
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134034546
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134034546
https://plusone.google.com/share?url=http://www.informit.com/title/9780134034546
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134034546
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134034546/Free-Sample-Chapter

Learning
AngularJS

The Addison-Wesley Learning Series is a collection of hands-on program-
ming guides that help you quickly learn a new technology or language so you
can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning
AngularJS

Brad Dayley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Learning AngularJS

Copyright © 2015 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained
herein.

ISBN-13: 978-0-134-03454-6
ISBN-10: 0-134-03454-6

Library of Congress Control Number: 2014951593

Printed in the United States of America

First Printing: December 2014

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. The publisher cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Acquisitions
Editor

Mark Taber

Managing Editor

Kristy Hart

Project Editor

Elaine Wiley

Copy Editor

Cheri Clark

Senior Indexer

Cheryl Lenser

Proofreader

Katie Matejka

Technical Editor

Jesse Smith

Editorial
Assistant

Vanessa Evans

Designer

Chuti
Prasertsith

Senior
Compositor

Gloria Schurick

Contents at a Glance

 Introduction 1

 1 Jumping Into JavaScript 5

 2 Getting Started with AngularJS 35

 3 Understanding AngularJS Application Dynamics 53

 4 Implementing the Scope as a Data Model 65

 5 Using AngularJS Templates to Create Views 77

 6 Implementing Directives in AngularJS Views 99

 7 Creating Your Own Custom Directives to Extend HTML 123

 8 Using Events to Interact with Data in the Model 145

 9 Implementing AngularJS Services in Web Applications 157

 10 Creating Your Own Custom AngularJS Services 183

 11 Creating Rich Web Application Components the AngularJS Way 199

 A Testing AngularJS Applications 223

 Index 233

Table of Contents

 Introduction 1

Who Should Read This Book 1

Why You Should Read This Book 1

What You Will Learn from This Book 2

What Is AngularJS? 2

How Is This Book Organized? 3

Getting the Code Examples 4

Finally 4

 1 Jumping Into JavaScript 5

Setting Up a JavaScript Development Environment Using Node.js 5

Setting Up Node.js 6

Using Node.js to Run JavaScript 7

Creating an Express Web Server Using Node.js 8

Defining Variables 10

Understanding JavaScript Data Types 11

Using Operators 12

Arithmetic Operators 12

Assignment Operators 13

Applying Comparison and Conditional Operators 14

Implementing Looping 16

while Loops 16

do/while Loops 17

for Loops 17

for/in Loops 18

Interrupting Loops 18

Creating Functions 19

Defining Functions 19

Passing Variables to Functions 20

Returning Values from Functions 20

Using Anonymous Functions 21

Understanding Variable Scope 22

viiContents

Using JavaScript Objects 22

Using Object Syntax 23

Creating Custom Defined Objects 23

Using a Prototyping Object Pattern 24

Manipulating Strings 25

Combining Strings 27

Searching a String for a Substring 27

Replacing a Word in a String 27

Splitting a String into an Array 27

Working with Arrays 28

Combining Arrays 29

Iterating Through Arrays 30

Converting an Array into a String 30

Checking Whether an Array Contains an Item 30

Adding Items to and Removing Items from Arrays 30

Adding Error Handling 31

try/catch Blocks 31

Throwing Your Own Errors 32

Using Finally 32

Summary 33

 2 Getting Started with AngularJS 35

Why AngularJS? 35

Understanding AngularJS 36

Modules 37

Scopes and the Data Model 37

Views with Templates and Directives 37

Expressions 38

Controllers 38

Data Binding 38

Services 38

Dependency Injection 38

Compiler 39

An Overview of the AngularJS Life Cycle 39

The Bootstrap Phase 39

The Compilation Phase 39

The Runtime Data Binding Phase 40

viii Contents

Separation of Responsibilities 40

Integrating AngularJS with Existing JavaScript and jQuery 40

Adding AngularJS to Your Environment 41

Bootstrapping AngularJS in an HTML Document 42

Using the Global APIs 42

Creating a Basic AngularJS Application 44

Loading the AngularJS Library and Your Main Module 45

Defining the AngularJS Application Root Element 45

Adding a Controller to the Template 46

Implementing the Scope Model 46

Using jQuery or jQuery Lite in AngularJS Applications 47

What Is jQuery Lite? 48

Accessing jQuery or jQuery Lite Directly 50

Accessing jQuery or jQuery Lite Directly 50

Summary 51

 3 Understanding AngularJS Application Dynamics 53

Looking at Modules and Dependency Injection 53

Understanding Modules 53

Dependency Injection 54

Defining an AngularJS Module Object 54

Creating Providers in AngularJS Modules 55

Specialized AngularJS Object Providers 56

Service Providers 56

Implementing Providers and Dependency Injection 57

Injecting a Built-in Provider into a Controller 58

Implementing a Custom Provider and Injecting It into a Controller 59

Applying Configuration and Run Blocks to Modules 61

Adding Configuration Blocks 61

Adding Run Blocks 62

Implementing Configuration and Run Blocks 62

Summary 64

 4 Implementing the Scope as a Data Model 65

Understanding Scopes 65

The Relationship Between the Root Scope and Applications 65

The Relationship Between Scopes and Controllers 66

The Relationship Between Scopes and Templates 68

ixContents

The Relationship Between Scope and Back-End Server Data 71

The Scope Life Cycle 71

Implementing Scope Hierarchy 73

Summary 76

 5 Using AngularJS Templates to Create Views 77

Understanding Templates 77

Using Expressions 78

Using Basic Expressions 79

Interacting with the Scope in Expressions 81

Using JavaScript in AngularJS Expressions 85

Using Filters 87

Using Built-in Filters 87

Using Filters to Implement Ordering and Filtering 91

Creating Custom Filters 94

Summary 97

 6 Implementing Directives in AngularJS Views 99

Understanding Directives 99

Using Built-in Directives 99

Directives That Support AngularJS Functionality 100

Directives That Extend Form Elements 104

Directives That Bind the Model to Page Elements 109

Directives That Bind Page Events to Controllers 113

Summary 122

 7 Creating Your Own Custom Directives to Extend HTML 123

Understanding Custom Directive Definitions 123

Defining the Directive View Template 125

Restricting Directive Behavior 126

Adding a Controller to a Directive 127

Configuring the Directive Scope 128

Transcluding Elements 130

Manipulating the DOM with a Link Function 130

Manipulating the DOM with a Compile Function 132

Implementing Custom Directives 133

Manipulating the DOM in Custom Directives 134

x Contents

Implementing Event Handlers in a Custom Directive 136

Implementing Nested Directives 140

Summary 144

 8 Using Events to Interact with Data in the Model 145

Browser Events 145

User Interaction Events 145

Adding $watches to Track Scope Change Events 146

Using $watch to Track a Scope Variable 146

Using $watchGroup to Track Multiple Scope Variables 147

Using $watchCollection to Track Changes to Properties of an Object in the
Scope 147

Implementing Watches in a Controller 148

Emitting and Broadcasting Custom Events 150

Emitting a Custom Event to the Parent Scope Hierarchy 150

Broadcasting a Custom Event to the Child Scope Hierarchy 151

Handling Custom Events with a Listener 151

Implementing Custom Events in Nested Controllers 151

Summary 155

 9 Implementing AngularJS Services in Web Applications 157

Understanding AngularJS Services 157

Using the Built-in Services 158

Sending HTTP GET and PUT Requests with the $http Service 159

Using the $cacheFactory Service 165

Implementing Browser Alerts Using the $window Service 166

Interacting with Browser Cookies Using the $cookieStore Service 166

Implementing Timers with $interval and $timeout Services 168

Using the $animate Service 169

Using the $location Service 176

Using the $q Service to Provide Deferred Responses 180

Summary 181

 10 Creating Your Own Custom AngularJS Services 183

Understanding Custom AngularJS Services 183

Defining a value Service 183

Defining a constant Service 184

xiContents

Using a Factory Provider to Build a factory Service 184

Using an Object to Define a service Service 184

Integrating Custom Services into Your AngularJS Applications 185

Implementing a Simple Application That Uses All Four Types of Services 185

Implementing Simple Time Service 188

Implementing a Database Access Service 192

Summary 198

 11 Creating Rich Web Application Components the AngularJS Way 199

Building a Tabbed View 199

Implementing Draggable and Droppable Elements 204

Adding a Zoom View Field to Images 208

Implementing Expandable and Collapsible Elements 212

Adding Star Ratings to Elements 217

Summary 220

 A Testing AngularJS Applications 223

Deciding on a Testing Platform 223

Understanding AngularJS Unit Tests 224

Dependencies and Unit Tests 224

Testing Controllers with User Input Bound to Scope Data 226

Testing Filters 227

Testing Simple Directives 228

Testing Custom Directives That Use Transclusion 229

Testing Directives that Use External Templates 230

Understanding AngularJS End-to-End Testing 230

 Index 233

About the Author

Brad Dayley is a senior software engineer with over 20 years of experience developing
enterprise applications and Web interfaces. He has a passion for new technologies, especially
ones that really make a difference in the software industry. He has used JavaScript, jQuery,
and AngularJS for years and is the author of Node.js, MongoDB and AngularJS Web Development,
jQuery and JavaScript Phrasebook, and Teach Yourself jQuery and JavaScript in 24 Hours. He has
designed and implemented a wide array of applications and services from application servers to
complex 2.0 web interfaces. He is also the author of Teach Yourself MongoDB in 24 Hours, Python
Developer's Phrasebook, and Teach Yourself Django in 24 Hours.

Dedication

❖

For D!

A & F

❖

Acknowledgments

I’d like to take this page to thank all those who made this title possible. First, I thank my
wonderful wife for the inspiration, love, and support she gives me. I’d never make it far
without you. I also want to thank my boys for the help they are when I am writing. Thanks to
Mark Taber for getting this title rolling in the right direction, Cheri Clark and Katie Matejka for
helping me turn technical ramblings into readable text, Jesse Smith for keeping me clear and
technically accurate, and Elaine Wiley for managing the project and making sure the final book
is the finest quality.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd
like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write directly to let us know what you did or
didn't like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name and phone
or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer's Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

 Introduction

 Welcome to Learning AngularJS . This book is designed to catapult you into the world of using
AngularJS to build highly interactive yet well-structured web applications. The book covers the
basics of the AngularJS framework and how to use it to build well-designed, reusable compo-
nents for web applications. AngularJS is one of the most exciting and innovative technologies
emerging in the world of web development.

 This introduction covers the following:

 ■ Who should read this book

 ■ Why you should read this book

 ■ What you will be able to achieve using this book

 ■ What AngularJS is and why it is a great technology

 ■ How this book is organized

 ■ Where to find the code examples

 Let’s get started.

 Who Should Read This Book

 This book is aimed at readers who already have an understanding of the basics of HTML and
have done some programming in a modern programming language. Having an understanding
of JavaScript and jQuery will make this book easier to digest, but is not required as the basics of
JavaScript are covered.

 Why You Should Read This Book

 This book will teach you how to create powerful, interactive web applications that have a
well-structured, easy-to-reuse code base that will be easy to maintain. A great feature about

2 Introduction

AngularJS is that it actually forces you to become a better web developer by adhering to the
underlying structure and design.

 The typical readers of this book want to master AngularJS for the purpose of building highly
interactive web applications. The typical reader will also want to leverage the innovative MVC
approach of AngularJS to implement well-designed and structured web pages and web applica-
tions. Overall, AngularJS provides an easy-to-implement, fully integrated web development
platform enabling you to implement amazing Web 2.0 applications.

 What You Will Learn from This Book

 Reading this book will enable you to build real-world, dynamic websites and web applications.
Websites are no longer simple static content that consist of HTML pages with integrated images
and formatted text. Instead, websites have become much more dynamic, with a single page
often serving as the entire site or application.

 Using AngularJS technology enables you to build logic directly into your web page that binds
the data model for the client web application to back-end services and databases. AngularJS
also enables you to easily extend the capability of HTML so that the UI design logic can be
expressed easily in an HTML template file. Following are just a few of the things you will learn
while reading this book:

 ■ How to quickly build AngularJS templates with built-in directives that enhance the user
experience

 ■ How to bind UI elements to the data model so that when the model changes the UI
changes and vice versa

 ■ How to bind mouse and keyboard events directly to the data model and back-end
functionality to provide robust user interactions

 ■ How to define your own custom AngularJS directives that extend the HTML language

 ■ How to implement client-side services that can interact with the web server

 ■ How to build dynamic browser views that provide rich user interaction

 ■ How to create custom services that can easily be reused in other AngularJS applications

 ■ How to implement rich UI components such as zoomable images and expandable lists as
custom AngularJS directives

 What Is AngularJS?

 AngularJS is a client-side framework developed by Google. It is written in JavaScript with a
reduced jQuery library called jQuery lite. The entire ideology behind AngularJS is to provide a
framework that makes it easy to implement well-designed and well-structured web pages and
applications using an MVC framework.

3How Is This Book Organized?

 AngularJS provides all that functionality to handle user input in the browser, manipulate data
on the client side, and control how elements are displayed in the browser view. Here are some
of the benefits AngularJS provides:

 ■ Data Binding: AngularJS has a very clean method to bind data to HTML elements using
its powerful scope mechanism.

 ■ Extensibility: The AngularJS architecture enables you to easily extend almost every
aspect of the language to provide your own custom implementations.

 ■ Clean: AngularJS forces you to write clean, logical code.

 ■ Reusable Code: The combination of extensibility and clean code makes it very easy to
write reusable code in AngularJS. In fact, the language often forces you to do so when
you’re creating custom services.

 ■ Support: Google is investing a lot into this project, which gives it an advantage where
other similar initiatives have failed.

 ■ Compatibility: AngularJS is based on JavaScript and has a close relationship with jQuery.
That makes it easier to begin integrating AngularJS into your environment and reuse
pieces of your existing code within the structure of the AngularJS framework.

 How Is This Book Organized?

 This book is divided into 11 chapters and one appendix:

 Chapter 1 , “Jumping into JavaScript,” provides sort of a JavaScript primer just in case you are
not familiar with JavaScript. This chapter also walks you through the process of setting up a
development environment with a Node.js server that you can use to follow along with some of
the examples. You should at least check out the first few sections even if you are familiar with
JavaScript so that you can create the development environment.

 Chapter 2 , “Getting Started with AngularJS,” covers the basics of the AngularJS framework. You
will learn how AngularJS is organized and how to design AngularJS applications.

 Chapter 3 , “Understanding AngularJS Application Dynamics,” covers the basic structure of an
AngularJS application. You will learn how to define modules and how dependency injection
works in AngularJS.

 Chapter 4 , “Implementing the Scope as a Data Model,” covers the relationship between the
data model in AngularJS called the scope and other AngularJS components. You also will learn
how scope hierarchy works.

 Chapter 5 , “Using AngularJS Templates to Create Views,” covers the structure of AngularJS
templates. You will learn how to add elements to the template that reflect data in the
model and how to use filters to automatically format elements as they are rendered to the
browser view.

4 Introduction

 Chapter 6 , “Implementing Directives in AngularJS Views,” covers the built-in AngularJS direc-
tives. You will learn how to implement directives in various ways, from turning a simple
JavaScript array into multiple HTML elements to binding elements on the web page directly to
the scope model. You’ll also learn how to handle mouse and keyboard events in the controller.

 Chapter 7 , “Creating Your Own Custom Directives to Extend HTML,” covers creating custom
AngularJS directives. You’ll learn how to build directives that can enhance the behavior of
existing HTML elements as well as create completely new HTML elements that provide great
interactions for users.

 Chapter 8 , “Using Events to Interact with Data in the Model,” covers the types of events you
will encounter and how to manage them. You will learn how to create and handle your own
custom events. This chapter also covers watching values in the scope model and taking action
when they change.

 Chapter 9 , “Implementing AngularJS Services in Web Applications,” covers the built-in services
that AngularJS provides. These services enable you to communicate with the web server using
HTTP requests, interact with the browser, and implement animation of elements on the web
page.

 Chapter 10 , “Creating Your Own Custom AngularJS Services,” covers the mechanics available
in AngularJS to create your own custom services. Custom services are a great way to make func-
tionality reusable because you can easily inject the functionality provided by custom services
into multiple applications.

 Chapter 11 , “Creating Rich Web Application Components the AngularJS Way,” covers using
AngularJS mechanisms to build richly interactive page elements. This chapter kind of acts as
a review of all the others. You will learn about how to build expandable/collapsible elements,
drag and drop functionality, zoomable images, tabbed panels, and star ratings using AngularJS.

 Appendix A , “Testing AngularJS Applications,” discusses unit and end-to-end testing in
AngularJS. This appendix provides some simple pointers for when you’re designing tests and
also some links to additional resources.

 Getting the Code Examples

 Throughout this book you will find code examples contained in listing blocks. The titles for the
listing blocks include a filename of the file that contains the source. You can access the source-
code files and images used in the examples on GitHub.

 Finally

 I hope you enjoy this book and enjoy learning about AngularJS as much I did. It is a great,
innovative technology that is really fun to use. Soon you’ll be able to join the many other web
developers who use AngularJS to build interactive websites and web applications.

This page intentionally left blank

 2
 Getting Started with

AngularJS

 AngularJS is a JavaScript framework that provides a very structured method of creating websites
and web applications. Essentially, AngularJS is a JavaScript library that is built on a lightweight
version of jQuery—a combination that enables AngularJS to provide the best of JavaScript and
jQuery and at the same time enforce a structured Model View Controller (MVC) framework.

 AngularJS is a perfect client-side library for most web applications because it provides a very
clean and structured approach. With a clean, structured front end, you will find that it is much
easier to implement clean, well-structured server-side logic.

 This chapter introduces you to AngularJS as well as the major components involved in an
AngularJS application. Understanding these components is critical before you try to implement
an AngularJS application because the framework is different from more traditional JavaScript
web application programming.

 After you have a good grasp of the components and the life cycle of an AngularJS application,
you’ll learn how to construct a basic AngularJS application, step-by-step. This should prepare
you to jump into the following chapters, which provide much more detail on implementing
AngularJS.

 Why AngularJS?

 AngularJS is an MVC framework that that is built on top of JavaScript and a lightweight version
of jQuery. MVC frameworks separate the business logic in code from the view and the model.
Without this separation, JavaScript-based web applications can quickly get out of hand when
you are trying to manage all three together and a complex maze of functions.

 Everything that AngularJS provides, you could implement yourself by using JavaScript and
jQuery, or you could even try using another MVC JavaScript framework. However, AngularJS
has a lot of functionality, and the design of the AngularJS framework makes it easy to imple-
ment MVC in the correct manner. The following are some of the reasons to choose AngularJS:

36 Chapter 2 Getting Started with AngularJS

 ■ The AngularJS framework forces correct implementation of MVC and also makes it easy
to implement MVC correctly.

 ■ The declarative style of AngularJS HTML templates makes the intent of the HTML more
intuitive and makes the HTML easier to maintain.

 ■ The model portion of AngularJS is basic JavaScript objects, making it easy to manipulate,
access, and implement.

 ■ AngularJS uses a declarative approach to extend the functionality of HTML by having a
direct link between the HTML declaratives and the JavaScript functionality behind them.

 ■ AngularJS provides a very simple and flexible filter interface that enables you to easily
format data as it passes from the model to the view.

 ■ AngularJS applications tend to use a fraction of the code that traditional JavaScript
applications use because you need to focus only on the logic and not all the little details,
such as data binding.

 ■ AngularJS requires a lot less Document Object Model (DOM) manipulation than
traditional methods and guides you to put the manipulations in the correct locations in
applications. It is easier to design applications based on presenting data than on DOM
manipulation.

 ■ AngularJS provides several built-in services and enables you to implement your own in a
structured and reusable way. This makes your code more maintainable and easier to test.

 ■ Due to the clean separation of responsibilities in the AngularJS framework, it is easy to
test your applications and even develop them using a test-driven approach.

 Understanding AngularJS

 AngularJS provides a very structured framework based on an MVC (Model View Controller)
model. This framework enables you to build structured applications that are robust and easily
understood and maintained. If you are not familiar with the MVC model, the following para-
graph provides a quick synopsis to help you understand the basics. It is by no means complete
and only intended to give you enough reference to see how AngularJS applies MVC principles.
The Wikipedia website is a great resource if you want additional information about MVC in
general.

 In MVC, there are three components: the Model is the data source, View is the rendered
webpage, and the Controller handles the interaction between the two. A major purpose of
MVC is to separate out responsibilities in your JavaScript code to keep it clean and easy to
follow. AngularJS is one of the best MVC frameworks available because it makes it very easy to
implement MVC.

 To get started with AngularJS, you first need to understand the various components that you
will be implementing and how they interact with each other. The following sections discuss
the various components involved in an AngularJS application, their purpose, and what each is
responsible for.

37Understanding AngularJS

 Modules

 AngularJS introduces the concept of a module representing components in an application.
The module provides a namespace that enables you to reference directives, scopes, and other
components based on model name. This makes it easier to package and reuse parts of an
application.

 Each view or web page in AngularJS has a single module assigned to it via the ng-app
directive. (Directives are discussed later in this chapter.) However, you can add other modules
to the main module as dependencies, which provides a very structured and componentized
application. The main AngularJS module acts similar to the root namespace in C# and Java.

 Scopes and the Data Model

 AngularJS introduces the concept of a scope. A scope is really just a JavaScript representation
of data used to populate a view presented on a web page. The data can come from any source,
such as a database, a remote web service, or the client-side AngularJS code, or it can be dynami-
cally generated by the web server.

 A great feature of scopes is that they are just plain JavaScript objects, which means you can
manipulate them as needed in your AngularJS code with ease. Also, you can nest scopes to
organize your data to match the context that they are being used in.

 Views with Templates and Directives

 HTML web pages are based on a DOM in which each HTML element is represented by a DOM
object. A web browser reads the properties of a DOM object and knows how to render the
HTML element on the web page, based on the DOM object’s properties.

 Most dynamic web applications use direct JavaScript or a JavaScript-based library such as jQuery
to manipulate a DOM object to change the behavior and appearance of the rendered HTML
element in the user view.

 AngularJS introduces a new concept of combining templates that contain directives which
extend the HTML tags and attributes directly with JavaScript code in the background to extend
the capability of HTML. Directives have two parts. The first part is extra attributes, elements,
and CSS classes that are added to an HTML template. The second part is JavaScript code that
extends the normal behavior of the DOM.

 The advantage of using directives is that the intended logic for visual elements is indicated by
the HTML template such that it is easy to follow and is not hidden within a mass of JavaScript
code. One of the best features of AngularJS is that the built-in AngularJS directives handle most
of the necessary DOM manipulation functionality that you need in order to bind the data in
the scope directly to the HTML elements in the view.

 You can also create your own AngularJS directives to implement any necessary custom func-
tionality you need in a web application. In fact, you should use your own custom directives to
do any direct DOM manipulation that a web application needs.

38 Chapter 2 Getting Started with AngularJS

 Expressions

 A great feature of AngularJS is the capability to add expressions inside the HTML template.
AngularJS evaluates expressions and then dynamically adds the result to a web page. Because
expressions are linked to the scope, you can have an expression that utilizes values in the
scope, and as the model changes, so does the value of the expression.

 Controllers

 AngularJS completes the MVC framework through the implementation of controllers.
Controllers augment the scope by setting up the initial state or values in the scope and by
adding behavior to the scope. For example, you can add a function that sums values in a scope
to provide a total such that if the model data behind the scope changes, the total value always
changes.

 You add controllers to HTML elements by using a directive and then implement them as
JavaScript code in the background.

 Data Binding

 One of the best features of AngularJS is the built-in data binding. Data binding is the process
of linking data from the model with what is displayed in a web page. AngularJS provides a very
clean interface to link the model data to elements in a web page.

 In AngularJS data binding is a two-way process: When data is changed on a web page, the
model is updated, and when data is changed in the model, the web page is automatically
updated. This way, the model is always the only source for data represented to the user, and
the view is just a projection of the model.

 Services

 Services are the major workhorses in the AngularJS environment. Services are singleton objects
that provide functionality for a web app. For example, a common task of web applications is to
perform AJAX requests to a web server. AngularJS provides an HTTP service that houses all the
functionality to access a web server.

 The service functionality is completely independent of context or state, so it can be easily
consumed from the components of an application. AngularJS provides a lot of built-in service
components for basic uses, such as HTTP requests, logging, parsing, and animation. You can
also create your own services and reuse them throughout your code.

 Dependency Injection

 Dependency injection is a process in which a code component defines dependencies on other
components. When the code is initialized, the dependent component is made available for
access within the component. AngularJS applications make heavy use of dependency injection.

39An Overview of the AngularJS Life Cycle

 A common use for dependency injection is consuming services. For example, if you are defin-
ing a module that requires access to the web server via HTTP requests, you can inject the HTTP
service into the module, and the functionality is available in the module code. In addition, one
AngularJS module consumes the functionality of another via dependency.

 Compiler

 AngularJS provides an HTML complier that will discover directives in the AngularJS template
and use the JavaScript directive code to build out extended HTML elements. The AngularJS
compiler is loaded into the browser when the AngularJS library is bootstrapped. When loaded,
the compiler will search through the HTML DOM in the browser and link in any back-end
JavaScript code to the HTML elements, and then the final application view will be rendered to
the user.

 An Overview of the AngularJS Life Cycle

 Now that you understand the components involved in an AngularJS application, you need to
understand what happens during the life cycle, which has three phases: bootstrap, compilation,
and runtime. Understanding the life cycle of an AngularJS application makes it easier to under-
stand how to design and implement your code.

 The three phases of the life cycle of an AngularJS application happen each time a web page is
loaded in the browser. The following sections describe these phases of an AngularJS application.

 The Bootstrap Phase

 The first phase of the AngularJS life cycle is the bootstrap phase, which occurs when the
AngularJS JavaScript library is downloaded to the browser. AngularJS initializes its own neces-
sary components and then initializes your module, which the ng-app directive points to. The
module is loaded, and any dependencies are injected into your module and made available to
code within the module.

 The Compilation Phase

 The second phase of the AngularJS life cycle is the HTML compilation stage. Initially when a
web page is loaded, a static form of the DOM is loaded in the browser. During the compilation
phase, the static DOM is replaced with a dynamic DOM that represents the AngularJS view.

 This phase involves two parts: traversing the static DOM and collecting all the directives and
then linking the directives to the appropriate JavaScript functionality in the AngularJS built-
in library or custom directive code. The directives are combined with a scope to produce the
dynamic or live view.

40 Chapter 2 Getting Started with AngularJS

 The Runtime Data Binding Phase

 The final phase of the AngularJS application is the runtime phase, which exists until the
user reloads or navigates away from a web page. At that point, any changes in the scope are
reflected in the view, and any changes in the view are directly updated in the scope, making
the scope the single source of data for the view.

 AngularJS behaves differently from traditional methods of binding data. Traditional methods
combine a template with data received from the engine and then manipulate the DOM each
time the data changes. AngularJS compiles the DOM only once and then links the compiled
template as necessary, making it much more efficient than traditional methods.

 Separation of Responsibilities

 An extremely important part of designing AngularJS applications is the separation of respon-
sibilities. The whole reason you choose a structured framework is to ensure that code is well
implemented, easy to follow, maintainable, and testable. Angular provides a very structured
framework to work from, but you still need to ensure that you implement AngularJS in the
appropriate manner.

 The following are a few rules to follow when implementing AngularJS:

 ■ The view acts as the official presentation structure for the application. Indicate any
presentation logic as directives in the HTML template of the view.

 ■ If you need to perform any DOM manipulation, do it in a built-in or your own custom
directive JavaScript code—and nowhere else.

 ■ Implement any reusable tasks as services and add them to your modules by using
dependency injection.

 ■ Ensure that the scope reflects the current state of the model and is the single source for
data consumed by the view.

 ■ Ensure that the controller code only acts to augment the scope data and doesn’t include
any business logic.

 ■ Define controllers within the module namespace and not globally. This ensures that your
application can be packaged easily and prevents overwhelming the global namespace.

 Integrating AngularJS with Existing JavaScript and jQuery

 The fact that AngularJS is based on JavaScript and jQuery makes it tempting to simply try to
add it to existing applications to provide data binding or other functionality. That approach
will almost always end up in problem code that is difficult to maintain. However, using
AngularJS doesn’t mean that you need to simply toss out your existing code either. Often you
can selectively take working JavaScript/jQuery components and convert them to either direc-
tives or services.

41Adding AngularJS to Your Environment

 This also brings up another issue: when to use the full version of jQuery as opposed to the
jQuery lite version that is provided with AngularJS? I know that many people have strong views
in both directions. On one hand, you want to keep your implementation as clean and simple
as possible. But on the other hand, there might be times when you need functionality that’s
available only in the full version of jQuery. My take, as always, is to use what makes sense. If
I need functionality that is not provided with AngularJS jQuery lite, I will load the full library.
I’ll discuss the mechanics of loading jQuery as opposed to jQuery lite later in this chapter.

 The following steps suggest a method to integrate AngularJS into your existing JavaScript and
jQuery applications:

 1. Write at least one small AngularJS application from the ground up that uses a model,
custom HTML directives, services, and controllers. In other words, in this application,
ensure that you have a practical comprehension of the AngularJS separation of
responsibilities.

 2. Identify the model portion of your code. Specifically, try to separate out the code that
augments the model data in the model into controller functions and code that accesses
the back-end model data into services.

 3. Identify the code that manipulates DOM elements in the view. Try to separate out the
DOM manipulation code into well-defined custom directive components and provide an
HTML directive for them. Also identify any of the directives for which AngularJS already
provides built-in support.

 4. Identify other task-based functions and separate them out into services.

 5. Isolate the directives and controllers into modules to organize your code.

 6. Use dependency injection to link up your services and modules appropriately.

 7. Update the HTML templates to use the new directives.

 Obviously, in some instances it just doesn’t make sense to use much if any of your existing
code. However, by running through the preceding steps, you will get well into the design phase
of implementing a project using AngularJS and can then make an informed decision.

 Adding AngularJS to Your Environment

 AngularJS is a client-side JavaScript library, which means the only thing you need to do to
implement AngularJS in your environment is to provide a method for the client to get the
 angular.js library file by using a <script> tag in the HTML templates.

 The simplest method of providing the angular.js library is to use the Content Delivery
Network (CDN), which provides a URL for downloading the library from a third party. The
downside of this method is that you must rely on a third party to serve the library, and if the
client cannot connect to that third-party URL, your application will not work. For example, the
following <script> tag loads the angular.js library from Google APIs CDN:

42 Chapter 2 Getting Started with AngularJS

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.5/angular.min.js">
 </script>

 The other method of providing the angular.js library is to download it from the AngularJS
website (http://angularjs.org) and use your own web server to serve the file to the client. This
method takes more effort and also requires extra bandwidth on your web server; however, it
might be a better option if you want more control over how the client obtains the library.

 Bootstrapping AngularJS in an HTML Document

 To implement AngularJS in your web pages, you need to bootstrap the HTML document.
Bootstrapping involves two parts. The first part is to define the application module by using the
 ng-app directive, and the second is to load the angular.js library in a <script> tag.

 The ng-app directive tells the AngularJS compiler to treat that element as the root of the
compilation. The ng-app directive is typically loaded in the <html> tag to ensure that the
entire web page is included; however, you could add it to another container element, and only
elements inside that container would be included in the AngularJS compilation and conse-
quently in the AngularJS application functionality.

 When possible, you should include the angular.js library as one of the last tags, if not the
last tag, inside the <body> of the HTML. When the angular.js script is loaded, the compiler
kicks off and begins searching for directives. Loading angular.js last allows the web page to
load faster.

 The following is an example of implementing the ng-app and angular.js bootstrap in an
HTML document:

 <!doctype html>
 <html ng-app ="myApp">
 <body>
 <script src="http://code.angularjs.org/1.2.9/ angular.min.js "></script>
 <script src="/lib/myApp .js "></script>
 </body>
 </html>

 Using the Global APIs

 As you are implementing AngularJS applications, you will find that there are common
JavaScript tasks that you need to perform regularly, such as comparing objects, deep copying,
iterating through objects, and converting JSON data. AngularJS provides a lot of this basic func-
tionality in the global APIs.

 The global APIs are available when the angular.js library is loaded, and you can access them
by using the angular object. For example, to create a deep copy of an object named myObj ,
you use the following syntax:

http://angularjs.org

43Using the Global APIs

 var myCopy = angular.copy(myObj);

 The following code shows an example of iterating through an array of objects by using the
 forEach() global API:

 var objArr = [{score: 95}, {score: 98}, {score: 92}];
 var scores = [];
 angular.forEach(objArr, function(value, key){
 this.push(key + '=' + value);
 }, scores);
 // scores == ['score=95', 'score=98', 'score=92']

 Table 2.1 lists some of the most useful utilities provided in the global APIs. You will see these
used in a number of examples in this book.

 Table 2.1 Useful Global API Utilities Provided in AngularJS

 Utility Description

 copy(src , [dst]) Creates a deep copy of the src object or array. If a dst parameter is
supplied, it is completely overwritten by a deep copy of the source.

 element(element) Returns the DOM element specified as a jQuery element. If you have
loaded jQuery before loading AngularJS, the object is a full jQuery
object; otherwise, it is only a subset of a jQuery object, using the
jQuery lite version built into AngularJS. Table 2.2 lists the jQuery lite
methods available in AngularJS.

 equals(o1 , o2) Compares o1 with o2 and returns true if they pass an ===
comparison.

 extend(dst , src) Copies all the properties from the src object to the dst object.

 forEach(obj , iterator ,
 [context])

 Iterates through each object in the obj collection, which can be an
object or an array. The iterator specifies a function to call, using the
following syntax:
 function(value, key)

 The context parameter specifies a JavaScript object that acts as the
context, accessible via the this keyword, inside the forEach loop.

 fromJson(json) Returns a JavaScript object from a JSON string .

 toJson(obj) Returns a JSON string form of the JavaScript object obj .

 isArray(value) Returns true if the value parameter passed in is an Array object.

 isDate(value) Returns true if the value parameter passed in is a Date object.

 isDefined(value) Returns true if the value parameter passed in is a defined object.

 isElement(value) Returns true if the value parameter passed in is a DOM element
object or a jQuery element object.

44 Chapter 2 Getting Started with AngularJS

 Utility Description

 isFunction(value) Returns true if the value parameter passed in is a JavaScript
function.

 isNumber(value) Returns true if the value parameter passed in is a number.

 isObject(value) Returns true if the value parameter passed in is a JavaScript object.

 isString(value) Returns true if the value parameter passed in is a String object.

 isUndefined(value) Returns true if the value parameter passed in is not defined.

 lowercase(string) Returns a lowercase version of the string parameter.

 uppercase(string) Returns an uppercase version of the string parameter.

 Creating a Basic AngularJS Application

 Now that you understand the basic components in the AngularJS framework, the intent and
design of the AngularJS framework, and how to bootstrap AngularJS, you are ready to get
started implementing AngularJS code. This section walks you through a very basic AngularJS
application that implements an HTML template, an AngularJS module, a controller, a scope,
and an expression.

 For this example it is expected that you have created a basic Node.js web server as described in
 Chapter 1 , “Jumping Into JavaScript.” The folder structure for this example will be as follows.
Future chapters will have a similar code structure for their examples with just the chapter folder
changing:

 ■ ./server.js : Node.js server that serves up the static content.

 ■ ./images : Contains any images used in examples in all chapters.

 ■ ./ch01 : Contains any HTML files used for the examples in this chapter.

 ■ ./ch01/js : Contains the necessary JavaScript for the examples in this chapter.

 ■ ./ch01/css : Contains the necessary CSS for the examples in this chapter.

 After the server.js web server is running, the next step is to implement an AngularJS HTML
template, such as first.html in Listing 2.1 , and an AngularJS JavaScript module, such as
 first.js in Listing 2.2 .

 The following sections describe the important steps in implementing the AngularJS application
and the code involved in each step. Each of these steps is described in much more detail in
later chapters, so don’t get bogged down in them here. What is important at this point is that
you understand the process of implementing the template, module, controller, and scope and
generally how they interact with each other.

45Creating a Basic AngularJS Application

 The web page defined by Listings 2.1 and 2.2 is a simple web form in which you type in first
and last names and then click a button to display a message, as shown in Figure 2.1 .

 Figure 2.1 Implementing a basic AngularJS web application that uses inputs and a button to
manipulate the model and consequently the view.

 Loading the AngularJS Library and Your Main Module

 Before you can implement an AngularJS application, you need to get the library loaded in an
HTML template. The following lines in Listing 2.1 load the angular.js library and then load
the first.js JavaScript custom module:

 15 <script src="http://code.angularjs.org/1.2.9/angular.min.js"></script>
 16 <script src="/js/first.js"></script>

 Defining the AngularJS Application Root Element

 The next step is to define the ng-app parameter in the root element so that AngularJS
knows where to begin compiling the application. You should also define the module in your
JavaScript code to provide a namespace to use when adding controllers, filters, and services.

 Line 2 of Listing 2.1 defines the DOM root for an AngularJS module. Notice that ng-app is
assigned the module name firstApp , which corresponds to the module in the JavaScript code:

 02 <html ng-app="firstApp">

 Line 1 in Listing 2.2 shows the firstApp module object being created in the JavaScript code:

 01 var firstApp = angular.module('firstApp', []);

46 Chapter 2 Getting Started with AngularJS

 Adding a Controller to the Template

 Next, you need to add a controller for HTML elements that you want the AngularJS module to
control. You also need to define the controller in your module code.

 Line 7 in Listing 2.1 assigns a controller named FirstController to a <div> element. This
maps the element in the view to a specific controller, which contains a scope:

 07 <div ng-controller="FirstController">

 Line 2 in Listing 2.2 shows the FirstController code being added to the firstApp module:

 02 firstApp.controller('FirstController', function($scope) {

 Implementing the Scope Model

 After the controller has been defined, you can implement the scope, which involves linking
HTML elements to scope variables, initializing the variables in the scope, and providing func-
tionality to handle changes to the scope values.

 Lines 9 and 10 in Listing 2.1 are <input> elements that are assigned to the first and last
values in the scope. These elements provide a method to update the scope from the browser. If
the user types in the input, the scope is also updated:

 09 <input type="text" ng-model="first">
 10 <input type="text" ng-model="last">

 Lines 3–5 in Listing 2.2 show the initial values of the scope being defined:

 03 $scope.first = 'Some';
 04 $scope.last = 'One';
 05 $scope.heading = 'Message: ';

 Line 11 in Listing 2.1 links a click handler to the updateMessage() function defined in the
scope:

 11 <button ng-click='updateMessage()'>Message</button>

 Lines 6–8 in Listing 2.2 show the updateMessage() definition in the scope:

 06 $scope.updateMessage = function() {
 07 $scope.message = 'Hello ' + $scope.first +' '+ $scope.last + '!';
 08 };

 Line 13 implements an expression that displays the value of the heading and message vari-
ables in the scope on the HTML page:

 13 {{heading + message}}

47Using jQuery or jQuery Lite in AngularJS Applications

 Listing 2.1 first.html : A Simple AngularJS Template That Provides Two Input Elements

and a Button to Interact with the Model

 01 <!doctype html>
 02 <html ng-app="firstApp">
 03 <head>
 04 <title>First AngularJS App</title>
 05 </head>
 06 <body>
 07 <div ng-controller="FirstController">
 08 Name:
 09 <input type="text" ng-model="first">
 10 <input type="text" ng-model="last">
 11 <button ng-click='updateMessage()'>Message</button>
 12 <hr>
 13 {{heading + message}}
 14 </div>
 15 <script src="http://code.angularjs.org/1.2.9/angular.min.js"></script>
 16 <script src="js/first.js"></script>
 17 </body>
 18 </html>

 Listing 2.2 first.js : A Simple AngularJS Module That Implements a Controller to Support

the Template in Listing 2.1

 01 var firstApp = angular.module('firstApp', []);
 02 firstApp.controller('FirstController', function($scope) {
 03 $scope.first = 'Some';
 04 $scope.last = 'One';
 05 $scope.heading = 'Message: ';
 06 $scope.updateMessage = function() {
 07 $scope.message = 'Hello ' + $scope.first +' '+ $scope.last + '!';
 08 };
 09 });

 Using jQuery or jQuery Lite in AngularJS Applications

 You will be using at least jQuery lite in your AngularJS applications, so it is important to under-
stand the interactions between jQuery, jQuery lite and AngularJS. Even if you are not a jQuery
developer, understanding these interactions will help you write better AngularJS applications.
If you are a jQuery developer, understanding the interactions will enable you to leverage your
jQuery knowledge in your AngularJS applications.

48 Chapter 2 Getting Started with AngularJS

 The following sections describe jQuery lite implementation as well as giving a brief introduc-
tion to the jQuery/jQuery lite interactions that you will be seeing in your AngularJS applica-
tions. The following chapters will expand on this topic as you see some practical examples that
utilize jQuery objects in AngularJS applications.

 What Is jQuery Lite?

 jQuery lite is simply a stripped-down version of jQuery that is built directly into AngularJS.
The intent is to provide all the useful features of jQuery and yet keep it constrained within the
AngularJS separation of responsibilities paradigm.

 Table 2.2 lists the jQuery methods available in jQuery lite along with any restrictions that
might apply. The restrictions are necessary to enforce things like manipulating elements only
within a custom directive, and so on.

 Table 2.2 jQuery Methods That Are Supported in jQuery Lite

 jQuery Method Limitations, if any, in jQuery Lite

 addClass()

 after()

 append()

 attr()

 bind() Does not support namespaces, selectors, or eventData.

 children() Does not support selectors.

 clone()

 contents()

 css()

 data()

 detach()

 emtyp()

 eq()

 find() Limited to lookups by tag name.

 hasClass()

 html()

 text() Does not support selectors.

 on() Does not support namespaces, selectors, or eventData.

 off() Does not support namespaces or selectors.

 one() Does not support namespaces or selectors.

49Using jQuery or jQuery Lite in AngularJS Applications

 jQuery Method Limitations, if any, in jQuery Lite

 parent() Does not support selectors.

 prepend()

 prop()

 ready()

 remove()

 removeAttr()

 removeClass()

 removeData()

 replaceWith()

 toggleClass()

 triggerHandler() Passes a dummy event object to handlers.

 unbind() Does not support namespaces.

 val()

 wrap()

 Table 2.3 lists the additional events and methods that AngularJS adds to jQuery lite objects.

 Table 2.3 Methods and Events Added to jQuery Lite Objects

 Method/Event Description

 $destroy AngularJS intercepts all jQuery or jQuery lite DOM destruction calls and
fires this event on all DOM nodes being removed. This can be used to
clean up any third-party bindings to the DOM element before it is removed.

 controller(name) Returns the controller object of the current element or its parent. If no
 name is specified, the controller associated with the ngController direc-
tive is returned. If a name is provided as a directive name, the controller
for this directive is returned.

 injector() Returns the injector object of the current element or its parent.

 scope() Returns the scope object of the current element or its parent.

 isolateScope() Returns an isolate scope object if one is attached directly to the current
element. This works only on elements that contain a directive that starts a
new isolate scope.

 inheritedData() Works the same as the jQuery data() method, but walks up the DOM until
a value is found or the top parent element is reached.

50 Chapter 2 Getting Started with AngularJS

 Accessing jQuery or jQuery Lite Directly

 For most AngularJS applications the jQuery lite library built into AngularJS is sufficient.
However, if you need the additional functionality of the full version of jQuery, simply load the
jQuery library before loading the AngularJS library. For example:

 <script src="http://code.jquery.com/jquery-1.11.0.min.js"></script>
 <script src="http://code.angularjs.org/1.2.9/angular.min.js"></script>

 Regardless of whether jQuery lite or the full jQuery library is loaded, jQuery is accessed from
the AngularJS code using the element attribute of the angular variable available when
AngularJS is bootstrapped. Essentially, angular.element will be an alias for the jQuery vari-
able that is normally used in jQuery applications. One of the best ways I’ve seen this relation-
ship described is as follows:

 angular.element() === jQuery() === $()

 Accessing jQuery or jQuery Lite Directly

 More often than not, you will be using the jQuery or jQuery lite functionality in jQuery objects
that AngularJS creates for you. All element references in AngularJS are always wrapped as
jQuery or jQuery lite objects; they are never raw DOM objects.

 For example, when you create a directive in AngularJS as discussed later in this book, an
element is passed to the link function. That element, as shown here, is a jQuery or jQuery lite
object, and you can use the jQuery functionality accordingly:

 angular.module('myApp', [])
 .directive('myDirective', function() {
 . . .
 link: function(scope, elem, attrs, photosControl) {
 //elem is a jQuery lite object
 elem.addClass(...);
 }
 };

 Another example of accessing the jQuery functionality is from events that are triggered on
AngularJS bindings. For example, consider the following code that uses the ngClick binding to
bind a browser click event on a <div> element to a clicked() function in the AngularJS code:

 <div ng-click="clicked($event)">Click Me</div>
 You can access a jQuery version of the object using the following AngularJS code:
 $scope.clicked = function(event){
 var jQueryElement = angular.element(event.target);
 };

 Note that it was necessary to use the angular.element() method to convert the target DOM
object into a jQuery object.

51Summary

 Summary

 AngularJS is a JavaScript library framework that provides a very structured method for creat-
ing websites and web applications. AngularJS structures a web application into a very clean
MVC-styled approach. AngularJS scopes provide contextual binding to the data model for the
application and are made up of basic JavaScript objects. AngularJS utilizes templates with direc-
tives that extend HTML capabilities, enabling you to implement totally customized HTML
components.

 In this chapter you looked at the different components in an AngularJS application and how
they interact with each other. You also learned about the life cycle of an AngularJS application,
which involves bootstrap, compilation, and runtime phases. At the end of this chapter, you
walked through a step-by-step example of implementing a basic AngularJS application, includ-
ing a template, module, controller, and scope.

This page intentionally left blank

 A
 absUrl() method, 176

 accessing jQuery/jQuery lite directly, 49 - 50

 addClass() method, 48

 adding

 configuration blocks to modules, 61 - 62

controller to template, 46

items to arrays, 30-31

 run blocks to modules, 62

 addition operator, 12

 a directive, 104

 after() method, 48

 $anchorScroll service, 158

 And operator, 14

 angular-animate.js library, 174

 angular-cookies.js library, 166

 AngularJS

 angular.js library file, providing, 41 - 42

 applications. See applications

 benefits, 3 , 35 - 36

 compiler, definition of, 39

controllers, definition of, 38

data binding, definition of, 38

Index

234 AngularJS

 definition of, 2 , 35

 dependency injection, definition of,
 38 - 39

directives, definition of, 37

expressions

 definition of, 38

JavaScript expressions versus, 79

 global APIs, list of, 42 - 43

HTML documents, bootstrapping, 42

 integration with JavaScript and jQuery,
 40 - 41

 life-cycle phases, 39 - 40

modules, definition of, 37

 as MVC framework, 36

scopes, definition of, 37

separation of responsibilities, 40

services, definition of, 38

templates, 37

website, 42

 angular.js library file

 bootstrapping HTML documents, 42

loading, 45

 providing, 41 - 42

 angular.module() method, 54 - 55

 animate() method, 171

 $animate service, 158 , 169 - 172

 animation example, 172

 directives for, 169

implementing

 in CSS, 170 - 171

 in JavaScript, 171 - 172

 animate.css listing, 174

 animation

 directives for, 169 -170

example, 172

implementing

 in CSS, 170 - 171

 in JavaScript, 171 - 172

 animation() method, 56

 anonymous functions, 21

 APIs, global, list of, 42 - 44

 append() method, 48

 appending elements in directives, 204 - 206

 applications

 accessing jQuery directly, 49 - 50

creating

 adding controller, 46

 defining root element, 45

folder structure, 44

implementing scope, 46

 loading angular.js library, 45

 drag-and-drop elements example,
204 - 206

 expandable/collapsible elements exam-
ple, 212 - 215

 modules. See modules

 root scope and, 65 - 66

 star ratings example, 217 - 219

 tabbed view example, 199 - 202

 testing, 223

 end-to-end testing, 230 - 231

 evaluating platforms, 223

 unit testing, 224 - 230

 zoom view field example, 208 - 210

 $apply() method, 72

 arithmetic operators, list of, 12 - 13

 array data type, 12

 arrays

adding/removing items, 30-31

 combining, 29

converting to strings, 30

defining, 28

iterating through, 30

length of, 28

 methods, 28

235child scopes

 searching for items, 30

splitting strings into, 27

 assignment operators, list of, 13

 attr() method, 48

 B
 back-end server data, scopes and, 71

 bind() method, 48

 binding data. See data binding

 bindToController property, 123

 blur events, 115

 Boolean data type, 11

 bootstrap phase (AngularJS life cycle), 39

 bootstrapping HTML documents, 42

 break keyword, 16 , 18 - 19

 $broadcast() method, 151

 broadcasting custom events, 151

 browser alerts, implementing, 166

 browser events, 145

 browsers. See web browsers

 built-in directives. See directives, built-in

directives

 built-in filters, 87 - 90

 built-in services

 $anchorScroll, 158

 $animate, 158 , 169 - 172

animation example, 172

directives for, 169

 implementing in CSS, 170 - 171

 implementing in JavaScript, 171 - 172

 $cacheFactory, 158 , 165

 $compile, 158

 $cookie, 166 - 167

 $cookies, 158

 $cookieStore, 166 - 167

$document, 158

$exceptionHandler, 158

 $http, 158 - 163

configuring, 160

 HTTP server implementation and
access, 161 - 163

response callback functions, 161

shortcut methods, 159

$interpolate, 158

 $interval, 158 , 168 - 169

list of, 158

$locale, 158

 $location, 158 , 176 - 177

$log, 158

 $parse, 158

 $q, 158 , 180 - 181

 $resource, 158

$rootElement, 158

 $rootScope, 158

 $route, 158

 $routeParams, 158

$sanitize, 158

 $sce, 158

$swipe, 158

$templateCache, 158

 $timeout, 158 , 168 - 169

 usage with custom services, 192 - 194

 $window, 158 , 166

 C
 cache property, 160

 $cacheFactory service, 158 , 165

 case statements, 15 - 16

 CDN (Content Delivery Network), 41

 charAt() method, 26

 charCodeAt() method, 26

 child scopes

 broadcasting events to, 151

 controllers and, 66

in scope hierarchy, 73

236 children() method

 children() method, 48

 clone() method, 48

 code listings. See listings

 collapsible/expandable elements example

application, 212 - 215

 combining arrays, 29 . See also concatenat-

ing strings

 comparison operators, list of, 14 -15

 compilation phase (AngularJS life cycle),

 39

 compile() function, 132 - 133

 compile property, 123

 $compile service, 158

 compiler, definition of, 39

 concat() method

 arrays, 28 - 29

 strings, 26 - 27

 concatenating strings, 13 , 27 . See also

combining arrays

 conditional statements

if statements, 15

 switch statements, 15 - 16

 config_run_blocks.html listing, 63

 config_run_blocks.js listing, 63

 configuration blocks

 adding, 61 - 62

 implementing, 62 - 63

 configuration phase (modules)

 adding configuration blocks, 61 - 62

 implementing configuration blocks,
 62 - 63

 configuring

$http service, 160

 Node.js, 6 - 7

 scopes for custom directives, 128 - 130

 constant() method, 56

 constant service, 184 - 186

 Content Delivery Network (CDN), 41

 contents() method, 48

 continue keyword, 19

 controller() method, 49 , 56 , 66

 controller property, 123 , 127 - 128

 controllerAs property, 123

 controllers

 adding to directives, 127 - 128

adding to template, 46

 binding events to, 113 - 120

definition of, 38

 implementing watches in, 148

 injecting providers into, 58 - 59

 isolating scopes from, 212 - 215

 nested controllers, implementing cus-
tom events, 151 - 152

 scopes and, 66 - 67

 unit testing, 226 - 227

 converting arrays to strings, 30

 $cookie service, 166 - 167

 cookies, 166 - 167

 $cookies service, 158

 $cookieStore service, 166 - 167

 copy() global API, 43

 creation phase (scopes), 71 - 72

 CSS, animation in, 170 - 171

 css() method, 48

 currency[:symbol] filter, 87

 custom directives

 adding controller to, 127 - 128

 configuring scope, 128 - 130

 defining view template, 124 - 126

definition of, 123

 directive() method, 123

 DOM manipulation

 with compile() function, 132 - 133

 example, 134

 with link() function, 130 - 132

237dependency injection

in runtime phase (AngularJS life
cycle), 40

 star ratings example application,
217 - 219

 testing controllers, 226 - 227

 data() method, 48

 data model, scopes as, 65

back-end server data, 71

 controllers and, 66 - 67

 expressions and, 78 - 79 , 81 - 82

 life cycle phases, 71 - 72

 root scope, 65 - 66

scope hierarchy, 73

 templates and, 68 - 69

 data property, 160

 data types, list of, 11 - 12

 database access service example, 192 - 194

 date[:format] filter, 87

 decrement operator, 12

 deferred responses, 180 - 181

 defining

arrays, 28

 custom objects, 23 - 24

 functions, 19 - 20

 modules, 54 - 55

root element, 45

 strings, 25

 variables, 10 - 11

 dependency injection

 configuration phase (modules)

 adding configuration blocks, 61 - 62

 implementing configuration blocks,
 62 - 63

 defining modules, 54 - 55

 definition of, 38 - 39 , 54

 filters and, 87

 implementing, 57 - 58

injectors, 54

 drag-and-drop elements example,
204 - 206

 event handlers, 136 - 137

 extending HTML, 208 - 210

 nested directives, 140 - 141 , 199 - 202 ,
 212 - 215

properties, 123

 restricting behavior, 126 - 127

 transcluding elements, 130

unit testing, 228

with external templates, 230

 with transclusion, 229 - 230

 user interaction events, 145 - 146

 custom events, 150

broadcasting, 151

 emitting, 150 - 151

handling with listeners, 151

 implementing in nested controllers,
 151 - 152

 custom filters, 94 - 95

 unit testing, 227 - 228

 custom objects, defining, 23 - 24

 custom services

constant service, 184

 database access service example,
192 - 194

factory service, 184

 implementation example, 185 - 186

 service service, 184 - 185

 time service example, 188 - 189

types of, 183

 value service, 183 - 184

 D
 data binding

definition of, 38

 with directives, 109 - 112

 events to controllers, 113 - 120

238 dependency injection

providers, 54

 injecting into controllers, 58 - 59

 run phase (modules)

adding run blocks, 62

 implementing run blocks, 62 - 63

services, 157

 unit testing and, 224 - 226

global lookup, 225

 new operator, 224 - 225

passed parameters, 226

 registry requests, 225 - 226

 $destroy event, 49

 $destroy() method, 72

 detach() method, 48

 development environment, setup, 5 - 6

 digest loop, 72

 $digest() method, 72

 directive() method, 56 , 123

 directive_angular_include.html listing, 103

 directive_angular_include.js listing, 103

 directive_bind.html listing, 112

 directive_bind.js listing, 112

 directive_custom_dom.html listing, 135

 directive_custom_dom.js listing, 134

 directive_custom_photos.js listing, 141

 directive_custom_zoom.html listing, 139

 directive_custom_zoom.js listing, 137

 directive_custom.html listing, 142

 directive_focus_events.html listing, 116

 directive_focus_events.js listing, 116

 directive_form.html listing, 108

 directive_form.js listing, 105

 directive_keyboard_events.html listing, 118

 directive_keyboard_events.js listing, 118

 directive_mouse_events.html listing, 121

 directive_mouse_events.js listing, 120

 directives

for animation, 169 -170

built-in directives

a, 104

 binding data to page elements,
109 - 112

 binding events to controllers,
113 - 120

event, 113

 extending form elements, 104 - 105

input, 104

 input.checkbox, 104

 input.date, 104

input.dateTimeLocal, 104

input.email, 104

 input.month, 104

 input.number, 104

input.radio, 104

 input.text, 104

 input.time, 104

input.url, 104

 input.week, 104

 ng-app, 37 , 42 , 45 , 100

ng-bind, 109

 ng-bind-html, 109

 ng-bind-template, 109

 ng-blur, 114- 115

ng-change, 114

 ng-checked, 114

 ng-class, 109

 ng-class-even, 109

ng-class-odd, 109

 ng-click, 69 , 114 , 120

 ng-cloak, 100

 ng-controller, 66 , 100

ng-copy, 114

ng-cut, 114

239do/while loops

 ng-transclude, 100 , 130

ng-value, 109

 ng-view, 100

script, 100

select, 104

 support functionality, 100 - 102

textarea, 104

custom directives

 adding controller to, 127 - 128

 configuring scope, 128 - 130

 defining view template, 124 - 126

definition of, 123

directive() method, 123

DOM manipulation example, 134

 DOM manipulation with compile()
function, 132 - 133

 DOM manipulation with link()
function, 130 - 132

 drag-and-drop elements example,
 204 - 206

 event handlers, 136 - 137

 extending HTML, 208 - 210

 nested directives, 140 - 141 , 199 - 202 ,
 212 - 215

properties, 123

 restricting behavior, 126 - 127

 transcluding elements, 130

 unit testing, 228 - 230

 definition of, 37 , 77 , 99

 user interaction events, 145 - 146

 division operator, 12

 $document service, 158

 DOM manipulation, 37

 with compile() function, 132 - 133

with custom directives, 134

 with link() function, 130 - 132

 do/while loops, 17

 ng-dblclick, 114

 ng-disabled, 109

 ng-focus, 114 - 115

 ng-form, 104

ng-hide, 109

ng-href, 100

 ng-if, 109

 ng-include, 100 , 102

 ng-init, 109

 ng-keydown, 114 , 117 - 118

ng-keypress, 114

 ng-keyup, 114 , 117 - 118

ng-list, 100

 ng-model, 68 , 109

 ng-mousedown, 114 , 120

 ng-mouseenter, 114 , 120

 ng-mouseleave, 114 , 120

 ng-mousemove, 114 , 120

ng-mouseover, 114

 ng-mouseup, 114 , 120

ng-non-bindable, 100

 ng-open, 100

ng-options, 104

ng-paste, 114

 ng-pluralize, 100

 ng-readonly, 100

 ng-repeat, 109

ng-required, 100

 ng-selected, 100

ng-show, 109

ng-src, 100

ng-srcset, 100

ng-style, 109

 ng-submit, 114

ng-swipe-left, 114

 ng-swipe-right, 114

ng-switch, 109

240 drag-and-drop elements example application

 drag-and-drop elements example applica-

tion, 204 - 206

 dragdrop.html listing, 206

 dragdrop.js listing, 204

 E
 editors, purpose of, 5

 element() global API, 43

 else statements, 15

 $emit() method, 150 - 151

 emitting custom events, 150 - 151

 empty() method, 48

 end-to-end testing, 230 - 231

 eq() method, 48

 equal to operator, 14

 equals() global API, 43

 error handling

 finally keyword, 32 - 33

throwing errors, 32

 try/catch blocks, 31 - 32

 escape codes for strings, 25

 evaluating testing platforms, 223

 event directive, 113

 event handlers

 in custom directives, 136 - 137

for custom events, 151

positioning, 145

 $event keyword, 115

 events

 binding to controllers, 113 - 120

 browser events, 145

custom events, 150

 broadcasting, 151

 emitting, 150 - 151

handling with listeners, 151

 implementing in nested controllers,
 151 - 152

definition of, 145

 HTML5 drag and drop events,
 204 - 206

scope change events, 146

implementing in controllers, 148

 $watch() method, 146 - 147

$watchCollection() method, 147

 $watchGroup() method, 147

 user interaction events, 145 - 146

 example code listings. See listings

 exception handling. See error handling

 $exceptionHandler service, 158

 expand_item.html listing, 214

 expand_list.html listing, 214

 expandable/collapsible elements example

application, 212 - 215

 expand.html listing, 215

 expand.js listing, 213

 Express web servers, building, 8 - 10

 {{expression}} syntax, 69 , 77- 78

 expressions

 basic expressions, 79 - 80

 in data model, 78 - 79

 definition of, 38 , 77

 filters in, 87

JavaScript in, 85

 scope interactions, 81 - 82

 expressions_basic.html listing, 80

 expressions_basic.js listing, 80

 expressions_javascript.html listing, 85

 expressions_javascript.js listing, 85

 expressions_scope.html listing, 83

 expressions_scope.js listing, 82

 extend() global API, 43

241$http service

 function keyword, 19

 functions

anonymous functions, 21

 defining, 19 - 20

definition of, 19

 in expressions, 81 - 82

passing values to, 20

 returning values from, 20 - 21

 G
 global APIs, list of, 42 - 44

 global lookup, 225

 global variable scope, 22

 greater than operator, 14

 greater than or equal to operator, 14

 H
 hasClass() method, 48

 hash() method, 176

 headers property, 160

 hierarchy of scopes, 73

 host() method, 176

 HTML documents

bootstrapping, 42

 extending HTML, 208 - 210

 html() method, 48

 HTTP servers, implementing and accessing,

 161 - 163

 $http service, 158 - 163

 configuring, 160

 HTTP server implementation and
access, 161 - 163

 response callback functions, 161

 shortcut methods, 159

 usage with custom services, 192 - 194

 extending

 form elements with directives, 104 - 105

 HTML, 208 - 210

 external templates, testing custom direc-

tives, 230

 F
 factory() method, 56

 factory service, 184 , 185 - 186

 filter() method, 56 , 94 - 95

 filter_customer.js listing, 95

 filter_sort.html listing, 93

 filter_sort.js listing, 92

 filter:exp:compare filter, 87

 filters

 built-in filters, 87 - 90

 custom filters, 94 - 95

 definition of, 77

 sorting and ordering with, 91 - 92

syntax, 87

 unit testing, 227 - 228

 filters.html listing, 90

 filters.js listing, 90

 finally keyword, 32 - 33

 find() method, 48

 first.html listing, 47

 first.js listing, 47

 focus events, 115

 folder structure, creating applications, 44

 forEach() global API, 43

 for/in loops, 18

 for loops, 17 - 18

 form elements, extending with directives,

 104 - 105

 fromCharCode() method, 26

 fromJson() global API, 43

242 IDE (Integrated Development Environment), setup

 I
 IDE (Integrated Development Environment),

setup, 5 - 6

 if statements, 15

 images, zoom view field example applica-

tion, 208 - 210

 increment operator, 12

 indexOf() method

 arrays, 28 , 30

 strings, 26- 27

 inherited scope, 128

 inheritedData() method, 49

 $inject property, 57 - 58

 inject_builtin.html listing, 58

 inject_builtin.js listing, 58

 inject_custom.html listing, 60

 inject_custom.js listing, 60

 injection. See dependency injection

 injector() method, 49

 injectors, definition of, 54

 input directive, 104

 input.checkbox directive, 104

 input.date directive, 104

 input.dateTimeLocal directive, 104

 input.email directive, 104

 input.month directive, 104

 input.number directive, 104

 input.radio directive, 104

 input.text directive, 104

 input.time directive, 104

 input.url directive, 104

 input.week directive, 104

 installing Node.js, 6 - 7

 Integrated Development Environment (IDE),

setup, 5 - 6

 $interpolate service, 158

 interrupting loops, 18 - 19

 $interval service, 158 , 168 - 169

 isArray() global API, 43

 isDate() global API, 43

 isDefined() global API, 43

 isElement() global API, 43

 isFunction() global API, 43

 isNumber() global API, 43

 isObject() global API, 43

 isolate scope, 129 - 130

 isolateScope() method, 49

 isString() global API, 43

 isUndefined() global API, 43

 iterating through arrays, 30

 J
 Jasmine, 223

 JavaScript

 in AngularJS expressions, 85

 animation in, 171 - 172

 arrays

adding/removing items, 30

combining, 29

 converting to strings, 30

defining, 28

 iterating through, 30

length of, 28

 methods, 28

searching for items, 30

 data types, list of, 11 - 12

 development environment, setup,
5 - 6

 error handling

 finally keyword, 32 - 33

 throwing errors, 32

 try/catch blocks, 31 - 32

expressions, AngularJS expressions ver-
sus, 79

243lastIndexOf() method

replacing words in, 27

searching for substrings, 27

splitting into arrays, 27

 testing. See applications, testing

 variables

 defining, 10 - 11

scope, 22

 join() method, 28 , 30

 jQuery

 accessing directly, 49 - 50

 animation, 171 - 172

 full version usage example, 208 - 210

 integration with AngularJS, 40 - 41

 jQuery lite versus, 40 - 41

 jQuery lite

 accessing directly, 49 - 50

 definition of, 48

 jQuery versus, 40 - 41

 methods, 48 - 49

 json filter, 87

 K
 keyboard events, 117 - 118

 keywords

 break, 16 , 18 - 19

continue, 19

 finally, 32 - 33

 function, 19

new, 23

 return, 20 - 21

 var, 10

 L
 large_title.html listing, 104

 lastIndexOf() method

arrays, 28

strings, 26

functions

anonymous functions, 21

 defining, 19 - 20

definition of, 19

 passing values to, 20

 returning values from, 20 - 21

 integration with AngularJS, 40 - 41

 loops

definition of, 16

do/while loops, 17

for/in loops, 18

 for loops, 17 - 18

 interrupting, 18 - 19

 while loops, 16 - 17

Node.js

 building Express web server, 8 - 10

running code on, 7

 setup, 6 - 7

objects

 defining custom, 23 - 24

definition of, 22

 prototyping, 24 - 25

syntax, 23

 operators

 arithmetic operators, 12 - 13

assignment operators, 13

 comparison operators, 14

definition of, 12

if statements, 15

logical operators, 14

 switch statements, 15 - 16

strings

 concatenating, 27

defining, 25

escape codes, 25

 length of, 26

 methods, 26

244 length

 length

 of arrays, 28

 of strings, 26

 less than operator, 14

 less than or equal to operator, 14

 life cycle phases

 AngularJS, 39 - 40

 scopes, 71 - 72

 limitTo:limit filter, 87

 link() function, 130 - 132

 link property, 123

 listeners, handling custom events, 151

 listings

 animate.css, 174

config_run_blocks.html, 63

config_run_blocks.js, 63

Defining global and local variables in
JavaScript, 22

directive_angular_include.html, 103

 directive_angular_include.js, 103

 directive_bind.html, 112

directive_bind.js, 112

directive_custom_dom.html, 135

directive_custom_dom.js, 134

directive_custom_photos.js, 141

directive_custom_zoom.html, 139

directive_custom_zoom.js, 137

 directive_custom.html, 142

directive_focus_events.html, 116

directive_focus_events.js, 116

directive_form.html, 108

 directive_form.js, 105

directive_keyboard_events.html, 118

directive_keyboard_events.js, 118

directive_mouse_events.html, 121

directive_mouse_events.js, 120

dragdrop.html, 206

 dragdrop.js, 204

expand_item.html, 214

 expand_list.html, 214

expand.html, 215

 expand.js, 213

 expressions_basic.html, 80

 expressions_basic.js, 80

expressions_javascript.html, 85

 expressions_javascript.js, 85

expressions_scope.html, 83

 expressions_scope.js, 82

filter_customer.js, 95

 filter_custom.html, 96

filter_sort.html, 93

filter_sort.js, 92

filters.html, 90

 filters.js, 90

 first.html, 47

first.js, 47

inject_builtin.html, 58

 inject_builtin.js, 58

inject_custom.html, 60

inject_custom.js, 60

 large_title.html, 104

my_photos.html, 143

pane.html, 201

rating.html, 219

 rating.js, 218

scope_controller.html, 67

scope_controller.js, 67

 scope_events.html, 153

scope_events.js, 152

scope_hierarchy.html, 74

scope_hierarchy.js, 74

 scope_template.html, 70

scope_template.js, 69

scope_watch.html, 149

245modules

 logical operators, list of, 14

 loops

definition of, 16

do/while loops, 17

for/in loops, 18

 for loops, 17 - 18

 interrupting, 18 - 19

 while loops, 16 - 17

 lowercase filter, 87

 lowercase() global API, 43

 M
 match() method, 26

 message property, 32

 method property, 160

 methods

for arrays, 28 -29

deferred responses, 180 -181

definition of, 23

$http service, 159

 in jQuery lite, 48 - 49

$location service, 176 -177

for strings, 26

 model mutation phase (scopes), 72

 modules

 adding as dependency, 57 - 58

configuration phase

 adding configuration blocks, 61 - 62

 implementing configuration blocks,
 62 - 63

 creating providers

 service providers, 56 - 57

specialized providers, 56

 defining, 54 - 55

 definition of, 37 , 53 - 54

loading, 45

scope_watch.js, 148

 server.js, 9

 service_animate.html, 173

service_animate.js, 172

service_cache.js, 165

 service_cookie.html, 167

service_cookie.js, 167

service_custom_censor.html, 187

service_custom_censor.js, 186

service_custom_db_access.js, 194

service_custom_db.html, 196

service_custom_db.js, 195

service_custom_time.html, 190

service_custom_time.js, 189

service_db_server.js, 192

service_http.html, 164

service_http.js, 163

service_location.html, 178

 service_location.js, 177

service_server.js, 162

small_title.html, 104

tabbable.html, 202

tabbable.js, 200

tabs.html, 201

 welcome.css, 9

welcome.html, 9

zooming.html, 210

zooming.js, 209

zoomit.html, 210

 loading

angular.js library file, 45

modules, 45

 local variable scope, 22

 $locale service, 158

 $location service, 158 , 176 - 177

 $log service, 158

246 modules

run phase

adding run blocks, 62

 implementing run blocks, 62 - 63

 modulo operator, 12

 mouse events, 120

 multiElement property, 123

 multiplication operator, 12

 mutation observation phase (scopes), 72

 MVC (Model View Controller) model, 36

 my_photos.html listing, 143

 N
 name property, 32

 nested controllers, implementing custom

events, 151 - 152

 nested directives, 140 - 141 , 199 - 202 ,

212 - 215

 new keyword, 23

 new operator, 224 - 225

 ng-app directive, 37 , 42 , 45 , 100

 ng-bind directive, 109

 ng-bind-html directive, 109

 ng-bind-template directive, 109

 ng-blur directive, 114 - 115

 ng-change directive, 114

 ng-checked directive, 114

 ng-class directive, 109 , 169 - 170

 ng-class-even directive, 109

 ng-class-odd directive, 109

 ng-click directive, 69 , 114 , 120

 ng-cloak directive, 100

 ng-controller directive, 66 , 100

 ng-copy directive, 114

 ng-cut directive, 114

 ng-dblclick directive, 114

 ng-disabled directive, 109

 ng-focus directive, 114 - 115

 ng-form directive, 104

 ng-hide directive, 109 , 169

 ng-href directive, 100

 ng-if directive, 109 , 169

 ng-include directive, 100 , 102 , 169

 ng-init directive, 109

 ng-keydown directive, 114 , 117 - 118

 ng-keypress directive, 114

 ng-keyup directive, 114 , 117 - 118

 ng-list directive, 100

 ng-model directive, 68 , 109

 ng-mousedown directive, 114 , 120

 ng-mouseenter directive, 114 , 120

 ng-mouseleave directive, 114 , 120

 ng-mousemove directive, 114 , 120

 ng-mouseover directive, 114

 ng-mouseup directive, 114 , 120

 ng-non-bindable directive, 100

 ng-open directive, 100

 ng-options directive, 104

 ng-paste directive, 114

 ng-pluralize directive, 100

 ng-readonly directive, 100

 ng-repeat directive, 109 , 169

 ng-required directive, 100

 ng-selected directive, 100

 ng-show directive, 109 , 169

 ng-src directive, 100

 ng-srcset directive, 100

 ng-style directive, 109

 ng-submit directive, 114

 ng-swipe-left directive, 114

 ng-swipe-right directive, 114

 ng-switch directive, 109 , 169

 ng-transclude directive, 100 , 130

247passing

 prototyping, 24 - 25

 strings

concatenating, 27

defining, 25

 escape codes, 25

 length of, 26

 methods, 26

 replacing words in, 27

searching for substrings, 27

splitting into arrays, 27

 syntax, 23

 off() method, 48

 one() method, 48

 $on() method, 151

 on() method, 48

 operators

 arithmetic operators, 12 - 13

 assignment operators, 13

comparison operators, 14

definition of, 12

 if statements, 15

logical operators, 14

 switch statements, 15 - 16

 orderBy:exp:reverse filter, 87

 ordering with filters, 91 - 92

 Or operator, 14

 P
 pane.html listing, 201

 parameters, passing dependencies as, 226

 params property, 160

 parent() method, 48

 parent scopes, emitting events to, 150 - 151

 $parse service, 158

 passing

dependencies as parameters, 226

variables to functions, 20

 ng-value directive, 109

 ng-view directive, 100 , 169

 Node.js

 building Express web server, 8 - 10

 running JavaScript code on, 7

 setup, 6 - 7

 normalization, 78

 not equal to operator, 14

 Not operator, 14

 $notify() method, 180

 null data type, 12

 number data type, 11

 number[:fraction] filter, 87

 numbers in basic expressions, 79 - 80

 O
 object literal data type, 12

 objects

 arrays

adding/removing items, 30

combining, 29

converting to strings, 30

defining, 28

 iterating through, 30

length of, 28

 methods, 28

 searching for items, 30

 defining custom, 23 - 24

 definition of, 22

 DOM objects. See DOM manipulation

 error handling

 finally keyword, 32 - 33

throwing errors, 32

 try/catch blocks, 31 - 32

 modules, defining, 54 - 55

 properties, tracking, 147

248 path() method

 path() method, 176

 pop() method, 28

 port() method, 176

 positioning event handlers, 145

 prepend() method, 48

 priority property, 123

 prop() method, 48

 properties

custom directives, 123 -125

definition of, 23

 $http service, 160-161

 tracking, 147

 protocol() method, 176

 prototyping objects, 24 - 25

 Protractor, 223 , 230

 provider() method, 57

 providers

 creating

 service providers, 56 - 57

 specialized providers, 56

definition of, 54

 implementing, 57 - 58

 injecting into controllers, 58 - 59

 push() method, 28

 Q
 $q service, 158 , 180 - 181

 usage with custom services, 192 - 194

 R
 rating.html listing, 219

 rating.js listing, 218

 ratings example application, 217 - 219

 ready() method, 48

 registry requests, 225 - 226

 $reject() method, 180

 remove() method, 48

 removeAttr() method, 48

 removeClass() method, 48

 removeData() method, 48

 removing items from arrays, 30

 replace() method, 26- 27 , 176

 replaceWith() method, 48

 replacing words in strings, 27

 require() method, 7

 require property, 123

 $resolve() method, 180

 $resource service, 158

 response callback functions, $http

service, 161

 responseType property, 160

 responsibilities, separation of, 40

 restrict property, 123 , 126 - 127

 return keyword, 20 - 21

 returning variables from functions, 20 - 21

 reusability of custom services, 188 - 189

 reverse() method, 28

 root element, defining, 45

 root scope, applications and, 65 - 66

 $rootElement service, 158

 $rootScope service, 158

 $route service, 158

 $routeParams service, 158

 run blocks

adding, 62

 implementing, 62 - 63

 run phase (modules)

 adding run blocks, 62

 implementing run blocks, 62 - 63

 running JavaScript on Node.js, 7

 runtime phase (AngularJS life cycle), 40

249service_db_server.js listing

 expressions and, 78 - 79 , 81 - 82

 life cycle phases, 71 - 72

 root scope, 65 - 66

scope hierarchy, 73

 templates and, 68 - 69

 object properties, tracking, 147

 sharing, 212 - 215

 testing controllers, 226 - 227

of variables, 22

 tracking, 146 - 147

 script directive, 100

 search() method, 26 , 176

 searching

arrays for items, 30

 strings for substrings, 27

 select directive, 104

 separation of responsibilities, 40

 server data, scopes and, 71

 server.js listing, 9

 servers. See web servers

 service() method, 56

 service providers, creating, 56 - 57

 service service, 184 - 185

 implementation example, 185 - 186

 service_animate.html listing, 173

 service_animate.js listing, 172

 service_cache.js listing, 165

 service_cookie.html listing, 167

 service_cookie.js listing, 167

 service_custom_censor.html listing, 187

 service_custom_censor.js listing, 186

 service_custom_db_access.js listing, 194

 service_custom_db.html listing, 196

 service_custom_db.js listing, 195

 service_custom_time.html listing, 190

 service_custom_time.js listing, 189

 service_db_server.js listing, 192

 S
 sample code listings. See listings

 $sanitize service, 158

 $sce service, 158

 scope change events, 146

implementing in controllers, 148

 $watch() method, 146 - 147

$watchCollection() method, 147

$watchGroup() method, 147

 scope destruction phase (scopes), 72

 scope() method, 49

 scope property, 123 , 128 - 130

 scope_controller.html listing, 67

 scope_controller.js listing, 67

 scope_events.html listing, 153

 scope_events.js listing, 152

 scope_hierarchy.html listing, 74

 scope_hierarchy.js listing, 74

 scope_template.html listing, 70

 scope_template.js listing, 69

 scope_watch.html listing, 149

 scope_watch.js listing, 148

 scopes

 in AngularJS

definition of, 37

implementing, 46

 configuring for custom directives,
128 - 130

custom events, 150

 broadcasting, 151

 emitting, 150 - 151

 handling with listeners, 151

 implementing in nested controllers,
 151 - 152

 as data model, 65

 back-end server data, 71

 controllers and, 66 - 67

250 service_http.html listing

 service_http.html listing, 164

 service_http.js listing, 163

 service_location.html listing, 178

 service_location.js listing, 177

 service_server.js listing, 162

 services

built-in services

$anchorScroll, 158

 $animate, 158 , 169 - 172

 $cacheFactory, 158 , 165

$compile, 158

 $cookie, 166 - 167

 $cookies, 158

 $cookieStore, 166 - 167

$document, 158

 $exceptionHandler, 158

 $http, 158 - 163

$interpolate, 158

 $interval, 158 , 168 - 169

list of, 158

$locale, 158

 $location, 158 , 176 - 177

$log, 158

$parse, 158

 $q, 158 , 180 - 181

 $resource, 158

 $rootElement, 158

 $rootScope, 158

$route, 158

$routeParams, 158

$sanitize, 158

 $sce, 158

$swipe, 158

$templateCache, 158

 $timeout, 158 , 168 - 169

 usage with custom services, 192 - 194

 $window, 158 , 166

 custom services

constant service, 184

 database access service example,
 192 - 194

factory service, 184

 implementation example, 185 - 186

 service service, 184 - 185

 time service example, 188 - 189

types of, 183

 value service, 183 - 184

 definition of, 38 , 157

 sharing scopes, 212 - 215

 shift() method, 28

 slice() method

arrays, 28

strings, 26

 small_title.html listing, 104

 sort() method, 28

 sorting with filters, 91 - 92

 specialized providers, creating, 56

 splice() method, 28

 split() method, 26 - 27

 splitting strings into arrays, 27

 star ratings example application, 217 - 219

 string data type, 11

 strings

 in basic expressions, 79 - 80

 concatenating, 13 , 27

converting arrays to, 30

defining, 25

escape codes, 25

length of, 26

methods, 26

 replacing words in, 27

searching for substrings, 27

splitting into arrays, 27

251unit testing

 substr() method, 26

 substring() method, 26

 substrings, searching for, 27

 subtraction operator, 12

 $swipe service, 158

 switch statements, 15 - 16

 T
 tabbable.html listing, 202

 tabbable.js listing, 200

 tabbed view example application, 199 - 202

 tabs.html listing, 201

 template property, 123 - 124

 $templateCache service, 158

 templates, 37

adding controller to, 46

 components of, 77 - 78

 defining with custom directives,
124 - 126

definition of, 77

 directive support, 100 - 102

 expressions in, 78 - 79

 basic expressions, 79 - 80

JavaScript in, 85

 scope interactions, 81 - 82

 external templates, testing custom
directives, 230

filters in, 87

 built-in filters, 87 - 90

 custom filters, 94 - 95

 sorting and ordering with, 91 - 92

 scopes and, 68 - 69

 star ratings example application,
217 - 219

 templateUrl property, 123 , 126

 terminal property, 123

 testing

applications, 223

 end-to-end testing, 230 - 231

 evaluating platforms, 223

 unit testing, 224 - 230

 JavaScript on Node.js, 7

 text() method, 48

 textarea directive, 104

 throw statement, 32

 throwing errors, 32

 time service example, 188 - 189

 timeout property, 160

 $timeout service, 158 , 168 - 169

 timers, 168 - 169

 toggleClass() method, 48

 toJson() global API, 43

 toLowerCase() method, 26

 toString() method, 28

 toUpperCase() method, 26

 transclude property, 123- 124 , 130

 transclusion, testing custom directives, 229 -

 230

 transformRequest property, 160

 transformResponse property, 160

 triggerHandler() method, 48

 try/catch blocks, 31 - 32

 type property, 123

 U
 unbind() method, 48

 unit testing, 224 - 230

 controllers, 226 - 227

custom directives, 228

with external templates, 230

 with transclusion, 229 - 230

252 unit testing

 dependency injection and, 224 - 226

 global lookup, 225

 new operator, 224 - 225

passed parameters, 226

 registry requests, 225 - 226

 filters, 227 - 228

 unshift() method, 28

 uppercase filter, 87

 uppercase() global API, 43

 url() method, 176

 url property, 160

 user interaction events, 145 - 146

 V
 val() method, 48

 value() method, 56

 value service, 183 - 184

 implementation example, 185 - 186

 valueOf() method

 arrays, 28

strings, 26

 values

passing to functions, 20

 returning from functions, 20 - 21

 var keyword, 10

 variables

 data types, list of, 11 - 12

 defining, 10 - 11

 in expressions, 81 - 82

 passing to functions, 20

 returning from functions, 20 - 21

scope, 22

 tracking, 146 - 147

 W
 $watch() method, 72 , 146 - 148

 $watchCollection() method, 147- 148

 watcher registration phase (scopes), 72

 $watchGroup() method, 147 - 148

 web browsers

 alerts, implementing, 166

 cookies, 166 - 167

events, 145

 purpose of, 6

 web servers

 Express web servers, building, 8 - 10

purpose of, 6

 WebDriver, 230

 websites, AngularJS, 42

 welcome.css listing, 9

 welcome.html listing, 9

 while loops, 16 - 17

 $window service, 158 , 166

 withCredentials property, 160

 words, replacing in strings, 27

 wrap() method, 48

 X –Y
 xsrfCookieName property, 160

 xsrfHeaderName property, 160

 Z
 zoom view field example application,

 208 - 210

 zooming.html listing, 210

 zooming.js listing, 209

 zoomit.html listing, 210

	Table of Contents
	Introduction
	Who Should Read This Book
	Why You Should Read This Book
	What You Will Learn from This Book
	What Is AngularJS?
	How Is This Book Organized?
	Getting the Code Examples
	Finally

	2 Getting Started with AngularJS
	Why AngularJS?
	Understanding AngularJS
	Modules
	Scopes and the Data Model
	Views with Templates and Directives
	Expressions
	Controllers
	Data Binding
	Services
	Dependency Injection
	Compiler

	An Overview of the AngularJS Life Cycle
	The Bootstrap Phase
	The Compilation Phase
	The Runtime Data Binding Phase

	Separation of Responsibilities
	Integrating AngularJS with Existing JavaScript and jQuery
	Adding AngularJS to Your Environment
	Bootstrapping AngularJS in an HTML Document
	Using the Global APIs
	Creating a Basic AngularJS Application
	Loading the AngularJS Library and Your Main Module
	Defining the AngularJS Application Root Element
	Adding a Controller to the Template
	Implementing the Scope Model

	Using jQuery or jQuery Lite in AngularJS Applications
	What Is jQuery Lite?
	Accessing jQuery or jQuery Lite Directly
	Accessing jQuery or jQuery Lite Directly

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

