
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134034089
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134034089
https://plusone.google.com/share?url=http://www.informit.com/title/9780134034089
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134034089
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134034089/Free-Sample-Chapter

The Java® Tutorial
Sixth Edition

psn-gallardo.indb ipsn-gallardo.indb i 11/12/14 1:48 PM11/12/14 1:48 PM

Since 1996, when Addison-Wesley published the first edition of The Java

Programming Language by Ken Arnold and James Gosling, this series has

been the place to go for complete, expert, and definitive information on

Java technology. The books in this series provide the detailed information

developers need to build effective, robust, and portable applications and

are an indispensable resource for anyone using the Java platform.

Visit informit.com/thejavaseries for a complete list of available publications.

The Java® Series

Make sure to connect with us!
informit.com/socialconnect

psn-gallardo.indb iipsn-gallardo.indb ii 11/12/14 1:48 PM11/12/14 1:48 PM

The Java® Tutorial

A Short Course on the Basics
Sixth Edition

Raymond Gallardo
Scott Hommel
Sowmya Kannan
Joni Gordon
Sharon Biocca Zakhour

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

psn-gallardo.indb iiipsn-gallardo.indb iii 11/12/14 1:48 PM11/12/14 1:48 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382- 3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging- in- Publication Data
Gallardo, Raymond.
The Java tutorial : a short course on the basics / Raymond Gallardo, Scott Hommel, Sowmya Kannan,

Joni Gordon, Sharon Biocca Zakhour.— Sixth edition.
pages cm

Previous edition: The Java tutorial : a short course on the basics / Sharon Zakhour, Sowmya Kannan,
Raymond Gallardo. 2013, which was originally based on The Java tutorial / by Mary Campione.

Includes index.
ISBN 978- 0- 13- 403408- 9 (pbk. : alk. paper)— ISBN 0- 13- 403408- 2 (pbk. : alk. paper)
1. Java (Computer program language) I. Title.
QA76.73.J38Z35 2015
005.13'3— dc23

 2014035811

Copyright © 2015, Oracle and/or its affi liates. All rights reserved.
500 Oracle Parkway, Redwood Shores, CA 94065

Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236- 3290.

ISBN- 13: 978- 0- 13- 403408- 9
ISBN- 10: 0- 13- 403408- 2

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, December 2014

psn-gallardo.indb ivpsn-gallardo.indb iv 11/12/14 1:48 PM11/12/14 1:48 PM

v

Preface xxiii
About the Authors xxvii

Chapter 1 Getting Started 1
The Java Technology Phenomenon 1

The Java Programming Language 2
The Java Platform 2
What Can Java Technology Do? 4
How Will Java Technology Change My Life? 4

The “Hello World!” Application 5
“Hello World!” for the NetBeans IDE 6
“Hello World!” for Microsoft Windows 15
“Hello World!” for Solaris and Linux 20

A Closer Look at the “Hello World!” Application 23
Source Code Comments 24
The HelloWorldApp Class Defi nition 25
The main Method 25

Common Problems (and Their Solutions) 27
Compiler Problems 27
Runtime Problems 29

Questions and Exercises: Getting Started 31

Contents

psn-gallardo.indb vpsn-gallardo.indb v 11/12/14 1:48 PM11/12/14 1:48 PM

vi Contents

Questions 31
Exercises 32
Answers 32

Chapter 2 Object- Oriented Programming Concepts 33
What Is an Object? 34
What Is a Class? 36
What Is Inheritance? 38
What Is an Interface? 39
What Is a Package? 40
Questions and Exercises: Object- Oriented Programming Concepts 41

Questions 41
Exercises 41
Answers 41

Chapter 3 Language Basics 43
Variables 44

Naming 45
Primitive Data Types 46
Arrays 51
Summary of Variables 57
Questions and Exercises: Variables 57

Operators 58
Assignment, Arithmetic, and Unary Operators 59
Equality, Relational, and Conditional Operators 62
Bitwise and Bit Shift Operators 65
Summary of Operators 66
Questions and Exercises: Operators 67

Expressions, Statements, and Blocks 68
Expressions 68
Statements 70
Blocks 71
Questions and Exercises: Expressions, Statements, and Blocks 71

Control Flow Statements 72
The if- then and if- then- else Statements 72
The switch Statement 74
The while and do- while Statements 79
The for Statement 80
Branching Statements 82
Summary of Control Flow Statements 85
Questions and Exercises: Control Flow Statements 86

psn-gallardo.indb vipsn-gallardo.indb vi 11/12/14 1:48 PM11/12/14 1:48 PM

Contents vii

Chapter 4 Classes and Objects 87
Classes 88

Declaring Classes 89
Declaring Member Variables 90
Defi ning Methods 92
Providing Constructors for Your Classes 94
Passing Information to a Method or a Constructor 95

Objects 99
Creating Objects 100
Using Objects 104

More on Classes 107
Returning a Value from a Method 107
Using the this Keyword 109
Controlling Access to Members of a Class 110
Understanding Class Members 112
Initializing Fields 116
Summary of Creating and Using Classes and Objects 118
Questions and Exercises: Classes 119
Questions and Exercises: Objects 120

Nested Classes 121
Why Use Nested Classes? 122
Static Nested Classes 122
Inner Classes 123
Shadowing 123
Serialization 124
Inner Class Example 125
Local and Anonymous Classes 127
Modifi ers 127
Local Classes 127
Anonymous Classes 131
Lambda Expressions 136
When to Use Nested Classes, Local Classes,
Anonymous Classes, and Lambda Expressions 155
Questions and Exercises: Nested Classes 156

Enum Types 157
Questions and Exercises: Enum Types 161

Chapter 5 Annotations 163
Annotations Basics 164

The Format of an Annotation 164

psn-gallardo.indb viipsn-gallardo.indb vii 11/12/14 1:48 PM11/12/14 1:48 PM

viii Contents

Where Annotations Can Be Used 165
Declaring an Annotation Type 165
Predefi ned Annotation Types 167

Annotation Types Used by the Java Language 167
Annotations That Apply to Other Annotations 169

Type Annotations and Pluggable Type Systems 170
Repeating Annotations 171

Step 1: Declare a Repeatable Annotation Type 172
Step 2: Declare the Containing Annotation Type 172
Retrieving Annotations 173
Design Considerations 173

Questions and Exercises: Annotations 173
Questions 173
Exercise 174
Answers 174

Chapter 6 Interfaces and Inheritance 175
Interfaces 175

Interfaces in Java 176
Interfaces as APIs 177
Defi ning an Interface 177
Implementing an Interface 178
Using an Interface as a Type 180
Evolving Interfaces 181
Default Methods 182
Summary of Interfaces 192
Questions and Exercises: Interfaces 193

Inheritance 193
The Java Platform Class Hierarchy 194
An Example of Inheritance 195
What You Can Do in a Subclass 196
Private Members in a Superclass 196
Casting Objects 197
Multiple Inheritance of State, Implementation, and Type 198
Overriding and Hiding Methods 199
Polymorphism 203
Hiding Fields 206
Using the Keyword super 206
Object as a Superclass 208
Writing Final Classes and Methods 212
Abstract Methods and Classes 212

psn-gallardo.indb viiipsn-gallardo.indb viii 11/12/14 1:48 PM11/12/14 1:48 PM

Contents ix

Summary of Inheritance 216
Questions and Exercises: Inheritance 216

Chapter 7 Generics 219
Why Use Generics? 220
Generic Types 220

A Simple Box Class 220
A Generic Version of the Box Class 221
Type Parameter Naming Conventions 221
Invoking and Instantiating a Generic Type 222
The Diamond 223
Multiple Type Parameters 223
Parameterized Types 224
Raw Types 224

Generic Methods 226
Bounded Type Parameters 227

Multiple Bounds 228
Generic Methods and Bounded Type Parameters 229

Generics, Inheritance, and Subtypes 229
Generic Classes and Subtyping 230

Type Inference 232
Type Inference and Generic Methods 232
Type Inference and Instantiation of Generic Classes 233
Type Inference and Generic Constructors
of Generic and Nongeneric Classes 234
Target Types 235

Wildcards 236
Upper- Bounded Wildcards 236
Unbounded Wildcards 237
Lower- Bounded Wildcards 238
Wildcards and Subtyping 239
Wildcard Capture and Helper Methods 240
Guidelines for Wildcard Use 243

Type Erasure 244
Erasure of Generic Types 245
Erasure of Generic Methods 246
Effects of Type Erasure and Bridge Methods 247
Nonreifi able Types and Varargs Methods 249

Restrictions on Generics 252
Cannot Instantiate Generic Types with Primitive Types 252
Cannot Create Instances of Type Parameters 253

psn-gallardo.indb ixpsn-gallardo.indb ix 11/12/14 1:48 PM11/12/14 1:48 PM

x Contents

Cannot Declare Static Fields Whose Types Are Type Parameters 254
Cannot Use Casts or instanceof with Parameterized Types 254
Cannot Create Arrays of Parameterized Types 255
Cannot Create, Catch, or Throw
Objects of Parameterized Types 255
Cannot Overload a Method Where the Formal Parameter
Types of Each Overload Erase to the Same Raw Type 256

Questions and Exercises: Generics 256
Answers 258

Chapter 8 Packages 259
Creating and Using Packages 259

Creating a Package 261
Naming a Package 262
Using Package Members 263
Managing Source and Class Files 267
Summary of Creating and Using Packages 269

Questions and Exercises: Creating and Using Packages 269
Questions 269
Exercises 270
Answers 270

Chapter 9 Numbers and Strings 271
Numbers 271

The Numbers Classes 272
Formatting Numeric Print Output 274
Beyond Basic Arithmetic 279
Autoboxing and Unboxing 283
Summary of Numbers 286
Questions and Exercises: Numbers 286

Characters 287
Escape Sequences 288

Strings 288
Creating Strings 289
String Length 290
Concatenating Strings 291
Creating Format Strings 292
Converting between Numbers and Strings 292
Manipulating Characters in a String 295
Comparing Strings and Portions of Strings 300
The StringBuilder Class 302
Summary of Characters and Strings 306
Questions and Exercises: Characters and Strings 307

psn-gallardo.indb xpsn-gallardo.indb x 11/12/14 1:48 PM11/12/14 1:48 PM

Contents xi

Chapter 10 Exceptions 309
What Is an Exception? 310
The Catch or Specify Requirement 311

The Three Kinds of Exceptions 311
Bypassing Catch or Specify 312

Catching and Handling Exceptions 313
The try Block 314
The catch Blocks 315
The fi nally Block 316
The try- with- resources Statement 317
Putting It All Together 320

Specifying the Exceptions Thrown by a Method 323
How to Throw Exceptions 324

The throw Statement 325
Throwable Class and Its Subclasses 325
Error Class 326
Exception Class 326
Chained Exceptions 326
Creating Exception Classes 328

Unchecked Exceptions: The Controversy 329
Advantages of Exceptions 330

Advantage 1: Separating Error- Handling
Code from “Regular” Code 331
Advantage 2: Propagating Errors Up the Call Stack 332
Advantage 3: Grouping and Differentiating Error Types 334

Summary 335
Questions and Exercises: Exceptions 336

Questions 336
Exercises 337
Answers 337

Chapter 11 Basic I/O and NIO.2 339
I/O Streams 339

Byte Streams 340
Character Streams 342
Buffered Streams 345
Scanning and Formatting 346
I/O from the Command Line 352
Data Streams 354
Object Streams 357

File I/O (Featuring NIO.2) 359
What Is a Path? (And Other File System Facts) 359

psn-gallardo.indb xipsn-gallardo.indb xi 11/12/14 1:48 PM11/12/14 1:48 PM

xii Contents

The Path Class 362
File Operations 370
Checking a File or Directory 374
Deleting a File or Directory 375
Copying a File or Directory 376
Moving a File or Directory 377
Managing Metadata (File and File Store Attributes) 378
Reading, Writing, and Creating Files 386
Random Access Files 393
Creating and Reading Directories 395
Links, Symbolic or Otherwise 399
Walking the File Tree 401
Finding Files 407
Watching a Directory for Changes 410
Other Useful Methods 416
Legacy File I/O Code 418

Summary 421
Questions and Exercises: Basic I/O 422

Questions 422
Exercises 422
Answers 422

Chapter 12 Collections 423
Introduction to Collections 424

What Is a Collections Framework? 424
Benefi ts of the Java Collections Framework 425

Interfaces 426
The Collection Interface 428
Traversing Collections 429
Collection Interface Bulk Operations 432
Collection Interface Array Operations 432
The Set Interface 433
The List Interface 438
The Queue Interface 446
The Deque Interface 448
The Map Interface 449
Object Ordering 458
The SortedSet Interface 464
The SortedMap Interface 467
Summary of Interfaces 469
Questions and Exercises: Interfaces 470

psn-gallardo.indb xiipsn-gallardo.indb xii 11/12/14 1:48 PM11/12/14 1:48 PM

Contents xiii

Aggregate Operations 471
Pipelines and Streams 472
Differences between Aggregate Operations and Iterators 474
Reduction 474
Parallelism 480
Side Effects 484
Questions and Exercises: Aggregate Operations 487

Implementations 489
Set Implementations 492
List Implementations 493
Map Implementations 495
Queue Implementations 496
Deque Implementations 498
Wrapper Implementations 499
Convenience Implementations 502
Summary of Implementations 504
Questions and Exercises: Implementations 504

Algorithms 505
Sorting 505
Shuffl ing 508
Routine Data Manipulation 508
Searching 508
Composition 509
Finding Extreme Values 509

Custom Collection Implementations 509
Reasons to Write an Implementation 510
How to Write a Custom Implementation 511

Interoperability 513
Compatibility 513
API Design 515

Chapter 13 Concurrency 519
Processes and Threads 520

Processes 520
Threads 520

Thread Objects 521
Defi ning and Starting a Thread 521
Pausing Execution with Sleep 522
Interrupts 523
Joins 525
The SimpleThreads Example 525

psn-gallardo.indb xiiipsn-gallardo.indb xiii 11/12/14 1:48 PM11/12/14 1:48 PM

xiv Contents

Synchronization 527
Thread Interference 527
Memory Consistency Errors 528
Synchronized Methods 529
Intrinsic Locks and Synchronization 531
Atomic Access 533

Liveness 533
Deadlock 534
Starvation and Livelock 535

Guarded Blocks 535
Immutable Objects 539

A Synchronized Class Example 540
A Strategy for Defi ning Immutable Objects 541

High- Level Concurrency Objects 543
Lock Objects 544
Executors 546
Concurrent Collections 552
Atomic Variables 553
Concurrent Random Numbers 554

Questions and Exercises: Concurrency 555
Question 555
Exercises 555
Answers 556

Chapter 14 Regular Expressions 557
Introduction 558

What Are Regular Expressions? 558
How Are Regular Expressions Represented in This Package? 558

Test Harness 559
String Literals 560

Metacharacters 561
Character Classes 562

Simple Classes 562
Predefi ned Character Classes 566
Quantifi ers 568

Zero- Length Matches 569
Capturing Groups and Character Classes with Quantifi ers 572
Differences among Greedy, Reluctant,
and Possessive Quantifi ers 573

Capturing Groups 574
Numbering 574
Backreferences 575

psn-gallardo.indb xivpsn-gallardo.indb xiv 11/12/14 1:48 PM11/12/14 1:48 PM

Contents xv

Boundary Matchers 576
Methods of the Pattern Class 578

Creating a Pattern with Flags 578
Embedded Flag Expressions 580
Using the matches(String,CharSequence) Method 580
Using the split(String) Method 581
Other Utility Methods 582
Pattern Method Equivalents in java.lang.String 582

Methods of the Matcher Class 583
Index Methods 583
Study Methods 584
Replacement Methods 584
Using the start and end Methods 585
Using the matches and lookingAt Methods 586
Using replaceFirst(String) and replaceAll(String) 587
Using appendReplacement(StringBuffer,String)
and appendTail(StringBuffer) 588
Matcher Method Equivalents in java.lang.String 589

Methods of the PatternSyntaxException Class 589
Unicode Support 591

Matching a Specifi c Code Point 591
Unicode Character Properties 591

Questions and Exercises: Regular Expressions 592
Questions 592
Exercise 593
Answers 593

Chapter 15 The Platform Environment 595
Confi guration Utilities 595

Properties 596
Command- Line Arguments 600
Environment Variables 601
Other Confi guration Utilities 602

System Utilities 603
Command- Line I/O Objects 603
System Properties 604
The Security Manager 607
Miscellaneous Methods in System 608

PATH and CLASSPATH 609
Update the PATH Environment Variable (Microsoft Windows) 609
Update the PATH Variable (Solaris, Linux, and OS X) 611
Checking the CLASSPATH Variable (All Platforms) 612

psn-gallardo.indb xvpsn-gallardo.indb xv 11/12/14 1:48 PM11/12/14 1:48 PM

xvi Contents

Questions and Exercises: The Platform Environment 613
Question 613
Exercise 614
Answers 614

Chapter 16 Packaging Programs in JAR Files 615
Using JAR Files: The Basics 616

Creating a JAR File 616
Viewing the Contents of a JAR File 620
Extracting the Contents of a JAR File 622
Updating a JAR File 623
Running JAR- Packaged Software 625

Working with Manifest Files: The Basics 627
Understanding the Default Manifest 627
Modifying a Manifest File 628
Setting an Application’s Entry Point 629
Adding Classes to the JAR File’s Class Path 630
Setting Package Version Information 631
Sealing Packages within a JAR File 633
Enhancing Security with Manifest Attributes 634

Signing and Verifying JAR Files 635
Understanding Signing and Verifi cation 636
Signing JAR Files 639
Verifying Signed JAR Files 641

Using JAR- Related APIs 642
An Example: The JarRunner Application 643
The JarClassLoader Class 643
The JarRunner Class 646

Questions and Exercises: Packaging Programs in JAR Files 648
Questions 648
Answers 648

Chapter 17 Java Web Start 649
Additional References 650

Developing a Java Web Start Application 650
Creating the Top JPanel Class 651
Creating the Application 652
Benefi ts of Separating Core Functionality
from the Final Deployment Mechanism 652
Retrieving Resources 653

Deploying a Java Web Start Application 653
Setting Up a Web Server 656

psn-gallardo.indb xvipsn-gallardo.indb xvi 11/12/14 1:48 PM11/12/14 1:48 PM

Contents xvii

Displaying a Customized Loading Progress Indicator 656
Developing a Customized Loading Progress Indicator 657
Specifying a Customized Loading Progress
Indicator for a Java Web Start Application 659

Running a Java Web Start Application 660
Running a Java Web Start Application from a Browser 660
Running a Java Web Start Application
from the Java Cache Viewer 660
Running a Java Web Start Application from the Desktop 661

Java Web Start and Security 661
Dynamic Downloading of HTTPS Certifi cates 662

Common Java Web Start Problems 662
“My Browser Shows the Java Network Launch
Protocol (JNLP) File for My Application as Plain Text” 663
“When I Try to Launch My JNLP File, I Get the Following Error” 663

Questions and Exercises: Java Web Start 663
Questions 663
Exercises 664
Answers 664

Chapter 18 Applets 665
Getting Started with Applets 666

Defi ning an Applet Subclass 666
Methods for Milestones 667
Life Cycle of an Applet 668
Applet’s Execution Environment 670
Developing an Applet 670
Deploying an Applet 673

Doing More with Applets 677
Finding and Loading Data Files 677
Defi ning and Using Applet Parameters 678
Displaying Short Status Strings 681
Displaying Documents in the Browser 682
Invoking JavaScript Code from an Applet 683
Invoking Applet Methods from JavaScript Code 686
Handling Initialization Status with Event Handlers 689
Manipulating DOM of Applet’s Web Page 691
Displaying a Customized Loading Progress Indicator 693
Writing Diagnostics to Standard Output and Error Streams 698
Developing Draggable Applets 698
Communicating with Other Applets 701

psn-gallardo.indb xviipsn-gallardo.indb xvii 11/12/14 1:48 PM11/12/14 1:48 PM

xviii Contents

Working with a Server- Side Application 703
What Applets Can and Cannot Do 705

Solving Common Applet Problems 707
“My Applet Does Not Display” 707
“The Java Console Log Displays
java.lang.ClassNotFoundException” 708
“I Was Able to Build the Code Once, but Now the Build
Fails Even Though There Are No Compilation Errors” 708
“When I Try to Load a Web Page That Has an Applet,
My Browser Redirects Me to www.java.com without
Any Warning” 708
“I Fixed Some Bugs and Rebuilt My Applet’s
Source Code. When I Reload the Applet’s Web Page,
My Fixes Are Not Showing Up” 708

Questions and Exercises: Applets 708
Questions 708
Exercises 709
Answers 709

Chapter 19 Doing More with Java Rich Internet Applications 711
Setting Trusted Arguments and Secure Properties 711

System Properties 713
JNLP API 714

Accessing the Client Using the JNLP API 715
Cookies 719

Types of Cookies 719
Cookie Support in RIAs 719
Accessing Cookies 720

Customizing the Loading Experience 722
Security in Rich Internet Applications 722
Guidelines for Securing RIAs 724

Follow Secure Coding Guidelines 724
Test with the Latest Version of the JRE 724
Include Manifest Attributes 725
Use a Signed JNLP File 725
Sign and Time Stamp JAR Files 725
Use the HTTPS Protocol 726
Avoid Local RIAs 726

Questions and Exercises: Doing More with
Rich Internet Applications 726

Questions 726

psn-gallardo.indb xviiipsn-gallardo.indb xviii 11/12/14 1:48 PM11/12/14 1:48 PM

http://www.java.com

Contents xix

Exercise 726
Answers 727

Chapter 20 Deployment in Depth 729
User Acceptance of RIAs 729
Deployment Toolkit 731

Location of Deployment Toolkit Script 731
Deploying an Applet 732
Deploying a Java Web Start Application 735
Checking the Client JRE Software Version 738

Java Network Launch Protocol 739
Structure of the JNLP File 739

Deployment Best Practices 748
Reducing the Download Time 748
Avoiding Unnecessary Update Checks 749
Ensuring the Presence of the JRE Software 751

Questions and Exercises: Deployment in Depth 753
Questions 753
Exercise 753
Answers 753

Chapter 21 Date- Time 755
Date- Time Overview 756
Date- Time Design Principles 756

Clear 756
Fluent 757
Immutable 757
Extensible 757

The Date- Time Packages 757
Method Naming Conventions 758
Standard Calendar 759
Overview 759
DayOfWeek and Month Enums 760

DayOfWeek 760
Month 762

Date Classes 762
LocalDate 763
YearMonth 763
MonthDay 764
Year 764

Date and Time Classes 764
LocalTime 764

psn-gallardo.indb xixpsn-gallardo.indb xix 11/12/14 1:48 PM11/12/14 1:48 PM

xx Contents

LocalDateTime 765
Time Zone and Offset Classes 766

ZoneId and ZoneOffset 766
The Date- Time Classes 767

Instant Class 770
Parsing and Formatting 772

Parsing 772
Formatting 773

The Temporal Package 774
Temporal and TemporalAccessor 774
ChronoField and IsoFields 775
ChronoUnit 775
Temporal Adjuster 776
Temporal Query 778

Period and Duration 780
Duration 781
ChronoUnit 781
Period 782

Clock 783
Non- ISO Date Conversion 784

Converting to a Non- ISO- Based Date 784
Converting to an ISO- Based Date 786

Legacy Date- Time Code 787
Interoperability with Legacy Code 787
Mapping java.util Date and Time
Functionality to java.time 788
Date and Time Formatting 789

Summary 789
Questions and Exercises: Date- Time 791

Questions 791
Exercises 791
Answers 791

Chapter 22 Introduction to JavaFX 793
Appendix Preparation for Java Programming Language Certifi cation 795

Programmer Level I Exam 795
Section 1: Java Basics 795
Section 2: Working with Java Data Types 796
Section 3: Using Operators and Decision Constructs 797
Section 4: Creating and Using Arrays 797
Section 5: Using Loop Constructs 798

psn-gallardo.indb xxpsn-gallardo.indb xx 11/12/14 1:48 PM11/12/14 1:48 PM

Contents xxi

Section 6: Working with Methods and Encapsulation 798
Section 7: Working with Inheritance 799
Section 8: Handling Exceptions 799
Section 9: Working with Selected Classes
from the Java API 800

Programmer Level II Exam 801
Java SE 8 Upgrade Exam 801

Section 1: Lambda Expressions 801
Section 2: Using Built- In Lambda Types 801
Section 3: Filtering Collections with Lambdas 802
Section 4: Collection Operations with Lambda 803
Section 5: Parallel Streams 803
Section 6: Lambda Cookbook 804
Section 7: Method Enhancements 804
Section 8: Use Java SE 8 Date/Time API 804
Section 9: JavaScript on Java with Nashorn 805

Index 807

psn-gallardo.indb xxipsn-gallardo.indb xxi 11/12/14 1:48 PM11/12/14 1:48 PM

This page intentionally left blank

xxiii

Preface

Since the acquisition of Sun Microsystems by Oracle Corporation in early 2010, it
has been an exciting time for the Java language. As evidenced by the activities of
the Java Community Process program, the Java language continues to evolve. The
publication of this sixth edition of The Java® Tutorial refl ects version 8 of the Java
Platform Standard Edition (Java SE) and references the Application Programming
Interface (API) of that release.

This edition introduces new features added to the platform since the publication
of the fi fth edition (under release 7):

■ Lambda expressions enable you to treat functionality as a method argument
or code as data. Lambda expressions let you express instances of single-
method interfaces (referred to as functional interfaces) more compactly. See
the new section in Chapter 4, “Lambda Expressions.”

■ Type annotations can be used in conjunction with pluggable type systems for
improved type checking, and repeating annotations enable the application
of the same annotation to a declaration or type use. See the new sections in
Chapter 5, “Type Annotations and Pluggable Type Systems” and “Repeating
Annotations.”

■ Default methods are methods in an interface that have an implementation.
They enable new functionality to be added to the interfaces of libraries and
ensure binary compatibility with code written for older versions of those
interfaces. See the new section in Chapter 6, “Default Methods.”

psn-gallardo.indb xxiiipsn-gallardo.indb xxiii 11/12/14 1:48 PM11/12/14 1:48 PM

xxiv Preface

■ Aggregate operations enable you to perform functional- style operations on
streams of elements— in particular, bulk operations on collections such as
sequential or parallel map- reduce transformations. See the new section in
Chapter 12, “Aggregate Operations.”

■ Improvements have been added that focus on limiting attackers from using
malicious applets and rich Internet applications (RIAs). See the following
new and updated sections:
❏ Chapter 16, “Packaging Programs in JAR Files”
❏ Chapter 19, “Security in Rich Internet Applications” and “Guidelines for

Securing Rich Internet Applications”
❏ Chapter 20, “Deployment Best Practices”

■ Date- Time APIs enable you to represent dates and times and manipulate
date and time values. They support the International Organization for Stan-
dardization (ISO) calendar system as well as other commonly used global
calendars. See the new Chapter 21.

If you plan to take one of the Java SE 8 certifi cation exams, this book can help.
The appendix, “Preparation for Java Programming Language Certifi cation,” lists
the three exams that are available, detailing the items covered by each exam, cross-
referenced to places in the book where you can fi nd more information about each
topic. Note that this is one source, among others, that you will want to use to pre-
pare for your exam. Check the online tutorial for the latest certifi cation objectives
and cross- references to sections of the tutorial.

All of the material has been thoroughly reviewed by members of Oracle Java
engineering to ensure that the information is accurate and up to date. This book
is based on the online tutorial hosted on Oracle Corporation’s web site at the fol-
lowing URL:

http://docs.oracle.com/javase/tutorial/

The information in this book, often referred to as “the core tutorial,” is required by
most beginning to intermediate programmers. Once you have mastered this mate-
rial, you can explore the rest of the Java platform documentation on the web site.
If you are interested in developing sophisticated RIAs, check out JavaFX, the Java
graphical user interface (GUI) toolkit, which comes with the Java SE Development
Kit (JDK). To learn more, see Chapter 22, “Introduction to JavaFX.”

As always, our goal is to create an easy- to- read, practical programmers’ guide to
help you learn how to use the rich environment provided by Java to build applica-
tions, applets, and components. Go forth and program!

psn-gallardo.indb xxivpsn-gallardo.indb xxiv 11/12/14 1:48 PM11/12/14 1:48 PM

http://docs.oracle.com/javase/tutorial/

Preface xxv

Who Should Read This Book?

This book is geared toward both novice and experienced programmers:

■ New programmers can benefi t most from reading the book from beginning to
end, including the step- by- step instructions for compiling and running your
fi rst program in Chapter 1, “Getting Started.”

■ Programmers experienced with procedural languages such as C may want to
start with the material on object- oriented concepts and features of the Java
programming language.

■ Experienced programmers may want to jump feet fi rst into the more ad-
vanced topics, such as generics, concurrency, or deployment.

This book contains information to address the learning needs of programmers with
various levels of experience.

How to Use This Book

This book is designed so you can read it straight through or skip around from topic
to topic. The information is presented in a logical order, and forward references are
avoided wherever possible.

The examples in this book are compiled against the JDK 8 release. You need to
download this release (or later) in order to compile and run most examples.

Some material referenced in this book is available online— for example, the down-
loadable examples, the solutions to the questions and exercises, the JDK 8 guides,
and the API specifi cation.

You will see footnotes like the following:

8/docs/api/java/lang/Class.html

and

tutorial/java/generics/examples/BoxDemo.java

The Java documentation home on the Oracle web site is at the following location:

http://docs.oracle.com/javase/

To locate the footnoted fi les online, prepend the URL for the Java documentation home:

http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html

psn-gallardo.indb xxvpsn-gallardo.indb xxv 11/12/14 1:48 PM11/12/14 1:48 PM

http://docs.oracle.com/javase/
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html

xxvi Preface

http://docs.oracle.com/javase/tutorial/java/generics/examples/BoxDemo.java

The Java Tutorials are also available in two eBook formats:

■ mobi eBook fi les for Kindle
■ ePub eBook fi les for iPad, Nook, and other devices that support the ePub format

Each eBook contains a single trail that is equivalent to several related chapters in
this book. You can download the eBooks via the link “In Book Form” on the home
page for the Java Tutorials:

http://docs.oracle.com/javase/tutorial/index.html

We welcome feedback on this edition. To contact us, please see the tutorial feed-
back page:

http://docs.oracle.com/javase/feedback.html

Acknowledgments

This book would not be what it is without the Oracle Java engineering team who
tirelessly reviews the technical content of our writing. For this edition of the book,
we especially want to thank Alan Bateman, Alex Buckley, Stephen Colebourne,
Joe Darcy, Jeff Dinkins, Mike Duigou, Brian Goetz, Andy Herrick, Stuart Marks,
Thomas Ng, Roger Riggs, Leif Samuelsson, and Daniel Smith.

Illustrators Jordan Douglas and Dawn Tyler created our professional graphics
quickly and effi ciently.

Editors Janet Blowney, Deborah Owens, and Susan Shepard provided careful
and thorough copyedits of our JDK 8 work.

Thanks for the support of our team: Devika Gollapudi, Ram Goyal, and Alexey
Zhebel.

Last but not least, thanks for the support of our management: Sowmya Kannan,
Sophia Mikulinsky, Alan Sommerer, and Barbara Ramsey.

psn-gallardo.indb xxvipsn-gallardo.indb xxvi 11/12/14 1:48 PM11/12/14 1:48 PM

http://docs.oracle.com/javase/tutorial/java/generics/examples/BoxDemo.java
http://docs.oracle.com/javase/tutorial/index.html
http://docs.oracle.com/javase/feedback.html

xxvii

Raymond Gallardo is a senior technical writer at Oracle Corporation. His previ-
ous engagements include college instructor, technical writer for IBM, and bicycle
courier. He obtained his BSc in computer science and English from the University
of Toronto and MA in creative writing from the City College of New York.

Scott Hommel is a senior technical writer at Oracle Corporation, where he docu-
ments Java SE. For the past fi fteen years, he has written tutorials, technical ar-
ticles, and core release documentation for Java SE and related technologies.

Sowmya Kannan wears many hats on the Java SE documentation team, including
planning, writing, communicating with developer audiences, and tinkering with pro-
duction tools. She has more than fi fteen years of experience in the design, development,
and documentation of the Java platform, Java- based middleware, and web applications.

Joni Gordon is a principal technical writer at Oracle Corporation. She has contrib-
uted to the documentation for Java SE and JavaFX. She has been a technical writer for
more than fi fteen years and has a background in enterprise application development.

Sharon Biocca Zakhour was previously a principal technical writer on staff at
Oracle Corporation and formerly at Sun Microsystems. She has contributed to Java SE
documentation for more than twelve years, including The Java™ Tutorial, Fourth
Edition, and The JFC Swing Tutorial, Second Edition. She graduated from UC
Berkeley with a BA in computer science and has worked as a programmer, devel-
oper support engineer, and technical writer for thirty years.

About the Authors

psn-gallardo.indb xxviipsn-gallardo.indb xxvii 11/12/14 1:48 PM11/12/14 1:48 PM

This page intentionally left blank

This page intentionally left blank

43

Chapter Contents
Variables 44
Operators 58
Expressions, Statements, and Blocks 68
Control Flow Statements 72

You’ve already learned that objects store their state in fi elds. However, the Java
programming language uses the term variable as well. The fi rst section of this
chapter discusses this relationship, plus variable naming rules and conventions,
basic data types (primitive types, character strings, and arrays), default values,
and literals.

The second section describes the operators of the Java programming language.
It presents the most commonly used operators fi rst and the less commonly used
operators last. Each discussion includes code samples that you can compile and run.

Operators may be used for building expressions, which compute values; expres-
sions are the core components of statements, and statements may be grouped into
blocks. The third section discusses expressions, statements, and blocks using exam-
ple code that you’ve already seen.

The fi nal section describes the control fl ow statements supported by the Java
programming language. It covers the decision- making, looping, and branching
statements that enable your programs to conditionally execute particular blocks
of code.

Note that each section contains its own questions and exercises to test your
understanding.

3
Language Basics

psn-gallardo.indb 43psn-gallardo.indb 43 11/12/14 1:50 PM11/12/14 1:50 PM

44 Chapter 3 ■ Language Basics

3

Variables

As you learned in the previous chapter, an object stores its state in fi elds:

int cadence = 0;
int speed = 0;
int gear = 1;

In Chapter 2, the section “What Is an Object?” introduced you to fi elds, but you
probably have still a few questions, such as, What are the rules and conventions for
naming a fi eld? Besides int, what other data types are there? Do fi elds have to be
initialized when they are declared? Are fi elds assigned a default value if they are
not explicitly initialized? We’ll explore the answers to such questions in this chap-
ter, but before we do, there are a few technical distinctions you must fi rst become
aware of. In the Java programming language, the terms fi eld and variable are both
used; this is a common source of confusion among new developers because both
often seem to refer to the same thing. The Java programming language defi nes the
following kinds of variables:

■ Instance variables (nonstatic fi elds). Technically speaking, objects store their
individual states in “nonstatic fi elds”— that is, fi elds declared without the
static keyword. Nonstatic fi elds are also known as instance variables
because their values are unique to each instance of a class (to each object,
in other words); for example, the currentSpeed of one bicycle is indepen-
dent of the currentSpeed of another.

■ Class variables (static fi elds). A class variable is any fi eld declared with the
static modifi er; this tells the compiler that there is exactly one copy of this
variable in existence, regardless of how many times the class has been instan-
tiated. For example, a fi eld defi ning the number of gears for a particular kind
of bicycle could be marked as static since conceptually the same number of
gears will apply to all instances. The code static int numGears = 6; would
create such a static fi eld. Additionally, the keyword final could be added to
indicate that the number of gears will never change.

■ Local variables. Similar to how an object stores its state in fi elds, a method will
often store its temporary state in local variables. The syntax for declaring a
local variable is similar to declaring a fi eld (e.g., int count = 0;). There is
no special keyword designating a variable as local; that determination comes
entirely from the location in which the variable is declared— which is between
the opening and closing braces of a method. As such, local variables are only
visible to the methods in which they are declared; they are not accessible from
the rest of the class.

psn-gallardo.indb 44psn-gallardo.indb 44 11/12/14 1:50 PM11/12/14 1:50 PM

Variables 45

3

■ Parameters. You’ve already seen examples of parameters, both in the Bicycle
class and in the main method of the “Hello World!” application. Recall that the sig-
nature for the main method is public static void main(String[] args).
Here, the args variable is the parameter to this method. The important thing to
remember is that parameters are always classifi ed as variables, not fi elds. This
applies to other parameter- accepting constructs as well (such as constructors and
exception handlers) that you’ll learn about later in the chapter.

That said, the remainder of the chapters use the following general guidelines
when discussing fi elds and variables. If we are talking about fi elds in general
(excluding local variables and parameters), we may simply use the term fi elds. If
the discussion applies to all of the above, we may simply use the term variables.
If the context calls for a distinction, we will use specifi c terms (such as static
fi eld or local variables) as appropriate. You may also occasionally see the term
member used as well. A type’s fi elds, methods, and nested types are collectively
called its members.

Naming

Every programming language has its own set of rules and conventions for the
kinds of names that you’re allowed to use, and the Java programming language
is no different. The rules and conventions for naming your variables can be sum-
marized as follows:

■ Variable names are case sensitive. A variable’s name can be any legal identifi er— an
unlimited- length sequence of Unicode letters and digits, beginning with a
letter, the dollar sign ($), or the underscore character (_). The convention,
however, is to always begin your variable names with a letter, not $ or _. Addi-
tionally, the dollar sign character, by convention, is never used at all. You may fi nd
some situations where autogenerated names will contain the dollar sign, but your
variable names should always avoid using it. A similar convention exists for the
underscore character; while it’s technically legal to begin your variable’s name
with _, this practice is discouraged. White space is not permitted.

■ Subsequent characters may be letters, digits, dollar signs, or underscore char-
acters. Conventions (and common sense) apply to this rule as well. When choos-
ing a name for your variables, use full words instead of cryptic abbreviations.
Doing so will make your code easier to read and understand. In many cases, it
will also make your code self- documenting; fi elds named cadence, speed, and
gear, for example, are much more intuitive than abbreviated versions, such as

psn-gallardo.indb 45psn-gallardo.indb 45 11/12/14 1:50 PM11/12/14 1:50 PM

46 Chapter 3 ■ Language Basics

3

s, c, and g. Also keep in mind that the name you choose must not be a keyword
or reserved word.

■ If the name you choose consists of only one word, spell that word in all lower-
case letters. If it consists of more than one word, capitalize the fi rst letter of
each subsequent word. The names gearRatio and currentGear are prime
examples of this convention. If your variable stores a constant value, such as
static final int NUM_GEARS = 6, the convention changes slightly, capi-
talizing every letter and separating subsequent words with the underscore
character. By convention, the underscore character is never used elsewhere.

Primitive Data Types

The Java programming language is statically typed, which means that all variables
must fi rst be declared before they can be used. This involves stating the variable’s
type and name, as you’ve already seen:

int gear = 1;

Doing so tells your program that a fi eld named gear exists, holds numerical data,
and has an initial value of 1. A variable’s data type determines the values it may
contain plus the operations that may be performed on it. In addition to int, the
Java programming language supports seven other primitive data types. A primitive
type is predefi ned by the language and is named by a reserved keyword. Primitive
values do not share state with other primitive values. The eight primitive data types
supported by the Java programming language are as follows:

1. The byte data type is an 8- bit signed two’s complement integer. It has a mini-
mum value of – 128 and a maximum value of 127 (inclusive). The byte data
type can be useful for saving memory in large arrays, where the memory sav-
ings actually matters. It can also be used in place of int where its limits help
clarify your code; the fact that a variable’s range is limited can serve as a form
of documentation.

2. The short data type is a 16- bit signed two’s complement integer. It has a
minimum value of – 32,768 and a maximum value of 32,767 (inclusive). As with
byte, the same guidelines apply: you can use a short to save memory in large
arrays in situations where the memory savings actually matter.

3. By default, the int data type is a 32- bit signed two’s complement integer,
which has a minimum value of – 231 and a maximum value of 231 – 1. In Java
SE 8 and later, you can use the int data type to represent an unsigned 32-
bit integer, which has a minimum value of 0 and a maximum value of 232 – 1.
The Integer class also supports unsigned 32- bit integers. Static methods like

psn-gallardo.indb 46psn-gallardo.indb 46 11/12/14 1:50 PM11/12/14 1:50 PM

Variables 47

3

compareUnsigned and divideUnsigned have been added to the Integer
class to support arithmetic operations for unsigned integers.1

4. The long data type is a 64- bit two’s complement integer. The signed long has
a minimum value of – 263 and a maximum value of 263 – 1. In Java SE 8 and
later, you can use the long data type to represent an unsigned 64- bit long,
which has a minimum value of 0 and a maximum value of 264 – 1. Use this data
type when you need a range of values wider than those provided by the int
data type. The Long class also contains methods like compareUnsigned and
divideUnsigned to support arithmetic operations for unsigned long values.2

5. The float data type is a single- precision 32- bit IEEE 754 fl oating- point value.
Its range of values is beyond the scope of this discussion but is specifi ed in the
Floating- Point Types, Formats, and Values section of the Java Language Speci-
fi cation.3 As with the recommendations for the byte and short data types,
use a float (instead of double) value if you need to save memory in large
arrays of fl oating- point numbers. This data type should never be used for pre-
cise values, such as currency. For that, you will need to use the java.math.
BigDecimal class instead.4 Chapter 9 covers BigDecimal and other useful
classes provided by the Java platform.

6. The double data type is a double- precision 64- bit IEEE 754 fl oating- point
value. Its range of values is beyond the scope of this discussion but is speci-
fi ed in the Floating- Point Types, Formats, and Values section of the Java Lan-
guage Specifi cation.5 For decimal values, this data type is generally the default
choice. As mentioned previously, this data type should never be used for pre-
cise values, such as currency.

7. The boolean data type has only two possible values: true and false. Use this
data type for simple fl ags that track true/false conditions. This data type repre-
sents one bit of information, but its “size” isn’t something that’s precisely defi ned.

8. The char data type is a single 16- bit Unicode character. It has a minimum value
of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535 inclusive).

In addition to the eight primitive data types, the Java programming language
also provides special support for character strings through the java.lang.String

1. 8/docs/api/java/lang/Integer.html

2. 8/docs/api/java/lang/Long.html

3. specs/jls/se7/html/jls-4.html#jls-4.2.3

4. 8/docs/api/java/math/BigDecimal.html

5. specs/jls/se7/html/jls-4.html#jls-4.2.3

psn-gallardo.indb 47psn-gallardo.indb 47 11/12/14 1:50 PM11/12/14 1:50 PM

48 Chapter 3 ■ Language Basics

3

class.6 Enclosing your character string within double quotes will automatically cre-
ate a new String object— for example, String s = "this is a string";.
String objects are immutable, which means that, once created, their values cannot
be changed. The String class is not technically a primitive data type, but consider-
ing the special support given to it by the language, you’ll probably tend to think of
it as such. You’ll learn more about the String class in Chapter 9.

Default Values

It’s not always necessary to assign a value when a fi eld is declared. Fields that
are declared but not initialized will be set to a reasonable default by the compiler.
Generally speaking, this default will be zero or null, depending on the data type.
Relying on such default values, however, is generally considered bad programming
style. Table 3.1 summarizes the default values for the above data types.

Local variables are slightly different; the compiler never assigns a default value
to an uninitialized local variable. If you cannot initialize your local variable where
it is declared, make sure to assign it a value before you attempt to use it. Accessing
an uninitialized local variable will result in a compile- time error.

Literals

You may have noticed that the new keyword isn’t used when initializing a variable
of a primitive type. Primitive types are special data types built into the language;
they are not objects created from a class. A literal is the source code representation
of a fi xed value; literals are represented directly in your code without requiring
computation. As shown here, it’s possible to assign a literal to a variable of a primi-
tive type:

boolean result = true;
char capitalC = 'C';
byte b = 100;
short s = 10000;
int i = 100000;

Integer Literals

An integer literal is of type long if it ends with the letter L or l; otherwise, it is of
type int. It is recommended that you use the uppercase letter L because the lower-
case letter l is hard to distinguish from the digit 1.

Values of the integral types byte, short, int, and long can be created from int
literals. Values of type long that exceed the range of int can be created from long
literals. Integer literals can be expressed by these number systems:

6. 8/docs/api/java/lang/String.html

psn-gallardo.indb 48psn-gallardo.indb 48 11/12/14 1:50 PM11/12/14 1:50 PM

Variables 49

3

■ Decimal. Base 10, whose digits consist of the numbers 0 through 9 (This is the
number system you use every day.)

■ Hexadecimal. Base 16, whose digits consist of the numbers 0 through 9 and the
letters A through F

■ Binary. Base 2, whose digits consists of the numbers 0 and 1

For general- purpose programming, the decimal system is likely to be the only
number system you’ll ever use. However, if you need to use another number system,
the following example shows the correct syntax. The prefi x 0x indicates hexadeci-
mal and 0b indicates binary:

// The number 26, in decimal
int decVal = 26;
// The number 26, in hexadecimal
int hexVal = 0x1a;
// The number 26, in binary
int binVal = 0b11010;

Floating- Point Literals

A fl oating- point literal is of type float if it ends with the letter F or f; otherwise,
its type is double and it can optionally end with the letter D or d. The fl oating- point
types (float and double) can also be expressed using E or e (for scientifi c nota-
tion), F or f (32- bit fl oat literal), and D or d (64- bit double literal, which is the default
and by convention is omitted).

double d1 = 123.4;
// same value as d1, but in scientific notation
double d2 = 1.234e2;
float f1 = 123.4f;

Table 3.1 Default Values for Data Types
Data type Default value (for fi elds)

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

boolean false

char '\u0000'

String (or any object) null

psn-gallardo.indb 49psn-gallardo.indb 49 11/12/14 1:50 PM11/12/14 1:50 PM

50 Chapter 3 ■ Language Basics

3

Character and String Literals

Literals of types char and String may contain any Unicode (UTF- 16) characters.
If your editor and fi le system allow it, you can use such characters directly in your
code. If not, you can use a Unicode escape, such as '\u0108' (for a capital C with
circumfl ex, Ĉ) or "S\u00ED Se\u00F1or" (for Sí Señor in Spanish). Always use
‘single quotes’ for char literals and “double quotes” for String literals. Unicode
escape sequences may be used elsewhere in a program (such as in fi eld names, for
example), not just in char or String literals.

The Java programming language also supports a few special escape sequences
for char and String literals: \b (backspace), \t (tab), \n (line feed), \f (form feed),
\r (carriage return), \" (double quote), \' (single quote), and \\ (backslash).

There’s also a special null literal that can be used as a value for any refer-
ence type. You may assign null to any variable except variables of primitive types.
There’s little you can do with a null value beyond testing for its presence. There-
fore, null is often used in programs as a marker to indicate that some object is
unavailable.

Finally, there’s also a special kind of literal called a class literal, formed by taking
a type name and appending .class (e.g., String.class). This refers to the object
(of type Class) that represents the type itself.

Using Underscore Characters in Numeric Literals

Any number of underscore characters (_) can appear anywhere between digits in a
numerical literal. This feature enables you, for example, to separate groups of digits
in numeric literals, which can improve the readability of your code.

For instance, if your code contains numbers with many digits, you can use an
underscore character to separate digits in groups of three, similar to how you would
use a punctuation mark like a comma or a space as a separator.

The following example shows other ways you can use the underscore in numeric
literals:

long creditCardNumber = 1234_5678_9012_3456L;
long socialSecurityNumber = 999_99_9999L;
float pi = 3.14_15F;
long hexBytes = 0xFF_EC_DE_5E;
long hexWords = 0xCAFE_BABE;
long maxLong = 0x7fff_ffff_ffff_ffffL;
byte nybbles = 0b0010_0101;
long bytes = 0b11010010_01101001_10010100_10010010;

You can place underscores only between digits; you cannot place underscores in the
following places:

psn-gallardo.indb 50psn-gallardo.indb 50 11/12/14 1:50 PM11/12/14 1:50 PM

Variables 51

3

■ At the beginning or end of a number
■ Adjacent to a decimal point in a fl oating- point literal
■ Prior to an F or L suffi x
■ In positions where a string of digits is expected

The following examples demonstrate valid and invalid underscore placements
(which are bold) in numeric literals:

// Invalid: cannot put underscores
// adjacent to a decimal point
float pi1 = 3_.1415F;
// Invalid: cannot put underscores
// adjacent to a decimal point
float pi2 = 3._1415F;
// Invalid: cannot put underscores
// prior to an L suffix
long socialSecurityNumber1 = 999_99_9999_L;

// OK (decimal literal)
int x1 = 5_2;
// Invalid: cannot put underscores
// At the end of a literal
int x2 = 52_;
// OK (decimal literal)
int x3 = 5_______2;

// Invalid: cannot put underscores
// in the 0x radix prefix
int x4 = 0_x52;
// Invalid: cannot put underscores
// at the beginning of a number
int x5 = 0x_52;
// OK (hexadecimal literal)
int x6 = 0x5_2;
// Invalid: cannot put underscores
// at the end of a number
int x7 = 0x52_;

Arrays

An array is a container object that holds a fi xed number of values of a single type.
The length of an array is established when the array is created. After creation, its
length is fi xed. You have seen an example of arrays already, in the main method of
the “Hello World!” application. This section discusses arrays in greater detail.

Each item in an array is called an element, and each element is accessed by its
numerical index. As shown in the preceding illustration, numbering begins with 0.
The ninth element, for example, would therefore be accessed at index 8.

psn-gallardo.indb 51psn-gallardo.indb 51 11/12/14 1:50 PM11/12/14 1:50 PM

52 Chapter 3 ■ Language Basics

3

The following program, ArrayDemo, creates an array of integers, puts some val-
ues in the array, and prints each value to standard output:

class ArrayDemo {
 public static void main(String[] args) {
 // declares an array of integers
 int[] anArray;

 // allocates memory for 10 integers
 anArray = new int[10];

 // initialize first element
 anArray[0] = 100;
 // initialize second element
 anArray[1] = 200;
 // and so forth
 anArray[2] = 300;
 anArray[3] = 400;
 anArray[4] = 500;
 anArray[5] = 600;
 anArray[6] = 700;
 anArray[7] = 800;
 anArray[8] = 900;
 anArray[9] = 1000;

 System.out.println("Element at index 0: "
 + anArray[0]);
 System.out.println("Element at index 1: "
 + anArray[1]);
 System.out.println("Element at index 2: "
 + anArray[2]);
 System.out.println("Element at index 3: "
 + anArray[3]);
 System.out.println("Element at index 4: "
 + anArray[4]);
 System.out.println("Element at index 5: "
 + anArray[5]);
 System.out.println("Element at index 6: "
 + anArray[6]);
 System.out.println("Element at index 7: "
 + anArray[7]);
 System.out.println("Element at index 8: "
 + anArray[8]);
 System.out.println("Element at index 9: "
 + anArray[9]);
 }
}

Figure 3.1 An Array of Ten Elements

psn-gallardo.indb 52psn-gallardo.indb 52 11/12/14 1:50 PM11/12/14 1:50 PM

Variables 53

3

Here is the output from this program:

Element at index 0: 100
Element at index 1: 200
Element at index 2: 300
Element at index 3: 400
Element at index 4: 500
Element at index 5: 600
Element at index 6: 700
Element at index 7: 800
Element at index 8: 900
Element at index 9: 1000

In a real- world programming situation, you would probably use one of the sup-
ported looping constructs to iterate through each element of the array, rather than
write each line individually as in the preceding example. However, the example
clearly illustrates the array syntax. You will learn about the various looping con-
structs (for, while, and do- while) later in the “Control Flow” section.

Declaring a Variable to Refer to an Array

The preceding program declares an array (named anArray) with the following code:

// declares an array of integers
int[] anArray;

Like declarations for variables of other types, an array declaration has two com-
ponents: the array’s type and the array’s name. An array’s type is written as type
[], where type is the data type of the contained elements; the brackets are special
symbols indicating that this variable holds an array. The size of the array is not part
of its type (which is why the brackets are empty). An array’s name can be anything
you want, provided that it follows the rules and conventions as previously discussed
in the “Naming” section. As with variables of other types, the declaration does not
actually create an array; it simply tells the compiler that this variable will hold an
array of the specifi ed type. Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;
short[] anArrayOfShorts;
long[] anArrayOfLongs;
float[] anArrayOfFloats;
double[] anArrayOfDoubles;
boolean[] anArrayOfBooleans;
char[] anArrayOfChars;
String[] anArrayOfStrings;

You can also place the brackets after the array’s name:

// this form is discouraged
float anArrayOfFloats[];

psn-gallardo.indb 53psn-gallardo.indb 53 11/12/14 1:50 PM11/12/14 1:50 PM

54 Chapter 3 ■ Language Basics

3

However, convention discourages this form; the brackets identify the array type and
should appear with the type designation.

Creating, Initializing, and Accessing an Array

One way to create an array is with the new operator. The next statement in the
ArrayDemo program allocates an array with enough memory for ten integer ele-
ments and assigns the array to the anArray variable:

// create an array of integers
anArray = new int[10];

If this statement is missing, then the compiler prints an error like the following and
compilation fails:

ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element
anArray[1] = 200; // initialize second element
anArray[2] = 300; // and so forth

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " + anArray[0]);
System.out.println("Element 2 at index 1: " + anArray[1]);
System.out.println("Element 3 at index 2: " + anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize an array:

int[] anArray = {
 100, 200, 300,
 400, 500, 600,
 700, 800, 900, 1000
};

Here the length of the array is determined by the number of values provided between
braces and separated by commas.

You can also declare an array of arrays (also known as a multidimensional array)
by using two or more sets of brackets, such as String[][] names. Each element,
therefore, must be accessed by a corresponding number of index values.

In the Java programming language, a multidimensional array is an array whose
components are themselves arrays. This is unlike arrays in C or Fortran. A conse-
quence of this is that the rows are allowed to vary in length, as shown in the follow-
ing MultiDimArrayDemo program:

psn-gallardo.indb 54psn-gallardo.indb 54 11/12/14 1:50 PM11/12/14 1:50 PM

Variables 55

3

class MultiDimArrayDemo {
 public static void main(String[] args) {
 String[][] names = {
 {"Mr. ", "Mrs. ", "Ms. "},
 {"Smith", "Jones"}
 };
 // Mr. Smith
 System.out.println(names[0][0] + names[1][0]);
 // Ms. Jones
 System.out.println(names[0][2] + names[1][1]);
 }
}

Here is the output from this program:

Mr. Smith
Ms. Jones

Finally, you can use the built- in length property to determine the size of any array.
The following code prints the array’s size to standard output:

 System.out.println(anArray.length);

Copying Arrays

The System class has an arraycopy() method that you can use to effi ciently copy
data from one array into another:

public static void arraycopy(Object src, int srcPos,
 Object dest, int destPos, int length)

The two Object arguments specify the array to copy from and the array to copy
to. The three int arguments specify the starting position in the source array,
the starting position in the destination array, and the number of array elements
to copy.

The following program, ArrayCopyDemo, declares an array of char elements,
spelling the word decaffeinated. It uses the System.arraycopy() method to copy
a subsequence of array components into a second array:

class ArrayCopyDemo {
 public static void main(String[] args) {
 char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e',
 'i', 'n', 'a', 't', 'e', 'd' };
 char[] copyTo = new char[7];

 System.arraycopy(copyFrom, 2, copyTo, 0, 7);
 System.out.println(new String(copyTo));
 }
}

psn-gallardo.indb 55psn-gallardo.indb 55 11/12/14 1:50 PM11/12/14 1:50 PM

56 Chapter 3 ■ Language Basics

3

Here is output from this program:

caffein

Array Manipulations

Arrays are a powerful and useful concept in programming. Java SE provides methods
to perform some of the most common manipulations related to arrays. For instance,
the ArrayCopyDemo example uses the arraycopy() method of the System class
instead of manually iterating through the elements of the source array and placing
each one into the destination array. This is performed behind the scenes, enabling
the developer to use just one line of code to call the method.

For your convenience, Java SE provides several methods for performing array
manipulations (common tasks such as copying, sorting, and searching arrays) in
the java.util.Arrays class.7 For instance, the previous example can be modifi ed
to use the copyOfRange() method of the java.util.Arrays class, as you can
see in the ArrayCopyOfDemo example. The difference is that using the copyOfRange()
method does not require you to create the destination array before calling the
method because the destination array is returned by the method:

class ArrayCopyOfDemo {
 public static void main(String[] args) {

 char[] copyFrom = {'d', 'e', 'c', 'a', 'f', 'f', 'e',
 'i', 'n', 'a', 't', 'e', 'd'};

 char[] copyTo = java.util.Arrays.copyOfRange(copyFrom, 2, 9);

 System.out.println(new String(copyTo));
 }
}

As you can see, the output from this program is the same (caffein), although it
requires fewer lines of code.

Some other useful operations provided by methods in the java.util.Arrays
class are as follows:

■ Search an array for a specifi c value to get the index at which it is placed (the
binarySearch() method).

■ Compare two arrays to determine if they are equal or not (the equals()
method).

■ Fill an array to place a specifi c value at each index (the fill() method).

7. 8/docs/api/java/util/Arrays.html

psn-gallardo.indb 56psn-gallardo.indb 56 11/12/14 1:50 PM11/12/14 1:50 PM

Variables 57

3

■ Sort an array into ascending order. This can be done either sequentially, using
the sort() method, or concurrently, using the parallelSort() method
introduced in Java SE 8. Parallel sorting of large arrays on multiprocessor
systems is faster than sequential array sorting.

Summary of Variables

The Java programming language uses both fi elds and variables as part of its
terminology. Instance variables (nonstatic fi elds) are unique to each instance of
a class. Class variables (static fi elds) are fi elds declared with the static modi-
fi er; there is exactly one copy of a class variable, regardless of how many times the
class has been instantiated. Local variables store temporary state inside a method.
Parameters are variables that provide extra information to a method; both local
variables and parameters are always classifi ed as variables (not fi elds). When nam-
ing your fi elds or variables, there are rules and conventions that you should (or
must) follow.

The eight primitive data types are byte, short, int, long, float, double,
boolean, and char. The java.lang.String class represents character strings.8
The compiler will assign a reasonable default value for fi elds of these types; for local
variables, a default value is never assigned. A literal is the source code representa-
tion of a fi xed value. An array is a container object that holds a fi xed number of val-
ues of a single type. The length of an array is established when the array is created.
After creation, its length is fi xed.

Questions and Exercises: Variables

Questions

1. The term instance variable is another name for ___.
2. The term class variable is another name for ___.
3. A local variable stores temporary state; it is declared inside a ___.
4. A variable declared within the opening and closing parenthesis of a method

signature is called a ___.
5. What are the eight primitive data types supported by the Java programming

language?
6. Character strings are represented by the class ___.
7. An ___ is a container object that holds a fi xed number of values of a single type.

8. 8/docs/api/java/lang/String.html

psn-gallardo.indb 57psn-gallardo.indb 57 11/12/14 1:50 PM11/12/14 1:50 PM

58 Chapter 3 ■ Language Basics

3

Exercises

1. Create a small program that defi nes some fi elds. Try creating some illegal fi eld
names and see what kind of error the compiler produces. Use the naming rules
and conventions as a guide.

2. In the program you created in Exercise 1, try leaving the fi elds uninitialized
and print out their values. Try the same with a local variable and see what
kind of compiler errors you can produce. Becoming familiar with common com-
piler errors will make it easier to recognize bugs in your code.

Answers

You can fi nd answers to these questions and exercises at http://docs.oracle
.com/javase/tutorial/java/nutsandbolts/QandE/answers_variables

.html.

Operators

Now that you’ve learned how to declare and initialize variables, you probably
want to know how to do something with them. Learning the operators of the Java
programming language is a good place to start. Operators are special symbols
that perform specifi c operations on one, two, or three operands and then return
a result.

As we explore the operators of the Java programming language, it may be help-
ful for you to know ahead of time which operators have the highest precedence.
The operators in Table 3.2 are listed according to precedence order. The closer to
the top of the table an operator appears, the higher its precedence. Operators with
higher precedence are evaluated before operators with relatively lower precedence.
Operators on the same line have equal precedence. When operators of equal prece-
dence appear in the same expression, a rule must govern which is evaluated fi rst.
All binary operators except for the assignment operators are evaluated from left to
right; assignment operators are evaluated right to left.

In general- purpose programming, certain operators tend to appear more fre-
quently than others; for example, the assignment operator (=) is far more common
than the unsigned right shift operator (>>>). With that in mind, the following dis-
cussion focuses fi rst on the operators that you’re most likely to use on a regular
basis and ends focusing on those that are less common. Each discussion is accom-
panied by sample code that you can compile and run. Studying its output will help
reinforce what you’ve just learned.

psn-gallardo.indb 58psn-gallardo.indb 58 11/12/14 1:50 PM11/12/14 1:50 PM

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_variables.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_variables.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_variables.html

Operators 59

3

Assignment, Arithmetic, and Unary Operators

The Simple Assignment Operator

One of the most common operators that you’ll encounter is the simple assignment
operator, =. You saw this operator in the Bicycle class; it assigns the value on its
right to the operand on its left:

 int cadence = 0;
 int speed = 0;
 int gear = 1;

This operator can also be used on objects to assign object references, as discussed in
Chapter 4, “Creating Objects.”

The Arithmetic Operators

The Java programming language provides operators that perform addition, subtrac-
tion, multiplication, and division. There’s a good chance you’ll recognize them by their
counterparts in basic mathematics. The only symbol that might look new to you is %,
which divides one operand by another and returns the remainder as its result.

Table 3.2 Operator Precedence
Operators Precedence

Postfi x expr ++ expr - -

unary ++expr - - expr +expr - expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += - = *= /= %= &= ^= |= <<= >>= >>>=

psn-gallardo.indb 59psn-gallardo.indb 59 11/12/14 1:50 PM11/12/14 1:50 PM

60 Chapter 3 ■ Language Basics

3

The following program, ArithmeticDemo, tests the arithmetic operators:

class ArithmeticDemo {

 public static void main (String[] args) {
 int result = 1 + 2;
 // result is now 3
 System.out.println("1 + 2 = " + result);
 int original_result = result;

 result = result - 1;
 // result is now 2
 System.out.println(original_result + " - 1 = " + result);
 original_result = result;

 result = result * 2;
 // result is now 4
 System.out.println(original_result + " * 2 = " + result);
 original_result = result;

 result = result / 2;
 // result is now 2
 System.out.println(original_result + " / 2 = " + result);
 original_result = result;

 result = result + 8;
 // result is now 10
 System.out.println(original_result + " + 8 = " + result);
 original_result = result;

 result = result % 7;
 // result is now 3
 System.out.println(original_result + " % 7 = " + result);
 }
}

This program prints the following:

1 + 2 = 3
3 - 1 = 2
2 * 2 = 4
4 / 2 = 2
2 + 8 = 10
10 % 7 = 3

Table 3.3 Arithmetic Operators
Operator Description

+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator

/ Division operator

% Remainder operator

psn-gallardo.indb 60psn-gallardo.indb 60 11/12/14 1:50 PM11/12/14 1:50 PM

Operators 61

3

You can also combine the arithmetic operators with the simple assignment opera-
tor to create compound assignments. For example, x+=1; and x=x+1; both incre-
ment the value of x by 1.

The + operator can also be used for concatenating (joining) two strings together,
as shown in the following ConcatDemo program:

class ConcatDemo {
 public static void main(String[] args){
 String firstString = "This is";
 String secondString = " a concatenated string.";
 String thirdString = firstString + secondString;
 System.out.println(thirdString);
 }
}

By the end of this program, the variable thirdString contains "This is a con-
catenated string.", which gets printed to standard output.

The Unary Operators

The unary operators require only one operand; they perform various operations such
as incrementing/decrementing a value by one, negating an expression, or inverting
the value of a boolean.

The following program, UnaryDemo, tests the unary operators:

class UnaryDemo {

 public static void main(String[] args) {

 int result = +1;
 // result is now 1
 System.out.println(result);

 result- - ;
 // result is now 0
 System.out.println(result);

 result++;
 // result is now 1
 System.out.println(result);

 result = - result;
 // result is now - 1
 System.out.println(result);

 boolean success = false;
 // false
 System.out.println(success);
 // true
 System.out.println(!success);
 }
}

psn-gallardo.indb 61psn-gallardo.indb 61 11/12/14 1:50 PM11/12/14 1:50 PM

62 Chapter 3 ■ Language Basics

3

The increment/decrement operators can be applied before (prefi x) or after (post-
fi x) the operand. The code result++; and ++result; will both end in result
being incremented by one. The only difference is that the prefi x version (++result)
evaluates to the incremented value, whereas the postfi x version (result++) evaluates
to the original value. If you are just performing a simple increment/decrement opera-
tion, it doesn’t really matter which version you choose. But if you use this operator in
part of a larger expression, the one you choose may make a signifi cant difference.

The following program, PrePostDemo, illustrates the prefi x/postfi x unary incre-
ment operator:

class PrePostDemo {
 public static void main(String[] args){
 int i = 3;
 i++;
 // prints 4
 System.out.println(i);
 ++i;
 // prints 5
 System.out.println(i);
 // prints 6
 System.out.println(++i);
 // prints 6
 System.out.println(i++);
 // prints 7
 System.out.println(i);
 }
}

Equality, Relational, and Conditional Operators

The Equality and Relational Operators

The equality and relational operators determine if one operand is greater than, less
than, equal to, or not equal to another operand. The majority of these operators will
probably look familiar to you as well. Keep in mind that you must use ==, not =,
when testing if two primitive values are equal:

Table 3.4 Unary Operators
Operator Description

+ Unary plus operator; indicates positive value (numbers are positive without
this, however)

- Unary minus operator; negates an expression

++ Increment operator; increments a value by 1

- - Decrement operator; decrements a value by 1

! Logical complement operator; inverts the value of a boolean

psn-gallardo.indb 62psn-gallardo.indb 62 11/12/14 1:50 PM11/12/14 1:50 PM

Operators 63

3

== equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

The following program, ComparisonDemo, tests the comparison operators:

class ComparisonDemo {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if(value1 == value2)
 System.out.println("value1 == value2");
 if(value1 != value2)
 System.out.println("value1 != value2");
 if(value1 > value2)
 System.out.println("value1 > value2");
 if(value1 < value2)
 System.out.println("value1 < value2");
 if(value1 <= value2)
 System.out.println("value1 <= value2");
 }
}

Here is the output:

value1 != value2
value1 < value2
value1 <= value2

The Conditional Operators

The && and || operators perform Conditional- AND and Conditional- OR operations
on two boolean expressions. These operators exhibit short- circuiting behavior,
which means that the second operand is evaluated only if needed:

&& Conditional- AND
|| Conditional- OR

The following program, ConditionalDemo1, tests these operators:

class ConditionalDemo1 {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if((value1 == 1) && (value2 == 2))
 System.out.println("value1 is 1 AND value2 is 2");
 if((value1 == 1) || (value2 == 1))

psn-gallardo.indb 63psn-gallardo.indb 63 11/12/14 1:50 PM11/12/14 1:50 PM

64 Chapter 3 ■ Language Basics

3

 System.out.println("value1 is 1 OR value2 is 1");
 }
}

Another conditional operator is ?:, which can be thought of as shorthand for an
if- then- else statement (discussed in the “Control Flow Statements” section of
this chapter). This operator is also known as the ternary operator because it uses
three operands. In the following example, this operator should be read as follows: “If
someCondition is true, assign the value of value1 to result. Otherwise, assign
the value of value2 to result.”

The following program, ConditionalDemo2, tests the ?: operator:

class ConditionalDemo2 {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 int result;
 boolean someCondition = true;
 result = someCondition ? value1 : value2;

 System.out.println(result);
 }
}

Because someCondition is true, this program prints 1 to the screen. Use the
?: operator instead of an if- then- else statement if it makes your code more
readable (e.g., when the expressions are compact and without side effects, such as
in assignments).

The Type Comparison Operator instanceof

The instanceof operator compares an object to a specifi ed type. You can use it to
test if an object is an instance of a class, an instance of a subclass, or an instance of
a class that implements a particular interface.

The following program, InstanceofDemo, defi nes a parent class (named Par-
ent), a simple interface (named MyInterface), and a child class (named Child)
that inherits from the parent and implements the interface.

class InstanceofDemo {
 public static void main(String[] args) {

 Parent obj1 = new Parent();
 Parent obj2 = new Child();

 System.out.println("obj1 instanceof Parent: "
 + (obj1 instanceof Parent));
 System.out.println("obj1 instanceof Child: "
 + (obj1 instanceof Child));

psn-gallardo.indb 64psn-gallardo.indb 64 11/12/14 1:50 PM11/12/14 1:50 PM

Operators 65

3

 System.out.println("obj1 instanceof MyInterface: "
 + (obj1 instanceof MyInterface));
 System.out.println("obj2 instanceof Parent: "
 + (obj2 instanceof Parent));
 System.out.println("obj2 instanceof Child: "
 + (obj2 instanceof Child));
 System.out.println("obj2 instanceof MyInterface: "
 + (obj2 instanceof MyInterface));
 }
}

class Parent {}
class Child extends Parent implements MyInterface {}
interface MyInterface {}

Here is the output:

obj1 instanceof Parent: true
obj1 instanceof Child: false
obj1 instanceof MyInterface: false
obj2 instanceof Parent: true
obj2 instanceof Child: true
obj2 instanceof MyInterface: true

When using the instanceof operator, keep in mind that null is not an instance
of anything.

Bitwise and Bit Shift Operators

The Java programming language also provides operators that perform bitwise and
bit shift operations on integral types. The operators discussed in this section are
less commonly used. Therefore their coverage is brief; the intent is to simply make
you aware that these operators exist.

The unary bitwise complement operator (~) inverts a bit pattern; it can be applied
to any of the integral types, making every 0 a 1 and every 1 a 0. For example, a byte
contains 8 bits; applying this operator to a value whose bit pattern is 00000000
would change its pattern to 11111111.

The signed left shift operator (<<) shifts a bit pattern to the left, and the signed
right shift operator (>>) shifts a bit pattern to the right. The bit pattern is given by
the left- hand operand, and the number of positions to shift is given by the right-
hand operand. The unsigned right shift operator (>>>) shifts a zero into the leftmost
position, while the leftmost position after >> depends on sign extension.

The bitwise & operator performs a bitwise AND operation. The bitwise ^ opera-
tor performs a bitwise exclusive OR operation. The bitwise | operator performs a
bitwise inclusive OR operation.

The following program, BitDemo, uses the bitwise AND operator to print the
number 2 to standard output:

psn-gallardo.indb 65psn-gallardo.indb 65 11/12/14 1:50 PM11/12/14 1:50 PM

66 Chapter 3 ■ Language Basics

3

class BitDemo {
 public static void main(String[] args) {
 int bitmask = 0x000F;
 int val = 0x2222;
 // prints "2"
 System.out.println(val & bitmask);
 }
}

Summary of Operators

The following quick reference summarizes the operators supported by the Java pro-
gramming language.

Simple Assignment Operator

= Simple assignment operator

Arithmetic Operators

+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator

/ Division operator

% Remainder operator

Unary Operators

+ Unary plus operator; indicates positive value, although numbers can be positive
without this

- Unary minus operator; negates an expression

++ Increment operator; increments a value by 1

- - Decrement operator; decrements a value by 1

! Logical complement operator; inverts the value of a boolean

Equality and Relational Operators

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

psn-gallardo.indb 66psn-gallardo.indb 66 11/12/14 1:50 PM11/12/14 1:50 PM

Operators 67

3

Conditional Operators

&& Conditional AND
|| Conditional OR
?: Ternary (shorthand for if- then- else statement)

Type Comparison Operator

instanceof Compares an object to a specifi ed type

Bitwise and Bit Shift Operators

~ Unary bitwise complement
<< Signed left shift
>> Signed right shift
>>> Unsigned right shift
& Bitwise AND
^ Bitwise exclusive OR
| Bitwise inclusive OR

Questions and Exercises: Operators

Questions

1. Consider the following code snippet:
arrayOfInts[j] > arrayOfInts[j+1]

Which operators does the code contain?
2. Consider the following code snippet.

int i = 10;
int n = i++%5;

a. What are the values of i and n after the code is executed?
b. What are the fi nal values of i and n if instead of using the postfi x increment

operator (i++), you use the prefi x version (++i)?

3. To invert the value of a boolean, which operator would you use?
4. Which operator is used to compare two values, = or == ?
5. Explain the following code sample: result = someCondition ? value1 :

value2;

Exercises

1. Change the following program to use compound assignments:

psn-gallardo.indb 67psn-gallardo.indb 67 11/12/14 1:50 PM11/12/14 1:50 PM

68 Chapter 3 ■ Language Basics

3

class ArithmeticDemo {

 public static void main (String[] args){

 int result = 1 + 2; // result is now 3
 System.out.println(result);

 result = result - 1; // result is now 2
 System.out.println(result);

 result = result * 2; // result is now 4
 System.out.println(result);

 result = result / 2; // result is now 2
 System.out.println(result);

 result = result + 8; // result is now 10
 result = result % 7; // result is now 3
 System.out.println(result);
 }
}

2. In the following program, explain why the value 6 is printed twice in a row:
class PrePostDemo {
 public static void main(String[] args){
 int i = 3;
 i++;
 System.out.println(i); // "4"
 ++i;
 System.out.println(i); // "5"
 System.out.println(++i); // "6"
 System.out.println(i++); // "6"
 System.out.println(i); // "7"
 }
}

Answers

You can fi nd answers to these questions and exercises at http://docs.oracle.com/
javase/tutorial/java/nutsandbolts/QandE/answers_operators.html.

Expressions, Statements, and Blocks

Now that you understand variables and operators, it’s time to learn about expres-
sions, statements, and blocks. Operators may be used in building expressions, which
compute values. Expressions are the core components of statements, and state-
ments may be grouped into blocks.

Expressions

An expression is a construct made up of variables, operators, and method invoca-
tions, which are constructed according to the syntax of the language that evaluates

psn-gallardo.indb 68psn-gallardo.indb 68 11/12/14 1:50 PM11/12/14 1:50 PM

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_operators.html

Expressions, Statements, and Blocks 69

3

to a single value. You’ve already seen examples of expressions, illustrated in bold
as follows:

int cadence = 0;
anArray[0] = 100;
System.out.println("Element 1 at index 0: " + anArray[0]);

int result = 1 + 2; // result is now 3
if (value1 == value2)
 System.out.println("value1 == value2");

The data type of the value returned by an expression depends on the elements
used in the expression. The expression cadence = 0 returns an int because the
assignment operator returns a value of the same data type as its left- hand oper-
and; in this case, cadence is an int. As you can see from the other expressions, an
expression can return other types of values as well, such as boolean or String.

The Java programming language allows you to construct compound expressions
from various smaller expressions as long as the data type required by one part of
the expression matches the data type of the other. Here’s an example of a compound
expression:

1 * 2 * 3

In this particular example, the order in which the expression is evaluated is
unimportant because the result of multiplication is independent of order; the out-
come is always the same, regardless of the order of the numbers being multiplied.
However, this is not true for all expressions. For example, the following expression
gives different results, depending on whether you perform the addition or the divi-
sion operation fi rst:

x + y / 100 // ambiguous

You can specify exactly how an expression will be evaluated using balanced
parentheses: (and). For example, to make the previous expression unambiguous,
you could write the following:

(x + y) / 100 // unambiguous, recommended

If you don’t explicitly indicate the order for the operations to be performed, the
order is determined by the precedence assigned to the operators in use within the
expression. Operators that have a higher precedence get evaluated fi rst. For exam-
ple, the division operator has a higher precedence than the addition operator. There-
fore the following two statements are equivalent:

psn-gallardo.indb 69psn-gallardo.indb 69 11/12/14 1:50 PM11/12/14 1:50 PM

70 Chapter 3 ■ Language Basics

3

x + y / 100

x + (y / 100) // unambiguous, recommended

When writing compound expressions, be explicit and indicate with parentheses
which operators should be evaluated fi rst. This practice makes code easier to read
and maintain.

Statements

Statements are roughly equivalent to sentences in natural languages. A statement
forms a complete unit of execution. The following types of expressions can be made
into a statement by terminating the expression with a semicolon (;):

■ Assignment expressions
■ Any use of ++ or - -
■ Method invocations
■ Object creation expressions

Such statements are called expression statements. Here are some examples of
expression statements:

// assignment statement
aValue = 8933.234;
// increment statement
aValue++;
// method invocation statement
System.out.println("Hello World!");
// object creation statement
Bicycle myBike = new Bicycle();

In addition to expression statements, there are two other kinds of statements:
declaration statements and control fl ow statements. A declaration statement declares
a variable. You’ve seen many examples of declaration statements already:

// declaration statement
double aValue = 8933.234;

Finally, control fl ow statements regulate the order in which statements get exe-
cuted. You’ll learn about control fl ow statements in the next section, “Control Flow
Statements.”

psn-gallardo.indb 70psn-gallardo.indb 70 11/12/14 1:50 PM11/12/14 1:50 PM

Expressions, Statements, and Blocks 71

3

Blocks

A block is a group of zero or more statements between balanced braces and can be
used anywhere a single statement is allowed. The following example, BlockDemo,
illustrates the use of blocks:

class BlockDemo {
 public static void main(String[] args) {
 boolean condition = true;
 if (condition) { // begin block 1
 System.out.println("Condition is true.");
 } // end block one
 else { // begin block 2
 System.out.println("Condition is false.");
 } // end block 2
 }
}

Questions and Exercises: Expressions, Statements, and Blocks

Questions

1. Operators may be used in building ___, which compute values.

2. Expressions are the core components of ___.

3. Statements may be grouped into ___.

4. The following code snippet is an example of a ___ expression:

 1 * 2 * 3

5. Statements are roughly equivalent to sentences in natural languages, but
instead of ending with a period, a statement ends with a ___.

6. A block is a group of zero or more statements between balanced ___ and can be
used anywhere a single statement is allowed.

Exercise

1. Identify the following kinds of expression statements:
■ aValue = 8933.234;

■ aValue++;

■ System.out.println("Hello World!");
■ Bicycle myBike = new Bicycle();

psn-gallardo.indb 71psn-gallardo.indb 71 11/12/14 1:50 PM11/12/14 1:50 PM

72 Chapter 3 ■ Language Basics

3

Answers

You can fi nd answers to these questions and exercises at http://docs.oracle
.com/javase/tutorial/java/nutsandbolts/QandE/answers_expressions
.html.

Control Flow Statements

The statements inside your source fi les are generally executed from top to bottom,
in the order that they appear. Control fl ow statements, however, break up the fl ow
of execution by employing decision making, looping, and branching, enabling your
program to conditionally execute particular blocks of code. This section describes
the decision- making statements (if- then, if- then- else, switch), the loop-
ing statements (for, while, do- while), and the branching statements (break,
continue, return) supported by the Java programming language.

The if- then and if- then- else Statements

The if- then Statement

The if- then statement is the most basic of all the control fl ow statements. It tells
your program to execute a certain section of code only if a particular test evaluates
to true. For example, the Bicycle class could allow the brakes to decrease the
bicycle’s speed only if the bicycle is already in motion. One possible implementation
of the applyBrakes method could be as follows:

void applyBrakes() {
 // the "if" clause: bicycle must be moving
 if (isMoving){
 // the "then" clause: decrease current speed
 currentSpeed- - ;
 }
}

If this test evaluates to false (meaning that the bicycle is not in motion), control
jumps to the end of the if- then statement.

In addition, the opening and closing braces are optional, provided that the “then”
clause contains only one statement:

void applyBrakes() {
 // same as above, but without braces
 if (isMoving)
 currentSpeed- - ;
}

Deciding when to omit the braces is a matter of personal taste. Omitting them can
make the code more brittle. If a second statement is later added to the “then” clause,

psn-gallardo.indb 72psn-gallardo.indb 72 11/12/14 1:50 PM11/12/14 1:50 PM

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_expressions.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_expressions.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_expressions.html

Control Flow Statements 73

3

a common mistake would be forgetting to add the newly required braces. The com-
piler cannot catch this sort of error; you’ll just get the wrong results.

The if- then- else Statement

The if- then- else statement provides a secondary path of execution when an
“if” clause evaluates to false. You could use an if- then- else statement in the
applyBrakes method to take some action if the brakes are applied when the bicy-
cle is not in motion. In this case, the action is to simply print an error message stat-
ing that the bicycle has already stopped.

void applyBrakes() {
 if (isMoving) {
 currentSpeed- - ;
 } else {
 System.err.println("The bicycle has already stopped!");
 }
}

The following program, IfElseDemo, assigns a grade based on the value of a test
score: an A for a score of 90% or above, a B for a score of 80% or above, and so on:

class IfElseDemo {
 public static void main(String[] args) {

 int testscore = 76;
 char grade;

 if (testscore >= 90) {
 grade = 'A';
 } else if (testscore >= 80) {
 grade = 'B';
 } else if (testscore >= 70) {
 grade = 'C';
 } else if (testscore >= 60) {
 grade = 'D';
 } else {
 grade = 'F';
 }
 System.out.println("Grade = " + grade);
 }
}

The output from the program is as follows:

 Grade = C

You may have noticed that the value of testscore can satisfy more than one
expression in the compound statement: 76 >= 70 and 76 >= 60. However, once a
condition is satisfi ed, the appropriate statements are executed (grade = 'C';) and
the remaining conditions are not evaluated.

psn-gallardo.indb 73psn-gallardo.indb 73 11/12/14 1:50 PM11/12/14 1:50 PM

74 Chapter 3 ■ Language Basics

3

The switch Statement

Unlike if- then and if- then- else statements, the switch statement can have a
number of possible execution paths. A switch works with the byte, short, char,
and int primitive data types. It also works with enumerated types (discussed in
Chapter 4, “Enum Types”), the String class, and a few special classes that wrap
certain primitive types: Character, Byte, Short, and Integer (discussed in
Chapter 9).

The following code example, SwitchDemo, declares an int named month whose
value represents a month. The code displays the name of the month, based on the
value of month, using the switch statement:

public class SwitchDemo {
 public static void main(String[] args) {

 int month = 8;
 String monthString;
 switch (month) {
 case 1: monthString = "January";
 break;
 case 2: monthString = "February";
 break;
 case 3: monthString = "March";
 break;
 case 4: monthString = "April";
 break;
 case 5: monthString = "May";
 break;
 case 6: monthString = "June";
 break;
 case 7: monthString = "July";
 break;
 case 8: monthString = "August";
 break;
 case 9: monthString = "September";
 break;
 case 10: monthString = "October";
 break;
 case 11: monthString = "November";
 break;
 case 12: monthString = "December";
 break;
 default: monthString = "Invalid month";
 break;
 }
 System.out.println(monthString);
 }
}

In this case, August is printed to standard output.
The body of a switch statement is known as a switch block. A statement in the

switch block can be labeled with one or more case or default labels. The switch

psn-gallardo.indb 74psn-gallardo.indb 74 11/12/14 1:50 PM11/12/14 1:50 PM

Control Flow Statements 75

3

statement evaluates its expression and then executes all statements that follow the
matching case label.

You could also display the name of the month with if- then- else statements:

int month = 8;
if (month == 1) {
 System.out.println("January");
} else if (month == 2) {
 System.out.println("February");
}
// ... and so on

The choice between if- then- else statements or a switch statement depends
on readability and the expression that the statement is testing. An if- then- else
statement can test expressions based on ranges of values or conditions, whereas
a switch statement tests expressions based only on a single integer, enumerated
value, or String object.

Another point of interest is the break statement. Each break statement termi-
nates the enclosing switch statement. Control fl ow continues with the fi rst state-
ment following the switch block. The break statements are necessary because
without them, statements in switch blocks fall through: All statements after
the matching case label are executed in sequence, regardless of the expression
of subsequent case labels, until a break statement is encountered. The program
SwitchDemoFallThrough shows statements in a switch block that fall through;
it displays the month corresponding to the integer month and the months that fol-
low in the year:

public class SwitchDemoFallThrough {
 public static void main(String[] args) {
 java.util.ArrayList<String> futureMonths =
 new java.util.ArrayList<String>();

 int month = 8;

 switch (month) {
 case 1: futureMonths.add("January");
 case 2: futureMonths.add("February");
 case 3: futureMonths.add("March");
 case 4: futureMonths.add("April");
 case 5: futureMonths.add("May");
 case 6: futureMonths.add("June");
 case 7: futureMonths.add("July");
 case 8: futureMonths.add("August");
 case 9: futureMonths.add("September");
 case 10: futureMonths.add("October");
 case 11: futureMonths.add("November");
 case 12: futureMonths.add("December");
 break;
 default: break;
 }

psn-gallardo.indb 75psn-gallardo.indb 75 11/12/14 1:50 PM11/12/14 1:50 PM

76 Chapter 3 ■ Language Basics

3

 if (futureMonths.isEmpty()) {
 System.out.println("Invalid month number");
 } else {
 for (String monthName : futureMonths) {
 System.out.println(monthName);
 }
 }
 }
}

This is the output from the code:

August
September
October
November
December

Technically, the fi nal break is not required because fl ow falls out of the switch
statement. Using a break is recommended so that modifying the code is easier and
less error prone. The default section handles all values that are not explicitly
handled by one of the case sections.

The following code example, SwitchDemo2, shows how a statement can have
multiple case labels. The code example calculates the number of days in a particu-
lar month:

class SwitchDemo2 {
 public static void main(String[] args) {

 int month = 2;
 int year = 2000;
 int numDays = 0;

 switch (month) {
 case 1: case 3: case 5:
 case 7: case 8: case 10:
 case 12:
 numDays = 31;
 break;
 case 4: case 6:
 case 9: case 11:
 numDays = 30;
 break;
 case 2:
 if (((year % 4 == 0) &&
 !(year % 100 == 0))
 || (year % 400 == 0))
 numDays = 29;
 else
 numDays = 28;
 break;
 default:
 System.out.println("Invalid month.");

psn-gallardo.indb 76psn-gallardo.indb 76 11/12/14 1:50 PM11/12/14 1:50 PM

Control Flow Statements 77

3

 break;
 }
 System.out.println("Number of Days = "
 + numDays);
 }
}

This is the output from the code:

Number of Days = 29

Using Strings in switch Statements

You can use a String object in the switch statement’s expression. The following
code example, StringSwitchDemo, displays the number of the month based on the
value of the String named month:

public class StringSwitchDemo {

 public static int getMonthNumber(String month) {

 int monthNumber = 0;

 if (month == null) {
 return monthNumber;
 }

 switch (month.toLowerCase()) {
 case "january":
 monthNumber = 1;
 break;
 case "february":
 monthNumber = 2;
 break;
 case "march":
 monthNumber = 3;
 break;
 case "april":
 monthNumber = 4;
 break;
 case "may":
 monthNumber = 5;
 break;
 case "june":
 monthNumber = 6;
 break;
 case "july":
 monthNumber = 7;
 break;
 case "august":
 monthNumber = 8;
 break;
 case "september":
 monthNumber = 9;
 break;

psn-gallardo.indb 77psn-gallardo.indb 77 11/12/14 1:50 PM11/12/14 1:50 PM

78 Chapter 3 ■ Language Basics

3

 case "october":
 monthNumber = 10;
 break;
 case "november":
 monthNumber = 11;
 break;
 case "december":
 monthNumber = 12;
 break;
 default:
 monthNumber = 0;
 break;
 }

 return monthNumber;
 }

 public static void main(String[] args) {

 String month = "August";

 int returnedMonthNumber =
 StringSwitchDemo.getMonthNumber(month);

 if (returnedMonthNumber == 0) {
 System.out.println("Invalid month");
 } else {
 System.out.println(returnedMonthNumber);
 }
 }
}

The output from this code is 8.
The String in the switch expression is compared with the expressions asso-

ciated with each case label, as if the String.equals9 method was being used.
In order for the StringSwitchDemo example to accept any month regardless of
case, month is converted to lowercase (with the toLowerCase10 method) and all the
strings associated with the case labels are in lowercase.

9. 8/docs/api/java/lang/String.html#equals-java.lang.Object-

10. 8/docs/api/java/lang/String.html#toLowerCase--

Note
This example checks if the expression in the switch statement is null. Ensure that the
expression in any switch statement is not null to prevent a NullPointerException
from being thrown.

psn-gallardo.indb 78psn-gallardo.indb 78 11/12/14 1:50 PM11/12/14 1:50 PM

Control Flow Statements 79

3

The while and do- while Statements

The while statement continually executes a block of statements while a particular
condition is true. Its syntax can be expressed as follows:

while (expression) {
 statement(s)
}

The while statement evaluates expression, which must return a bool-
ean value. If the expression evaluates to true, the while statement executes the
statement(s) in the while block. The while statement continues testing the
expression and executing its block until the expression evaluates to false. Using
the while statement to print the values from 1 through 10 can be accomplished via
the following WhileDemo program:

class WhileDemo {
 public static void main(String[] args){
 int count = 1;
 while (count < 11) {
 System.out.println("Count is: " + count);
 count++;
 }
 }
}

You can implement an infi nite loop using the while statement as follows:

while (true){
 // your code goes here
}

The Java programming language also provides a do- while statement, which can
be expressed as follows:

do {
 statement(s)
} while (expression);

The difference between do- while and while is that do- while evaluates its
expression at the bottom of the loop instead of the top. Therefore, the statements
within the do block are always executed at least once, as shown in the following
DoWhileDemo program:

class DoWhileDemo {
 public static void main(String[] args){
 int count = 1;
 do {

psn-gallardo.indb 79psn-gallardo.indb 79 11/12/14 1:50 PM11/12/14 1:50 PM

80 Chapter 3 ■ Language Basics

3

 System.out.println("Count is: " + count);
 count++;
 } while (count < 11);
 }
}

The for Statement

The for statement provides a compact way to iterate over a range of values. Pro-
grammers often refer to it as the for loop because of the way it repeatedly loops
until a particular condition is satisfi ed. The general form of the for statement can
be expressed as follows:

for (initialization; termination; increment) {
 statement(s)
}

When using this version of the for statement, keep the following in mind:

■ The initialization expression initializes the loop; it’s executed once as the loop
begins.

■ When the termination expression evaluates to false, the loop terminates.
■ The increment expression is invoked after each iteration through the loop;

it is perfectly acceptable for this expression to increment or decrement a
value.

The following program, ForDemo, uses the general form of the for statement to
print the numbers 1 through 10 to standard output:

class ForDemo {
 public static void main(String[] args){
 for(int i=1; i<11; i++){
 System.out.println("Count is: " + i);
 }
 }
}

Here is the output of this program:

Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

psn-gallardo.indb 80psn-gallardo.indb 80 11/12/14 1:50 PM11/12/14 1:50 PM

Control Flow Statements 81

3

Notice how the code declares a variable within the initialization expression. The
scope of this variable extends from its declaration to the end of the block governed
by the for statement, so it can be used in the termination and increment expres-
sions as well. If the variable that controls a for statement is not needed outside the
loop, it’s best to declare the variable in the initialization expression. The names i,
j, and k are often used to control for loops; declaring them within the initialization
expression limits their life span and reduces errors.

The three expressions of the for loop are optional; an infi nite loop can be created
as follows:

// infinite loop
for (; ;) {

 // your code goes here
}

The for statement also has another form designed for iteration through collec-
tions and arrays. This form is sometimes referred to as the enhanced for statement
and can be used to make your loops more compact and easier to read. To demon-
strate, consider the following array, which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

The following program, EnhancedForDemo, uses the enhanced for to loop through
the array:

class EnhancedForDemo {
 public static void main(String[] args){
 int[] numbers =
 {1,2,3,4,5,6,7,8,9,10};
 for (int item : numbers) {
 System.out.println("Count is: " + item);
 }
 }
}

In this example, the variable item holds the current value from the numbers array.
The output from this program is the same as before:

Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

psn-gallardo.indb 81psn-gallardo.indb 81 11/12/14 1:50 PM11/12/14 1:50 PM

82 Chapter 3 ■ Language Basics

3

We recommend using this form of the for statement instead of the general form
whenever possible.

Branching Statements

The break Statement

The break statement has two forms: labeled and unlabeled. You saw the unlabeled
form in the previous discussion of the switch statement. You can also use an unla-
beled break to terminate a for, while, or do- while loop, as shown in the follow-
ing BreakDemo program:

class BreakDemo {
 public static void main(String[] args) {

 int[] arrayOfInts =
 { 32, 87, 3, 589,
 12, 1076, 2000,
 8, 622, 127 };
 int searchfor = 12;

 int i;
 boolean foundIt = false;

 for (i = 0; i < arrayOfInts.length; i++) {
 if (arrayOfInts[i] == searchfor) {
 foundIt = true;
 break;
 }
 }

 if (foundIt) {
 System.out.println("Found " + searchfor + " at index " + i);
 } else {
 System.out.println(searchfor + " not in the array");
 }
 }
}

This program searches for the number 12 in an array. The break statement, shown
in boldface, terminates the for loop when that value is found. Control fl ow then
transfers to the statement after the for loop. This program’s output is as follows:

Found 12 at index 4

An unlabeled break statement terminates the innermost switch, for, while,
or do- while statement, but a labeled break terminates an outer statement. The
following program, BreakWithLabelDemo, is similar to the previous program but
uses nested for loops to search for a value in a two- dimensional array. When the
value is found, a labeled break terminates the outer for loop (labeled search):

psn-gallardo.indb 82psn-gallardo.indb 82 11/12/14 1:50 PM11/12/14 1:50 PM

Control Flow Statements 83

3

class BreakWithLabelDemo {
 public static void main(String[] args) {

 int[][] arrayOfInts = {
 { 32, 87, 3, 589 },
 { 12, 1076, 2000, 8 },
 { 622, 127, 77, 955 }
 };
 int searchfor = 12;

 int i;
 int j = 0;
 boolean foundIt = false;

 search:
 for (i = 0; i < arrayOfInts.length; i++) {
 for (j = 0; j < arrayOfInts[i].length;
 j++) {
 if (arrayOfInts[i][j] == searchfor) {
 foundIt = true;
 break search;
 }
 }
 }

 if (foundIt) {
 System.out.println("Found " + searchfor + " at " + i + ", " + j);
 } else {
 System.out.println(searchfor + " not in the array");
 }
 }
}

This is the output of the program:

Found 12 at 1, 0

The break statement terminates the labeled statement; it does not transfer the
fl ow of control to the label. Control fl ow is transferred to the statement immediately
following the labeled (terminated) statement.

The continue Statement

The continue statement skips the current iteration of a for, while, or do- while
loop. The unlabeled form skips to the end of the innermost loop’s body and evaluates
the boolean expression that controls the loop. The following program, ContinueDemo,
steps through a String, counting the occurrences of the letter p. If the current
character is not a p, the continue statement skips the rest of the loop and proceeds
to the next character. If it is a p, the program increments the letter count:

class ContinueDemo {
 public static void main(String[] args) {

psn-gallardo.indb 83psn-gallardo.indb 83 11/12/14 1:50 PM11/12/14 1:50 PM

84 Chapter 3 ■ Language Basics

3

 String searchMe = "peter piper picked a " + "peck of pickled peppers";
 int max = searchMe.length();
 int numPs = 0;

 for (int i = 0; i < max; i++) {
 // interested only in p's
 if (searchMe.charAt(i) != 'p')
 continue;

 // process p's
 numPs++;
 }
 System.out.println("Found " + numPs + " p's in the string.");
 }
}

Here is the output of this program:

Found 9 p's in the string.

To see this effect more clearly, try removing the continue statement and recom-
piling. When you run the program again, the count will be wrong, saying that it
found 35 p’s instead of 9.

A labeled continue statement skips the current iteration of an outer loop marked
with the given label. The following example program, ContinueWithLabelDemo,
uses nested loops to search for a substring within another string. Two nested loops are
required: one to iterate over the substring and another to iterate over the string being
searched. The following program, ContinueWithLabelDemo, uses the labeled form of
the continue statement to skip an iteration in the outer loop:

class ContinueWithLabelDemo {
 public static void main(String[] args) {

 String searchMe = "Look for a substring in me";
 String substring = "sub";
 boolean foundIt = false;

 int max = searchMe.length() -
 substring.length();

 test:
 for (int i = 0; i <= max; i++) {
 int n = substring.length();
 int j = i;
 int k = 0;
 while (n- - != 0) {
 if (searchMe.charAt(j++) != substring.charAt(k++)) {
 continue test;
 }
 }

psn-gallardo.indb 84psn-gallardo.indb 84 11/12/14 1:50 PM11/12/14 1:50 PM

Control Flow Statements 85

3

 foundIt = true;
 break test;
 }
 System.out.println(foundIt ? "Found it" : "Didn't find it");
 }
}

Here is the output from this program:

Found it

The return Statement

The last of the branching statements is the return statement. The return state-
ment exits from the current method, and control fl ow returns to where the method
was invoked. The return statement has two forms: one that returns a value and
another that doesn’t. To return a value, simply put the value (or an expression that
calculates the value) after the return keyword:

return ++count;

The data type of the returned value must match the type of the method’s declared
return value. When a method is declared void, use the form of return that doesn’t
return a value:

return;

Chapter 4 covers everything you need to know about writing methods.

Summary of Control Flow Statements

The if- then statement is the most basic of all the control fl ow statements. It
tells your program to execute a certain section of code only if a particular test
evaluates to true. The if- then- else statement provides a secondary path
of execution when an “if ” clause evaluates to false. Unlike if- then and if-
then- else, the switch statement allows for any number of possible execution
paths. The while and do- while statements continually execute a block of state-
ments while a particular condition is true. The difference between do- while and
while is that do- while evaluates its expression at the bottom of the loop instead
of the top. Therefore, the statements within the do block are always executed at
least once. The for statement provides a compact way to iterate over a range of
values. It has two forms, one of which was designed for looping through collec-
tions and arrays.

psn-gallardo.indb 85psn-gallardo.indb 85 11/12/14 1:50 PM11/12/14 1:50 PM

86 Chapter 3 ■ Language Basics

3

Questions and Exercises: Control Flow Statements

Questions

1. The most basic control fl ow statement supported by the Java programming
language is the ___ statement.

2. The ___ statement allows for any number of possible execution paths.
3. The ___ statement is similar to the while statement but evaluates its expres-

sion at the ___ of the loop.
4. How do you write an infi nite loop using the for statement?
5. How do you write an infi nite loop using the while statement?

Exercises

1. Consider the following code snippet:
if (aNumber >= 0)
 if (aNumber == 0)
 System.out.println("first string");
else System.out.println("second string");
System.out.println("third string");

a. What output do you think the code will produce if aNumber is 3?
b. Write a test program containing the previous code snippet; make aNumber

3. What is the output of the program? Is it what you predicted? Explain why
the output is what it is; in other words, what is the control fl ow for the code
snippet?

c. Using only spaces and line breaks, reformat the code snippet to make the
control fl ow easier to understand.

d. Use braces, { and }, to further clarify the code.

Answers

You can fi nd answers to these questions and exercises at http://docs.oracle
.com/javase/tutorial/java/nutsandbolts/QandE/answers_flow.html.

psn-gallardo.indb 86psn-gallardo.indb 86 11/12/14 1:50 PM11/12/14 1:50 PM

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_flow.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_flow.html

This page intentionally left blank

807

Symbols
- (minus sign)

operator, 59– 62, 279
in regular expressions, 562– 64

- - operator, 59, 61, 62
_ (underscore)

in constant names, 114
in numeric literals, 50– 51
in package names, 263
in predefined character classes, 566
in variable names, 45– 46

, (comma)
in numbers, 50, 276, 278
in regular expressions, 572

; (semicolon)
in class paths, 212, 269, 610
declaring abstract methods, 159
listing enum types, 159
in statements, 28, 70, 319
terminating method signatures, 176, 178

: (colon), in class paths, 269
! operator, 59
!/ separator, 644, 645
!= operator, 59, 63, 66
? (question mark)

in regular expressions, 236, 372– 73
?: operator, 64, 67
/ (forward slash)

file name separator, 267, 360, 417, 621
operator, 59– 60, 279– 80

// in comments, 12, 25
/* in comments, 24
/** in comments, 24

/= operator, 59
. (dot)

in class paths, 364, 612
in JAR file commands, 620, 630
in method invocations, 87, 104– 7
in numbers, 278, 287, 299
in regular expressions, 561, 568
in variable names, 105

… (ellipsis), 96– 97
^ (caret)

operator, 59, 66– 67
in regular expressions, 563, 576– 77, 579

^= operator, 59
~ operator, 59, 65
' (single quote), escape sequence for, 50, 288
" (double quote)

escape sequence for, 50, 288
in literals, 288

() (parentheses)
in declarations, 92, 106, 317
in expressions, 69, 797
in generics, 222
in interfaces, 133
in regular expressions, 573– 74

[] (square brackets)
in arrays, 53– 54
in regular expressions, 373, 568, 592

{} (braces)
in blocks, 71, 72, 117, 127
in declarations, 89– 90, 90– 92, 127– 28
in lambda expressions, 147
in methods, 44
in regular expressions, 373, 571– 72

Index

psn-gallardo.indb 807psn-gallardo.indb 807 11/12/14 1:54 PM11/12/14 1:54 PM

808 Index

@ (at)
in annotations, 164, 166
in Javadoc, 167

$ (dollar sign)
in DecimalFormat patterns, 278
in variable names, 45

* (asterisk)
in import statements, 264
operator, 59
in regular expressions, 372, 407

*/ in comments, 24
*= operator, 59
\ (backslash)

in escape sequences, 50, 288– 89, 360, 566
file name separator, 267, 417
in regular expressions, 373, 561

& (ampersand) operator, 59, 66– 67
&& operator, 59, 63, 66– 67
&= operator, 59
(pound sign)

in DecimalFormat patterns, 278
in regular expressions, 561

% (percent sign)
format specifier, 275, 350
operator, 59, 279– 80

%= operator, 59
+ (plus sign)

operator, 59, 66– 67, 279– 80
in regular expressions, 561

++ operator, 59, 61– 62, 66– 67, 70
+= operator, 59
< operator, 59, 62– 63
<< operator, 59, 66– 67
<<= operator, 59
<= operator, 59, 62– 63, 66– 67
<> (angle brackets), 141, 221, 223, 224– 27, 232
= operator, 59
- = operator, 59
== operator, 59, 62– 63, 66– 67
> operator, 59, 62– 63, 66– 67
>= operator, 59, 62– 63, 66– 67
>> operator, 59, 66– 67
>>= operator, 59
>>> operator, 59, 66– 67
>>>= operator, 59
- > (arrow token), 147, 487
| (vertical bar)

in exception handling, 316
operator, 59, 66– 67
in regular expressions, 579

|= operator, 59
|| operator, 59, 63, 66– 67

A
abs method, 280
abstract classes, 212– 14

example, 214– 15
as an implementation of a service, 603
implementations, 512
methods, 212– 13
numeric wrapper classes, 272
versus interfaces, 213– 14

Abstract Window Toolkit (AWT), 265
AWT Event Dispatcher, 652, 672

AbstractMap class, 214
access control list (ACL), 380
access modifi ers

classes and, 90– 95, 111
constants and, 178
default, 110– 11
fields and, 196
interfaces and, 177– 78
levels of, 110– 12
methods and, 92, 196, 206
package- private, 111
private keyword, 89, 110– 11, 196– 97
protected, 111– 12
public, 89, 110– 11, 196– 97

AccessControlException, 608
accessor methods, 290, 295, 296, 381, 382, 467
accumulator function, 476– 77
acos method, 282– 83
add method, 429, 434, 442, 446
addAll method

in the Collection interface, 428– 29, 430,
432, 452

in the List interface, 438, 439
in the Map interface, 452

addFirst method, 448– 49, 494, 498
addLast method, 448– 49, 494, 498
aggregate operations, xxiv, 145– 46, 450, 471– 72

bulk operations vs., 430– 31
iterators vs., 474
side effects of, 484– 87
traversing collections with, 429– 30

algorithms (collections), 423– 25, 500– 509
in the Collections class, 508– 9
composition, 509
finding extreme values with, 509
generic, 220, 229
listing data, 445
polymorphism, defined, 424
routine data manipulation, 508
searching data, 508– 9
shuffling data, 508

psn-gallardo.indb 808psn-gallardo.indb 808 11/12/14 1:54 PM11/12/14 1:54 PM

Index 809

sorting data, 505– 8
work stealing, 549

ampersand. See &
Anagrams example, 456, 507
angle brackets. See <>
annotations, 163– 74

cardinality of type, 173
container, 172
declaring, 165– 67, 172
design considerations, 173
elements and, 164
formatting of, 164– 65
legacy code, 173
meta- annotations, 169– 70
predefined, 165, 167– 70
repeating, 164– 65, 171– 73
retrieving, 173
type. See type annotations
used by the Java language, 167– 68
where to use, 165

anonymous classes, 131– 36
declaring and accessing, 131– 34
examples of, 134– 36
GUI applications and, 134
specifying search criteria code in, 140
syntax of, 132– 33
when to use, 155

APIs (Application Programming Interfaces), 138
array- based versus collection- based, 502
compatibility of, 513– 15
design of, 515– 17
interfaces as, 177
JAR- related, 642– 648
Java core, 4, 34, 40
logging, 328
Reflection API, 173

append method, 253, 302– 4
appendReplacement method, 584– 85, 588
appendTail method, 584, 588
Applet class, 665, 667, 672, 680– 81, 684
applet tag, 626, 673– 76

deploying with, 676
JAR files and, 626
JNLP and, 676, 734– 35, 748
manually coding, 676

AppletContext interface, 677, 682– 83, 702, 706
applets, 665– 709

API of, 677
background color of, 733
common problems, 707– 8
communicating with other applets, 701– 3
core functionality versus deployment

mechanism, 673– 74

debugging, 698
defining and using applet parameters, 678– 80
deploying, 673– 76, 733– 35
developing, 670– 73
directories of, 673– 75, 678
displaying documents, 682– 83
displaying short status strings, 681
draggable, 698– 701
event handling and, 689– 90
execution environment of, 670
finding and loading data files, 677
GUIs in, 671
JavaScript functions and, 670, 676– 77, 701– 3
leaving and returning to web pages, 669
life cycle of, 668– 69
loading, 669
milestones, 667– 68
packing in JAR files, 673– 75
parameters in, 668– 670
qualified names, 659, 697
quitting the browser, 669
reloading, 669
sandbox, 706– 7
security and, 596, 634, 677
server- side applications, 703– 5
signed, 31, 654
threads in, 670

appletviewer application, 608
Application- Library- Allowable- Codebase

attribute, 635
Application- Name attribute, 634
applications. See rich Internet applications (RIAs)
archive attribute, 708, 733
args variable, 45, 274– 75, 601, 646– 47
arguments

arbitrary number of, 96– 97
command- line. See command- line arguments
glob, 372– 73
number of, 95
primitive data types, 96, 98
reference data types, 98
versus parameters, 95

arithmetic operators, 59– 60, 61, 66
ArithmeticDemo example, 60, 68
ArrayBlockingQueue class, 497
arraycopy method, 55– 56, 608, 648
ArrayCopyDemo example, 55– 56
ArrayDemo example, 52– 54, 55
ArrayDeque class, 498
arrays, 51– 57

assigning values to, 54
of characters, 288– 89
comparing, 56

psn-gallardo.indb 809psn-gallardo.indb 809 11/12/14 1:54 PM11/12/14 1:54 PM

810 Index

arrays (continued)
copying, 55– 56
creating, 54– 55
filling, 56
List view of, 502
looping through, 85
multidimensional, 54– 55
searching, 56
sorting, 57

arrow token. See - >
asin method, 282

as a convenience implementation, 502
upward compatibility and, 513
writing a custom implementation, 511

asList method, 237– 38, 440
assert statement, 120
assignments

checking with assert, 120
compound, 61, 67
conditional operators and, 63– 64

asterisk. See *
at. See @
at prefi x, 758
atan method, 282– 83
atomic fi le operations, 372, 377, 392, 496, 500

access, 533
actions, 533
methods, 496
synchronization, 500– 501, 533, 553– 54
variables, 553– 54

ATOMIC_MOVE enum, 372, 377
AtomicCounter example, 554
AtomicInteger class, 272, 554
Attributes class, 645
autoboxing, 223, 253, 271– 72, 283– 84, 285, 288
AutoCloseable interface, 317, 320
autofl ush, 346

B
backslash. See \
backspace, 50, 289
BadThreads example, 555
BasicMathDemo example, 279
BasicService interface, 664
between method, 781
BicycleDemo example, 37
BigDecimal class, 47, 272, 347, 357, 359
BigInteger class, 272, 347, 459
binary numbers, 49, 273– 74
binarySearch method, 56, 445, 508– 9
bit shift operators, 65, 67, 797
BitDemo example, 65– 66

bitwise operators, 65, 67, 579, 797
precedence, 58

BlockDemo example, 71
BlockingQueue implementation, 447, 497,

498, 552
blocks, 68, 128– 29
boolean data type, 47

default value of, 48
unary operations on, 61

BorderLayout class, 651– 52, 657– 58, 672,
694– 95

boxing. See autoboxing; unboxing
braces. See {}
branching statements, 43, 72, 82– 85, 798
break statements, 75– 76, 82– 83
BreakDemo example, 82
BreakWithLabelDemo example, 82– 83
brittle applications, 138
browsers. See web browsers
BufferedInputStream class, 345, 356
BufferedOutputStream class, 345, 355, 390
BufferedReader class, 317– 18, 344– 48, 386– 89, 718
BufferedWriter class, 318– 20, 345, 370– 71,

386, 389, 718
buffers, 345– 46
bugs. See errors
byte data type, 46

data streams and, 390
default value of, 49
switch statement and, 74

byte streams, 340– 42
buffered, 346
character streams and, 342– 43
classes, 348– 49
closing, 341– 42
I/O streams and, 352, 354– 55
standard streams and, 352
using, 341
when not to use, 342

bytecodes, 2, 5, 7, 16, 18, 20
in the HelloWorld example, 13, 16, 18, 20,

29– 30
type erasure and, 244– 45

byteValue method, 273, 286

C
CA. See Signer Certifi cate Authority (CA)

keystore
Calendar class, 358
call stack

exception handling, 310– 11, 315, 321, 323
propagating errors up, 332– 33

psn-gallardo.indb 810psn-gallardo.indb 810 11/12/14 1:54 PM11/12/14 1:54 PM

Index 811

Callable objects, 547– 48
Caller- Allowable- Codebase attribute, 635, 686
capturing groups, 572– 73
cascading style sheets (CSSs), 793
catch blocks, 315– 16, 321, 336, 370, 800
Catch or Specify Requirement, 309– 12, 330, 799

bypassing, 312
cd command, 18, 21– 22, 29– 30
ceil method, 280
char data type, 47
character and string literals, 50, 288– 90

converting to strings, 288– 90
in data streams, 354– 55
default value of, 48
escape sequences in, 50, 288– 90
generic methods and bounded type

parameters, 229
getting by index, 295
translating individual tokens, 347– 48
wrapper class. See Character class

Character class, 287– 89, 306
implementing Comparable, 459
restrictions on generics, 252– 56
switch statement and, 74
useful methods in, 289
as a wrapper class, 287

character classes, 564– 68
intersections of, 565
negation of, 563
predefined, 566– 68
quantifiers and, 572– 73
ranges of, 563– 64
regular expressions and, 562, 567
simple, 562– 63
subtractions of, 565– 66
unions of, 564– 65

character streams, 342– 45
charAt method, 84, 290, 305, 307
CharSequence interface, 192– 93, 296– 98, 303,

388, 581– 83, 772, 774
Checker Framework, 171
ChessAlgorithm example, 212
ChronoField enum, 774– 75
ChronoUnit enum, 774– 76, 778, 781
Class class, 216– 17
class fi les, 19, 28, 30, 125, 267– 68
class library. See Java Application Programming

Interface (API)
class paths, 268, 269, 603– 4, 613, 630– 31, 686,

702, 719
class variables. See fi elds, static

ClassCastException, 248– 50, 252, 458– 59, 462,
502, 694, 800

classes, 36– 38, 88– 89, 118– 19. See also
inheritance; nested classes

abstract, 212– 16
access modifiers and, 90– 91
adapter, 517
base or parent. See superclasses
child, derived, or extended. See subclasses
constructors for, 94– 95
declaring, 89– 90, 127– 28
final, 212
hierarchy of, 194
inner, 130– 31. See also inner classes
instantiating, 101
interfaces implemented by, 90, 178
local, 127– 31, 139– 40, 155
methods and, 92– 94
naming, 92
numbers, 272– 74
passing information, 95– 99
static initialization blocks in, 117
variables (static fields), 44, 57
wrapper, 272, 283– 87, 306, 797

ClassNotFoundException, 357, 646, 648, 708
CLASSPATH system variable, 29– 30, 268– 69, 595,

609, 611– 13, 706
ClipboardService interface, 715
Clock class, 783
clone method, 209, 490
Cloneable interface, 209, 213– 14
CloneNotSupportedException, 208– 9
close method, 319– 20, 347, 370
Closeable interface, 313, 317, 320, 370
cmd command, 17
code

case sensitivity in, 12, 17, 22, 45
error handling, 331– 32
error- prone, 76, 107, 171, 335
platform- independent, 4, 31
readability of, 31, 64, 94, 122, 155, 267, 311,

329, 346
Codebase attribute, manifest fi le, 634, 724
codebase attribute, JNLP fi le, 733, 734, 737
CollationKey class, 459
collect method, 476– 80
Collection interface, 428– 29, 432

array operations, 432– 33
backward compatibility and, 514
bulk operations, 432
implementations of, 502

psn-gallardo.indb 811psn-gallardo.indb 811 11/12/14 1:54 PM11/12/14 1:54 PM

812 Index

Collection interface (continued)
views, 452– 54
wrappers for, 499– 500

collections, 423– 517
concurrent, 552– 53
hierarchy of, 265
internal delegation and, 474
older APIs and, 225, 432– 33, 512– 13
ordered, 427, 438, 469, 495
read- only access to, 490
synchronized, 490, 500– 501
traversing, 429– 30

Collections class, 224, 230, 439, 445, 504, 508– 9
backward compatibility and, 224– 25, 230– 31
methods in, 499– 500
polymorphic algorithms in, 424

Collectors class, 478– 79
colon. See :
combiner function, 477
comma. See ,
command- line arguments, 292– 93, 600– 601

analogies to applet parameters, 678
echoing, 600
numeric, 601
test harnesses and, 559– 60
URLs and, 646– 47

comments, 24
annotations and, 165– 67
Pattern class methods, 578, 580

Comparable interface, 369, 458, 462
Comparator interface, 189– 92, 461– 64, 497, 506–

7, 509, 796, 798
compare method, 462
compareTo method

custom uses, 458– 61
for objects, 369
for primitive data types, 273
for strings, 301

compareToIgnoreCase method, 154, 301
ComparisonDemo example, 63
comparisons

between classes, 459
of numbers, 59– 62
of object, 64– 65

compatibility, 513– 15
backward, 514– 15
binary, 183, 187
cross- platform, 794
upward, 513– 14

compile method, 559, 578
compilers, 124, 198, 234

information for, 163
ComputeResult class, 307

concat method, 291
ConcatDemo example, 61
concurrency, 519– 56

collections, 552– 53
high- level objects, 543– 55
random numbers, 554

ConcurrentHashMap implementation, 214, 496,
553

ConcurrentMap interface, 482, 491, 496, 552– 53
ConcurrentNavigableMap interface, 553
ConcurrentSkipListMap interface, 553
conditional operators, 62– 64, 67, 797
ConditionalDemo1 example, 63
ConditionalDemo2 example, 64
constants, 115

compile- time, 115
data streams and, 354– 55
embedded flag expressions, 580
empty, 503– 4
enum types and, 157– 61
importing, 265– 66
interfaces and, 176, 177– 78
naming, 45– 46, 157– 58
numbers and, 278– 79, 286
for upper and lower bounds, 238– 39, 272
variables, 130– 31

constructors, 87– 89, 95– 99
calling, 108– 10
chaining, 208
conversion, 428– 29
declaring, 89, 94– 95
default, 95
for enum types, 159
generic, 234
inheritance and, 194, 207– 8
methods and, 95, 212
no- argument, 95, 104, 110, 207, 783
synchronization and, 530

Consumer interface, 142– 43, 146
containers. See collections
contains method, 296, 297, 428, 599
containsAll method, 429, 430, 430– 32, 454,

494
containsKey method, 449, 451, 599
containsValue method, 214, 449, 451
continue statements, 83– 84
ContinueDemo example, 83
ContinueWithLabelDemo example, 84
control fl ow statements, 72– 86

branching, 82– 85
decision- making, 72

controlling access. See access modifi ers
converters, 275– 76

psn-gallardo.indb 812psn-gallardo.indb 812 11/12/14 1:54 PM11/12/14 1:54 PM

Index 813

Cookie Applet Example, 722
cookies

accessing, 719– 22
kinds of, 719
rich Internet applications (RIAs) and, 719– 20,

722
copy method, 243, 376
CopyBytes example, 341– 42, 343
CopyCharacters example, 343– 44, 345
CopyLines example, 344– 45
copyOfRange method, 56
CopyOnWriteArrayList implementation, 494
CopyOnWriteArraySet implementation,

493– 94
core collection interfaces, 423, 426– 28, 469– 70,

500– 501, 513. See also by individual type
compatibility of, 513– 14
hierarchy of, 265
implementations of, 499– 502

cos method, 266, 279
Countdown example, 447
Counter example, 527
CreateObjectDemo example, 99– 100, 105– 6
createTempFile method, 393, 421
currentTimeMillis method, 609
customized loading screens

in applets, 722
in Java Web Start applications, 656– 61

D
data encapsulation, 33, 35
data types, 46– 51, 95– 96, 341– 42. See also by

individual type
reference, 95– 96
returned by expressions, 68– 69, 91– 92
switch statement and, 74

DataInput interface, 355– 57
DataInputStream class, 355– 56
DataOutput interface, 355, 356, 357
DataOutputStream class, 355, 356
DataStreams example, 355– 57
dates, 153, 621. See also Date- Time package
Date- Time package, xxiv, 755– 91

basic representations of time, 759– 60
calendar systems, xxiv, 755– 56, 759, 788
clarity in, 756
clocks, 783– 84
date- time classes, 764– 70
design principles, 756– 57
duration, 781
epochs, 759, 770
extensibility of, 757
fluent interface of, 757

formatting 773– 74
human vs. machine time, 770
immutability of, 757
Instant class and, 770– 71
legacy date- time code, 787– 90
method naming conventions, 758
non- ISO date conversions, 784– 87
packages, 757– 58, 774– 80
parsing 772– 73
period, 782– 83
temporal- based classes, 760– 61
time zone and offset classes, 766– 70

DateTimeFormatter class, 772
DayOfWeek enum, 760– 62
Deadlock example, 534
deadlocks, 491, 533– 35, 544
Deal example, 444– 45
decimal number system, 48, 49, 273
DecimalFormat class, 272, 277– 78
declaration statements, 70, 317
declarations. See by individual type
decode method, 274
default keyword, 185
default methods, xxiii, 182– 92

binary compatibility, 183
defining implementations for, 182– 84
defining new methods as, 182
extending interfaces that contain, 185– 86
integrating into existing libraries, 187– 92

DelayQueue class, 497
delete method, 304, 375, 419
deleteOnExit method, 420
deployment, 729– 53

applets, 673– 77
best practices, 748
Java Web Start applications, 653– 56

Deployment Toolkit, 653– 56, 673– 76
@Deprecated annotation type, 167– 68
@deprecated Javadoc tag, 167
Deque interface, 448– 49

basic operations, 498
concurrent implementations, 499
implementations of, 498– 99
methods, 448– 49

destroy method, 668
diamond, 223– 24, 233– 34, 428
dir command, 18, 29
directories

changing, 17– 19, 27
checking, 374– 75
copying, 376– 77
creating, 20– 22, 395– 96
deleting, 375

psn-gallardo.indb 813psn-gallardo.indb 813 11/12/14 1:54 PM11/12/14 1:54 PM

814 Index

directories (continued)
delimiters, 360
error messages involving, 29
filtering, 398
moving, 377– 78
packages, 267– 68
root, 363, 395
temporary, 396– 97
verifying the existence of, 375
watching for changes, 410– 16

documentation, 165– 66
source code comments, 24

@Documented annotation type, 167, 169
dollar sign. See $
dot. See .
double data type, 47
double quote. See "
doubleValue method, 237, 273
do- while statements, 53, 72, 79, 82– 83, 85, 798
DoWhileDemo example, 79
DownloadService interface, 657, 664, 693,

694, 715
DownloadServiceListener interface, 657,

693– 94, 715
Duration object, 780– 81
Dynamic Tree Demo applet, 654, 674

E
E

constant, 279
in scientific notation, 49
as type parameter naming convention, 221

Echo example, 600
element method, 438
elements (in collections), 427– 28

adding, 428– 29, 432, 438– 39
checking, 431
counting, 433– 34, 447
cursor position and, 441– 442
not duplicated, 433– 434
null, 432
ordering, 427, 433– 434
removing, 429– 432, 435– 436
searching, 435– 436
sequence of, 145
swapping, 439– 440

ellipsis. See …
emacs text editor, 20
emptyList method, 235, 503
emptyMap method, 503
emptySet method, 503
EmptyStackException, 325

encapsulation, 33, 35, 91, 122, 155, 796, 799
end method, 583
endsWith method, 301, 369
EnhancedForDemo example, 81
ensureCapacity method, 303, 501
Entry- Point attribute, 635
entrySet method, 449, 453– 55, 512
enum keyword, 157
enum types, 87, 157– 61, 493

constructors for, 159
naming, 157– 58

enumerated types. See enum types
Enumeration collection, 259, 513, 514, 515, 599

compatibility and, 513– 15
EnumMap implementation, 495
EnumSet implementation, 493
EnumTest example, 158
Env example, 602
environment, 595– 614

properties of, 596– 99
restricted, 661

environment variables, 601– 2, 609– 13
CLASSPATH, 29, 30, 609
common problems with, 29
passing to new processes, 602
PATH, 609– 12
platform dependency issues, 602
querying, 601– 2

EnvMap example, 601– 2
EOFException, 335, 356
epochs, 759, 770
equality operators. See comparisons
equals method, 56, 208, 210– 11, 460, 463, 496
equalsIgnoreCase method, 301
Error class, 326
error messages, 313– 15

legacy file I/O code, 418
Microsoft Windows, 27, 29– 30
Solaris and Linux, 27– 28, 30– 31
unchecked, 225– 26
using to check assignments, 120
wildcard capture and, 241

errors
compiler, 28, 58, 101, 105, 107, 201, 229, 241,

255, 264, 330
compile- time, 48, 95, 172, 197, 203, 207, 220,

228, 239, 244, 253– 56, 284
grouping and differentiating types, 334– 35
memory consistency, 527, 528– 29, 530– 31, 533,

543, 553
propagating in, 332– 34
runtime, 29– 31

psn-gallardo.indb 814psn-gallardo.indb 814 11/12/14 1:54 PM11/12/14 1:54 PM

Index 815

semantic, 29
syntax, 28

escape sequences, 50, 288– 89
in regular expressions, 578, 582
in Unicode, 50, 591

EventHandler interface, 134– 35, 146
exception classes, 309, 324– 29

creating, 328– 29
grouping errors, 334– 35
hierarchy, 329
PatternSyntaxException class, 589– 91

exception handlers, 45, 310– 17
associating with try blocks, 314– 15
catching more than one exception type, 316
catching multiple exceptions, 319
constructing, 320– 23

exceptions, 309– 37
advantages of, 329– 30
catching, 313– 23
chained, 326– 28
checked, 312
class hierarchy of, 329
creating exception classes, 328
external. See errors
in file operations, 370– 71
kinds of, 311– 12
logging, 328, 698
specifying by method, 323– 24
suppressed, 319– 20
throwing, 324– 30
unchecked, 329– 30

exclamation sign. See !
Executor interface, 546– 48, 549
ExecutorService interface, 546– 49
exit method, 609
exp method, 281
ExponentialDemo example, 281
exponents, 266
expression statements, 70– 71
expressions, 68– 70
ExtendedService interface, 664, 715
extends keyword, 38, 227, 236, 238
extensions, 603, 613, 615, 625, 638, 673, 723

F
F or f in 32- bit fl oat literals, 47
fi elds, 35– 38, 206, 796. See also variables

declaring, 117
default values of, 48
final, 530
hiding, 206
inherited, 196

initializing, 116– 18, 796
members versus, 45
nonstatic, 44, 57
private, 196
qualified names, 98
referencing, 104– 5
shadowing, 97, 123– 24
static, 44, 112– 14, 216, 254, 531, 578, 645
static final. See constants
synchronization and, 527, 531

FIFO (fi rst- in, fi rst out), 427, 446, 469, 490, 497
File class, 359
fi le descriptors, 211
fi le operations, 370– 74

atomic, 372
catching exceptions, 370– 71
method chaining, 372
releasing system resources, 370
varargs in, 371– 72

fi le paths, 359– 62
checking symbolic links, 375– 76
comparing, 369
converting, 366– 67
creating, 363
creating a path between two, 368
joining two, 367
relative versus absolute, 360– 61
removing redundancies from, 364– 66
retrieving information about, 363– 64
symbolic links and, 361– 62

FileInputStream class, 341, 343, 356, 598, 606
Filename class, 298
FilenameDemo example, 299
FileNotFoundException, 312, 334– 35
FileOpenService interface, 715– 17
FileOutputStream class, 341, 344, 355, 598,

608
FileReader class, 311– 12, 317– 18, 343– 48, 608
fi les

accessibility of, 376
basic attributes, 381
checking, 374– 75
copying, 376– 77
creating, 389– 90, 392– 93
deleting, 375
DOS attributes, 378
file stores, 418
finding, 407– 8
I/O and, 359– 420
moving, 377– 78
POSIX file permissions, 383– 84
random access, 339, 359, 390, 393, 420

psn-gallardo.indb 815psn-gallardo.indb 815 11/12/14 1:54 PM11/12/14 1:54 PM

816 Index

fi les (continued)
reading, 389– 90
setting ownership, 384
temporary, 393
time stamps, 382
user- defined attributes, 385
verifying the existence of, 375
writing, 389– 90

FileSaveService interface, 715– 18
FileSystem class, 373, 386, 407, 412, 422
FileVisitor interface, 401– 5
FileWriter class, 313– 14, 316, 320– 23, 343– 45,

608
fill method, 56
fi nal

catch parameter, 316
class, 212
class variable, 44, 115
constants, 115
effectively, 129, 133, 149- 150
immutable objects, 541, 542
method, 118, 212

final modifi er, 115, 178
finalize method, 208, 210– 11
finally block, 309, 316– 17
find method, 584
FindDups example, 435– 37, 470
FindDups2 example, 437
first method, 448
float data type, 47

default value of, 48
floatValue method, 273, 293
floor method, 280
flush method, 346
for statement, 80– 82, 85

enhanced, 81, 395, 418, 470, 488, 798
nested, 82
skipping the current iteration, 84– 85
terminating, 80

ForDemo example, 80– 81
for- each construct, 159, 429, 430, 434, 435,

472– 73, 499
fork/join framework, 480, 546, 549– 50, 552
form feed, 50
Format example, 352
format method, 274– 75, 278, 350, 758, 772
format specifi ers, 275, 350– 51, 644, 772
format strings, 275, 292, 349– 50
Formatter class, 350
formatting

numeric print output, 274– 78
stream objects, 346, 349– 52

forward slash. See /
frequency method, 451– 52
from method, 758
functional interface, 141– 42
@FunctionalInterface annotation type, 169
functions. See methods
Future object, 547
FXML scripting language, 793

G
garbage collection, 5, 106– 7, 119, 120, 208, 210,

496, 540, 797
empty references and, 208
immutable objects and, 539– 40
memory leaks and, 5
weak references and, 496

generic methods, 226– 27
generic objects, 219– 58

bounded type parameters and, 227
erasure of, 244– 46
instantiating, 222, 233– 34
invoking, 222
subtyping and, 230– 31
type inference and, 232– 35

generic types, 141– 42, 220– 26, 239, 245, 249,
252, 426

get method, 211, 313– 14, 363, 758
getAbsolutePath method, 421
getApplet method, 683, 702
getCanonicalPath method, 421
getCause method, 327
getChars method, 291
getClass method, 208, 211, 216, 227
getCodeBase method, 678, 704
getDescription method, 589– 90
getEnv method, 601– 2
getFields method, 211
getFirst method, 449, 494, 498
getHost method, 704
getImage method, 678
getIndex method, 589– 90
getInterfaces method, 211
getLast method, 449, 494, 498
getMainAttributes method, 644– 45
getMainClassName method, 644– 45
getMessage method, 371, 589, 590
getName method, 365
getParameter method, 680– 81
getParent method, 364– 66
getPattern method, 589
getProperty method, 599, 605, 711– 13
getResource method, 653

psn-gallardo.indb 816psn-gallardo.indb 816 11/12/14 1:54 PM11/12/14 1:54 PM

Index 817

getSecurityManager method, 607
getSimpleName method, 211
getStackTrace method, 327
getSuperclass method, 211
getValue method, 645
globbing, 372– 74

filtering a directory listing, 398
finding files, 407– 10

graphical user interfaces (GUIs), 4, 40– 41,
99– 100, 134, 146– 47, 425, 650– 52, 665– 67,
670– 73

groupCount method, 575
groupingBy operation, 479, 482
groupingByConcurrent operation, 482
guarded blocks, 535– 39

H
hard links, 359, 399
hashCode method, 189, 191, 208, 210– 11, 433,

439, 447, 452, 459– 60
HashMap implementation, 214, 234, 451– 52, 491,

495– 96, 504
HashSet implementation, 433– 37, 450, 454– 55,

490– 93
Hashtable collection, 428, 451, 496, 513– 15,

596, 599– 600
compatibility and, 513– 14
concurrency through ConcurrentHashMap, 496
synchronization and, 490– 91

hasNext method, 431, 441
headSet method, 464– 67
heap pollution, 250
HelloRunnable example, 521– 22
HelloThread example, 522
HelloWorld, 6– 24, 656– 66

applet, 665– 66
JavaFX example, 146
for Microsoft Windows, 15– 20
for Solaris and Linux, 20– 23
for the NetBeans IDE, 6– 15

hexadecimal number system, 49, 51, 211, 273– 74,
286, 351, 591

HTML. See also web browsers; web pages
generated code, 732, 736
specification, 676

HTTP requests, 548, 719
HTTPS certifi cates, 662, 726

I
IDE projects, 7– 9, 14– 15
identity element, 476, 480
IdentityHashMap implementation, 495– 96

IfElseDemo example, 73
if- then statements, 72– 73, 85, 797
if- then- else statements, 73, 85, 797
IllegalAccessException, 646
IllegalStateException, 446
immutable objects, 539– 43

defining, 541– 43
immutable singleton set, 503
ImmutableRGB example, 542– 43
implementations, 489– 505

abstract, 490, 510– 13
adapter, 510– 11
anonymous, 499
concurrent, 489, 491, 498– 99
convenience, 489, 502– 4
custom, 509– 13
documenting, 426
general purpose, 489, 490, 491, 498, 502, 504,

510, 553
multiple inheritance of, 198
special purpose, 489, 493, 504
wrapper, 424, 499– 502
writing, 510– 13

implements keyword, 39, 89, 178
import statement, 264– 66, 776
indexOf method, 299, 438– 39, 442
indexOfSubList method, 445– 46
information hiding, 36
inheritance, 38– 39, 193– 217, 797, 799

example, 195– 96
multiple, 159, 198– 99, 214

@Inherited annotation type, 170
init method, 667, 671– 73, 690
initCause method, 327
initializer blocks, 117– 18
inner classes, 87, 122, 123– 27

accessing members of, 128– 29
anonymous, 123
compatibility issues, 125
controlling access to, 122
example, 125– 27
instantiating, 123
local, 127– 31
serialization of, 124– 25

InputStream class, 343– 44
InputStreamReader class, 344, 352– 53, 389, 718
insert method, 302
instance members, 87, 117– 18, 122, 130
instance methods

interface methods vs., 200– 202
instance variables, 44, 57, 87, 112– 19, 122, 698

psn-gallardo.indb 817psn-gallardo.indb 817 11/12/14 1:54 PM11/12/14 1:54 PM

818 Index

instanceof operator, 59, 64– 67, 198, 250, 254,
405, 459, 692

InstanceofDemo example, 64
instances, 36, 44, 101– 2, 112– 13

class members and, 112– 16
inner classes and, 123
testing, 64– 65

Instant class, 770– 71
int data type, 46

default value of, 48
switch statement and, 74

Integer class, 228, 273– 74
interfaces, 39– 40, 176– 93

abstract classes and, 213– 14, 799
as APIs, 177
body, 178
collection. See core collection interfaces
defining, 177– 78
evolving, 181– 82
functional, 141– 42
implementing, 178– 80
as a type, 180– 81

International Organization for Standardization
(ISO) calendar system, xxiv, 755– 56, 759

internationalization, 342– 43
Internet domain names, 262– 63, 267
Internet Explorer. See web browsers
interoperability, 513– 17

API design, 515– 17
compatibility, 513– 15
with legacy code, 418– 21, 420– 21

interprocess communication (IPC) resources, 520
interrupt mechanism, 423– 24
interrupt status, 525– 25
interrupted method, 524– 25
InterruptedException, 447, 523– 26, 536– 39,

545, 555
intValue method, 228, 273, 284
invokeClass method, 646– 48
I/O, 339– 422

atomic, 372
binary, 354– 55
buffered, 345– 46
channel, 390– 92, 393– 94
closing, 210– 11, 341– 42
from the command line, 352– 57
command- line objects, 603
exceptions, 334– 35, 370– 71
interoperability, 418– 19
line oriented, 344– 45
memory mapped, 386
method chaining, 372, 802
NIO.2, 339– 422

of objects, 357
of primitive data type values, 354– 55
random access, 393– 94
scanning and formatting, 246– 352
streams, 339– 40, 603. See streams, I/O

IOError, 312, 402
IOException, 313– 23
is prefi x, 758
isAfter method, 771
isAnnotation method, 211
isBefore method, 771
isEmpty method, 428– 39, 434, 447– 48, 451, 786
isInterface method, 211
isInterrupted method, 524
isLetter method, 289
isLowerCase method, 289
ISO- 86013. See International Organization for

Standardization (ISO) calendar system
IsoFields class, 775
isUpperCase method, 289
isWhitespace method, 289, 346
Iterator class, 428– 34, 438– 39, 440– 42, 453, 465,

468, 474, 488, 490, 494, 497, 499, 501, 512
iterator method, 125, 244– 45, 369, 397, 431,

434, 438, 441, 501
Iterator object, 431
iterators, 428– 34

aggregate operations vs., 474
fail- fast, 490

J
JApplet class, 653, 665– 69, 671– 73, 677, 678,

680– 81, 698, 712
JApplet getCodeBase method, 678
JApplet getDocumentBase method, 678
JAR tool, 616, 618– 23, 628, 630

setting entry points, 630
JarClassLoader class, 643– 48
JarRunner example, 643– 46
jarsigner tool, 722
JarURLConnection class, 642– 45
Java 2D, 4
Java Application Programming Interface

(API), 3– 5, 34, 40– 41, 793. See also APIs
(Application Programming Interfaces)

hierarchy of packages, 265
legacy, 224– 25
raw types and, 224– 25
runtime exceptions and, 312, 326, 330

Java Archive (JAR) fi les, 615– 48. See also security
adding classes class path, 630– 31
applets packaged in, 626
as applications, 626– 27

psn-gallardo.indb 818psn-gallardo.indb 818 11/12/14 1:54 PM11/12/14 1:54 PM

Index 819

benefits of, 615– 16
creating, 616– 20
extracting contents of, 622– 23
manifest files, 627– 35, 654, 674, 686, 724
paths in, 621
running JAR packaged software, 625– 27
sealing, 634
signing, 639– 41, 654, 722, 725– 26
time stamping and, 654, 675, 725– 26
uncompressed, 619
updating, 623– 25
using, 616– 27
using JAR- related APIs, 642– 48
verifying, 635– 42
viewing contents of, 620– 22

Java Archive Tool. See JAR tool
Java Cache Viewer, 660– 61
Java Collections Framework. See collections
Java Database Connectivity (JDBC) API, 4
Java HotSpot virtual machine, 2
Java Interactive Data Language (IDL) API, 4
java launcher tool, 2, 4, 626
Java Naming and Directory Interface (JNDI)

API, 4
Java Network Launching Protocol. See JNLP fi les
Java platform, 2– 4, 595– 14

API specification. See Java Application
Programming Interface (API)

command- line arguments, 600– 601
configuration utilities, 595– 603
environment variables, 601– 3
language, 2– 4
properties, 596– 600, 604– 7
supported encodings on. See Unicode encoding
system utilities, 603– 9

Java Plug- In software, 670, 693, 700– 702, 734,
739, 749, 750

Java Programming Language Certifi cation,
795– 805

Java SE 8 Upgrade Exam, 801– 5
Programmer Level I Exam, 795– 801
Programmer Level II Exam, 801– 5

Java Remote Invocation (RMI), 4
Java Remote Method Invocation over Internet

Inter- ORB Protocol (Java RMI- IIOP), 4
Java SE Development Kit 8. See JDK 8 (Java SE

Development Kit 8)
Java SE Runtime Environment. See JRE (Java

SE Runtime Environment)
Java Virtual Machine (Java VM), 2– 3, 268– 70
Java Web Start applications, 650– 56

changing the launch button of, 737
common problems, 662– 63

deploying, 653– 56, 735– 38
deploying without codebase attribute, 737– 38
developing, 650– 53
displaying customized loading progress

indicator, 656– 60
Java Cache Viewer, 660– 61
retrieving resources, 653
running, 660– 61
security and, 661– 62
separating core functionality from final

deployment mechanism, 652– 53
setting up web servers for, 656
signed, 31, 654

java.awt packages, 262, 265, 657, 668, 693– 94,
714

JavaBeans, 5
javac compiler, 2, 4, 7

case sensitivity in, 12
javadoc tool, 24
JavaFX, xxiv, 4, 134, 793– 94

HelloWorld.java example, 146
Scene Builder, 793

java.io package, 274, 339, 386, 389, 421
java.lang.Character API, 288
JavaScript

applets and, 670, 673– 89
Deployment Toolkit scripts, 653, 673– 74
interpreter, 670, 689, 731

java.time, 757. See Date- Time package
java.time.chrono package, 757
java.time.format package, 757
java.time.temporal package, 757– 58, 774
java.time.zone package, 758
java.util.Arrays class, 56, 552
java.util.concurrent.atomic package,

553– 54
java.util.concurrent.locks package, 544
java.util.function, 141
java.util.jar package, 642– 43, 645
java.util.regex package, 551, 557– 58,

581– 88, 590, 592
javax.jnlp package, 650, 657, 716– 17, 719
javax.swing.JApplet class, 666, 671– 73, 677,

680, 712
JButton, 651, 672, 700
JDialog, 667
JDK 8 (Java SE Development Kit 8), xxiii– xxiv, 4, 6

adding to platform list, 9
aggregate operations. See aggregate operations
concurrency in, 552
concurrent random numbers, 554– 55
default manifest, 627
default methods. See default methods

psn-gallardo.indb 819psn-gallardo.indb 819 11/12/14 1:54 PM11/12/14 1:54 PM

820 Index

JDK 8 (Java SE Development Kit 8) (continued)
directory structure, 609– 13
generics and, 224
high- level concurrency objects and, 543
JAR tool in, 616
lambda expressions. See lambda expressions
local classes. See local classes
repeating annotations and, 165. See also

annotations; type annotations
target typing and, 236
ThreadLocalRandom, 543, 555
TransferQueue implementation, 498

JFrame class, 651
JNLP fi les, 739– 48

API, 650, 706, 711, 714– 17, 739
common errors, 662– 63
commonly used elements and attributes,

741– 47
deployment options with jnlp_href, 733
embedding in Applet tag, 734– 35
encoding, 740
rich Internet applications (RIAs) and, 714– 19
security and, 634
signed, 725
structure of, 740– 47

join method, 525
JPanel class, 651– 52, 671– 72
JProgressBar object, 657, 658, 694, 695
JRE (Java SE Runtime Environment), 604

checking client version of, 738– 39
ensuring the presence of, 751– 53

JSR 310 Date and Time API. See Date- Time
package

K
keys method, 599
keySet method, 453– 56
keywords, 90. See also by individual type

L
lambda expressions, xxiii, 136– 55

aggregate operations that accept, 145– 46
as anonymous methods, 147
as arguments, 190
classification function, 479
errors, 149
example use, 137
generic types and, 141– 42, 144– 45
GUI applications and, 146– 47
interference and, 484– 85
in pipelines and streams, 478
shadowing and, 148

specifying search criteria code in, 141
stateful, 486– 87
stream operations and, 486
syntax of, 147
using throughout an application, 142– 44, 155– 56

last method, 605, 646
lastIndexOf method, 296– 99, 438– 39
lastIndexOfSubList method, 446
laziness, 485– 86
length method, 290, 302
line feed, 50, 344
line terminators, 344, 364, 567, 578
link awareness, 374
LinkedBlockingDeque class, 499
LinkedBlockingQueue class, 497
LinkedHashMap implementation, 450, 451, 491,

495
LinkedHashSet implementation, 433– 34, 450,

491, 492, 493
LinkedList implementation, 498
links

hard, 359, 399
symbolic, 361, 364, 367, 374– 77, 379, 381,

399– 405, 408, 419, 422
Linux. See Solaris/Linux
List interface, 468– 46

algorithms, 445– 46
collection operations, 375, 386, 394, 553
implementations, 493– 94
iterators, 440– 43
method, 513– 14
positional acccess and search operations,

439– 40
range view operations, 443– 45

listIterator method, 438, 440– 42, 512
ListOfNumbers example, 313– 14, 320, 322,

323, 337
listRoots method, 421
lists, 138

cursor positions in, 441– 42
iterating backward, 441

literals, 43, 48– 51, 291, 557, 560– 61, 566
character and string, 50
class, 50
floating point, 49
integer, 48– 49
using underscore characters, 50– 51

LiveConnect Specifi cation, 683– 84, 686
local classes, 127– 31

specifying search criteria code in, 139– 40
when to use, 155

LocalDate class, 763

psn-gallardo.indb 820psn-gallardo.indb 820 11/12/14 1:54 PM11/12/14 1:54 PM

Index 821

LocalDateTime class, 765– 66
locales, 342, 347– 48
LocalTime class, 764– 65
lockInterruptibly method, 544
locks, 531– 32, 544

deadlocks, 491, 533– 35, 544
intrinsic, 531, 536
livelocks, 527, 533, 535
starvation, 527, 533, 535
synchronization and, 531– 32

logarithms, 178, 279, 281, 286
logical operators, 58– 68
Long class, 273, 286, 292– 93, 459
long data type, 47

default value of, 48
longValue method, 273
lookingAt method, 584, 586– 87
loops, 80– 84, 798

infinite, 79– 81, 86, 411
nested, 84
test harness, 559– 60, 570

ls command, 22, 23, 238, 254, 407

M
main method, 24– 26
manifest fi les, 616, 619, 627– 35

default, 627
digest entries, 637– 638
fetching attributes, 645
modifying, 628– 629
setting application entry point, 629– 630
setting package version information, 631– 633
signature block files, 638, 641
signature files, 637– 38

Map interface, 214, 449– 58, 469, 482, 486, 491,
496, 504, 507, 803

basic operations, 451– 52
bulk operations, 452
implementations of, 495– 96
viewing as a Collection, 452– 54

mapper element, 480
Matcher class, 557– 58, 583, 585, 587– 88
MatcherDemo example, 585– 86
MatchesLooking example, 586– 87
Math class, 266, 279, 281– 82, 286
MAX_VALUE constant, 286, 404
members, 45

controlling access to, 110– 11, 799
memory

allocating sufficient, 101
consistency errors, 528– 29
error- handling, 331– 32

garbage collection, 106– 7
leaks, 5
locations, 12
saving in large arrays, 46– 47

metadata, 378– 86
method references, 152– 55

to a constructor, 154– 55
to an instance method of a particular object,

154
to an instance method of an arbitrary object of

a particular type, 154
in pipelines and streams, 478
to a static method, 154

method signatures, 92
in interface declarations, 177– 78
in method declarations, 92
overloaded methods and, 92
type erasure and, 248– 49

methods, 34– 36. See also by individual type
abstract, 184– 86, 212– 16
access modifiers and, 90, 95, 213, 798
accessor, 290, 295– 96, 381– 82, 467
applet milestone, 667– 68
atomic, 496
bridge, 245– 49
chaining, 372
class, 114, 118, 122, 273, 286, 292, 294
default, 182– 92
defining, 92– 94
final, 212
generic, 226– 27
hiding, 199– 203
instance, 199, 200– 201
interface, 200– 201
naming, 93, 758
overloaded, 93– 94
overriding, 199– 203
package- private, 111
qualified names, 119
returning a class or interface, 108– 9
returning values from, 107– 8
static, 186– 87
synchronized, 529– 31
wildcards, 240– 43

Microsoft Windows
access control list (ACL), 380
CLASSPATH in, 612
common errors, 27– 28
environment variables on, 602
file name separators on, 267
HelloWorld, 15– 19
log files, 698

psn-gallardo.indb 821psn-gallardo.indb 821 11/12/14 1:55 PM11/12/14 1:55 PM

822 Index

Microsoft Windows (continued)
PATH in, 362– 70
path separators on, 296
root directories on, 359– 60
system file stores, 417– 18

MIME types, 380, 385, 417, 422, 656, 663
minus prefi x, 758, 771
MIN_VALUE constant, 272, 286, 463
modifi ers. See access modifi ers
modularity, 36
monitor locks. See locks, intrinsic
Month enum, 760, 762
MonthDay class, 764
Mozilla Firefox add- ons, 732, 736
MultiDimArrayDemo example, 54, 55
multimaps, 456
multiple inheritance, 198– 99
multisets, 510

N
NameSort example, 461
nanoTime method, 609
nCopies method, 502– 3
NegativeArraySizeException, 326
nested classes, 121– 57

controlling access and, 196
importing, 264– 65
inheritance and, 195
inner. See inner classes
nonstatic, 121– 22, 156
static, 122– 23, 156
when to use, 156

NetBeans IDE, 1, 5– 10, 14– 15, 31, 410, 663, 796
HelloWorld application, 6– 15

new keyword, 48, 101, 132, 222, 289
newCachedThreadPool method, 549
newFixedThreadPool method, 548
newline. See line terminators
newSingleThreadExecutor method, 549
next method, 431
nextIndex method, 441– 42
NIO.2, 339– 422
NonNull module, 171
NoSuchElementException, 446– 47, 474
NoSuchMethodError, 30– 31
Notepad demo, 656, 660, 736– 38
Notepad text editor, 16– 17
notifyAll method, 208, 536– 38
now method, 758, 783
null parameter, 756– 57
null value, 50, 342, 413
NullPointerException, 78, 171, 312, 330, 442,

459– 60, 756, 800

Number class, 271, 273, 286, 601
number systems, 48– 49

converting between, 273
decimal, 47, 49
hexidecimal, 49, 211, 273– 74, 286, 351, 591
octal, 273– 74

NumberFormatException, 526, 601
numbers, 271– 87

converting between strings and, 292– 95
formatting, 274– 78
random, 283

O
Object class, 175, 208– 16, 237, 243

as a superclass, 208– 12
object ordering, 458– 64
object references, 59, 87, 105– 7, 113– 14, 122,

209– 10, 248, 342, 358, 688, 796, 799
ObjectInput interface, 357
ObjectInputStream class, 357
object- oriented programming, 33– 41, 203
ObjectOutput interface, 357
ObjectOutputStream class, 357
objects, 34– 36, 99– 107, 118– 19

calling methods, 105– 6
casting, 197– 98
creating, 100– 104
declaring variables to refer to, 101
hash codes of, 208, 211, 460
immutable, 539– 43
initializing, 102– 4
lock, 544– 46
referencing fields, 104– 5

ObjectStreams example, 357
octal number system, 273– 74
of prefi x, 758
offer method, 446
offerFirst method, 448– 49
offerLast method, 448– 49
OffsetDateTime class, 767, 769– 70
operation element, 480
operators, 58– 68. See also by individual type

assignment, 59
precedence of, 59, 69, 797
prefix/postfix, 59, 62

OutputStream class, 340– 41, 343– 45, 718
OutputStreamWriter class, 344, 718
@Override annotation class, 168, 199

P
package members, 263

package importing, 264

psn-gallardo.indb 822psn-gallardo.indb 822 11/12/14 1:55 PM11/12/14 1:55 PM

Index 823

package referring to, 263– 64
package using, 263– 67

package- private, 111
package statements, 261– 62, 264, 269, 679
packages, 4, 33, 34, 40, 259– 70, 796

apparent hierarchies of, 265
creating, 261– 62
importing, 264– 65
name ambiguities, 265– 66
naming, 262– 63
qualified names, 262– 67
using package members, 263– 67

pages. See web pages
Panel class, 651
parallelism, 480– 81
parallelSort method, 57, 552
parameterized types, 224

assigning raw types, 224– 25
backward compatibility and, 224
bounded, 227– 28
casting, 254
generic, 252
heap pollution and, 250, 251
primitive, 252– 53
restrictions, 252– 56
type erasure and, 244– 45
type inference and, 233– 34
varargs methods and, 249– 50

parameters, 45
naming, 97
types, 96

parentheses. See ()
parse methods, 758, 772
parseXXX methods, 294, 601
PassPrimitiveByValue class, 98
Password example, 353– 54
passwords, 353, 603, 639– 40, 641
Path class, 362– 70
PATH variable, 27, 29, 610– 13
Pattern class, 557– 59, 575, 578– 79, 581. See

also regular expressions
PatternSyntaxException, 589– 91
peek method, 447, 449
percent sign. See %
Period class, 780
Perl, 557, 558, 578, 591
permissions

Permissions attribute, 31, 634, 724
sandbox, 654, 674

PI constant, 266
pipelines, 145, 472– 74. See also streams

collections vs., 473
components of, 473

downstream collectors, 479
ordering, 483– 84
parallel execution of, 481
terminal operations, 473, 475. See also

reduction operations
Planet class, 159– 60
pluggable type systems, xxiii, 170– 71. See also

type annotations
plus method, 758, 771
poll method, 410, 416, 446– 47
polymorphism, 203– 6, 245, 249, 799
pound sign. See #
pow method, 95, 281
precision query, 778
Predicate interface, 141– 42
Preferences API, 603
PrePostDemo example, 62, 68
primitive data types, 46– 51. See also by

individual type; numbers
print method, 349– 50
printf method, 97, 274– 76
println method, 349– 50
PriorityBlockingQueue class, 497
PriorityQueue implementation, 490, 497
problems. See errors
ProcessBuilder object, 520, 602
processElements method, 145– 46
processes, 520

lightweight. See threads
Producer example, 538
ProducerConsumerExample example, 539
programs. See applications
properties

managing, 597
saving, 599– 600
setting, 599– 600
system, 605– 7, 713– 14

PropertiesTest example, 606
propertyNames method, 599
protected modifi er, 111
public modifi er, 91, 111, 178, 185, 187
put method, 512
putAll method, 449, 452, 454
pwd command, 22, 30

Q
qualifi ed names

in applets, 659, 697
for fields, 97
for instance variables, 118
for methods, 118
for packages, 262– 63

quantifi ers, 573

psn-gallardo.indb 823psn-gallardo.indb 823 11/12/14 1:55 PM11/12/14 1:55 PM

824 Index

question mark. See ?
Queue implementations, 427, 446– 47, 490, 496– 97
Queue interface, 446– 48, 469, 491, 494, 497, 504
queues, 446– 48

bounded, 446
priority, 427

QuoteClientApplet applet, 704– 5
quoteReplacement method, 585
QuoteServer applet, 704– 5

R
radians, 282– 83
random access fi les, 339, 390, 393– 95
random method, 283
random numbers, 283, 286, 543, 554– 55
RandomAccessFile class, 337, 420
raw types, 224– 25, 234, 248, 249, 250
readDouble method, 355– 56
readInt method, 355– 56
readObject method, 357– 59
readPassword method, 353– 54
readUTF method, 355– 56
Receiver applet, 702– 3
reduction operations, 474– 80

concurrent, 481– 82
multilevel reduction in streams, 479
mutable, 484

RegexTestHarness example, 559, 579– 80
RegexTestHarness2 example, 589– 90
regionMatches method, 300– 301
RegionMatchesDemo example, 300
regular expressions, 557– 93

backreferences in, 574– 75
boundary matchers in, 576– 77
capturing groups in, 572– 76
character classes in, 557– 58, 562– 67
greedy quantifiers, 569, 573– 74
intersections, 558– 65
Matcher class, 583– 89
metacharacters in, 561– 62
negation, 563
Pattern class, 578– 83
PatternSyntaxException class, 589– 91
possessive quantifiers, 573
quantifiers in, 568– 74
ranges, 563– 64
reluctant quantifiers, 573
string literals, 560– 62
subtraction, 565– 66
test harness, 559– 60
Unicode support, 591– 92
zero- length matches in, 569– 72

Relatable interface, 178– 80
relational operators. See comparisons
remove method, 429, 431, 434, 469, 502
removeAll method, 430, 432– 37, 454– 56, 503
removeDups method, 434
removeEldestEntry method, 495
removeFirst method, 448, 494, 498
removeFirstOccurence method, 449
removeLast method, 449, 498
removeLastOccurence method, 449 [*]
renameTo method, 420
@Repeatable annotation type, 170, 172
replace method, 496
replaceAll method, 298, 445, 584, 587– 89
ReplaceDemo example, 587
ReplaceDemo2 example, 587– 88
REPLACE_EXISTING enum, 376– 78
replaceFirst method, 298, 585, 587– 89
reserved words. See keywords
retainAll method, 436– 37, 454, 455
@Retention annotation type, 169
return statements, 85, 107, 147, 151, 464
return types, 92– 94

constructors, 102
covariant, 109, 199

rich Internet applications (RIAs), xxiv, 711– 27
cookies and, 719– 22
customizing the loading experience in, 722
entry points, 635
local, 726
security in, 722– 26
setting secure properties, 711– 14
setting trusted arguments, 711– 14
signing, 730– 31
system properties, 713– 14
testing, 724
user acceptance of, 729– 31
using the JNLP API, 714– 19

Root example, 349– 50
Root2 example, 350
round method, 280
run method, 522, 523
runtime, 2, 26

checks at, 197
errors, 29– 31
examining annotations at, 163

RuntimeException, 309, 312, 326, 329– 30

S
Safelock example, 544– 46
@SafeVarargs annotation type, 169

psn-gallardo.indb 824psn-gallardo.indb 824 11/12/14 1:55 PM11/12/14 1:55 PM

Index 825

sandbox, 635, 661– 62, 722– 25, 729– 31, 748
applets, 705– 7, 713– 14
permissions, 654, 674, 677, 691, 703

Scanner class, 346– 48, 457
scanning, 345– 46
ScanSum example, 348
ScanXan example, 346– 47
ScheduledExecutorService interface, 546,

548, 549
ScheduledThreadPoolExecutor class, 549
security, xxiv

applets and, 596, 677– 78
coding guidelines, 724
digitally signed files, 31, 637
JAR files, 31, 615, 635– 42
Java Control Panel settings, 31, 730
Java versions and, 724, 730
Java Web Start applications and, 661– 62
keystores and, 31, 639
legacy file I/O code and, 418– 19
managers, 607– 8, 707
manifest attributes and, 634– 35
password entry and, 353
public and private keys, 636, 639
rich Internet applications (RIAs) and, 722– 24
sandbox, 706– 7
time stamping and, 654, 675, 725– 26
TOCTTOU, 375
violations, 608
web browsers and, 697

SecurityException, 172, 607, 608
SecurityManager class, 607– 8
semicolon. See ;
Sender applet, 702– 3
sequences. See collections, ordered
Serializable interface, 214, 232, 357, 490
serialization, 152, 214
servers, 664, 678. See web servers
ServiceLoader class, 603
Set implementations, 492– 93
Set interface, 433– 37, 469, 504

array operations of, 437
basic operations of, 434– 35
bulk operations of, 436– 37

set method, 553, 757– 58
setDefaultHostnameVerifier method, 662
setDefaultSSLSocketFactory method, 662
setLastModified method, 420– 21
setLayout method, 379
setLength method, 302, 303
setProperties method, 605– 7
setProperty method, 599– 600

shadowing, 123– 24
fields, 123– 24
lambda expressions and, 148
local classes and, 129

Short class, 74, 273, 285, 293, 459
short data type, 46

default value of, 46
switch statement and, 74

shortValue method, 273, 286
ShowDocument applet, 682
showDocument method, 682– 83, 706
showStatus method, 681
Shuffle example, 440, 444
signature block fi les, 638
signature fi les, 637– 38
Signer Certifi cate Authority (CA) keystore, 31
Simple applet, 668
SimpleThreads example, 522, 525– 26
single quote. See '
singleton method, 432, 455, 489, 503
size method, 511– 12
slash. See /
sleep method, 522– 23
SleepMessages example, 523– 24
Smalltalk’s collection hierarchy, 425
Socket class, 40
sockets, 40, 520
software. See applications
Solaris/Linux

HelloWorld, 20– 23
paths in, 360– 67
updating PATH variable, 611– 12

sort method, 56, 189– 90, 448, 506
SortedMap interface, 428, 467– 69, 490, 495, 500,

502, 516
Sorted comparison to SortedSet, 468
Sorted map operations, 468
Sorted standard conversion constructor in, 468

SortedSet interface, 426, 428, 464– 67, 468– 69,
490, 492, 500

Sorted comparison to SortedMap, 469
Sorted endpoint operations in, 467
Sorted range- view operations, 465– 67
Sorted set operations, 465
Sorted standard conversion constructors, 434

split method, 550, 581, 583
SplitDemo example, 581
SplitDemo2 example, 581– 82
sqrt method, 97, 281, 349– 50
square brackets. See []
square root, 266, 281, 349– 50
SSLSocketFactory class, 662

psn-gallardo.indb 825psn-gallardo.indb 825 11/12/14 1:55 PM11/12/14 1:55 PM

826 Index

Stack interface, 448
stack trace, 248, 312, 327– 28, 335
StackOfInts class, 263
standard error, 352, 698
standard input, 352– 53
start method, 586, 667, 691, 699, 709
startsWith method, 301, 369
statements, 70. See also by individual type

synchronized, 529, 531– 532
static import statement, 266– 67
static initialization blocks, 117
static keyword, 130– 31, 186– 87
static modifi er, 44, 57, 112, 114– 15
stop method, 667
Stream.collect method, 476– 80
Stream.reduce method, 475– 76
streams, 145, 473

parallel, 481– 84
pipelines and, 472– 74

streams, I/O, 339– 59. See also by individual type
buffered, 345– 46
byte, 340– 42
character, 342– 45
closing, 341– 42
creating a file using, 389
data, 354– 57
flushing, 346
object, 357– 59
reading a file using, 389
unbuffered, 345

string builders, 302– 6
String class, 48, 57, 74, 212, 271, 288, 289, 290,

291, 292, 295– 98, 300, 302, 306– 7, 588
StringBuilder class, 271, 302– 7, 800
StringDemo example, 290, 294, 305
StringIndexOutOfBoundsException, 299
stringPropertyNames method, 599
strings, 288– 308

capacity of, 302
comparing portions of, 300, 301
concatenating, 291– 92
converting between numbers and, 292– 95
creating, 289
creating format strings, 292
length, 302
manipulating characters in, 295– 300
replacing characters in, 296
searching within, 296

StringSwitchDemo example, 77– 78
subclasses, 38– 39, 88– 90, 111, 118, 194, 787

abstract methods and, 212– 16
access levels and, 111

capabilities of, 196
constructors, 207– 8
creating, 38– 39
final methods and, 117– 18
inheritance and, 38– 39
polymorphism in, 203– 4
returning, 108

subList method, 438, 443– 46, 466
submit method, 547
subSequence method, 55, 297, 363, 575, 583– 86
subSet method, 264, 436, 464, 466, 670, 759
substring method, 295– 96, 299
subtyping, 203– 31, 239, 249
super keyword, 202, 207, 238
superclasses, 33, 168, 175, 198– 99, 209, 216, 334

accessing, 206– 7
choosing, 329
constructors for, 95, 207
declaring, 89– 90
inheritance and, 38– 39, 193– 94, 216
Object class, 208– 12
private members in, 196– 97

supplier argument, 477
@SuppressWarnings annotation type, 165, 167–

68, 226, 252, 416
swap method, 439– 40, 445, 508, 788
Swing, 4, 210, 794. See graphical user interfaces

(GUIs)
switch block, 74– 75
switch statements, 74– 79
SwitchDemo example, 74
SwitchDemo2 example, 76– 77
SwitchDemoFallThrough example, 75– 76
symbolic links, 361– 62, 364, 374– 77, 379, 381,

399– 405, 408, 419, 422
synchronization, 527– 33

atomic access, 533
intrinsic locks and, 531
reentrant, 532
synchronized class example, 540– 41

synchronized keyword, 529– 30
synchronizedCollection method, 500– 501
SynchronizedCounter example, 529– 30, 554
synchronizedList method, 486– 87, 494
synchronizedMap method, 500– 501
SynchronizedRGB example, 540– 42
synchronizedSet method, 500
synchronizedSortedMap method, 500
synchronizedSortedSet method, 500
SynchronousQueue class, 497
synthetic constructs, 124– 25
System class, 26, 55– 56, 597, 603– 5

psn-gallardo.indb 826psn-gallardo.indb 826 11/12/14 1:55 PM11/12/14 1:55 PM

Index 827

System.console, 353, 559, 590
System.err, 349, 352– 53
System.in, 352– 53
System.out, 274, 348, 352

T
tab, 289
tailSet method, 464, 467
@Target annotation type, 170
target typing, 150– 51, 235– 36
Temporal interface, 774– 75
TemporalAccessor interface, 774– 75
TemporalAdjuster interface, 776– 80

custom, 779– 80
predefined, 778– 79

TemporalQuery method, 778– 80
TemporalUnit interface, 774
ternary operators, 59, 64, 67, 797
test harness, 559– 60
TestFormat example, 276– 77
TextField class, 135
this keyword, 87, 98, 109– 10, 799
Thread class, 522
thread pools, 411, 546– 49
ThreadLocalRandom, 543, 554– 55
ThreadPoolExecutor class, 549
threads, 520– 21

in applets, 670
contention, 481
defining, 521– 22
guarded blocks and, 535– 39
interference, 485– 86, 527
interrupts, 523– 25
joins, 525
locks and, 534– 35
multithreaded applications, 272
pausing, 522– 23
starting, 523– 24
synchronization of, 527– 33
thread objects, 521– 27
thread pools, 548– 49
thread safe, 306

throw statement, 324– 25, 335
Throwable class, 255, 315, 325– 26, 335
throws keyword, 324
TicTacToe example, 618– 26
time. See Date- Time package
Time Zone Database (TZDB), 756
to prefi x, 758
toArray method, 429– 33, 465, 468, 497, 512,

514– 15
TOCTTOU, 375

toDegrees method, 282– 83
tokens, 346– 47
toLowerCase method, 77– 78, 289, 297, 306
toRadians method, 282– 83
toString method, 211– 12
ToStringDemo example, 294– 95
toUpperCase method, 289, 297, 306
TransferQueue implementation, 498
TreeMap implementation, 450, 451, 468, 490– 91,

495, 553
TreeSet implementation, 433– 35, 450, 463, 465,

490– 93
TrigonometricDemo example, 282
trigonometry, 272, 282– 83, 286
trim method, 297, 470
troubleshooting. See errors
Trusted- Library attribute, 635
Trusted- Only attribute, 635
try blocks, 314– 16, 318– 22, 336, 370, 685, 800
tryLock method, 544– 45
try- with- resources statement, 313, 317– 20,

370, 397
type annotations, xxiii, 165. See also annotations

pluggable type systems and, 170– 71
type erasure, 244– 52, 256

bridge methods and, 247– 49
effects of, 247– 49

type inference, 219, 223, 227, 232– 34, 241, 801
type parameters, 98, 141, 221– 30, 233– 35, 237,

245– 46, 249, 253– 57
type variables, 221– 22, 228
types. See also by individual type

multiple inheritance of, 198– 99
nonreifiable, 227– 27
parameterized. See parameterized types
raw, 224– 26
supertypes with common ancestors, 201
type- checking, 170– 71

TZDB. See Time Zone Database (TZDB)

U
unary operators, 59, 61– 62, 66, 797
UnaryDemo example, 61
unboxing, 253, 271– 72, 283– 86, 288
underscore. See _
Unicode encoding

character properties, 591– 92
regular expressions and, 591– 92
UTF- 8, 356, 617, 628, 740
UTF- 16, 50, 740

UNIX. See Solaris/Linux
unset CLASSPATH, 30, 269

psn-gallardo.indb 827psn-gallardo.indb 827 11/12/14 1:55 PM11/12/14 1:55 PM

828 Index

UnsupportedOperationException, 382, 385,
400, 426, 501– 2

URLClassLoader implementation, 642– 44, 646
useDelimiter method, 347
UTF. See Unicode encoding

V
valueOf method, 286, 293, 294
ValueOfDemo example, 287, 293– 94
values method, 159
varargs, 96

potential vulnerabilities of, 250– 52
preventing warnings from, 252

variables, 44– 57. See also by individual type;
fi elds

atomic, 553– 54
class. See fields, static
constant, 130– 31
environment, 601– 2, 609– 13
instance. See instance variables
local, 42, 44, 133– 34, 148– 49
naming conventions, 45– 46, 90, 92
referring to objects, 101

Vector collection, 490, 494, 514
compared to ArrayList, 494

vertical bar. See |
vi text editor, 20
volatile keyword, 533, 553

W
wait method, 208
warning messages, 225

deprecation, 168
security, 686
suppressing, 686
unchecked, 168

WarningDemo example, 225
watch keys, 413– 14
WatchService API, 410– 16
WeakHashMap implementation, 495– 96
web browsers

displaying documents in, 682– 83
frames in, 682– 83
security in, 677– 78

web pages
HTML frames, 682– 83
invoking applets, 674– 76, 704– 5
Java applications, 654– 56. See Java Web Start

applications

web servers
applets and, 31, 453– 54
JNLP errors in, 663
placing applications on, 649, 656
setting up, 656, 731– 32
testing, 31, 749– 50

while statement, 79– 80, 85– 86
WhileDemo example, 79
white space

allowing, 577– 78
character construct for, 567
cleaning up, 749
disallowed, 45
leading, 576– 77
tokens and, 308, 347– 48
trailing, 296– 97

wildcards, 236– 44
capture and, 240– 43
guidelines for using, 243– 44
helper methods and, 240– 43
lower- bounded, 238– 39
subtyping and, 239– 40
unbounded, 237– 38
upper- bounded, 236– 37

Windows. See Microsoft Windows
with method, 758
wrappers, 344, 480, 491, 500– 502

checked interface, 502
implementations of, 489– 90, 499– 502
synchronization, 480– 81, 489, 491, 500– 501
unmodifiable, 502

write method, 349, 386– 88
writeDouble method, 355– 56
writeInt method, 355– 56
writeObject method, 358– 59
writer method, 353
writeUTF method, 355– 56

Y
Year class, 764
YearMonth class, 763– 64

Z
ZIP archives, 616
ZonedDateTime object, 767– 69
ZoneId class, 766– 67
ZoneOffset class, 766– 67

psn-gallardo.indb 828psn-gallardo.indb 828 11/12/14 1:55 PM11/12/14 1:55 PM

This page intentionally left blank

	Contents
	Preface
	About the Authors
	Chapter 3 Language Basics
	Variables
	Naming
	Primitive Data Types
	Arrays
	Summary of Variables
	Questions and Exercises: Variables

	Operators
	Assignment, Arithmetic, and Unary Operators
	Equality, Relational, and Conditional Operators
	Bitwise and Bit Shift Operators
	Summary of Operators
	Questions and Exercises: Operators

	Expressions, Statements, and Blocks
	Expressions
	Statements
	Blocks
	Questions and Exercises: Expressions, Statements, and Blocks

	Control Flow Statements
	The if-then and if-then-else Statements
	The switch Statement
	The while and do-while Statements
	The for Statement
	Branching Statements
	Summary of Control Flow Statements
	Questions and Exercises: Control Flow Statements

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

