
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134030005
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134030005
https://plusone.google.com/share?url=http://www.informit.com/title/9780134030005
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134030005
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134030005/Free-Sample-Chapter

Embedded
Programming with

Android™

About the Android
Deep Dive Series

Zigurd Mednieks, Series Editor

The Android Deep Dive Series is for intermediate and expert developers who use
Android Studio and Java, but do not have comprehensive knowledge of Android system-
level programming or deep knowledge of Android APIs. Readers of this series want to
bolster their knowledge of fundamentally important topics.

Each book in the series stands alone and provides expertise, idioms, frameworks, and
engineering approaches. They provide in-depth information, correct patterns and idioms,
and ways of avoiding bugs and other problems. The books also take advantage of new
Android releases, and avoid deprecated parts of the APIs.

About the Series Editor
Zigurd Mednieks is a consultant to leading OEMs, enterprises, and entrepreneurial
ventures creating Android-based systems and software. Previously he was chief archi-
tect at D2 Technologies, a voice-over-IP (VoIP) technology provider, and a founder of
OpenMobile, an Android-compatibility technology company. At D2 he led engineering
and product definition work for products that blended communication and social media
in purpose-built embedded systems and on the Android platform. He is lead author of
Programming Android and Enterprise Android.

Embedded
Programming with

Android™

Bringing Up an Android
System from Scratch

Roger Ye

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Ye, Roger, author.
 Embedded programming with Android : bringing up an Android system from scratch /
Roger Ye.
 pages  cm
 Includes index.
 ISBN 978-0-13-403000-5 (pbk. : alk. paper)—ISBN 0-13-403000-1 (pbk. : alk. paper)
 1. Android (Electronic resource) 2. Embedded computer systems—Programming.
3. Application software—Development. 4. Emulators (Computer programs)
5. Smartphones—Programming. I. Title.
 QA76.76.A65Y438 2016
 004.167—dc23
 2015022900

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you
may fax your request to (201) 236-3290.

ARM is a trademark of ARM Ltd. Android™, Google Play™, Google and the Google logo
are registered trademarks of Google Inc. CodeBench is a trademark of Mentor Graphics.
Ubuntu is a trademark of Canonical. CyanogenMod® is a USPTO-registered trademark of
CyanogenMod, LLC. Eclipse is a trademark of Eclipse Foundation.

ISBN-13: 978-0-13-403000-5
ISBN-10: 0-13-403000-1

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, August 2015

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Jill Hobbs

Indexer
Infodex Indexing
Services

Proofreader
Linda Begley

Technical Reviewers
Zigurd Mednieks
Blake Meike

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
codeMantra US, LLC

v

To the programmers who have great interest in embedded systems
and the latest computing devices

v

This page intentionally left blank

Contents in Brief
	 	 Preface xv

	 	 Acknowledgments xxi

	 	 About the Author xxiii

I Bare Metal Programming 1

	 1	 Introduction to Embedded System Programming 3

	 2	 Inside Android Emulator 13

	 3	 Setting Up the Development Environment 25

	 4	 Linker Script and Memory Map 39

	 5	 Using the C Language 63

	 6	 Using the C Library 93

	 7	 Exception Handling and Timer 125

	 8	 NAND Flash Support in Goldfish 183

II U-Boot 217

	 9	 U-Boot Porting 219

	 10	 Using U-Boot to Boot the Goldfish Kernel 249

III Android System Integration 281

	 11	 Building Your Own AOSP and CyanogenMod 283

	 12	 Customizing Android and Creating Your Own
Android ROM 309

IV Appendixes 339

	 A	 Building the Source Code for This Book 341

	 B	 Using Repo in This Book 355

	 	 Index 359

This page intentionally left blank

Contents
	 	 Preface xv

	 	 Acknowledgments xxi

	 	 About the Author xxiii

I Bare Metal Programming 1

	 1	 Introduction to Embedded System Programming 3
What Is an Embedded System?  3

Bare Metal Programming  3

Learning Embedded System Programming  5

Software Layers in an Embedded System  7

Tools and Hardware Platform  11

The Difference between Virtual Hardware and Real
Hardware  11

Summary  12

	 2	 Inside Android Emulator 13

Overview of the Virtual Hardware  13

Configuring Android Virtual Devices  14

Hardware Interfaces  17

Serial  18

Timer  18

Summary  24

	 3	 Setting Up the Development Environment 25

The Host and Client Environments  25

Development Environment Setup  26

Downloading and Installing Android SDK  27

Downloading and Installing the GNU Toolchain for ARM  27

Integrated Development Environment  29

Your First ARM Program  29

Building the Binary  30

Running in the Android Emulator  32

makefile for the Example Projects  36

Summary  38

x	 Contents

	 4	 Linker Script and Memory Map 39

Memory Map  39

Linker  41

Symbol Resolution  42

Relocation  46

Section Merging  49

Section Placement  50

Linker Script  51

Linker Script Example  53

Initializing Data in RAM  56

Specifying Load Address  58

Copying .data to RAM  58

Summary  61

	 5	 Using the C Language 63

C Startup in a Bare Metal Environment  63

Stack  65

Global Variables  68

Read-Only Data  68

Startup Code  68

Calling Convention  78

Calling C Functions from Assembly Language Code  79

Calling Assembly Language Functions from C Code  81

Goldfish Serial Port Support  81

Check Data Buffer  87

Data Input and Output  88

Unit Test of Serial Functions  90

Summary  92

	 6	 Using the C Library 93

C Library Variants  93

C Library Variants in an Operating System  93

C Library Variants in Bare Metal Environment  94

Newlib C Library  96

Common Startup Code Sequence  97

CS3 Linker Scripts  97

Customized CS3 Startup Code for the Goldfish
Platform  103

	 Contents	 xi

System Call Implementations  104

Running and Debugging the Library  112

Using Newlib with QEMU ARM Semihosting  116

Semihosting Support in Newlib C  117

Semihosting Example Code  118

Summary   122

	 7	 Exception Handling and Timer 125

Goldfish Interrupt Controller  125

The Simplest Interrupt Handler  128

Interrupt Support Functions  129

Implementation of the Simplest Interrupt Handler  132

Nested Interrupt Handler   140

Implementation of the Nested Interrupt Handler  142

Testing Nested Interrupts and Discovering the
Processor Mode Switch  155

Testing System Calls/Software Interrupts  163

Timer  164

Goldfish-Specific Timer Functions  172

U-Boot API  172

Real-Time Clock  172

Unit Test of Timer and RTC  174

Summary  181

	 8	 NAND Flash Support in Goldfish 183

Android File System  183

NAND Flash Properties  185

NAND Flash Programming Interface
in the Goldfish Platform  187

Memory Technology Device Support  188

MTD API  189

U-Boot API to Support NAND Flash  205

Goldfish NAND Flash Driver Functions  205

NAND Flash Programming Interface Test Program  206

NAND Flash Information from the Linux Kernel  206

NAND Flash Test Program  210

Summary  216

xii	 Contents

II U-Boot 217

	 9	 U-Boot Porting 219

Introducing U-Boot  219

Downloading and Compiling U-Boot  220

Debugging U-Boot with GDB  224

Porting U-Boot to the Goldfish Platform  227

Creating a New Board  228

Processor-Specific Changes  229

Board-Specific Changes  229

Device Driver Changes  239

Summary  246

	 10	 Using U-Boot to Boot the Goldfish Kernel 249

Building the Goldfish Kernel  249

Prebuilt Toolchain and Kernel Source Code  250

Running and Debugging the Kernel in the Emulator  252

Booting Android from NOR Flash  254

Creating the RAMDISK Image  256

Creating the Flash Image  258

Booting Up the Flash Image  258

Source-Level Debugging of the Flash Image  266

Booting Android from NAND Flash  270

Preparing system.img  270

Booting from NAND Flash  271

Summary  280

III Android System Integration 281

	 11	 Building Your Own AOSP and CyanogenMod 283

Introducing AOSP and CyanogenMod  283

Setting Up an Android Virtual Device  284

AOSP Android Emulator Build  288

AOSP Build Environment  288

Downloading the AOSP Source  289

Building AOSP Android Emulator Images  290

Testing AOSP Images  292

CyanogenMod Android Emulator Build  297

	 Contents	 xiii

Downloading the CyanogenMod Source  297

Building CyanogenMod Android Emulator Images  298

Testing CyanogenMod Images  302

Summary  307

	 12	 Customizing Android and Creating Your Own
Android ROM 309

Supporting New Hardware in AOSP  309

Building the Kernel with AOSP  317

Building U-Boot with AOSP  322

Booting Android with U-Boot from NAND Flash  323

Supporting New Hardware in CyanogenMod  332

Building the Kernel with CyanogenMod  334

Building U-Boot and Booting Up CyanogenMod  337

Summary  338

IV Appendixes 339

	 A	 Building the Source Code for This Book 341

Setting Up the Build Environment  341

Setting Up a Virtual Machine  344

Organization of Source Code  344

Source Code for Part I  345

Building and Testing from the Command Line  345

Building and Testing in Eclipse  346

Source Code for Part II  350

Source Code for Part III  352

Building AOSP  352

Building CyanogenMod  353

	 B	 Using Repo in This Book 355

Resources for Repo  355

Syncing a New Source Tree In Minutes  355

Downloading Git Repositories Using Local Manifest  356

	 	 Index 359

This page intentionally left blank

Preface

Computing is becoming more and more pervasive. Computing devices are evolving from
traditional desktop computers to tablets and mobile devices. With the newer platforms,
embedded computing is playing a more important role than the traditional mainframe-
and desktop-based computing. Embedded system programming looks very different in
various usage scenarios. In some cases, it consists of application programming using the
assembly and C languages on top of the hardware directly. In other cases, it takes place
on top of a real-time operating system (RTOS). In the most complicated case, it can be a
desktop-based system using a modern operating system such as Linux or Windows.

Due to the many different usage scenarios and hardware architectures that are possible,
it is very difficult to teach embedded programming in a standard way in a school or uni-
versity. There are simply too many hardware platforms based on a multitude of very dif-
ferent architectures. The processors or microprocessors can be as simple as 8-bit models or
as complicated as 32-bit or even 64-bit devices. In most cases, students learn about em-
bedded programming on a dedicated hardware reference board and use the compiler and
debugger from a particular company. Obviously, this kind of development environment is
unique and difficult to duplicate. To overcome these challenges, this book uses virtualiza-
tion technology and open source tools to provide a development environment that any
programmer can easily obtain from the Internet.

Who Should Read This Book
If you want to learn embedded system programming, especially embedded system pro-
gramming on Android, this is the book for you. For starters, you may want to get some
hands-on experience while you read a book. This book includes plenty of examples for
you to try out. The good thing is that you don’t need to worry about having a hardware
platform or development tools. All examples in this text are built using open source tools
that you can download from the Internet, and all of them can be tested on the Android
emulator. The source code is hosted in GitHub. Appendix A describes the build environ-
ment setup and explains how to work with the source code in GitHub.

Note
Git is a version control tool used by many open source projects. If you are new to it, you
can search for “git” or “GitHub” on the Internet to find tutorials on its use. A free book on
GitHub, Pro Git by Scott Chacon, can also be downloaded from the following address:

http://git-scm.com/book/en/v2

GitHub is a free git repository on the Internet that can be used to host open source
projects. You can find the git repositories in this book at the following address:

https://github.com/shugaoye/

http://git-scm.com/book/en/v2
https://github.com/shugaoye

xvi	 Preface

If you have just started your career as an embedded system software engineer, your
first project may be porting U-Boot to a new hardware platform. This book gives you the
detailed steps on how to port U-Boot to the Android emulator.

If you are an experienced software developer, you may know that it is quite difficult to
debug a complex device driver in your project. In this book, we explore a way to separate
the debugging of the hardware interface from the device driver development. We explain
how to debug serial ports, interrupt controllers, timers, the real-time clock, and NAND
flash in a bare metal environment. We then explain how to integrate these examples
with U-Boot drivers. The same method can also be used for Linux or Windows driver
development.

To take full advantage of this book, you should be familiar with the C language, basic
operating system concepts, and ARM assembly language. Ideally, readers will be graduates
in computer science or experienced software developers who want to explore low-level
programming knowledge. For professionals who work on Android system development,
this is also a good reference book.

How This Book Is Organized
In this book, we discuss the full spectrum of embedded system programming—from the
fundamental bare metal programming to the bootloader to the boot-up of an Android
system. The focus is on instilling general programming knowledge as well as developing
compiler and debugging skills. The objective is to provide basic knowledge about embed-
ded system programming as a good foundation, thereby providing a path to the more
advanced areas of embedded system programming.

The book is organized in a very process-oriented way. You can decide how to read this
book based on your individual circumstance—that is, in which order to read chapters and
explore subtopics. An explanation of how each part of the book relates to the others will
help you make this decision.

The book consists of three parts. Part I focuses on so-called bare metal programming,
which includes the fundamentals of low-level programming and Android system program-
ming. Chapters 1 through 4 provide essential knowledge related to bare metal program-
ming, including how to run programs on the hardware directly using assembly language
code. In Chapter 5, the focus moves to the C programming language. The rest of Part I
explores the minimum set of hardware interfaces necessary to boot a Linux kernel using
U-Boot. In Chapters 5 to 8, we focus on the hardware interface programming of serial
ports, interrupt controllers, the real-time clock, and NAND flash controllers in the bare
metal programming environment.

Part II begins with Chapter 9, which covers how to port U-Boot to the goldfish plat-
form. Using U-Boot, we can boot the Linux kernel and Android system, as explained in
Chapter 10. The work completed in Chapters 5 through 8 can contribute to the U-Boot
porting by isolating the hardware complexity from the driver framework in U-Boot. The
same technique can be used in the Linux driver development as well. In Part II, we also
use the file system images from the Android SDK to boot the Android system. To support

	 How This Book Is Organized	 xvii

two different boot processes (NOR and NAND flash), we must customize the file system
from the Android SDK. Because this work takes place at the binary level, we are restricted
to performing customization at the file level; that is, we cannot change the content of any
files. Strategies to customize the file system are covered in Part III.

In Part III, we move from the bootloader to the kernel to the file system. We use a
virtual device to demonstrate how to build a customized ROM for an Android device.
We explore ways to support a new device and to integrate the bootloader and Linux ker-
nel in the Android source code tree. In Chapter 11, we delve into the environment setup
process and the standard build process for the Android emulator. In Chapter 12, we create
a customized ROM for the virtual device including the integration of U-Boot and the
Linux kernel. At the end of this chapter, readers will have a complete picture just like the
Android system developers do at the mobile device manufacturing level.

A detailed introduction to each of the book’s chapters follows. Part I, “Bare Metal
Programming” consists of Chapters 1 to 8 focusing on so-called bare metal programming:

■■ Chapter 1, “Introduction to Embedded System Programming,” gives a general intro-
duction to embedded system programming. It also explains the scope of this book.

■■ Chapter 2, “Inside Android Emulator,” introduces the Android emulator and gives
a brief introduction to the hardware interfaces used throughout the book.

■■ Chapter 3, “Setting Up the Development Environment,” details the development
environment and tools used in our project. It also provides the first example, which
gives us a chance to test our environment.

■■ Chapter 4, “Linker Script and Memory Map,” covers the basics of developing an
assembly program. We use two examples to analyze how a program is assembled and
linked. After we have a binary image, we analyze how it is loaded into the Android
emulator and then started.

■■ Chapter 5, “Using the C Language,” introduces the C startup code and explains
how we move from assembly language to a C language environment. We also begin
to explore the goldfish hardware interfaces of the goldfish platform. Likewise, we
explore the serial port of the goldfish platform.

■■ Chapter 6, “Using the C Library,” presents details on how to integrate a C runtime
library into a bare metal programming environment. We introduce different flavors
of C runtime libraries and use Newlib as an example to illustrate how to integrate
a C runtime library.

■■ Chapter 7, “Exception Handling and Timer,” explores the interrupt controllers,
timer, and real-time clock (RTC) of the goldfish platform. We work through various
examples that demonstrate ways to handle these hardware interfaces. All example
code developed in the chapter can subsequently be used for U-Boot porting in
Chapter 9.

■■ Chapter 8, “NAND Flash Support in Goldfish,” explores the NAND flash inter-
face of the goldfish platform. This is also an important part of U-Boot porting. In
Chapter 10, we explore how to boot the Android system from NAND flash.

xviii	 Preface

Part 2, “U-Boot” consists of Chapters 9 and 10, which introduce the processes of U-Boot
porting and debugging. After we have a working U-Boot image, we can use it to boot our
own goldfish kernel and the Android image.

■■ Chapter 9, “U-Boot Porting,” gives the details on U-Boot porting.
■■ Chapter 10, “Using U-Boot to Boot the Goldfish Kernel,” discusses how to build
a goldfish Linux kernel on our own. This kernel image is then used to demonstrate
the various scenarios to boot the goldfish Linux kernel using U-Boot. Both the
NOR flash and NAND flash boot-up processes are discussed.

Part 3, “Android System Integration” considers how to integrate U-Boot and the Linux
kernel into the Android Open Source Project (AOSP) and CyanogenMod source trees.

■■ Chapter 11, “Building Your Own AOSP and CyanogenMod,” gives the details on
Android emulator builds in AOSP and CyanogenMod.

■■ Chapter 12, “Customizing Android and Creating Your Own Android ROM,”
teaches you how to create your own Android ROM on a virtual Android device.
This Android ROM can be brought up by U-Boot, which we created in Chapter 9.

Example Code
Throughout this book, many examples are available to test the content in each chapter.
It is recommended that you input and run the example code while you read this book.
Doing so will give you good hands-on experiences and provide you with valuable insight
so that you will better understand the topics covered in each chapter.

For Chapters 3 through 8, the directory structure organizes the code by chapter. Some
folders are common to all of the examples, such as those containing include and driver
files. All other folders are chapter specific, such as c03, c04, and c05; these folders contain
the example code in that chapter.

The common makefile is makedefs.arm, which is found in the top-level directory.
Individual makefiles are also provided for each example. Following is a template of the
makefile for example code. The PROJECTNAME is defined as the filename of an example
code. This makefile template is used for the individual projects in Chapters 3 through 8.

#

The base directory relative to this folder

#

ROOT=../..

PROJECTNAME=

#

Include the common make definitions.

#

include ${ROOT}/makedefs.arm

	 Example Code	 xix

#

The default rule, which causes the ${PROJECTNAME} example to be built.

#

all: ${COMPILER}

all: ${COMPILER}/${PROJECTNAME}.axf

#

The rule to debug the target using Android emulator.

#

debug:

 @ddd --debugger arm-none-eabi-gdb ${COMPILER}/${PROJECTNAME}.axf &

 @emulator -verbose -show-kernel -netfast -avd hd2 -shell -qemu -monitor
telnet::6666,server -s -S -kernel ${COMPILER}/${PROJECTNAME}.axf

#

The rule to clean out all the build products.

#

clean:

 @rm -rf ${COMPILER} ${wildcard *~}

#

The rule to create the target directory.

#

${COMPILER}:

 @mkdir -p ${COMPILER}

#

Rules for building the ${PROJECTNAME} example.

#

${COMPILER}/${PROJECTNAME}.axf: ${COMPILER}/${PROJECTNAME}.o

${COMPILER}/${PROJECTNAME}.axf: ${PROJECTNAME}.ld

SCATTERgcc_${PROJECTNAME}=${PROJECTNAME}.ld

ENTRY_${PROJECTNAME}=ResetISR

#

Include the automatically generated dependency files.

#

ifneq (${MAKECMDGOALS},clean)

-include ${wildcard ${COMPILER}/*.d} __dummy__

endif

xx	 Preface

The rest of source code in this book can be found on GitHub at https://github.com/
shugaoye/. Please refer to Appendix A for the details.

Conventions Used in This Book
The following typographical conventions are used in this book:

■■ Italic indicates URLs.
■■ <!-- Bold in angle brackets --> is used to signify comments in the code or
console output.

■■ Constant-width type is used for program listings, as well as within paragraphs to
refer to program elements such as variable and function names, databases, data types,
environment variables, statements, and keywords.

■■ Constant-width bold type shows commands or other text that should be typed
in by the user.

■■ Constant-width italic type shows text that should be replaced with the user-
supplied values or with the values determined by the context.

Note
A Note signifies a tip, suggestion, or general note.

https://github.com/shugaoye/
https://github.com/shugaoye/

Acknowledgments

I am grateful to Laura Lewin and Bernard Goodwin, both executive editors at
Pearson Technology Group, who gave me the opportunity to publish this book with
Addison-Wesley. I would like to thank the team from Addison-Wesley. Michael Thurston
was the developmental editor; he reviewed all the chapters and gave me valuable sugges-
tions on the content presentation. Olivia Basegio and Michelle Housley helped me to
coordinate with the team at Addison-Wesley. Project editor Elizabeth Ryan ensured that
this project adhered to schedule. I would also like to thank the copy editor,  Jill Hobbs,
who did a great job improving the readability of this book.

This book could not have been published without technical review. I would like
to thank all of the reviewers for identifying errors and for providing valuable feedback
about the content. Thanks are especially due to the Android experts, Zigurd Mednieks
and G. Blake Meike. They are co-authors of Android-related books, including Enterprise
Android and Programming Android.

I also want to thank all of my friends and colleagues at Motorola and Emerson. We had
a wonderful time working on many great products that contributed to the technology
boom that has occurred in the past 10 years. Together, we witnessed the introduction of
the high-tech products that have changed our lives today.

Last but not least, I would like to thank my dearest wife and my lovely daughter, who
gave me lots of support and encouragement along the way while I worked on this book.

This page intentionally left blank

About the Author

Roger Ye is an embedded system programmer who has great interest in embedded
systems and the latest technologies related to them. He has worked for Motorola, Emerson,
and Intel as an engineering manager. At Motorola and Emerson, he was involved in
embedded system projects for mobile devices and telecommunications infrastructures. He
is now an engineering manager at Intel Security, leading a team that develops Android
applications.

Roger now lives in China with his wife Bo Quan and his daughter Yuxin Ye. You can
find more information about him at GitHub: https://github.com/shugaoye/.

https://github.com/shugaoye

This page intentionally left blank

This page intentionally left blank

10
Using U-Boot to Boot

the Goldfish Kernel

Once we have U-Boot ready for the goldfish platform, we can use it to boot the Linux
kernel in the Android emulator. Ideally, the boot process starts from nonvolatile memory
(such as flash memory). Many kind of storage devices can be used in an embedded system,
though NOR and NAND flash devices are the most popular options. In this chapter, we
will build a goldfish Linux kernel first. We then explore how to boot Android from NOR
flash and NAND flash using U-Boot and this kernel.

Building the Goldfish Kernel
Ideally, we might like to build everything on our own—from the bootloader, to the
kernel, to the file system. Except for Google-specific applications, everything in Android
is hosted in a project called Android Open Source Project (AOSP). However, we will lose
our focus if we go into too much detail about every aspect of the build process right now.
We will discuss AOSP builds in Part III of this book. If you want to learn how to build
AOSP from scratch, the book Embedded Android by Karim Yaghmour is a good reference.
In addition, the Internet provides plenty of articles that explain how to work on AOSP.

To build the kernel, we need two things: a prebuilt toolchain and goldfish kernel
source code. The recommended option is to use the prebuilt toolchain from AOSP, which
can be downloaded from the Google source git repository. Other prebuilt toolchains can
be used as well. For example, we could use a prebuilt toolchain from a vendor such as
Mentor Graphics (i.e., Sourcery CodeBench).

If you already have an AOSP source tree, you can use the prebuilt toolchain from
AOSP directly. If you don’t have an AOSP source tree, the instructions in this chapter
explain how to download this toolchain. If you installed your toolchain using the script
install.sh introduced in Appendix A, you should have the toolchain from CodeBench
Lite. In this case, you can skip the steps for downloading AOSP toolchain given in this
chapter.

We will use the file system included with the Android SDK to boot up our kernel.
When an Android virtual device is created, a corresponding file system is created as well.
We will use the virtual device hd2 that we created in Chapter 2 in this chapter. The file
system image for hd2 can be found at ~/.android/avd/hd2.avd.

250	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

You might wonder why we want to build the kernel ourselves instead of using the
original kernel in the Android SDK to demonstrate the boot-up process. The reason is
that we may not be able to boot up the Linux kernel as smoothly as we think. Actually,
this process will most likely fail when we first attempt it. Thus we need a debug build to
debug the boot process.

The porting of U-Boot actually includes two steps. First, we must add the necessary
hardware support so that we can run U-Boot until the command-line prompt becomes
available. Second, we must change U-Boot to prepare the proper environment for the
Linux kernel so that control can be transferred to the kernel and the kernel can be started
normally. In the second step, if we don’t have a debug version of kernel, it will be very dif-
ficult for us to debug U-Boot itself. We will demonstrate how to debug both U-Boot and
the Linux kernel at the source code level in this chapter.

Prebuilt Toolchain and Kernel Source Code
The latest information about how to build an Android kernel using a prebuilt toolchain
can be found at https://source.android.com/. Given that AOSP changes from time to time,
be aware that the procedure in this chapter is what was available at the time of this book’s
writing—and that a newer version may have been released since then.

You can download the prebuilt toolchain from the AOSP git repository using the fol-
lowing command:

$ git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/
arm/arm-eabi-4.7

It may take a while for this command to complete its work. After the prebuilt toolchain
is downloaded, we can set up the path environment variable to include it:

$ export PATH=$(pwd)/arm-eabi-4.7/bin:$PATH

The next step is to get the goldfish kernel source code. We can use the following com-
mand to get a copy of kernel from AOSP repository:

$ git clone https://android.googlesource.com/kernel/goldfish.git

$ cd goldfish

$ git branch –a

* master

 remotes/origin/HEAD -> origin/master

 remotes/origin/android-goldfish-2.6.29

 remotes/origin/android-goldfish-3.4

 remotes/origin/linux-goldfish-3.0-wip

 remotes/origin/master

$ git checkout -t origin/android-goldfish-2.6.29 -b goldfish

https://source.android.com

	 Prebuilt Toolchain and Kernel Source Code	 251

To build the kernel, use the following commands:

$ export ARCH=arm

$ export SUBARCH=arm

$ export CROSS_COMPILE=arm-eabi-

$ make goldfish_armv7_defconfig

$ make

After the build is completed, we have a release build of the goldfish kernel by default.
To debug the kernel, we need to turn on debugging options in the kernel configura-

tion file. To do so, we can either edit the .config file directly or run menuconfig. To run
menuconfig, you have to install the package libncurses5-dev first, if you haven’t already
installed it:

$ sudo apt-get install libncurses5-dev

$ make menuconfig CROSS_COMPILE=arm-eabi-

After menuconfig starts, we can select Kernel hacking, Compile the kernel with
debug info, as shown in Figure 10.1.

An alternative approach, as mentioned earlier, is to edit the .config file directly. In the
.config file, we can set CONFIG_DEBUG_INFO=y.

Figure 10.1  Enabling debugging in menuconfig

252	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Even though these steps look quite simple, problems may occasionally occur. Yet
another alternative is to follow the instructions in Appendix B to set up the development
environment and build everything in this book using the Makefile and scripts in the
repository build in GitHub.

Running and Debugging the Kernel
in the Emulator
After the build process is finished, we can run and debug the kernel in the Android emu-
lator. The compressed kernel image can be found at arch/arm/boot/zImage. This image
can be used to run the kernel in the emulator. The image file vmlinux is in ELF format; it
can be used by gdb to get the debug symbol. We give the following command to start the
Android emulator using our own kernel image:

$ emulator -verbose -show-kernel -netfast -avd hd2 -qemu -serial stdio -s -S
-kernel arch/arm/boot/zImage

After the emulator is running, we can start the gdb debugger to debug the kernel. We
will use the graphical interface ddd to start the gdb debugger; it produces a more user-
friendly environment. In the following command line, we tell ddd to use arm-eabi-gdb as
the debugger and vmlinux as the binary image:

$ ddd --debugger arm-eabi-gdb vmlinux

After gdb starts, it needs to connect to the gdbserver in the emulator using the com-
mand target remote localhost:1234. To track the boot-up progress, we can set a
breakpoint at the function start_kernel:

GNU DDD 3.3.12 (i686-pc-linux-gnu), by Dorothea Lütkehaus and Andreas Zeller.

Copyright © 1995-1999 Technische Universität Braunschweig, Germany.

Copyright © 1999-2001 Universität Passau, Germany.

Copyright © 2001 Universität des Saarlandes, Germany.

Copyright © 2001-2004 Free Software Foundation, Inc.

Reading symbols from /home/sgye/src/Android/goldfish/vmlinux...done.

(gdb) target remote localhost:1234

0x00000000 in ?? ()

(gdb) b start_kernel

Breakpoint 1 at 0xc0008858: file init/main.c, line 531.

(gdb) c

	 Running and Debugging the Kernel in the Emulator	 253

After starting the process, gdb will stop at start_kernel, as shown in Figure 10.2.
After the system boots up, a console like that shown in Figure 10.3 appears. The

entire Android system should be ready to use at this point. From here, we boot the kernel
in the Android emulator directly. In the next few sections, we will boot this kernel using
U-Boot.

Figure 10.2  Boot-up stop at start_kernel

254	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Booting Android from NOR Flash
QEMU doesn’t provide NOR flash emulation on the goldfish platform. To make things
simple, we will use RAM to create a boot-up process that is similar to the boot process from
NOR flash. This approach builds a binary image that includes U-Boot, the Linux kernel,
and the RAMDISK image and passes this image to QEMU through the –kernel option.

Before we start, let’s look at how QEMU boots a Linux kernel. To boot up a Linux
kernel, the bootloader prepares the following environment:

■■ The processor is in SVC (Supervisor) mode and IRQ and FIQ are disabled.
■■ MMU is disabled.
■■ Register r0 is set to 0.
■■ Register r1 contains the ARM Linux machine type.
■■ Register r2 contains the address of the kernel parameter list.

After power-up, QEMU starts to run from address 0x00000000. Before it loads a
kernel image, QEMU prepares the environment described previously; it then jumps
to address 0x00010000. Figure 10.4 shows a memory dump before the point at which
QEMU launches a kernel image. Notice the five lines of assembly code before control is
transferred to the kernel image—these lines are hard-coded by QEMU when the system
starts. The first line (0x00000000) sets register r0 to 0. The second line (0x00000004) and
third line (0x00000008) set register r1 to 0x5a1, which is the machine type of the goldfish

Figure 10.3  Linux console after boot-up

	 Booting Android from NOR Flash	 255

platform. The fourth line (0x0000000c) sets the value of register r2 to 0x100, which is the
start address of the kernel parameter list. The fifth line (0x00000010) sets the register pc to
0x10000, so the execution jumps to address 0x10000. QEMU assumes the kernel image is
loaded at address 0x10000.

As outlined in Figure 10.5, we will create an image including U-Boot, the Linux
kernel, and RAMDISK for testing. U-Boot is located at address 0x00010000, which is the
address that QEMU will invoke. The Linux kernel is located at address 0x00210000, and
the RAMDISK image is located at address 0x00410000. Both the kernel and RAMDISK
images are placed at a distance of 2MB starting from address 0x00010000. After U-Boot
is relocated, it will move itself to address 0x1ff59000 (this address may change for each
build) and free about 2MB from the starting address 0x00010000. We can inform U-Boot
about the kernel and RAMDISK image locations through the bootm command, given

Figure 10.4  Memory dump of mini-bootloader at reset

256	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

from the U-Boot command line. Alternatively, you can set the default bootm parameter in
include/configs/goldfish.h. We can add the default bootm and kernel parameters in
goldfish.h as follows:

#define CONFIG_BOOTARGS "qemu.gles=1 qemu=1 console=ttyS0 android.qemud=ttyS1
androidboot.console=ttyS2 android.checkjni=1 ndns=1"

#define CONFIG_BOOTCOMMAND "bootm 0x210000 0x410000"

The U-Boot command bootm then copies the kernel image into 0x00010000 and the
RAMDISK image into 0x00800000. At that point, U-Boot jumps to address 0x00010000
to start the Linux kernel.

Creating the RAMDISK Image
Besides U-Boot and the kernel image, we need a RAMDISK image to support the boot
process. In Android, RAMDISK is used as the root file system. We can customize the boot

U-Boot
0x00010000

0x00210000

0x00410000

0x00800000

0x07fd2000

Linux Kernel

RAMDISK

U-Boot

Linux Kernel

RAMDISK

Linux Kernel

RAMDISK

Start U-Boot U-Boot Relocation Start Linux

Time
M

em
or

y
A

dd
re

ss

Figure 10.5  Memory relocation during boot-up

	 Booting Android from NOR Flash	 257

process by changing the RAMDISK content. Let’s create a RAMDISK image so that we
can build the flash image for testing. Given that we are using the Android emulator, we
can take advantage of the RAMDISK image from the Android SDK as the base for our
image. The RAMDISK image can be found in the system image folder in the Android
SDK. For an example, the RAMDISK image for Android 4.0.3 (API 15) can be found at
{Android SDK installation path}/system-images/android-15/armeabi-v7a/ram-

disk.img.
If we want to modify this image, we can create a folder and extract the image to that

folder using the following command:

$ mkdir initrd

$ cd initrd

$ gzip -dc < ../ramdisk.img | cpio --extract

Once we extract the RAMDISK image, we can see its content:

$ ls -F

data/ dev/ init.goldfish.rc* proc/ sys/ ueventd.goldfish.rc

default.prop init* init.rc* sbin/ system/ ueventd.rc

The RAMDISK includes the folders and startup scripts for the root file system. The
actual system files are stored in system.img, and the user data files are stored in user-
data.img. Both system.img and userdata.img are emulated as NAND flash. They are
mounted as /system and /data folders, respectively, under the root file system.

We can inspect file systems after boot-up as follows:

shell@android:/ $ mount

rootfs / rootfs ro 0 0

tmpfs /dev tmpfs rw,nosuid,mode=755 0 0

devpts /dev/pts devpts rw,mode=600 0 0

proc /proc proc rw 0 0

sysfs /sys sysfs rw 0 0

none /acct cgroup rw,cpuacct 0 0

tmpfs /mnt/secure tmpfs rw,mode=700 0 0

tmpfs /mnt/asec tmpfs rw,mode=755,gid=1000 0 0

tmpfs /mnt/obb tmpfs rw,mode=755,gid=1000 0 0

none /dev/cpuctl cgroup rw,cpu 0 0

/dev/block/mtdblock0 /system yaffs2 ro 0 0

/dev/block/mtdblock1 /data yaffs2 rw,nosuid,nodev 0 0

/dev/block/mtdblock2 /cache yaffs2 rw,nosuid,nodev 0 0

shell@android:/ $

258	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Now we can change the files in this folder as desired. After we’ve made those changes,
we can generate the new RAMDISK image using the following commands:

$ find . > ../initrd.list

$ cpio -o -H newc -O ../ramdisk.img < ../initrd.list

$ cd ..

$ gzip ramdisk.img

$ mv ramdisk.img.gz rootfs.img

Creating the Flash Image
Now that all of the image files (U-Boot, Linux kernel, and RAMDISK) are ready, we can
start to create the flash image to boot the system.

U-Boot can boot a variety of file types (e.g., ELF, BIN), but these file types have to first
be repackaged in the U-Boot image format (i.e., uImage). This format stores information
about the operating system type, the load address, the entry point, basic integrity verifica-
tion (via CRC), compression types, free description text, and so on.

To create a U-Boot image format, we need a utility called mkimage. If this tool is not
installed in the host system, it can be installed in Ubuntu using the following command:

$ sudo apt-get install uboot-mkimage

With this utility, we can repackage the kernel image and RAMDISK image in the
U-Boot format using the following commands:

$ mkimage -A arm -C none -O linux -T kernel -d zImage -a 0x00010000 -e 0x00010000
zImage.uimg

$ gzip -c rootfs.img > rootfs.img.gz

$ mkimage -A arm -C none -O linux -T ramdisk -d rootfs.img.gz -a 0x00800000 -e
0x00800000 rootfs.uimg

Once we have uImage files in hand, we can generate a flash image using the dd com-
mand as follows:

$ dd if=/dev/zero of= flash.bin bs=1 count=6M

$ dd if=u-boot.bin of= flash.bin conv=notrunc bs=1

$ dd if= zImage.uimg of= flash.bin conv=notrunc bs=1 seek=2M

$ dd if= rootfs.uimg of= flash.bin conv=notrunc bs=1 seek=4M

The file flash.bin includes all three images that we will use to boot up the system.
There are multiple steps to build the Linux kernel and generate all images. Please refer

to Appendix A for the detailed procedures. All related Makefiles and scripts can be found
in repository build in GitHub.

Booting Up the Flash Image
Finally, we are ready to boot the flash image that we built. Let’s run it in the Android
emulator and stop in the U-Boot command-line interface first. In U-Boot, we set a

	 Booting Android from NOR Flash	 259

2-second delay before U-Boot starts autoboot. Before autoboot starts, any keystroke will
take us to the U-Boot command prompt. We can use a U-Boot command to verify the
kernel and RAMDISK image, thereby making sure they are correct:

$ emulator -verbose -show-kernel -netfast -avd hd2 -qemu -serial stdio -kernel
flash.bin

…

U-Boot 2013.01.-rc1-00003-g54217a1 (Feb 09 2014 - 23:28:59)

U-Boot code: 00010000 -> 00029B0C BSS: -> 0002D36C

IRQ Stack: 0badc0de

FIQ Stack: 0badc0de

monitor len: 0001D36C

ramsize: 20000000

TLB table at: 1fff0000

Top of RAM usable for U-Boot at: 1fff0000

Reserving 116k for U-Boot at: 1ffd2000

Reserving 136k for malloc() at: 1ffb0000

Reserving 32 Bytes for Board Info at: 1ffaffe0

Reserving 120 Bytes for Global Data at: 1ffaff68

Reserving 8192 Bytes for IRQ stack at: 1ffadf68

New Stack Pointer is: 1ffadf58

RAM Configuration:

Bank #0: 00000000 512 MiB

relocation Offset is: 1ffc2000

goldfish_init(), gtty.base=ff012000

WARNING: Caches not enabled

monitor flash len: 0001D0D4

Now running in RAM - U-Boot at: 1ffd2000

Using default environment

Destroy Hash Table: 1ffeb724 table = 00000000

Create Hash Table: N=89

INSERT: table 1ffeb724, filled 1/89 rv 1ffb02a4 ==> name="bootargs" value="qemu.
gles=1 qemu=1 console=ttyS0 android.qemud=ttyS1 androidboot.console=ttyS2
android.checkjni=1 ndns=1"

INSERT: table 1ffeb724, filled 2/89 rv 1ffb0160 ==> name="bootcmd" value="bootm
0x210000 0x410000"

INSERT: table 1ffeb724, filled 3/89 rv 1ffb02f8 ==> name="bootdelay" value="2"

INSERT: table 1ffeb724, filled 4/89 rv 1ffb0178 ==> name="baudrate" value="38400"

260	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

INSERT: table 1ffeb724, filled 5/89 rv 1ffb0154 ==> name="bootfile" value="/
tftpboot/uImage"

INSERT: free(data = 1ffb0008)

INSERT: done

In: serial

Out: serial

Err: serial

Net: SMC91111-0

Warning: SMC91111-0 using MAC address from net device

main_loop entered: bootdelay=2

main_loop: bootcmd="bootm 0x210000 0x410000"

Hit any key to stop autoboot: 0

Goldfish # iminfo 0x210000

Checking Image at 00210000 ...

 Legacy image found

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1722596 Bytes = 1.6 MiB

 Load Address: 00010000

 Entry Point: 00010000

 Verifying Checksum ... OK

Goldfish # iminfo 0x410000

Checking Image at 00410000 ...

 Legacy image found

 Image Name:

 Image Type: ARM Linux RAMDisk Image (uncompressed)

 Data Size: 187687 Bytes = 183.3 KiB

 Load Address: 00800000

 Entry Point: 00800000

 Verifying Checksum ... OK

Goldfish #

In the preceding code, notice that we use the iminfo command to check the image
at 0x00210000 and 0x00410000. U-Boot recognizes the data at these addresses as the
Linux kernel image and Linux RAMDISK image, respectively. Also notice the load

	 Booting Android from NOR Flash	 261

address: U-Boot loads the kernel image to address 0x00010000 and the RAMDISK image
to address 0x00800000.

We can boot the system using the bootm command as follows:

Goldfish # bootm 0x210000 0x410000

Current stack ends at 0x1ffadb10 * kernel: cmdline image address = 0x00210000

Booting kernel from Legacy Image at 00210000 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1722596 Bytes = 1.6 MiB

 Load Address: 00010000

 Entry Point: 00010000

 kernel data at 0x00210040, len = 0x001a48e4 (1722596)

* ramdisk: cmdline image address = 0x00410000

Loading init Ramdisk from Legacy Image at 00410000 ...

 Image Name:

 Image Type: ARM Linux RAMDisk Image (uncompressed)

 Data Size: 187687 Bytes = 183.3 KiB

 Load Address: 00800000

 Entry Point: 00800000

 ramdisk start = 0x00800000, ramdisk end = 0x0082dd27

 Loading Kernel Image ... OK

CACHE: Misaligned operation at range [00010000, 006a2390]

OK

 kernel loaded at 0x00010000, end = 0x001b48e4

using: ATAGS

Transferring control to Linux (at address 00010000)...

Starting kernel ...

Uncompressing Linux...
... done, booting the kernel.

goldfish_fb_get_pixel_format:167: display surface,pixel format:

 bits/pixel: 16

 bytes/pixel: 2

 depth: 16

 red: bits=5 mask=0xf800 shift=11 max=0x1f

 green: bits=6 mask=0x7e0 shift=5 max=0x3f

262	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

 blue: bits=5 mask=0x1f shift=0 max=0x1f

 alpha: bits=0 mask=0x0 shift=0 max=0x0

Initializing cgroup subsys cpu

Linux version 2.6.29-ge3d684d (sgye@sgye-Latitude-E6510) (gcc version 4.6.3
(Sourcery CodeBench Lite 2012.03-57)) #1 Sun Feb 9 23:32:29 CST 2014

CPU: ARMv7 Processor [410fc080] revision 0 (ARMv7), cr=10c5387f

CPU: VIPT nonaliasing data cache, VIPT nonaliasing instruction cache

Machine: Goldfish

Memory policy: ECC disabled, Data cache writeback

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 130048

Kernel command line: qemu.gles=1 qemu=1 console=ttyS0 android.qemud=ttyS1
androidboot.console=ttyS2 android.checkjni=1 ndns=1

Unknown boot option 'qemu.gles=1': ignoring

Unknown boot option 'android.qemud=ttyS1': ignoring

Unknown boot option 'androidboot.console=ttyS2': ignoring

Unknown boot option 'android.checkjni=1': ignoring

PID hash table entries: 2048 (order: 11, 8192 bytes)

Console: colour dummy device 80x30

Dentry cache hash table entries: 65536 (order: 6, 262144 bytes)

Inode-cache hash table entries: 32768 (order: 5, 131072 bytes)

Memory: 512MB = 512MB total

Memory: 515456KB available (2944K code, 707K data, 124K init)

Calibrating delay loop... 370.27 BogoMIPS (lpj=1851392)

Mount-cache hash table entries: 512

Initializing cgroup subsys debug

Initializing cgroup subsys cpuacct

Initializing cgroup subsys freezer

CPU: Testing write buffer coherency: ok

net_namespace: 936 bytes

NET: Registered protocol family 16

bio: create slab <bio-0> at 0

NET: Registered protocol family 2

IP route cache hash table entries: 16384 (order: 4, 65536 bytes)

TCP established hash table entries: 65536 (order: 7, 524288 bytes)

TCP bind hash table entries: 65536 (order: 6, 262144 bytes)

TCP: Hash tables configured (established 65536 bind 65536)

	 Booting Android from NOR Flash	 263

TCP reno registered

NET: Registered protocol family 1

checking if image is initramfs... it is

Freeing initrd memory: 180K

goldfish_new_pdev goldfish_interrupt_controller at ff000000 irq -1

goldfish_new_pdev goldfish_device_bus at ff001000 irq 1

goldfish_new_pdev goldfish_timer at ff003000 irq 3

goldfish_new_pdev goldfish_rtc at ff010000 irq 10

goldfish_new_pdev goldfish_tty at ff002000 irq 4

goldfish_new_pdev goldfish_tty at ff011000 irq 11

goldfish_new_pdev goldfish_tty at ff012000 irq 12

goldfish_new_pdev smc91x at ff013000 irq 13

goldfish_new_pdev goldfish_fb at ff014000 irq 14

goldfish_new_pdev goldfish_audio at ff004000 irq 15

goldfish_new_pdev goldfish_mmc at ff005000 irq 16

goldfish_new_pdev goldfish_memlog at ff006000 irq -1

goldfish_new_pdev goldfish-battery at ff015000 irq 17

goldfish_new_pdev goldfish_events at ff016000 irq 18

goldfish_new_pdev goldfish_nand at ff017000 irq -1

goldfish_new_pdev qemu_pipe at ff018000 irq 19

goldfish_new_pdev goldfish-switch at ff01a000 irq 20

goldfish_new_pdev goldfish-switch at ff01b000 irq 21

goldfish_pdev_worker registered goldfish_interrupt_controller

goldfish_pdev_worker registered goldfish_device_bus

goldfish_pdev_worker registered goldfish_timer

goldfish_pdev_worker registered goldfish_rtc

goldfish_pdev_worker registered goldfish_tty

goldfish_pdev_worker registered goldfish_tty

goldfish_pdev_worker registered goldfish_tty

goldfish_pdev_worker registered smc91x

goldfish_pdev_worker registered goldfish_fb

goldfish_pdev_worker registered goldfish_audio

goldfish_pdev_worker registered goldfish_mmc

goldfish_pdev_worker registered goldfish_memlog

goldfish_pdev_worker registered goldfish-battery

264	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

goldfish_pdev_worker registered goldfish_events

goldfish_pdev_worker registered goldfish_nand

goldfish_pdev_worker registered qemu_pipe

goldfish_pdev_worker registered goldfish-switch

goldfish_pdev_worker registered goldfish-switch

ashmem: initialized

Installing knfsd (copyright (C) 1996 okir@monad.swb.de).

fuse init (API version 7.11)

yaffs Feb 9 2014 23:30:30 Installing.

msgmni has been set to 1007

alg: No test for stdrng (krng)

io scheduler noop registered

io scheduler anticipatory registered (default)

io scheduler deadline registered

io scheduler cfq registered

allocating frame buffer 480 * 800, got ffa00000

console [ttyS0] enabled

brd: module loaded

loop: module loaded

nbd: registered device at major 43

goldfish_audio_probe

tun: Universal TUN/TAP device driver, 1.6

tun: (C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>

smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>

eth0 (smc91x): not using net_device_ops yet

eth0: SMC91C11xFD (rev 1) at e080c000 IRQ 13 [nowait]

eth0: Ethernet addr: 52:54:00:12:34:56

goldfish nand dev0: size c5e0000, page 2048, extra 64, erase 131072

goldfish nand dev1: size c200000, page 2048, extra 64, erase 131072

goldfish nand dev2: size 4000000, page 2048, extra 64, erase 131072

mice: PS/2 mouse device common for all mice

*** events probe ***

events_probe() addr=0xe0814000 irq=18

events_probe() keymap=qwerty2

input: qwerty2 as /devices/virtual/input/input0

	 Booting Android from NOR Flash	 265

goldfish_rtc goldfish_rtc: rtc core: registered goldfish_rtc as rtc0

device-mapper: uevent: version 1.0.3

device-mapper: ioctl: 4.14.0-ioctl (2008-04-23) initialised: dm-devel@redhat.com

logger: created 64K log 'log_main'

logger: created 256K log 'log_events'

logger: created 64K log 'log_radio'

Netfilter messages via NETLINK v0.30.

nf_conntrack version 0.5.0 (8192 buckets, 32768 max)

CONFIG_NF_CT_ACCT is deprecated and will be removed soon. Please use

nf_conntrack.acct=1 kernel parameter, acct=1 nf_conntrack module option or

sysctl net.netfilter.nf_conntrack_acct=1 to enable it.

ctnetlink v0.93: registering with nfnetlink.

NF_TPROXY: Transparent proxy support initialized, version 4.1.0

NF_TPROXY: Copyright (c) 2006-2007 BalaBit IT Ltd.

xt_time: kernel timezone is -0000

ip_tables: (C) 2000-2006 Netfilter Core Team

arp_tables: (C) 2002 David S. Miller

TCP cubic registered

NET: Registered protocol family 10

ip6_tables: (C) 2000-2006 Netfilter Core Team

IPv6 over IPv4 tunneling driver

NET: Registered protocol family 17

NET: Registered protocol family 15

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com>

All bugs added by David S. Miller <davem@redhat.com>

VFP support v0.3: implementor 41 architecture 3 part 30 variant c rev 0

goldfish_rtc goldfish_rtc: setting system clock to 2014-02-20 08:54:53 UTC
(1392886493)

Freeing init memory: 124K

mmc0: new SD card at address e118

mmcblk0: mmc0:e118 SU02G 100 MiB

 mmcblk0:

init: cannot open '/initlogo.rle'

yaffs: dev is 32505856 name is "mtdblock0"

266	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

yaffs: passed flags ""

yaffs: Attempting MTD mount on 31.0, "mtdblock0"

yaffs_read_super: isCheckpointed 0

save exit: isCheckpointed 1

yaffs: dev is 32505857 name is "mtdblock1"

yaffs: passed flags ""

yaffs: Attempting MTD mount on 31.1, "mtdblock1"

yaffs_read_super: isCheckpointed 0

yaffs: dev is 32505858 name is "mtdblock2"

yaffs: passed flags ""

yaffs: Attempting MTD mount on 31.2, "mtdblock2"

yaffs_read_super: isCheckpointed 0

init: untracked pid 39 exited

eth0: link up

shell@android:/ $ warning: 'zygote' uses 32-bit capabilities (legacy support in
use)

Source-Level Debugging of the Flash Image
At this point, we can use a flash image that includes both U-Boot and the goldfish kernel
to boot up the system. But can we do source-level debugging as well? If we are work-
ing on a real hardware board with JTAG debugger, it is quite difficult to do source-level
debugging for both U-Boot and the kernel. However, no such problem arises in a virtual
environment. With this approach, we can closely observe the transition from bootloader to
Linux kernel using source-level debugging. This is a convenient way to debug the U-Boot
boot-up process. We can track the interaction between U-Boot and Linux kernel by trac-
ing the execution of the source code.

Let’s start the Android emulator with gdb support:

$ emulator -verbose -show-kernel -netfast -avd hd2 -shell -qemu -s -S -kernel
flash.bin

We connect to the Android emulator using gdb:

$ ddd --debugger arm-none-eabi-gdb u-boot/u-boot

As shown in Figure 10.6, we load U-Boot in gdb with source-level debugging
information.

Now we can perform source-level debugging for U-Boot. Since U-Boot will reload
itself, we must use the same technique that we applied in Chapter 9 to continue the
source-level debugging after memory relocation occurs.

Each time we start U-Boot in gdb, we have to go through a series of steps. It is much
easier (and faster) to put these steps into a gdb script, as shown in Example 10.1. This
script can be found in the folder bin of the repository build.

	 Booting Android from NOR Flash	 267

Example 10.1  GDB Startup Script for U-Boot (u-boot.gdb)

Debug u-boot

b board_init_f

c

b relocate_code

c

p/x ((gd_t *)$r1)->relocaddr

d

symbol-file ./u-boot/u-boot

add-symbol-file ./u-boot/u-boot 0x1ff59000

b board_init_r

Figure 10.6  Loading U-Boot to gdb

268	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Example 10.2  GDB Script for Debugging Goldfish Kernel (goldfish.gdb)

Debug goldfish kernel

d

symbol-file ./goldfish/vmlinux

add-symbol-file ./goldfish/vmlinux 0x00010000

b start_kernel

We can load this script in the gdb console using the following command:

(gdb) target remote localhost:1234

(gdb) source bin/u-boot.gdb

After running this script, we can see that U-Boot has stopped at board_init_f() and
the U-Boot symbol has been reloaded to the memory address after its relocation, as shown
in Figure 10.7.

Let’s continue running U-Boot to a point after memory relocation. In the script
u-boot.gdb, the breakpoint is set to board_init_r(). After U-Boot stops at this break-
point, we can load the goldfish kernel symbol. The multiple steps to load the goldfish
kernel can also be put into a gdb script, as shown in Example 10.2. This script can also be
found in the folder bin of the repository build.

Figure 10.7  Reload the U-Boot symbol after relocation

	 Booting Android from NOR Flash	 269

We can load the script goldfish.gdb to the gdb console as follows:
(gdb) source bin/goldfish.gdb

add symbol table from file "/home/sgye/src/build/goldfish/vmlinux" at

 .text_addr = 0x10000

Breakpoint 4 at 0xc00086b4: file /home/sgye/src/goldfish/init/main.c, line 535.
(2 locations)

…

warning: (Internal error: pc 0x10088 in read in psymtab, but not in symtab.)

(gdb) c

warning: (Internal error: pc 0x10088 in read in psymtab, but not in symtab.)

Breakpoint 4, start_kernel () at /home/sgye/src/goldfish/init/main.c:535

(gdb)

In the script goldfish.gdb, the kernel symbol is loaded from vmlinux at memory
address 0x10000 and a breakpoint is set at start_kernel(). After loading the kernel sym-
bol, we can continue running U-Boot. Now the system stops at the Linux kernel code, as
shown in Figure 10.8.

Figure 10.8  The goldfish kernel at start_kernel()

270	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

As we can see in this session, we have much more control over the system in the virtual
environment compared to what is possible in the real hardware. In turn, we can perform a
deeper analysis of the code by tracing the execution path at the source level. We can work
at the source level, starting from the first line of code and working all the way to the point
at which the operating system fully boots up.

Booting Android from NAND Flash
With U-Boot, we can also boot Android from NAND flash. This approach is very similar
to that used in real-world cases. When using this approach, we keep everything (kernel,
RAMDISK image, and file system) in NAND flash and boot from there. As discussed
in Chapter 8, three flash devices—system, userdata, and cache—are connected to the
Android emulator. Even though Android mounts the RAMDISK as root, all system files
are included in system.img. We can put both the kernel and RAMDISK images in
system.img as well, allowing us to then boot the entire system from system.img.

Preparing system.img
To put the kernel and RAMDISK images into system.img, we have to recreate them. As
mentioned previously, in Android 4.3 and earlier, system.img is in the YAFFS2 format. In
Android 4.4 or later, it is in the ext4 format. In the ext4 format, we can mount the
system.img file directly and copy both the kernel and RAMDISK in it. In this chapter,
we will continue to use the Android Virtual Device hd2 that we created in Chapter 2; it is
in YAFFS2 format and relies on Android version 4.0.3.

To regenerate system.img, we need to use YAFFS2 utilities. You can get them after you
check out the build repository from GitHub. Two utilities—mkyaffs2image and unyaffs—
can be found in the bin folder. Their source code can be found at http://code.google.com.

We have to extract system.img first. After we extract it, we can copy the kernel and
RAMDISK images to the system image folder. As we did in the previous section, we need
them in the U-Boot format (zImage.uimg and rootfs.uimg).

We can regenerate system.img using the mkyaffs2image command:

$ mkdir system

$ cd system

$ unyaffs ../system.img

$ cd ..

$ cp ./rootfs.uimg system/ramdisk.uimg

$ cp ./zImage.uimg system/zImage.uimg

$ rm ./system.img

$ mkyaffs2image system ./system.img

Now we have a new system.img that contains both the kernel and RAMDISK im-
ages. We can use it to boot Android with U-Boot. For the exact procedures, refer to the
build target rootfs of Makefile in the build repository.

http://code.google.com

	 Booting Android from NAND Flash	 271

Booting from NAND Flash
To boot Android from NAND flash, we need to use the –system option to tell the emu-
lator to use our version of system.img instead of the one that comes with the Android
SDK:

$ emulator -show-kernel -netfast -avd hd2 -shell -system ./system.img -ramdisk ./
ramdisk.img -qemu -kernel ./u-boot.bin

…

U-Boot 2013.01.-rc1-00005-g4627a3e-dirty (Mar 07 2014 - 15:55:45)

U-Boot code: 00010000 -> 0006E2BC BSS: -> 000A6450

IRQ Stack: 0badc0de

FIQ Stack: 0badc0de

monitor len: 00096450

ramsize: 20000000

TLB table at: 1fff0000

Top of RAM usable for U-Boot at: 1fff0000

Reserving 601k for U-Boot at: 1ff59000

Reserving 4104k for malloc() at: 1fb57000

Reserving 32 Bytes for Board Info at: 1fb56fe0

Reserving 120 Bytes for Global Data at: 1fb56f68

Reserving 8192 Bytes for IRQ stack at: 1fb54f68

New Stack Pointer is: 1fb54f58

RAM Configuration:

Bank #0: 00000000 512 MiB

relocation Offset is: 1ff49000

goldfish_init(), gtty.base=ff012000

WARNING: Caches not enabled

monitor flash len: 00065AD4

Now running in RAM - U-Boot at: 1ff59000

NAND: base=ff017000

goldfish_nand_init: id=0: name=nand0, nand_name=system

goldfish_nand_init: id=1: name=nand1, nand_name=userdata

goldfish_nand_init: id=2: name=nand2, nand_name=cache

459 MiB

Using default environment

272	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Destroy Hash Table: 1ffb5fe4 table = 00000000

Create Hash Table: N=89

INSERT: table 1ffb5fe4, filled 1/89 rv 1fb572a4 ==> name="bootargs" value="qemu.
gles=1 qemu=1 console=ttyS0 android.qemud=ttyS1 androidboot.console=ttyS2
android.checkjni=1 ndns=1"

INSERT: table 1ffb5fe4, filled 2/89 rv 1fb57160 ==> name="bootcmd" value="bootm
0x210000 0x410000"

INSERT: table 1ffb5fe4, filled 3/89 rv 1fb572f8 ==> name="bootdelay" value="2"

INSERT: table 1ffb5fe4, filled 4/89 rv 1fb57178 ==> name="baudrate" value="38400"

INSERT: table 1ffb5fe4, filled 5/89 rv 1fb57154 ==> name="bootfile" value="/
tftpboot/uImage"

INSERT: free(data = 1fb57008)

INSERT: done

In: serial

Out: serial

Err: serial

Net: SMC91111-0

Warning: SMC91111-0 using MAC address from net device

main_loop entered: bootdelay=2

main_loop: bootcmd="bootm 0x210000 0x410000"

Hit any key to stop autoboot: 0

Current stack ends at 0x1fb54b00 * kernel: cmdline image address = 0x00210000

Wrong Image Format for bootm command

ERROR: can't get kernel image!

Command failed, result=1

Goldfish #

After the emulator is running, we are sent to the U-Boot command prompt because
we have interrupted the autoboot process. We can then mount system.img from the
U-Boot command line. First, we use the U-Boot command ydevconfig to configure
the NAND device. We configure the device name as sys starting from block 0 to 0x64d
(1613). The device number is 0:

Goldfish # ydevconfig sys 0 0x0 0x64d

Configures yaffs mount sys: dev 0 start block 0, end block 1613

We can check the configuration using the command ydevls:

Goldfish # ydevls

sys 0 0x00000 0x0064d not mounted

	 Booting Android from NAND Flash	 273

Next, we use the ymount command to mount the device sys. After mounting the
device, we can list its contents using the command yls:

Goldfish # ymount sys

Mounting yaffs2 mount point sys

Goldfish # yls sys

build.prop

media

fonts

lib

ramdisk.uimg

usr

zImage.uimg

xbin

etc

framework

tts

bin

app

lost+found

Once we find both the kernel and RAMDISK image (zImage.uimg and ramdisk.
uimg), we need to load them into memory using the command yrdm before we can boot
the system. After we load them into memory, we can use the command iminfo to verify
them:

Goldfish # yrdm sys/ramdisk.uimg 0x410000

Copy sys/ramdisk.uimg to 0x00410000... [DONE]

Goldfish # iminfo 0x410000

Checking Image at 00410000 ...

 Legacy image found

 Image Name:

 Image Type: ARM Linux RAMDisk Image (uncompressed)

 Data Size: 187703 Bytes = 183.3 KiB

 Load Address: 00800000

 Entry Point: 00800000

 Verifying Checksum ... OK

Goldfish # yrdm sys/zImage.uimg 0x210000

274	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Copy sys/zImage.uimg to 0x00210000... [DONE]

Goldfish # iminfo 0x210000

Checking Image at 00210000 ...

 Legacy image found

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1722852 Bytes = 1.6 MiB

 Load Address: 00010000

 Entry Point: 00010000

 Verifying Checksum ... OK

Now we are ready to boot the system. This stage is the same as what we did when
booting with NOR flash in the previous section. We use the umount command to dis-
mount the YAFFS2 file system first and use the bootm command to boot the system:

Goldfish # yumount sys

Unmounting yaffs2 mount point sys

Goldfish # bootm 0x210000 0x410000

Current stack ends at 0x1fb54b10 * kernel: cmdline image address = 0x00210000

Booting kernel from Legacy Image at 00210000 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1722852 Bytes = 1.6 MiB

 Load Address: 00010000

 Entry Point: 00010000

 kernel data at 0x00210040, len = 0x001a49e4 (1722852)

* ramdisk: cmdline image address = 0x00410000

Loading init Ramdisk from Legacy Image at 00410000 ...

 Image Name:

 Image Type: ARM Linux RAMDisk Image (uncompressed)

 Data Size: 187703 Bytes = 183.3 KiB

 Load Address: 00800000

 Entry Point: 00800000

 ramdisk start = 0x00800000, ramdisk end = 0x0082dd37

 Loading Kernel Image ... OK

CACHE: Misaligned operation at range [00010000, 006a2790]

	 Booting Android from NAND Flash	 275

OK

 kernel loaded at 0x00010000, end = 0x001b49e4

using: ATAGS

Transferring control to Linux (at address 00010000)...

Starting kernel ...

Uncompressing Linux..
.. done, booting the kernel.

goldfish_fb_get_pixel_format:167: display surface,pixel format:

 bits/pixel: 16

 bytes/pixel: 2

 depth: 16

 red: bits=5 mask=0xf800 shift=11 max=0x1f

 green: bits=6 mask=0x7e0 shift=5 max=0x3f

 blue: bits=5 mask=0x1f shift=0 max=0x1f

 alpha: bits=0 mask=0x0 shift=0 max=0x0

Initializing cgroup subsys cpu

Linux version 2.6.29-ge3d684d (sye1@ubuntu) (gcc version 4.6.3 (Sourcery
CodeBench Lite 2012.03-57)) #4 Fri Mar 7 15:59:39 CST 2014

CPU: ARMv7 Processor [410fc080] revision 0 (ARMv7), cr=10c5387f

CPU: VIPT nonaliasing data cache, VIPT nonaliasing instruction cache

Machine: Goldfish

Memory policy: ECC disabled, Data cache writeback

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 130048

Kernel command line: qemu.gles=1 qemu=1 console=ttyS0 android.qemud=ttyS1
androidboot.console=ttyS2 android.checkjni=1 ndns=1

Unknown boot option 'qemu.gles=1': ignoring

Unknown boot option 'android.qemud=ttyS1': ignoring

Unknown boot option 'androidboot.console=ttyS2': ignoring

Unknown boot option 'android.checkjni=1': ignoring

PID hash table entries: 2048 (order: 11, 8192 bytes)

Console: colour dummy device 80x30

Dentry cache hash table entries: 65536 (order: 6, 262144 bytes)

Inode-cache hash table entries: 32768 (order: 5, 131072 bytes)

Memory: 512MB = 512MB total

Memory: 515456KB available (2956K code, 707K data, 124K init)

276	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Calibrating delay loop... 452.19 BogoMIPS (lpj=2260992)

Mount-cache hash table entries: 512

Initializing cgroup subsys debug

Initializing cgroup subsys cpuacct

Initializing cgroup subsys freezer

CPU: Testing write buffer coherency: ok

net_namespace: 936 bytes

NET: Registered protocol family 16

bio: create slab <bio-0> at 0

NET: Registered protocol family 2

IP route cache hash table entries: 16384 (order: 4, 65536 bytes)

TCP established hash table entries: 65536 (order: 7, 524288 bytes)

TCP bind hash table entries: 65536 (order: 6, 262144 bytes)

TCP: Hash tables configured (established 65536 bind 65536)

TCP reno registered

NET: Registered protocol family 1

checking if image is initramfs... it is

Freeing initrd memory: 180K

goldfish_new_pdev goldfish_interrupt_controller at ff000000 irq -1

goldfish_new_pdev goldfish_device_bus at ff001000 irq 1

goldfish_new_pdev goldfish_timer at ff003000 irq 3

goldfish_new_pdev goldfish_rtc at ff010000 irq 10

goldfish_new_pdev goldfish_tty at ff002000 irq 4

goldfish_new_pdev goldfish_tty at ff011000 irq 11

goldfish_new_pdev goldfish_tty at ff012000 irq 12

goldfish_new_pdev smc91x at ff013000 irq 13

goldfish_new_pdev goldfish_fb at ff014000 irq 14

goldfish_new_pdev goldfish_audio at ff004000 irq 15

goldfish_new_pdev goldfish_mmc at ff005000 irq 16

goldfish_new_pdev goldfish_memlog at ff006000 irq -1

goldfish_new_pdev goldfish-battery at ff015000 irq 17

goldfish_new_pdev goldfish_events at ff016000 irq 18

goldfish_new_pdev goldfish_nand at ff017000 irq -1

goldfish_new_pdev qemu_pipe at ff018000 irq 19

	 Booting Android from NAND Flash	 277

goldfish_new_pdev goldfish-switch at ff01a000 irq 20

goldfish_new_pdev goldfish-switch at ff01b000 irq 21

goldfish_pdev_worker registered goldfish_interrupt_controller

goldfish_pdev_worker registered goldfish_device_bus

goldfish_pdev_worker registered goldfish_timer

goldfish_pdev_worker registered goldfish_rtc

goldfish_pdev_worker registered goldfish_tty

goldfish_pdev_worker registered goldfish_tty

goldfish_pdev_worker registered goldfish_tty

goldfish_pdev_worker registered smc91x

goldfish_pdev_worker registered goldfish_fb

goldfish_pdev_worker registered goldfish_audio

goldfish_pdev_worker registered goldfish_mmc

goldfish_pdev_worker registered goldfish_memlog

goldfish_pdev_worker registered goldfish-battery

goldfish_pdev_worker registered goldfish_events

goldfish_pdev_worker registered goldfish_nand

goldfish_pdev_worker registered qemu_pipe

goldfish_pdev_worker registered goldfish-switch

goldfish_pdev_worker registered goldfish-switch

ashmem: initialized

Installing knfsd (copyright (C) 1996 okir@monad.swb.de).

fuse init (API version 7.11)

yaffs Mar 7 2014 15:57:44 Installing.

msgmni has been set to 1007

alg: No test for stdrng (krng)

io scheduler noop registered

io scheduler anticipatory registered (default)

io scheduler deadline registered

io scheduler cfq registered

allocating frame buffer 480 * 800, got ffa00000

console [ttyS0] enabled

brd: module loaded

loop: module loaded

278	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

nbd: registered device at major 43

goldfish_audio_probe

tun: Universal TUN/TAP device driver, 1.6

tun: (C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>

smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>

eth0 (smc91x): not using net_device_ops yet

eth0: SMC91C11xFD (rev 1) at e080c000 IRQ 13 [nowait]

eth0: Ethernet addr: 52:54:00:12:34:56

goldfish nand dev0: size c9c0000, page 2048, extra 64, erase 131072

goldfish nand dev1: size c200000, page 2048, extra 64, erase 131072

goldfish nand dev2: size 4000000, page 2048, extra 64, erase 131072

mice: PS/2 mouse device common for all mice

*** events probe ***

events_probe() addr=0xe0814000 irq=18

events_probe() keymap=qwerty2

input: qwerty2 as /devices/virtual/input/input0

goldfish_rtc goldfish_rtc: rtc core: registered goldfish_rtc as rtc0

device-mapper: uevent: version 1.0.3

device-mapper: ioctl: 4.14.0-ioctl (2008-04-23) initialised: dm-devel@redhat.com

logger: created 64K log 'log_main'

logger: created 256K log 'log_events'

logger: created 64K log 'log_radio'

Netfilter messages via NETLINK v0.30.

nf_conntrack version 0.5.0 (8192 buckets, 32768 max)

CONFIG_NF_CT_ACCT is deprecated and will be removed soon. Please use

nf_conntrack.acct=1 kernel parameter, acct=1 nf_conntrack module option or

sysctl net.netfilter.nf_conntrack_acct=1 to enable it.

ctnetlink v0.93: registering with nfnetlink.

NF_TPROXY: Transparent proxy support initialized, version 4.1.0

NF_TPROXY: Copyright (c) 2006-2007 BalaBit IT Ltd.

xt_time: kernel timezone is -0000

ip_tables: (C) 2000-2006 Netfilter Core Team

arp_tables: (C) 2002 David S. Miller

TCP cubic registered

	 Booting Android from NAND Flash	 279

NET: Registered protocol family 10

ip6_tables: (C) 2000-2006 Netfilter Core Team

IPv6 over IPv4 tunneling driver

NET: Registered protocol family 17

NET: Registered protocol family 15

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com>

All bugs added by David S. Miller <davem@redhat.com>

VFP support v0.3: implementor 41 architecture 3 part 30 variant c rev 0

goldfish_rtc goldfish_rtc: setting system clock to 2014-03-10 10:04:08 UTC
(1394445848)

Freeing init memory: 124K

mmc0: new SD card at address e118

mmcblk0: mmc0:e118 SU02G 100 MiB

 mmcblk0:

init: cannot open '/initlogo.rle'

yaffs: dev is 32505856 name is "mtdblock0"

yaffs: passed flags ""

yaffs: Attempting MTD mount on 31.0, "mtdblock0"

yaffs_read_super: isCheckpointed 0

save exit: isCheckpointed 1

yaffs: dev is 32505857 name is "mtdblock1"

yaffs: passed flags ""

yaffs: Attempting MTD mount on 31.1, "mtdblock1"

yaffs_read_super: isCheckpointed 0

yaffs: dev is 32505858 name is "mtdblock2"

yaffs: passed flags ""

yaffs: Attempting MTD mount on 31.2, "mtdblock2"

yaffs_read_super: isCheckpointed 0

init: cannot find '/system/etc/install-recovery.sh', disabling 'flash_recovery'

eth0: link up

shell@android:/ $ warning: 'rild' uses 32-bit capabilities (legacy support in
use)

280	 Chapter 10 Using U-Boot to Boot the Goldfish Kernel

Summary
In this chapter, we used U-Boot to demonstrate two scenarios for operating system boot-
up. First, we booted Android from NOR flash using U-Boot. Even though the Android
emulator doesn’t have NOR flash, we created an image to simulate it. Second, we booted
Android from NAND flash. In this case, we put the kernel and RAMDISK images inside
system.img and used U-Boot to boot the system.

We can build almost everything on our own to boot the Android system, except
RAMDISK and the file system. To make our own RAMDISK and file system, we hacked
them from the Android SDK. In next two chapters, we will go even further; that is, we
will explore how to build everything, including the Android file system, from source code.

This page intentionally left blank

Index

A

ABI Research, 283
Address alignment, viewing, 31–32
ALARM_HIGH register, 19
ALARM_LOW register, 19
align directive, 44
all, build target, 36
Android

file system, 183–185
kernel, verifying, 273–274
virtual devices, setting up, 284–287

android command, 16
Android emulator

configuring virtual devices, 14–16
description, 11
illustration, 14
mobile device hardware features supported, 13–14

Android emulator, building with AOSP
AOSP build environment, 288–289
building Android emulator images, 290–292
downloading AOSP source, 289
initializing a repo client, 289
installing repo tool, 289
installing required packages, 288
installing the JDK, 288
testing AOSP images, 292–297

Android emulator, building with CyanogenMod
armemu virtual device, 332–338, 353–354
build process, 298–302
downloading CyanogenMod source, 297
emulator images, Android version of, 306
emulator images, building, 298–302
emulator images, testing, 302–307
introduction, 297
releases, 284

Android Open Source Project (AOSP). See AOSP (Android
Open Source Project).

Android ROM, creating with AOSP
booting Android with U-Boot from NAND flash,

323–332
building the kernel, 317–322
building U-Boot, 322–323
process description, 309–317

Android ROM, creating with
CyanogenMod

booting CyanogenMod, 337–338
building the kernel, 334–337

360 Index

Android ROM, creating with
CyanogenMod (continued)

building U-Boot, 337–338
introduction, 332–334

Android SDK, setting up, 27, 284–287
Android Virtual Device Manager, 284–287
AOSP (Android Open Source Project). See also

CyanogenMod.
armemu virtual device, 352–353
introduction, 283–284
releases, 284

AOSP (Android Open Source Project), Android emulator
build

AOSP build environment, 288–289
building Android emulator images, 290–292
downloading AOSP source, 289
initializing a repo client, 289
installing repo tool, 289
installing required packages, 288
installing the JDK, 288
testing AOSP images, 292–297

AOSP (Android Open Source Project), creating Android
ROM

booting Android with U-Boot from NAND flash,
323–332

building the kernel, 317–322
building U-Boot, 322–323
process description, 309–317

AOSP (Android Open Source Project), supporting new
hardware

booting Android with U-Boot from NAND flash,
323–332

building the kernel, 317–322
building U-Boot, 322–323
process description, 309–317

AOSP-based smartphones, sales growth, 283
APCS registers use convention, 78
Application layer, embedded systems, 7
Architecture of embedded systems, 7–10
ARM Architectural Reference Manual, 5
ARM processors for embedded systems, 8–9. See also

specific processors.
ARM register set, 67
ARM System Developer’s Guide, 5, 125
ARM926EJ-S processor, 9
ARM_dAbort() function, 137
armemu virtual device

Android version, illustration, 317, 321
building a kernel for, 318–322
building with AOSP, 352–353
building with CyanogenMod,

353–354
creating, 284–287, 309–317
creating skeleton files for, 310–311
CyanogenMod version, 332–338

arm_exc.S file, 141, 142–149
ARM_fiq() function, 137
ARM_irq() function, 137
ARM_pAbort() function, 137
ARM_reserved() function, 137
ARM_swi() function, 137

ARM_undef() function, 137
Assembler directives, 30, 43–44
Assembly initialization phase, 103
Assembly language, 30
AVD Manager, 16. See also SDK Manager.
AVDs (Android Virtual Devices), 14–16

B

Banked registers, initializing, 66–68
Banked stack pointers, initializing, 66–68
Bare metal programming. See also Embedded system

programming.
common programming languages, 4
definition, 3, 5
resources for, 5

__BARE_METAL__ macro, 191
Barr, Michael, 5
Ben-Yossef, Gilad, 5
Binary files, 31–32
Bionic, C library variant, 95
board_early_init_f() function, 234
board_init() function, 234
board_nand_init() function, 205
Books and publications. See also Online resources.

ARM Architectural Reference Manual, 5
ARM System Developer’s Guide, 5, 125
Building Embedded Linux Systems, 5
Embedded Android, 5, 249, 288
Linkers and Loaders, 42
Procedure Call Standard for the ARM Architecture, 78
Programming Embedded System in C and C++, 5
RealView Compilation Tools Developer Guide, 50
RealView Platform Baseboard, 5

Booting
CyanogenMod, 337–338
flash image, 258–266
a Linux kernel, 254

Booting Android from NAND flash
boot process, 271–279
checking the configuration, 272
introduction, 270
preparing system.img, 270
with U-Boot, 323–332
verifying the kernel and the RAMDISK image,

273–274
Booting Android from NOR flash

introduction, 254–256
memory relocation, 256
RAMDISK image, creating, 256–258

Booting Android from NOR flash, flash image
booting, 258–266
creating, 258
source-level debugging, 266–270

Booting the goldfish kernel
booting a Linux kernel, 254
building the kernel, 249–250
debugging the kernel, 252–254
kernel source code, 250–252
prebuilt toolchain, 250–252
running the kernel, 252–254

361Index

Bootloader. See U-Boot.
bootm command, 256, 261, 274
BSP_irq() function, 149
.bss section

C language in a bare metal environment, 68–78
zeroing our, 72–78

bss segment, 42
Building Embedded Linux Systems, 5
byte directive, 43–44
BYTES_READY register, 18

C

C functions, calling from assembly language
code, 79–81

C language in a bare metal environment. See also C
functions.
.bss section, 68–78
.data section, 68–78
.global directive, 81
.isr_vector section, 68–78
.rodata section, 68–78, 80
.stack section, 68–78
.text section, 68–78
calling assembly language functions from, 81
calling C functions from assembly language code,

79–81
calling convention, 78–81
debugging, 75–76
global variables, 68
preparing the stack, 65–68
prerequisites for, 63–65
read-only data, 68
startup code, 68–78
version information, 80
viewing symbol placement, 76–78

C language in a bare metal environment, example code
calling C code from assembly language, 64–65
linker script, 70–72

C library variants. See also Newlib C library;
Semihosting support.

in a bare metal environment, 94–96
Bionic, 95
debugging capabilities, 95
libcmtd.lib, 94
libcmt.lib, 94
Microsoft C runtime libraries, 94
msvcmrt.lib, 94
msvcrtd.lib, 94
msvcrt.lib, 94
msvcurt.lib, 94
RealView Development Suite, 95
uclibc, 95

C Run-Time (CRT) libraries, 94
c04e1.S file, 42–46
c04e2.c file, 53–56
c04e3.c file, 56–57
c04e4.c file, 58
c05e1.c file, 64–65
c05e1.ld file, 64, 70–72
c05e2.c file, 81, 90–91

c06e1.c file, 97, 113–115
c06e1.ld file, 97–103
c06e2.c file, 118–122
c07e1.c file, 128, 134–137
c07e1.ld file, 128
c07e2.c file, 141, 152–155
c07e2.ld file, 141
c07e3.c file, 174
c08e1.c file, 211–216
c08e1.ld file, 211–216
Calling

assembly language functions
from C, 81

C convention, 78–81
clean, build target, 36
CLEAR_ALARM register, 19
CLEAR_INTERRUPT register, 19
Client development environment,

setting up, 25–26
CMD register, 18
CMD_INT_DISABLE command, 18
CMD_INT_ENABLE command, 18
CMD_READ_BUFFER command, 18
CMD_WRITE_BUFFER command, 18
CodeBench. See Sourcery CodeBench.
Coding. See Programming.
Commands

android, 16
bootm, 256, 261, 274
CMD_INT_DISABLE, 18
CMD_INT_ENABLE, 18
CMD_READ_BUFFER, 18
CMD_WRITE_BUFFER, 18
d, 138, 179
e, 138, 179
g, 179
git-diff, 221
iminfo, 260, 273
ld, 31–32
mount, 184–185
NAND_CMD_BLOCK_BAD_SET, 187
NAND_CMD_ERASE, 187
NAND_CMD_GET_DEV_NAME CO, 187
NAND_CMD_READ, 187
NAND_CMD_WRITE, 187
nm, 31–32
objcopy, 32
q, 91
r, 179
s, 179
t, 138, 179
umount, 274
x, 179

Comments, assembly language, 30
Common files, folder for, 81
Compiling U-Boot, 220–224
CONFIG_USE_IRQ macro, 239
Console

debugging serial ports, console log
example, 91

interrupts, enabling/disabling, 18

362 Index

starting GDB in, 37
stepping through instructions, 35
user interface, 35–36
viewing register contents, 34

debug, build target, 37
DEBUG option, 37–38
Debugging

C library variant capabilities, 95
development environment, 25, 37–38
the goldfish kernel, 252–254
makefile template, 37–38
quitting, 91
serial ports, console log example, 91
source-level, 75–76
source-level flash image, 266–270
U-Boot, with GDB, 224–227

Debugging, GDB (GNU Debugger)
scripts for, 227, 267–270
starting in ddd, 37

Denx, Wolfgang, 220
Development environment, debugging, 25, 37–38. See

also Virtualization environment.
Development environment, setting up

Android SDK, 27
building the binary, 30–32
for client, 25–26
downloading/installing toolchains, 26–29
flash memory, emulating, 32–36
for host, 25–26
makefile template, build targets, 32–36
output filename, specifying, 31
running in the Android emulator, 32–36

Device drivers
adding drivers, 239
adding to goldfish, 239
device driver changes, 239–246
Ethernet drivers, 245
NAND flash drivers, 241–243
RTC drivers, 243–245
serial drivers, 239–241

Disabling. See Enabling/disabling.
Dollar sign ($), in assembly language labels, 30
Downloading

EABI/ELF toolchain, 28–29
git repositories, 356–357
GNU/Linux toolchain, 28–29
Sourcery CodeBench Lite, 28–29
Sourcery CodeBench trial version, 28–29
toolchains, 26–29
U-Boot, 220–224

dram_init() function, 234
Drivers. See Device drivers.

E

e command, 138, 179
EA (empty ascending) stacks, 66
EABI/ELF toolchain, downloading, 28–29
Eclipse editor, 29
ED (empty descending) stacks, 66
Editors, 29

Constant names, 69
Copying

converting file formats, 32
.data to RAM, 57–58,

68, 72–78
objcopy command, 32

CORTEX-A processors, 8–9
CORTEX-M processors, 8–9
CORTEX-R processors, 8–9
CRT (C Run-Time) libraries, 94
Customizing Android, supporting new hardware with AOSP

booting Android with U-Boot from NAND flash,
323–332

building the kernel, 317–322
building U-Boot, 322–323
process description, 309–317

Customizing Android, supporting new hardware with
CyanogenMod

booting CyanogenMod, 337–338
building the kernel, 334–337
building U-Boot, 337–338
introduction, 332–334

CyanogenMod, Android emulator build. See also AOSP
(Android Open Source Project).
armemu virtual device, 332–338, 353–354
build process, 298–302
downloading CyanogenMod source, 297
emulator images, Android version of, 306
emulator images, building, 298–302
emulator images, testing, 302–307
introduction, 297
releases, 284

CyanogenMod, creating Android ROM
booting CyanogenMod, 337–338
building the kernel, 334–337
building U-Boot, 337–338
introduction, 332–334

CyanogenMod, supporting new hardware
booting CyanogenMod, 337–338
building the kernel, 334–337
building U-Boot, 337–338
introduction, 332–334

CyanogenMod wiki, 332

D

d command, 138, 179
Data buffer, checking, 87–88
.data section

copying to RAM, 57–58, 68, 72–78
placement, 68–78

Data segment, 42
DATA_LEN register, 18
DATA_PTR register, 18
Date and time

getting/setting, 179
resetting, 173

date.c file, 174
ddd

installing, 29
starting, 33

363Index

c08e1.c, 211–216
c08e1.ld, 211–216
common, folder for, 181
date.c, 174
goldfish.c, 229, 235–239
goldfish.gdb, 268–269
goldfish.nand.reg.h, 189, 190–191
goldfish_uart.c, 174
kernel-qemu image, 183–184
local manifest, 356–357
lowlevel_init.S, 229
mtd.h, 191–195
nand.h, 241–243
project-specific, folder for, 81
ramdisk.img image, 183–184
reading/writing to/from, 112
rtc-goldfish.c, 173–174
rtc.h, 243–245
serial.h, 240
startup_c07e1.S, 128, 132–134
startup_c07e2.S, 141, 150–152
startup_c07e3.S, 174
startup_c08e1.S, 211–216
startup_cs3.S, 96, 104
syscalls_cs3timer.c, 210–216
system.img image, 183
u-boot.gdb, 267
userdata.img image, 183
yaffs_uboot_glue.c, 243

Files, bsp.c
NAND flash test program, 210–216
nested interrupt handler, 140
simple interrupt handler, 128, 129–131
unit test of timer and RTC, 174

Files, goldfish.h
adding Ethernet drivers, 242
description, 229–234
NAND flash drivers, adding to goldfish, 242
serial drivers, adding to goldfish, 240

Files, goldfish_nand.c
NAND flash driver, 189, 195–205
NAND flash test program, 211–216

Files, goldfish_uart.S
goldfish serial port support, 81–83
NAND flash test program, 210–216
Newlib C library, 96
simple interrupt handler, 128, 141

Files, isr.c
NAND flash test program, 211–216
a simple interrupt handler, 141, 142–149
unit test of timer and RTC, 174

Files, low_level_init.c
NAND flash test program, 211–216
a simple interrupt handler, 141
unit test of timer and RTC, 174

Files, serial_goldfish.c
checking data buffer, 87
data input/output, 88–89
goldfish serial port support, 81, 84–85
implementing nested interrupt handler, 141
interrupt support functions, 128

ELF (executable and linkable) format, 32
Embedded Android, 5, 249, 288
Embedded system programming, 5–7. See also Bare

metal programming.
Embedded systems

application layer, 7
architecture of, 7–10
ARM processors, 8–9
definition, 3
software layers, 7–10

eMMC vs. NAND flash, 184
Empty ascending (EA) stacks, 66
Empty descending (ED) stacks, 66
Emulators. See also Android emulator; Tools.

QEMU, 11–12
virtual hardware vs. real hardware, 11–12

Enabling/disabling
CMD_INT_ENABLE command, 18
console interrupts, 18
GOLDFISH_INTERRUPT_ENABLE

register, 127
interrupts, 131
nested interrupt handler, 142–149
timer interrupts, 179

EnterUserMode() function, 150–152
Environments. See Development environment;

Virtualization environment.
Erasing, from NAND flash

block size, 187
flash blocks, 197, 206
flash pages, 185
goldfish_nand_erase() function, 206
NAND_CMD_ERASE command, 187
NAND_DEV_ERASE_SIZE register, 187

Ethernet drivers, adding to
goldfish, 242, 245

Example code, makefile template for,
xx–xxii. See also specific examples.

Executable and linkable (ELF) format, 32

F

FA (full ascending) stacks, 66
FD (full descending) stacks, 66
Files

arm_exc.S, 141, 142–149
c04e1.S, 42–46
c04e2.c, 53–56
c04e3.c, 56–57
c04e4.c, 58
c05e1.c, 64–65
c05e1.ld, 64, 70–72
c05e2.c, 81, 90–91
c06e1.c, 97, 113–115
c06e1.ld, 97–103
c06e2.c, 118–122
c07e1.c, 128, 134–137
c07e1.ld, 128
c07e2.c, 141, 152–155
c07e2.ld, 141
c07e3.c, 174

364 Index

goldfish_nand_isbad(), 206
goldfish_nand_markbad(), 206
goldfish_nand_read(), 206
goldfish_nand_read_oob(), 206
goldfish_nand_write(), 206
goldfish_nand_write_oob(), 206
goldfish_putc(), 88–89
goldfish_unmask_irq(), 131
interrupt support, 128–132
misc_init_r(), 234
mktime(), 174
rtc_get(), 174
rtc_reset(), 174
rtc_set(), 174
sw_handler(), 152–155
SystemCall(), 150–152
timer_init(), 172
to_tm(), 174
__udelay(), 172
udelay_masked(), 172
void goldfish_clear_timer(), 172
void goldfish_set_timer(), 172

G

g command, 179
GDB (GNU Debugger)

scripts for, 227, 267–270
starting in ddd, 37

gdb command prompt, 81
Gerum, Philippe, 5
get_millisecond() function, 172
get_second() function, 172
get_tbclk() function, 172
Getting started. See “Hello World” program.
Git, xvii
git repositories, downloading, 356–357
git-diff command, 221
GitHub, xvii
.global directive, 81
Global variables, 68
GNU toolchain, 11
GNU/Linux toolchain, 28–29
goldfish interrupt controller. See Interrupt controller.
goldfish interrupt handler. See Interrupt handler.
goldfish kernel

source code, URL for, 13
startup log, example code, 19–24

goldfish kernel, initializing
hardware interfaces, example code, 21–22
memory, example code, 20
NAND flash, example code, 22–24

goldfish platform
hardware diagram, 15
serial ports, 18, 81–87

goldfish.c file, 229, 235–239
goldfish_disable_all_irq() function, 131
goldfish.gdb file, 268–269
goldfish_getc() function, 88–89
goldfish_get_irq_num() function, 131
goldfish_gets() function, 88–89

Files, serial_goldfish.c (continued)
NAND flash test program, 210–216
Newlib C library, 96
unit test of timer and RTC, 174

Files, startup.S
calling C code in assembler language, 72–77
calling main from, 80
goldfish serial support, 81

Files, syscalls_cs3.c
nested interrupt handler, 141
Newlib C library, 96, 105–112
a simple interrupt handler, 128
unit test of timer and RTC, 174

Files, timer.c
description, 128
NAND flash test program, 210–216
nested interrupt handler, 140
timer interface functions, 166–171
unit test of timer and RTC, 174

Flash devices. See NAND flash.
Flash image

booting, 258–266
creating, 258

Flash memory. See also NAND flash; NOR flash.
copying .data to RAM, 57–58, 68
definition, 39
emulating, 32–36
specifying a file for, 32–36

4byte directive, 43–44
FPGA Cores processors, 8–9
FTL (Flash Translation Layer), 188
Full ascending (FA) stacks, 66
Full descending (FD) stacks, 66
Functions

ARM_dAbort() function, 137
ARM_fiq(), 137
ARM_irq(), 137
ARM_pAbort(), 137
ARM_reserved(), 137
ARM_swi(), 137
ARM_undef(), 137
assembly language, calling from C language, 81
board_early_init_f(), 234
board_init(), 234
board_nand_init(), 205
BSP_irq(), 149
C language, calling from assembly language, 79–81
dram_init(), 234
EnterUserMode(), 150–152
get_millisecond(), 172
get_second(), 172
get_tbclk(), 172
goldfish_disable_all_irq(), 131
goldfish_getc(), 88–89
goldfish_get_irq_num(), 131
goldfish_gets(), 88–89
goldfish_irq_status(), 132
goldfish_mask_irq(), 131
goldfish_nand_cmd(), 205–206
goldfish_nand_erase(), 206
goldfish_nand_init_device(), 205

365Index

Initializing, data in RAM
accessing memory, 60–61
copying .data to RAM, 57–58, 68
example code, 56–57, 58–59
LMA (load memory address), 57–58
load address, 57–58
overview, 56–58
runtime address, 57
VMA (virtual memory address), 57

Input/output. See also Reading/writing.
serial, testing, 139
serial ports, 88–89
serial_goldfish.c file, 88–89

Installing
ddd, 29
JDK, 288
qemu-system-arm command, 223
repo tool, 289
required packages for AOSP, 288
toolchains, 26–29

“Integrated Kernel Building,” 334
Interrupt controller, 126–128. See also Interrupt handler.
Interrupt handler

current pending interrupt number, getting, 131
enabling/disabling interrupts, 131
example code files, 128. See also specific files.
implementing, 132–134
interrupt support functions, 129–132
number of current pending interrupts, getting, 132
serial input/output, testing, 139
startup code, 132–134
testing, 134–140
timer interrupt, testing, 140

Interrupt handler, nested
enabling, 142–149
example code files, 140–141. See also specific files.
implementation, 142–149
processor mode, changing, 150–152
processor mode switch, discovering, 155–163
processor modes, 157
program status register, 157
setting breakpoints, 158–163
software interrupt, triggering, 150–152
stack pointer addresses, 156
stack structure, 156
testing, 155–163

Interrupt handler, simplest form
alarm, testing, 139
current pending interrupt number, getting, 131
enabling/disabling interrupts, 131
example code files, 128
implementing, 132–134
interrupt support functions, 129–132
number of current pending interrupts, getting, 132
serial input/output, testing, 139
startup code, 132–134
testing, 134–140
timer interrupt, testing, 140

Interrupts
console, enabling/disabling, 18
for hardware interfaces, 17

goldfish.h file
adding Ethernet drivers, 242
description, 229–234
NAND flash drivers, adding to goldfish, 242
serial drivers, adding to goldfish, 240

GOLDFISH_INTERRUPT_DISABLE register, 127
GOLDFISH_INTERRUPT_DISABLE_ALL register, 127
GOLDFISH_INTERRUPT_ENABLE register, 127
GOLDFISH_INTERRUPT_NUMBER register, 127
GOLDFISH_INTERRUPT_STATUS register, 127
goldfish_irq_status() function, 132
goldfish_mask_irq() function, 131
goldfish_nand.c file

NAND flash driver, 189, 195–205
NAND flash test program, 211–216

goldfish_nand_cmd() function, 205–206
goldfish_nand_erase() function, 206
goldfish_nand_init_device() function, 205
goldfish_nand_isbad() function, 206
goldfish_nand_markbad() function, 206
goldfish_nand_read() function, 206
goldfish_nand_read_oob() function, 206
goldfish.nand.reg.h file, 189, 190–191
goldfish_nand_write() function, 206
goldfish_nand_write_oob() function, 206
goldfish_putc() function, 88–89
goldfish_uart.c file, 174
goldfish_uart.S file

goldfish serial port support, 81–83
NAND flash test program, 210–216
Newlib C library, 96
simple interrupt handler, 128, 141

goldfish_unmask_irq() function, 131
Google Android SDK, 284–287

H

Hard reset phase, 103
Hardware

new, supporting. See Supporting
new hardware.

programming directly on. See Bare metal
programming.

virtual. See Virtual hardware.
Hardware interfaces

initializing, example code, 21–22
registers and interrupts, 17
supported by Android emulator, 17–18

Hardware platform, overview, 11
hardware.h file, 85–87
“Hello World” program, 29–30
Host development environment, setting up, 25–26

I

iminfo command, 260, 273
_init system call, 112
Initializing

hardware interfaces, example code, 21–22
memory, example code, 20
NAND flash, example code, 22–24

366 Index

Text segment, 42
word directive, 43–44

Linker script. See also Linker.
. (period), location counter, 52
* (asterisk), wildcard character, 52
for C language, example code, 70–72
description, 51–53
example code, 53–56

Linkers and Loaders, 42
Linking, 41. See also Linker; Linker script.
Linux

GNU/Linux toolchain, 28–29
starting SDK Manager under, 15

Linux kernel
booting, 254
testing flash info from, 206–210

LMA (load memory address), 57–58
Load address, 57–58
Local manifest file, 356–357
Location counter, period (.), 52, 69
Logs for goldfish kernel startup, example

code, 19–24
low_level_init.c file

NAND flash test program, 211–216
a simple interrupt handler, 141
unit test of timer and RTC, 174

lowlevel_init.S file, 229

M

make command, building a development environment,
30–31

makedefs.arm makefile, template for, xx–xxii
makefile template

build targets, 32–36
debugging, 37–38
example code, xx–xxi

Masters, Jon, 5
Memory

initializing, example code, 20
managing, 112
relocation, booting Android from NOR flash, 256

Memory map, 39–41
Memory Technology Device (MTD). See MTD (Memory

Technology Device).
Mentor Graphics, downloading toolchains, 28–29
Microsoft C runtime libraries, 94
Milliseconds/seconds since boot up, getting, 172
misc_init_r() function, 234
MIUI development community, 283–284
mkimage utility, 258
mktime() function, 174
mkvendor.sh script, 332–333
Mobile devices, hardware features supported by Android

emulator, 13–14
mount command, 184–185
msvcmrt.lib runtime library, 94
msvcrtd.lib runtime library, 94
msvcrt.lib runtime lib, 94
msvcurt.lib runtime library, 94
MTD (Memory Technology Device). See also

NAND flash.

isr.c file
NAND flash test program, 211–216
a simple interrupt handler, 141, 142–149
unit test of timer and RTC, 174

.isr_vector section, 68–78

K

Kaufmann, Morgan, 125
Kernel

Android, verifying, 273–274
building for armemu virtual device, 318–322
building with AOSP, 317–322
building with CyanogenMod, 334–337
“Integrated Kernel Building,” 334
verifying, 273–274

Kernel, Android ROM
supporting new hardware with AOSP, 317–322
supporting new hardware with CyanogenMod,

334–337
Kernel, goldfish

booting a Linux kernel, 254
building, 249–250
building the kernel, 249–250
debugging, 252–254
Linux, booting, 254
prebuilt toolchain, 250–252
running, 252–254
source code, 250–252
startup, example code, 19–24

Kernel, Linux
booting, 254
testing flash info from, 206–210

kernel-qemu image file, 183–184

L

Labels, assembly language, 30
ld command, 31–32
“Learn about the Repo Tool...,” 355
Learning embedded system programming, 6
Levine, John R., 42
libcmtd.lib runtime library, 94
libcmt.lib runtime library, 94
Linaro, history of, 220
Linker. See also Linker script.

2byte directive, 43–44
4byte directive, 43–44
align directive, 44
assembler directives, 43–44
bss segment, 42
byte directive, 43–44
Data segment, 42
definition, 41
description, 41–42
example code, 42–43, 44–46, 46–49
executable output, 42
relocatable code, 50
relocation, 46–49
section merging, 49–50
section placement, 50–51
symbol resolution, 42–43

367Index

data transfer size, 188
lowest 32 bits of data address, 188
lowest 32 bits of device capacity, 187
name length, 187
number, 187
number of NAND flash chips, 187
out-of-band data size, 187
page size, 187
registers, 187–188
return status of controller commands, 187
top 32 bits of data address, 188
top 32 bits of device capacity, 187

NAND flash programming interface, reading/writing
blocks, 199–200
blocks with out-of-band, 198
out-of-band data, 206
page data, 206
to/from flash memory, 188

NAND flash programming interface, testing
example code, 206–210, 211–216
files, 210. See also specific files.
flash info from the Linux kernel, 206–210

NAND flash properties
description, 185
flash device layout, 185
flash info from the Linux kernel, 206–210
getting, 188

NAND_ADDR_HIGH register, 188
NAND_ADDR_LOW register, 188
NAND_CMD_BLOCK_BAD_SET command, 187
NAND_CMD_ERASE command, 187
NAND_CMD_GET_DEV_NAME CO command, 187
NAND_CMD_READ command, 187
NAND_CMD_WRITE command, 187
NAND_COMMAND register, 187
NAND_DATA register, 187
NAND_DEV register, 187
NAND_DEV_ERASE_SIZE register, 187
NAND_DEV_EXTRA_SIZE register, 187
NAND_DEV_FLAGS register, 187
NAND_DEV_NAME_LEN register, 187
NAND_DEV_PAGE_SIZE register, 187
NAND_DEV_SIZE_HIGH register, 187
NAND_DEV_SIZE_LOW register, 187
nand.h file, 241–243
NAND_NUM_DEV register, 187
NAND_RESULT register, 187
NAND_TRANSFER_SIZE register, 188
NAND_VERSION register, 187
Nested interrupt handler. See Interrupt

handler, nested.
Newlib C library

CS3 linker scripts, 97–103
system call implementation, 104–111

Newlib C library, example code. See also specific files.
common files, 96
CS3 linker scripts, 97–104
debugging the library, 112–116
project-specific files, 96
running the library, 112–116
semihosting support, 118–122
startup code sequence, 97–103

compatibility with block devices, 188
NAND flash support for, 188–189
setting up structure for, example code, 203
support for, 188–189
U-Boot API, 205

MTD (Memory Technology Device), example code
checking for bad blocks, 201
data structure, 196
erasing blocks, 197
getting/setting bad block data, 206
initializing a device, 202–203
initializing NAND flash controller, 203–204
marking bad blocks, 201–202
mtd_info structure, implementing, 190–191
operation sequence, 196–197
reading blocks, 199–200
reading/writing blocks with out-of-band, 198
setting up the MTD structure, 203
writing blocks, 200

mtd.h file, 191–195
mtd_info structure, implementing, 190–191

N

NAND flash. See also Booting Android from NAND flash;
NOR flash.

available storage, calculating, 185
checking for bad blocks, 201
data structure, 196
vs. eMMC, 184
erasing a page, 185
erasing blocks, 197
FTL (Flash Translation Layer), 188
getting/setting bad block data, 206
initializing, example code, 22–24
initializing a device, 202–203
initializing NAND flash controller, 203–204
marking bad blocks, 201–202
MTD (Memory Technology Device) support,

188–189. See also MTD (Memory Technology
Device).

mtd_info structure, implementing, 190–191
operation sequence, 196–197
vs. SD/MMC, 184
setting up the MTD structure, 203
vs. SSD, 184

NAND flash controller
command execution, 188
commands, 187
initializing, 203–204
number of devices connected, detecting, 188
verifying version of, 188

NAND flash device drivers
example code, 195–205
functions, 205–206
illustration, 189

NAND flash programming interface
erasing block size, 187
erasing blocks, 206

NAND flash programming interface, device information
capabilities, 187
data output pointer, 187

368 Index

ramdisk.img image file, 183–184
Read buffer command. See CMD_READ_BUFFER

command.
_read system call, 112
Reading/writing, NAND flash programming interface. See

also Input/output.
blocks, 199–200
blocks with out-of-band, 198
out-of-band data, 206
page data, 206
to/from flash memory, 188

Reading/writing to/from file, 112
Read-only data, 68
Real-time clock (RTC). See RTC (real-time clock), and

timer.
Real-time operating system (RTOS). See also Embedded

system programming.
description, 5
vs. a full operating system, 9

RealView Compilation Tools Developer Guide, 50
RealView Development Suite, 95
RealView Platform Baseboard, 5
Registers

ALARM_HIGH, 19
ALARM_LOW, 19
APCS use convention, 78
ARM register set, 67
banked, initializing, 66–68
BYTES_READY, 18
CLEAR_ALARM, 19
CLEAR_INTERRUPT, 19
CMD, 18
DATA_LEN, 18
DATA_PTR, 18
GOLDFISH_INTERRUPT_DISABLE, 127
GOLDFISH_INTERRUPT_DISABLE_
ALL, 127

GOLDFISH_INTERRUPT_ENABLE, 127
GOLDFISH_INTERRUPT_NUMBER, 127
GOLDFISH_INTERRUPT_STATUS, 127
for hardware interfaces, 17
NAND_ADDR_HIGH, 188
NAND_ADDR_LOW, 188
NAND_COMMAND, 187
NAND_DATA, 187
NAND_DEV, 187
NAND_DEV_ERASE_SIZE, 187
NAND_DEV_EXTRA_SIZE, 187
NAND_DEV_FLAGS, 187
NAND_DEV_NAME_LEN, 187
NAND_DEV_PAGE_SIZE, 187
NAND_DEV_SIZE_HIGH, 187
NAND_DEV_SIZE_LOW, 187
NAND_NUM_DEV, 187
NAND_RESULT, 187
NAND_TRANSFER_SIZE, 188
NAND_VERSION, 187
PUT_CHAR, 18
TIME_HIGH, 19
TIME_LOW, 19

Newlib C library, startup code sequence
assembly initialization phase, 103
C initialization phase, 104
common, 97
custom, 103–104
hard reset phase, 103

nm command, 31–32
NOR flash, booting Android from. See also NAND flash.

introduction, 254–256
memory relocation, 256
RAMDISK image, creating, 256–258

O

objcopy command, 32
Object file formats, converting, 32
Online resources. See also Books and publications.

CyanogenMod wiki, 332
“Integrated Kernel Building,” 334
“Learn about the Repo Tool...,” 355
“Repo: Tips & Tricks,” 355
source code for this book, 344

OOB (out-of-band) data
definition, 185
reading/writing, 206
reading/writing blocks with, 198
size, getting, 187

P

Period (.)
in assembly language directives, 30
location counter, 52, 69
in section names, 69

Privileged modes, 66
Procedure Call Standard for the ARM Architecture, 78
Processor mode switch, discovering, 155–163
Processor modes

changing, 150–152
list of, 157

Program status register, nested interrupt handler, 157
Programming

directly on hardware. See Bare metal programming.
your first program, 29–30

Programming Embedded System in C and C++, 5
Project-specific files, folder for, 81
PUT_CHAR register, 18

Q

q command, 91
QEMU emulator, 11–12
qemu-system-arm command, installing, 223
Quitting debugging, 91

R

r command, 179
RAMDISK image

creating, 256–258
verifying, 273–274

369Index

Serial ports, goldfish platform
base addresses, 18
checking the data buffer, 87–88
debugging, console log example, 91
getting data from, 87–89
input/output, 88–89
providing support for, 81–87
sending data to, 88–89
test cases, example code, 90–91
unit test, 90–91

Serial ports, initializing, 112
serial_goldfish.c file

checking data buffer, 87
data input/output, 88–89
goldfish serial port support, 81, 84–85
implementing nested interrupt handler, 141
interrupt support functions, 128
NAND flash test program, 210–216
Newlib C library, 96
unit test of timer and RTC, 174

serial.h file, 240
Setting up a development environment. See Development

environment, setting up.
Sloss, Andrew N., 5
Software interrupt, triggering, 150–152
Software layers of embedded systems, 7–10
Source code for this book

AOSP, building, 352–353
build environment, setting up, 341–344
CyanogenMod, building, 353–354
organization of, 344
virtual machine, setting up, 344

Source code for this book, building
from the command line, 345
from Eclipse, 346–350

Source code for this book, overview
Part I, 345–350
Part II, 350–352
Part III, 352–354

Source code for this book, testing
from the command line, 345
from Eclipse, 346–350

Source tree, syncing, 355–356
Source-level debugging a flash image, 266–270
Sourcery CodeBench Lite, downloading, 28–29
Sourcery CodeBench trial version, downloading, 28–29
Spare area. See OOB (out-of-band) data.
SSD vs. NAND flash, 184
Stack

banked stack pointers, initializing, 66–68
EA (empty ascending), 66
ED (empty descending), 66
FA (full ascending), 66
FD (full descending), 66
preparing for a bare metal

environment, 65–68
types of, 66

Stack pointer addresses, nested interrupt
handler, 156

Stack pointers, initializing, 66–68, 72

for timer controller, 18–19
TIMER_TIME_HIGH, 165
TIMER_TIME_LOW, 165
viewing contents of, 34–36

Relocatable code, 50
Relocation, 46–49, 227
“Repo: Tips & Tricks,” 355
repo tool

downloading git repositories, 356–357
initializing a client, 289
installing, 289
local manifest file, 356–357
online resources for, 355
syncing a new source tree, 355–356

.rodata section, 68–78, 80
ROM. See Android ROM.
RTC (real-time clock), and timer. See also Timer.

commands, 179. See also specific commands.
converting to/from a timestamp, 172
date and time, getting/setting, 179
description, 172–173
example code, 173–174, 175–179
resetting, 179
system date, resetting, 173
test delay function, 179
timeout, setting/increasing/resetting, 179
timer interrupts, enabling/disabling, 179
unit test, example code, 174–179

RTC drivers, adding to goldfish, 243–245
rtc_get() function, 174
rtc-goldfish.c file, 173–174
rtc.h file, 243–245
rtc_reset() function, 174
rtc_set() function, 174
RTOS (real-time operating system). See also Embedded

system programming.
description, 5
vs. a full operating system, 9

Runtime address, 57
Runtime library support. See C library variants.

S

s command, 179
_sbrk system call, 112
SDK. See Android SDK.
SDK Manager. See also AVD Manager.

starting under Linux, 15
version used in this book, 26

SD/MMC vs. NAND flash, 184
Seconds/milliseconds since boot up, getting, 172
Section merging, 49–50
Section placement, 50–51
SecurCore processors, 8–9
Semihosting support

definition,
example code, 118–122
Newlib C library, 118–122
QEMU ARM semihosting, 116–122

Serial drivers, adding to goldfish, 239–241

370 Index

a known configuration of U-Boot, 222–224
unit test of timer and RTC, 174

Testing, interrupt handler
alarms, 139
example code, 134–140
serial input/output, 139

Testing, nested interrupt handler
nested interrupt handler, 155–163
RTC (real-time clock) unit test, 174–179
setting breakpoints, 158–163
software interrupts, 163–164
system calls, 163–164
timer, 174–179
timer interrupt, 140

.text section, 68–78
Text segment, 42
TIME_HIGH register, 19
TIME_LOW register, 19
Timeout, setting/increasing/resetting, 179
Timer

delay functions, 172
description, 164–171
example code, 19–24
goldfish-specific functions, 172
interface functions, example code, 166–171
last system tick, initializing, 172
number of ticks per second, getting, 172
registers, 18–19
seconds/milliseconds since boot up,

getting, 172
setting/clearing timer interrupts, 172
timestamp, initializing, 172
U-Boot API, 172

Timer, and RTC
converting to/from a timestamp, 172
date and time, getting/setting, 179
description, 172–173
example code, 173–174, 175–179
system date, resetting, 173
test delay function, 179
timeout, setting/increasing/resetting, 179
timer interrupts, enabling/disabling, 179
unit test, example code, 174–179

Timer interrupts
alarms, setting/clearing, 19
enabling/disabling, 179

timer.c file
description, 128
NAND flash test program, 210–216
nested interrupt handler, 140
timer interface functions, 166–171
unit test of timer and RTC, 174

timer_init() function, 172
TIMER_TIME_HIGH register, 165
TIMER_TIME_LOW register, 165
Timestamp, 172
Toolchains

cross-compilaton, identifying, 31
downloading, 26–29
installing, 26–29

.stack section, 68–78
Stack structure, nested interrupt handler, 156
Startup code for C language, 68–78
Startup code for Newlib C library

assembly initialization phase, 103
C initialization phase, 104
common, 97
CS3 linker scripts, 97–103
custom, 103–104
hard reset phase, 103

startup_c07e1.S file, 128, 132–134
startup_c07e2.S file, 141, 150–152
startup_c07e3.S file, 174
startup_c08e1.S file, 211–216
startup_cs3.S file, 96, 104
startup.S file

calling C code in assembler language, 72–77
calling main from, 80
goldfish serial support, 81

Stepping through instructions with ddd, 35
Supporting new hardware, with AOSP

booting Android with U-Boot from NAND flash,
323–332

building the kernel, 317–322
building U-Boot, 322–323
process description, 309–317

Supporting new hardware, with CyanogenMod
booting CyanogenMod, 337–338
building the kernel, 334–337
building U-Boot, 337–338
introduction, 332–334

sw_handler() function, 152–155
Symbol placement, viewing, 76–78
Symbol resolution, 42–43
Symes, Dominic, 5
Syncing a new source tree, 355–356
syscalls_cs3.c file

nested interrupt handler, 141
Newlib C library, 96, 105–112
a simple interrupt handler, 128
unit test of timer and RTC, 174

syscalls_cs3timer.c file, 210–216
System call implementation, 104–112
System date

getting/setting, 173
resetting, 179

SystemCall() function, 150–152
system.img

booting Android from NAND flash, 270
description, 257
preparing for booting Android, 270

system.img image file, 183

T

t command, 138, 179
Test delay function, 179
Testing

from the command line, 345
from Eclipse, 346–350

371Index

uclibc, library variant, 95
__udelay() function, 172
udelay_masked() function, 172
umount command, 274
Underscore (_)

in assembly language labels, 30
in symbol names, 69

Unit test
Newlib C library, 112–116
serial ports, 90–91

Uppercase letters in constant names, 69
userdata.img, 257
userdata.img image file, 183

V

VERBOSE option, 37–38
Verifying

Android kernel, 273–274
RAMDISK image, 273–274

Versatile PB vs. goldfish, 229
versatileqemu program, 222–224
Version information, 80
Virtual devices

configuring, 14–16
setting up, 284–287

Virtual hardware
overview, 13–14
vs. real hardware, 11

VirtualBox, 344
Virtualization environment. See also Development

environment.
definition, 6
learning embedded system programming, 6

VMA (virtual memory address), 57
VMware Player, 344
void goldfish_clear_timer() function, 172
void goldfish_set_timer() function, 172

W

Wildcard character, asterisk (*), 52
word directive, 43–44
Wright, Chris, 5
Write buffer command. See CMD_WRITE_BUFFER

command.
_write system call, 112

X

x command, 179

Y

yaffs_uboot_glue.c file, 243
Yaghmour, Karim, 5, 249, 288
ydevconfig command, 272
ydevls command, 272
ymount command, 273
yrdm command, 273

Tools. See also Android emulator; QEMU emulator;
specific tools.

downloading, 28–29
GNU toolchain, 11
GNU/Linux toolchain, 28–29
prebuilt toolchain, 250–252

to_tm() function, 174
2byte directive, 43–44

U

U-Boot
debugging with GDB, 224–227
downloading and compiling, 220–224
introduction, 219–220
NAND flash API, 205
recommended version, 220
relocation, 227
required functionalities, 219–220
testing a known configuration, 222–224

U-Boot, booting Android from NAND flash
boot process, 271–279
checking the configuration, 272
introduction, 270
preparing system.img, 270
verifying the kernel and the RAMDISK image,

273–274
U-Boot, booting Android from NOR flash

flash image, booting, 258–266
flash image, creating, 258
flash image, source-level debugging, 266–270
introduction, 254–256
memory relocation, 256
RAMDISK image, creating, 256–258

U-Boot, booting the goldfish kernel
booting a Linux kernel, 254
building the kernel, 249–250
debugging the kernel, 252–254
kernel source code, 250–252
prebuilt toolchain, 250–252
running the kernel, 252–254

U-Boot, building with
AOSP, 322–323
CyanogenMod, 337–338

U-Boot, porting to the goldfish platform
adding drivers, 239
basic steps, 227
board changes, summary of, 246–247
board-level initialization functions, 234
board-specific changes, 229–239
creating a new board, 228–229
device driver changes, 239–246
Ethernet drivers, 245
example code, 230–239
NAND flash drivers, 241–243
RTC drivers, 243–245
serial drivers, 239–241

u-boot.gdb file, 267
Ubuntu, downloading, 341, 344

	Contents
	Preface
	Acknowledgments
	About the Author
	10 Using U-Boot to Boot the Goldfish Kernel
	Building the Goldfish Kernel
	Prebuilt Toolchain and Kernel Source Code
	Running and Debugging the Kernel in the Emulator
	Booting Android from NOR Flash
	Booting Android from NAND Flash
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

