If you find yourself working around the constraints of relational databases, then a NoSQL database might be a better option. This book will help you identify and implement the best NoSQL database for your application.
NoSQL for Mere Mortals®
The For Mere Mortals® Series presents you with information on important technology topics in an easily accessible, common sense manner. If you have little or no background or formal training on the subjects covered in the series, these guides are for you. This series avoids dwelling on the theoretical and instead takes you right to the heart of the topic with a matter-of-fact, hands-on approach.

“These books will give you the knowledge you need to do your work with confidence.”

Mike Hernandez - Series Editor

Are you an instructor? Most For Mere Mortals guides have extensive teaching resources and supplements available.

Visit informit.com/formeremortalsseries for a complete list of available products.
For Katherine
About the Author

Dan Sullivan is a data architect and data scientist with more than 20 years of experience in business intelligence, machine learning, data mining, text mining, Big Data, data modeling, and application design. Dan’s project work has ranged from analyzing complex genomics and proteomics data to designing and implementing numerous database applications. His most recent work has focused on NoSQL database modeling, data analysis, cloud computing, text mining, and data integration in life sciences. Dan has extensive experience in relational database design and works regularly with NoSQL databases.

Dan has presented and written extensively on NoSQL, cloud computing, analytics, data warehousing, and business intelligence. He has worked in many industries, including life sciences, financial services, oil and gas, manufacturing, health care, insurance, retail, power systems, telecommunications, pharmaceuticals, and publishing.
Contents

Preface xxi
Introduction xxv

PART I: INTRODUCTION 1
Chapter 1 Different Databases for Different Requirements 3
 Relational Database Design 4
 E-commerce Application 5
Early Database Management Systems 6
 Flat File Data Management Systems 7
 Organization of Flat File Data Management Systems 7
 Random Access of Data 9
 Limitations of Flat File Data Management Systems 9
Hierarchical Data Model Systems 12
 Organization of Hierarchical Data Management Systems 12
 Limitations of Hierarchical Data Management Systems 14
Network Data Management Systems 14
 Organization of Network Data Management Systems 15
 Limitations of Network Data Management Systems 17
Summary of Early Database Management Systems 17
The Relational Database Revolution 19
 Relational Database Management Systems 19
 Organization of Relational Database Management Systems 20
 Organization of Applications Using Relational Database Management Systems 26
 Limitations of Relational Databases 27
Motivations for Not Just/No SQL (NoSQL) Databases 29
 Scalability 29
 Cost 31
 Flexibility 31
 Availability 32
Summary 34
Case Study 35
Review Questions 36
References 37
Bibliography 37

Chapter 2 Variety of NoSQL Databases 39

Data Management with Distributed Databases 41
 Store Data Persistently 41
 Maintain Data Consistency 42
 Ensure Data Availability 44
 Consistency of Database Transactions 47
 Availability and Consistency in Distributed Databases 48
 Balancing Response Times, Consistency, and Durability 49
 Consistency, Availability, and Partitioning: The CAP Theorem 51
ACID and BASE 54
 ACID: Atomicity, Consistency, Isolation, and Durability 54
 BASE: Basically Available, Soft State, Eventually Consistent 56
Types of Eventual Consistency 57
 Casual Consistency 57
 Read-Your-Writes Consistency 57
 Session Consistency 58
 Monotonic Read Consistency 58
 Monotonic Write Consistency 58
Four Types of NoSQL Databases 59
Key-Value Pair Databases 60
 Keys 60
 Values 64
 Differences Between Key-Value and Relational Databases 65
Document Databases 66
 Documents 66
 Querying Documents 67
 Differences Between Document and Relational Databases 68
Column Family Databases 69
Columns and Column Families 69
Differences Between Column Family and Relational Databases 70
Graph Databases 71
Nodes and Relationships 72
Differences Between Graph and Relational Databases 73
Summary 75
Review Questions 76
References 77
Bibliography 77

PART II: KEY-VALUE DATABASES 79
Chapter 3 Introduction to Key-Value Databases 81
From Arrays to Key-Value Databases 82
Arrays: Key Value Stores with Training Wheels 82
Associative Arrays: Taking Off the Training Wheels 84
Caches: Adding Gears to the Bike 85
In-Memory and On-Disk Key-Value Database: From Bikes to Motorized Vehicles 89
Essential Features of Key-Value Databases 91
Simplicity: Who Needs Complicated Data Models Anyway? 91
Speed: There Is No Such Thing as Too Fast 93
Scalability: Keeping Up with the Rush 95
Scaling with Master-Slave Replication 95
Scaling with Masterless Replication 98
Keys: More Than Meaningless Identifiers 103
How to Construct a Key 103
Using Keys to Locate Values 105
Hash Functions: From Keys to Locations 106
Keys Help Avoid Write Problems 107
Values: Storing Just About Any Data You Want 110
 Values Do Not Require Strong Typing 110
 Limitations on Searching for Values 112
Summary 114
Review Questions 115
References 116
Bibliography 116

Chapter 4 Key-Value Database Terminology 117
Key-Value Database Data Modeling Terms 118
 Key 121
 Value 123
 Namespace 124
 Partition 126
 Partition Key 129
 Schemaless 129
Key-Value Architecture Terms 131
 Cluster 131
 Ring 133
 Replication 135
Key-Value Implementation Terms 137
 Hash Function 137
 Collision 138
 Compression 139
Summary 141
Review Questions 141
References 142

Chapter 5 Designing for Key-Value Databases 143
Key Design and Partitioning 144
 Keys Should Follow a Naming Convention 145
 Well-Designed Keys Save Code 145
 Dealing with Ranges of Values 147
 Keys Must Take into Account Implementation Limitations 149
 How Keys Are Used in Partitioning 150
The Need for Joins 243
Executing Joins: The Heavy Lifting of Relational Databases 245
Executing Joins Example 247
What Would a Document Database Modeler Do? 248
The Joy of Denormalization 249
Avoid Overusing Denormalization 251
Just Say No to Joins, Sometimes 253
Planning for Mutable Documents 255
Avoid Moving Oversized Documents 258
The Goldilocks Zone of Indexes 258
Read-Heavy Applications 259
Write-Heavy Applications 260
Modeling Common Relations 261
One-to-Many Relations in Document Databases 262
Many-to-Many Relations in Document Databases 263
Modeling Hierarchies in Document Databases 265
Parent or Child References 265
Listing All Ancestors 266
Summary 267
Case Study: Customer Manifests 269
Embed or Not Embed? 271
Choosing Indexes 271
Separate Collections by Type? 272
Review Questions 273
References 273

PART IV: COLUMN FAMILY DATABASES 275
Chapter 9 Introduction to Column Family Databases 277
In the Beginning, There Was Google BigTable 279
Utilizing Dynamic Control over Columns 280
Indexing by Row, Column Name, and Time Stamp 281
Controlling Location of Data 282
Taking a Look Under the Hood: More Column Family Database Components 317
Commit Log 317
Bloom Filter 319
Consistency Level 321
Processes and Protocols 322
Replication 322
Anti-Entropy 323
Gossip Protocol 324
Hinted Handoff 325
Summary 326
Review Questions 327
References 327

Chapter 11 Designing for Column Family Databases 329
Guidelines for Designing Tables 332
Denormalize Instead of Join 333
Make Use of Valueless Columns 334
Use Both Column Names and Column Values to Store Data 334
Model an Entity with a Single Row 335
Avoid Hotspotting in Row Keys 337
Keep an Appropriate Number of Column Value Versions 338
Avoid Complex Data Structures in Column Values 339
Guidelines for Indexing 340
When to Use Secondary Indexes Managed by the Column Family Database System 341
When to Create and Manage Secondary Indexes Using Tables 345
Tools for Working with Big Data 348
Extracting, Transforming, and Loading Big Data 350
Analyzing Big Data 351
Describing and Predicting with Statistics 351
Finding Patterns with Machine Learning 353
Tools for Analyzing Big Data 354
Contents

Tools for Monitoring Big Data 355
Summary 356
Case Study: Customer Data Analysis 357
 Understanding User Needs 357
Review Questions 359
References 360

PART V: GRAPH DATABASES 361
Chapter 12 Introduction to Graph Databases 363
 What Is a Graph? 363
 Graphs and Network Modeling 365
 Modeling Geographic Locations 365
 Modeling Infectious Diseases 366
 Modeling Abstract and Concrete Entities 369
 Modeling Social Media 370
 Advantages of Graph Databases 372
 Query Faster by Avoiding Joins 372
 Simplified Modeling 375
 Multiple Relations Between Entities 375
Summary 376
Review Questions 376
References 377

Chapter 13 Graph Database Terminology 379
 Elements of Graphs 380
 Vertex 380
 Edge 381
 Path 383
 Loop 384
 Operations on Graphs 385
 Union of Graphs 385
 Intersection of Graphs 386
 Graph Traversal 387
It is difficult to avoid discussions about data. Individuals are concerned about keeping their personal data private. Companies struggle to keep data out of the hands of cybercriminals. Governments and businesses have an insatiable appetite for data. IT analysts trip over themselves coming up with new terms to describe data: Big Data, streaming data, high-velocity data, and unstructured data. There is no shortage of terms for ways to store data: databases, data stores, data warehouses, and data lakes. Someone has gone so far as to coin the phrase data swamp.

While others engage in sometimes heated discussions about data, there are those who need to collect, process, analyze, and manage data. This book is for them.

NoSQL databases emerged from unmet needs. Data management tools that worked well for decades could not keep up with demands of Internet applications. Hundreds and thousands of business professionals using corporate databases were no longer the most challenging use case. Companies such as Google, Amazon, Facebook, and Yahoo! had to meet the needs of users that measured in the millions.

The theoretically well-grounded relational data model that had served us so well needed help. Specialized applications, like Web crawling and online shopping cart management, motivated the enhancement and creation of nonrelational databases, including key-value, document, column family, and graph databases. Relational databases are still needed and face no risk of being replaced by NoSQL databases.
Instead, NoSQL databases offer additional options with different performance and functional characteristics.

This book is intended as a guide to introduce NoSQL databases, to discuss when they work well and when they do not, and, perhaps most important, to describe how to use them effectively to meet your data management needs.

You can find PowerPoints, chapter quizzes, and an accompanying instructor’s guide in Pearson’s Instructor Resource Center (IRC) via the website pearsonhighered.com.
Acknowledgments

This book is the product of a collaboration, not a single author as the cover may suggest. I would like to thank my editor, Joan Murray, for conceiving of this book and inviting me into the ranks of the well-respected authors and publishing professionals who have created the For Mere Mortals series.

Tonya Simpson patiently and professionally took a rough draft of NoSQL for Mere Mortals and turned it into a polished, finished product. Thanks to Sondra Scott, Cindy Teeters, and Mark Renfrow of Pearson for their help in seeing this book to completion. Thank you to Karen Annett for copyediting this book; I know I gave you plenty to do.

Thanks to Theodor Richardson for his thoughtful and detail-oriented technical edit.

My family was a steadfast support through the entire book writing process.

My father-in-law, Bill Aiken, is my number-one fan and my constant source of encouragement.

I am thankful for the encouragement offered by my children Nicole, Charles, and Kevin and their partners Katie and Sara.

I would like to especially thank my sons, Nicholas and James. Nicholas read chapters and completed review questions as if this were a textbook in a course. He identified weak spots and was a resource for improving the explanations throughout the text. James, a professional technology writer himself, helped write the section on graph databases. He did not hesitate to make time in his schedule for yet another unexpected request for help from his father, and as a result, the quality of those chapters improved.
Neither this book nor the other professional and personal accomplishments I have had over the past three decades could have occurred without the ever-present love and support of my partner, Katherine. Others cannot know, and probably do not even suspect, that much of what I appear to have done myself is really what we have accomplished together. This book is just one of the many products of our journey.

Dan Sullivan
Portland, Oregon
2015
Introduction

“Just when I think I have learned the way to live, life changes.”
—Hugh Prather

Databases are like television. There was a time in the history of both when you had few options to choose from and all the choices were disappointingly similar. Times have changed. The database management system is no longer synonymous with relational databases, and television is no longer limited to a handful of networks broadcasting indistinguishable programs.

Names like PostgreSQL, MySQL, Oracle, Microsoft SQL Server, and IBM DB2 are well known in the IT community, even among professionals outside the data management arena. Relational databases have been the choice of data management professionals for decades. They meet the needs of businesses tracking packages and account balances as well as scientists studying bacteria and human diseases. They keep data logically organized and easily retrieved. One of their most important characteristics is their ability to give multiple users a consistent view of data no matter how many changes are under way within the database.

Many of us in the database community thought we understood how to live with databases. Then life changed. Actually, the Internet changed. The Internet emerged from a military-sponsored network called ARPANET to become a platform for academic collaboration and eventually for commercial and personal use. The volume and types of data expanded. In addition to keeping our checking account balances, we want our computers to find the latest news, help with homework, and summarize reviews of new films. Now, many of us depend on the Internet to keep in touch with family, network with colleagues, and pursue professional education and development.
It is no surprise that such radical changes in data management requirements have led to radically new ways to manage data. The latest generation of data management tools is collectively known as NoSQL databases. The name reflects what these systems are not instead of what they are. We can attribute this to the well-earned dominance of relational databases, which use a language called SQL.

NoSQL databases fall into four broad categories: key-value, document, column family, and graph databases. (Search-oriented systems, such as Solr and Elasticsearch are sometimes included in the extended family of NoSQL databases. They are outside the scope of this book.)

Key-value databases employ a simple model that enables you to store and look up a datum (also known as the value) using an identifier (also known as the key). BerkleyDB, released in the mid-1990s, was an early key-value database used in applications for which relational databases were not a good fit.

Document databases expand on the ideas of key-value databases to organize groups of key values into a logical structure known as a document. Document databases are high-performance, flexible data management systems that are increasingly used in a broad range of data management tasks.

Column family databases share superficial similarities to relational databases. The name of the first implementation of a column family database, Google BigTable, hints at the connection to relational databases and their core data structure, the table. Column family databases are used for some of the largest and most demanding, data-intensive applications.

Graph databases are well suited to modeling networks—that is, things connected to other things. The range of use cases spans computers communicating with other computers to people interacting with each other.
This is a dynamic time in database system research and development. We have well-established and widely used relational databases that are good fits for many data management problems. We have long-established alternatives, such as key-value databases, as well as more recent designs, including document, column family, and graph databases.

One of the disadvantages of this state of affairs is that decision making is more challenging. This book is designed to lessen that challenge. After reading this book, you should have an understanding of NoSQL options and when to use them.

Keep in mind that NoSQL databases are changing rapidly. By the time you read this, your favorite NoSQL database might have features not mentioned here. Watch for increasing support for transactions. How database management systems handle transactions is an important distinguishing feature of these systems. (If you are unfamiliar with transactions, don’t worry. You will soon know about them if you keep reading.)

Who Should Read This Book?

This book is designed for anyone interested in learning how to use NoSQL databases. Novice database developers, seasoned relational data modelers, and experienced NoSQL developers will find something of value in this book.

Novice developers will learn basic principles and design criteria of data management in the opening chapters of the book. You’ll also get a bit of data management history because, as we all know, history has a habit of repeating itself.

There are comparisons to relational databases throughout the book. If you are well versed in relational database design, these comparisons might help you quickly grasp and assess the value of NoSQL database features.
For those who have worked with some NoSQL databases, this book may help you get up to speed with other types of NoSQL databases. Key-value and document databases are widely used, but if you haven't encountered column family or graph databases, then this book can help.

If you are comfortable working with a variety of NoSQL databases but want to know more about the internals of these distributed systems, this book is a starting place. You'll become familiar with implementation features such as quorums, Bloom filters, and anti-entropy. The references will point you to resources to help you delve deeper if you'd like.

This book does not try to duplicate documentation available with NoSQL databases. There is no better place to learn how to insert data into a database than from the documentation. On the other hand, documentation rarely has the level of explanation, discussion of pros and cons, and advice about best practices provided in a book such as NoSQL for Mere Mortals. Read this book as a complement to, not a replacement for, database documentation.

The Purpose of This Book

The purpose of this book is to help someone with an interest in data to use NoSQL databases to help solve problems. The book is built on the assumption that the reader is not a seasoned database professional. If you are comfortable working with Excel, then you are ready for the topics covered in this book.

With this book, you'll not only learn about NoSQL databases, but also how to apply design principles and best practices to solve your data management requirements. This is a book that will take you into the internals of NoSQL database management systems to explain how distributed databases work and what to do (and not do) to build scalable, reliable applications.

The hallmark of this book is pragmatism. Everything in this book is designed to help you use NoSQL databases to solve problems. There is
a bit of computer science theory scattered through the pages but only to provide more explanation about certain key topics. If you are well versed in theory, feel free to skip over it.

How to Read This Book

For those who are new to database systems, start with Chapters 1 and 2. These will provide sufficient background to read the other chapters.

If you are familiar with relational databases and their predecessors, you can skip Chapter 1. If you are already experienced with NoSQL, you could skip Chapter 2; however, it does discuss all four major types of NoSQL databases, so you might want to at least skim the sections on types you are less familiar with.

Everyone should read Part II. It is referenced throughout the other parts of the book. Parts III, IV, and V could be read in any order, but there are some references to content in earlier chapters. To achieve the best understanding of each type of NoSQL database, read all three chapters in Parts II, III, IV, and V.

Chapter 15 assumes familiarity with the content in the other chapters, but you might be able to skip parts on NoSQL databases you are sufficiently familiar with. If your goal is to understand how to choose between NoSQL options, be sure to read Chapter 15.

How This Book Is Organized

Here's an overview of what you'll find in each part and each chapter.

Part I: Introduction

NoSQL databases did not appear out of nowhere. This part provides a background on relational databases and earlier data management systems.
Chapter 1. “Different Databases for Different Requirements,” introduces relational databases and their precursor data management systems along with a discussion about today’s need for the alternative approaches provided by NoSQL databases.

Chapter 2. “Variety of NoSQL Databases,” explores key functionality in databases, challenges to implementing distributed databases, and the trade-offs you’ll find in different types of databases. The chapter includes an introduction to a series of case studies describing realistic applications of various NoSQL databases.

Part II: Key-Value Databases

In this part, you learn how to use key-value databases and how to avoid potential problems with them.

Chapter 3. “Introduction to Key-Value Databases,” provides an overview of the simplest of the NoSQL database types.

Chapter 4. “Key-Value Database Terminology,” introduces the vocabulary you need to understand the structure and function of key-value databases.

Chapter 5. “Designing for Key-Value Databases,” covers principles of designing key-value databases, the limitations of key-value databases, and design patterns used in key-value databases. The chapter concludes with a case study describing a realistic use case of key-value databases.

Part III: Document Databases

This part delves into the widely used document database and provides guidance on how to effectively implement document database applications.
Chapter 6. “Introduction to Document Databases,” describes the basic characteristics of document databases, introduces the concept of schemaless databases, and discusses basic operations on document databases.

Chapter 8. “Designing for Document Databases,” delves into the benefits of normalization and denormalization, planning for mutable documents, tips on indexing, as well as common design patterns. The chapter concludes with a case study using document databases for a business application.

Part IV: Column Family Databases

This part covers Big Data applications and the need for column family databases.

Chapter 9. “Introduction to Column Family Databases,” describes the Google BigTable design, the difference between key-value, document, and column family databases as well as architectures used in column family databases.

Chapter 10. “Column Family Database Terminology,” introduces the vocabulary of column family databases. If you've always wondered “what is anti-entropy?” this chapter is for you.

Part V: Graph Databases

This part covers graph databases and use cases where they are particularly appropriate.
Chapter 12. “Introduction to Graph Databases,” discusses graph and network modeling as well as the benefits of graph databases.

Chapter 13. “Graph Database Terminology,” introduces the vocabulary of graph theory, the branch of math underlying graph databases.

Chapter 14. “Designing for Graph Databases,” covers tips for graph database design, traps to watch for, and methods for querying a graph database. This chapter concludes with a case study example of graph database applied to a business problem.

Part VI: Choosing a Database for Your Application

This part deals with applying what you have learned in the rest of the book.

Chapter 15. “Guidelines for Selecting a Database,” builds on the previous chapters to outline factors that you should consider when selecting a database for your application.

Part VII: Appendices

Appendix A. “Answers to Chapter Review Questions,” contains the review questions at the end of each chapter along with answers.

Appendix B. “List of NoSQL Databases,” provides a nonexhaustive list of NoSQL databases, many of which are open source or otherwise free to use.

The Glossary contains definitions of NoSQL terminology used throughout the book.
Designing for Document Databases

“Making good decisions is a crucial skill at every level.”
—Peter Drucker
Author and Management Consultant

Topics Covered In This Chapter

Normalization, Denormalization, and the Search for Proper Balance
Planning for Mutable Documents
The Goldilocks Zone of Indexes
Modeling Common Relations
Case Study: Customer Manifests

Designers have many options when it comes to designing document databases. The flexible structure of JSON and XML documents is a key factor in this—flexibility. If a designer wants to embed lists within lists within a document, she can. If another designer wants to create separate collections to separate types of data, then he can. This freedom should not be construed to mean all data models are equally good—they are not.

The goal of this chapter is to help you understand ways of assessing document database models and choosing the best techniques for your needs.

Relational database designers can reference rules of normalization to help them assess data models. A typical relational data model is
designed to avoid data anomalies when inserts, updates, or deletes are performed. For example, if a database maintained multiple copies of a customer’s current address, it is possible that one or more of those addresses are updated but others are not. In that case, which of the current databases is actually the current one?

In another case, if you do not store customer information separately from the customer’s orders, then all records of the customer could be deleted if all her orders are deleted. The rules for avoiding these anomalies are logical and easy to learn from example.

- **Note** Document database modelers depend more on heuristics, or rules of thumb, when designing databases. The rules are not formal, logical rules like normalization rules. You cannot, for example, tell by looking at a description of a document database model whether or not it will perform efficiently. You must consider how users will query the database, how much inserting will be done, and how often and in what ways documents will be updated.

In this chapter, you learn about normalization and denormalization and how it applies to document database modeling. You also learn about the impact of updating documents, especially when the size of documents changes. Indexes can significantly improve query response times, but this must be balanced against the extra time that is needed to update indexes when documents are inserted or updated. Several design patterns have emerged in the practice of document database design. These are introduced and discussed toward the end of the chapter.

This chapter concludes with a case study covering the use of a document database for tracking the contents of shipments made by the fictitious transportation company introduced in earlier chapters.
Normalization, Denormalization, and the Search for Proper Balance

Unless you have worked with relational databases, you probably would not guess that normalization has to do with eliminating redundancy. Redundant data is considered a bad, or at least undesirable, thing in the theory of relational database design. Redundant data is the root of anomalies, such as two current addresses when only one is allowed.

In theory, a data modeler will want to eliminate redundancy to minimize the chance of introducing anomalies. As Albert Einstein observed, “In theory, theory and practice are the same. In practice, they are not.” There are times where performance in relational databases is poor because of the normalized model. Consider the data model shown in Figure 8.1.

![Figure 8.1](image-url) Normalized databases have separate tables for entities. Data about entities is isolated and redundant data is avoided.

Figure 8.1 depicts a simple normalized model of customers, orders, and products. Even this simple model requires eight tables to capture a basic set of data about the entities. These include the following:
• Customers table with fields such as name, customer ID, and so on
• Loyalty Program Members, with fields such as date joined, amount spent since joining, and customer ID
• Customer Addresses, with fields such as street, city, state, start date, end date, and customer ID
• Customer Credit Histories report with fields such as credit category, start date, end date, and customer ID
• Orders, with fields such as order ID, customer ID, ship date, and so on
• Order Items, with fields such as order ID, order item ID, product ID, quantity, cost, and so on
• Products, with fields such as product ID, product name, product description, and so on
• Daily Inventory Levels, with fields such as product ID, date, quantity available, and so on
• Promotions, with fields such as promotion ID, promotion description, start date, and so on
• Promotion to Customers, with fields such as promotion ID and customer ID

Each box in Figure 8.1 represents an entity in the data model. The lines between entities indicate the kind of relationship between the entities.

One-to-Many Relations

When a single line ends at an entity, then one of those rows participates in a single relation. When there are three branching lines ending at an entity, then there are one or more rows in that relationship. For example, the relation between Customer and Orders indicates that a
customer can have one or more orders, but there is only one customer associated with each order.

This kind of relation is called a one-to-many relationship.

Many-to-Many Relations

Now consider the relation between Customers and Promotions. There are branching lines at both ends of the relationship. This indicates that customers can have many promotions associated with them. It also means that promotions can have many customers related to them. For example, a customer might receive promotions that are targeted to all customers in their geographic area as well as promotions targeted to the types of products the customer buys most frequently.

Similarly, a promotion will likely target many customers. The sales and marketing team might create promotions designed to improve the sale of headphones by targeting all customers who bought new phones or tablets in the past three months. The team might have a special offer on Bluetooth speakers for anyone who bought a laptop or desktop computer in the last year. Again, there will be many customers in this category (at least the sales team hopes so), so there will be many customers associated with this promotion.

These types of relations are known as many-to-many relationships.

The Need for Joins

Developers of applications using relational databases often have to work with data from multiple tables. Consider the Order Items and Products entities shown in Figure 8.2.
Order_Items Products
Order_Item_ID Order_ID Quantity Cost_Per_Unit Product_ID
Product_ID Product_Description Product_Name Product_Category List_Price

Figure 8.2 Products and Order Items are in a one-to-many relationship. To retrieve Product data about an Order item, they need to share an attribute that serves as a common reference. In this case, Product_ID is the shared attribute.

If you were designing a report that lists an order with all the items on the order, you would probably need to include attributes such as the name of the product, the cost per unit, and the quantity. The name of the product is in the Product table, and the other two attributes are in the Order Items table (see Figure 8.3).

❖ Note If you are familiar with the difference in logical and physical data models, you will notice a mix of terminology. Figures 8.1 and 8.2 depict logical models, and parts of these models are referred to as entities and attributes. If you were to write a report using the database, you would work with an implementation of the physical model.

For physical models, the terms tables and columns are used to refer to the same structures that are called entities and attributes in the logical data model. There are differences between entities and tables; for example, tables have locations on disks or in other data structures called table spaces. Entities do not have such properties.

For the purpose of this chapter, entities should be considered synonymous with tables and attributes should be considered synonymous with columns.
Figure 8.3 To be joined, tables must share a common value known as a foreign key.

In relational databases, modelers often start with designs like the one you saw earlier in Figure 8.1. Normalized models such as this minimize redundant data and avoid the potential for data anomalies. Document database designers, however, often try to store related data together in the same document. This would be equivalent to storing related data in one table of a relational database. You might wonder why data modelers choose different approaches to their design. It has to do with the trade-offs between performance and potential data anomalies.

To understand why normalizing data models can adversely affect performance, let’s look at an example with multiple joins.

Executing Joins: The Heavy Lifting of Relational Databases

Imagine you are an analyst and you have decided to develop a promotion for customers who have bought electronic accessories in the past 12 months. The first thing you want to do is understand who those customers are, where they live, and how often they buy from your business. You can do this by querying the Customer table.
You do not want all customers, though—just those who have bought electronic accessories. That information is not stored in the Customer table, so you look to the Orders table. The Orders table has some information you need, such as the date of purchase. This enables you to filter for only orders made in the past 12 months.

The Orders table, however, does not have information on electronic accessories, so you look to the Order Items table. This does not have the information you are looking for, so you turn to the Products table. Here, you find the information you need. The Products table has a column called Product_Category, which indicates if a product is an electronic accessory or some other product category. You can use this column to filter for electronic accessory items.

At this point, you have all the data you need. The Customer table has information about customers, such as their names and customer IDs. The Orders table has order date information, so you can select only orders from the past 12 months. It also allows you to join to the Order_Items table, which can tell you which orders contained products in the electronic accessories category. The category information is not directly available in the Order_Items table, but you can join the Order_Items table to the Products table to get the product category (see Figure 8.4).
To get a sense of how much work is involved in joining tables, let’s consider pseudocode for printing the name of customers who have purchased electronic accessories in the last 12 months:

```python
for cust in get_customers():
    for order in get_customer_orders(cust.customer_id):
        if today() - 365 <= order.order_date:
            for order_item in get_order_items(order.order_id):
                if 'electronic accessories' =
                    get_product_category(order_item.product_id):
                    customer_set = add_item
                        (customer_set, cust.name);

for customer_name in customer_set:
    print customer_name;
```

In this example, the functions `get_customers`, `get_customer_orders`, and `get_order_items` return a list of rows. In the case of `get_customers()`, all customers are returned.

Each time `get_customer_orders` is called, it is given a `customer_id`. Only orders with that customer ID are returned. Each time `get_order_items` is called, it is given an `order_id`. Only order items with that `order_id` are returned.

The dot notation indicates a field in the row returned. For example, `order.order_date` returns the `order_date` on a particular order. Similarly, `cust.name` returns the name of the customer currently referenced by the `cust` variable.

Executing Joins Example

Now to really see how much work is involved, let’s walk through an example. Let’s assume there are 10,000 customers in the database. The first `for` loop will execute 10,000 times. Each time it executes, it will look up all orders for the customer. If each of the 10,000 customers
has, on average, 10 orders, then the for order loop will execute 100,000 times. Each time it executes, it will check the order date.

Let’s say there are 20,000 orders that have been placed in the last year. The for order_item loop will execute 20,000 times. It will perform a check and add a customer name to a set of customer names if at least one of the order items was an electronic accessory.

Looping through rows of tables and looking for matches is one—rather inefficient—way of performing joins. The performance of this join could be improved. For example, indexes could be used to more quickly find all orders placed within the last year. Similarly, indexes could be used to find the products that are in the electronic accessory category.

Databases implement query optimizers to come up with the best way of fetching and joining data. In addition to using indexes to narrow down the number of rows they have to work with, they may use other techniques to match rows. They could, for example, calculate hash values of foreign keys to quickly determine which rows have matching values.

The query optimizer may also sort rows first and then merge rows from multiple tables more efficiently than if the rows were not sorted. These techniques can work well in some cases and not in others. Database researchers and vendors have made advances in query optimization techniques, but executing joins on large data sets can still be time consuming and resource intensive.

What Would a Document Database Modeler Do?

Document data modelers have a different approach to data modeling than most relational database modelers. Document database modelers and application developers are probably using a document database for its scalability, its flexibility, or both. For those using document databases, avoiding data anomalies is still important, but they are willing to assume more responsibility to prevent them in return for scalability and flexibility.
For example, if there are redundant copies of customer addresses in the database, an application developer could implement a customer address update function that updates all copies of an address. She would always use that function to update an address to avoid introducing a data anomaly. As you can see, developers will write more code to avoid anomalies in a document database, but will have less need for database tuning and query optimization in the future.

So how do document data modelers and application developers get better performance? They minimize the need for joins. This process is known as denormalization. The basic idea is that data models should store data that is used together in a single data structure, such as a table in a relational database or a document in a document database.

The Joy of Denormalization

To see the benefits of denormalization, let’s start with a simple example: order items and products. Recall that the Order _ Items entity had the following attributes:

- order _ item _ ID
- order _ id
- quantity
- cost _ per _ unit
- product _ id

The Products entity has the following attributes:

- product _ ID
- product _ description
- product _ name
- product _ category
- list _ price
An example of an order items document is

```
{ 
  order_item_ID : 834838, 
    order_ID: 8827, 
  quantity: 3, 
  cost_per_unit: 8.50, 
  product_ID: 3648 
}
```

An example of a product document is

```
{ 
  product_ID: 3648, 
  product_description: "1 package laser printer paper. 
    100% recycled.", 
  product_name : "Eco-friendly Printer Paper", 
  product_category : "office supplies", 
  list_price : 9.00 
}
```

If you implemented two collections and maintained these separate documents, then you would have to query the order items collection for the order item you were interested in and then query the products document for information about the product with product _ ID 3648. You would perform two lookups to get the information you need about one order item.

By denormalizing the design, you could create a collection of documents that would require only one lookup operation. A denormalized version of the order item collection would have, for example:

```
{ 
  order_item_ID : 834838, 
    order_ID: 8827, 
  quantity: 3, 
  cost_per_unit: 8.50, 
  product : 
    { 
      product_ID: 3648, 
      product_description: "1 package laser printer paper. 
        100% recycled.", 
      product_name : "Eco-friendly Printer Paper", 
      product_category : "office supplies", 
      list_price : 9.00 
    }
}
```
Avoid Overusing Denormalization

Denormalization, like all good things, can be used in excess. The goal is to keep data that is frequently used together in the document. This allows the document database to minimize the number of times it must read from persistent storage, a relatively slow process even when using solid state devices (SSDs). At the same time, you do not want to allow extraneous information to creep into your denormalized collection (see Figure 8.5).

Figure 8.5 Large documents can lead to fewer documents retrieved when a block of data is read from persistent storage. This can increase the total number of data block reads to retrieve a collection or subset of collections.
To answer the question “how much denormalization is too much?” you should consider the queries your application will issue to the document database.

Let’s assume you will use two types of queries: one to generate invoices and packing slips for customers and one to generate management reports. Also, assume that 95% of the queries will be in the invoice and packing slip category and 5% of the queries will be for management reports.

Invoices and packing slips should include, among other fields, the following:

- order_ID
- quantity
- cost_per_unit
- product_name

Management reports tend to aggregate information across groups or categories. For these reports, queries would include product category information along with aggregate measures, such as total number sold. A management report showing the top 25 selling products would likely include a product description.

Based on these query requirements, you might decide it is better to not store product description, list price, and product category in the Order_Items collection. The next version of the Order_Items document would then look like this:

```json
{
    order_item_ID : 834838,
    order_ID: 8827,
    quantity: 3,
    cost_per_unit: 8.50,
    product_name : "Eco-friendly Printer Paper"
}
```
and we would maintain a `Products` collection with all the relevant product details; for example:

```json
{
    product_description: "1 package laser printer paper. 100% recycled.",
    product_name: "Eco-friendly Printer Paper",
    product_category: 'office supplies',
    list_price: 9.00
}
```

`Product_name` is stored redundantly in both the `Order_Items` collection and in the `Products` collection. This model uses slightly more storage but allows application developers to retrieve information for the bulk of their queries in a single lookup operation.

Just Say No to Joins, Sometimes

Never say never when designing NoSQL models. There are best practices, guidelines, and design patterns that will help you build scalable and maintainable applications. None of them should be followed dogmatically, especially in the presence of evidence that breaking those best practices, guidelines, or design patterns will give your application better performance, more functionality, or greater maintainability.

If your application requirements are such that storing related information in two or more collections is an optimal design choice, then make that choice. You can implement joins in your application code. A worst-case scenario is joining two large collections with two `for` loops, such as:

```python
for doc1 in collection1:
    for doc2 in collection2:
        <do something with both documents>
```

If there are N documents in `collection1` and M documents in `collection2`, this statement would execute $N \times M$ times. The execution time for such loops can grow quickly. If the first collection has 100,000 documents and the second has 500,000, then the statement would execute $50,000,000,000$ (5×10^5) times. If you are dealing with collections
this large, you will want to use indexes, filtering, and, in some cases, sorting to optimize your join by reducing the number of overall operations performed (see Figure 8.6).

![Figure 8.6](image)

Figure 8.6 Simple join operations that compare all documents in one collection to all documents in another collection can lead to poor performance on large collections. Joins such as this can be improved by using indexes, filtering, and, in some cases, sorting.

Normalization is a useful technique for reducing the chances of introducing data anomalies. Denormalization is also useful, but for (obviously) different reasons. Specifically, denormalization is employed to improve query performance. When using document databases, data modelers and developers often employ denormalization as readily as relational data modelers employ normalization.

Tip Remember to use your queries as a guide to help strike the right balance of normalization and denormalization. Too much of either can adversely affect performance. Too much normalization leads to queries requiring joins. Too much denormalization leads to large documents that will likely lead to unnecessary data reads from persistent storage and other adverse effects.

There is another less-obvious consideration to keep in mind when designing documents and collections: the potential for documents to change size. Documents that are likely to change size are known as mutable documents.
Planning for Mutable Documents

Things change. Things have been changing since the Big Bang. Things will most likely continue to change. It helps to keep these facts in mind when designing databases.

Some documents will change frequently, and others will change infrequently. A document that keeps a counter of the number of times a web page is viewed could change hundreds of times per minute. A table that stores server event log data may only change when there is an error in the load process that copies event data from a server to the document database. When designing a document database, consider not just how frequently a document will change, but also how the size of the document may change.

Incrementing a counter or correcting an error in a field will not significantly change the size of a document. However, consider the following scenarios:

- Trucks in a company fleet transmit location, fuel consumption, and other operating metrics every three minutes to a fleet management database.
- The price of every stock traded on every exchange in the world is checked every minute. If there is a change since the last check, the new price information is written to the database.
- A stream of social networking posts is streamed to an application, which summarizes the number of posts; overall sentiment of the post; and the names of any companies, celebrities, public officials, or organizations. The database is continuously updated with this information.

Over time, the number of data sets written to the database increases. How should an application designer structure the documents to handle such input streams? One option is to create a new document for each
new set of data. In the case of the trucks transmitting operational data, this would include a truck ID, time, location data, and so on:

```
{
    truck_id: 'T87V12',
    time: '08:10:00',
    date: '27-May-2015',
    driver_name: 'Jane Washington',
    fuel_consumption_rate: '14.8 mpg',
    ...
}
```

Each truck would transmit 20 data sets per hour, or assuming a 10-hour operations day, 200 data sets per day. The truck_id, date, and driver_name would be the same for all 200 documents. This looks like an obvious candidate for embedding a document with the operational data in a document about the truck used on a particular day. This could be done with an array holding the operational data documents:

```
{
    truck_id: 'T87V12',
    date: '27-May-2015',
    driver_name: 'Jane Washington',
    operational_data:
        [
            {time: '00:01',
             fuel_consumption_rate: '14.8 mpg',
             ...},
            {time: '00:04',
             fuel_consumption_rate: '12.2 mpg',
             ...},
            {time: '00:07',
             fuel_consumption_rate: '15.1 mpg',
             ...},
            ...
        ]
}
```

The document would start with a single operational record in the array, and at the end of the 10-hour shift, it would have 200 entries in the array.
From a logical modeling perspective, this is a perfectly fine way to structure the document, assuming this approach fits your query requirements. From a physical model perspective, however, there is a potential performance problem.

When a document is created, the database management system allocates a certain amount of space for the document. This is usually enough to fit the document as it exists plus some room for growth. If the document grows larger than the size allocated for it, the document may be moved to another location. This will require the database management system to read the existing document and copy it to another location, and free the previously used storage space (see Figure 8.7).

Figure 8.7 When documents grow larger than the amount of space allocated for them, they may be moved to another location. This puts additional load on the storage systems and can adversely affect performance.
Avoid Moving Oversized Documents

One way to avoid this problem of moving oversized documents is to allocate sufficient space for the document at the time the document is created. In the case of the truck operations document, you could create the document with an array of 200 embedded documents with the time and other fields specified with default values. When the actual data is transmitted to the database, the corresponding array entry is updated with the actual values (see Figure 8.8).

```json
{truck_id: 'T8V12',
date: '27-May-2015',
operational_data:
  [{time: '00:00',
    fuel_consumption_rate: 0.0},
   {time: '00:00',
    fuel_consumption_rate: 0.0}]
}
```

Figure 8.8 Creating documents with sufficient space for anticipated growth reduces the need to relocate documents.

Consider the life cycle of a document and when possible plan for anticipated growth. Creating a document with sufficient space for the full life of the document can help to avoid I/O overhead.

The Goldilocks Zone of Indexes

Astronomers have coined the term *Goldilocks Zone* to describe the zone around a star that could sustain a habitable planet. In essence, the zone that is not too close to the sun (too hot) or too far away (too cold) is just right. When you design a document database, you also want to try to identify the right number of indexes. You do not want too few, which could lead to poor read performance, and you do not want too many, which could lead to poor write performance.
Read-Heavy Applications

Some applications have a high percentage of read operations relative to the number of write operations. Business intelligence and other analytic applications can fall into this category. Read-heavy applications should have indexes on virtually all fields used to help filter results. For example, if it was common for users to query documents from a particular sales region or with order items in a certain product category, then the sales region and product category fields should be indexed.

It is sometimes difficult to know which fields will be used to filter results. This can occur in business intelligence applications. An analyst may explore data sets and choose a variety of different fields as filters. Each time he runs a new query, he may learn something new that leads him to issue another query with a different set of filter fields. This iterative process can continue as long as the analyst gains insight from queries.

Read-heavy applications can have a large number of indexes, especially when the query patterns are unknown. It is not unusual to index most fields that could be used to filter results in an analytic application (see Figure 8.9).

![Figure 8.9](image)

Figure 8.9 Querying analytic databases is an iterative process. Virtually any field could potentially be used to filter results. In such cases, indexes may be created on most fields.
Write-Heavy Applications

Write-heavy applications are those with relatively high percentages of write operations relative to read operations. The document database that receives the truck sensor data described previously would likely be a write-heavy database. Because indexes are data structures that must be created and updated, their use will consume CPU, persistent storage, and memory resources and increase the time needed to insert or update a document in the database.

Data modelers tend to try to minimize the number of indexes in write-heavy applications. Essential indexes, such as those created for fields storing the identifiers of related documents, should be in place. As with other design choices, deciding on the number of indexes in a write-heavy application is a matter of balancing competing interests.

Fewer indexes typically correlate with faster updates but potentially slower reads. If users performing read operations can tolerate some delay in receiving results, then minimizing indexes should be considered. If, however, it is important for users to have low-latency queries against a write-heavy database, consider implementing a second database that aggregates the data according to the time-intensive read queries. This is the basic model used in business intelligence.

Transaction processing systems are designed for fast writes and targeted reads. Data is copied from that database using an extraction, transformation, and load (ETL) process and placed in a data mart or data warehouse. The latter two types of databases are usually heavily indexed to improve query response time (see Figure 8.10).
When both write-heavy and read-heavy applications must be supported, a two-database solution may be the best option.

Tip Identifying the right set of indexes for your application can take some experimentation. Start with the queries you expect to support and implement indexes to reduce the time needed to execute the most important and the most frequently executed. If you find the need for both read-heavy and write-heavy applications, consider a two-database solution with one database tuned for each type.

Modeling Common Relations

As you gather requirements and design a document database, you will likely find the need for one or more of three common relations:

- One-to-many relations
- Many-to-many relations
- Hierarchies
Chapter 8 Designing for Document Databases

The first two involve relations between two collections, whereas the third can entail an arbitrary number of related documents within a collection. You learned about one-to-one and one-to-many relations previously in the discussion of normalization. At that point, the focus was on the need for joins when normalizing data models. Here, the focus is on how to efficiently implement such relationships in document databases. The following sections discuss design patterns for modeling these three kinds of relations.

One-to-Many Relations in Document Databases

One-to-many relations are the simplest of the three relations. This relation occurs when an instance of an entity has one or more related instances of another entity. The following are some examples:

- One order can have many order items.
- One apartment building can have many apartments.
- One organization can have many departments.
- One product can have many parts.

This is an example in which the typical model of document database differs from that of a relational database. In the case of a one-to-many relation, both entities are modeled using a document embedded within another document. For example:

```json
{
    customer_id: 76123,
    name: 'Acme Data Modeling Services',
    person_or_business: 'business',
    address: [
        {
            street: '276 North Amber St',
            city: 'Vancouver',
            state: 'WA',
            zip: 99076
        }
    ]
}
```
The basic pattern is that the one entity in a one-to-many relation is the primary document, and the many entities are represented as an array of embedded documents. The primary document has fields about the one entity, and the embedded documents have fields about the many entities.

Many-to-Many Relations in Document Databases

A many-to-many relation occurs when instances of two entities can both be related to multiple instances of another entity. The following are some examples:

- Doctors can have many patients and patients can have many doctors.
- Operating system user groups can have many users and users can be in many operating system user groups.
- Students can be enrolled in many courses and courses can have many students enrolled.
- People can join many clubs and clubs can have many members.

Many-to-many relations are modeled using two collections—one for each type of entity. Each collection maintains a list of identifiers that reference related entities. For example, a document with course data would include an array of student IDs, and a student document would include a list of course IDs, as in the following:
Courses:

```
{ courseID: 'C1667',
  title: 'Introduction to Anthropology',
  instructor: 'Dr. Margret Austin',
  credits: 3,
  enrolledStudents: ['S1837', 'S3737', 'S9825' ...
  'S1847'] },
{ courseID: 'C2873',
  title: 'Algorithms and Data Structures',
  instructor: 'Dr. Susan Johnson',
  credits: 3,
  enrolledStudents: ['S1837', 'S3737', 'S4321', 'S9825'
  ... 'S1847'] },
{ courseID: 'C3876',
  title: 'Macroeconomics',
  instructor: 'Dr. James Schulen',
  credits: 3,
  enrolledStudents: ['S1837', 'S4321', 'S1470', 'S9825'
  ... 'S1847'] },
...
```

Students:

```
{ studentID: 'S1837',
  name: 'Brian Nelson',
  gradYear: 2018,
  courses: ['C1667', 'C2873', 'C3876']},
{ studentID: 'S3737',
  name: 'Yolanda Deltor',
  gradYear: 2017,
  courses: [ 'C1667', 'C2873' ]},
...
```

The pattern minimizes duplicate data by referencing related documents with identifiers instead of embedded documents.

Care must be taken when updating many-to-many relationships so that both entities are correctly updated. Also remember that document
databases will not catch referential integrity errors as a relational database will. Document databases will allow you to insert a student document with a courseID that does not correspond to an existing course.

Modeling Hierarchies in Document Databases

Hierarchies describe instances of entities in some kind of parent-child or part-subpart relation. The product_category attribute introduced earlier is an example where a hierarchy could help represent relations between different product categories (see Figure 8.11).

![Figure 8.11](image)

Hierarchies describe parent-child or part-subpart relations.

There are a few different ways to model hierarchical relations. Each works well with particular types of queries.

Parent or Child References

A simple technique is to keep a reference to either the parent or the children of an entity. Using the data depicted in Figure 8.11, you could model product categories with references to their parents:

```json
[  {productCategoryID: 'PC233', name:'Pencils', parentID: 'PC72'},
   {productCategoryID: 'PC72', name:'Writing Instruments', parentID: 'PC37'
```
Notice that the root of the hierarchy, 'Product Categories', does not have a parent and so has no parent field in its document.

This pattern is useful if you frequently have to show a specific instance and then display the more general type of that category.

A similar pattern works with child references:

```json
{
  {productCategoryID: 'P01', name:'Product Categories',
    childrenIDs: ['P37','P39','P41']},
  {productCategoryID: 'PC37', name:'Office Supplies',
    childrenIDs: ['PC72','PC73','PC74']},
  {productCategoryID: 'PC72', name:'Writing Instruments', childrenIDs: ['PC233','PC234']},
  {productCategoryID: 'PC233', name:'Pencils'}
}
```

The bottom nodes of the hierarchy, such as 'Pencils', do not have children and therefore do not have a `childrenIDs` field.

This pattern is useful if you routinely need to retrieve the children or subparts of the instance modeled in the document. For example, if you had to support a user interface that allowed users to drill down, you could use this pattern to fetch all the children or subparts of the current level of the hierarchy displayed in the interface.

Listing All Ancestors

Instead of just listing the parent in a child document, you could keep a list of all ancestors. For example, the 'Pencils' category could be structured in a document as

```json
{productCategoryID: 'PC233', name:'Pencils',
  ancestors:['PC72', 'PC37', 'P01']}
```
This pattern is useful when you have to know the full path from any point in the hierarchy back to the root.

An advantage of this pattern is that you can retrieve the full path to the root in a single read operation. Using a parent or child reference requires multiple reads, one for each additional level of the hierarchy.

A disadvantage of this approach is that changes to the hierarchy may require many write operations. The higher up in the hierarchy the change is, the more documents will have to be updated. For example, if a new level was introduced between 'Product Category' and 'Office Supplies', all documents below the new entry would have to be updated. If you added a new level to the bottom of the hierarchy—for example, below 'Pencils' you add 'Mechanical Pencils' and 'Non-mechanical Pencils'—then no existing documents would have to change.

❖ Note One-to-many, many-to-many, and hierarchies are common patterns in document databases. The patterns described here are useful in many situations, but you should always evaluate the utility of a pattern with reference to the kinds of queries you will execute and the expected changes that will occur over the lives of the documents. Patterns should support the way you will query and maintain documents by making those operations faster or less complicated than other options.

Summary

This chapter concludes the examination of document databases by considering several key issues you should consider when modeling for document databases.
Normalization and denormalization are both useful practices. Normalization helps to reduce the chance of data anomalies while denormalization is introduced to improve performance. Denormalization is a common practice in document database modeling. One of the advantages of denormalization is that it reduces or eliminates the need for joins. Joins can be complex and/or resource-intensive operations. It helps to avoid them when you can, but there will likely be times you will have to implement joins in your applications. Document databases, as a rule, do not support joins.

In addition to considering the logical aspects of modeling, you should consider the physical implementation of your design. Mutable documents, in particular, can adversely affect performance. Mutable documents that grow in size beyond the storage allocated for them may have to be moved in persistent storage, such as on disks. This need for additional writing of data can slow down your applications’ update operations.

Indexes are another important implementation topic. The goal is to have the right number of indexes for your application. All instances should help improve query performance. Indexes that would help with query performance may be avoided if they would adversely impact write performance in a noticeable way. You will have to balance benefits of faster query response with the cost of slower inserts and updates when indexes are in place.

Finally, it helps to use design patterns when modeling common relations such as one-to-many, many-to-many, and hierarchies. Sometimes embedded documents are called for, whereas in other cases, references to other document identifiers are a better option when modeling these relations.

Part IV, “Column Family Databases,” introduces wide column databases. These are another important type of NoSQL database and are especially important for managing large data sets with potentially billions of rows and millions of columns.
Case Study: Customer Manifests

Chapter 1, “Different Databases for Different Requirements,” introduced TransGlobal Transport and Shipping (TGTS), a fictitious transportation company that coordinates the movement of goods around the globe for businesses of all sizes. As business has grown, TGTS is transporting and tracking more complicated and varied shipments. Analysts have gathered requirements and some basic estimates about the number of containers that will be shipped. They found a mix of common fields for all containers and specialized fields for different types of containers.

All containers will require a core set of fields such as customer name, origination facility, destination facility, summary of contents, number of items in container, a hazardous material indicator, an expiration date for perishable items such as fruit, a destination facility, and a delivery point of contact and contact information.

In addition, some containers will require specialized information. Hazardous materials must be accompanied by a material safety data sheet (MSDS), which includes information for emergency responders who may have to handle the hazardous materials. Perishable foods must also have details about food inspections, such as the name of the person who performed the inspection, the agency responsible for the inspection, and contact information of the agency.

The analyst found that 70%–80% of the queries would return a single manifest record. These are typically searched for by a manifest identifier or by customer name, date of shipment, and originating facility. The remaining 20%–30% would be mostly summary reports by customers showing a subset of common information. Occasionally, managers will run summary reports by type of shipment (for example, hazardous materials, perishable foods), but this is rarely needed.
Executives inform the analysts that the company has plans to substantially grow the business in the next 12 to 18 months. The analysts realize that they may have many different types of cargo in the future with specialized information, just as hazardous materials and perishable foods have specialized fields. They also realize they must plan for future scaling up and the need to support new fields in the database. They concluded that a document database that supports horizontal scaling and a flexible schema is required.

The analysts start the document and collection design process by considering fields that are common to most manifests. They decided on a collection called Manifests with the following fields:

- Customer name
- Customer contact person’s name
- Customer address
- Customer phone number
- Customer fax
- Customer email
- Origination facility
- Destination facility
- Shipping date
- Expected delivery date
- Number of items in container

They also determine fields they should track for perishable foods and hazardous materials. They decide that both sets of specialized fields should be grouped into their own documents. The next question they have to decide is, should those documents be embedded with manifest documents or should they be in a separate collection?
Embed or Not Embed?

The analysts review sample reports that managers have asked for and realize that the perishable foods fields are routinely reported along with the common fields in the manifest. They decide to embed the perishable foods within the manifest document.

They review sample reports and find no reference to the MSDS for hazardous materials. They ask a number of managers and executives about this apparent oversight. They are eventually directed to a compliance officer. She explains that the MSDS is required for all hazardous materials shipments. The company must demonstrate to regulators that their database includes MSDSs and must make the information available in the event of an emergency. The compliance officer and analyst conclude they need to define an additional report for facility managers who will run the report and print MSDS information in the event of an emergency.

Because the MSDS information is infrequently used, they decide to store it in a separate collection. The Manifest collection will include a field called msdsID that will reference the corresponding MSDS document. This approach has the added benefit that the compliance officer can easily run a report listing any hazardous material shipments that do not have an msdsID. This allows her to catch any missing MSDSs and continue to comply with regulations.

Choosing Indexes

The analysts anticipate a mix of read and write operations with approximately 60%–65% reads and 35%–40% writes. They would like to maximize the speed of both reads and writes, so they carefully weigh the set of indexes to create.

Because most of the reads will be looks for single manifests, they decide to focus on that report first. The manifest identifier is a logical choice for index field because it is used to retrieve manifest documents.
Analysts can also look up manifests by customer name, shipment date, and origination facility. The analysts consider creating three indexes: one for each field. They realize, however, that they will rarely need to list all shipments by date or by origination facility, so they decide against separate indexes for those fields.

Instead, they create a single index on all three fields: customer name, shipment date, and origination facility. With this index, the database can determine if a manifest exists for a particular customer, shipping date, and origination facility by checking the index only; there is no need to check the actual collection of documents, thus reducing the number of read operations that have to be performed.

Separate Collections by Type?

The analysts realize that they are working with a small number of manifest types, but there may be many more in the future. For example, the company does not ship frozen goods now, but there has been discussion about providing that service. The analysts know that if you frequently filter documents by type, it can be an indicator that they should use separate collections for each type.

They soon realize they are the exception to that rule because they do not know all the types they may have. The number of types can grow quite large, and managing a large number of collections is less preferable to managing types within a single collection.

By using requirements for reports and keeping in mind some basic design principles, the analysts are able to quickly create an initial schema for tracking a complex set of shipment manifests.
Review Questions

1. What are the advantages of normalization?
2. What are the advantages of denormalization?
3. Why are joins such costly operations?
4. How do document database modelers avoid costly joins?
5. How can adding data to a document cause more work for the I/O subsystem in addition to adding the data to a document?
6. How can you, as a document database modeler, help avoid that extra work mentioned in Question 5?
7. Describe a situation where it would make sense to have many indexes on your document collections.
8. What would cause you to minimize the number of indexes on your document collection?
9. Describe how to model a many-to-many relationship.
10. Describe three ways to model hierarchies in a document database.

References

Apache Foundation. Apache CouchDB 1.6 Documentation: http://docs.couchdb.org/en/1.6.1/.

abstract/concrete entities, modeling, 369
abstract entity types, avoiding, 191-193
abstraction, 120
access, random, 9
ACID (atomicity, consistency, isolation, and durability), 54, 124, 169-170, 429, 435
addition, 118
addQueryResultsToCache function, 88
advantages of graph databases, 372-376
Aerospike, 477
aggregation, 166-169
algorithms
 compression, 140
 Dijkstra, 395
 graphs, 407
 hash functions, 137-138
 partitioning, 230
 AllegroGraph, 477
Amazon Web Services, 477
analyzing
 big data, 351, 354-355

 graphs, 388
 predictions, 351-352
ancestor lists, 266
anomalies, 233, 254
anti-entropy, 299-300, 323-324
Apache
 Accumulo, 477
 Cassandra, 295, 300-302
 CouchDB, 477
 Giraph, 478
 HBase, 478
applications
 e-commerce, 5-6, 433
 RDBMSs, 26-27
 read-heavy, 259
 write-heavy, 260-261
applying
 column family databases, 303-304
dynamic control over columns, 280
graph databases, 385
 intersections, 386
 traversal, 387
 unions, 385
modelers, 248-254
relational databases with NoSQL, 434-436
secondary indexes, 345-347
valueless columns, 334
architecture
column family databases, 293
 Cassandra, 295-302
distributed databases, 299-300
gossip protocols, 296-299
HBase, 293-294
key-value databases, 131
 clusters, 131-133
 replication, 135-136
 rings, 133
arcs. See edges
ArrangoDB, 478
arrays, 118
 associative, 84-85
 key-value databases, 82-84
atomic aggregates, 169-170.
 See also aggregation
atomic rows, reading/writing,
 283-284
attributes, 120, 244
 aggregation, 166-169
 keys, 170-171
 naming conventions, 145
automatic indexes, 341
availability
 BASE, 56-59
 CAP theorem, 51-54
 of data, 44-48
 of databases, 32-33
avoiding
 abstract entity types, 191-193
 complex data structures, 339-340
 explicit schema definitions, 199-201
hotspotting, 337-338
joins, 372-375
moving oversized documents, 258
multirow transactions, 290-291
subqueries, 291-292
write problems, 107-110
B
bags, 215
BASE (basically available, soft state, eventually consistent), 56-59
benefits of denormalization, 249-250
betweenness, 391
big data tools, 348-356
bigraphs, 394
BigTable (Google), 279-285
bipartite graphs, 394
BLOBs (binary large objects), 123
Bloom filters, 319-320
breadth, traversing graphs, 412
Brewer's theorem. See CAP theorem
C
caches
 key-value databases, 85-88
 TTL, 163-164
CAP theorem, 51-54
case studies, key-value databases,
 174-177
Cassandra, 295, 300-302, 310, 418, 478
Cassandra’s Query Language.
 See CQL
child records, 12
child references, 265
closeness, 390-391
Cloudant, 478
clusters
column family databases, 314-316
definition of, 131-133
CODASYL (Conference on Data Systems Languages) Consortium, 17
Codd, E. F., 19
code
keys, 145-147
sharing, 195-198
validation, 222
collections
document databases
deleting, 204-206
inserting, 202-204
managing in, 188-198
retrieving, 208-209
updating, 206-208
indexes, 217
multiple, 194
terminology, 214-219
collisions, definition of, 138
column family databases, 69-71
anti-entropy, 323-324
applying, 303-304
architecture, 293
Cassandra, 295, 300-302
distributed databases, 299-300
gossip protocols, 296-299
HBase, 293-294
atomic rows, 283-284
clusters, 314-316
comparing to other databases, 286-292
design
big data tools, 348-356
indexing, 340-348
tables, 332-340
dynamic control over columns, 280
Google BigTable, 279-285
gossip protocols, 324-325
hinted handoffs, 325-326
implementing, 313-322
indexing, 281
locations of data, 282-283
partitions, 316
replication, 322
rows, 284-285
selecting, 431-432
terminology, 308
columns, 310-313
keyspaces, 309
row keys, 309-310
columns, 121, 244, 310-312.
See also tables
families, 312-313
names, 281
storage, 334
valueless, 334
values
avoiding complex data structures, 339-340
versions, 338
commands
remove, 204
update, 207
commit logs, 317-318
common relations, modeling, 261
comparing
column family databases, 286-292
graphs, 388
replicas, 323
components of RDBMSs, 20
compression, definition of, 139-140
concrete/abstract entities, modeling, 369
Conference on Data Systems Languages. See CODASYL Consortium
configuration
arrays, 83
collections, 191-193
column family databases
big data tools, 348-356
indexing, 340-348
tables, 332-340
databases, 29
availability, 32-33
costs, 31
early systems, 6, 17-18
flat file systems, 7-11
flexibility, 31-32
hierarchical data model systems, 12-14
network data management systems, 14-17
scalability, 29-31
document databases, 182
avoiding explicit schema definitions, 199-201
basic operations, 201
collections, 218
deleting from collections, 204-206
denormalization, 235
embedded documents, 218-219
horizontal partitions, 227-231
HTML, 182-187
inserting into collections, 202-204
key-value pairs, 187
managing in collections, 188-198
normalization, 233-234
partitions, 224
discriminators, 223
query processors, 235-236
retrieving from collections, 208-209
schemaless, 220-222
terminology, 214-217
updating in collections, 206-208
vertical partitions, 225-227
graph databases, 363-364, 400-401
advantages of, 372-376
intersections, 386
network modeling, 365-371
operations, 385
optimal, 415-419
queries, 405-415
social networks, 401-404
traversal, 387
unions, 385
key-value databases
limitations, 159-162
partitioning, 144-151
patterns, 162-173
keys, 103
constructing, 103-104
locating values, 105-110
mobile applications, 174-177
parameters, 313
relational databases, 4-5
e-commerce applications, 5-6
history of, 19-29
secondary indexes, 345-347
structured values, 151
 optimizing values, 155-159
 reducing latency, 152-155
values, 110-113
consistency, 49-51
 ACID, 54
 BASE, 56-59
 CAP theorem, 51-54
 of data, 42-48
 eventual, 57-59
 levels, 321-322
 monotonic read, 58
 sessions, 58
constraints, 24
constructing keys, 103-104
conventions, naming, 145
costs, 31
Couchbase, 478
CQL (Cassandra’s Query Language), 311
create function, 90
cycles, traversing graphs, 417
Cypher, 408-415

D
Data Definition Language. See DDL
data dictionaries, 22-23
data management. See management
Data Manipulation Language. See DML
data models, 92
data types
 keys, 216-217
 values, 216-217

Databases
column families
 anti-entropy, 323-324
 applying, 303-304
 architecture, 293-302
 big data tools, 348-356
 clusters, 314-316
 columns, 310-313
 comparing to other databases, 286-292
dynamic control over columns, 280
Google BigTable, 279-285
gossip protocols, 324-325
hinted handoffs, 325-326
implementing, 313-322
indexing, 281, 340-348
keyspaces, 309
locations of data, 282-283
maintaining rows in sorted order, 284-285
partitions, 316
reading/writing atomic rows, 283-284
replication, 322
row keys, 309-310
selecting, 431-432
tables, 332-340
terminology, 308
design, 4-5, 29
 availability, 32-33
costs, 31
e-commerce applications, 5-6
 flexibility, 31-32
scalability, 29-31
distributed, 299-300
databases

applying modelers, 248-254
avoiding explicit schema definitions, 199-201
balancing denormalization/normalization, 241
basic operations, 201
collections, 218
deleting from collections, 204-206
denormalization, 235
embedded documents, 218-219
executing joins, 245-248
Goldilocks Zone of indexes, 258-260
hierarchies, 265-266
horizontal partitions, 227-231
HTML, 182-187
inserting into collections, 202-204
joins, 243-245
key-value pairs, 187
managing in collections, 188-198
many-to-many relationships, 243, 263-264
modeling common relations, 261
normalization, 233-234
one-to-many relationships, 242-263
partitions, 224
planning mutable documents, 255-258
polymorphic schemas, 223
query processors, 235-236
retrieving from collections, 208-209
schemaless, 220-222
selecting, 430
terminology, 214-217
updating in collections, 206-208
vertical partitions, 225-227
graph, 363-364
advantages of, 372-376
betweenness, 391
bigraphs, 394
closeness, 390-391
degrees, 390
design, 400-401
directed/undirected, 392-393
edges, 381-382
flow networks, 393
intersections, 386
isomorphism, 388-389
loops, 384
multigraphs, 395
network modeling, 365-371
operations, 385
optimizing, 415-419
order/size, 389
paths, 383
properties, 388
queries, 405-415
selecting, 433
social networks, 401-404
terminology, 380
traversal, 387
types of, 392
unions, 385
vertices, 380-381
weighted graphs, 395-396
key-value architecture, 131-136
arrays, 82-84
associative arrays, 84-85
caches, 85-88
features, 91-95
implementing, 137-140
in-memory, 89-90
keys, 103-110
limitations, 159-162
models, 118-131
on-disk, 89-90
partitioning, 144-151
patterns, 162-173
scalability, 95-102
selecting, 429
values, 110-113
key-values case study, 174-177
management
early systems, 6, 17-18
flat file systems, 7-11
hierarchical data model systems, 12-14
network data management systems, 14-17
relational
history of, 19-29
using with NoSQL, 434-436
selecting, 428
types of, 59, 477-480
column family databases, 69-71
distributed databases, 41-54
document databases, 66-68
graph databases, 71-75
key-value pair databases, 60-65
DDL (Data Definition Language), 24-25
degrees, 390
delete function, 90
DELETE statements, 27
deleting documents from collections, 204-206
denormalization, 28, 155, 235
benefits of, 249-250
document database design, 241-243
overusing, 251-253
tables, 333
depth, traversing graphs, 412
design. See also configuration
collections, 191-193
column family databases
big data tools, 348-356
indexing, 340-348
tables, 332-340
databases, 29
availability, 32-33
costs, 31
early systems, 6, 17-18
flat file systems, 7-11
flexibility, 31-32
hierarchical data model systems, 12-14
network data management systems, 14-17
scalability, 29-31
document databases, 182
applying modelers, 248-254
avoiding explicit schema definitions, 199-201
balancing denormalization/normalization, 241
basic operations, 201
collections, 218
deleting from collections, 204-206
denormalization, 235
embedded documents, 218-219
executing joins, 245-248
Goldilocks Zone of indexes, 258-260
hierarchies, 265-266
horizontal partitions, 227-231
HTML, 182-187
inserting into collections, 202-204
joins, 243-245
key-value pairs, 187
managing in collections, 188-198
many-to-many relationships, 243, 263-264
modeling common relations, 261
normalization, 233-234
one-to-many relationships, 242, 262-263
partitions, 224
planning mutable documents, 255-258
polymorphic schemas, 223
query processes, 235-236
retrieving from collections, 208-209
schemaless, 220-222
terminology, 214-217
updating in collections, 206-208
vertical partitions, 225-227
graph databases, 363-364, 400-401
advantages of, 372-376
intersections, 386
network modeling, 365-371
operations, 385
optimizing, 415-419
queries, 405-415
social networks, 401-404
traversal, 387
unions, 385
key-value databases
limitations, 159-162
partitioning, 144-151
patterns, 162-173
mobile applications, 174-177
relational databases, 4-5
e-commerce applications, 5-6
history of, 19-29
secondary indexes, 345-347
structured values, 151
optimizing values, 155-159
reducing latency, 152-155
Design Patterns: Elements of Reusable Object-Oriented Software, 162
dictionaries, 22-23
Dijkstra algorithms, 395
Dijkstra, Edsger, 395
directed edges, 382. See also edges
directed graphs, 392-393
diseases, infectious, 366-368
distributed databases, 41, 299-300
availability, 44-48
CAP theorem, 51-54
consistency, 42-48
persistent storage, 41-42
quorums, 49-51
distributing data, 230
division, 119
DML (Data Manipulation Language), 25-26
document databases, 66-68, 182
avoiding explicit schema definitions, 199-201
errors, write problems, 107-110
ETL (extracting, transforming, and loading data), 350-351
eventual consistency, types of, 57-59
executing joins, 245-248
explicit schema definitions, avoiding, 199-201
Extensible Markup Language. See XML
extracting, transforming, and loading data. See ETL

F
Facebook, 370. See also social media features
column family databases, 286
key-value databases, 91
 keys, 103-110
 scalability, 95-102
 simplicity, 91-92
 speed, 93-95
 values, 110-113
files, flat file data management systems, 7-11
filters, Bloom, 319-320
find method, 208
flat file data management systems, 7-11
flexibility
document databases, 190
 schemaless databases, 221
flexibility of databases, 31-32
flow networks, 393
for loops, 253
formatting. See also configuration code, 145-147
document databases
 HTML, 182-187
 key-value pairs, 187
secondary indexes, 345-347
strings, 123
values, optimizing, 155-159
FoundationDB, 478
functions
 addQueryResultsToCache, 88
 create, 90
delete, 90
hash, 106-107, 137-138
indexes. See indexes

G
Gamma, Erich, 162
Ganglia, 355
geographic locations, modeling, 365
Global Positioning System. See GPS
Goldilocks Zone of indexes, 258-260
Google
 BigTable, 279-285
 Cloud Datastore, 478
gossip protocols, 296-299, 324-325
GPS (Global Positioning System), 435
graph databases, 71-75, 363-364
 advantages of, 372-376
design, 400-401
 queries, 405-410
 social networks, 401-404
network modeling, 365-371
operations, 385
 intersections, 386
traversal, 387
 unions, 385
indexes

properties, 388
betweenness, 391
closeness, 390-391
degrees, 390
order/size, 389
selecting, 433
terminology, 380
edges, 381-382
loops, 384
paths, 383
vertices, 380-381
types of, 392
bigraphs, 394
directed/undirected, 392-393
flow networks, 393
multigraphs, 395
weighted graphs, 395-396
graphs, traversal, 410-417
Gremlin, 410-418
groups, column family databases, 279
guidelines
column family databases, 431-432
databases, 428
document databases, 430
graph databases, 433
indexing, 340-348
key-value databases, 429
table design, 332-340

H
Hadoop, 285
Hadoop File System. See HDFS
handoffs, hinted, 300-302, 325-326
hashes, 122, 150
functions, 106-107, 137-138
partitions, 230
HBase, 285, 293-294, 478
HDFS (Hadoop File System), 293
Helm, Richard, 162
Hernandez, Michael J., 121
hierarchies
data model systems, 12-14
document databases, 265-266
hinted handoffs, 300-302, 325-326
history
early database management systems, 6, 17-18
flat file systems, 7-11
hierarchical data model systems, 12-14
network data management systems, 14-17
of relational databases, 19-29
horizontal partitioning, 227-231
hotspotting, avoiding, 337-338
HTML (Hypertext Markup Language), document databases, 182-187
Hypertable, 479

I
identifiers, keys, 104. See also keys
if statements, caches, 88
implementation
column family databases, 313-322
key-value databases, 137
collisions, 138
compression, 139-140
hash functions, 137-138
limitations, 149
indexes, 23, 171-173
collections, 217
indexes

column family databases, 281, 340-348
Goldilocks Zone of, 258-260
retrieval time, 415
infectious diseases, modeling, 366-368
Infinispan, 479
in-memory caches, 86. See also arrays, associative
in-memory key-value databases, 89-90
INSERT statements, 27
inserting documents into collections, 202-204
instances, 121, 145
internal structures, 313
intersections of graphs, 386
isolation, ACID, 54
isomorphism, 388-389

J
Jackson, Ralph, 162
JavaScript Object Notation. See JSON joins
avoiding, 372-375
executing, 245-248
need for, 243-245
tables, 333
JSON (JavaScript Object Notation), 66, 123, 161

K
key-value databases, 60-65
architecture, 131
clusters, 131-133
replication, 135-136
rings, 133
arrays, 82-84
associative arrays, 84-85
caches, 85-88
case study, 174-177
column family databases, 286-292
design
partitioning, 144-151
patterns, 162-173
features, 91
scalability, 95-102
simplicity, 91-92
speed, 93-95
implementing, 137-140, 149
in-memory, 89-90
keys, 103
constructing, 103-104
locating values, 105-110
limitations, 159-162
models, 118-121
keys, 121-123
namespaces, 124-126
partitions, 126-129
schemaless, 129-131
values, 123-124
on-disk, 89-90
selecting, 429
values, 110-113
key-value pairs, 5
document databases, 187
ordered sets of, 215
keys, 60
constructing, 103-104
data types, 216-217
definition of, 121-123
enumerating, 170-171
indexes, 171-173
key-value databases, 103
naming conventions, 145
partitioning, 129, 150-151
rows, 309-310, 337-338
shard, 229
TTL, 163-164
values
 locating, 105-110
 searching, 160-161
keyspaces, 287, 309

L
languages
 Cypher, 408-415
 query (SQL), 24
 DDL, 24-25
 DML, 25-26
 standard query, 161-162
latency, reducing, 152-155
laws of thermodynamics, 299-300
layers, abstraction, 120
least recently used. See LRU
LevelDB library, 140, 479
levels, consistency, 321-322
licenses, cost of, 31
limitations
 of arrays, 84
 of flat file data management systems, 9-11
 of hierarchical data management systems, 14
 of key-value databases, 159-162
 of network data management systems, 17
 of relational databases, 27-29
 of values, 112-113
LinkedIn, 370. See also social media
linking records, 15
links. See edges
list-based partitioning, 231
lists, 122, 266
locating values, 105-110
location of data, 282-283
locations, modeling, 365
logs, commit, 317-318
loops, 384
 for, 253
 while, 148
LRU (least recently used), 94
Lucene, 162

M
machine learning, searching patterns, 353
magnetic tape, 7. See also storage
maintenance
 availability of data, 44-48
 consistency of data, 42-48
management
 applications, 26-27
databases
 design, 4-5
document databases in
 collections, 188-198
 early systems, 6, 17-18
 e-commerce applications, 5-6
 flat file systems, 7-11
 hierarchical data model systems, 12-14
 network data management systems, 14-17
distributed databases, 41
 availability, 44-48
management

CAP theorem, 51-54
consistency, 42-48
persistent storage, 41-42
quorums, 49-51
memory programs, 22
schemaless databases, 222
secondary indexes, 341-344
storage programs, 20-21
many-to-many relationships, 243, 263-264
mapping queries, 406
MapReduce, 354
MapReduce programs, 355
Marklogic, 479
master-slave replication, scalability, 95
masterless replication, 98-102
MATCH operation, 409
media, social, 370
memory
caches, 86. See also caches
management programs, 22
TTL, 163-164
methods, find, 208
Microsoft Azure DocumentDB, 479
mobile applications, configuring, 174-177
modelers, applying, 248-254
models
common relations, 261
entities, 335
hierarchies, 265-266
key-value databases, 92, 118-121
keys, 121-123
namespaces, 124-126
partition keys, 129
partitions, 126-127
schemaless, 129-131
values, 123-124
master-slave, 97
networks, 365-371
abstract/concrete entities, 369
geographic locations, 365
infectious diseases, 366-368
social media, 370
simplified, 375
MongoDB, 479
monitoring big data, 355-356
monotonic read consistency, 58
moving oversized documents, avoiding, 258
multigraphs, 395
multiple collections, 194
multiple relations between entities, 375-376
multiplication, 119
multirow transactions, avoiding, 290-291
mutable documents, planning, 255-258
N
N documents, 253
names, columns, 281, 334
namespaces
definition of, 124-126
naming conventions, 146
naming conventions, keys, 145
Neo4j, 479
networks
data management systems, 14-17
flow, 393
modeling, 365-371
abstract/concrete entities, 369
geographic location, 365
infectious diseases, 366-368
social media, 370, 401-404
nodes, 72, 363, 380
HBase, 293-294
properties, 388-389
normalization, 233-234, 241-243
NoSQL databases. See databases

O
on-disk key-value databases, 89-90
one-to-many relationships, 242, 262-263
operations
graph databases, 385, 388-389
betweenness, 391
closeness, 390-391
degrees, 390
intersections, 386
order/size, 389
properties, 388
traversal, 387
unions, 385
MATCH, 409
OpsCenter, 356
optimizing
graph database design, 415-419
key-value databases, 93-102
keys, 103
constructing, 103-104
locating values, 105-110
queries, 372-375
values, 110-113, 155-159
oracle Berkeley DB, 479

Oracle Real Applications Clusters. See RACs
ordered lists, arrays, 84. See also arrays
ordered sets of key-value pairs, 215
organization. See management: storage
OrientDB, 480
oversized documents, avoiding moving, 258
overusing denormalization, 251-253

P
parameters, configuring, 313
parent-child relationships, 15
parent references, 265
partitioning
algorithms, 230
CAP theorem, 51-54
column family databases, 314-316
definition of, 126-127
key-value databases, 144-151
keys, 129
ranges, 150
types of, 224-231
paths, 383
patterns
code, 145-147
key-value databases, 162-173
searching, 353
peer-to-peer servers, Cassandra, 295-302
performance
caches. See caches
duplicating data, 155
graph databases, 415-419
key-value databases, 93-102
keys, 145-147
queries, avoiding joins, 372-375
persistent data storage, 41-42
planning mutable documents, 255-258
polymorphic schemas, 223
populations, 351
predicting with statistics, 351-352
primary indexes, 341.
See also indexes
primary keys, 104. See also keys
processes, column family databases
 anti-entropy, 323-324
gossip protocols, 324-325
handed handoffs, 325-326
implementing, 313-322
replication, 322
processors, queries, 235-236
programs
 caches. See caches
memory management, 22
RDBMSs, 20
storage management, 20-21
properties, graph databases
 betweenness, 391
closeness, 390-391
degrees, 390
isomorphism, 388-389
order/size, 389
traversal, 388
protocols
 column family databases
 anti-entropy, 323-324
 replication, 322
gossip, 296-299, 324, 325
queries
 caches. See caches
Cypher, 408-415
documents, 67
graph databases, 400, 405-415
normalization, 234
processors, 235-236
ranges, 161
subqueries, avoiding, 291-292
query languages, 24
SQL DDL, 24-25
SQL DML, 25-26
quorums, 49-51
R
RACs (Oracle Real Applications Clusters), 30
random access of data, 9
ranges
 key-value database design, 147-148
 partitioning, 150, 230
queries, 161
RavenDB, 480
RDBMSs (relational database management systems), 19-29
read-heavy applications, 259
read/writer operations,
troubleshooting, 155-159
reading
 from arrays, 83
 atomic rows, 283-284
records
 hierarchical data management systems, 12
 linking, 15
Redis, 124, 480
reducing
 anomalies, 254
 latency, 152-155
relational database management systems. See RDBMSs
relational databases
 column family databases, 289-292
design, 4-6
history of, 19-29
NoSQL, using with, 434-436
relationships, 15, 72
 common, 261
 many-to-many, 243, 263-264
 multiple between entities, 375-376
 one-to-many, 242, 262-263
remove command, 204
replicas, comparing, 323
replication
 column family databases, 322
definition of, 135-136
 masterless, 98-102
 master-slave, 95
response times, 49-51
retrieval time, optimizing, 415
retrieving documents from collections, 208-209
Riak, 480
rings, definition of, 133
root nodes, 12
rows, 121. See also column family databases
 atomic, 283-284
 indexing, 281
 keys, 309-310, 337-338
rules
 constraints, 24
 Third Normal Form, 234
S
scalability, 29-31
 of graph databases, 418-419
 key-value databases, 95-102
 keys, 123
 master-slave replication, 95
 masterless replication, 98-102
schemaless, 129-131, 220-222
schemas, 23
 explicit definitions, 199-201
 polymorphic, 223
searching. See also queries
 indexes, 171-173
 patterns, 353
 values, 105-113, 160-161
secondary indexes. See also indexes
 applying, 345-347
 managing, 341-344
SELECT statements, 27
selecting
 databases, 428
 column family, 431-432
 document, 430
 graph, 433
 key-value, 429
 edges, 416
separating data, 229
sequential access to data, 7
sessions, consistency, 58
sharding, 227-231
sharing code, 195-198
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>simplicity of key-value databases, simplified modeling, single rows, sink vertices, sizing graphs, sizing values, sizing graphs, sizing values, sizing</td>
<td>91-92, 375, 335, 393, 389, 155-159</td>
</tr>
</tbody>
</table>
horizontal partitions, 227-231
normalization, 233-234
partitions, 224
polymorphic schemas, 223
query processors, 235-236
schemaless, 220-222
vertical partitions, 225-227
graph databases, 380
 edges, 381-382
 loops, 384
 paths, 383
 vertices, 380-381
key-value database architecture,
 131, 137-140
 clusters, 131-133
 replication, 135-136
 rings, 133
key-value database modeling,
 118-121
 keys, 121-123
 namespaces, 124-126
 partition keys, 129
 partitions, 126-127
 schemaless, 129-131
 values, 123-124
thermodynamics, laws of, 299-300
Third Normal Form, 234
time, optimizing retrieval, 415
time stamps, indexing, 281
Time to Live. See TTL
TinkerPop, 418
Titan, 418, 480
tools, big data, 348-356
transactions, 45
 ACID, 429. See also ACID
 atomic aggregation, 169-170
 consistency of, 47-48
multirow, avoiding, 290-291
transportation networks, 393
traversal, graphs, 387, 410-417
troubleshooting
 read/write operations, 155-159
 write problems, 107-110
TTL (Time to Live) keys, 163-164
types
data. See data types
 of databases, 59, 477-480
 distributed databases, 41-54
document databases, 66-68
graph databases, 71-75
distributed/undirected, 392-393
flow networks, 393
multigraphs, 395
weighted graphs, 395-396
tension of partitions, 224
 horizontal, 227-231
 vertical, 225-227
undirected edges, 382.
 See also edges
undirected graphs, 392-393
unions of graphs, 385
update command, 207
UPDATE statements, 27
updating documents in collections,
 206-208
validation of code, 222
valueless columns, 334
values, 64, 110-113
arrays. See arrays
atomic aggregation, 169-170
columns
 avoiding complex data structures, 339-340
storage, 334
versions, 338
data types, 216-217
definition of, 123-124
indexes, 171-173
key-value databases
 architecture terms, 131-136
design, 147-148
 modeling terms, 118-131
keys, 105-110, 215
optimizing, 155-159
searching, 112-113, 160-161
structured design, 151-159
versions, column values, 338
vertical partitioning, 225-227
vertices, 380-381, 363. See also nodes
 betweenness, 391
closeness, 390-391
degrees, 390
 graph traversal, 387
views, 23
Vlissides, John, 162

weight of edges, 382. See also edges
weighted graphs, 395-396
while loops, 148
write-heavy applications, 260-261
write problems, avoiding, 107-110
writing atomic rows, 283-284

XML (Extensible Markup Language), 66

zones, Goldilocks Zone of indexes, 258-260
Zookeeper, 293-294