387

Testing the Application 389

Wrap-Up 396

xii Contentsxii Contents

 16 Creating Cordova Plugins 397

Anatomy of a Cordova Plugin 397

Creating a JavaScript-Only Plugin 398

plugin.xml File 399

The Plugin’s mol.js File 401

Testing the Plugin 403

Creating a Cordova Native Plugin 408

Creating the Android Plugin 414

Creating the iOS Plugin 424

Publishing Plugins 431

Wrap-Up 435

 17 Using Third-Party UI Frameworks with Cordova 437

Adobe Topcoat 439

jQuery Mobile 444

Bootstrap 450

SAP OpenUI5 456

Ionic Framework 459

Onsen UI 464

Wrap-Up 468

 18 Using Third-Party Tools with Cordova 469

Code Validation Tools 469

JSLint 470

JSHint 471

Code Editors 473

Adobe Brackets 473

WebStorm 479

Developer Productivity Enhancement Tools 485

AppGyver 486

Eclipse THyM 490

Build Tools 494

Gulp 494

Grunt 500

Wrap-Up 503

 Index 505

Foreword

It’s great to have John Wargo in my classroom and in my teaching, both literally and
figuratively!

Apache Cordova 4 Programming (AC4P) will be the fourth John Wargo title employed in my class-
room. Surprisingly, this frenetic iteration happens in just two semesters and is testimony to the
value of John’s work.

The figurative: In preparing for my college’s first offering of an upper-level mobile application
course, it became evident that I should cover both native and hybrid mobile technologies. For a
hybrid technology, PhoneGap immediately rose to the top of my candidate list. The search was
on for a meaningful text. A survey of potential materials revealed that no formal college text-
books existed, and that John’s PhoneGap Essentials was the de facto primer for technology profes-
sionals looking to learn about PhoneGap. Perfect, right? I order and review a copy, confirm the
book’s reputation, and place an order with my college bookstore.

Enter John Wargo. I engage John to explore the possibility of acquiring any supporting materi-
als, the true value-add of a text or reference in any fast-paced course like this. John offers to
assist but also immediately cautions that my choice of text is dated and that two newer texts
now replace the first. I also learn that a fourth text is in the works [unhappy emoji]. Interactions
with the college bookstore and publisher ensue, and the adjustments for text numbers two and
three are made.

I’ll spare you the unnecessary detail, but fast-forward to today. I anxiously await AC4P for inclu-
sion in my course, later this semester.

Ah, I haven’t yet shared the literal connection. Recalling my interactions with John, I add this
anecdote. In addition to his assistance with the texts, John agrees to visit my campus when
traveling to our area. He offers to visit my class as well as a college-wide venue to speak and to
interact with our students. (We have a population of more than a thousand information technol-
ogy students). What happened was marvelous; his words come off the pages and into life in these
forums. This provides a tremendous learning opportunity for Georgia Gwinnett College’s students.
Conversely, we see that the narratives provided in print are his knowledge and experience cap-
tured in prose. My students engaged enthusiastically, commenting that we should do much more
with PhoneGap (and its open-source cousin, Cordova) in future semesters. They were hooked!

Again, I welcome John into my classroom figuratively and hope that we can host him literally
again, too.

—Bob Lutz, Ph.D.
Georgia Gwinnett College

January 2015

This page intentionally left blank

Preface

This is a book about Apache Cordova, the leading framework for building native mobile applica-
tions for multiple target platforms using HTML5 (HTML, JavaScript, and CSS). I created the book
in order to help web developers and mobile developers understand how to use Apache Cordova
to build hybrid applications for mobile devices. The book targets the specific capabilities pro-
vided in Apache Cordova 4 and subsequent versions.

As Adobe PhoneGap is just a distribution of Apache Cordova, this book is also about Adobe
PhoneGap. You’ll find any differences between the two clearly described herein.

The book is written for mobile developers who want to learn about Apache Cordova 4. If you’re
brand-new to Cordova, this book will be just what you need to get started. If you’re experienced
with an older version of Cordova, this book can act as a refresher, plus it will show you in detail
how to use all of the new stuff that’s in Cordova 4. You should have at least some experience
with mobile development to directly benefit from this book. For web developers who want to
get into mobile development using Apache Cordova, I’ve included content that shows you how
to install and use the native SDKs, but I won’t cover many native-specific topics.

What you’ll find in the book:

■■ Lots of detailed information about Apache Cordova, what it does, how it works, and how
to use the available tools and APIs

■■ Lots of examples and code; for even more code, be sure to check out my Apache Cordova
API Cookbook (www.cordovacookbook.com)

What you won’t find in this book:

■■ Mobile web development and mobile development topics; this is a book about Apache
Cordova, not mobile development

■■ Expressions or phrases in languages other than English (I hate it when authors include
expressions from Latin or French)

■■ Obscure references to pop-culture topics (although there is an overt reference to Douglas
Adams’s Hitchhiker’s Guide to the Galaxy and one obscure reference to Monty Python)

■■ Pictures of my children or my pets

This is not a book for experienced Cordova 4 developers—if you consider yourself an experi-
enced Cordova 4 developer, you probably should not buy this book.

http://www.cordovacookbook.com

xvi Preface

Herein I try to provide complete coverage of Apache Cordova 4, covering enough detail that
readers will leave with a complete understanding of what Cordova is, what it does, how it works,
and how to use it for their mobile application projects. There’s a whole lot more to Cordova—
many advanced topics and more detailed coverage of the Cordova APIs, which can be found in
the Cordova documentation or in blogs.

This book started many years ago as a book called PhoneGap Essentials
(www.phonegapessentials.com); the book was all about PhoneGap 2.0 and was published right
about the time the project name changed to Apache Cordova. The book came in at about
300 pages. The book’s first 150 pages covered the available tools and everything a developer
needed to know to configure a development environment, and then create, write, build, and
test PhoneGap applications. The second half of the book provided a detailed deep dive into
each of the (at the time) PhoneGap APIs. The cool part of this second half was that for each API
it included at least one complete, functional sample application that demonstrated each aspect
of the API. The framework’s documentation was pretty useful in demonstrating how the API
worked overall, but PhoneGap Essentials provided much more thorough examples.

The book went on to become the best-selling book on the topic, and it was used in univer-
sity courses around the world. According to Amazon.com, people are still purchasing this
book today.

With the release of Apache Cordova 3, I reworked the manuscript and published Apache Cor-
dova 3 Programming (www.cordovaprogramming.com). This book also came in at 300 pages but
was essentially a rewrite of just the first half of PhoneGap Essentials with only cursory coverage
of the Cordova APIs provided. This allowed me to go into much more detail on the tools and
development process.

Unfortunately, because Apache Cordova 3 Programming was available only as an ebook, it was
hard to find, and many readers continued to buy PhoneGap Essentials even though it covered an
older version of the framework.

In order to accommodate those readers who were more interested in the Cordova APIs, I
reworked the second half of PhoneGap Essentials into another 300 pages called Apache Cordova
API Cookbook (www.cordovacookbook.com). In this book, the complete example applications
from PhoneGap Essentials were enhanced and expanded, and all of the book’s content was
updated for the newer version of Cordova. I’d not covered some topics as well as I would have
liked to in the first book, so this update allowed me to really expand the coverage of some topics
and include even more complete sample applications (32, I think it was).

Between Apache Cordova 3 Programming and Apache Cordova API Cookbook, I had written more
than 600 pages of coverage of Apache Cordova 3. That’s more than twice the size of the original
book and a lot of good information for developers.

With this book, I’ve updated Apache Cordova 3 Programming for Apache Cordova 4, plus included
new content on a bunch of topics. In my previous books, I focused primarily on PhoneGap
and Apache Cordova; I didn’t cover many third-party tools and left many mobile development
topics uncovered as well. For this book, there were a bevy of additional tools available and some
hybrid-focused HTML frameworks, so I decided to cover as many of them as I could in the space

http://www.phonegapessentials.com
http://www.cordovaprogramming.com
http://www.cordovacookbook.com

xviiPreface

available to me. Where this book’s predecessor was 300 pages, this one should top out at more
than 500 pages, so there’s a lot of really good information here for all types of Cordova devel-
opers. When bundled with Apache Cordova API Cookbook, you’ll have more than 800 pages of
information about Apache Cordova.

Herein you’ll find most of the same topics that were covered in Apache Cordova 3 Programming.
The only missing topic is coverage of the BlackBerry platform. I wrote the first book on
BlackBerry development and had pretty much always carried a BlackBerry device, but between
books, BlackBerry experienced a dramatic drop in market share and I started carrying an
Android device as my primary device. Additionally, in previous books I had the enthusiastic
support of my former colleagues at BlackBerry, but when it came time to get feedback on the
BlackBerry chapter in Apache Cordova 3 Programming, the development team stopped respond-
ing to my inquiries. Because of those two things I decided to drop support for BlackBerry from
this book.

So, what new stuff have I added in this book? Coverage of

■■ Plugman and the PhoneGap CLI

■■ Cordova’s support for Firefox OS and Ubuntu devices

■■ Automation (Grunt and Gulp) and Cordova CLI hooks

■■ Microsoft’s hybrid toolkit for Visual Studio

■■ Third-party tools such as AppGyver, GapDebug, THyM, and more

■■ Third-party HTML frameworks such as Bootstrap, OpenUI5, Ionic, and Onsen UI

There’s a lot more, but these are some of the highlights.

The one thing I cover in the book but not in tremendous detail is how to build custom Cordova
plugins. I cover the topic and show you how to create two complete plugins, but this isn’t a
native mobile development book and that’s a native mobile development topic. I’ve learned
from my readers that the material I do provide is enough to help a lot of people get started with
plugins and create their own plugins; I’ll leave it up to another author to write a book dedicated
to plugin development so it can get the attention it deserves.

Android Studio versus Android Developer Tools (ADT)
As I wrote the previous edition of this book, Google announced a new development tool called
Android Studio. I expected then that Android Studio would be out before I started this man-
uscript and I’d be able to update the content for the new tool. As I worked through the book,
Android Studio was still in beta and it was essentially incompatible with Cordova CLI-generated
projects. I thought about hacking through it in order to provide updated content here, but after
discussing my situation with Andrew Grieve from Google, I decided that it wasn’t yet ready for
prime time and I would stick with ADT for this book.

xviii Preface

Wouldn’t you know it, right after the book went into the editing process, Google finally released
Android Studio. Sigh. At this point, I could make minor changes to the manuscript but couldn’t
rewrite a complete chapter. So, unfortunately, some of the content you’ll find in Chapter 7,
“Android Development with Cordova,” refers to the older version of the SDK. The stuff around
the SDK is still valid, but Android Studio installs everything in a different place from what I’ve
shown. The incompatible stuff is everything I showed about using the Eclipse tools. Sorry.

University Use
One of the pleasant surprises you have when delivering technical books is when a book is picked
up for use in university courses. From what I can tell, several universities around the world use
my Cordova books for their PhoneGap/Cordova class work. I regularly receive emails from uni-
versity professors asking me questions about the book as they prepare to use it in their classes.

I was fortunate enough to hear from Dr. Robert Lutz from Georgia Gwinnett College. They
were using my books (Apache Cordova 3 Programming and Apache Cordova API Cookbook) in class
and they were close enough that I could drive there and see how it was working for them. I
arranged a visit to the campus, and Dr. Lutz was kind enough to arrange a campus Tech Talk
at the university. I spent about an hour talking about mobile development and the role hybrid
applications play in the market. After the session ended, I spent some more time with the class
using my book and let the students pick my brain on a number of topics. It was quite a lot of
fun and allowed me to learn more about how my work is being used by others. I even signed a
few copies of my books.

After this book is finished, my goal is to work with Dr. Lutz to prepare classroom material that
can be used in conjunction with the book. Stay tuned on that one.

Cordova as a Moving Target
One of the challenges in writing a book about open-source projects is that if the project is
well staffed and busy, it gets regular updates. In Cordova’s case, it’s one of the fastest-moving
open-source projects on the planet, so with their regular updates and yearly major releases, it is
definitely a moving target.

I’ve worked very hard to structure and craft this book so that it can survive the rapid pace of the
project, but only time will tell. You may find that something I’ve written here has changed and
the book doesn’t align with reality. There’s nothing I can do about this except to stay on top
of it and post updates to the book’s web site (described below) when I find that something has
changed enough that it breaks part of the book.

xixPreface

A Comment on Source Code
One of the things you’ll notice as you look at the source code included in the book is that I’ve
paid special attention to the formatting of the code so that it can be easily read and understood
by the reader. Rather than allowing the publisher to wrap the source code wherever necessary,
instead I’ve forced page breaks in the code wherever possible in order to structure it in a way
that should benefit the reader. Because of this, as you copy the source code over into your Cor-
dova applications, you will likely find some extra line breaks that affect the functionality of the
code. Sorry.

All of the book’s source code is available on GitHub (https://github.com/johnwargo/ac4p); there
you’ll find the complete application source code in a format that will allow you to quickly copy
the code into your apps.

The Book’s Web Site
The book has its own web site at www.cordova4programming.com. I will post there any updates
and errata to the book. I’ll also answer questions I receive from readers. Please feel free to use
the contact form on the book’s web site to provide feedback and/or suggestions for the next
edition as well.

https://github.com/johnwargo/ac4p
http://www.cordova4programming.com

This page intentionally left blank

Acknowledgments

This book wouldn’t exist without the help of others; as you can see below, I had a lot of help.
Thank you to everyone who helped me craft this manuscript, including:

■■ The Cordova dev team for their patience and support as I asked all of my silly questions.

■■ Raman Sethi, Bobby Anchanattu, Changhoon Baek, Rob Close, Ashwin Desai, Alan Kinzie,
Pete Kong, Jonathan Li, Marcus Pridham, Dan Van Leeuwen, and my other colleagues at
SAP for continuing to teach me new things about Apache Cordova every day.

■■ Colleagues Marcus Pridham and Ashwin Desai for again helping me sort out issues with the
plugin examples used in the book.

■■ Brian LeRoux, Steven Gill, Dave Johnson, and Michael Brooks from Adobe for helping me
through some issues and reviewing the PhoneGap-related chapters.

■■ Andrew Grieve from Google for helping me decide whether to cover ADT or Android
Studio in this version of the book. Turns out I made the wrong choice, but there’s not
much I can do about that now.

■■ Olivier Block, Eric Mittelette, Parashuram Narasimhan, and Sergey Grebnov from Microsoft
for helping me through some issues, reviewing the Windows chapter, and providing me
with a device to use for testing applications.

■■ Piotr Zalewa from Mozilla for answering my questions and reviewing the Firefox OS
chapter.

■■ Gorkem Ercan from Red Hat for getting me started with THyM.

■■ David Pitkin, David Barth, Maxim Ermilov, and Jean-François Moy from Ubuntu for
answering my questions, reviewing the Ubuntu chapter, and providing me with a device to
use for application testing.

■■ Ashwin Desai for doing yet another excellent technical review of the manuscript. You’ve
got to love it when the tech reviewer treats the book like his own work and even makes
sure that the comments in the sample source code are correct.

■■ Greg Doench, Michelle Housley, and Chris Zahn for all their help with this project.

■■ Julie Nahil, Susan Brown Zahn, Anna Popick, and Barbara Wood for their help producing
the book.

■■ My managers at SAP for supporting this endeavor.

Apologies to anyone I may have missed here.

This page intentionally left blank

About the Author

John M. Wargo is a professional software developer and a contributor to the Apache Cordova
Project. John works for German software company SAP as part of the SAP Mobile Platform Prod-
uct Management team. He is the product manager for the SAP Mobile Platform’s Hybrid SDK, a
set of enterprise plugins for Apache Cordova, and the SAP Fiori Client, a Cordova-based native
application runtime for the SAP Fiori web application. He also works with the team at SAP
building the SAP Web IDE Hybrid App Toolkit (HAT), a set of tools that add support for Apache
Cordova applications to the SAP Web IDE (a cloud-based web application designer and editor
based on the Apache Orion project).

This is his fourth book on Apache Cordova. He got started with mobile development while
working at Research In Motion, now called BlackBerry, and eventually wrote the first book on
BlackBerry development. He wrote a series of articles covering methods for mobilizing IBM
Domino applications for The View, a magazine for IBM Lotus Notes and Domino developers,
which was eventually published into an anthology.

You can find him online at www.johnwargo.com and on Twitter at @johnwargo.

http://www.johnwargo.com

This page intentionally left blank

This page intentionally left blank

2
Anatomy of a Cordova

Application

In the previous chapter, I provided you with an overview of Apache Cordova; before I start
digging into all of the tools, capabilities, APIs, and so on, I want to give you a clear definition
of what a Cordova application is. In this chapter, I show you what makes a web application a
Cordova application and give you a tour of the sample application the Cordova team provides.

As mentioned at the beginning of the book, a Cordova application can do anything that can be
coded in standard, everyday HTML, CSS, and JavaScript. There are web applications and Cor-
dova applications, and the distinctions between them can be minor or can be considerable.

The sections in this chapter highlight different versions of the requisite HelloWorld application
found in most any developer book, article, or training class. For the purpose of highlighting
aspects of the applications’ web content, rather than how they were created, the steps required
to create the applications are omitted here (but covered in subsequent chapters).

Hello World!
As in any developer book, we’re going to start with the default HelloWorld application, then
build upon it to highlight different aspects of what makes a web application into a Cordova
application. The HTML content shown in Listing 2.1 describes a very simple web page that dis-
plays some text; this application could easily run in a desktop or mobile browser.

Listing 2.1 Hello World #1 Application

<!DOCTYPE HTML>
<html>
<head>
 <title>Hello World #1</title>
</head>
<body>

28 Chapter 2 Anatomy of a Cordova Application

 <h1>Hello World #1</h1>
 <p>This is a sample Apache Cordova application.</p>
</body>
</html>

If you open the web page in the mobile browser on a physical device or on a device emulator or
simulator, you will see something similar to what is shown in Figure 2.1 (here it’s running in an
Android emulator). The browser simply renders the page the best it knows how to, in this case,
trying to render it as if it’s a full web page scaled to fit the smaller screen of the mobile device.
Since it’s the browser, the window also displays the browser chrome, the address field, tab con-
trols, and so on from the mobile browser.

Figure 2.1 Hello World #1 Application Running in the Mobile Browser on an Android Emulator

Figure 2.2 Hello World #1 Application Running on an Android Emulator

This is not a Cordova application; it’s just a web application running in a mobile browser.

If you package that same index.html file into a Cordova application (using the tools I will dis-
cuss throughout the book) and run it on a smartphone device or device emulator, the app will
display something similar to what is shown in Figure 2.2.

Here, the container seems to understand a bit about the view it’s being rendered within and
renders full size, not scaled down, so the whole page fits within the browser window.

In this example, this is a Cordova application because the web application has been packaged
into the Cordova native application container. If I hadn’t cropped the image, you would see that
the web application consumes the entire screen of the emulated Android device. Even though

29Cordova Initialization

I’m running a web application, because it’s running within a native application, there’s no
browser UI being displayed and no access to browser features. It’s simply a native application
rendering web content.

There is, however, nothing Cordova-ish about this application. It’s running in the Cordova
native container, but it isn’t leveraging any of the APIs provided with the Cordova framework.
Therefore, any web application can be packaged into a Cordova application—there’s nothing
forcing you to use the Cordova APIs. If you have a simple web application that simply needs a
way to be deployed through a smartphone’s native app store, for example, using Cordova is one
way to accomplish that goal.

However, the app’s not very interesting, is it? It’s certainly not very pretty, but I’ll show you how
to fix that in Chapter 17, “Using Third-Party UI Frameworks with Cordova.” For me, it needs to
do some cool Cordova stuff before it becomes interesting.

Cordova Initialization
Now let’s take the previous example application and add some Cordova-specific stuff to it.

Even though the Cordova container exposes native APIs to the web application running within
it, in general (there are a few exceptions) those APIs are not available until the plugin that
exposes the API has been added to the project. Additionally, the Cordova container has to do
some prep work before any of its APIs can be utilized. To make it easy for developers to know
when they can start using APIs exposed by the Cordova container, Cordova fires a specific event,
the deviceready event, once it has finished its initialization and it’s ready to go. Any applica-
tion processing that requires the use of the Cordova APIs should be executed by the application
only after it has received its notification that the Cordova container is available through the
deviceready event.

The Hello World #2 application shown in Listing 2.2 has been updated to include code that
uses a deviceready event listener to determine when the Cordova container application has
completed its initialization. In this simple example, the application just displays an alert dialog
when the event fires.

Listing 2.2 Hello World #2 Application

<!DOCTYPE html>
<html>
<head>
 <title>Hello World #2</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width,
 height=device-height" />
 <script src="cordova.js"></script>
 <script>

30 Chapter 2 Anatomy of a Cordova Application

 function onBodyLoad() {
 console.log("Entering onBodyLoad");
 alert("Body Load");
 document.addEventListener("deviceready", onDeviceReady, false);
 }

 function onDeviceReady() {
 console.log("Cordova is ready");
 navigator.notification.alert("Cordova is ready!");
 }

 </script>
</head>
<body onload="onBodyLoad()">
 <h1>Hello World #2</h1>
 <p>This is a sample Cordova application.</p>
</body>
</html>

Warning
If you copy the code from any of the listings in this chapter and try them in your own Cordova
applications, you may notice that there are some extra carriage returns in the middle of some
of the HTML. This was done to make the code render cleanly in the printed edition of the book.
To download clean versions of all of the projects in this book, access the Code section
of the book’s web site at www.cordova4programming.com or get them from GitHub at
https://github.com/johnwargo/ac4p.

On the iPhone simulator, the application will display the screen shown in Figure 2.3.

Figure 2.3 Hello World #2 Application Running on an iOS Simulator

http://www.cordova4programming.com
https://github.com/johnwargo/ac4p

31Cordova Initialization

Let’s take a look at the sample application as there’s a lot of new stuff in this example.

Within the <head> section of the web page are a few new entries, some meta tags that describe
the content type for the application, and some other settings. For the most part, I pulled these
meta tags from the default Cordova HelloCordova application described later in the chapter.

The charset tag identifies the character encoding used for the HTML document. What I’ve
shown here is the default option; you would change this only if you were using a different char-
acter set for the HTML page.

<meta charset="utf-8" />

The next tag disables the embedded web browser’s automatic processing of telephone numbers.
With this option disabled, as shown below, the browser won’t automatically turn phone
numbers on the page into clickable links. You would need to change telephone=no to
telephone=yes to enable this option.

<meta name="format-detection" content="telephone=no" />

Honestly, I’m really not sure why the Cordova team did this in their sample application; you
would probably assume the user was running the application on a smartphone and would want
phone numbers to be automatically enabled as links.

The viewport settings shown in the following tell the embedded web browser rendering the con-
tent how much of the available screen real estate should be used for the application and how to
scale the content on the screen:

<meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width,
 height=device-height" />

In this case, the HTML page is configured to use the maximum height and width of the screen
(through the width=device-width and height=device-height attributes) and to scale
the content at 100% and not allow the user to change that in any way (through the
initial-scale=1, maximum-scale=1, and user-scalable=no attributes).

Note
The viewport and associated attributes are not required. If they’re omitted, the browser will
revert to its default behavior, which may (or may not—who knows?) result in the application’s
content not consuming the full screen area available to it or zooming beyond it. Because
there’s not much content in the Hello World #2 application, it could, for example, consume only
the upper half of the screen on some devices. You may also find that on some platforms the
settings have no effect—all the more reason to test your Cordova applications on a variety of
mobile devices before release.

There’s also a new script tag in the code that loads the Cordova JavaScript library:

<script src="cordova.js"></script>

32 Chapter 2 Anatomy of a Cordova Application

This loads the core Cordova API library and makes any core Cordova APIs available to the pro-
gram. This file is also responsible for loading and initializing all of the plugins you have added
to your Cordova application. You don’t have to add the cordova.js file to your project; this is
done for you automatically by the Cordova CLI (described in Chapter 4, “Using the Cordova
Command-Line Interfaces”), but you do need to add this reference to your application.

To set up the deviceready event listener we need for Cordova, the application adds an onload
event function to the application’s body tag using the following:

<body onload="onBodyLoad()">

Within the onBodyLoad function, the code registers an event listener that instructs the applica-
tion to call the onDeviceReady function when the Cordova container is ready, when the Cor-
dova application container has finished its initialization routines and fired its deviceready event:

function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady, false);
}

In this example application the onDeviceReady function simply displays a Cordova alert dialog
(which is different from a JavaScript alert dialog) letting the user know everything’s OK:

navigator.notification.alert("Cordova is ready!")

In production applications this function could update the UI with content created through API
calls or do whatever other processing is required by the application. (You’ll see an example of
this in Listing 2.4.)

Note
Cordova applications fail silently when they encounter typos or syntax errors in a web
application’s code, so when you’re testing an application, sometimes nothing will happen and
you’ll have no clue why. If you look at the complete source code for the application, you’ll notice
that there are a few things I haven’t described yet that I do in every Cordova application I write
to help me troubleshoot the application. These tricks help me more quickly understand what’s
happening in an application as it runs.

One of the things I do during testing is use the web browser console to display status messages
as the application runs using code similar to the following:

console.log("Entering onBodyLoad");

I’ll show you how this works in Chapter 5, “The Mechanics of Cordova Development.”

In the onBodyLoad function, I also make sure to make a call to the JavaScript alert function so
I can easily tell that the onload event has fired:

alert("Body Load");

33Cordova Initialization

Note
Unfortunately, the JavaScript alert() function is not available in universal Windows apps, so
you will have to adjust your code when running on that platform. This topic is discussed further
in Chapter 11, “Windows Development with Cordova.”

As I mentioned earlier, the Cordova container fails silently when it encounters an error with
the web application’s source code. So, if I have this alert in the code and it doesn’t fire, I
know very quickly (in the very first code the application executes) that something is wrong
with the application.

In the deviceready event handler, I always add a call to navigator.notification.alert as
shown in the example code. This allows me to confirm visually that the deviceready event has
actually fired, plus it allows me to confirm that the Cordova Dialogs plugin has been added to
the project and that any other debug alerts I put into the code will be operational. I use the Cor-
dova alert instead of the JavaScript alert because it’s better looking (I can set the title of the
dialog, for example, although I didn’t do that here); it also gives me access to callback functions
I can use to perform extra steps when something interesting happens.

Remember, most of the Cordova APIs have been removed from the container and implemented
as plugins. So, to utilize the Cordova alert method, you must add the Dialogs plugin to your
application by opening a terminal window to your Cordova project folder and issuing the fol-
lowing command:

cordova plugin add org.apache.cordova.dialogs

You’ll learn all about how to use the cordova command in Chapter 4. You’ll learn more about
the Dialogs plugin in Chapter 14, “Working with the Cordova APIs.”

The Cordova Navigator
Many of the APIs implemented by Cordova are instantiated from the Navigator object.
Unfortunately it’s not consistent; some APIs do it that way and some do not. Be sure to
check the API documentation before calling an API.

The deviceready event will fire when the Cordova container finishes initializing, but it will also
fire any time a new deviceready event listener is added by the application. Listing 2.3 shows this
in action.

Listing 2.3 Hello World #3 Application

<!DOCTYPE html>
<html>
<head>

34 Chapter 2 Anatomy of a Cordova Application

 <title>Hello World #3</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width,
 height=device-height" />
 <script src="cordova.js"></script>
 <script>

 function onBodyLoad() {
 console.log("Entering onBodyLoad");
 alert("Body Load");
 document.addEventListener("deviceready", onDeviceReady, false);
 }

 function onDeviceReady() {
 console.log("Entering onDeviceReady");
 navigator.notification.alert("Cordova is ready!");
 }

 function addSecondDeviceReadyListener() {
 console.log("Entering addSecondDeviceReadyListener");
 document.addEventListener("deviceready", someOtherFunction, false);
 }

 function someOtherFunction() {
 console.log("Entering someOtherFunction");
 navigator.notification.alert("Second deviceready Function Fired.");
 }

 </script>
</head>
<body onload="onBodyLoad()">
 <h1>Hello World #3</h1>
 <p>This is a sample Cordova application.</p>
 <button onclick="addSecondDeviceReadyListener()">Add deviceready Event Listener</
button>
</body>
</html>

In this example, I’ve added a button to the application’s main page. When the button is
tapped, an additional deviceready event listener is defined, and then the callback function
for the new listener is immediately executed by the Cordova container. In this case, the
onDeviceReady function executes once the container completes its initialization, and then
the someOtherFunction function executes only after the second deviceready event listener
has been added.

35Leveraging Cordova APIs

Leveraging Cordova APIs
Now that we know how to configure an application to wait until the Cordova APIs are available,
let’s build an application that actually uses some of the Cordova APIs. The Hello World #4 appli-
cation shown in Listing 2.4 uses the Cordova Device API to allow the application to understand
a bit about the environment it is running in.

Listing 2.4 Hello World #4 Application

<!DOCTYPE html>
<html>
<head>
 <title>Hello World #4</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width,
 height=device-height" />
 <script src="cordova.js"></script>
 <script>
 var br = "
";

 function onBodyLoad() {
 console.log("Entering onBodyLoad");
 alert("Body Load");
 document.addEventListener("deviceready", onDeviceReady, false);
 }

 function onDeviceReady() {
 navigator.notification.alert("Cordova is ready!");
 console.log("Cordova: " + device.cordova);
 //Get the appInfo DOM element
 var element = document.getElementById('appInfo');
 //replace it with specific information about the device
 //running the application
 element.innerHTML =
 'Cordova Version: ' + device.cordova + br +
 'Platform: ' + device.platform + br +
 'Model: ' + device.model + br +
 'OS Version ' + device.version;
 }

 </script>
</head>
<body onload="onBodyLoad()">
 <h1>Hello World #4</h1>

36 Chapter 2 Anatomy of a Cordova Application

 <p>This is a Cordova application that makes calls to the Cordova Device API.</p>
 <p id="appInfo">Waiting for Cordova Initialization to complete.</p>
</body>
</html>

Figure 2.4 shows the Hello World #4 application running on the Windows Phone 8.1 simulator.

Figure 2.4 Hello World #4 Application Running on a Windows Phone Simulator

In this version of the HelloWorld application, the code in the onDeviceReady function has
been updated so the program updates a portion of the application’s content with an ID of
appInfo with information about the device running the application and the version of Cordova
used to build the application. Device-specific information is available via the Cordova Device
API (http://plugins.cordova.io/#/package/org.apache.cordova.device), and this sample applica-
tion uses a subset of the available properties in this API.

In order for me to be able to call the Device API, I had to add the Device API plugin to the proj-
ect using the CLI command:

cordova plugin add org.apache.cordova.device

Note
Remember, Cordova fails silently when it encounters an error in a web application’s code. So, if
you forget to add the plugin to your application, the code will seem to execute, but nothing will
happen. I can’t tell you how many times I’ve tried to use the Device API’s methods only to see
them not work because I simply forgot to add the plugin to the project.

http://plugins.cordova.io/#/package/org.apache.cordova.device

37Leveraging Cordova APIs

With the Device API in place, the application can access it using the following code:

var element = document.getElementById('appInfo');
element.innerHTML = 'Cordova Version: ' + device.cordova + br +
 'Platform: ' + device.platform + br +
 'Model: ' + device.model + br +
 'OS Version ' + device.version;

In the figure, you may have noticed that the Cordova version shows that I’m running Cor-
dova 3.6.4. I actually ran this application using Cordova 4.0, but with this release the Cordova
CLI, Cordova container, and Cordova APIs have all been broken out into separate releases. So,
even though I’m actually running Cordova 4.0, some of the components may be at a different
release.

Listing 2.5 shows a slightly modified version of the application; in this case I added some
markup to make the device information into an unordered list so it would render more neatly
on the page.

Listing 2.5 Hello World #5 Application

<!DOCTYPE html>
<html>
<head>
 <title>Hello World #5</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width,
 height=device-height" />
 <script src="cordova.js"></script>
 <script>
 function onBodyLoad() {
 alert("Body Load");
 document.addEventListener("deviceready", onDeviceReady, false);
 }

 function onDeviceReady() {
 navigator.notification.alert("Cordova is ready!");
 console.log("Cordova: " + device.cordova);
 //Get the appInfo DOM element
 var element = document.getElementById('appInfo');
 //replace it with specific information about the device
 //running the application
 element.innerHTML =
 'Cordova Version: ' + device.cordova +
 'Platform: ' + device.platform +
 'Model: ' + device.model +

38 Chapter 2 Anatomy of a Cordova Application

 'OS Version ' + device.version + '';
 }
 </script>
</head>

<body onload="onBodyLoad()">
 <h1>Hello World #5</h1>
 <p>This is a Cordova application that makes calls to the Cordova Device API.</p>
 <p id="appInfo">Waiting for Cordova Initialization to complete.</p>
</body>
</html>

Just so you can see a Cordova application running on yet another device, Figure 2.5 shows the
Hello World #5 application running on a Firefox OS simulator.

Figure 2.5 Hello World #5 Application Running on a Firefox OS Simulator

Structuring Your Application’s Code
The way you structure the code for your web application is a matter of personal style, but for
Cordova applications, and for some web applications, there may be a valid reason to use a par-
ticular approach. So far in this chapter I’ve set up my example applications so that everything,
the HTML content as well as the JavaScript code, is in the same file. Additionally, I’ve broken
things up a bit so the examples are simple and easy to read. There are a lot of things a developer
can do to write more efficient and compact code—here I’ve deliberately not done them to make
the examples as easy to read as possible.

A web developer will usually want to separate an application’s HTML from its JavaScript code. In
the simple applications I’ve shown here, there’s not much of each, so it’s not a big deal. But for
more complicated applications, when there’s a whole lot of code, separation of the two types of

39Structuring Your Application’s Code

code can make the code easier to maintain and allow multiple developers to work on different
parts of the application (UI versus application logic) separately.

There is, however, a Cordova-specific reason why you will likely want to do this. Remember how
I explained earlier that the Cordova container needed to initialize itself? Well, if you think about
an application that has several Cordova plugins added to it, it might take some time for the
Cordova container to initialize itself, and for all of the plugins to initialize themselves as well.
What I’ve found in many sophisticated Cordova applications is that large web applications
and/or a bunch of plugins can cause a Cordova application to time out during initialization.
It takes so long to load and initialize everything that the Cordova container thinks something’s
wrong and fails with a timeout error. I’ve seen this happen most frequently with a large web
application using jQuery Mobile.

So, what do you do to avoid this? You structure your web application projects so that the web
content and the JavaScript code are separated, and then you take some extra steps to arrange the
order in which things happen.

Another reason why you would want an application’s JavaScript code broken out into a separate
file is to more easily support JavaScript debugging. Throughout the book I’ll show you many
different tools you can use to test and debug your Cordova applications. What I found in my
testing of these tools is that most of them are able to interact with an application’s JavaScript
code only when the code is not embedded inside the application’s HTML content (the applica-
tion’s index.html file, for example).

Listing 2.6 shows a simple application I’ve created that is structured a little differently from all
of the other examples I’ve shown so far. In this example, two things are different: the applica-
tion loads all of its JavaScript code after all of the application’s HTML has been defined, plus all
of the application’s logic has been split out into a separate JavaScript file called index.js.

Listing 2.6 Hello World #6 Application index.html

<!DOCTYPE html>
<html>
<head>
 <title>Hello World #6</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width,
 height=device-height" />
</head>
<body>
 <header>
 <h1>Hello World #6</h1>
 </header>
 <p>This is a simple Cordova application.</p>
 <script src="cordova.js"></script>

40 Chapter 2 Anatomy of a Cordova Application

 <script src="index.js"></script>
</body>

</html>

When the earlier example applications started up, the cordova.js file was loaded before much
else happened on the page. If the cordova.js took a while to load, on a slower device, for exam-
ple, it might delay the rendering of the page’s HTML content while it waited for the JavaScript
to load. So, users of the application might see a blank page before the HTML displayed. If this
was a large application, and several JavaScript files were being loaded, this might take some
time, enough that the user would notice.

In the Hello World #6 application, all of the HTML loads within the browser context before the
cordova.js file is loaded. If the index.js file were quite large, or I was loading jQuery Mobile and
a bunch of other JavaScript stuff, the user would at least be looking at some sort of UI as the
JavaScript was being loaded.

Listing 2.7 shows the application’s index.js. It contains all of the JavaScript code the application
is using. In this example, the file defines a simple function that self-initializes when the file is
loaded, adds the event listener for the deviceready event, and provides a function that is exe-
cuted when the event fires.

Listing 2.7 Hello World #6 Application index.js

var cvaReady;

var someOtherFunction = function () {
 if (cvaReady) {
 //do something

 } else {
 //tell the user why they can't do that

 }
};

(function () {

 var onDeviceReady = function () {
 console.log("Entering onDeviceReady");
 //Let the user know that the deviceReady event has fired
 navigator.notification.alert("Cordova is ready", null,
 "Device Ready", "Continue");
 //Set the variable that lets other parts of the program
 //know that Cordova has initialized
 cvaReady = true;

41The Generated Web Application Files

 //===
 //Do whatever other stuff you want to do on startup
 //===

 console.log("Leaving onDeviceReady");
 };

 //add an event listener for the Cordova deviceReady event.
 document.addEventListener('deviceready', onDeviceReady, false);

}());

I’ve added a new feature in this example as well, a cvaReady object that the application can
use to tell whether the onDeviceReady function has executed. If you don’t want to wait to do
everything until the deviceready event has fired, you can ignore it and check the cvaReady
object as needed to see if you are able to do Cordova stuff. I know this is a clunky way to do
this; I’m just trying to give you different options for your applications.

When you run into an issue where the Cordova container times out before loading all of your
stuff, what some people recommend doing is setting up a timer in your deviceready event listener
that waits a few seconds before loading a new page that then loads your application’s JavaScript
files. This allows all of the Cordova initialization to complete before anything else is done by
the application. This is supposedly one way people have gotten around timing issues with using
jQuery Mobile with a large Cordova application, but I’ve never had the need to use this approach.

The Generated Web Application Files
Now that I’ve shown you how a Cordova application is crafted, let’s take a look at the default
application generated by the Cordova CLI. In Chapter 4 you’ll see that when the CLI creates a
new application project, by default it creates a simple HelloCordova web application and places
it in the project’s www folder. You can override this behavior if you want, but this is the default.

The project folder contains a web application folder structure that is designed to separate the
different types of files into separate folders. For example, the web application’s CSS files should
be placed in the css folder, JavaScript files in the js folder, and so on.

The application’s index.html file is shown in Listing 2.8; it contains many of the same HTML
elements and attributes as the other examples shown throughout the chapter. What the applica-
tion does is display a simple page with the Cordova logo and some blinking text, “Connecting
to Device,” centered beneath the logo.

Listing 2.8 Contents of the HelloCordova index.html File

<!DOCTYPE html>
<!--
 Licensed to the Apache Software Foundation (ASF) under one

42 Chapter 2 Anatomy of a Cordova Application

 or more contributor license agreements. See the NOTICE file
 distributed with this work for additional information
 regarding copyright ownership. The ASF licenses this file
 to you under the Apache License, Version 2.0 (the
 "License"); you may not use this file except in compliance
 with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing,
 software distributed under the License is distributed on an
 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 KIND, either express or implied. See the License for the
 specific language governing permissions and limitations
 under the License.
-->

<html>
 <head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <!-- WARNING: for iOS 7, remove the width=device-width and
 height=device-height attributes.
 See https://issues.apache.org/jira/browse/CB-4323 -->
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width, height=device-height,
 target-densitydpi=device-dpi" />
 <link rel="stylesheet" type="text/css" href="css/index.css" />
 <meta name="msapplication-tap-highlight" content="no" />
 <title>Hello World</title>
 </head>
 <body>
 <div class="app">
 <h1>Apache Cordova</h1>
 <div id="deviceready" class="blink">
 <p class="event listening">Connecting to Device</p>
 <p class="event received">Device is Ready</p>
 </div>
 </div>
 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript">
 app.initialize();
 </script>
 </body>
</html>

43The Generated Web Application Files

Notice that the application loads the cordova.js and other resources at the end of the file as I
explained in the previous section. In this application initialization is done a little differently.
Rather than having an index.js file that auto-initializes, the index.js exposes an initialize
method that is called manually in a separate script tag in the file.

Listing 2.9 shows the contents of the application’s index.js file.

Listing 2.9 Contents of the HelloCordova index.js File

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
var app = {
 // Application Constructor
 initialize: function() {
 this.bindEvents();
 },

 // Bind Event Listeners
 //
 // Bind any events that are required on startup. Common events are:
 // 'load', 'deviceready', 'offline', and 'online'.
 bindEvents: function() {
 document.addEventListener('deviceready', this.onDeviceReady, false);
 },
 // deviceready Event Handler
 //
 // The scope of 'this' is the event. In order to call the 'receivedEvent'
 // function, we must explicitly call 'app.receivedEvent(...);'.
 onDeviceReady: function() {
 app.receivedEvent('deviceready');
 },

44 Chapter 2 Anatomy of a Cordova Application

 // Update DOM on a Received Event
 receivedEvent: function(id) {
 var parentElement = document.getElementById(id);
 var listeningElement = parentElement.querySelector('.listening');
 var receivedElement = parentElement.querySelector('.received');

 listeningElement.setAttribute('style', 'display:none;');
 receivedElement.setAttribute('style', 'display:block;');

 console.log('Received Event: ' + id);
 }
};

The JavaScript code registers the deviceready listener you’ve seen in many of the other examples
in this chapter. When the onDeviceReady function executes, it writes some information to the
console (this will be discussed more in Chapter 5) and then updates the page content to indicate
that the Cordova container is ready.

This application is much more complicated than it needs to be; as you can see from my previous
examples, you can easily do the same thing with much less code. However, it’s apparently the
way the Cordova team wants to highlight how to build Cordova applications.

Note
In the examples I have provided throughout the chapter, I deliberately simplified the application
code to make it easier to teach you what a Cordova application looks like. The sample
application generated by the CLI is structured more like modern HTML5 applications.

The approach you take when building your web applications is up to you; there’s no right or
wrong approach. I think the CLI-generated application is more complicated than it needs to be,
but as features are added to an application, it may be easier to use the approach highlighted in
this section.

Figure 2.6 shows the default Cordova HelloCordova application running on an Android emula-
tor. When building your Cordova applications, you can start with this sample application and
add in your custom code, or you can rip out the HTML and CSS files and start from scratch.

45Responsive Design and Cordova

Responsive Design and Cordova
When a smartphone or tablet user rotates a device running a web or Cordova application, the
browser needs to be able to react to the change and adjust the page’s properties. If it didn’t,
when the browser window switches from a portrait to a landscape orientation, much of the
available screen real estate would go unused. Designing a web application so it properly ren-
ders the application’s content across varying display widths or changing orientations is called
responsive design.

Dealing with responsive design is a mobile web development topic, and I’ve always tried to limit
these books to Cordova-related subjects only, but in this case it seemed to make sense to cover
this topic. It didn’t fit in other areas of the book, so I decided to add it here.

There are several ways you can approach dealing with browser window size and orientation-
related challenges. Bootstrap (http://getbootstrap.com/) and other front-end frameworks provide
capabilities web developers can leverage to automatically scale and adjust their web applications’
content based on the available screen real estate. Additionally, there are capabilities in CSS and
JavaScript that the web developer can leverage directly to accomplish this. I’m not going to
cover third-party frameworks in this chapter; I’ll cover some of them in Chapter 17. What I will
show you is how to build some of these capabilities into your own applications directly.

Using Cascading Style Sheets, an application has the capability to define specific CSS attributes
that apply depending on the orientation of the device. In the following example, you see that

Figure 2.6 HelloCordova Application Running on an Android Emulator

http://getbootstrap.com/

46 Chapter 2 Anatomy of a Cordova Application

I’ve defined two body styles, one that applies when the content is rendered on a screen while
the orientation is portrait and the other when rendered on a screen while the orientation is
landscape.

/* portrait */
@media screen and (orientation: portrait) {
 /* portrait-specific styles */
 body {
 background-color: blue;
 color: white;
 }
}
/* landscape */
@media screen and (orientation: landscape) {
 /* landscape-specific styles */
 body {
 background-color: red;
 color: black;
 }
}

In this case, just so I could demonstrate the changes cleanly, if you add this code to your web
application (I’ll show you an example in a minute), you get white text on a blue background
while in portrait orientation and black text on a red background in landscape orientation. For
your own applications, you’ll want to adjust margins, borders, and so on based on the space
available to your application.

Sometimes you want to do a little more when things change; to accommodate this, the web
browser exposes events you can listen for and update your application’s UI as needed. Two
events that matter for Cordova developers are orientationchange and resize. To add event
listeners for these events to your Cordova applications, you can use the following:

//Set the orientation change event listener
window.addEventListener('orientationchange', onOrientationChange);
//For actions that don't fire the orientationchange event
window.addEventListener("resize", onResize, false);

With this code in place, when the device’s orientation changes, the onOrientationChange
function is executed, and when the browser window resizes, the onResize function is executed.
All your application has to do then is populate those two functions with the code you want
executed when those particular events happen. In this example, I simply wrote some screen
measurements to the page when the events fire.

To see all of this in action, I’ve created Example 2.7 shown in Listing 2.10. This application
implements both the CSS queries and JavaScript events to create a web application that reacts to
changes that occur while the application is running.

47Responsive Design and Cordova

Listing 2.10 Example 2.7 Application index.html

<!DOCTYPE html>
<html>
<head>
 <title>Example 2.7</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width,
 height=device-height" />
 <style>
 /* portrait */
 @media screen and (orientation: portrait) {
 /* portrait-specific styles */
 body {
 background-color: blue;
 color: white;
 }
 }
 /* landscape */
 @media screen and (orientation: landscape) {
 /* landscape-specific styles */
 body {
 background-color: red;
 color: black;
 }
 }
 </style>
 <script src="cordova.js"></script>
 <script>
 br = "
";

 function onBodyLoad() {
 alert("Body Load");
 document.addEventListener("deviceready", onDeviceReady, false);
 //set the orientationchange event listener
 window.addEventListener('orientationchange',
 onOrientationChange);
 //for devices that don't fire orientationchange
 window.addEventListener("resize", onResize, false);
 //Fire this at the start to set the initial orientation on
 //the page
 updatePage();
 }

 function onDeviceReady() {
 navigator.notification.alert("Cordova is ready!");

 }

48 Chapter 2 Anatomy of a Cordova Application

 function updatePage(msg) {
 //Build an output string consisting of the different screen
 //measurement values
 var strongStart = "";
 var strongEnd = "";
 //var StrRes, or, sw, sh, ww, wh;
 or = strongStart + "Orientation: " + strongEnd +
 window.orientation + " degrees";
 console.log(or);
 strRes = or + br;
 sw = strongStart + "Width: " + strongEnd + screen.width;
 console.log(sw);
 strRes += sw + br;
 sh = strongStart + "Height: " + strongEnd + screen.height;
 console.log(sh);
 strRes += sh + br;
 ww = strongStart + "Inner width: " + strongEnd +
 window.innerWidth;
 console.log(ww);
 strRes += ww + br;
 wh = strongStart + "Inner height: " + strongEnd +
 window.innerHeight;
 console.log(wh);
 strRes += wh + br;
 document.getElementById('appInfo').innerHTML = strRes;
 }

 function onOrientationChange() {
 var msg;
 console.log("Orientation has changed");
 switch (abs(window.orientation)) {
 case 90:
 console.log("Device is in Landscape mode");
 break;
 default:
 console.log("Device is in Portrait mode");
 break;
 }
 updatePage();
 }

 function onResize() {
 console.log("Resize event fired");
 updatePage();
 }
 </script>
</head>

49Responsive Design and Cordova

<body onload="onBodyLoad()">
 <h1>Example 2.7</h1>
 <p>This is a Cordova application that responds to device
 orientation and resize events.</p>
 <p id="appInfo">Waiting for Cordova Initialization to complete.</p>
</body>
</html>

Figure 2.7 shows the application running on an Android device in portrait orientation.

Figure 2.7 Example 2.7 Running on an Android Device in Portrait Orientation

Figure 2.8 Example 2.7 Running on an Android Device in Landscape Orientation

Figure 2.8 shows the application running on an Android device in landscape orientation.

There’s a whole lot more that can be said about responsive design and the tools that address
it, but that’s way beyond the scope of this simple Cordova book. I’m a big fan of Smashing

50 Chapter 2 Anatomy of a Cordova Application

Magazine, and they’ve published some nice articles on web design and responsive design that
might help you with this topic:

■■ www.smashingmagazine.com/responsive-web-design-guidelines-tutorials/

■■ www.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-
mobile-version-of-your-website/

■■ www.smashingmagazine.com/2012/03/22/device-agnostic-approach-to-responsive-web-
design/

There are a lot of web design and development books available that cover this topic in much
more detail than I can. For example, take a look at the following Pearson titles:

■■ Dutson, Phil. Responsive Mobile Design: Designing for Every Device. Boston: Addison-Wesley,
2014.

■■ Kymin, Jennifer. Sams Teach Yourself Responsive Web Design in 24 Hours. Indianapolis, IN:
Sams Publishing, 2014.

Wrap-Up
In this chapter, I’ve shown you what makes an application a Cordova application, plus I’ve
shown you the sample application that the Cordova CLI creates for you. You now have the
building blocks necessary to start building your own Cordova applications.

In the next chapters, I’ll show you how to install Apache Cordova and use the Cordova CLI to
create and manage your Cordova projects.

Notice that in this chapter, I didn’t do anything to make my applications visually appealing.
You can use CSS to do this, which is not something I really want to cover in a Cordova book. In
Chapter 17 I’ll show you how to use third-party frameworks, some of them specifically designed
for hybrid applications, to add pizzazz to your Cordova web applications.

http://www.smashingmagazine.com/responsive-web-design-guidelines-tutorials/
http://www.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
http://www.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
http://www.smashingmagazine.com/2012/03/22/device-agnostic-approach-to-responsive-web-design/
http://www.smashingmagazine.com/2012/03/22/device-agnostic-approach-to-responsive-web-design/

This page intentionally left blank

Index

A
Aardwolf, 145

about:app-manager, Firefox, 206

Accelerometer API, 259–260, 335–337

clearWatch method, 335

getCurrentAcceleration method,
335–337

watchAcceleration method, 335, 337

access property, config.xml, 132, 134

ACTION_GET_CARRIER_NAME constant,

CarrierPlugin, 416

ACTION_GET_COUNTRY_CODE constant,

CarrierPlugin, 416

Active Scheme button, Xcode in iOS, 225

ADB (Android Debug Bridge) Helper, 206

Add Packaged App item, Firefox OS simulator,
207–208

AddEventListener

adding to applications, 46–47

Cordova events, 333

Cordova initialization, 30, 32, 34

debugging with, 137

generated web application files, 43

InAppBrowser, 363, 365–366

monitoring events, 333

working with Cordova APIs, 35, 37

Additional Tools window, Windows Phone
emulator, 259–261

506 Address book

Address book. See Contacts API

adduser command, Plugman, 111

ADM (Android Device Monitor) utility,
191–192

Administrators

creating symbolic links, 82

Windows App Store setup, 251

Adobe

Brackets. See Brackets web code editor

Dreamweaver, 16

PhoneGap. See PhoneGap

Topcoat. See Topcoat UI framework

ADT (Android Developer Tools)

Android SDK installation, 59–65

Android SDK Manager, 170–172

Android Studio vs., 57, 169–170

Ant installation, 56–59

build tools used with, 494

JDK installation, 52–56

ADT IDE

editing application content files, 179–180

importing Cordova project, 180–185

monitoring applications outside of,
191–192

overview of, 178

running Cordova applications, 185–191

ADT_HOME environment variable, Visual Studio,
268–269

alert() method

Cordova API errors with onError vs., 322

Cordova initialization with, 32–33

debugging with Firefox OS simulator,
217–218

testing applications in Xcode, 227

unavailable in universal Windows apps, 33,
247–248

using for debugging, 135–136

as visual notification, 328–329

Alerts, Windows security, 101–102

Anatomy

of default PhoneGap application, 310–312

of plugins, 397–398

Anatomy of Cordova application

generated files, 41–44

Hello World! 27–29

initialization, 29–34

leveraging APIs, 35–38

overview of, 27

responsive design, 45–50

structuring code, 38–41

Android

adding platform to existing project,
83–85

content refresh via Hydration, 285

creating application icons, 387–389

creating Cordova native plugin, 410–414

creating native plugins, 414–423

creating Plugman project, 106–108

deploying PhoneGap Build applications,
302–305

executing applications with run, 99–100

GapDebug on, 151–156

Hello World using Bootstrap on, 455

Hello World using jQuery Mobile on,
447–448

Hello World using OpenUI5 on, 459

Hello World using TopCoat on, 442

InAppBrowser benefits, 362

PhoneGap Developer running on, 150

platform support with Plugman, 118

Plugin Development Guide, 397

StatusBar plugin for, 368–370

testing application on emulator, 389–392

using merges, 385–387

android command, 170

Android Debug Bridge (ADB) Helper, 206

Android Developer Tools. See ADT (Android
Developer Tools)

507Automation

Android development with Cordova

ADT vs. Android Studio, 169–170

Android SDK Manager, 170–172

monitoring application outside ADT IDE,
191–192

overview of, 169

testing on physical device, 192–195

using ADT IDE. See ADT IDE

using Android Virtual Device Manager,
172–177

using Chrome debugging tools, 195–202

Android Device Monitor (ADM) utility, 191–192

Android SDK

Firefox App Manager and, 206

LogCat, 138

managing Android Virtual Devices, 173–177

managing with Android SDK Manager, 170–172

Tools, 59–60

Android SDK Manager (ASM), 170–172

Android Studio (beta)

vs. ADT, 169–170

Android SDK installation and, 59–60

configuring Android SDK and, 60–62

installer for, 60

migration from ADT to, xvii–xviii

Android Virtual Devices. See AVDs (Android Virtual
Devices)

Ant

adding Android to existing project, 83–85

build tools used with ADT, 494

installing for Android, 56–59

Apache Cordova 3 Programming, xvi–xviii,
74, 169, 220, 373, 469

Apache Cordova API Cookbook, xv–xviii, 7,
22, 154, 229, 317, 335, 353, 371, 439, 446

Apache Ripple. See Ripple Emulator (Apache
Ripple)

APIs, Cordova

implementing, 23–24

inconsistency of, 122–123

leveraging, 35–38

loading library in initialization, 32

native, 5–10

overview of, 4–5

App Manager. See Firefox App Manager

AppGyver, productivity enhancement tool, 486–489

app.js file, Ionic framework, 463–464

Apple iOS Developer Program, 62

Application development, end-to-end

about, 373

adding mobile device platforms, 374–375

adding plugins, 375–376

adding style, 378–380

creating compass watch, 381–382

creating new Cordova project, 374

preparing for debugging, 380–381

updating config,xml file, 376–377

using merges, 385–387

writing to console, 383

Apps List, Firefox App Manager, 214

apt-get update, 236

Aptana Studio, 16

editing HTML and JavaScript source code, 473

keeping web content files open when working
in Cordova, 126

using Aptana IDE for editing JavaScript
code, 469

Arguments

bash script, 161

Windows command file, 158

ARM-based Android emulators, 172

Arrays, contact object, 353

ASM (Android SDK Manager), 170–172

Attributes

Cordova initialization and viewport, 31

jQuery Mobile, 445–446

responsive design with CSS, 45–50

author property, config.xml, 132, 134

Automation. See Cordova CLI, automating

508 Availability, Cordova API

Availability, Cordova API, 320–321

Available Packages window, WebStorm, 482–483

Available Software Wizard

Eclipse, 179–180

THyM, 490–493

AVDs (Android Virtual Devices)

creating, 174–175

creating/managing system emulator
definitions, 191

defined, 172

Intel-based/ARM-based emulators for, 172–173

launch options, 176–177

naming, 174–175

selecting at runtime, 190

viewing device emulator settings, 174–175

wiping existing user data, 175

B
BackgroundColor preference, config.xml, 133

backgroundColorByName() method,
StatusBar, 370

Bash scripts, automating project setup, 161

Basic Settings, PhoneGap Build, 291–293

Batch files, automating tasks, 158

Battery Status plugin, 333–334

Beautify extension, Brackets, 474–475

beep method, hardware notifications, 327

Bootstrap, 45–50, 450–456

Bower, Joe, 72

Brackets web code editor

Auto Close Braces option, 474

coding Cordova, 16

Cordova plugin, 476–479

editing web applications, 223

keeping web content files open when
working in Cordova, 126

PhoneGap plug-in, 479

working with, 473–476

Breakpoints

debugging Ubuntu applications, 240–241

debugging with Visual Studio, 262–263

Firefox App Manager Debugger, 215–216

in JavaScript code with GapDebug, 154–155

remotely debugging iOS with Safari, 231–232

Browser

testing applications in desktop, 103

weinre debug server and client, 140–141

window size in responsive design, 45–50

build command, Cordova CLI, 98

Build process

Cordova application, 16–18

Cordova CLI managing, 96–98

PhoneGap, 3

Build tools

Grunt, 500–503

Gulp, 494–500

managing Android SDK, 170–172

overview of, 494

buttonLabel, 329

Buttons

adding to application’s main page, 34

Help, 206

physical menu vs. virtual, 332–333

Web Inspector JavaScript debugger, 231–232

C
C#, Windows Phone 8 on Cordova, 245

Callback functions

alerting user, 329–330

browser window events, 364

camera, 345

Cordova APIs, 8

Cordova initialization, 33

Cordova native plugin, 413

Cordova native plugins, 412–413

509Compass API

execute scripts, 364

iOS plugin, 426

Media API, 358

mol.js file for plugins, 402–403

onSuccess function, 366

callback parameter

alert() method, 329

confirm()method, 329–330

prompt()method, 330

callbackContext.success() method,
Android plugin, 416

Camera API, 319, 340–345

cameraOptions, 343

Discard button, 341

getPicture method, 340–343

Save button, 341–342

Take Photo button, 341

targetHeight property, 343, 345

targetWidth property, 343, 345

Camera plugin, 340

carrier.java file, CarrierPlugin class,
414–416

carrierName property, iOS plugin, 426

Cascading style sheets. See CSS (cascading style
sheets)

cd command, changing directories for new project,
77–82

CDN (content delivery network)-hosted files, 448

cdva-create, 162–167

cdva-hooks, 166

CEF (Chromium Embedded Framework),
Brackets, 473

charset tag, Cordova initialization, 31

ChildBrowser plugin, 360

Chrome DevTools

Console, 197–198

Elements pane, 199

Inspect Devices Application List, 197

JavaScript error, 201–202

overview of, 195–202

Sources pane, 200–201

testing plugin with, 406–407

USB debugging with, 195–197

Chromium Embedded Framework (CEF), Brackets, 473

Click chroot, Ubuntu, 242

CLIs (command-lines)

configuring proxy settings, 72–74

Cordova. See Cordova CLI

enabling verbose output, 74–75

Ionic, 460–464

PhoneGap. See PhoneGap CLI

Plugman. See Plugman CLI

types of, 71–72

WebStorm supporting, 479–485

close method, InAppBrowser, 363

.cmd extension, Windows, 158

Code

adding style to project, 378–380

Cordova application, 15–16

downloading for projects in this book, 30

structuring application, 38–41, 380

third-party validation tools, 469–473

Code editors, third-party

Adobe Brackets, 473–479

Aptana, 126, 469, 473

overview of, 473

WebStorm, 479–487

Collaboration, PhoneGap Build, 285, 292

Color, StatusBar, 370

Command lines. See CLIs (command-lines)

Command summary

Cordova CLI, 76

Plugman CLI, 105

Compass API

clearHeading method, 338

getCurrentHeading method, 338

510 Compass API (continued)

Compass API (continued)

heading object, 338

onSuccess function, 382

overview of, 337–339

results object, 337–339

watchHeading method, 338–339

watchOptions object, 381–382

Compass app

creating application icons, 387–389

creating compass watch, 381–383

with jQuery mobile look, 380

preparing application, 376–378

rotating compass graphic, 378–379

testing application, 389–392

using merges, 385–387

compile command, Cordova CLI, 76, 97

Components, Cordova, 4–5

Composer application, AppGyver, 486

ConfiGAP

Advanced Settings tab, 296–297

General Settings tab, 296

Permissions tab, 298

PhoneGap Build, 295, 299–301

Plugins tab, 298–299

config.json file, CLI configuration, 79

config.xml file

Cordova application options, 131–134

creating new Cordova project, 79

debugging with Firefox OS simulator, 209

PhoneGap application anatomy, 310–312

PhoneGap Build configuration, 294–301

PhoneGap Build plugins added via,
301–302

saving plugins, 92–94

uninstalling plugins, 104

updating information in new application,
376–377

Visual Studio tools for Cordova, 271–272

confirm()method, visual notifications,
329–330

connection object, 324–326

Console

ADT IDE, 185–187

Chrome DevTools, 196–197

debugging by writing to, 136–139, 226, 383

Firefox App Manager, 214

PhoneGap Server, 151

viewing output in GapDebug, 155–156

viewing output in weinre Debug Client, 145

Contacts API

based on W3C Contacts API, 352

contact object, 352–357

contact properties, 353

Contact picker, 356–357

create method, 352–353

find method, 355, 357

methods, 354–355

multiple property, 355

newContact object, 352–353

options object, 355

phone numbers, 356

pickContact, 356–357

populating contact object, 354

save method, 354–355

Container, designing web applications for, 13–15

Content

changing with weinre Debug Client, 142–145

editing Cordova application, 179–180

GapDebug highlighting HTML, 154

loading with InAppBrowser, 360–363

refreshing in PhoneGap Build, 285

content delivery network (CDN)-hostedfiles, 448

content property, config.xml, 132, 134

coolMethod, Javascript-only plugin, 401–402

--copy-from switch, project create,
81–82

511Cordova CLI, automating

Cordova, introduction to

accessing native APIs, 5–10

Adobe PhoneGap, 3–4

best uses of, 18–19

building applications, 16–18

coding applications, 15–16

components, 4–5

designing for container, 13–15

getting support, 20

going forward, 23–24

hybrid application frameworks, 25

license for, 13

overview of, 1–3

resources for, 20–23

supported platforms, 12–13

user interface capabilities, 10–12

Cordova APIs

Accelerometer API, 335–337

alerting user, 326–331

Camera API, 341–345

catching errors, 321–322

checking availability, 320–321

Compass API, 337–339

Contacts API, 352–357

Cordova events, 332–334

Cordova objects, 324–326

core, 317–319

documentation, 319–320

Geolocation API, 339–341

Globalization, 347–352

hardware APIs. See Hardware APIs

InAppBrowser, 359–366

Media API, 358–359

Media Capture API, 345–347

overview of, 317

setting application permissions, 322–324

Splashscreen API, 367

StatusBar plugin, 367–370

Cordova CLI

adding platforms, 82–85

adding plugins, 87–90

Android and. See ADT (Android Developer
Tools)

build management, 96–98

building applications with, 18

command summary, 76

cordova.js file and, 32

creating new Cordova project, 77–82, 124

creating Plugman project, 105–106

displaying project information, 95–96

executing Cordova applications, 98–103

generated web application files, 41–44

help, 77

installing on iOS, 66–67

installing on Ubuntu, 235–236

iOS requirements, 68–69

listing platforms, 85

listing plugins, 90

overview of, 51–52, 75

PhoneGap tools, 3

Plugman. See Plugman CLI

as primary CLI, 75

removing platforms, 86

removing plugins, 90–91

restoring plugins, 94

saving plugins, 92–94

searching for plugins using, 91–92

updating platforms, 86–87

upgrading Cordova/Cordova projects,
103–104

using, 76–77

WebStorm supporting, 479–485

Cordova CLI, automating

bash script for, 160–161

of Cordova processes, 164–167

NodeJS used across platforms, 162–164

overview of, 157

512 Cordova CLI, automating (continued)

Cordova CLI, automating (continued)

project setup, 157

Windows command file for, 158–160

cordova command, 33

cordova compile, 97

cordova create

new Cordova application, 124

new Cordova project, 77–82

Plugman project with Cordova CLI, 105–106

Cordova Device Motion API, 260–261

.cordova folder structure, CLI, 79–80

cordova-icon, 388

cordova info command, 95–96

cordova platform add windows, 246

cordova platform add wp8, 245

cordova platforms check, 86–87, 104

cordova platforms up android, 87

cordova platforms update, 87, 104

Cordova Plugin Registry. See CPR (Cordova Plugin
Registry)

Cordova plugins

adding plugins in Cordova CLI, 89

adding to applications, 375–376

adding to projects, 403

anatomy of, 397–398

creating Android plugin, 414–423

creating iOS plugin, 424–430

creating JavaScript-only plugin, 398–399

creating native plugins, 408–414

mol.js file, 400–403

publishing, 109, 431–434

removing, 91

restoring, 94

testing, 403–408

cordova prepare

build management with, 96–97

copying help.html file into appropriate web
content folders, 362

copying platform content into appropriate
web content folders, 129, 207

creating project with Visual Studio, 254–255

developing Cordova applications, 125–127

getting information about prepare process, 74

importing Cordova project, 180, 183

testing application with device emulator, 389

working with Gulp and, 498–499

working with Xcode in iOS, 221–225

Cordova processes, automating, 164–167

cordova run

debugging Ubuntu applications, 237,
242–243

testing on Android emulator, 389–392

cordova.exec method, 412, 416

cordova.js file, 32, 39–40

CoreTelephony framework, testing iOS
plugin, 427

CPR (Cordova Plugin Registry)

adding plugins from, 88, 431

adding user, 111

overview of, 110–111

plugin owner(s), 115–116

Plugman configuration information, 114–115

publishing plugins, 111–113

removing plugins installed from, 90–91

searching for plugins using, 113–114

unpublishing plugins from, 113

viewing plugin information, 114, 433

WebStorm, 482

create command, in Cordova CLI, 76

create script, Plugman project with shell
scripts, 106–108

Cross-platform mobile development, 8

CSS (cascading style sheets)

adding style to project, 378

changing with weinre Debug Client, 145

inserting with InAppBrowser, 365–366

jQuery Mobile containing, 444

513Device Orientation, Xcode in iOS

responsive design using, 45–50

Topcoat UI framework based on, 439–443

CSS libraries, jQuery Mobile, 445

cssInfo parameter, InAppBrowser, 366

CTTelephonyNetworkInfo class, iOS
plugin, 426

cvaReady object, structuring application
code, 41

D
-d flag, 74–75, 80. See also --verbose

Dashcode, iOS, 223

data-role attribute, jQuery Mobile, 446

Debugging

Android applications, 179, 193–194

Cordova applications with Visual Studio,
262–265

Firefox OS applications with device,
218–220

Firefox OS applications with simulator,
207–218

iOS applications remotely with Safari,
227–233

preparing application for, 380–381

separating JavaScript code for, 39

on simulator vs. physical device, 224

Ubuntu applications, 237–243

Windows Phone 8, 245–246

Debugging tools

alert(), 135–136

GapDebug, 151–156

PhoneGap Developer app, 148–151

Ripple Emulator (Apache Ripple),
145–148

weinre, 139–145

writing to console, 136–139

Delete packages button, ASM, 170

description property, config.xml, 132, 134

Design

container, 13–15

responsive web application, 45–50

Develop menu, remotely debugging iOS, 228

Developer productivity enhancement tools

AppGyver, 486–489

Eclipse THyM, 490–493

overview of, 485–486

Developer Settings page, Firefox OS, 218–220

Developer types, 71–72

Development environment, configuring

Android development tools, 52–62

CLI installation, 65–69

Cordova CLI installation, 51–52

iOS development tools, 62–65

overview of, 51

Plugman installation, 69–70

Development mechanics

API inconsistency, 122–123

application graphics, splash screens, and
icons, 123–124

configuring applications, 131–134

creating applications, 124–131

debugging capabilities. See Debugging tools

overview of, 121

testing applications, 134–135

Development process, end-to-end

about the application, 373

application icons, 387–389

creating application, 374–385

testing application, 389–395

using merges, 385–387

Device Applications pane, Firefox, 211

Device Information page, Firefox, 219

Device Motion plugin, 335

device object, 326

Device Orientation plugin, 337–339, 376

Device Orientation, Xcode in iOS, 224

514 Device plugin

Device plugin, 326, 376

device.platform, API inconsistency, 123

deviceready event

checking API availability, 321–322

Cordova applications responding to, 93, 95, 295

Cordova initialization, 29, 32–34

debugging with alert(), 135–136

delay in event firing and, 407

event listener for, 40–41, 43, 273, 467

generation of device information list
following firing of, 440

Hello World using jQuery Mobile, 447

setting onDeviceReady for, 381

Devices utility, Xcode, 227

device.version, API inconsistency, 123

Dialog plugin, 375–376

Directories, changing for new project, 77–82

DisallowOverscroll preference, config.
xml, 133

Displaying project information, Cordova CLI,
95–96

displayName property, contact object, 353

Documentation

application permissions, 323

Cordova, 5, 21–23

Cordova API, 319–320

Geolocation API, 318

JSHint, 472

PhoneGap Build, 295

PhoneGap CLI, 308

plugin, 431

Plugin APIs, 319

plugin.xml file, 400

testing Android on physical device, 194–195

weinre, 145

Domain Access tab, config.xml, 271

DOS command, automating tasks, 158

Dreamweaver, Adobe, 16

Dynamic pages, 13–14

E
Eclipse

adding ADT to, 178

as Android Developer Tool, 59

coding Cordova applications, 16

editing Cordova application content files,
179–180

THyM, 490–493

Edit Configuration, WebStorm, 482–483

Editing, Cordova application content files,
179–180

Elements pane

Chrome DevTools, 200

Ubuntu, 239

emulate command

in Cordova CLI, 76

Ripple Emulator and, 147

running application on device emulator, 100,
207, 464

Emulator

Android. See AVDs (Android Virtual Devices)

grabbing screen shot, 192

running Cordova application in ADT IDE,
186–188

running Cordova application on Ripple,
147–148

testing Android plugin, 420–422

testing application with Android, 389–392

testing weinre, 142–145

vs. simulator in this book, 135

Windows Phone, 259–261

End-to-end process. See Development process,
end-to-end

Environment variable overrides, Visual Studio,
268–269

errorCallback parameter, Cordova native
plugin

error capture and, 7–8

executed on failure of plugin method call,
412–413

515Getting Started page, Bootstrap

Errors

Camera API, 342

catching Cordova API, 321–322

code validation tools, 469–473

Globalization API, 348

InAppBrowser window events, 364

JSHint code validation, 471–472

JSLint code validation, 470–471

Media Capture API, 347

Ripple, 148

Events

Cordova supported, 332–333

InAppBrowser window, 363–364

responsive design, 46

exec object, Cordova native plugin, 412–413

Execute scripts, InAppBrowser, 364–365

executeScript method, InAppBrowser,
364–365

exit event, InAppBrowser, 363

Extensions, searching for, 474–475, 477

external web content editor, 179–180

F
Files, plugin. See Plugins

Filter, ADT IDE LogCat panel, 188

filter property

Contacts API, 355

watchOptions object, 381–382

Firefox App Manager

debugging on Firefox OS device, 218–220

debugging with Firefox OS simulator,
207–218

device compatibility issues, 220

Firefox OS and, 203–207

Firefox OS

debugging applications, 218–220

debugging with simulator, 207–218

developer tools, 203–207

overview of, 203

simulator, 203, 207–209

Folders

Android SDK installation, 61

Bootstrap, 450

Cordova native plugin structure, 410

creating Android plugin, 419

creating new Cordova project, 78–82

developing Cordova applications, 124–126

hybrid application, 269–270

plugin, 90, 128

ThyM, 492–493

frequency property, watchOptions,
381–382

Fullscreen preference, config.xml,
133–134

G
GapDebug, 151–156

Generated files, 41–44

Geolocation API, 318, 339–340

clearPosition method, 339–340

coordinates property, 340

getCurrentPosition method,
339–340

timestamp property, 340

watchPosition method, 339–340

getCarrierName method

Android device results, 423

Android plugin, 418

Cordova native plugin, 412

getCountryCode method

Android device results, 423

Cordova native plugin, 412

iOS plugin, 426–430

Getting Started page, Bootstrap, 450

516 Git

Git

installing for iOS, 65–66

proxy settings for, 73

git config, 73

GIT_HOME environment variable, 268–269

GitHub

accessing plugin source code, 398

adding plugins from, 88

Cordova 3 storing plugins in, 432

removing plugins installed from, 90–91

Globalization API, 347–352

adding Globalization plugin to
project, 347

dateToString function, 350–351

error codes, 348

examples of use of, 350–352

methods and parameters, 348–349, 351

Globalization plugin, 347

Google Chrome, 151–152, 195–202. See also
Chrome DevTools

Google Gmail, 14

Google Maps, 14

Gradle

Ant vs., 57

Build tools used with ADT, 494

Graphics

application icons, 387–389

application issues and, 123–124

Splashscreen API and, 367

testing on physical devices, 393

Grunt tool

as build tool, 494

executing Grunt process, 502–503

gruntfile.js file, 500–502

installing, 500

overview of, 500

types of processes managed by, 167

gruntfile.js file, 500–502

Gulp tool

as build tool, 494

example of use in Cordova project, 495

installing and populating gulpfile.js, 494–495

Ionic and, 464–465

Ionic including configuration files for,
460–462

listing of gulp.js file, 495–497

tasks performed by, 498–500

types of processes managed by, 167

gulpfile.js, 495–497

H
Hardware APIs

Accelerometer API, 335–337

Camera API, 341–345

Compass API, 337–339

Geolocation API, 339–341

Globalization API, 347–352

Media Capture API, 345–347

overview of, 334–335

Hardware notifications, Cordova APIs, 326–327

HAXM (Hardware Accelerated Execution Manager)
installer, 173

Heading watch, 381–382

Hello World!

Creating Cordova project, 77–82

generated files, 41–44

initialization, 29–34

leveraging Cordova APIs, 35–38

responsive design and Cordova, 45–50

starting with, 27–29

structuring code, 38–41

updating with UI from Topcoat, 439–441

using Bootstrap, 454–455

using Ionic framework, 461–464

using jQuery Mobile, 444–447

517index.html file

using Onsen UI, 465–466

using OpenUI5, 456–457

Help

Firefox App Manager, 204

PhoneGap CLI, 308–309

help, Cordova CLI, 76–77

hide() method, StatusBar, 368–369

HideKeyboardFormAccessoryBar
preference, config.xml, 134

Highlighting

HTML content with GapDebug, 154

target content with weinre, 143–145

Home Screen, Firefox OS 2.0, 212–213

Hooks folders

adding, 269

complexity added to project with, 106

creating, 166–167

enhancing CLI commands with, 165

in new Cordova project, 79

options, 165–166

role in code execution, 131

role in execution of code validation tools, 469

HTML

designing for container, 13–14

generated web application files, 41–44

structuring application code, 38–41

updating content in Web Inspector, 230–231

web applications using HTML5, 14–15

http.proxy setting, Git, 73

https.proxy setting, Git, 73

Hybrid applications

best use of, 18–19

defined, 1

designing for container, 14–15

framework options, 25

Ionic framework for, 459–464

managing using AppGyver, 487–489

Monaca as, 464

for new project with ThyM, 490–492

WebStorm support for, 482–483

Hybrid Mobile project, ThyM, 490

Hydration, PhoneGap Build, 285

I
Icons, creating application, 123–124, 387–389

ID

adding plugin to project using, 433

removing plugins using, 90–91

searching for plugin with unknown, 91–92

IDE plugins, 18, 178–191

ImageMagick, 388

Import Wizard, ADT IDE, 181–183

Importing, Cordova project

copying files, 183–184

cordova prepare command and, 180

locating project folder, 182

using ADT IDE Import wizard, 181–183

viewing available software with Eclipse
wizard, 180

InAppBrowser API

execute scripts, 364–365

insert CSS, 365–366

issues with, 360

loading content, 360–363

overview of, 359–360

user interface, 12

window events, 363–364

index.html file

adding reference to file in, 378–380

ADT IDE, 184

checking API availability, 320–321

contents of HelloCordova, 41–44

Hello World using Ionic framework, 461–462

Hello World using jQuery Mobile, 444–445

Hello World using Onsen UI, 465–466

518 index.html file (continued)

index.html file (continued)

Hello World using OpenUI5, 456–457

testing Android plugin, 420–421

testing iOS plugin, 428

testing plugin on Chrome DevTools, 406–407

Visual Studio tools for Cordova and, 273

index.js file

contents of, 43–44, 383–385

Hello World updated with UI from Topcoat,
439–440

Hello World using Bootstrap, 454–455

Hello World using jQuery Mobile, 446–447

Hello World using Onsen UI, 466–467

Hello World using OpenUI5, 457–458

JSHint code, 471–472

JSLint code, 470–471

splitting JavaScript into own, 380

structuring application code, 40–41

testing Android plugin, 421–422

testing Javascript-only plugin, 404–405

info command, Cordova CLI, 76

Initialization

creating Android plugin, 416

creating Cordova applications, 29–34

insertCSS method, InAppBrowser, 366

Inspect Devices Application List, Chrome DevTools,
196–197

Inspector window, Firefox App Manager, 215

Install packages button, ASM, 170

Install page, PhoneGap Build, 302–303

Install Wizard, ADT, 179–180

Intel-based Android emulators, 172–177

Intel XDK, Apache Ripple for, 145

IntelliJ IDEA IDE, 59

Ionic UI framework

installing, 460

overview of, 459–464

WebStorm supporting, 479–485

iOS

adding platform to existing project,
83–85

application icons for, 387–389

automating project setup across
platforms, 163

build/deployment to simulator in Visual
Studio, 275–281

content refresh via Hydration, 285

Cordova native plugin for, 410–414

GapDebug on, 151–156

Hello World using jQuery Mobile on,
447–448

Hello World using Onsen UI on, 467

Hello World using Topcoat on, 442–443

InAppBrowser benefits for, 362

installing, 68–69

jQuery Mobile built to mimic, 444

platform support with Plugman, 118

plugin for, 424–430

Plugman project with Cordova CLI
for, 106

StatusBar plugin for, 368–370

testing application on simulator, 389–390

using merges, 385–387

iOS development tools

CLI requirements, 68–69

Cordova installation, 66–67

Git installation, 65–66

Node installation, 65

overview of, 62–65

iOS development with Cordova

overview of, 221

testing applications in Xcode, 225–227

using Safari Web Inspector, 227–233

working with Xcode, 221–225

isoCountryCode property, iOS plugin, 426

isOffline function, 333

519Linux

J
javac command, installing JDK for Android,

52, 56

JAVA_HOME environment variable, Android
development, 52–56

JavaScript

access to Cordova native APIs, 5–10

build tools used with Cordova, 494

Chrome DevTools error, 201–202

configuring application for weinre, 140–141

Cordova alert results vs., 328

Cordova application packaging process and,
2–3

Cordova native plugin using, 411–412, 414

failing silently in Cordova applications, 138

jQM libraries, 444–445

plugins containing source file for, 8–9, 398

structuring application code by separating,
38–41

try/catch block for API inconsistency, 123

JavaScript Dynamic Content shim, Windows Store
apps, 249

Javascript-only plugins, creating

mol.js file, 401–403

overview of, 398–399

Plugin Development Guide for, 397

plugin.xml file, 399–401

testing, 403–408

JBoss, ThyM tool, 490–493

JDK (Java Development Kit), Android development,
52–56

JetBrains, 479

jQM (jQuery Mobile)

adding style to project, 378–379

rotating compass graphic on page, 378–379

structuring application code for, 39

as third-party UI framework, 444–450

js-module element, plugin.xml, 417–418

JSHint tool

code editors supporting, 473

installing, 471

overview of, 471–473

problems report in Brackets, 475–476

WebStorm support, 473, 485

JSLint tool

code editors supporting, 473

installing, 470

overview of, 470–471

JSON, 79, 80

.jsproj files, Windows 8.1, 246

K
Keywords, searching for plugins, 433–434

L
Landscape orientation

Hello World using Bootstrap on Android, 455

in responsive design, 45–50

working with Xcode in iOS, 223–225

Lazy loading, Cordova CLI, 79

Libraries

in Cordova initialization, 32

downloading to use jQuery Mobile, 445

jQM JavaScript, 444

Licenses

Cordova, 13

for generated web application files, 41–42

Visual Studio for Windows Phone using,
250–251

--link-to switch, folders, 82

Links, symbolic, 82

Linux

Cordova tools for Ubuntu supported on, 235

creating application icons, 388

520 Linux (continued)

Linux (continued)

executing CLI commands in, 76–77

installing Cordova CLI on Ubuntu, 236

installing Grunt in, 500

installing Gulp in, 494

installing Ripple in, 146

updating Cordova CLI/Cordova projects,
103–104

writing bash script to automate project setup,
160–161

Listing

project platforms, 85

project plugins, 90

ListView, jQuery, 445–447, 459

Live preview, Brackets, 473–474

loaderror event, InAppBrowser, 363

loadstart event, InAppBrowser, 363

loadstop event, InAppBrowser, 363

Local content, InAppBrowser, 362–363

Locals panel, Visual Studio, 264

Location

Geolocation API, 339–340

Windows Phone emulator, 260–261

'location=yes' parameter,
InAppBrowser, 361

LogCat

Android SDK, 138

Message Filter Settings in ADT IDE, 186–188

monitoring activity outside of ADT IDE,
191–192

M
Macintosh OS X

Android SDK configuration on, 60–62

application icons for, 388

automating project setup across platforms,
162–164

automating project setup with bash script,
160–161

Brackets Cordova plugin on, 476–479

executing CLI commands on, 76–77

GapDebug on, 152

installing Ant for Android on, 56–59

installing Grunt on, 500

installing Gulp on, 494

installing JDK for Android, 52–56

installing JSHint on, 471

installing Ripple on, 146

installing weinre on, 140

iOS development, 65–69

remote agent installation, 276–278

remotely debugging iOS with Safari, 227–233

updating Cordova CLI/Cordova projects,
103–104

Windows development system
requirements, 249

Xcode IDE installation using, 63–65

MakeAppicon, 388

makeListItem function, Topcoat UI, 440

Manifest Editor, 209

Manifest file, HTML5, 14

MarkdownPad, 431–432

MDHAE (Multi-Device Hybrid Apps Extension)

folder structure, 269–270

installation of, 265–266

overview of, 265

warning page display, 268

Media API, 358–359

media object, 358–359

media plugin, 358–359

OnStatus function, 358–359

Media Capture API, 340, 345–347

captureAudio method, 346

captureVideo method, 346

duration property, 347

521Notifications, user

getFormatData method, 346

options parameter, 347

Media Capture plugin, 345

Merges folder

copying application content from, 96

managing platform-specific files with,
129–131

using merges, 385–387

MessageDialog class, troubleshooting
Windows, 247

Methods

Globalization API, 349

Media API, 358

Microsoft

configuring Windows Phone device for app
testing, 253

creating account, 251

registering Windows Phone device with, 251

Windows. See Windows

mol.js file, 401–403, 408

Monaca cloud-based development, 464

More Information page, Firefox OS Settings, 219

Multi-Device Hybrid Apps Extension. See MDHAE
(Multi-Device Hybrid Apps Extension)

myplugin.js, 117–118

myplugin.m file, 118

N
name property, config.xml, 132, 134

Naming conventions

Android Virtual Devices, 174–175

debugging application with weinre, 142

hooks files, 166

new Cordova project, 77

PhoneGap Build application, 288

plugins, 89–90

Windows Phone device, 251–252

Native APIs

access to, 5–6, 127

Cordova initialization and, 29

creating Cordova native plugins, 408–414

list of, 6–7

setting application permissions, 322–324

Native code

creating Android plugin, 414–423

creating Cordova native plugin, 408–414

creating iOS plugin, 424–430

debugging iOS with Xcode, 226

deploying PhoneGap Build applications,
302–303

not necessary in plugins, 398

Native developers, using Plugman CLI, 72

Navigator, Cordova initialization, 33–34

navigator.notification.alert()

in Cordova initialization, 30, 32–34

debugging with alert() vs., 136

leveraging Cordova APIs, 35, 37

structuring application code, 40

Network connectivity, loss of, 333

Network Information plugin, 324

New Project dialog, Visual Studio, 266–267

New Project wizard, ThyM, 490–491

Nitobi, and PhoneGap, 4

NodeJS (Node JavaScript runtime engine)

build tools used with Cordova, 494

Cordova CLI using, 51

cross-platform approach using, 162–164

installing weinre, 139–140

iOS development, 65

Norton Antivirus, 209

Notepad, 15

Notifications, user

hardware, 326–327

overview of, 326

visual, 327–331

522 npm config command, proxy settings

npm config command, proxy settings,
73–74

NPM (Node Package Manager)

adding Console plugin, 375

adding mobile device platforms to
application, 374–375

automating project setup across platforms,
162–164

configuring proxy settings for, 73

creating application icons, 388

Git installation for iOS development, 65

installing Cordova CLI for iOS, 66–67

installing Cordova CLI on Ubuntu, 236

installing Grunt, 500

installing Gulp, 494

installing JSHint, 471

installing JSLint, 470

installing Ripple on Windows, 146

Ionic including configuration files for,
460–461

plugins now stored in, 432

npm-g

cdva-create Node installation, 162

Cordova icon Node installation, 388

Cordova installation, 66–67, 236

Git installation, 65–66

Grunt installation, 500

Gulp installation, 494, 497

Ionic installation, 460

iOS installation, 68–69

JSHint installation, 471

JSLint installation, 470

Plugman installation, 69

remote Macintosh agent installation, 276

Ripple Emulator installation, 146

updating Cordova, 103

weinre installation, 139–140

O
Objective-C, iOS applications, 225

Objects, Cordova, 324–326

OnBodyLoad function

Cordova initialization, 32, 34

debugging with alert(), 136

onDeviceReady function

Cordova initialization, 32, 34

generated web application files, 44

leveraging Cordova APIs, 36

setting deviceready event, 381

structuring application code, 41

Topcoat UI, 440

onError function

catching Cordova API errors, 322

Compass API, 382–384

preparing application for debugging, 380–381

testing on Android emulator, 392

OnFailure function

Accelerometer API, 336–337

Compass API, 338–339

Contacts API, 354–355

Globalization API, 348

Media API, 358–359

Media Capture API, 346–347

onload event function, Cordova initialization, 32

onOrientationChange function, responsive
design, 46–48

Onsen UI framework, 464–468

OnSuccess function

Accelerometer API, 336–337

Compass API, 337–339

Contacts API, 354–355

Geolocation API, 339–340

Globalization API, 348, 350

523phonegap remote build android

InAppBrowser, 364–365, 366

Media API, 358–359

Media Capture API, 346

Open Project link, Visual Studio, 256

OpenUI5 (SAP), 456–459

Orientation

Accelerometer API, 337

Hello World using Bootstrap on Android, 455

responsive design and, 45–50

Windows Phone emulator, 259–260

working with Xcode in iOS, 223

Orientation preference, config.xml, 133–134

overlaysWebView() method, StatusBar,
368–369

P
Package Explorer, 183, 186

package.json file

executing Grunt process, 502–503

executing Gulp process, 497–500

publishing plugin, 432

Packaging process, 2

Packaging tab, config.xml, 271–272

PATH environment variable. See also System path

adding A nt to System path, 62

Ant installation, 57–58

Android JDK installation, 54–56

Android SDK installation, 61–62

editing Windows Path variable, 56

Pause button, Firefox App Manager, 215–216

Permissions

Android application, 419–420

ConfiGAP tab for, 298

Firefox App Manager Device, 212

setting application, 322–324

Personal Package Archive (PPA), Ubuntu, 236

PhoneGap

history of Cordova and, 4

plugin for Brackets, 479

resources for, 20–21

understanding, 3

used in this book, 3

using with ThyM, 492

WebStorm supporting, 479–485

PhoneGap Build

adding plugins to project, 301–302

collaboration, 285

configuring application, 294–301

content refresh via Hydration, 285–286

deploying applications, 302–305

forum for, 20

new application, 287–293

overview of, 18, 283

PhoneGap CLI interaction with, 312–315

quick prototyping, 284–285

understanding, 283–284

PhoneGap CLI

anatomy of default application, 310–312

dealing with API inconsistency, 123

getting help, 308–309

interacting with PhoneGap Build, 312–315

overview of, 307

project management, 309

rebirth of, 307–308

workflow differences, 312

phonegap create, 308–309

PhoneGap Developer app, 148–151

PhoneGap Enterprise, 20

PhoneGap Essentials, xvi

phonegap remote build
android, 313

524 Physical devices

Physical devices

debugging Firefox OS with, 218–220

debugging in Xcode with, 223–224

debugging Ubuntu with, 242–243

deploying PhoneGap Build applications to,
302–305

deploying Windows Phone apps to, 251

Firefox App Manager communicating with, 206

grabbing screen shot of, 192

Hello World using Bootstrap on Android, 455

Hello World using jQuery Mobile on, 447–448

Hello World using Onsen UI on iOS, 467

Hello World using OpenUI5 on Android, 459

Hello World using Topcoat on, 442–443

running Cordova in Visual Studio, 258

running Cordova in Xcode, 225

testing Android on, 192–195

testing Android plugin on, 423

testing application on, 392–395

testing iOS plugin, 430

testing plugin on, 406–407

testing with Windows Phone, 251–254

platform command, Codova CLI

adding platforms, 82–85

in CLI command list, 76

defined, 82

listing platforms, 85

removing platforms, 86

updating platforms, 86–87, 104

Platform tools, Android SDK, 170–172

platformOverrides.js file, Visual Studio, 273–274

Platforms

adding support for mobile device, 374–375

adding support with Plugman CLI, 118–120

adding to existing project, 82–85

automating project setup with NodeJS across,
162–164

Brackets Cordova plugin, 476–477

building Cordova applications for, 16–18

Cordova API quirks across, 319–320

Cordova support for Windows, 245

creating Android plugin, 418

creating Cordova native plugin, 410

dealing with API inconsistency, 122–123

deploying PhoneGap Build applications,
302–305

developing Cordova applications for multiple,
124–131

listing supported, 85, 102–103

registering with manufacturers, 100

removing with Cordova CLI, 86

removing with Plugman, 120

supported by Cordova, 12–13

supported by GapDebug, 151

updating, 86–87, 104

Play symbol, Visual Studio, 258

Plugin APIs, documentation, 319

Plugin Development Guide, 397

Plugin Registry. See CPR (Cordova Plugin Registry)

plugin command, Cordova CLI

in CLI command list, 76

plugin search, 91–92

Plugins

adding Device API to project, 36

adding to application, 375–376

adding with Cordova CLI, 87–90

adding to PhoneGap Build project, 301–302

Adobe PhoneGap API, 3

anatomy of, 397–398

architecture of, 5–8

for Brackets, 476–479

building Cordova application, 18, 127–131

coding applications, 15–16

ConfiGAP tab for, 299

as Cordova components, 4

creating Android native, 414–423

525phonegap command, Cordova CLI

creating Cordova native, 408–413

creating iOS, 424-430

creating JavaScript-only, 8–9, 398–403

creating with Plugman, 110, 116–118

documentation for Cordova, 23

forgetting to add critical project, 322

listing with Cordova CLI, 90

managing using CLI, 319

native developers using, 72

publishing, 431–434

registry for Cordova, 9–10

reinstalling in upgraded project, 104

removing with Cordova CLI, 90–91

restoring with Cordova CLI, 94

saving with Cordova CLI, 92–94

search path for, 80–81

searching for particular, 91–92

testing, 403–408

troubleshooting PhoneGap Build, 291

uninstalling with Plugman, 110

using Plugin Registry, 110–116

WebStorm Cordova, 482

Plugins tab, config.xml, 271–272

plugin.xml file

creating Android plugin, 417–418

creating Cordova native plugin, 411

creating Javascript-only plugin, 399–401

overview of, 398

publishing plugins to Plugin Registry, 111–113

updated, 118–120

Plugman CLI

command summary, 105

creating Javascript-only plugin, 399

creating plugins, 69–70, 116–118

creating Plugman projects, 105–108

installing, 69–70

installing plugins, 109–110

overview of, 104

platform support with, 118–120

Plugin Registry, 110–116

plugman adduser, 431

plugman config get, 114

plugman config ls, 114

plugman create, 116–117, 409–410

plugman info, 114

plugman install, 109, 113

plugman owner, 115–116

plugman platform, 118–120

plugman platform remove, 120

plugman publish, 431

plugman publish pluginfolder, 431

plugman search command, 113

plugman unpublish plugin_id, 113

uninstalling plugins, 110

used by Cordova CLI, 71

Portrait orientation

for Hello World using Bootstrap on
Android, 455

in responsive design, 45–50

working with Xcode in iOS, 223–225

PPA (Personal Package Archive), Ubuntu, 236

Preferences

config.xml file, 133–134

default PhoneGap application, 310–311

remotely debugging iOS with Safari, 228

StatusBar plugin, 368

prepare command, Cordova CLI

build command calling, 98

in build management, 96–97

copying code into platform subfolders,
126–127

copying platform content into appropriate web
content folders, 129, 207–208

in Cordova CLI, 75–76

creating new Cordova project, 82

creating project with Visual Studio, 255

526 phonegap command, Cordova CLI (continued)

prepare command, Cordova CLI (continued)

editing weg application content and, 125

getting information about prepare process, 74

hooks folder exposing prepare events, 165–167

importing Cordova projects, 179–180, 183

project management with PhoneGap and,
309, 312

role in managing cordova.js file, 108

testing applications with device emulator, 389

using with serve command to check that web
content is current, 100

working with Gulp and, 498–499

working with Xcode and, 221–225

Problems report, Brackets, 475–476

Processes, automating Cordova, 164–167

Progress panel, ADT IDE, 185

Project, Cordova

build management, 96–98

creating, 77–82

creating new, 374

creating with Visual Studio, 254–255

displaying information, 94

executing applications, 98–103

importing, 180–185

managing platforms, 82–87

managing plugins, 87–94

opening in Visual Studio, 256–258

upgrading, 103–104

Project Options menu, Visual Studio, 257

Project setup, automating

bash script, 160–161

cross-platform approach using NodeJS, 162–164

overview of, 157

Windows command file, 158–160

Projects

creating Plugman, 105–108

managing with PhoneGap CLI, 309

Visual Studio options for new, 266–267

prompt()method, visual notifications, 330–331

Prototyping, PhoneGap Build quick, 284

Proxy settings, 72–74

publish , Plugman, 111–113

Publishing

plugins, 431–434

plugins to Plugin Registry, 111–113

testing app on physical devices before,
251–254

Q
QR (Quick Response) code

AppGyver steroids application, 488–489

PhoneGap Build applications, 302

R
readme.md file, plugins, 112–113, 431–432

Ready to Build button, PhoneGap Build, 288–289

Rebuild All button, PhoneGap Build, 289

Registration

Windows Phone Dev Center, 251

Windows Phone developer, 251–253

Registry, Cordova Plugin, 9

Remote agent, iOS build to simulator in Visual
Studio, 275–281

remove(rm) command, 86, 90

Removing

platforms, 86

project plugins, 90–91

Resize function, responsive design, 46–48

Resource filters, ADT IDE, 184

Responsive design,

Bootstrap and, 450

browser and window size and orientation,
45–49

CSS use in, 45

527Signing keys, troubleshooting PhoneGap Build

examples of portrait and landscape
orientation, 49

resources for, 50

Responsive Mobile Design: Designing for Every
Device (Dutson), 50

restore command, Cordova CLI

in Cordova CLI command list, 76

restore plugins , 94, 104

Ripple Emulator (Apache Ripple)

debugging Cordova application, 274–275

debugging with, 145–148

installing, 146

viewing application on multiple devices, 380

Run As menu, ADT IDE, 186, 191

Run button

debugging Ubuntu applications, 240–241

running Cordova project in Xcode, 224

Visual Studio tools for Cordova, 274–275

run command, Cordova CLI

in Cordova CLI command list, 76

running applications on device emulator,
98-99, 207, 476–477

Run Configurations, 188–190, 482–484

Run menu, Eclipse, 493

Running, Cordova application, 185–191

S
Safari Web Inspector

debugger icons, 232

enabling remote debugging of iOS, 228–230

setting breakpoints/stepping through JavaScript
code, 231–232

updating HTML content in, 230–231

viewing/editing variable values, 232–233

Sams Teach Yourself jQuery Mobile in 24 Hours
(Dutson), 450

Sams Teach Yourself Responsive Web Design in
24 Hours (Kymin), 50

SAP Mobile Platform (SMP), 285

SAP Mobile Platform Hybrid SDK

author’s work with, xxiii

over-the-air web content updates for
production applications, 285

types of hybrid mobile applications, 25

SAP (OpenUI5), 456–459

Sass, Ionic support for, 461–462

save command

in Cordova CLI command list, 76

save plugins, 92–94, 104

Scale, in responsive design, 45–50

Scanner application, Steroids, 486–489

Schemes, for Cordova project in Xcode, 224

Screen shots, grabbing, 192, 227

script tag, Cordova initialization, 31–32

Scripts, executing in InAppBrowser, 364–365

SDK (software development kit)

building Cordova applications, 1, 16–18

installing Android, 59–65

Search, for plugins using keywords, 433–434

Search paths

installing local plugin, 89

searching for plugin, 91–92

Security

PhoneGap Build applications to Android,
302–303, 305

Windows app limitations, 247–248

_self parameter, InAppBrowser, 361

serve command

in Cordova CLI command list, 76

overview of, 100–101

PhoneGap, 148–151

Session Filter, ADT IDE LogCat panel, 188

Shell scripts, Plugman, 106–108

show() method, StatusBar, 368–369

Signing keys, troubleshooting PhoneGap Build,
290–291

528 Simulator

Simulator

debugging iOS with Xcode, 226–227

debugging on physical device vs., 223

debugging Ubuntu applications, 237–242

debugging with Firefox OS, 207–218

installing Firefox OS, 206–207

testing application on iOS, 389–390

testing iOS plugin, 430

testing PhoneGap Build applications on,
304–305

using weinre with device, 142–145

vs. emulators in this book, 135

Size, Windows Phone emulator, 259

Smashing Magazine, 49–50

SMP (SAP Mobile Platform), 285

Software development kit (SDK)

building Cordova applications, 1, 16–18

installing Android, 59–65

Solution Explorer, 257–258

someOtherFunction function, 34

Source code

accessing for plugin, 398

Cordova, 4

Sources pane

Chrome DevTools, 200

Ubuntu, 239–241

Splash screens, creating, 123–124

Splashscreen API, 367

showSplash function, 367

Splashscreen plugin, 367

Stack Overflow, Cordova support, 20

Start Simulator button, Firefox OS simulator, 206

Static HTML pages, traditional web applications,
13–14

StatusBar object, 368–370

StatusBar plugin, 367–370

Step Into button

debugging iOS, 232

debugging Ubuntu, 240–241

debugging with Firefox OS simulator,
215–216

Step Out button

debugging iOS, 232

debugging Ubuntu, 241–242

debugging with Firefox OS simulator, 215

Step Over button

debugging iOS, 232

debugging Ubuntu, 240–241

debugging with Firefox OS simulator,
215–216

Steroids application, by AppGyver,
486–489

steroids command, 486–489

Stop button, Cordova project in Xcode, 224

Style, StatusBar, 370

styleDefault() method, StatusBar, 370

successCallback parameter, Cordova native
plugin, 7–8, 412–413

Support, Cordova, 20

Switches, run command, 99–100

Symbolic links, 82

_system parameter, InAppBrowser, 361

System path

adding Ant to, 62

ADT installation and, 60

Android SDK installation and, 61–62

Ant installation and, 57–58

cvs-create.sh and, 161

JDK installation and, 54

Node.JS installation and, 65, 76

System requirements, Windows development with
Cordova, 249

529Twitter, creating Bootstrap

T
Target platforms

PhoneGap Build, 284–285

universal Windows app project, 246

Visual Studio Run menu, 275–276

Xcode available device, 224–225

telephone=yes tag, Cordova initialization, 31

Telephony API, 414–423, 426

Context class, 414

TelephonyManager class, 414

Testing

Android on physical device, 192–195

Android plugin, 420–423

application in desktop browser, 103

application with device emulators,
389–392

Cordova applications, 32, 134–135

Cordova applications in Visual Studio, 258

Cordova applications in Xcode, 225–227

as debugging. See Debugging

debugging tools. See Debugging tools

Git configuration for iOS, 65–66

iOS plugin, 427–430

Node installation for iOS, 65

plugins, 403–408

separating JavaScript code for debugging, 39

TextEdit, 15–16

The Hitchhiker’s Guide to the Galaxy
(Adams), 398

Themes

Topcoat, 439, 442–444

UI5, 457

Third-party tools

build, 494–503

code editors. See Code editors, third-party

code validation, 469–473

developer productivity enhancement,
485–493

overview of, 469

Third-party UI frameworks

Adobe Topcoat, 439–443

Bootstrap, 450–456

Ionic framework, 459–464

jQuery Mobile, 444–450

Onsen UI, 464–468

overview of, 437–439

SAP OpenUI5, 456–459

THyM, productivity enhancement tool,
490–493

tm.getSimCountryIso() method, Android
plugin, 414–416

tm.getSimOperatorName() method, Android
plugin, 414–416

Tools

building Cordova applications, 16–18

Cordova components, 4–5

Tools menu, Android SDK installation, 59

Topcoat UI framework

code examples, 404, 420–421

CSS library for creating UIs for web
applications, 439

Hello World! examples, 440–441

light and dark themes, 442–443

Troubleshooting

CLIs, 72–75

Cordova applications, 32

creating project/adding
platform, 79

leveraging Cordova APIs, 36

PhoneGap Build, 289–291

Twitter, creating Bootstrap, 450

530 Ubuntu development with Cordova

U
Ubuntu development with Cordova

debugging applications, 237–243

installing Cordova CLI, 235–236

overview of, 235

UI (User interface)

building Cordova application with, 1–2

capabilities of, 10–11

frameworks. See Third-party UI frameworks

updating in new project, 378–380

UIWebView, remotely debugging iOS, 227

Unknown Sources, enabling on Android, 302–303

Updates

Cordova CLI/Cordova project, 103–104

platform, 86–87, 104

plugin, 113

USB debugging, 193–197

User notifications, 326–331

beep and vibrate methods, 327

overview of, 326

visual, 327–331

V
Variables, Web Inspector, 232–233

--verbose, 74–75. See also -d flag

Version attribute, PhoneGap Build, 301–302

vibrate method, hardware notifications, 327

Vibration plugin, hardware notifications, 327

Viewport

changing settings on Bootstrap, 452

Cordova initialization, 31, 34

Virtual buttons, 333

Visibility, StatusBar, 368–369

Visual notifications, Cordova APIs

alert(), 328–329

confirm(), 329–330

overview of, 327–328

prompt(), 330–331

Visual Studio, 250–251

Visual Studio Express, 251

Visual Studio Professional, 251, 265

Visual Studio tools, for Cordova

config.xml file, 271–272

index.html file, 273

iOS build/deployment in Visual Studio,
275–281

MDHAE and, 265–266

New Project dialog, 266–267

Options dialog, 268–269

overview of, 265

Run menu, 274–276

viewing project, 269–270

warning page display, 268

Visual Studio, workflow

controlling Windows Phone emulator,
259–261

creating project, 254–255

debugging applications, 262–265

opening Cordova project, 256–258

running Cordova application, 258

testing Cordova applications, 254

Windows development with Cordova,
254–265

VMware Fusion, 249

W
W3C (World Wide Web Consortium)

Contacts API, 352

Cordova APIs, 24

hardware APIs, 335

Media Capture API, 345

Watch panel, Visual Studio, 264

Web 2.0 applications, 14

531Windows platform

Web applications

anatomy of. See Anatomy of Cordova
application

building Cordova, 16–18

building with IDE, 18

coding Cordova, 15–16

copying own files during project create, 81–82

designing for container, 13–15

editing Cordova content files, 179–180

executing Cordova, 98–103

generated files, 4145

monitoring activity outside of ADT IDE,
191–192

overview of, 8–9

running Cordova, 180–185

Web content editors, 15–16

Web design. See Responsive design

Web developers

using Cordova CLI, 71–72

Web Developer menu in Firefox, 205

Web Inspector, Safari. See Safari Web Inspector

Web Inspector, Ubuntu, 239–240

WebStorm, 473, 479–487

WebView, 2

weinre (Web Inspector Remote)

debugging iOS applications, 225–226

debugging PhoneGap Build, 288–289

debugging with, 139–145

installing, 139–140

Whitelist, configuring application, 132

Window events, InAppBrowser, 363–364

Windows

alert function unavailable in, 33

Android SDK configuration in, 60–62

Ant installation for Android in, 56–59

automating project setup in, 158–160, 162–164

executing CLI commands in, 76–77

Firefox OS simulator issues in, 209

GapDebug for, 152

installing JDK for Android development, 52–56

installing JSHint on, 472

installing JSLint on, 470

installing Ripple on, 146

iOS development, 65–69

serve command security warning, 101

updating Cordova CLI/Cordova projects,
103–104

Windows 8 versions, 248–249

Windows App Store, 251–254

Windows development with Cordova

overview of, 245

system requirements, 249

Visual Studio tools, 265–281

Visual Studio workflow, 254–265

Windows App Store setup, 251

Windows Phone development tools, 250

Windows Phone device configuration,
251–254

Windows Phone limitations/security, 247–249

Windows vs. WP8 projects, 245–247

Windows Phone

deploying apps to Windows Phone Store, 251

development tools, 250

device configuration, 251–254

limitations/security restrictions, 247–249

system requirements for Cordova, 249

Windows Phone 8

controlling emulator, 259–261

creating project with Visual Studio, 254–255

debugging with Visual Studio, 262–265

running Cordova application, 258

supported by Cordova, 245

Windows projects vs., 245–247

Windows Phone Dev Center, 250–253

Windows Phone SDK, 250

Windows platform

creating project with Visual Studio, 254–255

supported by Cordova, 245–246

532 Windows Store apps

Windows Store apps, 248–249

Wipe user data checkbox, AVD, 175

Workflow

Cordova developer, 72

native development and plugin, 409

PhoneGap CLI and PhoneGap Build, 313

PhoneGap vs. Cordova CLI, 312

Visual Studio. See Visual Studio, workflow

World Wide Web Consortium. See W3C (World
Wide Web Consortium)

Writing to console, debugging by, 136–139

WWAHost process, Windows security, 248

www folder

copying application content from, 96–97

developing Cordova applications, 124–125

importing Cordova project, 183

X
Xcode

application console output in, 392

iOS command line tools, 63–65

not using to edit web
applications, 223

opening Cordova project in, 221–223

testing iOS plugin in, 428–429

Windows system requirements, 249

Xcode 6 Start to Finish (Anderson), 226

Xcode IDE, 63–65

xcodebuild, 63–65

.xcodeproj extension, iOS, 221–223

XHR (XMLHTTPRequest) API, Web 2.0
applications, 14

Z
.zip files

ADT installation, 60

deploying custom plugins, 431

PhoneGap Build, 288, 294, 314

Plugman project with shell scripts, 106

Topcoat, 439

Zoom, Windows Phone emulator, 259

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	2 Anatomy of a Cordova Application
	Hello World!
	Cordova Initialization
	Leveraging Cordova APIs
	Structuring Your Application’s Code
	The Generated Web Application Files
	Responsive Design and Cordova
	Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

